-

-~
brought to you by ., CORE

View metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in: http://oatao.univ-toulouse.fr/26398

Official URL: DOI:10.1007/s10732-020-09445-x

To cite this version: Mnasri, Sami and Nasri, Nejah and
Alrashidi, Malek and Van den Bossche, Adrien and Val, Thierry loT
networks 3D deployment using hybrid many-objective optimization

algorithms. (2020) Journal of Heuristics, 26. 663-709. ISSN 1381-
1231

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr



https://core.ac.uk/display/335471038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/26398
https://link.springer.com/article/10.1007%2Fs10732-020-09445-x

loT networks 3D deployment using hybrid many-objective
optimization algorithms

Sami Mnasri'(® - Nejah Nasri23 . Malek Alrashidi? - Adrien van den Bossche! -
Thierry Val'

Abstract

When resolving many-objective problems, multi-objective optimization algorithms
encounter several difficulties degrading their performances. These difficulties may
concern the exponential execution time, the effectiveness of the mutation and recom-
bination operators or finding the tradeoff between diversity and convergence. In this
paper, the issue of 3D redeploying in indoor the connected objects (or nodes) in the
Internet of Things collection networks (formerly known as wireless sensor nodes)
is investigated. The aim is to determine the ideal locations of the objects to be
added to enhance an initial deployment while satisfying antagonist objectives and
constraints. In this regard, a first proposed contribution aim to introduce an hybrid
model that includes many-objective optimization algorithms relying on
decompo-sition (MOEA/D, MOEA/DD) and reference points (Two_Arch2,
NSGA-III) while using two strategies for introducing the preferences (PI-EMO-
PC) and the dimen-sionality reduction (MVU-PCA). This hybridization aims to
combine the algorithms advantages for resolving the many-objective issues. The
second contribution concerns prototyping and deploying real connected objects
which allows assessing the perfor-mance of the proposed hybrid scheme on a real
world environment. The obtained experimental and numerical results show the
efficiency of the suggested hybridization scheme against the original algorithms.

Keywords [oT collection networks - 3D indoor redeployment - Experimental
validation - Many-objective optimization - Preference incorporation - Dimensionality
reduction
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1 Introduction

To implement a wireless sensor network (WSN), the location of the nodes should be
first chosen according to specific criteria in order to optimize several targeted objectives
like coverage, localization, connectivity or consumption rate of energy. Thus, node
deployment greatly influences the network performance and its operation. It aims
essentially at proposing a network topology with well-defined number and positions
of nodes. This deployment is said to be 3D if the variation of the heights between
nodes are important with respect to the width and length of the “Region of Interest”
(Rol).

In this study, we investigate the 3D deployment which is more complicated and
represents the Rol topography better than the 2D deployment. The migration of the
WSNs to the Internet of Things (IoT) gave birth to the Internet of Things collection
networks which consist of a set of connected objects that collect information from
the Rol. Therefore, our main issue consists in deploying an indoor 3D DL-IoT, a
scenario where autonomous objects (devices, robots, etc.) having unique identifiers
can communicate with each other via a set of protocols such as Bluetooth or 802.15.4
to transmit the measures sensed by the sensors of the WSN. In fact, IoT is responsible
for processing the collected values and making the decisions. We are specifically
interested in the redeployment problem where a number of nodes are added to an
initial configuration of nodes. Indeed, in our experiments, we focus on the indoor 3D
deployment of nodes in a site composed of several buildings.

Most mathematical formulations consider the 3D deployment as a NP-hard problem
(Cheng et al. 2008) which cannot be solved by deterministic approaches especially
for the large size of the problem. This requires using heuristic approaches. In this
paper, we suggest a many-objective modeling of the deployment problem based on real
hypotheses and constraints. Hence, many-objective evolutionary algorithms (MaOAs),
such as Two_Arch2 (Wang et al. 2015) and MOEA/DD (Li et al. 2015) are used
with a hybridization scheme incorporating dimension reduction and user preferences.
Besides, several issues encounter the MaOAs when resolving the real-world problems
with a high number of objectives exceeding three as it is the case in our approach.

Recently, with the continuous rise of the number of objectives, the complexity and
the realism of optimization problems, the interest of the evolutionary multi-objective
optimization (EMO) community is focused on the evolutionary many-objective opti-
mization (EMaO). This focus is explained by the fact that the efficiency of most
evolutionary optimization algorithms deteriorates if the number of objectives exceeds
three (Ishibuchi et al. 2012).

The most important challenges faced by EMO and EMaO when tackling many-
objective optimization problems (MaOPs) are as follows: The exponential complexity
in space and time, the inaccuracy of Pareto-based EMOs, the problem of representing
the trade-off surface, the ineffective recombination and mutation operators and the
inaccuracy of density estimation. Hence the need of using new approaches resolving
these issues. Moreover, the many-objective optimization theory is based on the fact
that optimizing each objective independently from the others cannot give a good
candidate solution and even if a good representation of the Pareto Front is done for
high-dimensional objective space, maintaining the diversity is not ensured (Yuan et al.



2016). This is due to the complexity of the real-world problems and the nature of the
objectives: unless the objectives are all inter-dependent and they can be reduced to
one or two objectives, these latter are often antagonist, which leads to the reality that
improving an objective value separately will deteriorate one or more other objective
values (Rostami et al. 2014).

As a solution to overcome the mentioned challenges, our approach relies on com-
bining different paradigms (reduction, preference and evolutionary ones) in a well
justified scheme.

The main proposed contributions of this study are presented below:

e To evaluate the behavior and the performance of the EMO algorithms, the majority
of the EMO studies and their applications rely only on theoretical hypothesis or
simulations in the case of engineering problems. Unlike these studies, ours is based
on real empirical experiments with real nodes and a platform of prototyping. Indeed,
the importance of this work relies in the used algorithms based on real hypothe-
ses and practical measurements. It presents a proof of the accuracy of the recent
algorithms, such as MOEA/DD and Two_Arch2, which are studied by their authors
only on academic problems like ZDT and DTLZ.

e Moreover, the proposed mathematical formulation gives a detailed description of the
3D deployment problem taking into account various real hypotheses and constraints
to comply with the assumptions of the experiments and the numerical tests.

e Another analysis contribution consists in the proposed hybridization scheme which
includes different classes of many-objective algorithms based on reference points,
reduction of dimensionality and incorporation of preferences. According to the
obtained results, this hybridization scheme increases the performance of the original
used MaOAs.

The remainder of the paper is composed of the following sections: a set of relevant
recent related works on the 3D deployment in WSN are discussed and criticized in
Sect. 2. Afterwards, an integer linear programming modeling is detailed in Sect. 3.
The suggested hybrid scheme is presented in Sect. 4. Then, the numerical results of the
EMOs evaluation and interpretations are discussed in Sect. 5. Statistical nonparametric
tests are proposed in Sect. 6. Moreover, experimental tests on a platform of prototyping
are investigated in Sect. 7. Finally, concluding findings are presented in Sect. 8.

2 Related works

Different studies have suggested optimization evolutionary approaches, such as
Genetic Algorithms (GAs), to guarantee an efficient deployment in WSNs. Table 1
illustrates the recent researches in this context.

In relation to our approach, in order to resolve the 3D indoor deployment issues in
WSN, authors in Mnasri et al. (2017a) and Mnasri et al. (2015) proposed a genetic
algorithm then a hybrid algorithm that stems from the behavior of ant foraging. Despite
the efficiency of the latter algorithm compared with the standard ACO and NSGA-III,
the scalability of this algorithm is not tested in dense networks. In the same regard,
authors in Mnasri et al. (2018) aim to resolve the deployment problem using the
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incorporation of explicit user preferences procedure (PI-EMO-VF) applied to a many-
objective novel variant of the genetic algorithms (NSGA-III).

Compared to the previous studies, we suggest in this paper a new scheme which
interactively integrates another more efficient explicit user preferences procedure (PI-
EMO-PC) with an implicit one (finding knee regions, ideal and nadir points) applied to
four optimization algorithms from different classes (MOEA/DD, MOEA/D, NSGA-III
and Two-Arch2). Another difference is that we propose a new scheme of hybridizing
the indicated preferences procedures with dimensionality reduction (NLMVU-PCA
and L-PCA).

3 Integer linear programming formulation

To resolve our problem, the following model is suggested. We consider the following
types of nodes:

e Stationary nodes which are the initially installed fixed nodes. This type of nodes
can be randomly disseminated. But, it is better to adopt a strategy to distribute them
according to the applicative objectives.

e Nomad nodes which are added to enhance the 3D deployment scheme. Their posi-
tions are identified by the proposed algorithms.

e Mobile nodes which are a set of targets to control. Equipped with a sensor trans-
mitting and receiving signals.

The following sets, variables of decision and parameters are used:

e Sets

e S: is the set of potential sites where sensor nodes can be installed. S = Sa U S},
such that the set “S,” represents the potential sites where stationary sensors can be
installed. “Sy,» is the set of potential sites where the nomad sensors can be installed.
Note that a site must not be in two different sets. Thus, Sa N Sp= @.

e N: is a set that denotes the different types of the nodes. Let N = Na U Ny, such that

the set “Na” represents the types of the stationary nodes. The set “Ny,” represents

the types of nomad nodes. We can use various types of sensors having different

functionalities which can be gathered in the same sensor like detecting the degree

of temperature, the degree of luminosity or the opening and closing of doors.

T: is the set of mobile targets to be detected; “t)” is a target.

V: is the set of nodes having several types in N and deployed in several sites in S.

K is the set of scheduling periods when a sensor i €V is activated.

Decision variables

Sgss equal to 1 if the sensor positioned at a site s € S detects a signal from a sensor

positioned at a site s’ €S with a power of transmission sufficient to detect it; 0

otherwise.

o T, equal to I if the sensor positioned at a site s € S transmits a signal from a sensor
positioned at a site s’ €S with a power of transmission sufficient to detect it; O
otherwise.



e X,s equal to 1 if a sensor positioned at a site s €S receive a signal from a target at
a location te T with a power of transmission greater than or equal to the minimum
power required to detect it; O otherwise.

e Pos;ji areal variable representing the 3D coordinates providing the potential indoor
position of a sensor.

o CovP;ji equal to 1 if and only if the position Pos;jx is covered by a node with
a power of transmission greater than or equal to the minimum required power to
detect it; O otherwise.

e Pfx; setto 1 if astationary node having a type n € N is positioned at a site s€ S; 0
otherwise.

e Pnd} set to 1 if a nomad node having a type ne N is positioned at a site s€ S; 0
otherwise.

e Pmb} setto 1 if a mobile node having a type neN is positioned at a site s€ S; 0
otherwise.

The decision variables are related to each other’s in different forms: Indeed, The
two variables Sg;y are T, complementary since they represent respectively the ability
of reception and transmission of signals between a node and other nodes in the Rol.
However, X, represents the ability of a node to detect the targets in the Rol. Pos; ;i
representing the 3D position of the node is in a direct relation with Cov P jx indicating
if the position Pos;ji is covered or not by a node. The three variables Pfx;, Pnd]
and Pmb/ represents the three types of nodes and its relations with the set of possible
sites in the Rol.

As regard the relation between the attenuation ratio between two nodes, the received
signal and the distance between these two nodes, this can be modeled by the following
two relations:

doy = X Sgeg X 859, ¢ €R, sEN, s € N (1)

Constraint (1) links the distance to the power transmission of the signal between two
nodes s and s'. o is a real empirically-determined coefficient.

