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Abstract 
When resolving many-objective problems, multi-objective optimization algorithms 

encounter several difficulties degrading their performances. These difficulties may 

concem the exponential execution time, the effectiveness of the mutation and recom­

bination operators or finding the tradeoff between diversity and convergence. In this 

paper, the issue of 3D redeploying in indoor the connected objects (or nodes) in the 

Internet of Things collection networks (formerly known as wireless sensor nodes) 

is investigated. The airn is to determine the ideal locations of the objects to be 

added to enhance an initial deployment while satisfying antagonist objectives and 

constraints. In this regard, a first proposed contribution airn to introduce an hybrid 

mode! that includes many-objective optirnization algorithms relying on 

decompo­sition (MOEA/D, MOEA/DD) and reference points (Two_Arch2, 

NSGA-III) while using two strategies for introducing the preferences (PI-EMO-

PC) and the dimen­sionality reduction (MVU-PCA). This hybridization aims to 

combine the algorithms advantages for resolving the many-objective issues. The 

second contribution concems prototyping and deploying real connected objects 

which allows assessing the perfor­mance of the proposed hybrid scheme on a real 

world environment. The obtained experirnental and numerical results show the 

efficiency of the suggested hybridization scheme against the original algorithms. 

Keywords IoT collection networks • 3D indoor redeployment • Experirnental 

validation • Many-objective optimization • Preference incorporation • Dimensionality 

reduction 
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1 Introduction

To implement a wireless sensor network (WSN), the location of the nodes should be 
first chosen according to specific criteria in order to optimize several targeted objectives 
like coverage, localization, connectivity or consumption rate of energy. Thus, node 
deployment greatly influences the network performance and its operation. It aims 
essentially at proposing a network topology with well-defined number and positions 
of nodes. This deployment is said to be 3D if the variation of the heights between 
nodes are important with respect to the width and length of the “Region of Interest” 
(RoI).

In this study, we investigate the 3D deployment which is more complicated and 
represents the RoI topography better than the 2D deployment. The migration of the 
WSNs to the Internet of Things (IoT) gave birth to the Internet of Things collection 
networks which consist of a set of connected objects that collect information from 
the RoI. Therefore, our main issue consists in deploying an indoor 3D DL-IoT, a 
scenario where autonomous objects (devices, robots, etc.) having unique identifiers 
can communicate with each other via a set of protocols such as Bluetooth or 802.15.4 
to transmit the measures sensed by the sensors of the WSN. In fact, IoT is responsible 
for processing the collected values and making the decisions. We are specifically 
interested in the redeployment problem where a number of nodes are added to an 
initial configuration of nodes. Indeed, in our experiments, we focus on the indoor 3D 
deployment of nodes in a site composed of several buildings.

Most mathematical formulations consider the 3D deployment as a NP-hard problem 
(Cheng et al. 2008) which cannot be solved by deterministic approaches especially 
for the large size of the problem. This requires using heuristic approaches. In this 
paper, we suggest a many-objective modeling of the deployment problem based on real 
hypotheses and constraints. Hence, many-objective evolutionary algorithms (MaOAs), 
such as Two_Arch2 (Wang et al. 2015) and MOEA/DD (Li et al. 2015) are used 
with a hybridization scheme incorporating dimension reduction and user preferences. 
Besides, several issues encounter the MaOAs when resolving the real-world problems 
with a high number of objectives exceeding three as it is the case in our approach.

Recently, with the continuous rise of the number of objectives, the complexity and 
the realism of optimization problems, the interest of the evolutionary multi-objective 
optimization (EMO) community is focused on the evolutionary many-objective opti-
mization (EMaO). This focus is explained by the fact that the efficiency of most 
evolutionary optimization algorithms deteriorates if the number of objectives exceeds 
three (Ishibuchi et al. 2012).

The most important challenges faced by EMO and EMaO when tackling many-
objective optimization problems (MaOPs) are as follows: The exponential complexity 
in space and time, the inaccuracy of Pareto-based EMOs, the problem of representing 
the trade-off surface, the ineffective recombination and mutation operators and the 
inaccuracy of density estimation. Hence the need of using new approaches resolving 
these issues. Moreover, the many-objective optimization theory is based on the fact 
that optimizing each objective independently from the others cannot give a good 
candidate solution and even if a good representation of the Pareto Front is done for 
high-dimensional objective space, maintaining the diversity is not ensured (Yuan et al.



2016). This is due to the complexity of the real-world problems and the nature of the
objectives: unless the objectives are all inter-dependent and they can be reduced to
one or two objectives, these latter are often antagonist, which leads to the reality that
improving an objective value separately will deteriorate one or more other objective
values (Rostami et al. 2014).

As a solution to overcome the mentioned challenges, our approach relies on com-
bining different paradigms (reduction, preference and evolutionary ones) in a well
justified scheme.

The main proposed contributions of this study are presented below:

• To evaluate the behavior and the performance of the EMO algorithms, the majority
of the EMO studies and their applications rely only on theoretical hypothesis or
simulations in the case of engineering problems. Unlike these studies, ours is based
on real empirical experiments with real nodes and a platform of prototyping. Indeed,
the importance of this work relies in the used algorithms based on real hypothe-
ses and practical measurements. It presents a proof of the accuracy of the recent
algorithms, such as MOEA/DD and Two_Arch2, which are studied by their authors
only on academic problems like ZDT and DTLZ.

• Moreover, the proposedmathematical formulation gives a detailed description of the
3D deployment problem taking into account various real hypotheses and constraints
to comply with the assumptions of the experiments and the numerical tests.

• Another analysis contribution consists in the proposed hybridization scheme which
includes different classes of many-objective algorithms based on reference points,
reduction of dimensionality and incorporation of preferences. According to the
obtained results, this hybridization scheme increases the performance of the original
used MaOAs.

The remainder of the paper is composed of the following sections: a set of relevant
recent related works on the 3D deployment in WSN are discussed and criticized in
Sect. 2. Afterwards, an integer linear programming modeling is detailed in Sect. 3.
The suggested hybrid scheme is presented in Sect. 4. Then, the numerical results of the
EMOs evaluation and interpretations are discussed in Sect. 5. Statistical nonparametric
tests are proposed in Sect. 6.Moreover, experimental tests on a platform of prototyping
are investigated in Sect. 7. Finally, concluding findings are presented in Sect. 8.

2 Related works

Different studies have suggested optimization evolutionary approaches, such as
Genetic Algorithms (GAs), to guarantee an efficient deployment in WSNs. Table 1
illustrates the recent researches in this context.

In relation to our approach, in order to resolve the 3D indoor deployment issues in
WSN, authors in Mnasri et al. (2017a) and Mnasri et al. (2015) proposed a genetic
algorithm then a hybrid algorithm that stems from the behavior of ant foraging. Despite
the efficiency of the latter algorithm compared with the standard ACO and NSGA-III,
the scalability of this algorithm is not tested in dense networks. In the same regard,
authors in Mnasri et al. (2018) aim to resolve the deployment problem using the
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incorporation of explicit user preferences procedure (PI-EMO-VF) applied to a many-
objective novel variant of the genetic algorithms (NSGA-III).

Compared to the previous studies, we suggest in this paper a new scheme which
interactively integrates another more efficient explicit user preferences procedure (PI-
EMO-PC)with an implicit one (finding knee regions, ideal and nadir points) applied to
four optimization algorithms fromdifferent classes (MOEA/DD,MOEA/D,NSGA-III
and Two-Arch2). Another difference is that we propose a new scheme of hybridizing
the indicated preferences procedures with dimensionality reduction (NLMVU-PCA
and L-PCA).

3 Integer linear programming formulation

To resolve our problem, the following model is suggested. We consider the following
types of nodes:

• Stationary nodes which are the initially installed fixed nodes. This type of nodes
can be randomly disseminated. But, it is better to adopt a strategy to distribute them
according to the applicative objectives.

• Nomad nodes which are added to enhance the 3D deployment scheme. Their posi-
tions are identified by the proposed algorithms.

• Mobile nodes which are a set of targets to control. Equipped with a sensor trans-
mitting and receiving signals.

The following sets, variables of decision and parameters are used:

• Sets
• S: is the set of potential sites where sensor nodes can be installed. S � Sa ∪ Sb
such that the set “Sa” represents the potential sites where stationary sensors can be
installed. “Sb” is the set of potential sites where the nomad sensors can be installed.
Note that a site must not be in two different sets. Thus, Sa ∩ Sb� ∅.

• N: is a set that denotes the different types of the nodes. Let N � Na ∪ Nb such that
the set “Na” represents the types of the stationary nodes. The set “Nb” represents
the types of nomad nodes. We can use various types of sensors having different
functionalities which can be gathered in the same sensor like detecting the degree
of temperature, the degree of luminosity or the opening and closing of doors.

• T: is the set of mobile targets to be detected; “tk” is a target.
• V: is the set of nodes having several types in N and deployed in several sites in S.
• K is the set of scheduling periods when a sensor i∈V is activated.
• Decision variables
• Sgss′ equal to 1 if the sensor positioned at a site s∈S detects a signal from a sensor
positioned at a site s′ ∈S with a power of transmission sufficient to detect it; 0
otherwise.

• Tss′ equal to 1 if the sensor positioned at a site s∈S transmits a signal from a sensor
positioned at a site s′ ∈S with a power of transmission sufficient to detect it; 0
otherwise.



• Xts equal to 1 if a sensor positioned at a site s∈S receive a signal from a target at
a location t∈T with a power of transmission greater than or equal to the minimum
power required to detect it; 0 otherwise.

• Posi jk a real variable representing the 3D coordinates providing the potential indoor
position of a sensor.

• CovPi jk equal to 1 if and only if the position Posi jk is covered by a node with
a power of transmission greater than or equal to the minimum required power to
detect it; 0 otherwise.

• P f xns set to 1 if a stationary node having a type n∈N is positioned at a site s∈S; 0
otherwise.

• Pndns set to 1 if a nomad node having a type n∈N is positioned at a site s∈S; 0
otherwise.

• Pmbns set to 1 if a mobile node having a type n∈N is positioned at a site s∈S; 0
otherwise.

The decision variables are related to each other’s in different forms: Indeed, The
two variables Sgss′ are Tss′ complementary since they represent respectively the ability
of reception and transmission of signals between a node and other nodes in the RoI.
However, Xts represents the ability of a node to detect the targets in the RoI. Posi jk
representing the 3D position of the node is in a direct relation withCovPi jk indicating
if the position Posi jk is covered or not by a node. The three variables P f xns , Pnd

n
s

and Pmbns represents the three types of nodes and its relations with the set of possible
sites in the RoI.

As regard the relation between the attenuation ratio between two nodes, the received
signal and the distance between these two nodes, this can be modeled by the following
two relations:

dss′ � α × Sgss′ × δss′ , α ∈ R, s ∈ N , s′ ∈ N (1)

Constraint (1) links the distance to the power transmission of the signal between two
nodes s and s′. α is a real empirically-determined coefficient.

(Sgts � 1) ⇒ (dts ≤ dmax)∀t ∈ N , s ∈ N (2)

Constraint (2) implies that if there is a signal Sgts between two nodes t and s, the
distance (dts) between t and s must not exceed the pre-defined maximum distance
(dmax).

Other relations between the decisionvariables aremodeled in the proposedobjective
functions and in the constraints.

• Parameters
• M denotes the number of used objectives
• nbT denotes the number of mobile targets. nbF is a parameter representing the
number of initially stationary nodes. This number can be set by default to a random
number or to nmin · (nm/2Πr2). r is the radius of a sensor. nbN is the number
of nomad nodes to add. Let Nmax be the maximum number of nodes that can be
deployed within the wireless network. Thus (nbT+ nbF+ nbN)≤Nmax.



• Cn
s is the hardware cost of a node (including price) having a type n∈N and installed

at a site s∈S.
• Bti is the remaining energy in the battery of the sensor i at an instant t.
• nmin stands for the degree of coverage. It defines the minimum number of sensors to
localize a target emitting a signal. When using the proposed hybrid 3D localization
model (based on 3D DV-Hop and RSSI), the parameter nmin is generally set to 4.

• Lf>0 is the lifetime of the network (i.e. time in which the desired coverage degree
is guaranteed) and Lfmax is an upper bound for Lf . Lf i is the lifetime of the node
i ∈V.

