
  
 

 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: https://oatao.univ-toulouse.fr/26226 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To cite this version:  

Gouvert, Olivier and Oberlin, Thomas and Févotte, Cédric 
Recommendation from raw data with adaptive compound Poisson 
factorization. (2019) In: Conference on Uncertainty in Artificial 
Intelligence - UAI 2019, 22 July 2019 - 25 July 2019 (Tel Aviv, 
Israel). 

Open  Archive  Toulouse  Archive  Ouverte 

 
    
 

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/26226


Recommendation from Raw Data with Adaptive Compound Poisson
Factorization

Olivier Gouvert, Thomas Oberlin, Cédric Févotte
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Abstract

Count data are often used in recommender sys-
tems: they are widespread (song play counts,
product purchases, clicks on web pages) and
can reveal user preference without any explicit
rating from the user. Such data are known to be
sparse, over-dispersed and bursty, which makes
their direct use in recommender systems chal-
lenging, often leading to pre-processing steps
such as binarization. The aim of this paper is
to build recommender systems from these raw
data, by means of the recently proposed com-
pound Poisson Factorization (cPF). The paper
contributions are three-fold: we present a uni-
fied framework for discrete data (dcPF), lead-
ing to an adaptive and scalable algorithm; we
show that our framework achieves a trade-off
between Poisson Factorization (PF) applied to
raw and binarized data; we study four specific
instances that are relevant to recommendation
and exhibit new links with combinatorics. Ex-
periments with three different datasets show
that dcPF is able to effectively adjust to over-
dispersion, leading to better recommendation
scores when compared with PF on either raw
or binarized data.

1 INTRODUCTION

Collaborative filtering (CF) techniques have been achiev-
ing state-of-the-art performances in recommendation
tasks since the Netflix prize (Bennett and Lanning, 2007).
CF is based on feedbacks of users interacting with
items. These data can either be explicit (ratings, thumbs
up/down) or implicit (number of times a user listened to
a song, number of clicks on web pages). In particular,
historical data are easy to collect and often in the form

of count data. They can be stored in a sparse matrix Y
of size U × I , where each entry of the matrix yui is the
number of times the user u ∈ {1, . . . , U} interacts with
the item i ∈ {1, . . . , I}. For the rest of the paper, we will
consider the example of users listening to songs without
loss of generality.

Matrix factorization (MF) allows to make recommenda-
tions using these feedback data (Koren et al., 2009). The
aim of MF is to infer a low-rank approximation of the
observations: Y ≈ WHT , where W of size U × K
represents the preferences of users, and H of size I ×K
represents the attributes of items, with K � min(U, I).
Therefore, each user or item is represented in the same
latent space by a vector of K latent components. The
strength of an interaction between a user and an item is
measured by the dot product between their representative
latent vectors. Among the methods based on MF (Lee
and Seung, 1999, 2001; Hu et al., 2008; Ma et al., 2011;
Févotte and Idier, 2011; Liang et al., 2016), Poisson factor-
ization (PF) (Canny, 2004; Cemgil, 2009; Gopalan et al.,
2015) has become very popular in CF when using implicit
feedbacks. Indeed, PF posits that the data are generated
from a Poisson distribution, making it well-adapted for
count data. PF has reached state-of-the-art results while
having favorable properties. (i) PF down-weighs the effect
of the zeros present in the data, by implicitly assuming
that the users have a limited budget to distribute among
the items (Gopalan et al., 2015). (ii) Algorithms for PF
scale with the number of non-zero values in the data,
leading to fast inference (Cemgil, 2009). Many variants
of PF have been proposed these last years. Hierarchical
structures on the latent variables have been explored (Ran-
ganath et al., 2015; Zhou et al., 2015; Liang et al., 2018).
Other works have proposed to use additional information
in the model to perform hybrid CF approaches (Gopalan
et al., 2014; Lu et al., 2018; Salah and Lauw, 2018).

However, in many cases, count data are over-dispersed
and bursty (Kleinberg, 2003; Schein et al., 2016). The
Poisson distribution fails to fully describe such data. Its



modeling capacities are indeed limited since its mean and
variance are equal. To avoid this problem, it is of com-
mon use to work with binarized data (Gopalan et al., 2015;
Liang et al., 2016). This pre-processing step is effective
in practice but removes the information contained in the
non-zero values. Recent works have focused on directly
using the raw data in order to achieve better representa-
tion and recommendation results. In (Hu et al., 2008; Pan
et al., 2008), the raw data are introduced as weights (con-
fidence), which regularize the MF approximation. Other
works try to find generative processes which are able to
deal with over-dispersed data. In (Zhou, 2018), the au-
thor makes use of the negative binomial (NB) distribution,
which is a well-known extension of the Poisson distribu-
tion (Lawless, 1987). He exploits the compound Poisson
(cP) representation of the NB distribution to preserve
the scalability property of the proposed algorithm. cP
structure has further been used in (Simsekli et al., 2013;
Basbug and Engelhardt, 2016) to model continuous or
discrete sparse data, showing an improved description of
the non-zero values.

