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ABSTRACT

The objective of this work is to apply 3D super resolution (SR) tech-

niques to brain magnetic resonance (MR) image restoration. Two 3D

SR methods are considered following different trends: one recently

proposed tensor-based approach and one inverse problem algorithm

based on total variation and low rank regularization. The evaluation

of their effectiveness is assessed through the segmentation of brain

compartments: gray matter, white matter and cerebrospinal fluid.

The two algorithms are qualitatively and quantitatively evaluated on

simulated images with ground truth available and on experimental

data. The originality of this work is to consider the SR methods as

an initial step towards the final segmentation task. The results show

the ability of both methods to overcome the loss of spatial resolution

and to facilitate the segmentation of brain structures with improved

accuracy compared to native low-resolution MR images. Both al-

gorithms achieved almost equivalent results with a highly reduced

computational time cost for the tensor-based approach.

Index Terms— Single image super-resolution, structural MRI,

segmentation, tensors, total variation regularization, low rank.

1. INTRODUCTION

Cerebral aging is a complex process where severe morphological

and structural changes in the brain occur causing functional and net-

work disruptions that can lead to many disorders such as epilepsy,

Parkinson or Alzheimer’s diseases. The assessment of these changes

provides an important tool for following the development or the re-

gression of brain-related diseases [1]. Magnetic resonance imaging

(MRI), in particular T1-weighted scans, is well suited for structural

studies of brain changes since it provides high soft tissue contrast

and allows multiple acquisitions without potential hazards [2]. Due

to practical and ethical limitations of using human beings, nonhu-

man primates such as marmosets (Callithrix jacchus), which present

more neuroanatomical similarities with the human brain than ro-

dent models and yet a short life expectancy (around 10 years), are

used in longitudinal studies of brain aging [3]. However, imaging

small brains in a 3T MRI platform dedicated to humans is a chal-

lenging task because the spatial resolution and the contrast obtained

are insufficient compared to the size of the anatomical structures ob-

served. In the absence of a higher field MRI scanner for generating

high quality images, it becomes crucial to develop appropriate post-

processing methods that enhance the resolution of preclinical images

and allow the analysis of morphological changes.

Imaging beyond the resolution of an imaging system is referred

to as super-resolution (SR), which increases the spatial resolution by

extracting information from a set of low resolution images that may

have been translated, blurred, rotated or scaled. When such multiple

frames are not available, another class of methods exists, i.e., single-

image SR that restores a high-resolution (HR) image based on an

image formation model and a single low-resolution (LR) image [4].

In this study, we aim at evaluating the impact of enhancing the res-

olution of MR volumes using single-image SR on the robustness

of the segmentation of the gray matter (GM), white matter (WM),

and cerebrospinal fluid (CSF). This segmentation step is crucial to-

wards a reliable analysis of morphometry and highlighting anatom-

ical cerebral aging markers. In this study, we consider two single

image SR approaches that solve the SR problem within two different

frameworks. On one hand, we evaluate a recent Tensor-Factorization

based (TF) method [5], proposed by our group, that has been vali-

dated and proven computationally-efficient on computed tomogra-

phy images. On the other hand, we consider a standard approach for

SR by solving the associated inverse problem based on low rank and

total variation regularization [6], originally proposed for MR imag-

ing. Both methods use the same image formation model, that relates

the HR image to be estimated to the observed LR image through

blurring and down sampling operators and additive white Gaussian

noise. However, the TF method avoids the unfolding of the volume

into 2D matrices which usually results in the loss of information re-

garding the locality of pixels [5].

The results are evaluated from a brain segmentation perspective,

using a state of the art brain segmentation method [7] applied to na-

tive LR and estimated HR volumes.

The remainder of the paper is organized as follows. Section 2

summarizes the SR approaches and the segmentation method consid-

ered in this study. Section 3 provides the simulated and experimental

results. Finally, Section 4 draws the conclusions and perspectives.

2. METHODS

2.1. MR image formation model

MRI is a non-invasive imaging technique used to visualize internal

body organs. MRI signal results from the relaxation of hydrogen

spins in the body after their excitation with an external magnetic

field. Similar to any other imaging modality, the loss of spatial res-

olution in the acquisition process can be expressed through a linear

model that relates the observations (measurements) to the HR image

to be estimated. Moreover, in MRI, data acquisition is performed in

the k-space (Fourier domain). This requires the acquisition matrix to

be incorporated into the image formation model. Finally, the image

formation model commonly used in MRI is

g = Ax+ n (1)

where x = [x1, ..., xN ]T ∈ RN stands for the non-observable HR

image, g = [g1, ..., gM ]T ∈ CM are the collected data in the k-

space, A ∈ CM×N is the system matrix and n ∈ CM is an additive,

zero-mean white Gaussian noise. All the images are expressed in



their standard vectorized version in a lexicographic order. As ex-

plained in the introduction of this paper, our goal is to evaluate post-

processing SR methods in brain MRI. For this reason, the starting

point of our study are reconstructed LR MR volumes. Thus, the

model in (1) will be further simplified in the following sections by

considering only the operators accounting for spatial resolution loss

and not the system acquisition geometry.