• T Pr
i representing the power of the signal transmitted (emitted RSSI) of the sending

node i∈V.
• RPr

i representing the power of the signal received (emitted RSSI) at a distance r
from the sender i∈V.

• δss′ represents the attenuation ratio between two nodes in two sites s∈S and s′ ∈S.
• dts is a parameter representing the distance between two nodes ‘t’ and ‘s’.
• dmax is a constant representing the maximum distance separating a node i and a
target j or separating two nodes i and j so that they could detect each other.

3.1 The objective functions

The many-objective fitness function is: Maximize F(
→
x ) where F(

→
x ) � (f1, …, f8)

3.2 The number of the added nomad nodes

The number of nomad nodes to add must be minimized. The following function is
proposed for the number of added nomad nodes:

f 1 � Minimize
∑

s∈Sb
Pndns (3)

Subject to
∑

s∈S
P f xns ≤ nbF ∀ s ∈ S, n ∈ N (4)

∑

s∈S
Pndns ≤ nbN ∀s ∈ S, n ∈ N (5)

∑

s∈S
Pmbns ≤ nbT ∀s ∈ S, n ∈ N (6)

3.3 Energy consumption

A deployed active sensor dissipates energy when transmitting, sensing, receiving, or
being idle. Therefore, energy efficiency is considered as a fundamental key in design-
ing a wireless sensor network. Since being idle and sensing energies are negligible
compared with transmitting and receiving energies, we proposed a model in which
Eelec
i represents the energy consumed to reactivate the transmitter/receiver circuit and

∈amp represents the transmitter amplifier to communicate. The energy dissipated to



transmit m-bit packet within a distance d is Etransm
i and the energy of receiving the

same packet is Erecv
i .

(7)

f 2 � Minimize
∑

Etransm
i +

∑
Erecv
i where Erecv

i

� Eelec
i ∗ m and Etransm

i � Eelec
i ∗ m+ ∈amp ∗m ∗ d2

Subject to the following constraint: In order to minimize the consumption of energy,
we can minimize the interferences during transmission. The neighboring nodes cause
interferences which can be minimized by out bounding the maximum number of
neighbors that a sensor may have as indicated in (8).

(8)

∑

s �0,n�0

P f xns +
∑

s �0,n�0

Pndns +
∑

s �0,n�0

Pmbns

≤ nbT + nbF + nbN + |S|−|S|∗(P f xns + Pndns + Pmbns )

3.4 Hardware deployment cost

WiNo nodes (Van den Bossche et al. 2016) support the IEEE 802.15.4 protocol and
represent a practical solution for indoor generic sensing nodes. The nomad WiNo
nodes to add may have several heterogeneous types (n ∈ Nb). Even if they are all
homogeneous, the cost of deploying the samenode varies according to the site (s ∈ Sb).
For instance, deploying a sensor attached to a wall is less expensive than fixing it on
the middle of the room. Thus, the deployment cost can be considered as an objective
to minimize separately from the minimization of the number of added nomad nodes.
Thus:

f 3 � Minimize
∑

s∈Sb

∑

n∈Nb

Pndns C
n
s (9)

3.5 Network Utilization

To optimize the network lifetime, nodes can be placed near to the base station which
can cause a poor utilization of the resources in the network and increase the overall
cost of deployment. Thus, it is important to extend the network lifetime with the
simultaneous deployment of a reasonable number of sensors. The network utilization
(NU) is modeled as:

Maximize l f /
∑

(P f xns + Pndns + Pmbns ),∀ s ∈ S, n ∈ N (10)



To linearize our model, we suggest a new variable l f � 1/l f . Thus, (10) becomes:

f 4 � Minimize l f .
∑

(P f xns + Pndns + Pmbns ),∀ s ∈ S, n ∈ N (11)

Subject to l f .
∑

(P f xns + Pndns + Pmbns ) ≤ l fmax where l fmax � 1/l fmax

(12)

3.6 Localization rate

We suggest a hybrid localizationmodel that enhances the utilized range-free technique
(3DDV-Hop) by incorporating a range based localization Received Signal Strength
Indication (RSSI). To guarantee better localization, each monitored target t∈T must
be surveyed by at least nmin anchor nodes. Then,

∑
s∈S xts ≥ nmin∀t ∈ T . Thus, the

following function (11) is suggested to model the localization:

f 5 � Maximize
∑

t∈T

(
∑

s∈S
xts − nmin

)+

where (x)+ � max(0, x) (13)

Subject to
∑

s∈S
xts ≥ nmin∀t ∈ T (14)

Constraint (14) indicates that the number of sensors receiving a power of signal (cal-
culated by the RSSI) from the target i should be equal or greater than the minimum
necessary power to localize it.

3.7 Coverage rate

The coverage rate depends on the targets to cover. The Frame Error Rate (FER)
is the metric used to measure the coverage degree. To guarantee a full coverage,
each position in the 3D indoor space should be monitored by at least nmin nodes.
Hence,

∑
s∈S

CovPi jk ≥ nmin. Thus, we suggest the following function (15) to model

the coverage:

f 6 � Maximize
∑

t∈T

(
∑

s∈S
CovPi jk − nmin

)+

where (x)+ � max(0, x) (15)

3.8 Lifetime

In the literature, the network lifetime can be modeled as the time in which the first node 
totally consumes its energy or as the time until the first loss of coverage appears. In fact, 
different factors, like the node density, the node transmission, the routing strategies



and the initial energy, can influence the network lifetime. To model the lifetime, we
suggest the following function:

f 7 � Maximize L f (16)

Subject to the following constraints:

L f � min
i�1,2,...,Nmax

L fi (17)

∑

s∈S
P f xns +

∑

s∈S
Pndns ≤ Nmax + |S|−|S|×(P f xns + Pndns )∀s ∈ S, n ∈ N (18)

where Nmax � P f xns +Pnd
n
s +Pmbns ,∀ s ∈ S, n ∈ N and L fi � Bti/max(Etransm

i +
Erecv
i ),∀i ∈ V . The network lifetime is equal to the minimum lifetime Lfi among the

lifetimes of all sensors.

3.9 Connectivity rate

If any node can communicate with any other node, the network is considered as
connected. Therefore, any nodemust have at least one incoming and one outgoing link.
In addition to the number of nodes and their density, the probability of connectivity is
typically linked to the transmission range and the strength of the received signal. To
model the connectivity rate, we suggest the following function:

f 8 � Maximize RPr
i (19)

Subject to

RPr
i ≤ Tss′ ∗ Sgss′ ∗ α ∗ r−ω ∗ T Pr

i (20)

where ω is the path loss exponent (generally 2≤ω≤5) and r is the distance between
the sending node and the receiving one.

r � rc ⇔ RPr
i � Pn

min (21)

Constraint (21) indicates that the sender can be connected to the receiver and the data
can be received only when the power at the receiver is greater or equal to Pn

min. The
transmission range rc is defined by RPr

i (r � rc) � Pn
min.

As the wireless connectivity problem is generally abstracted into a graph theory
problem, A WSN can be modeled as an undirected graph G(V;E). The probability of
connectivity of the graph (then the network) will be: Pr obG � (1 − e−λπr2c )n where
n is the number of nodes,λ is the node density and an edge exists between two nodes
within a distance rc. Hence, the transmission range of each sensor rc must satisfy:

√
− ln(1 − (Pr obG )1/n)/λπ ≤ rc (22)



(23) 
SES IIENa 11ENb 

Constraint (23) denotes the number of nodes able to detect a target. This number 
should not exceed the number of the installed nodes in the different sites. 

4 The proposed hybrid scheme 

Indeed, resolving real-world problems become particularly critical when the objec­
tives are conflicting or should be handled simultaneously. For such complex problems, 

the aim is to select a solution from a set of possible solutions. Often, this selection 
is difficult and manually done by the decision maker. Hence the need of an efficient 
approach reducing the complexity and number of objectives, resolving the problem 
and selecting an acceptable solution. Therefore, the choice of the proposed algorithm 
is motivated by the issues raised by the many-objective optimization. The main con­
tribution is not only a combination of existing algorithm components: The aim is to 
find solutions to the limitations of the existing proposed algorithms. To resolve the 
previously-mentioned difficulties of EMOs in resolving MaOPs, we suggest a justi­
fied hybrid scheme incorporating different approaches. This scheme is illustrated in 
Fig. 1. 

In this scheme, four classes of MaOEA are combined: decomposition-based, ref­
erence point-based, reduction-based and preference-based. 

Firstly, the MaOA is executed (MOEA/DD, NSGA-ill or Two-Arch2) with pre­
serving the diversity using an adaptive neighborhood mechanism. Thus, the solutions 
corresponding to the optimization of the initial set of objectives are obtained. On this 
set, the dimensionality reduction is performed and the solutions corresponding to a 
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Fig. 1 The four steps of the proposed hybridization scheme 



smaller set of objectives is provided. Afterwards, the preference procedure is achieved.
Indeed, the preference methods assume that there are no redundant objectives in the
given problem (Saxena et al. 2013). Thus, in our approach, dimensionality reduction
procedure is always performed before applying the decision maker (DM) preferences.

Since the PI-EMO-PC procedure requires a sufficient search window, its input pop-
ulation must be chosen while guaranteeing that the search converges to a solution
in accordance with the interactive DM’s preferences. To choose the input population
for our preference procedure guaranteeing a balance between the computational per-
formance and the convergence to a candidate solution, we follow the same steps as
indicated in Sinha et al. (2013): The input population is an intermediate population
taken at Ng generations (50% of progress) after applying the reduction. After identify-
ing this input population for the preference procedure, only a smaller set representing
its members is considered using the k-means clustering. The previously indicated
members composed the initial population members of the PI-EMO-PC.

4.1 Including diversity

In the MOEA/D relying on decomposition, the multi-objective optimization problem
is decomposed into a set of single objective sub-problems (or simple multi-objective
ones) then a population based method is used to optimize these sub-problems simul-
taneously and independently but cooperatively. In MaEAs like MOEA/D, the high
dimension of the objective space leads to very diversified population, which make the
recombination and mutation operators inefficient and produce dominant offspring. As
a solution to these issues, we proposed a strategy that relies on adaptivemulti-operators
with a niching restricted on the neighborhood. In what follows, we present and explain
these concepts and the proposed algorithms.

4.1.1 Chromosomes coding and fitness functions definition

*Chromosomes coding The first phase of an EMO is the coding of the chromosomes.
In the 3D deployment problem, each chromosome is an individual that correspond to
a feasible position of a node in the 3D space of the RoI. In our work, the chromosome,
whose genes express the value of his position according to the x, y and z axes, is coded
as a binary point of the position (x, y, z). Figure 2 illustrates the chromosome repre-
senting the node mapped to the location [46, 53, 34]. The choice of the initial number
of chromosomes depends on several factors including the initial existing distribution
of nodes and the 3D shape of the RoI. In this study, the binary coding is applied thanks
to its simple use, low computational complexity and its adaptability to the search in a
neighborhood where it is enough to change a gene (in the case of mutation) or some
consecutive genes (in the case of recombination) in order to have another individual
in the neighborhood. Although the obtained individual is not a possible position in the
RoI, it will be discarded by penalizing it with a weighting coefficient.

In many-objective optimization, many studies proved that improving the crossing
can be done by using the neighbors. Thus, the distance between the chromosomes to
cross φ(i, j) ∀ i ∈ V, j ∈ V should be minimized. φ is the distance between the



X-position Y-position Z-position

Fig. 2 The chromosome representing the sensor in the 3D position (46, 53, 34) 

Table 2 Positions of nomad Nt N2 N3 N4 N5 N6 
added nodes proposed by a 
candidate solution X; 149 348 59 269 368 541 

Yi 35 532 682 186 87 409 

z; 236 191 373 365 434 122 

two nodes on the search space and i, j are two candidate nodes representing the two 
chromosomes to cross. 

The decision of using binary representation of chromosomes is privileged due to 
its ease of use and low complexity which is very recommended when manipulating 
MaOPs. Moreover, this decision is explained by favoring the neighbors in mutation 
and recombination in our methodology: In fact, the binary coding permits to better sur­
vey the distinctions in qualities between two chromosomes according to the distance 
between them. However, binary coding may give non-possible solutions. Weighting 
coefficients will penalize these solutions which will not be chosen later by the algo­
rithm. 