(Sgis = 1) = (dis < dmax)Vt € N,s € N @

Constraint (2) implies that if there is a signal Sg;; between two nodes ¢ and s, the
distance (d;s) between ¢ and s must not exceed the pre-defined maximum distance
(dmax)-

Other relations between the decision variables are modeled in the proposed objective
functions and in the constraints.

e Parameters

e M denotes the number of used objectives

e nbT denotes the number of mobile targets. nbF is a parameter representing the
number of initially stationary nodes. This number can be set by default to a random
number or to 1y - (nm/200r?). r is the radius of a sensor. nbN is the number
of nomad nodes to add. Let Ny,x be the maximum number of nodes that can be
deployed within the wireless network. Thus (nbT+ nbF+ nbN) < Npx.



e C? is the hardware cost of a node (including price) having a type n € N and installed
atasiteseS.

e Bt; is the remaining energy in the battery of the sensor i at an instant t.

e n.... stands for the degree of coverage. It defines the minimum number of sensors to
localize a target emitting a signal. When using the proposed hybrid 3D localization
model (based on 3D DV-Hop and RSSI), the parameter n,,;, is generally set to 4.

e Lf>0is the lifetime of the network (i.e. time in which the desired coverage degree
is guaranteed) and Lfax is an upper bound for Lf. Lf; is the lifetime of the node
ieV.

o T P/ representing the power of the signal transmitted (emitted RSSI) of the sending
nodeieV.

e RP/ representing the power of the signal received (emitted RSSI) at a distance r
from the senderie V.

e &,y represents the attenuation ratio between two nodes in two sites s€ S and s’ € S.

e d is a parameter representing the distance between two nodes ‘t” and ‘s’.

e duax 1s a constant representing the maximum distance separating a node i and a
target j or separating two nodes i and j so that they could detect each other.

3.1 The objective functions
The many-objective fitness function is: Maximize F(;)) where F(})) =(f1,....f8)

3.2 The number of the added nomad nodes

The number of nomad nodes to add must be minimized. The following function is
proposed for the number of added nomad nodes:

f1 = Minimize Z Pnd" 3)
seSh
Subjectto Y " Pfx! <nbFVseS, neN 4)
seS

> Pnd! <nbNVseS.neN (5)

ses
Z Pmby <nbTVs e S,neN (6)

seS

3.3 Energy consumption

A deployed active sensor dissipates energy when transmitting, sensing, receiving, or
being idle. Therefore, energy efficiency is considered as a fundamental key in design-
ing a wireless sensor network. Since being idle and sensing energies are negligible
compared with transmitting and receiving energies, we proposed a model in which
E fl“' represents the energy consumed to reactivate the transmitter/receiver circuit and
€amp Tepresents the transmitter amplifier to communicate. The energy dissipated to



transmit m-bit packet within a distance d is E;"*"*™ and the energy of receiving the
same packet is E]“".

f2=Minimize Y E[""" + %" E[“" where E[*
= Eflec *m and Ef”””m = El-d“' * M+ Eagmp * M * d? (N

Subject to the following constraint: In order to minimize the consumption of energy,
we can minimize the interferences during transmission. The neighboring nodes cause
interferences which can be minimized by out bounding the maximum number of
neighbors that a sensor may have as indicated in (8).

Z Pfx! + Z Pnd; + Z Pmb?

s =0,n=0 s =0,n=0 s =0,n=0
< nbT +nbF +nbN +|S|—|S[*(Pfx" + Pnd" + Pmb") ®)

3.4 Hardware deployment cost

WiNo nodes (Van den Bossche et al. 2016) support the IEEE 802.15.4 protocol and
represent a practical solution for indoor generic sensing nodes. The nomad WiNo
nodes to add may have several heterogeneous types (n € Np). Even if they are all
homogeneous, the cost of deploying the same node varies according to the site (s € Sp).
For instance, deploying a sensor attached to a wall is less expensive than fixing it on
the middle of the room. Thus, the deployment cost can be considered as an objective
to minimize separately from the minimization of the number of added nomad nodes.
Thus:

f3=Minimize Y Y Pnd}C} )

seSbneNb

3.5 Network Utilization

To optimize the network lifetime, nodes can be placed near to the base station which
can cause a poor utilization of the resources in the network and increase the overall
cost of deployment. Thus, it is important to extend the network lifetime with the
simultaneous deployment of a reasonable number of sensors. The network utilization
(NU) is modeled as:

Maximize [f / Y " (Pfx! + Pnd} + Pmb}),Vs € S,neN (10)



To linearize our model, we suggest a new variable /f = 1/1f. Thus, (10) becomes:

f4 = Minimize If. Z (Pfx§ + Pnd + Pmb{),¥YseS,neN (1D

Subject to If. Z(Pfx;’ + Pnd + PmbY) < lfmax where [fmax = 1/[fmax

12)

3.6 Localization rate

We suggest a hybrid localization model that enhances the utilized range-free technique
(3DDV-Hop) by incorporating a range based localization Received Signal Strength
Indication (RSSI). To guarantee better localization, each monitored target t € T must
be surveyed by at least nyi, anchor nodes. Then, ) ses Xts = Npin Ve € T. Thus, the
following function (11) is suggested to model the localization:

f5 = Maximize Z (Z Xt — ”min) where (x)* = max(0, x) (13)

teT \seS§

Subject to Y xys > nypipVt € T (14)

ses

Constraint (14) indicates that the number of sensors receiving a power of signal (cal-
culated by the RSSI) from the target i should be equal or greater than the minimum
necessary power to localize it.

3.7 Coverage rate

The coverage rate depends on the targets to cover. The Frame Error Rate (FER)
is the metric used to measure the coverage degree. To guarantee a full coverage,
each position in the 3D indoor space should be monitored by at least npyj, nodes.

Hence, ) | CovP;ji > nyyjp. Thus, we suggest the following function (15) to model
ses
the coverage:

+
f6 = Maximize Z (Z CovPiji — ”min) where (x)* = max(0, x) (15)

teT \se§

3.8 Lifetime

In the literature, the network lifetime can be modeled as the time in which the first node
totally consumes its energy or as the time until the first loss of coverage appears. In fact,
different factors, like the node density, the node transmission, the routing strategies



and the initial energy, can influence the network lifetime. To model the lifetime, we
suggest the following function:

f7 = Maximize Lf (16)
Subject to the following constraints:

Lf = i Lf; 17
S = ™ = a7
prxg +2Pnd" < Nmax + |S|—|S|x(Pfx" + Pnd"¥s € S,n € N (18)

seS seS

where Nmax = Pfx}'+Pnd}+Pmb!, Vs € S,n e Nand Lf; = Bt; /max(E!""" +
E[?),Vi € V. The network lifetime is equal to the minimum lifetime Lf; among the
lifetimes of all sensors.

3.9 Connectivity rate

If any node can communicate with any other node, the network is considered as
connected. Therefore, any node must have at least one incoming and one outgoing link.
In addition to the number of nodes and their density, the probability of connectivity is
typically linked to the transmission range and the strength of the received signal. To
model the connectivity rate, we suggest the following function:

f8 = Maximize RP/ (19)
Subject to
RP < Ty Sgsy xaxr ®x TP/ (20)

where o is the path loss exponent (generally 2 < w <5) and r is the distance between
the sending node and the receiving one.

r=rc.< RP/ =P.

min 2h

Constraint (21) indicates that the sender can be connected to the receiver and the data
can be received only when the power at the receiver is greater or equal to PI’; in- . The
transmission range 1 is defined by RP/(r =r;) = P/ . in

As the wireless connectivity problem is generally abstracted into a graph theory
problem, A WSN can be modeled as an undirected graph G(V;E). The probability of
connectivity of the graph (then the network) will be: Prob® = (1 — e e )" where
n is the number of nodes, is the node density and an edge exists between two nodes
within a distance r.. Hence, the transmission range of each sensor r. must satisfy:

\/_ In(1 — (ProbG)V/m) /A < re (22)



Y xe< Y Pfxl+ ) Pnd; (23)

s€S neNa neNbd

Constraint (23) denotes the number of nodes able to detect a target. This number
should not exceed the number of the installed nodes in the different sites.

4 The proposed hybrid scheme

Indeed, resolving real-world problems become particularly critical when the objec-
tives are conflicting or should be handled simultaneously. For such complex problems,
the aim is to select a solution from a set of possible solutions. Often, this selection
is difficult and manually done by the decision maker. Hence the need of an efficient
approach reducing the complexity and number of objectives, resolving the problem
and selecting an acceptable solution. Therefore, the choice of the proposed algorithm
is motivated by the issues raised by the many-objective optimization. The main con-
tribution is not only a combination of existing algorithm components: The aim is to
find solutions to the limitations of the existing proposed algorithms. To resolve the
previously-mentioned difficulties of EMOs in resolving MaOPs, we suggest a justi-
fied hybrid scheme incorporating different approaches. This scheme is illustrated in
Fig. 1.

In this scheme, four classes of MaOEA are combined: decomposition-based, ref-
erence point-based, reduction-based and preference-based.

Firstly, the MaOA is executed (MOEA/DD, NSGA-III or Two-Arch2) with pre-
serving the diversity using an adaptive neighborhood mechanism. Thus, the solutions
corresponding to the optimization of the initial set of objectives are obtained. On this
set, the dimensionality reduction is performed and the solutions corresponding to a

2 incorporating
Diversity Dimensionality
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Adaptive Neighborhood for
mutation/recombination

Aszet Sof non dominated offline correlation based reduction:

1
solutions corresponding NL-MVU-PCA & L-PCA
MaOEAs o Ft objccy”"

(sinha ot al, 2013)

/ A set S’ of non dominated 5045 ccyp&lma to Fs (<ft) objectives

Dominance and Decompaosition based: /
MOEA/D [Zhang et al..2007]
MOEA/DD (Li et al.,201S] / Sclect a~population P1 from §' signifying 50% progress
with the EME (at Ng penaratiane whara NILMUILLDEA ic malan

Reference set based: 3 e 4
NSGA-Ill [Deb et 81.,2014) L oy . .
Two Arch2 (Wang ct al2014] (__ k-means clustering _~ including
U e DM Preferences
asmaller set (P2)\p* ==~ .
representative mekS"* Interactive Preferences
—ea Explicit preferences + Implicit preferences
PI-EMO-PC Knee Paints ([TIKR-NSGAI)
[Sinha,2011) Nadir point (EC-NSGAII+LS)
Po :An initial random population of solutions Ideal point

Fig. 1 The four steps of the proposed hybridization scheme



smaller set of objectives is provided. Afterwards, the preference procedure is achieved.
Indeed, the preference methods assume that there are no redundant objectives in the
given problem (Saxena et al. 2013). Thus, in our approach, dimensionality reduction
procedure is always performed before applying the decision maker (DM) preferences.

Since the PI-EMO-PC procedure requires a sufficient search window, its input pop-
ulation must be chosen while guaranteeing that the search converges to a solution
in accordance with the interactive DM’s preferences. To choose the input population
for our preference procedure guaranteeing a balance between the computational per-
formance and the convergence to a candidate solution, we follow the same steps as
indicated in Sinha et al. (2013): The input population is an intermediate population
taken at Ng generations (50% of progress) after applying the reduction. After identify-
ing this input population for the preference procedure, only a smaller set representing
its members is considered using the k-means clustering. The previously indicated
members composed the initial population members of the PI-EMO-PC.

4.1 Including diversity

In the MOEA/D relying on decomposition, the multi-objective optimization problem
is decomposed into a set of single objective sub-problems (or simple multi-objective
ones) then a population based method is used to optimize these sub-problems simul-
taneously and independently but cooperatively. In MaEAs like MOEA/D, the high
dimension of the objective space leads to very diversified population, which make the
recombination and mutation operators inefficient and produce dominant offspring. As
asolution to these issues, we proposed a strategy that relies on adaptive multi-operators
with a niching restricted on the neighborhood. In what follows, we present and explain
these concepts and the proposed algorithms.

