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ABSTRACT

Archetypal scenarios for change detection generally consider two

images acquired through sensors of the same modality. The resolu-

tion dissimilarity is often bypassed though a simple preprocessing,

applied independently on each image to bring them to the same res-

olution. However, in some important situations, e.g. a natural disas-

ter, the only images available may be those acquired through sensors

of different modalities and resolutions. Therefore, it is mandatory

to develop general and robust methods able to deal with this unfa-

vorable situation. This paper proposes a coupled dictionary learn-

ing strategy to detect changes between two images with different

modalities and possibly different spatial and/or spectral resolutions.

The pair of observed images is modelled as a sparse linear combina-

tion of atoms belonging to a pair of coupled overcomplete dictionar-

ies learnt from the two observed images. Codes are expected to be

globally similar for areas not affected by the changes while, in some

spatially sparse locations, they are expected to be different. Change

detection is then envisioned as an inverse problem, namely estima-

tion of a dual code such that the difference between the estimated

codes associated with each image exhibits spatial sparsity. A com-

parison with state-of-the-art change detection methods evidences the

proposed method superiority.

Index Terms— change detection, multimodal, unsupervised,

resolution, dictionary learning.

1. INTRODUCTION

Change detection (CD) between remotely sensed images is a par-

ticularly effective mean to monitor the transformations occurring on

the Earth surface over a period of time [1]. In general, unsupervised

CD techniques are constrained to two images of the same modality

with the same spatial and spectral resolutions acquired over the same

geographical location at different dates [2]. This scenario is suitable

for a straight comparison of homologous pixels such as pixel-wise

differencing or rationing depending on the modality [3,4]. However,

in some specific cases, e.g. in emergency situations, defense and

security, the only available images may be of different modalities

and resolutions. These dissimilarities introduce additional issues in

the context of operational CD that are not addressed by most classi-

cal methods. In the case of same modality and different resolutions,
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state-of-the art methods come down to conventional CD methods

after preprocessing steps applied independently on the two images,

e.g., resampling operations intended to reach the same spatial and

spectral resolutions [5, 6]. Nevertheless, these preprocessing steps

may waste relevant information since they do not take into account

the strong interplay existing between the two images. On the other

hand, multimodal CD is not a simple task for unsupervised meth-

ods due to the lack of direct relation between modalities. Supervised

CD tries to infer these relations, but with an usual unworkable cost

of collecting ground data, which makes them not suitable for real

applications [7, 8]. The literature about multimodal CD is very lim-

ited, even if it has always figured out as an important topic since

the early works [9, 10] till nowadays with other few relevant refer-

ences [11–16]. Although some of them present relatively high de-

tection performance, they are often restrained to a specific modality

or to a specific target application [16]. The other ones estimate some

metrics from unchanged trained samples, which prevents their ap-

plication within a fully unsupervised context [10, 14, 15]. Recently,

some unsupervised multimodal CD methods based on coupled dic-

tionary learning were proposed [17, 18]. Both methods exploits that

high errors occur in zones affected by changes when the images

are reconstructed using coupled dictionaries estimated from the ob-

served images. Nevertheless, they run into difficulties because of the

large variety of possible scenarios. Indeed, a different noise statisti-

cal model for each modality, possibly overlapping patches in recon-

struction as well as the resolution dissimilarity [5,6] may negatively

impact these methods performance.

This paper proposes an unsupervised CD method able to deal

with images dissimilar in terms of modality and of spatial and/or

spectral resolutions. The adopted methodology, similar to [17, 18],

learns coupled dictionaries able to conveniently represent multi-

modal remote sensing images of the same geographical location.