*Fitness fonctions definition Let's consider a Roi of 700 * 700 * 700 with 15 initial
fixed nodes, the following candidate solution represents an individual from the pop­
ulation chosen as a suggested optimal solution (belongs to the final population that 
represent the Pareto Front, after the stopping condition is met and the algorithm con­
verges). According to our mode!, this candidate solution of the deployment problem 
represents the locations (coordinates in 3D plan) of a set of positions that meets the 
final proposed positions of the nomad nodes added to correct the initial deployment 
proposing the set of fixed nodes, in Table 2. Note that this representation of nodes in 
Table 2 is the transformation from the binary coding to the decimal one. Binary coding 
is used to apply the mutation and recombination operators.

The corresponding fitness values (average of30 random-chosen iterations) of objec­
tives are as follow (Table 3). 

Let's explain for example how the fitness fonction f6 is defined: it symbolizes 
the coverage degree of nodes in the Roi: the coverage degree can be measured by 
computing the degree of coverage of targets in the Roi. To achieve the 3D full coverage, 
every position in the Roi must be covered by at least one sensor (ideally, by nnùo 
sensors). Thus, the sum of ail positions occupied by nodes shloud be more than nnùo: the 
sum ofbinary variables C ov Pijk should be equal or higher than nnù0Q:::sES C ov P;Jk � 
nmin .). Hence the objective fonction is to maximize the sum of the gathered positions 
occupied and covered by sensors. 



Table 3 Average values of fitness functions

Formula Average values

NSGA-III MOEA/DD

f 1 Minimize
∑
s∈Sb

Pndns (3) 126.98 134.367

f 2 Minimize
∑

Etransm
i +

∑
Erecv
i (7) 4.266 3.843

f 3 Minimize
∑
s∈Sb

∑
n∈Nb

Pndns C
n
s (9) 89.701 92.124

f 4 Minimize l f .
∑

(P f xns + Pndns + Pmbns ),∀ s ∈ S, n ∈ N (11) 0.787 0.928

f 5 Maximize
∑
t∈T

(
∑
s∈S

xts − nmin

)+

(13) 3.761 3.235

f 6 Maximize
∑
t∈T

(
∑
s∈S

CovPi jk − nmin

)+

(15) 4.833 5.136

f 7 Maximize L f (16) 3532 3982

f 8 Maximize RPr
i (19) 164.022 171.679

Since we use a hybrid 3D localization model relying on combining the 3D DV-Hop
and RSSI information, the coverage degree for each position is generally set to 4 (4
anchors are needed for localization). Note here that MOEA/DD is better than NSGA-
III since its average fitness value representing the coverage (f 6) is equal to 5.13 which
is higher than the average fitness value proposed by NSGA-III (4.83). Note also that
the fitness function value may do not reflect the exact value of the concept for which
it is defined. This depends of its formula that can consider coefficients, constants and
decision variables: for example, the number of added nomad nodes in our example is
equal to 6 while the fitness function value is about 130 (126 for NSGA-III and 134 for
MOEA/DD).

4.1.2 The neighborhood restriction strategy

In the case of MaOP, the dimension of the objective space is too high. This increases
the population diversity. Thus, the mutation and recombination operators become
ineffective; hence the possibility that they create individuals who are not selected as
parents. Indeed, the used neighboring concept is based on the following steps:

• Computation of the distance in the objective space separating the individuals.
• Identification of the subset of (|P|.Ns) nearest neighbors for each individual, where
Ns is the size of the neighborhood and P is the population. According to Qu et al.
(2012), Ns between 1/20 and 1/5 is preferred. In our tests, Ns � 1/10.

As case of the efficiency of utilizing the neighborhood in including diversity in
MaOEAs, authors in Ishibuchi et al. (2012) demonstrates that MaOEAs are more
efficient if the recombination takes place with a neighboring chromosome and if the
objectives are correlated.



*The neighbourhood mutation The neighbourhood mutation restricts producing new
individuals on an area which is near from their parents in order to establish a stable
niching. Authors in Qu et al. (2012) prove that the neighbourhood mutation improves
the detection of local optima. They propose a study to identify the preferred neigh­
bourhood size and its effect on the algorithm behaviour. They affirm that the ideal
neighbourhood size should be between 1/5 and 1/20 from the population. Hence, the
size of the neighbourhood is a specific parameter to be set proportionally to the size of
the population. In our approach, achieving a neighbourhood mutation needs to set only
one parameter: the neighbourhood size ns which determine the number of mutation
vectors in each subpopulation. To model this, we propose to minimize </> (i, j) V i EV,
j EV two candidate individuals to mate and </> is the search space distance between
them. Moreover, the proposed strategy allows each individual to evolve progressively
toward its "nearest optimal point". In addition, the algorithm is independent from the
neighbourhood size. The proposed neighbourhood mutation algorithm is shown in
Algorithm l .

Input A set of solutions (population) composing the current generation 

Output A set of solutions (population) composing the next generatioo 

01: For each iodividual i in the population size (N) do 

02: Compute the Euclid distances between i and other individu.ais in the population. 

03: Create a subpopulation sp from the m nearest individuals toi. 

04: Crcatc an offspring o using the adaptivc mutation applicd on sp and rcadjust out-boundcd solutions if cxist. 

OS: Apply the fitness function to evaluate produced offspring o. 

06: Endfor 

07: Create the next i?eneration bv aoolvinl? the nichini? stratel?Y to choose the N fittest solutions 
Algoritbm 1 The Neigbbourbood mutation algorithm 

Indeed, starting from a population (set) of solutions of the current generation, 
the proposed neighbourhood mutation procedure calculates the Euclidean distance 
between i individuals on the population. Then selects the n members having the small­

est Euclidean distance to the individual i. Afterwards, an offspring is produced and 
assessed using the fitness function, as a population of solutions for the next generation. 

*The neighborhood recombination In evolutionary optirnization algorithms, the 
recombination permits generating good offspring from parents. In ideal cases, this new 
offspring should contain a set of uniformly scattered non-dominated solutions. Firstly, 
according to the selection mating model, any two individuals belonging to the popula­
tion may be considered as "parents". However, this type of mating mode! suffer from 
the uncertain choice of parents and the possibility of having a large Euclidian-distance 
between them, which increase the possibility of obtaining dominated offspring. To 
mitigate this situation, a more determinist selection mode! relying on mating doser 
individuals having shorter Euclidian-distance on the objective space, can be considered 
to perform the recombination. Indeed, crossing individuals near from each other in 
the variable space lead to an offspring that is generated near from the parents (in tenus 
of the objective values). This increases the possibility of obtaining a non-dominated 
solutions and a diversified population. For continuous functions, the individuals that



are neighbours in the objective space are generally neighbours in the variable space. 

Our neighbourhood recombination method is presented in Algorithm 2. 

Input: A population of solutions composing the current generation 

Output: A of solutions (population) composing the next generation 

01: Classify the population according to their closeness from the best individual for one of the 

fonction values in the objective space. 

02: Switching the sorted individuals in a random way according to a parameter neigh controlling the 

adjusted neighborhood with a reasonable width of the population si:re. 

03: Choosing two adjacent individuals from the population for performing the crossover. 

Algorithm 2 The Neighbourhood recombination algorithm 

Step 2 allows escaping from local optima by the switching operation that guaran­

tees the non-conducting with the same pair in every generation. The neigh parameter 
controlling the width of the population size is a percentage that represents the ratio 

of the size of the population. Thus, if the value of neigh is set to 10, the adjusted 

neighbourhood is conducted using a population width which is equal to 10%. As a 

consequence, the proximity of individuals is inversely proportional to the neigh param­

eter. Although, increasing too much the proximity among individuals may increase 

the probability of repeatedly conducting the crossover into the same pair. 

4.1.3 The adaptive multi-operators strategy 

When solving many-objective problems, MaOAs have the problem of finding the 

appropriate mutation and recombination operators according to the specificities of 

the problem to be solved. To overcome this weakness, we suggest varying the used 

operator adaptively. lndeed, the contribution of an operator in the previous iteration 

was taken into account for the adjustrnent of its probability of being selected during 

the current iteration. Thus, a probability of selection of use in the next generation 

is computed for each operator. This probability depends on its contribution. This 
"adaptive" mutation is dynamic since it is modifiable during the execution of the 

algorithm. In our case, a "directed adaptive" mutation is used. It utilizes the feedback 

information taken from the pastgenerations to select operators in the future generations 

without affecting the probabilistic aspect of the operators. As a consequence, the new 

produced solutions are deterministically generated and guided by earlier individuals 

in the search space toward optimal regions. This proposed adaptive multi-operators 

neighbourhood strategy enhance improving the search and adapting it to the problem 

local characteristics. Moreover, it facilitates avoiding local optima and increasing the 

diversity by adaptively modifying the chromosomes values. 

4.1.4 Application of the diversity strategies on the NSGA-111 

The suggested adaptive multi-operator NSGA-ill algorithm relies on the NSGA-IIl 

algorithm (Deb and Jain 2014) with an enhanced neighbourhood mutation and recom­

bination process which adaptively integrates different mutation operators. This the 



first tune such a modification of the NSGA-ill is proposed. Algorithm 3 illustrates the 

generation t of the proposed adaptive multi-operator NSGA-ill algorithm. 

Input: H structured reference points Z' or supplied aspiration points Z', parent population P, 

Ouput: P.-.1 

01: // lnitializations identical to the standard NSGA-111 (Deb et al., 2014) 

02: P,'= Niching_ and_Neighbor_Based_Selection(P,) 

03: ProbaRccombinationOp +- choosing_operatorO 

04: ProbaMutationOp +- choosing_operatorO 

05: Q, = Neighborhood_Adaptive_Mutation (Pi', ProbaMutationOp); 

06: Q,= Neighborhood_Adaptive_Recombination (Q,, ProbaRccombinationOp ) 

07: // The rest is the same as the standard NSGA-III algorithm 

Algorlthm 3 The generation t of the proposed adaptive multi�perator NSGA-III algorithm 

The procedure of calculating the probability of each operator is illustrated in 

Algorithm 4. This procedure is used for selecting both mutation and recombination 

operators. lndeed, considering a set (N) of different operators, the choosing_operator() 

procedure calculates the contribution of ail those operators (lines 2-8). The procedure 

computes the number of solutions produced by each operator that belongs to the popu­

lation P of the following generation (line 3). To avoid discarding operators generating 

no solutions in iteration, each operator that has a contribution which is smaller than a 

predefined threshold, its contribution is set to this threshold (lines 4-6). This operator 

can have promising contribution later in other phases of the search. 

Input: Tue N operators 

Output: ProbaOp 

01: Tota!Contrib ._ 0

02: for 1 $ operator $ N do 

03: OpContrib._ solutionslnNextPopulation( operator,P); 

04: if OpContrib $ threshold tben

05: OpContrib ._ threshold; 

06: end if 

07: Tota!Contrib f- Îota!Contrib + OpContrib; 

08: end for 

09: for 1 $ operator $ N do 

10: ProbaOp ._ OpContrib / Tota!Contrib; 

11: end for 
Algorithm 4 Choosing_operatorO procedure 

The same changes are a pp lied to the original versions of the MOEA/D, MOEA/DD 

and Two-Arch2 to take advantage of our adaptive multi-operators concept. 



4.2 Including reductionmethods based onmachine learning for the 3D
deployment problem

As an example of approaches used to overcome the complexity of many-objective
problems, we can mention the dimensionality reduction which supposes the existence
of redundant objectives in a given M-objective optimization problem.

In our works, as a reduction technique, we use the machine learning methodMVU-
PCA (“Principal Component Analysis and Maximum Variance Unfolding”) which is
an offline correlation-based reduction method. The Machine Learning-based method
(Deb et al. 2006) consists in using machine learning techniques, such as Principal
Component Analysis (PCA) and Maximum Variance Unfolding (MVU), to eliminate
respectively the dependencies of the second and higher order in the non-dominated
solutions. MVU-PCA relies on a high-dimensional data structure which may be trans-
formed to minimize the effect of noise (non-optimal solutions that can differ from the
solutions defining the true PF) and dependencies (redundancy) between the different
objectives.

Our studied problem, the 3D Deployment of WSNs, may be modeled as a machine
learning objective reduction problem due to:

• The redundancy and the presence of non-conflicting and correlated objectives.
• The PF structure of our problem which indicate the essential components of its
intrinsic dimensionality (m).

• The high dimensional data which is linked to the non-dominated solutions resulting
from the EMO algorithm, providing generally, a poor PF approximation. Thus,
correlated objectives on the POF can illustrate partial conflict in the proposed EMO
solutions.