In this paper, we present novel contributions to discrete
compound Poisson factorization (dcPF). dcPF refers to
compound Poisson factorization (cPF), as introduced by
(Basbug and Engelhardt, 2016), for discrete data. dcPF
posits that the listening counts can be grouped in listening
sessions which are somewhat more informative for recom-
mendation. It uses the concept of self-excitation (Du et al.,
2015; Hosseini et al., 2018; Khodadadi et al., 2018; Zhou,
2018), which describes the idea that a user can listen to a
song not merely because of his/her attachment to it, but
because of a previous interaction. The contributions of
the paper are the following:

• We develop a unified framework for dcPF and study
four specific distributions to model self-excitation, called
element distributions. We exhibit new links between the
choice of this distribution and combinatorics.

• We provide simple conditions to preserve scalability
and to obtain closed-form updates for the inference of the
posterior.

• We show that dcPF is a natural generalization of PF
by proving that PF applied to raw data and PF applied to
binarized data are two limit cases of dcPF.

•We discuss the choice of the element distribution and in
particular consider a new one in the context of compound
Poisson models, the shifted negative binomial distribu-
tion. We present new methodology for hyper-parameter
estimation and report experiments with three datasets.

The paper is organized as follows. In Section 2, we pro-
vide preliminary material about PF and exponential dis-
persion models (EDM). In Section 3, we present Bayesian

dcPF and give an intuitive interpretation of the model and
its properties. Related works are discussed in Section 4
and a scalable variational algorithm is developed in Sec-
tion 5. In Section 6, we apply the proposed algorithm
to recommendation tasks with three datasets. Section 7
concludes the paper and discusses possible perspectives.

2 PRELIMINARIES

Poisson factorization. PF is based on non-negative ma-
trix factorization (NMF) (Lee and Seung, 1999, 2001).
Each observation is assumed to be drawn from a Poisson
distribution:

yui ∼ Poisson([WHT ]ui), (1)

with yui ∈ N = {0, 1, . . . ,+∞}. The preferences W
and the attributes H are supposed to be non-negative
matrices. Non-negativity induces a constructive part-
based representation of the observations that is central to
so-called topic models (Lee and Seung, 1999; Blei et al.,
2003). Bayesian extensions of PF typically impose that
each entry of the matrices W and H has a gamma prior.
The gamma prior1 imposes non-negativity and is known
to induce sparsity when the shape parameter is lower than
one. This is a desirable property in the sense that it implies
that users and items are represented by only a few patterns.
Moreover, it is conjugate with the Poisson distribution,
which proves convenient for variational inference.

PF has been very popular in the last decade because of
its scalability with sparse data. Sparsity is very common
in recommender systems, since subsets of users usually
interact with only subsets of items from a large catalog.
Using the superposition property of the Poisson distribu-
tion, we can augment the model presented in Equation (1)
as follows (Cemgil, 2009; Gopalan et al., 2015):

yui =
∑
k

cuik; cuik ∼ Poisson(wukhik). (2)

The conditional distribution of this new la-
tent variable follows a multinomial distribution:
cui|yui ∼ Mult(yui,φui), where φui is a vector of size
K with entries φuik = wukhik

[WHT ]ui
. The latent variable

cui is central to state-of-the-art PF algorithms. yui = 0
implies that cui = 0K , where 0K is a vector of size K
full of zeros. As such, the latent variable cui only needs
to be estimated for the non-zero values of Y, which
ensures scalability provided the data is sparse.

One limitation of the Poisson distribution is that its vari-
ance is equal to its mean: var(yui) = 〈yui〉. This makes

1We use the following convention for the gamma distribu-
tion: G(x;α, β) = xα−1e−βxβαΓ(α)−1 where α is the shape
parameter and β is the rate parameter.



it ill-suited for over-dispersed data. Moreover, when work-
ing with raw data, it appears that PF does not correctly
weigh the observations and is too sensitive to large values.
The Poisson distribution, parametrized by only one pa-
rameter, thus appears too restrictive to model both sparse
and heavy-tailed data. To circumvent these issues, data bi-
narization is often used as pre-processing (Gopalan et al.,
2015; Liang et al., 2016), with the loss of information
it induces. The goal of dcPF studied in this paper is to
preserve the data while accounting for sparsity and over-
dispersion in the model. When necessary, we denote by
Yb the corresponding binary version of the observations,
where ybui = 1[yui > 0].

Exponential dispersion model. A central element of
cP models is the distribution used to model the self-
excitation. In this paper, we will assume that it belongs
to the well-studied EDM family (Jørgensen, 1986, 1987).
It is a convenient choice when dealing with cP models
(Yılmaz and Cemgil, 2012; Simsekli et al., 2013; Basbug
and Engelhardt, 2016), as explained next. Most discrete
random variables can be written in the form of a discrete
EDM, denoted by x ∼ ED(θ, κ), and defined by

p(x; θ, κ) = exp(xθ − κψ(θ))h(x, κ), x ∈ Sκ, (3)

where θ ∈ Θ ⊂ R is called the natural parameter,
κ > 0 is called the dispersion parameter, ψ(θ) is the
log-partition function, h(x, κ) is the base measure and Sκ
is the support of the distribution, which depends of κ. The
mean of x is given by 〈x〉 = κψ′(θ) and its variance by
var(x) = κψ′′(θ). One of the most interesting properties
of EDM is the property of additivity. If xl ∼ ED(θ, κ)
and y =

∑n
l=1 xl with n ∈ N, then y ∼ ED(θ, nκ). By

convention, we assume that ED(θ, 0) is a Dirac distribu-
tion in 0.