4.1.1 Chromosomes coding and fitness functions definition

*Chromosomes coding The first phase of an EMO is the coding of the chromosomes.
In the 3D deployment problem, each chromosome is an individual that correspond to
a feasible position of a node in the 3D space of the Rol. In our work, the chromosome,
whose genes express the value of his position according to the x, y and z axes, is coded
as a binary point of the position (X, y, z). Figure 2 illustrates the chromosome repre-
senting the node mapped to the location [46, 53, 34]. The choice of the initial number
of chromosomes depends on several factors including the initial existing distribution
of nodes and the 3D shape of the Rol. In this study, the binary coding is applied thanks
to its simple use, low computational complexity and its adaptability to the search in a
neighborhood where it is enough to change a gene (in the case of mutation) or some
consecutive genes (in the case of recombination) in order to have another individual
in the neighborhood. Although the obtained individual is not a possible position in the
Rol, it will be discarded by penalizing it with a weighting coefficient.

In many-objective optimization, many studies proved that improving the crossing
can be done by using the neighbors. Thus, the distance between the chromosomes to
cross ¢(i, j) Vi e V, j € V should be minimized. ¢ is the distance between the
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Fig. 2 The chromosome representing the sensor in the 3D position (46, 53, 34)

Table 2 Positions of nomad N1 N2 N3 N4 NS N6

added nodes proposed by a

candidate solution Xi 149 348 59 269 368 541
Yi 35 532 682 186 87 409
Z; 236 191 373 365 434 122

two nodes on the search space and i, j are two candidate nodes representing the two
chromosomes to cross.

The decision of using binary representation of chromosomes is privileged due to
its ease of use and low complexity which is very recommended when manipulating
MaOPs. Moreover, this decision is explained by favoring the neighbors in mutation
and recombination in our methodology: In fact, the binary coding permits to better sur-
vey the distinctions in qualities between two chromosomes according to the distance
between them. However, binary coding may give non-possible solutions. Weighting
coefficients will penalize these solutions which will not be chosen later by the algo-
rithm.

*Fitness functions definition Let’s consider a Rol of 700 *700* 700 with 15 initial
fixed nodes, the following candidate solution represents an individual from the pop-
ulation chosen as a suggested optimal solution (belongs to the final population that
represent the Pareto Front, after the stopping condition is met and the algorithm con-
verges). According to our model, this candidate solution of the deployment problem
represents the locations (coordinates in 3D plan) of a set of positions that meets the
final proposed positions of the nomad nodes added to correct the initial deployment
proposing the set of fixed nodes, in Table 2. Note that this representation of nodes in
Table 2 is the transformation from the binary coding to the decimal one. Binary coding
1s used to apply the mutation and recombination operators.

The corresponding fitness values (average of 30 random-chosen iterations) of objec-
tives are as follow (Table 3).

Let’s explain for example how the fitness function f6 is defined: it symbolizes
the coverage degree of nodes in the Rol: the coverage degree can be measured by
computing the degree of coverage of targets in the Rol. To achieve the 3D full coverage,
every position in the Rol must be covered by at least one sensor (ideally, by npin
sensors). Thus, the sum of all positions occupied by nodes shloud be more than np,: the
sum of binary variables Cov P, should be equal or higher than npin(3_sc s CovPijr >
Nmin-)- Hence the objective function is to maximize the sum of the gathered positions
occupied and covered by sensors.



Table 3 Average values of fitness functions

Formula Average values

NSGA-III MOEA/DD

f1 Minimize ) Pndy (3) 126.98 134.367
seSb
f2 Minimize Y E/FOnsm 4 Y Ereev (7) 4.266 3.843
f3 Minimize ). Y. Pndl!C! (9) 89.701 92.124
seSbneNb
f4 Minimize If. " (Pfx? + Pnd? + Pmb?"),Vs € S,n e N (11) 0.787 0.928
+
f5 Maximize | Y xrs — fipin | (13) 3.761 3.235
teT \seS
¥
f6  Maximize ¥ [ ¥ CovPijk —nmin | (15) 4833 5.136
teT \seS
f7 Maximize Lf (16) 3532 3982
f8 Maximize R P/ (19) 164.022 171.679

Since we use a hybrid 3D localization model relying on combining the 3D DV-Hop
and RSSI information, the coverage degree for each position is generally set to 4 (4
anchors are needed for localization). Note here that MOEA/DD is better than NSGA-
IIT since its average fitness value representing the coverage (f6) is equal to 5.13 which
is higher than the average fitness value proposed by NSGA-III (4.83). Note also that
the fitness function value may do not reflect the exact value of the concept for which
it is defined. This depends of its formula that can consider coefficients, constants and
decision variables: for example, the number of added nomad nodes in our example is
equal to 6 while the fitness function value is about 130 (126 for NSGA-III and 134 for
MOEA/DD).

4.1.2 The neighborhood restriction strategy

In the case of MaOP, the dimension of the objective space is too high. This increases
the population diversity. Thus, the mutation and recombination operators become
ineffective; hence the possibility that they create individuals who are not selected as
parents. Indeed, the used neighboring concept is based on the following steps:

e Computation of the distance in the objective space separating the individuals.

e Identification of the subset of (IPI.N;) nearest neighbors for each individual, where
N is the size of the neighborhood and P is the population. According to Qu et al.
(2012), Ng between 1/20 and 1/5 is preferred. In our tests, Ng = 1/10.

As case of the efficiency of utilizing the neighborhood in including diversity in
MaOEAs, authors in Ishibuchi et al. (2012) demonstrates that MaOEAs are more
efficient if the recombination takes place with a neighboring chromosome and if the
objectives are correlated.



*The neighbourhood mutation The neighbourhood mutation restricts producing new
individuals on an area which is near from their parents in order to establish a stable
niching. Authors in Qu et al. (2012) prove that the neighbourhood mutation improves
the detection of local optima. They propose a study to identify the preferred neigh-
bourhood size and its effect on the algorithm behaviour. They affirm that the ideal
neighbourhood size should be between 1/5 and 1/20 from the population. Hence, the
size of the neighbourhood is a specific parameter to be set proportionally to the size of
the population. In our approach, achieving a neighbourhood mutation needs to set only
one parameter: the neighbourhood size ns which determine the number of mutation
vectors in each subpopulation. To model this, we propose to minimize ¢ (i, j)) Vi€V,
J€V two candidate individuals to mate and ¢ is the search space distance between
them. Moreover, the proposed strategy allows each individual to evolve progressively
toward its “nearest optimal point”. In addition, the algorithm is independent from the
neighbourhood size. The proposed neighbourhood mutation algorithm is shown in
Algorithm 1.

Input A sct of solutions (population) composing the current genceration

Output A set of solutions (population) composing the next generation

01: For each individual / in the population size (N) do

02: Compute the Euclid distances between i and other individuals in the population,

03: Creatc asubpopulation sp from the m ncarest individuals to ;.

04: Crcatc an offspring ¢ using the adaptivc mutation applicd on sp and rcadjust out-boundcd solutions if cxist.
05:  Apply the fitness finction to evaluate produced offspring o.

06: Endfor

07: Create the next gencration by applying the niching strategy to choose the N fittest solutions
Algorithm 1 The Neighbourhood mutation algorithm

Indeed, starting from a population (set) of solutions of the current generation,
the proposed neighbourhood mutation procedure calculates the Euclidean distance
between 1 individuals on the population. Then selects the n members having the small-
est Euclidean distance to the individual i. Afterwards, an offspring is produced and
assessed using the fitness function, as a population of solutions for the next generation.

*The neighborhood recombination In evolutionary optimization algorithms, the
recombination permits generating good offspring from parents. In ideal cases, thisnew
offspring should contain a set of uniformly scattered non-dominated solutions. Firstly,
according to the selection mating model, any two individuals belonging to the popula-
tion may be considered as “parents”. However, this type of mating model suffer from
the uncertain choice of parents and the possibility of having alarge Euclidian-distance
between them, which increase the possibility of obtaining dominated offspring. To
mitigate this situation, a more determinist selection model relying on mating closer
individuals having shorter Euclidian-distance on the objective space, can be considered
to perform the recombination. Indeed, crossing individuals near from each other in
the variable space lead to an offspring that is generated near from the parents (in terms
of the objective values). This increases the possibility of obtaining a non-dominated
solutions and a diversified population. For continuous functions, the individuals that



are neighbours in the objective space are generally neighbours in the variable space.
Our neighbourhood recombination method is presented in Algorithm 2.

Input: A population of solutions composing the current generation

Output: A of solutions (population) composing the next generation

01: Classify the population according to their closeness from the best individual for one of the
finction values in the objective space.

02: Switching the sorted individuals in a random way according to a parameter neigh controlling the
adjusted neighborhood with a reasonable width of the population size.

03: Choosing two adjacent individuals from the population for performing the crossover.

Algorithm 2 The Neighbourhood recombination algorithm

Step 2 allows escaping from local optima by the switching operation that guaran-
tees the non-conducting with the same pair in every generation. The neigh parameter
controlling the width of the population size is a percentage that represents the ratio
of the size of the population. Thus, if the value of neigh is set to 10, the adjusted
neighbourhood is conducted using a population width which is equal to 10%. As a
consequence, the proximity of individuals is inversely proportional to the neigh param-
eter. Although, increasing too much the proximity among individuals may increase
the probability of repeatedly conducting the crossover into the same pair.

4.1.3 The adaptive multi-operators strategy

When solving many-objective problems, MaOAs have the problem of finding the
appropriate mutation and recombination operators according to the specificities of
the problem to be solved. To overcome this weakness, we suggest varying the used
operator adaptively. Indeed, the contribution of an operator in the previous iteration
was taken into account for the adjustment of its probability of being selected during
the current iteration. Thus, a probability of selection of use in the next generation
is computed for each operator. This probability depends on its contribution. This
“adaptive” mutation is dynamic since it is modifiable during the execution of the
algorithm. In our case, a “directed adaptive” mutation is used. It utilizes the feedback
information taken from the past generations to select operators in the future generations
without affecting the probabilistic aspect of the operators. As a consequence, the new
produced solutions are deterministically generated and guided by earlier individuals
in the search space toward optimal regions. This proposed adaptive multi-operators
neighbourhood strategy enhance improving the search and adapting it to the problem
local characteristics. Moreover, it facilitates avoiding local optima and increasing the
diversity by adaptively modifying the chromosomes values.

4.1.4 Application of the diversity strategies on the NSGA-lI
The suggested adaptive multi-operator NSGA-III algorithm relies on the NSGA-III

algorithm (Deb and Jain 2014) with an enhanced neighbourhood mutation and recom-
bination process which adaptively integrates different mutation operators. This the



first time such a modification of the NSGA-III is proposed. Algorithm 3 illustrates the
generation ¢ of the proposed adaptive multi-operator NSGA-III algorithm.

Input: A structured reference points Z* or supplied aspiration points Z?, parent population Pt
Ouput: Pt

01: J/ Initializations identical to the standard NSGA-UI (Deb et al., 2014)

02: P/ = Niching_and_Neighbor_Based_Selection(Py)

03: ProbaRecombinationOp «- choosing_operator()

04: ProbaMutationOp « choosing_operator()

05: Q: = Neighborhood_Adaptive_Mutation (P\', ProbaMutationOp);

06: Q= Neighborhood_Adaptive_Recombination (Q:, ProbaRecombinationOp )

07: /f The rest is the same as the standard NSGA-III algorithm

Algorithm 3 The generation ¢ of the proposed adaptive multi-operator NSGA-III algorithm

The procedure of calculating the probability of each operator is illustrated in
Algorithm 4. This procedure is used for selecting both mutation and recombination
operators. Indeed, considering a set (N) of different operators, the choosing_operator()
procedure calculates the contribution of all those operators (lines 2—8). The procedure
computes the number of solutions produced by each operator that belongs to the popu-
lation P of the following generation (line 3). To avoid discarding operators generating
no solutions in iteration, each operator that has a contribution which is smaller than a
predefined threshold, its contribution is set to this threshold (lines 4-6). This operator
can have promising contribution later in other phases of the search.