To integrate NL-MVU-PCA and L-PCA on the proposed EMOs, we apply the
reduction using the offline linear and non-linear reduction methods (named respec-
tively L-PCA and NL-PA-MVU).

In order to minimize the effect of noise and correlations among objectives, the PCA
method projects a data D on the eigenvectors of its correlation matrix while preserving
its correlation structure. Indeed, PCA method removes the higher order correlation in
the given data D. Thus, PCA may become unable to capture the data sets having
structures with non-Gaussian or multi-modal Gaussian distributions (Shlens 2009). In
fact, different nonlinear dimensionality reduction approaches, like Graph-based ones
(Saul et al. 2006) use a standard kernel function to transform data. Then, they apply
PCA in the transformed kernel space. Although, its efficiency is related to the a priori
chosen kernel. In our work, we employ the PCA method, proposed in Saxena et al.
(2013), which overcomes this drawback by the derivation of the “data-dependent”
kernels.

The second used machine learning-based method is the MVU (Weinberger and
Saul 2006) relying on a graph that calculates the low-dimensional representation in
order to unfold the high-dimensional manifold data. To perform the unfolding process,
Euclidean distances among data points are maximized, while angles and distances
between nearby points are locally preserved. Theoretically, this can be modeled as
a semi-definite programming problem (SDP) (Weinberger and Saul 2006) where the



output is the kernel matrix representing the kernel space to which the PCA method is 
applied.

In our work, we use the framework proposed in Saxena et al. (2013). In fact, Given an 
M objective optimization problem with a set of non-dominated solutions, the proposed 
framework aims at specifying the smallest set of m conflicting objectives (m ≤M) 
while preserving the correlation structure among the given solution set. To perform this, 
the proposed framework is used to eliminate globally correlated objectives and non-
conflicting ones along the eigenvectors of the correlation/kernel matrix. Thus, found 
solutions are estimated as good representative of the PF if there is conformity between 
the correlation structure of the PF and that of the found non-dominated solutions. 
Therefore, essential objective set includes the smallest set of antagonist objectives 
determined by the framework. This framework is employed to reduce iteratively the 
objectives until obtaining the same objective set obtained as essential in a couple of 
successive iterations.

4.3 Our proposed hybrid preference algorithm PI-EMO-PC-INK

Incorporating preferences aim at resolving the problem of low selection pressure 
of convergence by carrying out an ordering of preference over the non-dominated 
solutions. Because they interest in the search direction on the RoI, the interactive 
and a priori algorithms are more likely to pay more attention to preferred solutions 
and decrease the computational cost of the search process. A posteriori preference 
approaches might give a high number of solutions which are non-interesting to the 
DM. In our works, as an interactive preference reduction method, we use PI-EMO-
PC (Sinha et al. 2014). Despites their numerous advantages, the major weakness of 
the interactive methods is that the algorithm used in such techniques need to interact 
frequently with the DM who can become tired, which leads, in some cases, to a mis-
leading information about the preference information provided by the exhausted user 
(Gong et al. 2013). Thus, to overcome this limitation in our work, we suggest a hybrid 
preference process.

The progressive engagement of the preferences (interactive algorithms) is more 
efficient since it allows the DM to adjust his preferences during the intermediate gen-
erations of an algorithm (Sinha et al. 2013). Therefore, a model based on an enhanced 
PI-EMO-PC is used as a preference method in our work.

According to the results in Sects. 5–7, it is approved that the reduction procedure 
enhances the comportment of the used algorithms. Indeed, once the set of essential 
objectives is identified by the used reduction procedure, a questionable issue is about 
the structure of the initial used population for the preference procedure.

The aim is to choose a sub-population of solutions from the pool of population. This 
representative set could be either randomly generated; either the same as the population 
output of the used EMO at the generation Gn where the reduction procedure is executed; 
or an intermediate population where its individuals are picked progressively from the 
initial population until the population at the generation Gn (the generation with a 
progress value near to half as the pool population). The last choice, used in our model,



is the natural choice since it provides a balance between the search window of the DM
and the computational efficiency.

Interactive preferences are the most interesting preference methods since they are
dynamically injected into the selection process to continually guide the search for
appropriate actions.

To design our proposed hybrid preference algorithm, we use a recent interactive
preference procedure called PI- EMO-PC (progressively interactive EMO based on
polyhedral cone).

Despite the fact that the PI-EMO-PC procedure was developed using the NSGA-II
algorithm, it is a generic procedure which may be incorporated in any other multi-
objective EMO algorithm. However, the PI-EMO-PC suffers from some drawbacks
such as the need to know the number of DM calls in advance and the risk to have
wrong directives if the DM becomes tired. To solve these problems, we introduce
a hybrid preference procedure which requires fewer parameters and more flexibility
when interacting with the DM.

In fact, most of preference studies presented in literature either focus on only a
sub-set of the PF, which enhances the convergence but decreases diversity, or has a
high computational time which rises exponentially as the number of objectives rises.
To resolve this issue, we propose a hybrid method relying on combining implicit
and explicit interactive preferences. Figure 3 illustrates the proposed hybrid method.
Firstly, Ideal point and Nadir one are found respectively by using the Extremized-
Crowded NSGA-II algorithm (EC-NSGA-II) (Deb et al. 2006) and by individually
minimizing each objective in the search space. Then, an explicit algorithm based on
PI-EMO-PC is executed if the DM has preferences. Otherwise, an implicit preference
process aiming at finding knee regions based on Trade-off-based KR-NSGA-II (TKR-
NSGAII) (Bechikh et al. 2011) is carried out. When using explicit algorithm based on
PI-EMO-PC, if theDMis not satisfied but he becomes tired, the procedure performs the
process to find the previously-indicated knee regions. Afterward, if the DM is not tired
yet, he modifies the aspiration levels of the PI-EMO-PC in order to incorporate new
information about his preferences. These processes (PI-EMO-PC and TKR-NSGAII)
will be repeated if theDM is not satisfied or themaximumallowed number of permitted
interventions is not reached. In both cases, when the DM becomes satisfied or the
maximum allowed number of interventions is reached, the global process will be
stopped.

The ideal point is a form of implicit DM preferences. It can be defined as the vector
z I � (z I1, . . . , z

I
M ) constituted by the best objective values of the search space Ω . The

ideal point may be specified by individually minimizing each objective in the search
space. Mathematically, the ideal objective vector is given by

z Im � Minx∈Ω fm(x), m ∈ {1, . . . , M} (24)

The nadir point is another form of implicit DM preferences. It can be defined as the
vector zN � (zN1 , . . . , zNM ) including the worst objective values on the PF. Mathemat-
ically, the nadir objective vector is given by

zNm � Maxx∈P∗ fm(x), m ∈ {1, . . . , M} (25)
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Fig. 3 The proposed bybrid preference algoritbm {PI-EMO-PC-INK) 

According to Branke et al. (2008), several interactive algorithms used the nadir point 

as a pre-requisite. However, estimating accurately the nadir point for many objective 

problems is an open research issue. In order to help the DM in expressing his prefer­

ences, Nadir point is applied so that each aspiration level will lies between the nadir 

value and the ideal one. 

ldeal point and Nadir point assists the DM in expressing his preferences by iden­

tifying the range of the objective functions at the Pareto optimality stage. Both ideal 

and nadir points are employed to visualize the optimal Pareto front which facilitate 

comparing solutions especially for high dimension problems. Because it is used to 

avoid the worst instead of achieving the best, the Nadir point is considered as a more 

conservative point of view, compared to the use of the ideal point. Figure 4 illustrates 

the Nadir and ideal points of a two-objective problem. 

An important benefit of our approach is that it allows determining "knees" (special 

points in the PF where there is a maximal marginal return in the trade-off surface). In 

fact, knees represent points where a small improvement in the performance on one goal 

results in a large decrease in the performance on another conflicting goal. Due to this 

property, detecting such knee points is often extremely valuable and Knee points are 

generally interesting solutions because they allow the DM to better know and balance 

its conflicting internai goals. 
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In this section, we present the assessment indicators and the parameters. Tuen, we 

demonstrate the efficiency of the suggested hybrid approach on real testbeds. In

our tests, the implementations of the MOEA/DD, NSGA-ill and Two_Arch2 in the 

PlatEmo framework (Tian et al. 2017) are used. 

*Performance metrics A research issues is questionable: What metrics should we

choose when evaluating the performance of MaOPs?: The HV is necessary applied

to evaluate the MaOPs because it does not require a prior-knowledge of the true

Pareto-front which is important when benchmarking on real-world problems (our

case). Besides, this metric gives a single measurement to assess both the spread and

convergence of solutions. However, the IGD can be used with synthetic problems due

to its low computational cost.

*Parameters The choice of the parameters considerably affects the performance of

the algorithms when solving problems. Hence, performing a set of experiments with

several population sizes, operators, number of generations and objectives is necessary

when testing each many-objective algorithm separately. The objective number (M)

is set between 3 and 8, for the real world problem, and between 3 and 15 for the

test fonctions. In ail tested problems (the real world problem and the test fonctions),

the best performance of each test is shown with a gray background. The considered

EMO algorithms have different parameters. Unless a modification in the value of a

parameter to test the impact of varying it, the parameter's common used values can be

summarized as follows:

• The operators of reproduction: The crossover probability is pc= 0.9. The mutation

probability is pm= lin. n is the problem dimensionality. Different operators are

used. Among them: bit-flip, reversing and bit string for mutation; uniform, single

point, n-point, multivariate and elitist for crossover.

• Population size: Several specifications for the number of weight vectors and the size

of the population are used.

• The number of runs: Each algorithm is achieved 25 times (25 independent runs)

with each configuration. Tuen, the various configurations are compared based on

HV for our real-world problem. The bold values in Tables 4, 5, 6, 7 and 8 contain

the best HV values.



• The stopping condition is a maximum number of solution evaluations (generations)
between 400 and 1500.

• The MOEA/D and MOEA/DD scalarizing function is PBI (0.5).
• The size of the neighborhood is 20 and the probability of selection of a neighbor
parent is 0.9.

As application, we use a 3D indoor deployment WSN optimization problem with 
eight objectives. As described in the modeling section (Sect. 3), this problem has 10 
decision variables as inputs and fourteen objective values as outputs. In this section, due 
to the complexity of computing the HV, only eight objective values to be optimized are 
considered. The difficulty of the tested real-world problem (3D Deployment Problem) 
increases with the number of objectives. Since we apply a high complexity metric 
(HV) to evaluate our problem, (due to the unknown PF of our real-world problem), 
the number of the used objectives ranges from 3 to 8 objectives among the objectives 
cited in our modeling. Concerning the parameters of the problem, unless indicated, 
the same parameters detailed in the experimentation section (see Sect. 7) are used: 
number of nodes, average number of runs and nodes repartition.

5.1 Testing the influence of dependencies between the objectives

This following section aims to test the effect of interdependence between objectives. 
According to the Eqs. (1), (5), (7), (9), (11), (13), (14) and (16) in the proposed 
modeling (Sect. 3), there is similarity (then a correlation) between the objectives f 1, 
f 3 and f 4, and a less similarity between the objectives f 5 and f 6. The population 
size is 1000 (a large population) which is run for different number of generations. 
No neighbor mating in the recombination. The objectives are dependent (a minimum 
of N/2 objectives are dependent for an experiment having N objectives). We employ 
250 reference points for NSGA-III and MOEA/DD. To reduce the computational cost 
when calculating the HV, the dimension-sweep algorithm of Fonseca et al. (2006) is  
used to compute the HV. Tables 4 and 5 illustrate the obtained results.

From the obtained results, it can be concluded that, for different numbers of gen-
erations and objectives, NSGA-III is less efficient than MOEA/D and MOEA/DD 
generally outperforms other algorithms. Besides, when dependencies exist between 
the objectives, the HV increases. Especially for the MOEA/D having a higher relative 
degree of improvement compared to other algorithms.

5.2 Testing the influence of the population size

The values of HV are presented in this section for different sizes of population in order 
to assess the influence of varying the size of population on the behavior of MaOAs. 
No neighbor mating in the recombination. The objectives are dependent (a minimum 
of N/2 objectives are dependent for an experiment having N objectives). Besides, the 
number of reference points depends on the objectives number and the population size. 
Table 6 details the worst, average and best values of HV when varying the population 
number and the size population.