3 BAYESIAN DISCRETE COMPOUND
POISSON FACTORIZATION

3.1 MODEL DESCRIPTION

We consider the framework proposed by (Basbug and En-
gelhardt, 2016). The generative model of the observations
Y is given by

wuk ∼ G(αW , βWu ), hik ∼ G(αH , βHi ), (4)

nui ∼ Poisson
(
[WHT ]ui

)
, (5)

xl,ui ∼ ED(θ, κ), ∀l ∈ {1, . . . , nui}, (6)

yui =

nui∑
l=1

xl,ui. (7)

We here specifically assume that xl,ui is a discrete ran-
dom variable with support equal to N∗ = N \ {0}. The

rate parameters of the gamma priors are treated as deter-
ministic parameters estimated by maximum likelihood
(ML). βW ∈ RU+ expresses the activity level of the users
and βH ∈ RI+ expresses the popularity of the items. A
Bayesian treatment of these parameters is also possible
and is considered in (Gopalan et al., 2015). Using the
additivity property of EDM, we can easily marginalize
the latent variables xl,ui, leading to: yui ∼ ED(θ, nuiκ).
Compared to PF, this additional stage in the generative
process allows for a flexible description of the observa-
tions. There are two additional parameters {θ, κ} which
control the variance and tail of the distribution.

Interpretation. In this paragraph, we will suppose that
a user/item pair is fixed. For conciseness, we will omit
the corresponding indices ui. dcPF introduces new la-
tent variables n and {xl}l for l ∈ {1, . . . , n}. The latent
variable n represents the number of listening sessions the
user has had for the song. During each session, indexed
by l, the user listened to the song a number of times xl
which is greater or equal to one. The latent variable xl
models the self-excitation induced by a listening interac-
tion. This concept has been used in (Zhou, 2018; Hosseini
et al., 2018). Thus, a user can listen to a song, not merely
because he/she likes it, but because of a previous listen-
ing/excitation. For example, a user can have a summer
crush for a song and may listen to it on repeat. The first
listening reflects the interest of the user for this song,
whereas the following listenings are the consequence of
the first one and reflect a short-term behavior. Therefore
these listening counts can be grouped in a few listening
sessions that will be more able to represent long-term
preferences. Finally, the observed variable y is just the ag-
gregation of all the listening counts from all the sessions.
The variable n can be viewed as a way to partition the
observation y in a smaller number of sessions. This num-
ber n better reflects the preferences of the user, since it is
deprived of the notion of self-excitation which artificially
inflates the number of listening counts. In the following,
we will denote by N ∈ NU×I the exposition matrix with
entries [N]ui = nui.

Joint log-likelihood. The joint log-likelihood of the ob-
servations Y and of the latent variables N, W and H can
be written as follows:

log p(Y,N,W,H) = log p(Y|N; θ, κ)︸ ︷︷ ︸
Mapping

(8)

+ log p(N|[WHT ])︸ ︷︷ ︸
PF structure

+ log p(W,H)︸ ︷︷ ︸
Regularization

.

We can decompose this log-likelihood into three terms:
a probabilistic mapping term corresponding to the com-
pound structure of the observations, a term corresponding



to the PF structure on the latent variable N and a regu-
larization term induced by the gamma priors. Contrary
to PF, the factorization is placed on the latent variable
N instead of the data itself, allowing for more flexibility.
Going back to our interpretation, this latent variable is
more likely to inform on user preference than Y. The
mapping term can be viewed as a distortion of the true ob-
servations, making them “more factorizable” than the raw
observations. Therefore, this additional term allows to
avoid strong pre-processing stages (such as binarization),
letting the data choose their “own distortion”.

Scalability and tractability. By imposing that users
will listen to a song at least one time during each session,
i.e., xl,ui ∈ N∗, two important properties can be deduced.

First, we have the following equivalence: yui = 0 ⇔
nui = 0. In other words, the observed listening count
is equal to zero if and only if the number of listening
sessions is equal to zero. Therefore, the latent variable N
is partially known and has the same zeros as Y. Thanks
to this, we preserve the scalability property of PF (cf
Section 2). Moreover, we have that:

P(yui = 0) = P(nui = 0) = e−[WHT ]ui . (9)

The latent variables W and H control the sparsity of the
matrix Y, while the element distribution and its parame-
ters {θ, κ} only focus on the representation of non-zero
values.

The second interesting property is that nui ≤ yui. There-
fore, given an observation yui, we know that nui can only
take a finite number of values, bounded by yui (in partic-
ular, yui = 1⇒ nui = 1). This provides efficient means
of calculation for the latent variable N during inference.

3.2 EXAMPLES OF ELEMENT
DISTRIBUTIONS

Distributions based on Stirling numbers. In this para-
graph we focus on three particular distributions: the
logarithmic distribution (Quenouille, 1949), denoted by
xl ∼ Log(p); the zero-truncated Poisson (ZTP) distribu-
tion, denoted by xl ∼ ZTP (p); the (shifted) geometric
distribution, denoted by xl ∼ Geo(1− p).2 Examples of
probabilistic mass functions (p.m.f.) of the four consid-
ered element distributions are displayed on Figure 1.

These three distributions can be written in the form of
a discrete EDM with dispersion parameter κ = 1 and
support N∗. Their base measure is given by h(xl, κ) =
xl!
κ! Stj(xl, κ), where Stj(xl, κ) is the unsigned Stirling

number of one of the three kinds (j ∈ {1, 2, 3}), see
2We use the following convention for the (shifted) geometric

distribution: Geo(x; p) = (1− p)x−1p, with x ∈ N∗.
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Figure 1: On the left, the p.m.f. of the four element
distributions presented in Section 3.2. On the right, the
p.m.f. of the marginalized distribution of the observations,
using the same four element distributions. The values of
the natural and dispersion parameters are those presented
in Table 3. The p.m.f. marked with a ∗ are not available
in closed form and are represented through a histogram
of simulated values.