To invert the direct model in (1), a common way is to express

the estimation of f as the minimization of a cost function composed

by a data fidelity term and a regularization term aiming at stabilizing

the solution:

min
x

‖g −Ax||22 + βR(x) (2)

where β is a hyper parameter weighting the data fidelity and regu-

larization terms and R is a function incorporating prior knowledge

about the HR image. In the two following subsections we provide

basic details about the two SR approaches considered, both in terms

of forward model and regularizer employed.

2.2. 3D Super-Resolution using Tensor Factorization

The TF method, recently intreduced in [5], is based on the tradi-

tional image degradation model assuming that the LR image can be

expressed as a noisy, blurred and decimated version of the HR im-

age. Within this algorithm, 3D images are associated to tensors of

order 3, resulting into the following degradation model:

vec(Y) = DHvec(X) + vec(N) (3)

where vec() vectorizes the elements of the 3D tensor in lexicograph-

ical order. Y ∈ R
I/r×J/r×K/r and X ∈ R

I×J×K are the LR and

HR images respectively, H ∈ R
IJK×IJK is the block-circulant

version of the 3D point spread function (PSF), N is an independent

identically distributed (IID) additive white Gaussian noise (AWGN),

I, J and K are the 3D volume dimensions and r is the decimation

rate accounting for the voxel resolution loss. Based on the hypoth-

esis of separable PSF (valid in the present study given the choice

of Gaussian PSF), H can be decomposed in three block circulant

matrices with circulant blocks (BCCB), H1 ∈ R
I×I , H2 ∈ R

J×J

and H3 ∈ R
K×K . Similarly, the down sampling operators for the

three dimensions can be given as D1 ∈ R
I/r×I , D2 ∈ R

J/r×J

and D3 ∈ R
K/r×K .

Using the canonical polyadic decomposition of X with Ū =
{U1 ∈ R

I×F , U2 ∈ R
J×F , U3 ∈ R

K×F }, where F is the rank of

the tensor, (3) can be rewritten as the mode-n product of the sepa-

rated kernels:

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 + N

= [[D1H1U
1, D2H2U

2, D3H3U
3]] + N (4)

Thus the reconstruction of the HR image from the LR image

requires to find the set of matrices Ū by solving the following mini-

mization problem:

min
Ū

‖Y − [[D1H1U
1
, D2H2U

2
, D3H3U

3]]‖2F (5)

Since the minimization problem posed in (5) is NP-hard, U1,

U2 and U3 are minimized sequentially as follows:

minU1
1
2
‖Y(1) −D1H1U

1(D3H3U
3 ⊙D2H2U

2)T ‖2F
minU2

1
2
‖Y(2) −D2H2U

2(D3H3U
3 ⊙D1H1U

1)T ‖2F
minU3

1
2
‖Y(3) −D3H3U

3(D2H2U
2 ⊙D1H1U

1)T ‖2F (6)

The solution of the three minimization problems in (6) is ob-

tained using the least-square estimator with a Tikhonov regulariza-

tion. The solution is further computed using the Moore-Penrose

pseudo-inverse+:

U1 = (D1H1)
+Y(1)(D3H3U

3 ⊙D2H2U
2)+T

U2 = (D2H2)
+Y(2)(D3H3U

3 ⊙D1H1U
1)+T

U3 = (D3H3)
+Y(3)(D2H2U

2 ⊙D1H1U
1)+T (7)

Unlike the conventional unfolding performed in 3D reconstruc-

tion algorithms such as in [6], this method unfolds the tensor sequen-

tially, in each direction, thus preserving the local 3D information.