The problem is formulated as a joint estimation of the coupled

dictionary and sparse code for each observed image. Additionally,

appropriate statistical models are used to better fit the modalities of

the pair of observed images. Overlapping patches are also taken into

account during the estimation process. Finally, to better couple im-

ages with different resolutions, additional scaling matrices [19] are

jointly estimated within the whole process. The overall estimation

process is formulated as an inverse problem. Due to the nonconvex

nature of the problem, it is solved iteratively using the proximal

alternating linearized minimization (PALM) algorithm [20], which

ensures convergence towards a critical point for some nonconvex

non-smooth problems. CD is, then, envisaged through the differ-

ences between sparse codes estimated for each image using the

estimated coupled dictionaries. This paper is organized as follows.
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Section 2 formulates the CD problem. In Section 3, the proposed

CD algorithm is described. Section 4 analyzes the proposed method

performance through experiments. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Let consider that the two observed images Y1 ∈ R
L1×N1 and Y2 ∈

R
L2×N2 have been acquired by two sensors S1 and S2 at times

t1 and t2, respectively, over the same geographical location. Note

that the time ordering of the acquisitions is indifferent. Each im-

age, consist of Nj voxels yi ∈ R
Lj (with j = {1, 2}) stacked

lexicographically. The voxel dimension, Lj , represents different

quantities depending on the modality of the data, e.g, it denotes

the number of spectral bands in the case of multiband optical im-

ages [6]. Assuming that the scene has changed between the two

acquisition times, our goal is to extract significant change infor-

mation from this pair of images. This problem can be challeng-

ing in case of dissimilarity between S1 and S2 in terms of modal-

ity and of resolutions, since it prevents the use of classical CD al-

gorithms [21] or of methods designed for specific image modali-

ties [5, 6]. In order to alleviate this issue, we propose to model each

image in terms of its latent (i.e., noise-free and unobserved) image,

Xj ∈ R
Lj×Nj . Each modality has a particular noise statistics that

can been related to a particular divergence measure Dj(Yj |Xj) de-

rived from the likelihood function p(Yj |Xj) [8]. To account for

the problem of resolution dissimilarity we resort to the paradigm

of sparse representations over an overcomplete dictionary [22, 23]

More precisely, each latent image Xj is decomposed into a set of

Np 3D-patches pi ∈ R
K2

j Lj with i ∈ {1, . . . , Np} using the binary

extraction operator Rji : RLj×Nj → R
K2

j Lj . The ith K2
j × Lj-

pixel patch pi = RjiXj is represented in its vectorized form with

Kj > 1 defining the spatial size of the patches. The number of

patches Np ∈ {1, . . . , N} is tailored by the end-user and patches

may overlap. Considering the dictionary-based representation prin-

ciples, these patches are assumed to be approximately and inde-

pendently modelled as sparse combinations of atoms belonging to

an overcomplete dictionary Dj = [dj1, · · · ,djNd ] ∈ R
K2

j Lj×Nd

with corresponding sparse code aji ∈ R
Nd | ∀i ∈ {1, . . . , Np} as:

pji|Dj ,aji ∼ N
(

Djaji, σ
2
j INd

)

(1)

with the dictionary constrained to the set

S ,

{

Dj ∈ R
K2

j Lj×Nd

+ | ∀l ∈ {1, . . . , Nd, } ‖djl‖
2
2 = 1

}

,

(2)

and the code assigning to single-side exponential (i.e., Laplacian)

prior distribution

aji ∼

Nd
∏

i=1

L(aji;λj). (3)

Recall that the two observed images represent the same geographi-

cal location. Consequently, two homologous patches extracted from

each latent image represent the same geographical spot. In the ab-

sence of changes between the two acquisition times, the sparse codes

associated with the corresponding latent images are expected to be

approximately the same (a1i ≈ a2i) when the two learned dictionar-

ies are coupled [24–26], i.e., able to derive a joint representation for

homologous multiple observations in a latent coupled space [17]. On

the contrary, in case of changes between the acquisition times, pairs

of homologous patches in the change location do not represent ex-

actly the same scene and perfect reconstruction cannot be achieved

using the same code. Relaxing the constraint of perfect reconstruc-

tion in these regions allows for an accurate reconstruction of both

images while spatially mapping change locations. In the specific

context of CD addressed in this work, this finding suggests to eval-

uate any change between the two observed, or equivalently latent,

images by comparing the code change matrix ∆A:

A2 = A1 +∆A. (4)

The magnitude of the code change matrix accounts for significant

changes in the observed scene and is expected to exhibit spatial spar-

sity. As a consequence, the CD problem can be formulated as the

joint estimation of one code matrix, representing one of the scenes,

and of the change code matrix, i.e. of {A1,∆A}, as well as of the

pair of coupled dictionary {D1,D2}. The next paragraph introduces

the CD-driven optimization problem to be solved.