Table 1. See (Johnson et al., 2005) for more details. It is
of particular interest when analyzing the distribution of
y|n. This conditional distribution is also a discrete EDM
with: h(y, κn) = y!

n!Stj(y, n).

The Stirling numbers of the three kinds are three different
ways to partition y elements into n groups (Riordan, 2012)
(graphical illustrations are given in the supplementary
material):

• The Stirling number of the first kind corresponds to the
number of ways of partitioning y elements into n disjoints
cycles. It can be obtained thanks to a recurrence formula:
St1(y + 1, n) = y St1(y, n) + St1(y, n− 1).

• The Stirling number of the second kind corresponds
to the number of ways of partitioning y elements into n
non-empty subsets. It can be calculated in closed form:
St2(y, n) = 1

n!

∑n
j=0(−1)n−j

(
n
j

)
jy. When y is too

large, its exact computation can suffer from numerical
issues, though reasonable and stable approximations are
available (Bleick and Wang, 1974).

• The Stirling number of the third kind (also known as
Lah number) corresponds to the number of ways of par-
titioning y elements into n non-empty ordered subsets.
It is given by: St3(y, n) =

(
y−1
n−1

)
y!
n! . Its definition is

particularly well adapted if we assume that the grouping
results from temporal phenomena.

Shifted negative binomial. The dispersion parame-
ter for the three distributions presented in the previ-
ous examples is fixed and equal to one. We now in-
troduce a new distribution, referred to as shifted NB
distribution which is parametrized by two parameters:
xl − 1 ∼ NB(a, p), whose shape parameter a con-
trols the long tail of the distribution, and p ∈ (0, 1) is
the probability parameter. The shifted NB is a shifted



Table 1: Examples of four discrete element distributions. Notation: R∗− = (−∞; 0).

Distribution θ Θ θraw θbin κ ψ(θ) h(x, κ)

xl ∼ Log(p) log(p) R∗
− −∞ 0 1 log(− log(1− eθ)) x!

κ!
St1(x, κ)

xl ∼ ZTP(p) log(p) R −∞ +∞ 1 log(ee
θ − 1) x!

κ!
St2(x, κ)

xl ∼ Geo(1− p) log(p) R∗
− −∞ 0 1 log( eθ

1−eθ ) x!
κ!
St3(x, κ)

xl − 1 ∼ NB(a, p) log(p) R∗
− −∞ 0 (1, a)T (θ,− log(1− eθ))T Γ(x−κ1+κ2)

Γ(x−κ1+1)Γ(κ2)

EDM, which does not exactly fall into the EDM fam-
ily. However, the conditional distribution y|n can still be
written as: p(y|n; θ, κ) = exp(yθ − nκTψ(θ))h(y, nκ),
where y ∈ {n, . . . ,+∞}, κ = (κ1, κ2)T = (1, a)T and
ψ(θ) = (θ,− log(1 − eθ))T . Note that κ and ψ(θ) are
now vectors of dimension 2. Parameter κ1 controls the
shifting operation, and is fixed to one to ensure that the
support of xl is N∗. Shifted NB encompasses two particu-
lar cases: the classical NB distribution (κ1 = 0), and the
geometric distribution (κ1 = κ2 = 1).

For each distribution, the resulting marginalized distri-
bution of y is displayed on Figure 1 and is compared to
the Poisson distribution (which is a cP distribution with a
Dirac as element distribution). We can see on this figure
that all marginalized distributions have the same mass in
0 (see Section 3.1) but are different otherwise.

3.3 A TRADE-OFF BETWEEN RAW AND
BINARIZED DATA

In this section, we show that dcPF generalizes PF in the
sense that it includes PF applied to raw and binarized
data as limit cases. For a given dispersion parameter κ,
the natural parameter θ controls the level of information
contained in the observations Y:

•When θ tends to a limit θraw, dcPF becomes equivalent
to PF (with original raw data).

•When θ tends to a limit θbin, the posterior inference of
dcPF becomes equivalent to the posterior inference of PF
applied to the binarized data. In other words, perform-
ing dcPF (with original raw data) becomes equivalent to
performing PF on binarized data. Note that the marginal
distribution of the observations and the distribution of y|n
are both improper distributions, but the posterior distribu-
tion is still well-defined (Robert, 2007).

• Between θraw and θbin, θ controls the degree of implicit
distortion of the observations.

Our results are formalized in the two following proposi-
tions. The proofs are left to the supplementary material.

Proposition 1. If there exists θraw such that
limθ→θraw κTψ(θ) = −∞, then the posterior of

dcPF tends to the posterior of PF as θ goes to θraw.

Proposition 2. If there exists θbin such that
limθ→θbin κTψ(θ) = +∞, then the poste-
rior of dcPF tends to the posterior of PF ap-
plied to binarized data as θ goes to θbin, i.e.:
limθ→θbin p(W,H|Y) = p(W,H|N = Yb).

The four distributions described in Section 3.2 respect the
assumptions of both propositions. The limit cases of the
natural parameter θ are given in Table 1.