Table 4 Worst, average and best HV values with non-dependent objectives obtained using 15 independent
runs

Obj Nbr Max Gen MOEA/D(PBI) MOEA/DD NSGA-III Two_Arch2

3 400 0.989374
0.974762
0.974231

0.988986
0.988953
0.988911

0.942684
0.938922
0.932746

0.988996
0.988929
0.988245

4 800 0.973324
0.972674
0.972261

0.974733
0.974578
0.974523

0.975472
0.974556
0.974102

0.976521
0.974568
0.973629

6 1200 0.972943
0.972556
0.972186

0.972783
0.972692
0.972541

0.973631
0.972647
0.971876

0.974320
0.972655
0.972654

8 1500 0.962364
0.961913
0.961347

0.964895
0.964772
0.964431

0.965653
0.960728
0.960022

0.945623
0.944756
0.944032

Table 5 Worst, average and best HV values with N (N≥Obj Nbr/2) correlated objectives using 15 indepen-
dent runs

Obj Nbr Max Gen MOEA/D(PBI) MOEA/DD NSGA-III Two_Arch2

3 400 0.994887
0.993843
0.983802

0.994233
0.993568
0.993134

0.940232
0.939828
0.939344

0.988764
0.988538
0.988462

4 800 0.984426
0.976416
0.976328

0.983652
0.981426
0.976124

0.978863
0.978574
0.976231

0.976498
0.976422
0.976346

6 1200 0.971596
0.971574
0.971523

0.977123
0.974581
0.973130

0.978923
0.972402
0.972103

0.974635
0.974582
0.974247

8 1500 0.969886
0.969815
0.969702

0.971841
0.969822
0.969723

0.966876
0.966525
0.966234

0.952886
0.952835
0.952803

For most numbers of objectives, better results were found by MOEA/D and
MOEA/DD than NSGA-III. The results prove that extending the population size does
not affect the ability of search of the MOEA/D. Contrariwise; the MOEA/D perfor-
mance is degraded by the rise of size of the population until becoming inefficient
with large population sizes. Hence, determining the appropriate size of the population
according to the number of considered objectives is a relevant topic of research. An
important observation is that the efficiency of MOEA/D cannot be influenced by the
population size increase due to the multiple neighbors which may be replaced with
newly-generated better off-spring.



Table 6 Worst, average and best HV values using various population sizes and various objectives numbers

Obj Nbr Population
size

MOEA/D
(PBI)

MOEA/DD NSGA-III Two_Arch2 Reference
points
number
(MOEA/DD,
NSGA-III)

4 100 0.956923
0.956517
0.956208

0.983461
0.981027
0.980429

0.973231
0.972675
0.972089

0.973682
0.972987
0.972023

90

500 0.972863
0.972165
0.972022

0.985237
0.984162
0.984103

0.977863
0.977258
0.977037

0.985682
0.976263
0.976044

130

1000 0.984426
0.976412
0.976328

0.983652
0.981426
0.976124

0.978863
0.978574
0.976231

0.976498
0.976422
0.976346

255

1200 0.976664
0.976586
0.972343

0.986213
0.985897
0.985251

0.978683
0.978764
0.978037

0.977023
0.976986
0.976431

280

1400 0.976874
0.976758
0.974032

0.986852
0.986238
0.985140

0.978985
0.978583
0.978362

0.987875
0.987244
0.977032

290

8 100 0.969369
0.969292
0.969083

0.970145
0.969233
0.969002

0.959863
0.959467
0.959302

0.952894
0.952236
0.952035

90

500 0.969963
0.969643
0.969354

0.969786
0.969645
0.969423

0.960869
0.960098
0.959326

0.969878
0.952543
0.952132

230

1000 0.969886
0.969815
0.969702

0.971841
0.969822
0.969723

0.966876
0.966525
0.966234

0.952886
0.952835
0.952803

320

1200 0.969894
0.969831
0.969063

0.970274
0.969962
0.969146

0.967964
0.967663
0.960022

0.970623
0.953195
0.952678

350

1400 0.969965
0.969887
0.969576

0.970988
0.970231
0.969862

0.968326
0.967989
0.960374

0.971589
0.953651
0.953233

350

5.3 Testing the influence of using neighborhoodmating and adaptive
recombination

We examine in this section the effect of the suggested strategy for mating near parent 
with an adaptive mutation and recombination (see Sect. 4.1). The behavior of each 
algorithm is assessed using average values of HV over 15 runs. The size of population 
in MOEA/D is 1000. Neighbor mating is achieved in the recombination process, the 
objectives are dependent and the number of reference points is 100. Table 7 illustrates 
the obtained results.

The collected results with different numbers of objectives indicate that the neigh-
borhood mating and the use of adaptive operators considerably enhance the search



Table 7 Worst, average and best values of HV with adaptive operators

Obj Nbr MOEA/D(PBI) MOEA/DD NSGA-III Two_Arch2

Bit-flip
mutation/n-
point
recombina-
tion

4 0.984426
0.976416
0.976328

0.983652
0.981426
0.976124

0.978863
0.978574
0.976231

0.976498
0.976422
0.976346

8 0.969886
0.969815
0.969702

0.971841
0.969822
0.969723

0.966876
0.966525
0.966234

0.952886
0.952835
0.952803

Using
neighborhood
mating
restrictions
and adaptive
operators

4 0.978678
0.978133
0.976253

0.983129
0.981952
0.980237

0.979697
0.979342
0.979032

0.977234
0.976986
0.976343

8 0.970489
0.969932
0.963231

0.971002
0.970254
0.968968

0.971234
0.967751
0.963268

0.953864
0.953366
0.953032

performance. In fact, better results are recorded for different numbers of objectives
on the MOEA/DD. Obviously, when the number of objectives rise, the advantage of
theMOEA/DD over theMOEA/D becomes clearer. Nevertheless, MOEA/D improves
more considerably the average values ofHV (using orwithout recombination of similar
parent), compared to other algorithms. Besides, experimental results show that mating
similar parents enhances the diversity and does not deteriorate the convergence.

5.4 Testing the influence of hybridizing the used EMOs with a dimensionality
reduction approach

In this section, we investigate the effect of incorporating our proposed approach for
dimensionality reduction. In this set of experiments, the HV is calculated and the
taken size for the population is 1000. Adaptive mutation and recombination operators
are used with neighbor parents mating. The objectives are dependent (a minimum of
N/2 objectives are dependent for an experiment having N objectives). 8 correlated
objectives are employed. 250 reference points are applied for NSGA-III. From the
results presented in Table 8, for four and eight objectives, the HV values found when
using dimensionality reduction approach are higher than those obtained without using
this method due to the reduction in the number of objectives from eight to five in
the case of our real-world problem. Moreover, the improvement rate of the MOEA/D
clearly exceeds those of other algorithms.

5.4.1 Comparing with other dimensionality reduction methods: the Feature
Selection

In our model, we used two dimensionality reduction methods (NLMVU-PCA and
L-PCA). To better clarify the efficiency of the suggested model, we compare it with
another dimensionality reduction method: the Feature Selection (FS) which is an
unsupervised feature selection procedure. The FS is an algorithm that establish an ideal
learning model to minimize the dimensionality of the feature space by identifying a



Table 8 Worst, average and best HV values obtained before and after applying the dimensionality reduction

Initial Obj
Nbr

Obj Nbr
after
reduction

MOEA/D
(PBI)

MOEA/DD NSGA-III Two_Arch2

Without
reduction

4/5 4/5 0.984426
0.976416
0.976328

0.983652
0.981426
0.976124

0.978863
0.978574
0.976231

0.976498
0.976422
0.976346

Using L-
PCA/NL-
MVU-
PCA

3 0.994975
0.991264
0.980023

0.982897
0.982542
0.982231

0.982896
0.982251
0.982033

0.989352
0.987144
0.986021

Using the
feature
selection

3 0.993284
0.990737
0.979601

0.982962
0.982615
0.980967

0.983202
0.982080
0.981949

0.990249
0.987808
0.986645

Without
reduction

8 8 0.969886
0.969815
0.969702

0.971841
0.969822
0.969723

0.966876
0.966525
0.966234

0.952886
0.952835
0.952803

Using L-
PCA/NL-
MVU-
PCA

4 0.971978
0.970951
0.970236

0.984986
0.984158
0.983943

0.969897
0.961152
0.960364

0.954237
0.953654
0.953028

Using the
feature
selection

5 0.978234
0.975231
0.974328

0.974823
0.974676
0.973284

0.961236
0.960743
0.958201

0.950893
0.950239
0.948327

minimum set of inter-dependent necessary ‘features’ from an initial data groups. In 
our case, a feature is considered as an objective. The choice of the Feature Selection 
as a dimensionality reduction method to compare with; is motivated by the nature of 
the 3D indoor deployment which is an objectives-dependent problem. The used FS 
algorithm relies on the algorithm proposed by Mitra et al. (2002).

To test the effect of the use of the FS, the best, average and worst values of HV of 
the evolutionary algorithms are measured after the incorporation of the FS. Table 8 
shows the obtained results.

5.4.2 Application of the NL-MVU-PCA and L-PCA

NL-MVU-PCA is a nonlinear objective reduction relying on the “Principal Component 
Analysis” and the “Maximum Variance Unfolding”. We briefly present the nonlinear 
objective reduction based on the NL-MVU-PCA algorithm. Indeed, using an initial 
set of objectives SOi� {f1, …, fM}, the NL-MVU-PCA finds the sub-set of essential 
objectives SOe. For this purpose, a set of steps are achieved: First, as an input data, 
the NL-MVU-PCA consider the objective vectors from the non-dominated set of 
EMO solutions. Then, the process searches for the principal components (significant 
variance) in the data. Afterwards, it identifies the conflicting subset of objectives along 
these principal components. Finally, it discads the inter-dependent objectives from the 
final set. These steps are iteratively achieved until the necessary subset of objective in 
a couple of successive iterations is reduced to two objectives or stills the same.



Table 9 The correlation Matrix R on the first iteration

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

f 1 1 − 0.458 0.896 0.985 − 0.258 0.885 0.875 − 0.647

f 2 − 0.458 1 − 0.521 − 0.678 − 0.735 − 0.613 0.365 − 0.647

f 3 0.896 − 0.521 1 0.982 − 0.385 0.997 0.354 − 0.647

f 4 0.985 − 0.678 0.982 1 − 0.392 0.839 0.365 − 0.647

f 5 − 0.258 − 0.735 − 0.385 − 0.392 1 − 0.264 0.238 − 0.647

f 6 0.885 − 0.613 0.997 0.839 − 0.264 1 0.364 − 0.647

f 7 0.875 0.365 0.354 0.365 0.238 0.364 1 − 0.647

f 8 − 0.647 − 0.647 − 0.647 − 0.647 − 0.647 − 0.647 − 0.647 1

Table 10 The kernel Matrix K

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

f 1 4.568 − 4.521 4.895 6.552 − 7.353 9.652 6.548 − 6.365

f 2 − 4.521 6.021 − 4.257 − 6.215 − 7.985 − 9.245 9.253 − 6.365

f 3 4.895 − 4.257 6.892 6.812 − 7.154 11.246 12.568 − 6.365

f 4 6.552 − 6.215 6.812 8.453 − 7.554 11.246 12.568 − 8.852

f 5 − 7.353 − 7.985 − 7.154 − 7.554 12.258 − 11.246 18.258 − 8.254

f 6 9.652 − 9.245 11.246 11.246 − 11.246 18.254 18.891 − 8.852

f 7 6.548 9.253 12.568 12.568 18.258 18.891 25.547 − 18.255

f 8 − 6.365 − 6.365 − 6.365 − 8.852 − 8.254 − 8.852 − 18.255 21.541

In the following, we detail the application of the proposed dimensionality reduction
approach (the NL-MVU-PCA algorithm, for non-linear objective reduction, and L-
PCA for linear objective reduction) to our real-world problem. Since Two_Arch2
has the best performance, it is used as a MaOA to test our dimensionality reduction
approach on an eight-objective 3D deployment problem. The tables below illustrate
the set of the most dominant objectives found after 15-runs of the NL-MVU-PCA and
L-PCA. According to Sinha et al. (2013), starting from an initial set of objectives F0 �
{f1,…, fM}, the NL-MVU-PCA aims at identifying the set FT of essential objectives
by achieving the following steps:

Step 1 (Computing the correlation and the kernel matrix) Relying on the input
data, the correlation matrix R (for linear objective reduction (L-PCA)) is plotted,
the kernel matrix K (for nonlinear objective reduction (NL-MVU-PCA)) and its
principal component (eigenvectors and eigenvalues) are computed. According to
Sinha et al. (2013), R � (1/M).XXT where M is the number of objectives and X
is the input data. K is also calculated according to the formulation in Sinha et al.
(2013). Tables 9, 10, 11 and 12 illustrate the values of the matrix R, K as well as
their Eigenvectors and eigenvalues.
Step 2 (Eigenvalue Analysis) consists in identifying the set of the important objec-
tives in the initial set of objectives by performing the eigenvalue analysis that



Table 11 Eigenvectors and
eigenvalues of the matrix R

e1 � 0.646
v1

e2 � 0.221
v2

e3 � 0.084
v3

e4 � 0.003
v4

0.215 0.886 0.568 0.638

− 0.568 − 0.322 0.546 − 0.457

0.585 0.662 0.531 − 0.891

0.689 − 0.211 0.284 − 0.457

− 0.985 − 0.354 0.893 0.594

0.325 − 0.498 0.045 0.617

0.236 − 0.158 0.104 0.685

− 0.652 − 0.659 − 0.593 − 0.237

Table 12 Eigenvectors and
eigenvalues of the matrix K

e1 � 0.548
v1

e2 � 0.276
v2

e3 � 0.048
v3

e4 � 0.002
v4

− 0.234 0.056 0.448 − 0.253

0.665 − 0.094 0.125 0.151

0.652 0.114 0.356 0.198

0.745 0.146 0.651 0.235

0.351 − 0.338 0.821 0.358

0.452 0.562 0.886 0.564

− 0.635 0.567 − 0.662 0.282

0.328 − 0.523 − 0.543 0.025

Table 13 Eigenvalue Analysis for L-PCA

PCA (No) Variance (%) Cumulative (%) Selected objectives

1 64.6 64.60 f 2 f 5 f 6 f 7 f 8

2 22.1 97.09 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

3 8.4 99.62 f 2 f 4 f 6 f 7 f 8

4 0.3 99.99 f 2 f 5 f 7 f 8

identifies the principal components (directions of significant variance) in the data.
Table 13 (Table 14, respectively) depicts the eigenvalue analysis for linear objective
reduction (non-linear objective reduction, respectively).
Step 3 (Analysis of the Reduced Correlation Matrix) consists in identifying the
set of identically-dependent subsets by carrying out the reduced correlation matrix
analysis. The important objectives in each subset are retained and other objectives
are discarded, which allows further reduction of the objective set obtained after step
2. Table 15 (Table 16, respectively) represents the RCM analysis for linear objective
reduction (non-linear objective reduction, respectively). According to Saxena et al.
(2013), Tcor � 1.0 − e1.(1 − M′/M) where M′ refers to the number of needed
principal components to account for 95.4% variance, M is the number of objectives.



Table 14 Eigenvalue Analysis for NL-MVU-PCA

PCA (No) Variance (%) Cumulative (%) Selected objectives

1 54.8 54.80 f 1 f 2 f 3 f 5 f 6

2 27.6 94.45 f 1 f 4 f 5 f 7 f 8

3 4.8 99.99 f 2 f 5 f 7 f 8

4 0.2 99.99 f 2 f 3 f 4 f 7 f 8

Table 15 RCM analysis for
L-PCA

Potential identically correlated set(s) {f 1, f 3, f 4, f 6}

Tcor (correlation threshold) 1.0–0.646(2/8) � 0.8385

Identically correlated set(s) {f 1, f 3, f 4, f 6}

Table 16 RCM analysis for
NL-MVU-PCA

Potential identically correlated set(s) {f 1, f 3, f 4, f 6}

Tcor (correlation threshold) 1.0–0.548(3/8) � 0.7945

Identically correlated set(s) {f 1,f 3,f 4,f 6}

Table 17 Selection scheme for
L-PCA

e1 �
0.646
V1

e2 �
0.221
V2

e3 �
0.084
V3

e4 �
0.003
v4

Objective
selection
score

f 1 0.215 0.886 0.568 0.638 0.458

f 1 − 0.568 − 0.322 0.546 − 0.457 0.462

f 1 0.585 0.662 0.531 − 0.891 0.483

f 1 0.689 − 0.211 0.284 − 0.457 0.494

Step 4 (Selection scheme) consists in identifying themost important objective in each
set by applying the selection scheme. Table 17 (Table 18, respectively) demonstrates
the selection scheme for linear objective reduction (non-linear objective reduction,
respectively).
Step 5 (Computation of the error) is to measure the error of the proposed frame-
work in one iteration. This measure calculates the unaccounted left variance when
discarding the objectives constituting the redundant objective set. According to the

Table 18 Selection scheme for
NL-MVU-PCA

e1 �
0.548
V1

e2 �
0.276
V2

e3 �
0.048
V3

e4 �
0.002
v4

Objective
selection
score

f 1 − 0.234 0.056 0.448 − 0.253 0.238

f 1 0.665 − 0.094 0.125 0.151 0.295

f 1 0.652 0.114 0.356 0.198 0.684

f 1 0.745 0.146 0.651 0.235 0.793



equation proposed in Saxena et al. (2013), the error for the L-PCA (the NL-MVU-
PCA, respectively) is equal to 0.000239 (0.000458, respectively).

The above-mentioned five-step process is achieved iteratively until the set of nec-
essary objectives will be reduced to two objectives or until it stills the same for two
successive iterations.

5.5 Testing the effect of hybridizing the EMOs with dimensionality reduction
and user preferences

In this section, we measure the effect of applying our proposed approach to incor-
porate both dimensionality reduction method and user preference one. In this set of 
experiments, the HV is calculated with a large population (1000). Adaptive muta-
tion/recombination is employed with neighbor parents mating. The objectives are 
dependent (a minimum of N/2 objectives are dependent for an experiment having N 
objectives). 8 correlated objectives are used. We use 250 reference points for NSGA-
III. After applying reduction approach, the preference is applied on a reduced set of 
objectives. Tables 19 and 20 show the final solutions specifications (using Two_Arch2 
as an EMO). Each run has a different initial population, which is the result of apply-
ing our reduction procedure on the concerned EMO. ds is a user-defined parameter 
representing the presumed enhancement in the solutions obtained from the actual best 
solution relying on the value function, and ds � 0.01. TDMax � 30 is the maximum 
number of calls of the preference information introduced by the DM.

After testing the algorithms proposed in our approach with the deployment problem, 
we also test them using a real experimental prototyping system (Arduino 2018; Van  
Den Bossche et al. 2016) with the same problem, then using instances of the theoretical 
DTLZ problems (Deb et al. 2005).

*Comparing with other preference methods: the PI-EMO-VF By comparing the 
results obtained in Table 21 with those in Table 20, it is clearly shown that the 
PI-EMO-PC achieves better results than PI-EMO-VF since it gives better accuracy 
with less number of calls.

5.6 Comparing with random search and independent objectives

In this section, the performance of the four EMOs applied to our hybrid scheme is 
compared with the random search and the independent optimization of each objective 
function separately. The same parameters of the previous section are used. Table 22 
shows a comparison of the worst, average and best values of the HV of the EMOs with 
random search and independent optimization of objectives (for consistency reasons 
and since three objectives are redundant [f 1, f 3, f 4], only five from the eight objectives 
are considered).

From the results presented in Table 22, for four and eight objectives, the HV values 
found when optimizing each objective separately are higher (thus better) than those 
obtained using our hybrid scheme. However, all the optimization algorithms used with 
our hybrid scheme outperform the random search.



Table 19 Median obtained solutions (objective values)

Most preferred
point used to
construct the
value function
and
guaranteeing
the KKT
conditions

Average values

MOEA/D NSGA-III Two_Arch2 MOEA/DD

f 1 (redundant) Number of
added
nomad
nodes

128.452 134.161 142.54 152.339 133.581

f 2 Energy
consumption

3.857 3.998 4.021 4.056 3.962

f 3 (redundant) Hardware
deployment
cost

85 88.468 96.184 93.923 88.646

f 4 (redundant) Network
Utilization

1.00 0.946 0.796 0.849 0.962

f 5 Localization
rate

3.991 3.605 3.882 3.863 3.812

f 6 Coverage rate 5.865 4.189 4.984 4.235 5.572

f 7 Lifetime 4280 3885 3687 3956 4065

f 8 Connectivity
rate

189.89 168.524 166.515 168.542 174.266

Table 20 Median distance of the
solutions obtained from most
preferred solutions, using
PI-EMO-PC

MOEA/D NSGA-III Two_Arch2 MOEA/DD

Accuracy 0.234 0.419 0.468 0.023

Number of
function
evaluations

6321 7945 8231 5895

Number of
required DM
calls

TDMax 26 25 16

Table 21 Median distances of the
solutions obtained from the most
preferred solutions, using
PI-EMO-VF

MOEA/D NSGA-III Two_Arch2 MOEA/DD

Accuracy 0.201 0.382 0.424 0.019

Number of
function
evaluations

6652 8096 8284 5987

Number of
required DM
calls

TDMax 32 29 22



Ta
bl
e
22

C
om

pa
ri
ng

th
e
H
V
va
lu
es

of
E
M
O
s
w
ith

ra
nd

om
se
ar
ch

an
d
in
de
pe
nd

en
to

pt
im

iz
at
io
n
of

ob
je
ct
iv
es

In
iti
al
O
bj

N
br

O
bj

N
br

af
te
r

re
du

ct
io
n

O
ur

hy
br
id

sc
he
m
e
ap
pl
ie
d
to
:

R
an
do

m
se
ar
ch

In
de
pe
nd

en
to

pt
im

iz
at
io
n
of

ea
ch

ob
je
ct
iv
e
fu
nc
tio

n

M
O
E
A
/D

(P
B
I)

M
O
E
A
/D
D

N
SG

A
-I
II

Tw
o_
A
rc
h2

f2
f5

f6
f7

f8

4/
5

3
0.
99

49
75

0.
99

12
64

0.
98

00
23

0.
98

28
97

0.
98

25
42

0.
98

22
31

0.
98

28
96

0.
98

22
51

0.
98

20
33

0.
98

93
52

0.
98

71
44

0.
98

60
21

0.
89

35
12

0.
83

10
33

0.
83

06
86

0.
99

20
24

0.
99

13
97

0.
99

10
92

0.
99

19
85

0.
99

02
03

0.
99

05
79

0.
99

52
56

0.
99

50
02

0.
99

44
51

0.
99

49
07

0.
99

44
84

0.
99

40
23

0.
99

32
23

0.
99

26
85

0.
99

20
22

8
4

0.
97

19
78

0.
97

09
51

0.
97

02
36

0.
98

49
86

0.
98

41
58

0.
98

39
43

0.
96

98
97

0.
96

11
52

0.
96

03
64

0.
95

42
37

0.
95

36
54

0.
95

30
28

0.
89

06
31

0.
88

93
67

0.
88

72
36

0.
98

92
36

0.
98

86
38

0.
98

80
22

0.
99

05
86

0.
99

01
23

0.
98

96
51

0.
99

26
43

0.
99

12
45

0.
99

10
26

0.
99

06
29

0.
99

00
16

0.
98

80
28

0.
98

78
98

0.
98

70
25

0.
98

60
94



300 

200 

100 

-----------R• 

0 

s 

NSGA Ill vs 

MOEA/DD 

• 

NSGA Ill vs 

MOEA/DD 

Fig. 5 p values, R+ and R- of the algorithm's pairs 

NSGA Ill vs 

Two Arch2 

Other results (which are not illustrated here due to the limited space) prove that 

the performance of the random search is enhanced when using independent objectives 

(without reduction). 

6 Statistical and complexity analysis 

6.1 Statistical analysis 

In this section, we assess the difference in the distributions of indicator values obtained 
by the different algorithms using a statistical signed racles test. NSGA-ill is used as a 

control method and the same values for the algorithm's common parameters are used. 