2.3. 3D super-resolution with low-rank and total variation

This algorithm was originally proposed in [6] for 3D MRI super-

resolution. It exploits the same model as (3). In order to invert this

3D forward model, the combination of two regularization terms was

shown to be particulary efficient for MRI SR in [6]. In particular, in

addition to 3D total variation that provides local regularization, a low

rank assumption was used to account for global prior information in

the HR image recovery process. Consequently, the SR problem was

expressed as the minimization of the following cost function:

min
x

1

2
‖y −DHx‖22 + λRankRank(x) + λTV TV (x), (8)

where λRank and λTV are two hyperparameters tuned manually to

their best values. The minimization problem (8) is further divided

into three sub problems that are solved iteratively in an alternating

direction method of multipliers (ADMM) framework and the total

variation (TV) is implemented using gradient descent thus render-

ing this method computationally expensive [6]. This method will be

referred to as LRTV hereafter.

2.4. Brain MR image segmentation

The main objective of this study is to evaluate the segmentation of

WM and GM brain regions from MR images, after the application

of the SR algorithms discussed above. In our work, segmentation

was done using Structural Parametric Mapping (SPM) [8] software

that implements the expectation maximization (EM) segmentation

methods based on a Bayesian classifier framework. We have previ-

ously developed a module that can be integrated into 3D Slicer [9]

for the semi-automatic registration of a marmoset brain template on

any marmoset brain MR image. The registration method employed

relies on a template built from a single fully segmented marmoset

brain image, which was transported onto the Karcher mean of 13
adult marmoset brain images using a diffeomorphic strategy that

fully preserves the brain topology. MR images are then segmented

into GM, WM and CSF compartments using the tissue probability

maps resulting from the registration process. Segmentation is done

using SPM software based on image intensities and prior informa-

tion [7].



(a) HR image (b) HR Segmentation

(c) LR image (d) LR Segmentation

(e) RI by TF (f) Seg. of TF

(g) RI by LRTV SR (h) Seg. of LRTV SR

Fig. 1. Simulation results from the data set representing one axial

slice and their corresponding GM segmentation results: (a,b) refer-

ence HR image, (c,d) LR image obtained by blurring and downsam-

pling the HR image in (a), (e,f) super-resolved image obtained with

TF, (g,h) super-resolved image obtained with LRTV.

3. RESULTS AND DISCUSSION

A dataset of T1-weighted MR images was used in this study. Acqui-

sitions on marmosets 1,2 were done on a 3T MRI platform using a

gradient echo sequence with TR = 10.5msec, TE = 4.7msec and

flip angle of 8o. The size of the dataset was 98 × 182 × 113 with

voxel size of 0.35× 0.35× 0.35 mm3.

Since SR algorithms require the previous knowledge or estimation

of the blurring point spread function (PSF) we have followed the

conclusion drawn by [10] and [11] by approximating the PSF as a

Gaussian function with its full width at half maximum (FWHM) be-

ing the selected slice width. The standard deviation is then computed

1Governmental authorization from the MENESR (project #05215.03)

was given for the experimental procedures involving animal models de-

scribed in this paper.
2We thank Caroline Fonta and the MRI platform of INSERM TONIC

UMR1214 for their help with image acquisition.

(a) LR image (b) TF (c) LRTV

(d) LR GM (e) GM after TF (f) GM after LRTV SR

(g) (h) (i)

Fig. 2. Experimental results showing one axial slice of the data set:

(a) the observed LR image, (b) the super-resolved image using TF

and (c) the super-resolved image using LRTV. Note that the images

in (b) and (c) have 4 times more pixels than the LR in (a). GM seg-

mentations from (d) LR image, (e) TF image and (f) LRTV image.

For a better visualization purpose, (g), (h) and (i) represent zooms

from the segmented images in (d), (e) and (f).

by:

σ =
FWHM

4
√
2ln2

(9)

The parameters used in the LRTV algorithm were kept as sug-

gested by the authors in [6] given that the original paper already ad-

dressed an MR application. Note that TF method only requires one

hyperparameter, the tensor rank F which was set to its best value,

while LRTV requires the right tuning of the weights of each regular-

ization term and the parameters of the ADMM and gradient descent

optimizers. The SR algorithms were applied on the dataset follow-

ing two setups, called simulation (with ground truth available) and

experimental hereafter. For the simulation study, the quality of the

segmentation results was quantified by two metrics: the structural

similarity index (SSIM) and the DICE coefficient. For two images

A and B, SSIM and DICE are defined as:

SSIM =
(2µAµB + C1)(2σAB + C2)

(µ2
A + µ2

B + C1)(σ2
A + σ2

B + C2)

DICE = 2
A ∩B

A+B

where µA, µB are the local means, σA, σB are the local standard

deviations, and σAB is the cross–covariance. SSIM assesses the vi-

sual impact of three characteristics of an image: luminance, contrast

and structure. DICE coefficient measures the accuracy of the over-

lapping of two binary images and is given as twice the number of

elements common in A and B (A ∩ B) divided by the sum of the

number of elements in each (A+B). For both coefficients, a value of

1 represents a perfect similarity/overlap . Experimental results were



only evaluated qualitatively because of non availability of the ground

truth (reference) HR image.