It is of particular interest to learn the natural parameter
θ since its choice characterizes the data. If θ is close to
θraw, the observations do not need to be distorted and PF
on raw data is effective. If θ is close to θbin, the non-zero
observations of Y are non-informative and binarization
is welcome. In between these extremes, dcPF takes full
power and acts as an implicit distortion. Thus, the value
of θ gives an indication on the gain brought by dcPF as
compared to PF.

4 RELATED WORKS

Negative binomial factorization. An extension of the
Poisson distribution known to model over-dispersion is
the NB distribution. The NB distribution depends on two
parameters: a shape parameter and a probability parame-
ter p. In (Zhou, 2018), the author introduces NB matrix
factorization, in which he posits that the shape parameter
is low-rank, i.e.: yui ∼ NB([WHT ]ui, p). To preserve
scalability of the proposed Gibbs algorithm, the author
uses the cP representation of the NB (Quenouille, 1949;
Fisher et al., 1943): nui ∼ Poisson(−[WHT ]ui log(1−
p)) and yui ∼ SumLog(nui, p) where SumLog(n, p) is
the sum of n identical and independent logarithmic dis-
tributions. In this case, the conditional distribution of
the nui is also known: nui|yui ∼ CRT (yui, [WHT ]ui),
where CRT is the number of opened tables in a Chinese
restaurant process (CRP). An important difference with
our framework is that the parameter p there controls both
the sparsity of Y and the distribution of the non-zero val-
ues. This introduces a coupling between the factorization
WHT and the parameter p which leads to a more difficult
interpretation in the context of recommendation.



Compound Poisson models. In (Basbug and Engel-
hardt, 2016), the authors introduce cPF which is well-
adapted for continuous or discrete sparse data. For dis-
crete data, the authors present four different distributions
but only one (the ZTP distribution) with support N∗. Note
that, if P(xl,ui = 0) > 0 then the latent variable N is
completely unknown and the scalability property does not
hold anymore (unless the hypothesis yui = 0⇒ nui = 0
is arbitrarily imposed during the inference). In terms
of inference, (Basbug and Engelhardt, 2016) describe a
stochastic variational inference algorithm that is shown to
perform well in terms of log-likelihood computed from
held-out data. We will instead evaluate the performance
of dcPF with recommendation metrics.

In (Yılmaz and Cemgil, 2012; Simsekli et al., 2013), a
cP structure with a gamma element distribution is used
to represent the Tweedie distribution. The Tweedie dis-
tribution is the distribution induced by the β-divergence
with β ∈ (01) (Févotte and Idier, 2011). One impor-
tance difference with our setting, besides the fact that
the Tweedie distribution is continuous, is that the au-
thors impose that the model is mean-parametrized, i.e.,
〈yui〉 = [WHT ]ui. This is not the case with cPF since
by construction: 〈yui〉 ≥ 〈nui〉 = [WHT ]ui.

Weighted MF. In (Hu et al., 2008), the authors develop
a framework for implicit feedbacks. Implicit data are in-
herently noisy and may not reflect a direct preference of a
user for an item, but rather a confidence in the interaction.
In this context, implicit feedbacks can be transformed
and incorporated as weights in the cost function which is
defined as:

C(W,H) =
∑
ui

ωui‖ybui − [WHT ]ui‖22 + µR(W,H),

where ωui = f(yui) is the confidence that can be brought
in the binary observation ybui, f is a fixed mapping func-
tion, R(W,H) is a regularization term and µ is an hyper-
parameter. Here, the mapping function f between the raw
data and the confidence is deterministic. Note that some
other works focused on introducing probabilistic weights
in the data fitting term (Liang et al., 2016; Wang et al.,
2018) but these weights are learned regardless of the raw
data. As discussed previously, dcPF encompasses the raw
observations via an additional probabilistic mapping term.
This term can also be viewed as a probabilistic confidence
term, combining the two latter approaches. Indeed, large
listening counts yui will often lead to a large number of
sessions nui, exhibiting a strong confidence in this obser-
vation. Nevertheless, this mapping is not deterministic
and as such more flexible and robust.

5 VARIATIONAL BAYES
EXPECTATION-MAXIMIZATION

In this section, we develop a variational Bayes
expectation-maximization (VBEM) algorithm. We denote
by Z = {N,C,W,H} the set of latent variables and by
Φ = Φ1∪Φ2 the set of parameters, with Φ1 = {θ, κ} and
Φ2 = {αW ,βW , αH ,βH}. The aim of this algorithm is
to estimate both the posterior p(Z|Y; Φ) and the parame-
ters Φ.

5.1 VARIATIONAL INFERENCE

Bayesian inference revolves around the characterization
of the posterior distribution p(Z|Y; Φ). Unfortunately,
this posterior is intractable in our case. Variational infer-
ence (VI) (Jordan et al., 1999; Blei et al., 2017) consists in
approximating this intractable posterior by a simpler dis-
tribution q parametrized by its own parameters Φ̃, called
variational parameters. Thus, the aim of VI is to mini-
mize the Kullback-Leibler divergence between the true
and approximate distributions with respect to (w.r.t.) the
variational parameters. In practice, it is simpler to maxi-
mize the so-called expected lower bound (ELBO), which
is an equivalent problem. A common choice is to assume
q to be factorizable (mean-field approximation):

q(Z) =
∏
ui

q(nui, cui)
∏
uk

q(wuk)
∏
ik

q(hik). (10)

Though not explicitly shown for conciseness, the varia-
tional distribution of each parameter is governed by its
own set of parameters (over which optimization takes
place). Note that we choose the latent variables nui
and cui to remain coupled. We can further decom-
pose the variational distribution of these variables as:
q(nui, cui) = q(cui|nui)q(nui).