We suppose two hypotheses in order to apply the statistical tests: A null hypothesis 
Ho which imply that there is no difference between the compared algorithms. An 
alternative hypothesis H 1 which imply that a difference exists between the compared 

algorithms. We determine the level of discarding the hypothesis using a significance 
level (named cr). The signs R- and R+ between NSGA-ill and two other algorithms
(MOEA/DD and Two_Arch2) are calculated. Tuen, the associated p-values of the 
algorithms are computed for each pair of algorithms. Figure 5 shows the p-values, 

R- and R+ of the pairs of the algorithms computed by the Wilcoxon Test. According
to the Fig. 5, Two_Arch2 outperforms the control method NSGA-ill (with a level of 
significance cr= 0.1), and outperforms MOEA/DD (with cr= 0.05).

6.2 Computational complexity and runtime analysis 

An analysis of the computational and temporal complexity is important to evaluate 
the behavior of the proposed algorithms in terms of computing rime. 

*Computational complexity of algorithms The computational complexity reflects the
increase rate of the execution time in relation to the population. Table 23 shows an aver­

age execution time of 25 runs of the algorithms on the 3-objectives DTLZl problem.

The MOEA/DD has the best (lowest) execution rime with a comparable perfomence
for MOPSO and Two_Arch2; while NSGA-ill is the worst algorithm in terms of 

temporal complexity. 



Table 23 Average of execution
time on the 3-objective DTLZ1
problem

Two_Arch2 NSGA-III MOPSO MOEA/DD

6.37e+01 1.64e+02 7.44e+01 5.22e+01

Table 24 Computational complexity of the algorithms on the M-objective DTLZ1

Two_Arch2 NSGA-III MOEA/D MOPSO
(M≤3)

Two-stage
MaOPSO [28]

MOEA/DD

M≤3 M>3

O(Mn2) O(Mn2) O(Mn3) O(eM*n) O(Mnlogn) O(M(n1 +
L2n2)∼�O(Mn3)

L: the archive
bounded-size,
n1, n2:
population
sizes at stages
I & II

Authors do not
indicate its
exact
complexity

Table 25 Execution time in relation with the number and dependence between objectives

Average execution time (in seconds)

NSGA-III MOEA/DD Two-Arch2 MOEA/D

3 objectives Dependent objs 164 62 63.7 74.4

Independent objs 152 50 78 71

5 objectives Dependent objs 171 77 72 87

Independent objs 268 135 256 139

However, a low execution time does not necessary indicate a low computation 
complexity. Table 24 shows the computational complexity of the used algorithms on 
the M-objective test problem DTLZ1 (n is the number of individuals in the population).

Table 24 illustrates that MOEA/D has the worst (highest) computational complexity 
while other algorithms shows a similar performances.

*Testing the influence of the number and dependence between objectives on the 
execution time Table 25 shows the effect of changing the number and the 
dependence between objectives on the overall execution time of the tested algorithms.

Table 25 clearly shows that the number and dependencies between the objectives 
affect the execution time. NSGA-III is the worst algorithm in term of the average 
needed execution time. Moreover, another interesting observation is recorded con-
cerning the similar performances of the algorithms with three independent objectives 
and five dependent objectives: This indicated the advantage of the reduction of objec-
tives.

To sum up, the complexity analysis assesses the behavior of the different tested 
algorithms. It shows that the execution and computation time can be influenced by 
different parameters such as the number and dependency between objectives. Further



tests can be performed regarding the influence of the size of the initial population and
the number of nodes on the execution time.

7 Experimental tests on real testbeds

To evaluate the robustness and the efficiency of the protocols, technologies andmodels
in real environments, real platforms called testbeds can be used. Indeed, simulations
and theoretical calculations fail to reproduce the physical characteristics of the real-
world environments; hence the current tendency to reduce the differences between
theory and practice by testing the new algorithms and solutions in real environments
with experiments carried out on testbeds. In this study, we propose a testbed composed
of 36 nodes, called Ophelia. Using this personal testbed, different advantages are
envisaged:

• Conformity to reality A personal testbed like Ophelia is based on tests in a real
context of use unlike test platforms such as FIT/IoT-Lab (IoTLab 2019) which
offers tests with a large number of nodes that are aligned or uniform on a grid.

• Reproducibility since Ophelia relies on open-source tools, such as OpenWiNo and
Arduino, it is easy to manage and reproduce the obtained results by other research
teams. Indeed, Ophelia supports different physical layers and various types of sen-
sors, which facilitates the deployment of nodes and the prototyping task.

• Heterogeneity of nodes Ophelia supports three different types of nodes (DecaWino,
WiNoLoRa and TeensyWiNo). Thanks to its compliance with open hardware and
software, the WiNo architecture allows integrating foreign libraries to manage the
deployed nodes, which enables it to support a wide variety of nodes.

• A distributed deployment Ophelia consists of 36 nodes deployed in several buildings
and locations in a campus of 200*200 m2.

• Easy use and deployment The nodes in our Ophelia testbed aremanipulated (erasing
data, updating) using OpenWino and the execution of the protocols stack is done
via the usb interface of the nodes or by executing a command line from the con-
sole. Moreover, WiNo nodes are compatible with revolutionary transmission modes
(UWB, LoRa…) and most standard physical layers, which makes the design and
customization of the network as well as the replacement of the physical layer easier
and more realistic.

• Real useWiNos nodes have small size, low power consumption rate and easy attach-
ment to a mobile system or a person, which makes them an ideal component for the
IoT and the prototyping of communicating objects.

7.1 Experimental parameters

An Intel Core i5-6600 K 3.5 GHz computer is used to test the algorithms. Physical
layer is based on a 433 MHz implementation. The applied access method is the non-
coordinated CSMA/CA of the IEEE 802.15.4 protocol, and the routing layer relies on
the reactive Ad hoc On-demand Distance Vector protocol. The parameters considered
in our experiments are illustrated in Table 26.



Table 26 Parameters of the experiments 

Nodes repartition 
Nodes number 
Sensing range 
Transmission range 
Frame error rate (FER) 
Reœived signal strength indicator (RSSI) 
Average number of runs 
Bit rate 
Modulation model 
Antenna model 
Modem configuration 
Frequency 
Tx power 
Message-number 
Message-length 
Message-wait 
Reœption gain 
Transmission power 

Fig. 6 The Teensy WiNo used 
nodes 

7.2 Ophelia testbed nodes and used tools 

6 sites on 200 * 200 m2 

36 (2 9 fixed, 6 nomad, 1 mobile) 
Sm 
7m 
0.01 (initially) 
100 (initially) 
25 experiments 
256 kbps 
125 kbit/s GFSK 

transceiver RFM22 
12 # GFSK_Rb2Fd5 

434.79MHz 
7 (the max of RFM22) 
1000 
16 
5 
50mA 
lOOmW 

The deployed TeensyWiNo nodes are WiNoRF22 nodes equipped with brightness and 

temperature sensors to which other sensors are added (gyrometer, acceleration or pres­

sure). They give access to low layers in order to manage the access time to the medium, 

the sleep, the awakening and CPU time; and the management of the restricted mem­

ory. WiNo nodes represent a hardware platform able to host different protocols with 

real-time constraints (several months of use using two AAA batteries). The installed 

TeensyWiNo nodes are shown in Fig. 6 and theirtechnical characteristics are illustrated 

in Table 27. 

These nodes, incorporated in the Arduino ecosystem, facilitate the integration of 

hardware and software components (interaction devices, actuators, sensors, processing 

algorithms, etc.), which allows obtaining the feedback from the user's experience. 

The following tools are used: 



Table 27 Technical characteristics of the used TeensyWiNo nodes

CPU/RAM/Flash CPU/RAM/Flash ARM Cortex M4 (32bit) 72 MHz, 64kB RAM,
256kB Flash (PJRC Teensy 3.1)

Transceiver (Arduino libraries) HopeRF RFM22b: 200-900 MHz, 1-125kbps, GFSK/FSK/OOK, +
20dBm RadioHead

• Arduino 1.6.1 (Arduino 2018) is an open hardware and software platform employed
by the “WiNo” sensors to prototypemodules and transfer the sketches. Teensyduino
is an Arduino added module used to run these sketches.

• OpenWiNo (Van Den Bossche et al. 2016) is an open tool applied to prototype
and evaluate the performance of WSN and IoT protocols in different layers (MAC,
NWK…) and run them on real WiNos nodes. The simplicity of using OpenWiNo
lies in changing the physical layer where it is sufficient to modify the transceiver.
This is very practical in open-hardware environments as it is the case in the context
of IoT.

• Ophelia relies on Openwino, Arduino, the deployed Teensywino sensors and a web
user interface used to remote the access to the testbed and to execute sketches on
the nodes.

7.3 Experimental scenario and results

We use 30 stationary sensors with known positions and deployed initially. Positions
depend on the users application needs. The number of nomad nodes to add is limited
to six. The positions of the latter nodes are to be determined by the used optimization
methods. A mobile node is used. In order to measure the influence of the selected
locations of the nomad sensors on the overall performanceof the network, the following
scenario of the experiments is repeated several times:At first, all sensors are flashed and
the parameters of the initial configuration (such as the power of transmission) are sent.
Afterwards, the mobile sensor sends a broadcast to all nodes. The RSSI and FER rates
issued from and received by each node are considered. After a predefinedwaiting time,
another transmitter is chosen and other nodes receive. These steps are repeated until
performing 36 experiments. At the end, a couple of connectivity matrices, combining
the FER and RSSI means between the nodes, are created. The average number of
neighbors of each node is deduced from these two matrices. In our experiments, two
nodes are considered neighbors if and only if the mean rate of the RSSI (and FER,
respectively) recorded between these two nodes is greater (lower, respectively) than a
pre-defined threshold equal to 100 (0.1, respectively). Due to the stochastic aspect of
the used optimization algorithms, the use of a statistical test with several executions is
necessary to assess their behavior. Therefore, themean values in our tests are calculated
relying on 25 runs of the algorithms. Figure 7 shows the 3D indoor deployment of
nodes in one of the sites used in experiments. In fact, blue nodes are the nomad ones
while red nodes are the fixed ones.1

1 Color should be used for Fig. 7 in print.
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Comparing the RSSI values To assess different objectives, like the localization, the 

connectivity or the quality of links, the RSSI metric is calculated. Our experiments 

are based on a hybrid localization model which combines the RSSI information and 

the Distance-Vector Hop protocol. Indeed, the higher the RSSI value, the better the 

localization will be. Figure 8 shows the RSSI average values (a convertible to dBm 

measure ranging from O to 256) exchanged between the nodes for different numbers 

of objectives. 

Comparing the FER rates To measure the coverage state and the quality oflinks among 

nodes, the FER metric is calculated. lndeed, the lower the FER value, the better the 

coverage will be. To assess FER values for each pair of nodes, an average value 

deduced based on four values is considered. 10 s of wait is used between the four 

talœn values. Figure 9 shows the average FER values between nodes for different 

numbers of objectives. 

Comparing the neighbor's number To evaluate the connectivity and the degree of use 

of the network, the average number of each node neighbors is computed. Indeed, the 

previous concept of neighboring based-on RSSI and FER is used. Figure 10 shows 

the average number of neighbors of nodes and for different numbers of objectives. 
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Comparing the network lifetime Figure 11 indicates, for a set of number of objectives, 
the network lifetime which is taken as the time needed by the first node of the network 
to become out of energy. 

Comparing the amount of consuming energy Figure 12 shows the variation of the 
network energy consumption according to the time. The average of the energy rates 
of nodes is calculated after the use of the nomad nodes. 

7.4 lnterpretations and discussion 

After performing the experiments, several findings can be considered: 

• These tests prove the suitability of the optimization paradigms for real-world con­
texts with real experiments. It shows the theoretical findings obtained by applying
the tested algorithms.



• Our experiments show that a link between two nodes can have a high FER and a
good RSSI at the same time. Thus, the FER and RSSI rates are not always inversely
proportional.

• By studying the behavior of the testedmethods before and after the application of the
proposed hybridization scheme, the prototyping results demonstrate that NSGA-III
is often better than MOEA/DD on FER and RSSI amounts. Thus, the NSGA-III is
considered more efficient in guaranteeing the localization, the coverage and the link
quality, while MOEA/DD is better used to satisfy the average number of neighbors
and the network lifetime.

• Consistent with our numerical results in Sect. 5, the experiments assert that the
effectiveness of the algorithms is related to the number of objectives to be optimized.
Indeed, Figs. 8, 9, 10 and 11 show that if the objective number does not exceed three,
the behavior of the MOEA/D will be better than that of the NSGA-III. In the case of
four objectives or more, the behavior of the NSGA-III becomes better than that of
the MOEA/D. This statement is explained by the fact that, unlike MOEA/DD and
Two_Arch2, the NSGA-III is only dedicated to many-objective problems.