3. COUPLED DICTIONARY LEARNING FOR CD

3.1. Objective function

Constraining the dictionaries to belong to S defined by (2) al-

low to reconstruct a pair of unchanged homologous patches with

exactly the same code, while changed patches would be associ-

ated to different codes, in good dictionary coupling condition.

Nevertheless, it would not take into account differences in data

dynamics or resolutions, a very current problem facing remote

sensing multitemporal data. Therefore, we propose to use an ad-

ditional diagonal scaling matrix, as in [19], constrained to the set

C ,

{

S ∈ R
Nd1×Nd1
+ | S = diag(s), s � 0

}

to ensure that the

sparse codes of the two observed images are directly comparable.

It allow us to write the joint representation model for a pair of

homologous patches {p1i,p2i} as:

p1i = R1iX1 ≈ D1Sa1i

p2i = R2iX2 ≈ D2a2i = D2 (a1i +∆ai)
(5)

At this point, we successfully map the orignal space of the CD prob-

lem, in which it was not possible to do a direct comparison between

pixels, into a representation space that allows element-wise compar-

isons. Naturally, in scenarios involving CD, most of the pixels are

expected to remain unchanged between acquisitions. To account for

possible changes in some specific locations while most of the patches

remain unchanged, as in [6], we propose to adopt an ℓ2,1-norm reg-

ularization over the code change matrix to induce spatial sparsity

while keeping the strong changes in the code energy,

φ2 (∆A) = ‖∆A‖2,1 =

Np
∑

i=1

‖∆ai‖2 . (6)

Then, by incorporating all previously defined regularizations, the

joint MAP estimator of the quantities of interest reads

Θ̂MAP =
{

X̂1,MAP, X̂2,MAP, D̂1,MAP, D̂2,MAP, ŜMAP, Â1,MAP,∆ÂMAP

}

associated with the following minimization problem

Θ̂MAP ∈ argmin
Θ

D(Y1|X1) +
σ2
1

2

Np
∑

i=1

‖R1iX1 −D1Sa1i‖
2
F

+D(Y2|X2) +
σ2
2

2

Np
∑

i=1

∥

∥R2iX2 −D2

(

a1i + λ ‖A1‖1 ∆ai

)∥

∥

2

F

+ λ ‖A1 +∆A‖1 + γ ‖∆A‖2,1 + ιS(D1) + ιS(D2) + ιC(S),
(7)



where ι·(·) represents the indicator function on a set.

3.2. Minimization algorithm

The nature of the problem (7) is nonconvex and nonsmooth. The

adopted minimization strategy follows the proximal alternating lin-

earized minimization (PALM) scheme, ensuring the convergence to-

wards a local critical point Θ∗ [20]. It iteratively minimizes the

objective function with respect to each block of variables from Θ

using descent gradient steps followed by proximal mapping asso-

ciated to the corresponding nonsmooth functions (hereafter generi-

cally denoted f·(·)). The overall algorithm is sketched in Algo. 1. In

the following paragraphs the main steps of the proposed CD-driven

coupled dictionary learning (CDL) are described in more details.

Algorithm 1: PALM-CDL

Data: Y

Input: A
(0)
1 , ∆A(0), D

(0)
1 , D

(0)
2 , S(0), X

(0)
1 , X

(0)
2

k ← 0
begin

while stopping criterion not satisfied do

for G ∈ Θ do

proxLG

fG

(

G(k) − 1

L
(k)
G

∇GH(Θ)

)

k ← k + 1

for G ∈ Θ do

Ĝ← G(k+1)

Result: Â1, ∆Â, D̂1, D̂2, Ŝ, X̂1, X̂2

Optimization with respect to A1 – Assuming that the remaining

variables are fixed but A1, the PALM updating step can be written

∇A1H(Θ) = σ2
1S

T
D

T
1 (D1SA1 −P1)