The ELBO can be calculated as follow:

L(q,Φ) =〈log p(Y|N; Φ1)〉q + 〈log p(N,C|W,H)〉q
+ 〈log p(W,H; Φ2)〉q +H(q), (11)

where 〈x〉q is the expectation of the variable x w.r.t. the
variational distribution q and H(q) is the entropy of the
distribution q.

Coordinate ascent VI. We use a coordinate ascent
for VI (CAVI) algorithm to maximize the ELBO. The
CAVI algorithm consists of sequentially optimizing each
of the variational parameters while keeping the oth-
ers fixed. It can be shown that mean-field variational
inference naturally leads to the following choice of
variational distributions (Bishop, 2006), parametrized



by Φ̃ = {Λ, α̃W , β̃W , α̃H , β̃H}:

q(wuk) = G(α̃Wuk, β̃
W
uk), q(hik) = G(α̃Hik, β̃

H
ik), (12)

q(cui|nui) = Mult

(
nui,

{
Λuik
Λui

}
k

)
,

q(nui = n) =
1

Zui
(rui)

nh(yui, nκ)

n!
,∀n ∈ {1, . . . , yui},

where Λui =
∑
k Λuik, rui = Λuie

−κψ(θ) and Zui =∑yui
n=1(rui)

n h(yui,nκ)
n! is a normalization constant.

Update rules. CAVI leads to the following set of itera-
tive update rules:

Λuik ← exp (〈logwuk〉q + 〈log hik〉q) ; (13)

α̃Wuk ← αW +
∑
i

〈nui〉q
Λuik
Λui

; β̃Wuk ← βWu +
∑
i

〈hik〉q

α̃Hik ← αH +
∑
u

〈nui〉q
Λuik
Λui

; β̃Hik ← βHi +
∑
u

〈wuk〉q.

When x ∼ G(α, β), 〈x〉 = α
β and 〈log x〉 = Ψ(α)−log β,

where Ψ is the digamma function. The statistic 〈nui〉q
is available in closed form3 thanks to the properties of
Section 3.1. If yui = 0 then 〈nui〉q = 0, otherwise
〈nui〉q =

∑yui
n=1 n q(nui = n).

As expected, we recover, as limit cases, the al-
gorithms for PF (Gopalan et al., 2015) applied to
raw data if 〈nui〉q = yui and to binarized data if
〈nui〉q = 1[yui > 0]. The algorithm is stopped when the
relative increment of the ELBO gets lower than a value τ .

5.2 PARAMETERS ESTIMATION

Activity and popularity parameters. Optimizing the
ELBO w.r.t. the parameters Φ2 is equivalent to solving
the sub-problem: argmaxΦ2

〈log p(W,H; Φ2)〉q . In this
article, we suppose that the shape parameters {αW , αH}
are known and we want to optimize only the rate pa-
rameters {βW ,βH}. The interested reader is referred to
(Cemgil, 2009) and (Zhou and Carin, 2015) for the details
of ML and Bayesian estimation of the shape parameter of
a gamma distribution. ML leads to the following updates
for both activity and popularity parameters:

βWu ←
∑
k〈wuk〉q
KαW

; βHi ←
∑
k〈hik〉q
KαH

. (14)

Natural parameter. Optimizing the ELBO w.r.t. the
natural parameter θ is equivalent to maximizing:

3When choosing the logarithmic distribution as the element
distribution we have: 〈nui〉q = rui

(
Ψ(yui + rui)−Ψ(rui)

)
(Zhou, 2018).

〈log p(Y|N; Φ1)〉q =
∑
ui (yuiθ − 〈nui〉qκψ(θ)) + cst,

where cst is a constant w.r.t. the natural parameter θ. It
leads to the following equation:∑

ui

yui −
∑
ui

〈nui〉qκψ′(θ) = 0. (15)

In the case of the shifted NB distribution, ψ(θ) ∈ R2 and
ψ′ corresponds to its gradient. The solution of this equa-
tion in known in closed form for geometric and shifted
NB distributions. We implement a Newton-Raphson algo-
rithm to solve it for logarithmic and ZTP distributions.

Dispersion parameter for shifted NB. When choos-
ing the shifted NB as the element distribution, we have:

yui − nui ∼ NB(κ2nui, e
θ). (16)

Optimizing the ELBO w.r.t. the parameter κ2 which con-
trols the long-tail of the NB distribution is not straight-
forward. The main issue is that it involves a term of the
form 〈h(yui, nuiκ)〉q that is computationally expensive
to optimize. Therefore, we augment the model like in
(Zhou, 2018), with a latent variable: mui|yui, nui ∼
CRT (yui − nui, nuiκ2) (if yui = 0 then mui = 0).
In this augmented model, the optimization of κ2 is
equivalent to finding the ML estimator of mui|nui ∼
Poisson(nuiκ2(− log(1− eθ)). This leads to the follow-
ing update:

κ2 ←
1

− log(1− eθ)

∑
ui〈mui〉q∑
ui〈nui〉q

, (17)

where 〈mui〉q =
∑yui
n=1 nκ2

(
Ψ(yui − n + nκ2) −

Ψ(nκ2)
)
q(nui = n).