• Contrary to different studies such as Li et al. (2015) affirming that the decomposition
paradigms are generally more efficient than the NSGA-III, our findings show that
MOEA/DD is not always better than NSGA-III because our problem is a real-
world complex one having some features which differ from those characterizing the
theoretical problems used to evaluate these algorithms.

• Finally, it is proven that the incorporation of the dimensionality reduction and the
user preferences improves the results (higher HV, higher coverage and localization)
and enhance the behavior of the tested algorithms.

• The Two_Arch2 generally has a constant comportment which is not affected by
varying the objectives number.

8 Conclusion

This study proposed to resolve the problem of indoor 3D redeployment of the 
connected objects in IoT collection networks by adding new objects on the cho-
sen locations and guaranteeing a set of objectives. For this purpose, we developed 
a hybridization scheme that overcomes the problems of the computational com-
plexity and the considerable time spent by the MaOAs to solve the MaOPs. This 
scheme integrated the dimensionality reduction and the user’s preferences to various 
recent many-objective algorithms like MOEA/DD, NSGA-III and Two_Arch2. Sub-
sequently, to prove their effectiveness in finding solutions for the 3D redeployment 
problem. The new proposed algorithms were evaluated using the HV metric on our 
real problem. Moreover, a set of experimental tests were performed to validate the 
theoretical observations. The results proved that the modified hybrid algorithms are 
more performing compared to the originals ones. In fact, other various interesting 
findings are obtained such as the superior performance of MOEA/D compared with 
NSGA-III if the objectives are correlated.

In the future, several research directions can be envisaged to improve this work. 
We intend to integrate other recent MOEAs such as KnEA (Zhang et al. 2015) into



our platform to test their behaviors on our real world problem. Moreover, although
the proposed approach reduces the complexity and the objectives of the problem, it
seems to be complex. Hence, the study of the algorithmic complexity of our hybrid
approach can be considered to show the contribution of its use. At the application level,
in order to prove the large-scale suitability of our method and to measure the effect of
the density of network on the results, our experiments may be re-evaluated by testing
the proposed hybridization scheme using a larger number of nodes. This is possible
via real prototyping platforms such as IoTLab (IoTLab 2019) (having more than 1000
nodes) permitting to measure the same metrics as in our tests (RSSI, FER, number of
neighbors). Thus, a consistent comparison with our experiments and an evaluation of
the behavior of the proposed hybridization scheme in different real world contexts can
be done. Besides, other than the 802.15.4 nodes used in our experiment tests, we aim
to support other recent protocols and technologies of transmission (Ultra-Wide Band
and LORA) and apply them on test our approach in a smart-home dedicates to aged
persons (MIB of the IUT of Blagnac in Toulouse).

Funding None.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Argany, M., Karimipour, F., Mafi, F., Afghantoloee, A.: Optimization of wireless sensor networks deploy-
ment based on probabilistic sensing models in a complex environment. J. Sens. Actuator Netw. 7(2),
20 (2018). https://doi.org/10.3390/jsan7020020

Arduino platform: https://www.arduino.cc/en/main/software (2018). Accessed 5 Jan 2018
Bechikh, S., Ben Said, L., Ghédira, K.: Searching for knee regions of the Pareto front usingmobile reference

points. Soft Comput. 15(9), 1807–1823 (2011). https://doi.org/10.1007/s00500-011-0694-3
Branke, J., Deb, K.,Miettinen, K., Slowinski, R.:Multiobjective Optimization: Interactive and Evolutionary

Approaches. Springer, Berlin (2008)
Cheng, X., Du, D.Z., Wang, L., Xu, B.: Relay sensor placement in wireless sensor networks. ACM/Springer

J. Wirel. Netw. 14(3), 347–355 (2008). https://doi.org/10.1007/s11276-006-0724-8
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference point- based

non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol.
Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective
optimization. Evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)

Deb, K., Chaudhuri, S., Miettinen, K. Towards estimating nadir objective vector using evolutionary
approaches. In: 8th Genetic and Evolutionary Computation Conference (GECCO), pp. 643–650
(2006). https://doi.org/10.1145/1143997.1144113

Domingo-Perez, F., Lazaro-Galilea, J.L., Bravo, I., Gardel, A., Rodriguez, D.: Optimization of the coverage
and accuracy of an indoor positioning system with a variable number of sensors. Sensors (Basel,
Switzerland) 16(6), 934 (2016). https://doi.org/10.3390/s16060934

Drechsler, N., Sülflow, A., Drechsler, R.: Incorporating user preferences in many-objective optimization
using relation e-preferred. Nat. Comput. 14, 469 (2015). https://doi.org/10.1007/s11047-014-9422-0

Elhabyan, R., Shi, W., St-Hilaire, M.: Coverage protocols for wireless sensor networks: review and future
directions. J. Commun. Netw. 21(1), 45–60 (2019). https://doi.org/10.1109/JCN.2019.000005



Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension—sweep algorithm for the hyper-
volume indicator. In: Congress on Evolutionary Computation, pp. 1157–1163. IEEE Press, Piscataway
(2006). https://doi.org/10.1109/CEC.2006.1688440

Gong, D., Wang, G., Sun, X.: Set-based genetic algorithms for solving many-objective optimization prob-
lems. In: 13th UK Workshop on Computational Intelligence (UKCI), Guildford, pp. 96–103 (2013).
https://doi.org/10.1109/UKCI.2013.6651293

Guo, J., Jafarkhani, H.: Movement-efficient sensor deployment in wireless sensor networks with limited
communication range. IEEE Trans. Wirel. Commun. 18(7), 3469–3484 (2019). https://doi.org/10.11
09/TWC.2019.2914199

Huang, B., Liu,W.,Wang, T., Li, X., Song, H., Liu, A.: Deployment optimization of data centers in vehicular
networks. IEEE Access 7, 20644–20663 (2019a). https://doi.org/10.1109/ACCESS.2019.2897615

Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., Hu, S.: A survey of deployment solutions and optimization
strategies for hybrid SDN networks. IEEE Commun. Surv. Tutor. 21(2), 1483–1507 (2019b). https://
doi.org/10.1109/COMST.2018.2871061

Ishibuchi, H., Akedo,N., Nojima,Y.: EMOalgorithms on correlatedmany-objective problemswith different
correlation strength. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1–6 (2012)

IoTLab platform: https://www.iot-lab.info (2019). Accessed 22 June 2019
Ko, A.H.R., Gagnon, F.: Process of 3D wireless decentralized sensor deployment using parsing crossover

scheme. Appl. Comput. Inform. 11(2), 89–101 (2015). https://doi.org/10.1016/j.aci.2014.11.001
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on

dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015). https://doi.org/1
0.1109/TEVC.2014.2373386

Liu, X., Qui, T., Zhou, X., Wang, T., Yang, L., Chang, V.: Latency-aware anchor-point deployment for
disconnected sensor networks with mobile sinks. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.110
9/TII.2019.2916300

Luo, X., Li, X., Wang, J., Guan, X.: Potential-game based optimally rigid topology control in wireless
sensor networks. IEEE Access 6, 16599–16609 (2018). https://doi.org/10.1109/ACCESS.2018.2814
079

Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans.
Pattern Anal. Mach. Intell. 24(3), 301–312 (2002). https://doi.org/10.1109/34.990133

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: The 3D deployment multi-objective problem in mobile
WSN: optimizing coverage and localization. Int. Res. J Innov. Eng. (IRJIE) 1(5), 1–14 (2015)

Mnasri, S.,Nasri,N.,VanDenBossche,A.,Val, T.:Ahybrid ant-genetic algorithm to solve a real deployment
problem: a case study with experimental validation. In: Puliafito, A., Bruneo, D., Distefano, S., Longo,
F. (eds.) Ad hoc, Mobile, and Wireless Networks. ADHOC-NOW 2017. Lecture Notes in Computer
Science, vol. 10517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67910-5_30

Mnasri, S., Nasri, N., Van Den Bossche, A., Val, T.: 3D indoor redeployment in IoT collection networks: a
real prototyping using a hybrid PI-NSGA-III-VF. In: The 14th InternationalWireless Communications
and Mobile Computing Conference IWCMC 2018, pp. 780–785 (2018)

Qu, B.Y., Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal
optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012). https://doi.org/10.1109/TEVC.201
1.2161873

Rostami, S.: Preference focussed many-objective evolutionary computation. Ph.D. dissertation (chapter 2),
School of Engineering, Manchester Metropolitan University, Manchester, UK, M15 6HB (2014)

Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction.
In: Schoelkopf, O.C.B., Zien, A. (eds.) Semisupervised Learning. MIT Press, Cambridge (2006)

Savkin, A.V., Huang, H.: A method for optimized deployment of a network of surveillance aerial drones.
IEEE Syst. J. (2019). https://doi.org/10.1109/jsyst.2019.2910080

Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimiza-
tion: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013). https://doi.org/
10.1109/TEVC.2012.2185847

Shlens, J.: A tutorial on principal component analysis. Center for Neural Science, New York University,
Tech. Rep (2009)

Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An improved progressively interactive evolutionary multi-
objective optimization algorithmwith a fixed budget of decision maker calls. Eur. J. Oper. Res. 233(3),
674–688 (2014). https://doi.org/10.1016/j.ejor.2013.08.046



Sinha, A., Saxena, O.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle 
many-objective optimization problems. Appt. Soft Comput. 13(1), 41�27 (2013). https://doi.org/1 
0.1016/j.asoc.2012.08.030 

Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platfonn for evolutionary mufti-objective 
optimization. IEEE Comput. InteII. Mag. 12(4), 73-87 (2017). https://doi.org/10.J 109/MCI.2017.27 
42868 

Tsang, Y.P., Choy, K.L., Wu, C.H., Ho, G.T.S.: Mufti-objective mapping method for 3D environmental 
sensor network deployment. IEEE Commun. Lett. 2 3(7), 1231-1235 (2019). https://doi.org/10.1109/ 
LCOMM.2019.2914440 

Van den Bossche, A., Dalce, R., Val, T.: OpenWiNo: an open hardware and software frarnework for 
fast-prototyping in the IoT. In: 23rd International Conference on Telecommunications, Thessaloniki, 
Greeœ, pp. 1-6 (2016). https://doi.org/10.1109/ICT.2016.7500490 

Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimiza­
tion. IEEE Trans. Evol. Comput. 19(4), 524-541 (2015). https://doi.org/10.1109/TEVC.2014.235098 

7 
Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite prograrnming. 

lot. J. Comput. Vis. 70(1), 77-90 (2006). https://doi.org/10.1109/CVPR.2004.1315272 
Xu, H., Lai, Z., Liang, H.: A nove( mathematical morphology based antenna deployment scheme for indoor 

wireless coverage. In: IEEE80th VehicularTechnology Conference(VTC Fall),pp. 1-5 (2014). https:// 
doi.org/10.1109NTCFall.2014.6965828 

Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition­
based many-objective optimizers. IEEE Trans. Evol. Comput. 2 0(2), 180-198 (2016). https://doi.org/ 
J0.1109/TEVC.2015.2443001 

Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. 
IEEE Trans. Evol. Comput. 19(6), 761-776 (2015). https://doi.org/10. l 109/TEVC.2014.2378512 

Zhang, H., Liu, Y., Zhou, J.: Balanœd-evolution genetic algorithm for combinatorial optimization problems: 
the general outline and implementation of balanced evolution strategy based on linear diversity index. 
Nat. Comput. (2018). https://doi.org/10.1007/sl 1047-018-9670-5 

Affiliations 

Sami Mnasri1 G). Nejah Nasri2
•

3
• Malek Alrashidi2

. 

Adrien van den Bossche 1 • Thierry Val 1 

181 Sarni Mnasri 
Sarni.Mnasri@fsgf.mu.tn 

Nejah Nasri 
nejah.nasri@isecs.rnu.tn 

Malek Alrashidi 
mgalrashidi@ut.edu.sa 

Adrien van den Bossche 
vandenbo@irit.fr 

Thierry Val 
val@irit.fr 

UT2J, CNRS-IRIT (RMESS), University of Toulouse, Toulouse, France 

2 Department of Computer Science, Community CoUege, University of Tabuk, Tabuk, Saudi 
Arabia 

ENIS, LETI, University of Sfax, Sfax, Tunisia 