3.1. Simulation results

The simulated data was computed by considering the experimen-

tal MR scans as HR images. Blurring with a Gaussian kernel and

down sampling by a factor of r = 2 in each spatial dimension

were applied on the MR images resulting into LR volumes that were

used as input for the SR methods. The super-resolved images pro-

vided by TF and LRTV methods were compared to the reference

HR image. Moreover, the effectiveness of SR on MR images was

tested by segmenting the brain volumes (GM, WM and CSF) and

comparing them to the segmentation of the ground truth HR im-

age. For illustration purposes, we present in Fig. 1 the results of

the algorithms for an axial slice of the dataset and the correspond-

ing GM segmentations. Table 1 summarizes the quantitative results,

i.e. the average similarity index for 113 slices of the dataset be-

tween the ground truth and the resized LR image using cubic in-

terpolation (LR,GT ), the recovered images (RI) by TF (GT, TF )
and RI by LRTV (GT,LRTV ). In addition, it shows the average

SSIM for the GM segmentation from GT and recovered TF image

(GMGT , GMTF ), and the GM segmentation from GT and recov-

ered LRTV image (GMGT , GMLRTV ).

Table 1. Average SSIM values for simulated results.

LR,GT TF,GT LRTV,GT GMGT, GMTF GMGT, GMLRTV

Avg SSIM 0.15 0.51 0.56 0.95 0.95

These results show that the volumes recovered by TF method

and LRTV method provide almost equivelant results in comparison

to the ground truth. Morover, SR algorithms show important en-

hancement in the image when compared to the resized LR image.

These results are confimed by the average DICE coefficients of the

113 slices (see Table 2) computed between the GM segmentations

obtained from the GT, and from the TF and LRTV images respec-

tively. The numerical results are confirmed by the visual inspection

of images in Fig. 1. The effectiveness of the proposed TF method

is accompanied by the advantage of being computationally more ef-

ficient than LRTV. The computation time to recover 113 slices was

roughly 16 minutes for LRTV and 2 minutes for TF method with

standard Matlab (2017b) implementation on a desktop computer.

Table 2. DICE coefficients computed from GM segmentations.

GMGT, GMLR GMGT, GMTF GMGT, GMLRTV

DICE Coefficient 0.92 0.93 0.91

3.2. Experimental results

Herein, we applied the SR methods directly to the MR images, thus

considered as the LR images. The performance of the TF algorithm

for SR was compared to the LRTV algorithm considered as a bench-

mark. An example of the results is shown in Fig.2 for one axial

slice. We performed the segmentation similarly to the previous sec-

tion. However, in the absence of ground truth HR images, we only

analyze the results qualitatively. Qualitative analysis of segmenta-

tion results confirm that SR has provided regions with borders that

are better defined, with more confident mapping of the tissues and

less partial volume effect, compared to the LR segmentation. This

may lead to an underestimation of the gray matter, and inversely to

an overestimation of the white matter, in this region. The texture of

the GM region also appears smoother in Fig.2 (i) compared to Fig.2

(h). The LRTV approach seems more congruent with the original

LR image. Indeed, the TF method may overestimate the GM (and

underestimate the WM).

4. CONCLUSION

We investigated the effectiveness of single-image SR in MRI. A 3D

fast SR approach based on the tensor factorization of the image orig-

inally validated on CT images was evaluated and compared to the

3D low-rank SR with TV regularization approach proposed for MR

images. As expected, the TF method is up to 8 times faster than

the other approach. The visual inspection of a zoomed region of the

GM segmentation in the experimental results show that LRTV pro-

vides thinner tissue regions and more partial volume effect and that

TF approach tends to overestimate the GM and underestimate the

WM. However, both SR methods reduce the partial volume effect

and thus improve the segmentation. In the future, obtaining man-

ual segmentation by experts can present a ground truth reference to

which we compare our results. Moreover, we also prospect to get

ground truth images acquired using higher magnetic fields (ex: 7T

scanner) allowing us to compare the results of the SR algorithms

and hence enhance their performance by for example optimizing the

choice of their parameters. This data could also open the path to ma-

chine learning SR algorithms in this particular application. The next

step after confirming the results will be to study the cerebral aging

markers by calculating the cortical thickness and the volumes of the

brain structures in a longitudinal study over the marmoset life time

or for different marmosets at different ages.
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