6 EXPERIMENTAL RESULTS

Datasets. We consider the following datasets, whose
structure is summarized in Table 2.

• The Taste Profile dataset (Bertin-Mahieux et al., 2011)
provided by The Echo Nest contains the listening history
of users. The data collected are the number of time the
users listened to songs. We pre-process a subset of the
data as in (Liang et al., 2016), keeping only users and
songs that have more than 20 interactions. The histogram
of the listening counts is displayed on Figure 2.

• The Last.fm dataset (Celma, 2010) contains the listening
history of users with additional timestamps information.
We select play counts of the year 2008 and apply the same
pre-processing as with the Taste Profile dataset.

• The NIPS dataset (Perrone et al., 2016) contains bag-
of-words representations of conference papers published



Table 2: Datasets structure after pre-processing.

Taste Profile NIPS Last.fm

# rows 16, 301 5, 811 781
# columns 12, 118 11, 463 11, 172
# non-zeros 1, 176, 086 4, 033, 830 402, 058
% non-zeros 0.60% 6.06% 4.61%

in the NIPS conference from 1987 to 2015. We make
an analogy between “users who listened to songs” and
“documents written with words”. The goal here is to
recommend unused words to the author of a paper.

Experimental setup. Each dataset is split into a train
set Ytrain containing 80% of the non-zero of the original
dataset and a test set Ytest containing the remaining 20%
(these values being set to 0 in the train set). All the
compared algorithms are trained with the train set and
provide a recommendation list for each user. These lists
are evaluated with the test set.

For each user, we recommend an ordered list of m songs
he/she never listened to, based on Ytrain. The songs in
this list are sorted w.r.t. the prediction score defined by:
sui =

∑K
k=1〈wuk〉q〈hik〉q. Note that, in dcPF, the ex-

pected number of listening sessions is equal to [WHT ]ui,
expressing long-term preference (see Section 3.1).

The quality of the proposed list is measured by the normal-
ized discounted cumulative gain (NDCG) score. NDCG
is a metric often used in information retrieval to evaluate
lists of ranked items. It is calculated as follows:

DCGu =

m∑
i=1

rel(u, i)

log2(i+ 1)
, NDCGu =

DCGu

IDCGu
,

where DCGu is the discounted cumulative gain and
rel(u, i) is the relevance to the ground-truth of the ith
item of the proposed list. IDCGu is the ideal DCG,
i.e., the best DCG score that can be obtained. There-
fore NDCGu ∈ [0, 1] with NDCGu = 1 corresponding
to the perfect recommended list. For the relevance to the
ground-truth, we propose to account for the values in the
test set above a fixed threshold: rel(u, i) = 1[ytest

ui > s].
As mentioned in (Hu et al., 2008), small listening counts
reflect a preference with little confidence. For example,
a user can listen to a song by pure curiosity. Therefore,
this threshold leads to a more robust NDCG metric. We
denote by NDCGs the NDCG with the threshold s. If
s = 0, we recover the classic NDCG0 metric for binary
data. Otherwise, for s ≥ 1, NDCGs only considers the
songs which have been listened to at least s times and
ignores the others. Other metrics such as precision and
recall lead to similar conclusions than NDCG0 and will
not be displayed in the following.

Compared methods. For the three datasets, we com-
pare dcPF with its limit cases: PF performed on raw
(PFraw) or on binarized data (PFbin). PF is known
to achieve good performance in recommendation tasks
(Gopalan et al., 2015). For the Taste Profile dataset,
we considered the hyper-parameters αW = αH among
{0.1, 0.3, 1} and K among {50, 100, 200}, and selected
the values αW = αH = 0.3 and K = 100 which gave
the best NDCG0 for PFbin. For the NIPS and Last.fm
datasets, which are smaller than the Taste Profile dataset,
we only considered αW = αH = 0.3 and K = 50. The
stopping criterion of the algorithms is set to τ = 10−5.
Evaluation is done using a ranked list of m = 100 items.
For all the experiments, algorithms are run five times from
random initializations.4

Prediction results. We start by discussing results with
the Taste Profile dataset, reported in Table 3. A general
observation is that dcPF gives better results than the two
baselines PFraw and PFbin for all four metrics and every
element distribution, with the exception of ZTP in the case
of NDCG0. PFbin returns better scores than PFraw up to
s = 5. This confirms the usefulness of the binarization
stage when using PF, but only up to a certain threshold s
(this is because PFbin does not fully exploit the non-zero
values in the original raw data). The performance gap
between dcPF and PFbin increases with the threshold s.
On the two other datasets (NIPS and Last.fm), Table 4
shows that dcPF outperforms the baseline methods for all
element distributions. Note that for the NIPS dataset, a
somehow different context from song recommendation,
PFraw is effective and performs better than PFbin as soon
as the threshold s is larger than one. From both Tables 3
and 4 we conclude that the proposed shifted NB element
distribution is a good compromise overall.

Natural parameter estimation. As explained in Sec-
tion 3.3, estimation of the natural parameter tells us about
the level of scale information exploited by dcPF. Table 3
shows that dcPF indeed offers a valuable trade-off be-
tween PFraw and PFbin, because the estimated parameter
θ lies in between the two limit cases θraw and θbin. To
assess the quality of the estimation procedures for θ in
Log, ZTP and Geo described in Section 3.3 (plainly re-
ferred as VBEM), Table 3 also displays evaluation met-
rics obtained with a grid-search. More precisely, we use
θ = log p which maximizes NDCG5 from a set of pre-
specified values. For Log and Geo, p is searched between
0 and 1 with a step of 0.1. For ZTP, p is searched in
{0, 0.1, 0.5, 1, 2, 10, 100,+∞}. It appears that VBEM
slightly over-estimates the optimal value (in terms of

4Algorithms and experiments are available on github:
https://github.com/Oligou/dcPF.