Input: The N operators

Output: ProbaOp

01: TotalContrib « 0

02: for 1< operator<N do

03:  OpContrib«— solutionsInNextPopulation(operator,P);
04: if OpContrib <threshold then

0s: OpContrib «— threshold;

06: endif
07:  TotalContrib «— TotalContrib + OpContrib;
08: end for

09: for 1< operator <N do
10:  ProbaOp «— OpContrib / TotalContrib;

11: end for
Algorithm 4 Choosing_operator() procedure

The same changes are applied to the original versions of the MOEA/D, MOEA/DD
and Two-Arch?2 to take advantage of our adaptive multi-operators concept.



4.2 Including reduction methods based on machine learning for the 3D
deployment problem

As an example of approaches used to overcome the complexity of many-objective
problems, we can mention the dimensionality reduction which supposes the existence
of redundant objectives in a given M-objective optimization problem.

In our works, as a reduction technique, we use the machine learning method MVU-
PCA (“Principal Component Analysis and Maximum Variance Unfolding”) which is
an offline correlation-based reduction method. The Machine Learning-based method
(Deb et al. 2006) consists in using machine learning techniques, such as Principal
Component Analysis (PCA) and Maximum Variance Unfolding (MVU), to eliminate
respectively the dependencies of the second and higher order in the non-dominated
solutions. MVU-PCA relies on a high-dimensional data structure which may be trans-
formed to minimize the effect of noise (non-optimal solutions that can differ from the
solutions defining the true PF) and dependencies (redundancy) between the different
objectives.

Our studied problem, the 3D Deployment of WSNs, may be modeled as a machine
learning objective reduction problem due to:

e The redundancy and the presence of non-conflicting and correlated objectives.

e The PF structure of our problem which indicate the essential components of its
intrinsic dimensionality (m).

e The high dimensional data which is linked to the non-dominated solutions resulting
from the EMO algorithm, providing generally, a poor PF approximation. Thus,
correlated objectives on the POF can illustrate partial conflict in the proposed EMO
solutions.

To integrate NL-MVU-PCA and L-PCA on the proposed EMOs, we apply the
reduction using the offline linear and non-linear reduction methods (named respec-
tively L-PCA and NL-PA-MVU).

In order to minimize the effect of noise and correlations among objectives, the PCA
method projects a data D on the eigenvectors of its correlation matrix while preserving
its correlation structure. Indeed, PCA method removes the higher order correlation in
the given data D. Thus, PCA may become unable to capture the data sets having
structures with non-Gaussian or multi-modal Gaussian distributions (Shlens 2009). In
fact, different nonlinear dimensionality reduction approaches, like Graph-based ones
(Saul et al. 2006) use a standard kernel function to transform data. Then, they apply
PCA in the transformed kernel space. Although, its efficiency is related to the a priori
chosen kernel. In our work, we employ the PCA method, proposed in Saxena et al.
(2013), which overcomes this drawback by the derivation of the “data-dependent”
kernels.

The second used machine learning-based method is the MVU (Weinberger and
Saul 2006) relying on a graph that calculates the low-dimensional representation in
order to unfold the high-dimensional manifold data. To perform the unfolding process,
Euclidean distances among data points are maximized, while angles and distances
between nearby points are locally preserved. Theoretically, this can be modeled as
a semi-definite programming problem (SDP) (Weinberger and Saul 2006) where the



output is the kernel matrix representing the kernel space to which the PCA method is
applied.

In our work, we use the framework proposed in Saxenaet al. (2013). In fact, Given an
M objective optimization problem with a set of non-dominated solutions, the proposed
framework aims at specifying the smallest set of m conflicting objectives (m <M)
while preserving the correlation structure among the given solution set. To perform this,
the proposed framework is used to eliminate globally correlated objectives and non-
conflicting ones along the eigenvectors of the correlation/kernel matrix. Thus, found
solutions are estimated as good representative of the PF if there is conformity between
the correlation structure of the PF and that of the found non-dominated solutions.
Therefore, essential objective set includes the smallest set of antagonist objectives
determined by the framework. This framework is employed to reduce iteratively the
objectives until obtaining the same objective set obtained as essential in a couple of
successive iterations.

4.3 Our proposed hybrid preference algorithm PI-EMO-PC-INK

Incorporating preferences aim at resolving the problem of low selection pressure
of convergence by carrying out an ordering of preference over the non-dominated
solutions. Because they interest in the search direction on the Rol, the interactive
and a priori algorithms are more likely to pay more attention to preferred solutions
and decrease the computational cost of the search process. A posteriori preference
approaches might give a high number of solutions which are non-interesting to the
DM. In our works, as an interactive preference reduction method, we use PI-EMO-
PC (Sinha et al. 2014). Despites their numerous advantages, the major weakness of
the interactive methods is that the algorithm used in such techniques need to interact
frequently with the DM who can become tired, which leads, in some cases, to a mis-
leading information about the preference information provided by the exhausted user
(Gong et al. 2013). Thus, to overcome this limitation in our work, we suggest a hybrid
preference process.

The progressive engagement of the preferences (interactive algorithms) is more
efficient since it allows the DM to adjust his preferences during the intermediate gen-
erations of an algorithm (Sinha et al. 2013). Therefore, a model based on an enhanced
PI-EMO-PC is used as a preference method in our work.

According to the results in Sects. 5-7, it is approved that the reduction procedure
enhances the comportment of the used algorithms. Indeed, once the set of essential
objectives is identified by the used reduction procedure, a questionable issue is about
the structure of the initial used population for the preference procedure.

The aim is to choose a sub-population of solutions from the pool of population. This
representative set could be either randomly generated; either the same as the population
output of the used EMO at the generation G" where the reduction procedure is executed;
or an intermediate population where its individuals are picked progressively from the
initial population until the population at the generation G" (the generation with a
progress value near to half as the pool population). The last choice, used in our model,



is the natural choice since it provides a balance between the search window of the DM
and the computational efficiency.

Interactive preferences are the most interesting preference methods since they are
dynamically injected into the selection process to continually guide the search for
appropriate actions.

To design our proposed hybrid preference algorithm, we use a recent interactive
preference procedure called PI- EMO-PC (progressively interactive EMO based on
polyhedral cone).

Despite the fact that the PI-EMO-PC procedure was developed using the NSGA-II
algorithm, it is a generic procedure which may be incorporated in any other multi-
objective EMO algorithm. However, the PI-EMO-PC suffers from some drawbacks
such as the need to know the number of DM calls in advance and the risk to have
wrong directives if the DM becomes tired. To solve these problems, we introduce
a hybrid preference procedure which requires fewer parameters and more flexibility
when interacting with the DM.

In fact, most of preference studies presented in literature either focus on only a
sub-set of the PF, which enhances the convergence but decreases diversity, or has a
high computational time which rises exponentially as the number of objectives rises.
To resolve this issue, we propose a hybrid method relying on combining implicit
and explicit interactive preferences. Figure 3 illustrates the proposed hybrid method.
Firstly, Ideal point and Nadir one are found respectively by using the Extremized-
Crowded NSGA-II algorithm (EC-NSGA-II) (Deb et al. 2006) and by individually
minimizing each objective in the search space. Then, an explicit algorithm based on
PI-EMO-PC is executed if the DM has preferences. Otherwise, an implicit preference
process aiming at finding knee regions based on Trade-off-based KR-NSGA-II (TKR-
NSGAI) (Bechikh et al. 2011) is carried out. When using explicit algorithm based on
PI-EMO-PC, if the DM is not satisfied but he becomes tired, the procedure performs the
process to find the previously-indicated knee regions. Afterward, if the DM is not tired
yet, he modifies the aspiration levels of the PI-EMO-PC in order to incorporate new
information about his preferences. These processes (PI-EMO-PC and TKR-NSGAII)
will be repeated if the DM is not satisfied or the maximum allowed number of permitted
interventions is not reached. In both cases, when the DM becomes satisfied or the
maximum allowed number of interventions is reached, the global process will be

stopped.
The ideal point is a form of implicit DM preferences. It can be defined as the vector
= (z { e ZIIVI) constituted by the best objective values of the search space §2. The

ideal point may be specified by individually minimizing each objective in the search
space. Mathematically, the ideal objective vector is given by

2 = Mingeq fu(x), me{l,.... M} (24
The nadir point is another form of implicit DM preferences. It can be defined as the
vector zV = (lev e, z%) including the worst objective values on the PF. Mathemat-

ically, the nadir objective vector is given by

oy = Maxeeps fu(x), m e {l,..., M} (25)
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Fig. 3 The proposed hybrid preference algorithm (PI-EMO-PC-INK)

According to Branke et al. (2008), several interactive algorithms used the nadir point
as a pre-requisite. However, estimating accurately the nadir point for many objective
problems is an open research issue. In order to help the DM in expressing his prefer-
ences, Nadir point is applied so that each aspiration level will lies between the nadir
value and the ideal one.

Ideal point and Nadir point assists the DM in expressing his preferences by iden-
tifying the range of the objective functions at the Pareto optimality stage. Both ideal
and nadir points are employed to visualize the optimal Pareto front which facilitate
comparing solutions especially for high dimension problems. Because it is used to
avoid the worst instead of achieving the best, the Nadir point is considered as a more
conservative point of view, compared to the use of the ideal point. Figure 4 illustrates
the Nadir and ideal points of a two-objective problem.

An important benefit of our approach is that it allows determining “knees” (special
points in the PF where there is a maximal marginal return in the trade-off surface). In
fact, knees represent points where a small improvement in the performance on one goal
results in a large decrease in the performance on another conflicting goal. Due to this
property, detecting such knee points is often extremely valuable and Knee points are
generally interesting solutions because they allow the DM to better know and balance
its conflicting internal goals.



Fig. 4 Nadir and ideal objective
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5 Numerical results

In this section, we present the assessment indicators and the parameters. Then, we
demonstrate the efficiency of the suggested hybrid approach on real testbeds. In
our tests, the implementations of the MOEA/DD, NSGA-III and Two_Arch?2 in the
PlatEmo framework (Tian et al. 2017) are used.

*Performance metrics A research issues is questionable: What metrics should we
choose when evaluating the performance of MaOPs?: The HV is necessary applied
to evaluate the MaOPs because it does not require a prior-knowledge of the true
Pareto-front which is important when benchmarking on real-world problems (our
case). Besides, this metric gives a single measurement to assess both the spread and
convergence of solutions. However, the IGD can be used with synthetic problems due
to its low computational cost.

*Parameters The choice of the parameters considerably affects the performance of
the algorithms when solving problems. Hence, performing a set of experiments with
several population sizes, operators, number of generations and objectives is necessary
when testing each many-objective algorithm separately. The objective number (M)
is set between 3 and 8, for the real world problem, and between 3 and 15 for the
test functions. In all tested problems (the real world problem and the test functions),
the best performance of each test is shown with a gray background. The considered
EMO algorithms have different parameters. Unless a modification in the value of a
parameter to test the impact of varying it, the parameter’s common used values can be
summarized as follows:

o The operators of reproduction: The crossover probability is pe= 0.9. The mutation
probability is pm= 1/n. n is the problem dimensionality. Different operators are
used. Among them: bit-flip, reversing and bit string for mutation; uniform, single
point, n-point, multivariate and elitist for crossover.

e Population size: Several specifications for the number of weight vectors and the size
of the population are used.

e The number of runs: Each algorithm is achieved 25 times (25 independent runs)
with each configuration. Then, the various configurations are compared based on
HYV for our real-world problem. The bold values in Tables 4, 5, 6, 7 and 8 contain
the best HV values.



e The stopping condition is a maximum number of solution evaluations (generations)
between 400 and 1500.

e The MOEA/D and MOEA/DD scalarizing function is PBI (0.5).

e The size of the neighborhood is 20 and the probability of selection of a neighbor
parent is 0.9.

As application, we use a 3D indoor deployment WSN optimization problem with
eight objectives. As described in the modeling section (Sect. 3), this problem has 10
decision variables as inputs and fourteen objective values as outputs. In this section, due
to the complexity of computing the HV, only eight objective values to be optimized are
considered. The difficulty of the tested real-world problem (3D Deployment Problem)
increases with the number of objectives. Since we apply a high complexity metric
(HV) to evaluate our problem, (due to the unknown PF of our real-world problem),
the number of the used objectives ranges from 3 to 8 objectives among the objectives
cited in our modeling. Concerning the parameters of the problem, unless indicated,
the same parameters detailed in the experimentation section (see Sect. 7) are used:
number of nodes, average number of runs and nodes repartition.