+ σ2
2D

T
2 (D2 (A1 +∆A)−P2) + λ

[A1 +∆A]
i

√

[A1 +∆A]2
i
+ ǫ2

A1

where [·]i/[·]i should be understood as an element-wise operation,

Pj =
[

pj1, · · · ,pjNp

]

is the K2
jLj × Np-matrix that stacks

all extracted patches. The associated Lipschitz constant writes

L
(k)
A1

= σ2
1

∥

∥STDT
1 D1S

∥

∥ + σ2
2

∥

∥DT
2 D2

∥

∥ + λ
ǫA1

. Note that

fA1 = λ ‖·‖1 + ≥ 0 can be simply computed by considering the

positive part of the soft-thresholding operator [27].

Optimization with respect to ∆A – Similarly, considering the sin-

gle block optimization variable ∆A and consistent notations, the

PALM update can be derived considering

∇∆AH(Θ) = σ2
2D

T
2 (D2 (A1 +∆A)−P2)

+ λ
[A1 +∆A]

i
√

[A1 +∆A]2
i
+ ǫ2

A1

with L
(k)
∆A

= σ2
2

∥

∥DT
2 D2

∥

∥+ λ
ǫA1

. The proximal step f∆A = ‖·‖2,1
can be simply computed as a group soft-thresholding operator [6].

Optimization with respect to Dj – Optimizing with respect to Dj

with j ∈ {1, 2}, the PALM updating steps can be written

∇Dj
H(Θ) = σ2

j

(

DjĀj −Pj

)

Ā
T
j

where L
(k)
Dj

= σ2
j

∥

∥ĀjĀ
T
j

∥

∥ with Ā1 = SA1 and Ā2 = A1+∆A.

Note that fDj
= ιS can be computed as in [23], keeping only the

values greater than zero.

Optimization with respect to S – Updating the scaling matrix S

can be written

∇SH(Θ) = σ2
1D

T
1 (D1SA1 −P1)A

T
1 (8)

with L
(k)
S

= σ2
1

∥

∥DT
1 D1A1A

T
1

∥

∥. The proximal update fS = ιC
constrains all its diagonal element to be positive.

Optimization with respect to Xj – The updates of the latent images

Xj (j ∈ {1, 2}) are achieved considering

∇Xj
H(Θ) = σ2

j

Np
∑

i=1

RT
ji (RjiXj −Dj āji) (9)

with L
(k)
Xj

= σ2
j

∥

∥

∥

∑Np

i=1R
T
jiRji

∥

∥

∥
. Note that, fXj

= Dj(Yj |·) rep-

resents the proximal mapping for the divergence measure associated

with the likelihood function characterizing the modality of the ob-

served image Yj [8].

4. EXPERIMENTAL RESULTS

Real images with synthetic changes – This section analyzes the

performance of the proposed CD method. Real data for CD is

rarely available. Thus, to test the proposed method, a simulation

protocol inspired by the Wald’s protocol [5, 28] has been used to

generate observed images from reference images. Two multimodal

reference images acquired at the same date have been selected as

change-free observed images. Then, by conducting simple copy-

paste of regions, changes between images have been generated as

well as the corresponding ground-truth maps. This process allows

synthetic yet realistic changes to be incorporated within one of these

images, w.r.t. a pre-defined binary reference change mask locating

the pixels affected by these changes and further used to assess the

performance of the CD algorithms. The reference image pair is one

540 × 525 × 3 multispectral Sentinel-2 image (Bands 2 to 4) and

a 540× 525 multi-looked SAR intensity Sentinel-1 image acquired

over the same geographical area, i.e., the Mud Lake region in Lake

Tahoe, at the same date on April 12th 2016. The combination of

reference and a generated changed image allow us to divide three

different scenarios to assess the performance of the proposed CD

method. Scenario 1 considering two optical images, Scenario 2 con-

sidering two SAR images and Scenario 3 considering a SAR image

and an optical image. A set of 10 predefined change masks has been

designed according to specific copy-paste change rules similar as the

ones introduced by [5]. The proposed coupled dictionary learning

approach (PALM-CDL) is compared to two CD methods. The first

one, proposed by [17] and denoted m̂F, also peforms a coupled

dictionary learning strategy, but represents changes according to

the final reconstruction error grouped into change/no changed class

by a Fuzzy-C-means clustering method. The second one is robust

fusion-based method, denoted m̂RF, proposed [6] that is able to deal

exclusively with multi-band optical images of different resolutions.