Table 3: Recommendation performance of dcPF and PF using the Taste Profile dataset. Italic: scores of dcPF when
using a grid-search for θ, see text for details. Bold: two best NDCG scores (grid-search excluded).

Model Est. p = eθ κ NDCG0 NDCG1 NDCG2 NDCG5

Log VBEM 0.803 1 0.200 (±3.0 10−3) 0.182 (±2.3 10−3) 0.166 (±2.0 10−3) 0.147 (±1.5 10−3)

Grid 0 .3 1 0 .200 (±4 .1 10−3 ) 0 .186 (±3 .9 10−3 ) 0 .173 (±3 .7 10−3 ) 0 .158 (±3 .7 10−3 )

ZTP VBEM 1.950 1 0.192 (±4.1 10−3) 0.178 (±3.7 10−3) 0.167 (±3.6 10−3) 0.156 (±3.8 10−3)

Grid 1 1 0 .190 (±3 .5 10−3 ) 0 .178 (±3 .0 10−3 ) 0 .168 (±3 .1 10−3 ) 0 .158 (±3 .3 10−3 )

Geo VBEM 0.600 1 0.199 (±2.3 10−3) 0.182 (±1.8 10−3) 0.167 (±1.8 10−3) 0.150 (±1.2 10−3)

Grid 0 .3 1 0 .199 (±4 .9 10−3 ) 0 .185 (±4 .6 10−3 ) 0 .172 (±4 .2 10−3 ) 0 .159 (±4 .0 10−3 )

Sh. NB VBEM 0.873 (1, 0.2)T 0.201 (±3.1 10−3) 0.183 (±2.5 10−3) 0.166 (±2.2 10−3) 0.147 (±1.5 10−3)

PFraw . . . 0.156 (±3.0 10−3) 0.155 (±3.3 10−3) 0.150 (±3.5 10−3) 0.144 (±5.3 10−3)

PFbin . . . 0.197 (±2.1 10−3) 0.177 (±1.5 10−3) 0.160 (±1.5 10−3) 0.140 (±1.3 10−3)

Table 4: Performance with NIPS and Last.fm datasets.

NIPS Last.fm
Model NDCG0 NDCG1 NDCG0 NDCG1
Log 0.394 0.430 0.142 0.129
ZTP 0.381 0.422 0.122 0.113
Geo 0.390 0.429 0.139 0.128
Sh. NB 0.396 0.431 0.143 0.130
PFraw 0.358 0.405 0.091 0.088
PFbin 0.378 0.392 0.122 0.108
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Figure 2: PPC of the distribution of the non-zero values
in the Taste Profile dataset. The blue points (Truth) repre-
sents the histogram of the non-zero values in the train set.
The colored curves represent the simulated histograms ob-
tained from the different inferred dcPF or PF models. The
percentages of non-zero values are written in parentheses.

NDCG5) of the natural parameter, but remains a very
robust procedure.

Posterior predictive check (PPC). We provide a PPC
of the distribution of the listening counts in the Taste Pro-
file dataset (see Figure 2). A PPC consists in simulating a
new dataset YPPC from the fitted model (for dcPF, we sim-
ulate from the generative process described in Section 3.1
with latent variables W, H and parameters inferred in
Section 6). Then, we compare the histogram of the values
of Ytrain and YPPC. The PPC of the two limit cases is
very instructive. PFraw tries to fit the long tail of the data,
but, by doing so, destroys the representation of the zero
values (1.02% of non-zero values versus 0.48% in the real

dataset). It can explain the disappointing performances
of PFraw for NDCG0. On the contrary, PFbin better fits
the sparsity of the data but is not able to describe large
counts. In both cases, PF struggles to properly weigh the
influence of large counts compared to low counts. Com-
paratively, dcPF proposes a smoother weighting between
large and low values. dcPF respects both the sparsity
and the long tail of the data for the four element distri-
butions. ZTP seems to over-estimate the influence of
medium counts (from 1 to 5), whereas shifted NB has the
best fit to the histogram. We observe that regardless of
the model, explaining the large values (> 100) remains
difficult, however we may consider that after a certain
threshold the counts do not contain useful information.

7 CONCLUSION

In this paper, we described new contributions to cPF for
discrete data. As compared to PF, we showed that dcPF
offers more flexibility to model long-tailed data. Infer-
ence remains scalable thanks to modeling of the non-zero
values only. Numerical experiments confirmed that our
adaptive VBEM algorithm efficiently exploits raw data,
leading to better recommendation scores when compared
to the two limit cases (PF on raw and binarized data).
Among the four element distributions presented and ex-
perimented in this work, the proposed shifted NB prove
particularly efficient thanks to its additional parameter,
and often led to the best recommendation scores.

Based on this work, a number of exciting perspectives
can be considered, such as investigating more complex
element distributions to better fit the extreme observations
or to address other forms of data. For instance, it would
be of great interest to adapt the model for bounded data
such as ratings, which are widespread in CF but cannot
be processed with dcPF in its current form.
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