5.1 Testing the influence of dependencies between the objectives

This following section aims to test the effect of interdependence between objectives.
According to the Egs. (1), (5), (7), (9), (11), (13), (14) and (16) in the proposed
modeling (Sect. 3), there is similarity (then a correlation) between the objectives f1,
f3 and f4, and a less similarity between the objectives f5 and f6. The population
size is 1000 (a large population) which is run for different number of generations.
No neighbor mating in the recombination. The objectives are dependent (a minimum
of N/2 objectives are dependent for an experiment having N objectives). We employ
250 reference points for NSGA-III and MOEA/DD. To reduce the computational cost
when calculating the HV, the dimension-sweep algorithm of Fonseca et al. (2000) is
used to compute the HV. Tables 4 and 5 illustrate the obtained results.

From the obtained results, it can be concluded that, for different numbers of gen-
erations and objectives, NSGA-III is less efficient than MOEA/D and MOEA/DD
generally outperforms other algorithms. Besides, when dependencies exist between
the objectives, the HV increases. Especially for the MOEA/D having a higher relative
degree of improvement compared to other algorithms.

5.2 Testing the influence of the population size

The values of HV are presented in this section for different sizes of population in order
to assess the influence of varying the size of population on the behavior of MaOAs.
No neighbor mating in the recombination. The objectives are dependent (a minimum
of N/2 objectives are dependent for an experiment having N objectives). Besides, the
number of reference points depends on the objectives number and the population size.
Table 6 details the worst, average and best values of HV when varying the population
number and the size population.



Table 4 Worst, average and best HV values with non-dependent objectives obtained using 15 independent
runs

Obj Nbr Max Gen MOEA/D(PBI) MOEA/DD NSGA-III Two_Arch2
3 400 0.989374 0.988986 0.942684 0.988996
0.974762 0.988953 0.938922 0.988929
0.974231 0.988911 0.932746 0.988245
4 800 0.973324 0.974733 0.975472 0.976521
0.972674 0.974578 0.974556 0.974568
0.972261 0.974523 0.974102 0.973629
6 1200 0.972943 0.972783 0.973631 0.974320
0.972556 0.972692 0.972647 0.972655
0.972186 0.972541 0.971876 0.972654
8 1500 0.962364 0.964895 0.965653 0.945623
0.961913 0.964772 0.960728 0.944756
0.961347 0.964431 0.960022 0.944032

Table 5 Worst, average and best HV values with N (N > Obj Nbr/2) correlated objectives using 15 indepen-
dent runs

Obj Nbr Max Gen MOEA/D(PBI) MOEA/DD NSGA-III Two_Arch2
3 400 0.994887 0.994233 0.940232 0.988764
0.993843 0.993568 0.939828 0.988538
0.983802 0.993134 0.939344 0.988462
4 800 0.984426 0.983652 0.978863 0.976498
0.976416 0.981426 0.978574 0.976422
0.976328 0.976124 0.976231 0.976346
6 1200 0.971596 0.977123 0.978923 0.974635
0.971574 0.974581 0.972402 0.974582
0.971523 0.973130 0.972103 0.974247
8 1500 0.969886 0.971841 0.966876 0.952886
0.969815 0.969822 0.966525 0.952835
0.969702 0.969723 0.966234 0.952803

For most numbers of objectives, better results were found by MOEA/D and
MOEA/DD than NSGA-III. The results prove that extending the population size does
not affect the ability of search of the MOEA/D. Contrariwise; the MOEA/D perfor-
mance is degraded by the rise of size of the population until becoming inefficient
with large population sizes. Hence, determining the appropriate size of the population
according to the number of considered objectives is a relevant topic of research. An
important observation is that the efficiency of MOEA/D cannot be influenced by the
population size increase due to the multiple neighbors which may be replaced with
newly-generated better off-spring.



Table 6 Worst, average and best HV values using various population sizes and various objectives numbers

Obj Nbr  Population MOEA/D MOEA/DD NSGA-III Two_Arch2  Reference

size (PBI) points
number
(MOEA/DD,
NSGA-II)
4 100 0.956923 0.983461 0.973231 0.973682 90
0.956517 0.981027 0.972675 0.972987
0.956208 0.980429 0.972089 0.972023
500 0.972863 0.985237 0.977863 0.985682 130
0.972165 0.984162 0.977258 0.976263
0.972022 0.984103 0.977037 0.976044
1000 0.984426 0.983652 0.978863 0.976498 255
0.976412 0.981426 0.978574 0.976422
0.976328 0.976124 0.976231 0.976346
1200 0.976664 0.986213 0.978683 0.977023 280
0.976586 0.985897 0.978764 0.976986
0.972343 0.985251 0.978037 0.976431
1400 0.976874 0.986852 0.978985 0.987875 290
0.976758 0.986238 0.978583 0.987244
0.974032 0.985140 0.978362 0.977032
8 100 0.969369 0.970145 0.959863 0.952894 90
0.969292 0.969233 0.959467 0.952236
0.969083 0.969002 0.959302 0.952035
500 0.969963 0.969786 0.960869 0.969878 230

0.969643 0.969645 0.960098 0.952543
0.969354 0.969423 0.959326 0.952132

1000 0.969886 0.971841 0.966876 0.952886 320
0.969815 0.969822 0.966525 0.952835
0.969702 0.969723 0.966234 0.952803

1200 0.969894 0.970274 0.967964 0.970623 350
0.969831 0.969962 0.967663 0.953195
0.969063 0.969146 0.960022 0.952678

1400 0.969965 0.970988 0.968326 0.971589 350

0.969887 0.970231 0.967989 0.953651
0.969576 0.969862 0.960374 0.953233

5.3 Testing the influence of using neighborhood mating and adaptive
recombination

We examine in this section the effect of the suggested strategy for mating near parent
with an adaptive mutation and recombination (see Sect. 4.1). The behavior of each
algorithm is assessed using average values of HV over 15 runs. The size of population
in MOEA/D is 1000. Neighbor mating is achieved in the recombination process, the
objectives are dependent and the number of reference points is 100. Table 7 illustrates
the obtained results.

The collected results with different numbers of objectives indicate that the neigh-
borhood mating and the use of adaptive operators considerably enhance the search



Table 7 Worst, average and best values of HV with adaptive operators

ObjNbr MOEA/D(PB) MOEA/DD NSGA-III Two_Arch2
Bit-flip 4 0.984426 0.983652 0.978863 0.976498
mutation/n- 0.976416 0.981426 0.978574 0.976422
point 0.976328 0.976124 0.976231 0.976346
recombina- 8 0.969886 0.971841 0.966876 0.952886
tion 0.969815 0.969822 0.966525 0.952835
0.969702 0.969723 0.966234 0.952803
Using 4 0.978678 0.983129 0.979697 0.977234
neighborhood 0.978133 0.981952 0.979342 0.976986
mating 0.976253 0.980237 0.979032 0.976343
restrictions 8 0.970489 0.971002 0.971234 0.953864
and adaptive 0.969932 0.970254 0.967751 0.953366
operators 0.963231 0.968968 0.963268 0.953032

performance. In fact, better results are recorded for different numbers of objectives
on the MOEA/DD. Obviously, when the number of objectives rise, the advantage of
the MOEA/DD over the MOEA/D becomes clearer. Nevertheless, MOEA/D improves
more considerably the average values of HV (using or without recombination of similar
parent), compared to other algorithms. Besides, experimental results show that mating
similar parents enhances the diversity and does not deteriorate the convergence.

5.4 Testing the influence of hybridizing the used EMOs with a dimensionality
reduction approach

In this section, we investigate the effect of incorporating our proposed approach for
dimensionality reduction. In this set of experiments, the HV is calculated and the
taken size for the population is 1000. Adaptive mutation and recombination operators
are used with neighbor parents mating. The objectives are dependent (a minimum of
N/2 objectives are dependent for an experiment having N objectives). 8 correlated
objectives are employed. 250 reference points are applied for NSGA-III. From the
results presented in Table 8, for four and eight objectives, the HV values found when
using dimensionality reduction approach are higher than those obtained without using
this method due to the reduction in the number of objectives from eight to five in
the case of our real-world problem. Moreover, the improvement rate of the MOEA/D
clearly exceeds those of other algorithms.

5.4.1 Comparing with other dimensionality reduction methods: the Feature
Selection

In our model, we used two dimensionality reduction methods (NLMVU-PCA and
L-PCA). To better clarify the efficiency of the suggested model, we compare it with
another dimensionality reduction method: the Feature Selection (FS) which is an
unsupervised feature selection procedure. The FS is an algorithm that establish an ideal
learning model to minimize the dimensionality of the feature space by identifying a



Table 8 Worst, average and best HV values obtained before and after applying the dimensionality reduction

Initial Obj Obj Nbr MOEA/D MOEA/DD  NSGA-III Two_Arch2
Nbr after (PBI)
reduction

Without 4/5 4/5 0.984426 0.983652 0.978863 0.976498
reduction 0.976416 0.981426 0.978574 0.976422
0.976328 0.976124 0.976231 0.976346
Using L- 3 0.994975 0.982897 0.982896 0.989352
PCA/NL- 0.991264 0.982542 0.982251 0.987144
MVU- 0.980023 0.982231 0.982033 0.986021

PCA
Using the 3 0.993284 0.982962 0.983202 0.990249
feature 0.990737 0.982615 0.982080 0.987808
selection 0.979601 0.980967 0.981949 0.986645
Without 8 8 0.969886 0.971841 0.966876 0.952886
reduction 0.969815 0.969822 0.966525 0.952835
0.969702 0.969723 0.966234 0.952803
Using L- 4 0.971978 0.984986 0.969897 0.954237
PCA/NL- 0.970951 0.984158 0.961152 0.953654
MVU- 0.970236 0.983943 0.960364 0.953028

PCA
Using the 5 0.978234 0.974823 0.961236 0.950893
feature 0.975231 0.974676 0.960743 0.950239
selection 0.974328 0.973284 0.958201 0.948327

minimum set of inter-dependent necessary ‘features’ from an initial data groups. In
our case, a feature is considered as an objective. The choice of the Feature Selection
as a dimensionality reduction method to compare with; is motivated by the nature of
the 3D indoor deployment which is an objectives-dependent problem. The used FS
algorithm relies on the algorithm proposed by Mitra et al. (2002).

To test the effect of the use of the FS, the best, average and worst values of HV of
the evolutionary algorithms are measured after the incorporation of the FS. Table 8
shows the obtained results.

5.4.2 Application of the NL-MVU-PCA and L-PCA

NL-MVU-PCA is anonlinear objective reduction relying on the “Principal Component
Analysis” and the “Maximum Variance Unfolding”. We briefly present the nonlinear
objective reduction based on the NL-MVU-PCA algorithm. Indeed, using an initial
set of objectives SO;= {1y, ..., fm/, the NL-MVU-PCA finds the sub-set of essential
objectives SOe. For this purpose, a set of steps are achieved: First, as an input data,
the NL-MVU-PCA consider the objective vectors from the non-dominated set of
EMO solutions. Then, the process searches for the principal components (significant
variance) in the data. Afterwards, it identifies the conflicting subset of objectives along
these principal components. Finally, it discads the inter-dependent objectives from the
final set. These steps are iteratively achieved until the necessary subset of objective in
a couple of successive iterations is reduced to two objectives or stills the same.