The performance of CD methods is evaluated through the receiving

operator characteristics (ROC) curves, that display the probability of

false alarm (PFA) as a function of the probability of detection (PD).

Figure 1 presents the averaged ROC curves obtained with the three

methods in the three predefined scenarios. Additionally, two quan-

titative measures of detection performance can be extracted from



0 0.2 0.4 0.6 0.8 1

PFA

0

0.2

0.4

0.6

0.8

1

P
D

m̂F

m̂RF

m̂CDL

0 0.2 0.4 0.6 0.8 1

PFA

0

0.2

0.4

0.6

0.8

1

P
D

m̂F

m̂RF

m̂CDL

0 0.2 0.4 0.6 0.8 1

PFA

0

0.2

0.4

0.6

0.8

1

P
D

m̂F

m̂RF

m̂CDL

Fig. 1: Real images affected by synthetic changes: ROC curves for Scenario 1 (left), Scenario 2 (middle) and Scenario 3 (right).

these ROC curves: the area under the curve (AUC), correspond-

ing to the integration of the ROC curve and the distance (Dist.)

between the interception of the ROC curve with the diagonal line,

PFA = 1−PD, and the no detection point (PFA = 1,PD = 0). In

both cases, the better the detection the closer to one the measure. For

both scenarios, the proposed method shows overall higher detection

performance than the other methods. Only in the Scenario 1, the RF

method is specialized in, the performance of this method is slightly

better than the proposed one. Nevertheless, the RF method cannot

generalize to other cases.

Real images with real changes – To illustrate the high precision and

the benefits of the proposed algorithm, Fig. 2 presents a Sentinel-1

SAR image with 10m spatial resolution acquired on April 12th 2016

and a Landsat 8 MS (RGB) image acquired on September 22th 2015

with 30m spatial resolution. The proposed method was compared

with the Fuzzy method, which was not capable to output reliable

results, while the proposed one shows very high accuracy in the most

relevant change, named the draugh of the lake.

Table 1: Real images affected by synthetic changes for Scenarios

1–3: quantitative detection performance (AUC and distance).

m̂F m̂RF m̂CDL

Scenario 1
AUC 0.8520 0.9946 0.9838

Dist. 0.7867 0.9802 0.9677

Scenario 2
AUC 0.9251 0.6819 0.9871

Dist. 0.8587 0.6185 0.9727

Scenario 3
AUC 0.7277 0.7227 0.8755

Dist. 0.6758 0.6604 0.8097

5. CONCLUSIONS

This paper proposed a new CD method to deal with multimodal

images with possible different resolutions. The CD problem was

tackled as a coupled dictionary estimation problem formulated as an

inverse problem. Changes were supposed to correspond to the dif-

ferences between the sparse codes estimated for each homologous

pair of patches extracted from two images acquired at the same ge-

ographical location. The overall estimation process was solved us-

(a) Yt1 (b) Yt2

(c) m̂F (d) m̂CDL

Fig. 2: Real images affected by real changes without ground truth,

Scenario 3 (different spatial resolutions): (a) Sentinel-1 SAR image

Yt1 acquired on 04/12/2016, (b) Landsat 8 MS image Yt2 acquired

on 09/22/2015, (c) change map m̂F of the fuzzy method and (d)

change map m̂CDL of the proposed method.

ing an iterative solution based on alternate proximal gradient steps

which presented guarantees of convergence to a critical point. The

proposed method showed far higher performance and flexibility than

the state-of-the-art most relevant methods in various different sce-

narios involving multimodal remote sensing images with different

resolutions.
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