Table 9 The correlation Matrix R on the first iteration

f1 f2 f3 r4 f5 f6 11 18

f1 1 —0.458 0.896 0.985 —0.258 0.885 0.875 — 0.647
f2 —0.458 1 —0.521 —0.678 —0.735 —0.613 0.365 —0.647
f3 0.896 —0.521 1 0.982 —0.385 0.997 0.354 —0.647
f4 0.985 — 0.678 0.982 1 —0.392 0.839 0.365 —0.647
f5 —0.258 —0.735 —0.385 —0.392 1 —0.264 0.238 —0.647
f6 0.885 —0.613 0.997 0.839 —0.264 1 0.364 —0.647
f1 0.875 0.365 0.354 0.365 0.238 0.364 1 —0.647
f8 —0.647 — 0.647 — 0.647 —0.647 —0.647 — 0.647 —0.647 1

Table 10 The kernel Matrix K

f1 12 f3 f4 f5 16 11 18
f1 4.568  —4.521 4.895 6.552 — 17353 9.652 6.548 —6.365
f2  —4521 6.021 —4257 —6.215 —7.985 —9.245 9.253 — 6.365
f3 4895 —4.257 6.892 6.812 —7.154 11.246 12.568 — 6.365
f4 6.552 —6.215 6.812 8.453 —7.554 11.246 12.568 — 8.852
f5 —=17353 —798 —17.154 —17.554 12258 —11.246 18.258 — 8.254
f6 9.652 —9.245 11.246 11.246  —11.246 18.254 18.891 — 8.852
f1 6.548 9.253 12.568 12.568 18.258 18.891 25547  —18.255
f8 —6365 —6365 —6365 —8.852 — 8.254 — 8852 —18.255 21.541

In the following, we detail the application of the proposed dimensionality reduction

approach (the NL-MVU-PCA algorithm, for non-linear objective reduction, and L-
PCA for linear objective reduction) to our real-world problem. Since Two_Arch2
has the best performance, it is used as a MaOA to test our dimensionality reduction
approach on an eight-objective 3D deployment problem. The tables below illustrate
the set of the most dominant objectives found after 15-runs of the NL-MVU-PCA and

L-

PCA. According to Sinha et al. (2013), starting from an initial set of objectives Fy =

{f1,..., fm}, the NL-MVU-PCA aims at identifying the set Ft of essential objectives
by achieving the following steps:

Step 1 (Computing the correlation and the kernel matrix) Relying on the input
data, the correlation matrix R (for linear objective reduction (L-PCA)) is plotted,
the kernel matrix K (for nonlinear objective reduction (NL-MVU-PCA)) and its
principal component (eigenvectors and eigenvalues) are computed. According to
Sinha et al. (2013), R = (I/M).XXT where M is the number of objectives and X
is the input data. K is also calculated according to the formulation in Sinha et al.
(2013). Tables 9, 10, 11 and 12 illustrate the values of the matrix R, K as well as
their Eigenvectors and eigenvalues.

Step 2 (Eigenvalue Analysis) consists in identifying the set of the important objec-
tives in the initial set of objectives by performing the eigenvalue analysis that



Table 11 Eigenvectors and el =0.646 €2 =0.221 €3 =0.084 e4 = 0.003
eigenvalues of the matrix R vl V2 v3 va
0.215 0.886 0.568 0.638
—0.568 —0.322 0.546 —0.457
0.585 0.662 0.531 —0.891
0.689 —0.211 0.284 — 0.457
—0.985 —0.354 0.893 0.594
0.325 —0.498 0.045 0.617
0.236 —0.158 0.104 0.685
—0.652 —0.659 —0.593 —0.237
Table 12 Eigenvectors and el =0.548 €2 =0.276 €3 =10.048 e4 = 0.002
eigenvalues of the matrix K vl v2 v3 vd
—0.234 0.056 0.448 —0.253
0.665 —0.094 0.125 0.151
0.652 0.114 0.356 0.198
0.745 0.146 0.651 0.235
0.351 —0.338 0.821 0.358
0.452 0.562 0.886 0.564
—0.635 0.567 — 0.662 0.282
0.328 —0.523 —0.543 0.025
Table 13 Eigenvalue Analysis for L-PCA
PCA (N°) Variance (%) Cumulative (%) Selected objectives
1 64.6 64.60 f2 5 f6  f1 8
2 22.1 97.09 fr 2 f3  f4 f5 f6  f1 f8
3 8.4 99.62 f2 f4 f6  f1 f8
4 0.3 99.99 f2 f5 1 f8

identifies the principal components (directions of significant variance) in the data.
Table 13 (Table 14, respectively) depicts the eigenvalue analysis for linear objective
reduction (non-linear objective reduction, respectively).
Step 3 (Analysis of the Reduced Correlation Matrix) consists in identifying the
set of identically-dependent subsets by carrying out the reduced correlation matrix
analysis. The important objectives in each subset are retained and other objectives
are discarded, which allows further reduction of the objective set obtained after step
2. Table 15 (Table 16, respectively) represents the RCM analysis for linear objective
reduction (non-linear objective reduction, respectively). According to Saxena et al.
(2013), Teor = 1.0 — e1.(1 — M//M) where M’ refers to the number of needed
principal components to account for 95.4% variance, M is the number of objectives.



Table 14 Eigenvalue Analysis for NL-MVU-PCA

PCA (N°) Variance (%) Cumulative (%)

Selected objectives

1 54.8 54.80 1 2 f3 5 f6
2 27.6 94.45 71 4 f5 f1  f8
3 438 99.99 12 75 f1  f8
4 0.2 99.99 2 f3  f4 f1  f8
Table 15 RCM analysis for Potential identically correlated set(s) {f1,£3, 14,16}
L-PCA Teor (correlation threshold) 1.0-0.646(2/8) = 0.8385
Identically correlated set(s) {f1,13,f4,f6}
Table 16 RCM analysis for Potential identically correlated set(s) {f1,£3,f4,16}
NL-MVU-PCA Teor (correlation threshold) 1.0-0.548(3/8) = 0.7945
Identically correlated set(s) {f1/3,f4,f6}
Table 17 Selection scheme for e] = ey = e3 = ed = Objective
L-PCA 0.646 0.221 0.084 0.003 selection
Vi Vs, V3 v4 score
f1 0.215 0.886  0.568 0.638 0458
f1 —0568 —0322 0546 — 0457  0.462
f1 0.585 0.662  0.531 — 0891  0.483
f1 0.689 —0211 0284 — 0457  0.494

Step 4 (Selection scheme) consists in identifying the most important objective in each
set by applying the selection scheme. Table 17 (Table 18, respectively) demonstrates
the selection scheme for linear objective reduction (non-linear objective reduction,

respectively).

Step 5 (Computation of the error) is to measure the error of the proposed frame-
work in one iteration. This measure calculates the unaccounted left variance when
discarding the objectives constituting the redundant objective set. According to the

Table 18 Selection scheme for e] = e = e3 = el — Objective
NL-MVU-PCA 0.548 0.276 0.048 0.002 selection
Vi Vo V3 v4 score
f1  —0.234 0.056 0.448 —0.253 0.238
f1 0.665 — 0.094 0.125 0.151 0.295
f1 0.652 0.114 0.356 0.198 0.684
f1 0.745 0.146 0.651 0.235 0.793




equation proposed in Saxena et al. (2013), the error for the L-PCA (the NL-MVU-
PCA, respectively) is equal to 0.000239 (0.000458, respectively).

The above-mentioned five-step process is achieved iteratively until the set of nec-
essary objectives will be reduced to two objectives or until it stills the same for two
successive iterations.

5.5 Testing the effect of hybridizing the EMOs with dimensionality reduction
and user preferences

In this section, we measure the effect of applying our proposed approach to incor-
porate both dimensionality reduction method and user preference one. In this set of
experiments, the HV is calculated with a large population (1000). Adaptive muta-
tion/recombination is employed with neighbor parents mating. The objectives are
dependent (a minimum of N/2 objectives are dependent for an experiment having N
objectives). 8 correlated objectives are used. We use 250 reference points for NSGA-
III. After applying reduction approach, the preference is applied on a reduced set of
objectives. Tables 19 and 20 show the final solutions specifications (using Two_Arch2
as an EMO). Each run has a different initial population, which is the result of apply-
ing our reduction procedure on the concerned EMO. d; is a user-defined parameter
representing the presumed enhancement in the solutions obtained from the actual best
solution relying on the value function, and dg = 0.01. TDpax = 30 is the maximum
number of calls of the preference information introduced by the DM.

After testing the algorithms proposed in our approach with the deployment problem,
we also test them using a real experimental prototyping system (Arduino 2018; Van
Den Bossche et al. 2016) with the same problem, then using instances of the theoretical
DTLZ problems (Deb et al. 2005).

*Comparing with other preference methods: the PI-EMO-VF By  comparing  the
results obtained in Table 21 with those in Table 20, it is clearly shown that the
PI-EMO-PC achieves better results than PI-EMO-VF since it gives better accuracy
with less number of calls.

5.6 Comparing with random search and independent objectives

In this section, the performance of the four EMOs applied to our hybrid scheme is
compared with the random search and the independent optimization of each objective
function separately. The same parameters of the previous section are used. Table 22
shows a comparison of the worst, average and best values of the HV of the EMOs with
random search and independent optimization of objectives (for consistency reasons
and since three objectives are redundant [f 1, f3, f4], only five from the eight objectives
are considered).

From the results presented in Table 22, for four and eight objectives, the HV values
found when optimizing each objective separately are higher (thus better) than those
obtained using our hybrid scheme. However, all the optimization algorithms used with
our hybrid scheme outperform the random search.



Table 19 Median obtained solutions (objective values)

Most preferred ~ Average values

point used to

construct the MOEA/D NSGA-III Two_Arch2 MOEA/DD
value function
and
guaranteeing
the KKT
conditions
f1 (redundant) Number of 128.452 134.161 142.54 152.339 133.581
added
nomad
nodes
f2 Energy 3.857 3.998 4.021 4.056 3.962
consumption
f3 (redundant) Hardware 85 88.468 96.184 93.923 88.646
deployment
cost
f4 (redundant)  Network 1.00 0.946 0.796 0.849 0.962
Utilization
f5 Localization 3.991 3.605 3.882 3.863 3.812
rate
f6 Coverage rate  5.865 4.189 4.984 4.235 5.572
f1 Lifetime 4280 3885 3687 3956 4065
/8 Connectivity 189.89 168.524 166.515 168.542 174.266
rate
Table 20 Median distance of the MOEA/D NSGA-IIl Two_Arch2 MOEA/DD
solutions obtained from most
preferred solutions, using Accuracy 0.234 0.419 0.468 0.023
PI-EMO-PC Numberof 6321 7945 8231 5895
function
evaluations
Number of TDMax 26 25 16
required DM
calls
Table 21 Median distances of the MOEA/D NSGA-II Two_Arch2 MOEA/DD
solutions obtained from the most
preferred solutions, using Accuracy 0.201 0.382 0.424 0.019
PI-EMO-VF Numberof 6652 8096 8284 5987
function
evaluations
Number of TDmMax 32 29 22
required DM

calls
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Other results (which are not illustrated here due to the limited space) prove that
the performance of the random search is enhanced when using independent objectives
(without reduction).

6 Statistical and complexity analysis
6.1 Statistical analysis

In this section, we assess the difference in the distributions of indicator values obtained
by the different algorithms using a statistical signed ranks test. NSGA-III is used as a
control method and the same values for the algorithm’s common parameters are used.
We suppose two hypotheses in order to apply the statistical tests: A null hypothesis
Ho which imply that there is no difference between the compared algorithms. An
alternative hypothesis H; which imply that a difference exists between the compared
algorithms. We determine the level of discarding the hypothesis using a significance
level (named a). The signs R~ and R* between NSGA-III and two other algorithms
(MOEA/DD and Two_Arch2) are calculated. Then, the associated p-values of the
algorithms are computed for each pair of algorithms. Figure 5 shows the p-values,
R~ and R* of the pairs of the algorithms computed by the Wilcoxon Test. According
to the Fig. 5, Two_Arch2 outperforms the control method NSGA-III (with a level of
significance a = 0.1), and outperforms MOEA/DD (with a = 0.05).

6.2 Computational complexity and runtime analysis

An analysis of the computational and temporal complexity is important to evaluate
the behavior of the proposed algorithms in terms of computing time.

*Computational complexity of algorithms The computational complexity reflects the
increase rate of the execution time in relation to the population. Table 23 shows an aver-
age execution time of 25 runs of the algorithms on the 3-objectives DTLZ] problem.
The MOEA/DD has the best (lowest) execution time with a comparable perfomence
for MOPSO and Two_Arch2; while NSGA-III is the worst algorithm in terms of
temporal complexity.



Table 23 Average of execution Two_Arch2 NSGA-III MOPSO MOEA/DD
time on the 3-objective DTLZ1

problem 6.37e+01 1.64e+02 7 44e+01 5.22e+01

Table 24 Computational complexity of the algorithms on the M-objective DTLZ1

Two_Arch2 NSGA-IIIT MOEA/D MOPSO Two-stage MOEA/DD
— (M<3) MaOPSO [28]
M<3 M>3
O(Mn?) OMn?)  OMn3) O@EM™) O(Mnlogn) O(M(n; + Authors do not
L2np)=0Mn?) indicate its
L: the archive exact
bounded-size, complexity
np, I12;
population
sizes at stages
[&11

Table 25 Execution time in relation with the number and dependence between objectives

Average execution time (in seconds)

NSGA-III MOEA/DD Two-Arch2 MOEA/D

3 objectives Dependent objs 164 62 63.7 74.4
Independent objs 152 50 78 71

5 objectives Dependent objs 171 77 72 87
Independent objs 268 135 256 139

However, a low execution time does not necessary indicate a low computation
complexity. Table 24 shows the computational complexity of the used algorithms on
the M-objective test problem DTLZ1 (n is the number of individuals in the population).

Table 24 illustrates that MOEA/D has the worst (highest) computational complexity
while other algorithms shows a similar performances.

*Testing the influence of the number and dependence between objectives on the
execution time Table 25 shows the effect of changing the number and the
dependence between objectives on the overall execution time of the tested algorithms.

Table 25 clearly shows that the number and dependencies between the objectives
affect the execution time. NSGA-III is the worst algorithm in term of the average
needed execution time. Moreover, another interesting observation is recorded con-
cerning the similar performances of the algorithms with three independent objectives
and five dependent objectives: This indicated the advantage of the reduction of objec-
tives.

To sum up, the complexity analysis assesses the behavior of the different tested
algorithms. It shows that the execution and computation time can be influenced by
different parameters such as the number and dependency between objectives. Further



tests can be performed regarding the influence of the size of the initial population and
the number of nodes on the execution time.

7 Experimental tests on real testbeds

To evaluate the robustness and the efficiency of the protocols, technologies and models
in real environments, real platforms called testbeds can be used. Indeed, simulations
and theoretical calculations fail to reproduce the physical characteristics of the real-
world environments; hence the current tendency to reduce the differences between
theory and practice by testing the new algorithms and solutions in real environments
with experiments carried out on testbeds. In this study, we propose a testbed composed
of 36 nodes, called Ophelia. Using this personal testbed, different advantages are
envisaged:

e Conformity to reality A personal testbed like Ophelia is based on tests in a real
context of use unlike test platforms such as FIT/IoT-Lab (IoTLab 2019) which
offers tests with a large number of nodes that are aligned or uniform on a grid.

e Reproducibility since Ophelia relies on open-source tools, such as OpenWiNo and
Arduino, it is easy to manage and reproduce the obtained results by other research
teams. Indeed, Ophelia supports different physical layers and various types of sen-
sors, which facilitates the deployment of nodes and the prototyping task.

e Heterogeneity of nodes Ophelia supports three different types of nodes (DecaWino,
WiNoLoRa and TeensyWiNo). Thanks to its compliance with open hardware and
software, the WiNo architecture allows integrating foreign libraries to manage the
deployed nodes, which enables it to support a wide variety of nodes.

o A distributed deployment Ophelia consists of 36 nodes deployed in several buildings
and locations in a campus of 200 * 200 m>.

e Easy use and deployment The nodes in our Ophelia testbed are manipulated (erasing
data, updating) using OpenWino and the execution of the protocols stack is done
via the usb interface of the nodes or by executing a command line from the con-
sole. Moreover, WiNo nodes are compatible with revolutionary transmission modes
(UWB, LoRa...) and most standard physical layers, which makes the design and
customization of the network as well as the replacement of the physical layer easier
and more realistic.

e Real use WiNos nodes have small size, low power consumption rate and easy attach-
ment to a mobile system or a person, which makes them an ideal component for the
IoT and the prototyping of communicating objects.

7.1 Experimental parameters

An Intel Core i15-6600 K 3.5 GHz computer is used to test the algorithms. Physical
layer is based on a 433 MHz implementation. The applied access method is the non-
coordinated CSMA/CA of the IEEE 802.15.4 protocol, and the routing layer relies on
the reactive Ad hoc On-demand Distance Vector protocol. The parameters considered
in our experiments are illustrated in Table 26.



Table 26 Parameters of the experiments

Nodes repartition 6 sites on 200 *200 m?
Nodes number 36 (29 fixed, 6 nomad, 1 mobile)
Sensing range 8m

Transmission range 7m

Frame error rate (FER) 0.01 (initially)
Received signal strength indicator (RSSI) 100 (initially)

Average number of runs 25 experiments

Bit rate 256 kbps

Modulation model 125 kbit/s GFSK
Antenna model transceiver RFM22
Modem configuration 12 # GFSK_Rb2Fd5
Frequency 434.79 MHz

Tx power 7 (the max of RFM22)
Message-number 1000

Message-length 16

Message-wait 5

Reception gain 50 mA

Transmission power 100 mW

Fig. 6 The Teensy WiNo used
nodes

7.2 Ophelia testbed nodes and used tools

The deployed TeensyWiNo nodes are WiNoRF22 nodes equipped with brightness and
temperature sensors to which other sensors are added (gyrometer, acceleration or pres-
sure). They give access to low layers in order to manage the access time to the medium,
the sleep, the awakening and CPU time; and the management of the restricted mem-
ory. WiNo nodes represent a hardware platform able to host different protocols with
real-time constraints (several months of use using two AAA batteries). The installed
Teensy WiNo nodes are shown in Fig. 6 and theirtechnical characteristics are illustrated
in Table 27.

These nodes, incorporated in the Arduino ecosystem, facilitate the integration of
hardware and software components (interaction devices, actuators, sensors, processing
algorithms, etc.), which allows obtaining the feedback from the user’s experience.

The following tools are used:



Table 27 Technical characteristics of the used TeensyWiNo nodes

CPU/RAM/Flash CPU/RAM/Flash ARM Cortex M4 (32bit) 72 MHz, 64kB RAM,
256kB Flash (PJRC Teensy 3.1)

Transceiver (Arduino libraries) HopeRF RFM22b: 200-900 MHz, 1-125kbps, GFSK/FSK/OOK, +
20dBm RadioHead

e Arduino 1.6.1 (Arduino 2018) is an open hardware and software platform employed
by the “WiNo” sensors to prototype modules and transfer the sketches. Teensyduino
is an Arduino added module used to run these sketches.

e OpenWiNo (Van Den Bossche et al. 2016) is an open tool applied to prototype
and evaluate the performance of WSN and IoT protocols in different layers (MAC,
NWK...) and run them on real WiNos nodes. The simplicity of using OpenWiNo
lies in changing the physical layer where it is sufficient to modify the transceiver.
This is very practical in open-hardware environments as it is the case in the context
of IoT.

e Ophelia relies on Openwino, Arduino, the deployed Teensywino sensors and a web
user interface used to remote the access to the testbed and to execute sketches on
the nodes.

7.3 Experimental scenario and results

We use 30 stationary sensors with known positions and deployed initially. Positions
depend on the users application needs. The number of nomad nodes to add is limited
to six. The positions of the latter nodes are to be determined by the used optimization
methods. A mobile node is used. In order to measure the influence of the selected
locations of the nomad sensors on the overall performance of the network, the following
scenario of the experiments is repeated several times: At first, all sensors are flashed and
the parameters of the initial configuration (such as the power of transmission) are sent.
Afterwards, the mobile sensor sends a broadcast to all nodes. The RSSI and FER rates
issued from and received by each node are considered. After a predefined waiting time,
another transmitter is chosen and other nodes receive. These steps are repeated until
performing 36 experiments. At the end, a couple of connectivity matrices, combining
the FER and RSSI means between the nodes, are created. The average number of
neighbors of each node is deduced from these two matrices. In our experiments, two
nodes are considered neighbors if and only if the mean rate of the RSSI (and FER,
respectively) recorded between these two nodes is greater (lower, respectively) than a
pre-defined threshold equal to 100 (0.1, respectively). Due to the stochastic aspect of
the used optimization algorithms, the use of a statistical test with several executions is
necessary to assess their behavior. Therefore, the mean values in our tests are calculated
relying on 25 runs of the algorithms. Figure 7 shows the 3D indoor deployment of
nodes in one of the sites used in experiments. In fact, blue nodes are the nomad ones
while red nodes are the fixed ones.!

I Color should be used for Fig. 7 in print.
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Fig.9 Average FER values, for different number of objectives

Comparing the RSSI values To assess different objectives, like the localization, the
connectivity or the quality of links, the RSSI metric is calculated. Our experiments
are based on a hybrid localization model which combines the RSSI information and
the Distance-Vector Hop protocol. Indeed, the higher the RSSI value, the better the
localization will be. Figure 8 shows the RSSI average values (a convertible to dBm
measure ranging from O to 256) exchanged between the nodes for different numbers
of objectives.

Comparing the FER rates Tomeasure the coverage state and the quality of links among
nodes, the FER metric is calculated. Indeed, the lower the FER value, the better the
coverage will be. To assess FER values for each pair of nodes, an average value
deduced based on four values is considered. 10 s of wait is used between the four
taken values. Figure 9 shows the average FER values between nodes for different
numbers of objectives.

Comparing the neighbor’s number To evaluate the connectivity and the degree of use
of the network, the average number of each node neighbors is computed. Indeed, the
previous concept of neighboring based-on RSSI and FER is used. Figure 10 shows
the average number of neighbors of nodes and for different numbers of objectives.
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Fig. 12 Average energy consumption levels, as a function of time

Comparing the network lifetime Figure 11 indicates, for a set of number of objectives,
the network lifetime which is taken as the time needed by the first node of the network
to become out of energy.

Comparing the amount of consuming energy Figure 12 shows the variation of the
network energy consumption according to the time. The average of the energy rates
of nodes is calculated after the use of the nomad nodes.

7.4 Interpretationsand discussion

After performing the experiments, several findings can be considered:

e These tests prove the suitability of the optimization paradigms for real-world con-
texts with real experiments. It shows the theoretical findings obtained by applying
the tested algorithms.



e Our experiments show that a link between two nodes can have a high FER and a
good RSST at the same time. Thus, the FER and RSSI rates are not always inversely
proportional.

e By studying the behavior of the tested methods before and after the application of the
proposed hybridization scheme, the prototyping results demonstrate that NSGA-III
is often better than MOEA/DD on FER and RSSI amounts. Thus, the NSGA-III is
considered more efficient in guaranteeing the localization, the coverage and the link
quality, while MOEA/DD is better used to satisfy the average number of neighbors
and the network lifetime.

e Consistent with our numerical results in Sect. 5, the experiments assert that the
effectiveness of the algorithms is related to the number of objectives to be optimized.
Indeed, Figs. 8,9, 10 and 11 show that if the objective number does not exceed three,
the behavior of the MOEA/D will be better than that of the NSGA-III. In the case of
four objectives or more, the behavior of the NSGA-III becomes better than that of
the MOEA/D. This statement is explained by the fact that, unlike MOEA/DD and
Two_Arch2, the NSGA-III is only dedicated to many-objective problems.

e Contrary to different studies such as Li et al. (2015) affirming that the decomposition
paradigms are generally more efficient than the NSGA-III, our findings show that
MOEA/DD is not always better than NSGA-III because our problem is a real-
world complex one having some features which differ from those characterizing the
theoretical problems used to evaluate these algorithms.

e Finally, it is proven that the incorporation of the dimensionality reduction and the
user preferences improves the results (higher HV, higher coverage and localization)
and enhance the behavior of the tested algorithms.

e The Two_Arch2 generally has a constant comportment which is not affected by
varying the objectives number.

8 Conclusion

This study proposed to resolve the problem of indoor 3D redeployment of the
connected objects in IoT collection networks by adding new objects on the cho-
sen locations and guaranteeing a set of objectives. For this purpose, we developed
a hybridization scheme that overcomes the problems of the computational com-
plexity and the considerable time spent by the MaOAs to solve the MaOPs. This
scheme integrated the dimensionality reduction and the user’s preferences to various
recent many-objective algorithms like MOEA/DD, NSGA-III and Two_Arch2. Sub-
sequently, to prove their effectiveness in finding solutions for the 3D redeployment
problem. The new proposed algorithms were evaluated using the HV metric on our
real problem. Moreover, a set of experimental tests were performed to validate the
theoretical observations. The results proved that the modified hybrid algorithms are
more performing compared to the originals ones. In fact, other various interesting
findings are obtained such as the superior performance of MOEA/D compared with
NSGA-III if the objectives are correlated.

In the future, several research directions can be envisaged to improve this work.
We intend to integrate other recent MOEAs such as KnEA (Zhang et al. 2015) into



our platform to test their behaviors on our real world problem. Moreover, although
the proposed approach reduces the complexity and the objectives of the problem, it
seems to be complex. Hence, the study of the algorithmic complexity of our hybrid
approach can be considered to show the contribution of its use. At the application level,
in order to prove the large-scale suitability of our method and to measure the effect of
the density of network on the results, our experiments may be re-evaluated by testing
the proposed hybridization scheme using a larger number of nodes. This is possible
via real prototyping platforms such as IoTLab (IoTLab 2019) (having more than 1000
nodes) permitting to measure the same metrics as in our tests (RSSI, FER, number of
neighbors). Thus, a consistent comparison with our experiments and an evaluation of
the behavior of the proposed hybridization scheme in different real world contexts can
be done. Besides, other than the 802.15.4 nodes used in our experiment tests, we aim
to support other recent protocols and technologies of transmission (Ultra-Wide Band
and LORA) and apply them on test our approach in a smart-home dedicates to aged
persons (MIB of the IUT of Blagnac in Toulouse).

Funding None.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Argany, M., Karimipour, F., Mafi, F., Afghantoloee, A.: Optimization of wireless sensor networks deploy-
ment based on probabilistic sensing models in a complex environment. J. Sens. Actuator Netw. 7(2),
20 (2018). https://doi.org/10.3390/jsan7020020

Arduino platform: https://www.arduino.cc/en/main/software (2018). Accessed 5 Jan 2018

Bechikh, S., Ben Said, L., Ghédira, K.: Searching for knee regions of the Pareto front using mobile reference
points. Soft Comput. 15(9), 1807-1823 (2011). https://doi.org/10.1007/s00500-011-0694-3

Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization: Interactive and Evolutionary
Approaches. Springer, Berlin (2008)

Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. ACM/Springer
J. Wirel. Netw. 14(3), 347-355 (2008). https://doi.org/10.1007/s11276-006-0724-8

Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference point- based
non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol.
Comput. 18(4), 577-601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective
optimization. Evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Advanced Information and Knowledge Processing, pp. 105-145. Springer, London (2005)

Deb, K., Chaudhuri, S., Miettinen, K. Towards estimating nadir objective vector using evolutionary
approaches. In: 8th Genetic and Evolutionary Computation Conference (GECCO), pp. 643-650
(2006). https://doi.org/10.1145/1143997.1144113

Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, 1., Gardel, A., Rodriguez, D.: Optimization of the coverage
and accuracy of an indoor positioning system with a variable number of sensors. Sensors (Basel,
Switzerland) 16(6), 934 (2016). https://doi.org/10.3390/s16060934

Drechsler, N., Siilflow, A., Drechsler, R.: Incorporating user preferences in many-objective optimization
using relation e-preferred. Nat. Comput. 14, 469 (2015). https://doi.org/10.1007/s11047-014-9422-0

Elhabyan, R., Shi, W., St-Hilaire, M.: Coverage protocols for wireless sensor networks: review and future
directions. J. Commun. Netw. 21(1), 45-60 (2019). https://doi.org/10.1109/JCN.2019.000005



Fonseca, C.M., Paquete, L., Lépez-Ibdiiez, M.: An improved dimension—sweep algorithm for the hyper-
volume indicator. In: Congress on Evolutionary Computation, pp. 1157-1163. IEEE Press, Piscataway
(2006). https://doi.org/10.1109/CEC.2006.1688440

Gong, D., Wang, G., Sun, X.: Set-based genetic algorithms for solving many-objective optimization prob-
lems. In: 13th UK Workshop on Computational Intelligence (UKCI), Guildford, pp. 96-103 (2013).
https://doi.org/10.1109/UKCI.2013.6651293

Guo, J., Jafarkhani, H.: Movement-efficient sensor deployment in wireless sensor networks with limited
communication range. IEEE Trans. Wirel. Commun. 18(7), 3469-3484 (2019). https://doi.org/10.11
09/TWC.2019.2914199

Huang, B., Liu, W., Wang, T., Li, X., Song, H., Liu, A.: Deployment optimization of data centers in vehicular
networks. IEEE Access 7, 20644-20663 (2019a). https://doi.org/10.1109/ACCESS.2019.2897615

Huang, X., Cheng, S., Cao, K., Cong, P, Wei, T., Hu, S.: A survey of deployment solutions and optimization
strategies for hybrid SDN networks. IEEE Commun. Surv. Tutor. 21(2), 1483—-1507 (2019b). https://
doi.org/10.1109/COMST.2018.2871061

Ishibuchi, H., Akedo, N., Nojima, Y.: EMO algorithms on correlated many-objective problems with different
correlation strength. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-6 (2012)

IoTLab platform: https://www.iot-lab.info (2019). Accessed 22 June 2019

Ko, A.H.R., Gagnon, F.: Process of 3D wireless decentralized sensor deployment using parsing crossover
scheme. Appl. Comput. Inform. 11(2), 89-101 (2015). https://doi.org/10.1016/j.aci.2014.11.001

Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on
dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694-716 (2015). https://doi.org/1
0.1109/TEVC.2014.2373386

Liu, X., Qui, T., Zhou, X., Wang, T., Yang, L., Chang, V.: Latency-aware anchor-point deployment for
disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.110
9/TI1.2019.2916300

Luo, X., Li, X., Wang, J., Guan, X.: Potential-game based optimally rigid topology control in wireless
sensor networks. IEEE Access 6, 16599-16609 (2018). https://doi.org/10.1109/ACCESS.2018.2814
079

Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans.
Pattern Anal. Mach. Intell. 24(3), 301-312 (2002). https://doi.org/10.1109/34.990133

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: The 3D deployment multi-objective problem in mobile
WSN: optimizing coverage and localization. Int. Res. J Innov. Eng. (IRJIE) 1(5), 1-14 (2015)

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: A hybrid ant-genetic algorithm to solve a real deployment
problem: a case study with experimental validation. In: Puliafito, A., Bruneo, D., Distefano, S., Longo,
F. (eds.) Ad hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer
Science, vol. 10517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67910-5_30

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: 3D indoor redeployment in IoT collection networks: a
real prototyping using a hybrid PI-NSGA-III-VE. In: The 14th International Wireless Communications
and Mobile Computing Conference IWCMC 2018, pp. 780-785 (2018)

Qu, B.Y,, Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal
optimization. IEEE Trans. Evol. Comput. 16(5), 601-614 (2012). https://doi.org/10.1109/TEVC.201
1.2161873

Rostami, S.: Preference focussed many-objective evolutionary computation. Ph.D. dissertation (chapter 2),
School of Engineering, Manchester Metropolitan University, Manchester, UK, M15 6HB (2014)

Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction.
In: Schoelkopf, O.C.B., Zien, A. (eds.) Semisupervised Learning. MIT Press, Cambridge (2006)

Savkin, A.V., Huang, H.: A method for optimized deployment of a network of surveillance aerial drones.
IEEE Syst. J. (2019). https://doi.org/10.1109/jsyst.2019.2910080

Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimiza-
tion: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77-99 (2013). https://doi.org/
10.1109/TEVC.2012.2185847

Shlens, J.: A tutorial on principal component analysis. Center for Neural Science, New York University,
Tech. Rep (2009)

Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An improved progressively interactive evolutionary multi-
objective optimization algorithm with a fixed budget of decision maker calls. Eur. J. Oper. Res. 233(3),
674-688 (2014). https://doi.org/10.1016/j.ejor.2013.08.046



Sinha, A., Saxena, D.K,, Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle
many-objective optimization problems. Appl. Soft Comput. 13(1), 415427 (2013). https://doi.org/1
0.1016/j.as0c.2012.08.030

Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platforn for evolutionary muiti objective
optimization. IEEE Comput. Intell. Mag. 12(4), 73-87 (2017). https://doi.org/10.1109/MCI.2017.27
42868

Tsang, Y.P, Choy, K.L., Wu, C.H., Ho, G.T.S.: Multi-objective mapping method for 3D environmental
sensor network deployment. IEEE Commun. Lett. 23(7), 1231-1235 (2019). https://doi.org/10.1109/
LCOMM.2019.2914440

Van den Bossche, A., Dalce, R., Val, T.. OpenWiNo: an open hardware and software framework for
fast-prototyping in the IoT. In: 23rd International Conference on Telecommunications, Thessaloniki,
Greace, pp. 1--6 (2016). https://doi.org/10.1109/ICT.2016.7500490

Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimiza
tion. IEEE Trans. Evol. Comput. 19(4), 524-541 (2015). https://doi.org/10.1109/TEVC.2014.235098
7

Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming.
Int. J. Comput. Vis. 70(1), 77-90 (2006). https://doi.org/10.1109/CVPR.2004.1315272

Xu, H., Lai, Z., Liang, H.: A novel mathematical morphology based antenna deployment scheme for indoor
wireless coverage. In: IEEE80th VehicularTechnology Conference (VTC Fall), pp. 1-5 (2014). https://
doi.org/10.1109/VTCFall.2014.6965828

Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-
based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180-198 (2016). https://doi.org/
10.1109/TEVC.2015.2443001

Zhang, X., Tian, Y., Jin, Y.: A knee pointdriven evolutionary algorithm for many objective optimization.
IEEE Trans. Evol. Comput. 19(6), 761-776 (2015). https://doi.org/10.1109/TEVC.2014.2378512

Zhang, H.,Liu, Y., Zhou, J.: Balanced-evolution genetic algorithm for combinatorial optimization problems:
the general outline and implementation of balanced evolution strategy based on linear diversity index.
Nat. Comput. (2018). https://doi.org/10.1007/s11047-018-9670-5

Affiliations

Sami Mnasri'(® - Nejah Nasri?3 . Malek Alrashidi? -
Adrien van den Bossche! - Thierry Val'

B3 Sami Mnasri
Sami.Mnasri@fsgf.mu.tn

Nejah Nasri
nejah.nasri@isecs.mu.tn

Malek Alrashidi
mqalrashidi@ut.edu.sa

Adrien van den Bossche
vandenbo@irit.fr

Thierry Val
val@irit.fr
UT2J, CNRS-IRIT (RMESS), University of Toulouse, Toulouse, France

Department of Computer Science, Community College, University of Tabuk, Tabuk, Saudi
Arabia

ENIS, LETI, University of Sfax, Sfax, Tunisia





