
Official URL

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26184

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bolander, Thomas and Engesser,

Thorsten and Herzig, Andreas and Mattmüller, Robert and

Nebel, Bernhard The dynamic logic of policies and contingent

planning. (2019) In: European Conference on Logics in

Artificial Intelligence (JELIA 2019), 7 May 2019 - 11 May

2019 (Rende, Italy).

The Dynamic Logic of Policies
and Contingent Planning

Thomas Bolander1 , Thorsten Engesser3 , Andreas Herzig2(B) ,
Robert Mattmüller3 , and Bernhard Nebel3

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
tobo@dtu.dk

2 IRIT, CNRS, University of Toulouse, Toulouse, France
herzig@irit.fr

3 Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
{engesser,mattmuel,nebel}@cs.uni-freiburg.de

Abstract. In classical deterministic planning, solutions to planning
tasks are simply sequences of actions, but that is not sufficient for contin-
gent plans in non-deterministic environments. Contingent plans are often
expressed through policies that map states to actions. An alternative is to
specify contingent plans as programs, e.g. in the syntax of Propositional
Dynamic Logic (PDL). PDL is a logic for reasoning about programs with
sequential composition, test and non-deterministic choice. However, as
we show in the paper, none of the existing PDL modalities directly cap-
tures the notion of a solution to a planning task under non-determinism.
We add a new modality to star-free PDL correctly capturing this notion.
We prove the appropriateness of the new modality by showing how to
translate back and forth between policies and PDL programs under the
new modality. More precisely, we show how a policy solution to a plan-
ning task gives rise to a program solution expressed via the new modality,
and vice versa. We also provide an axiomatisation of our PDL extension
through reduction axioms into standard star-free PDL.

1 Introduction

Several authors have investigated how Propositional Dynamic Logic PDL can
account for conformant planning [2,5,11,12]. We here push this program further
and investigate how contingent planning can be captured in PDL. We argue
that the standard PDL operators [π] and 〈π〉 of necessity and possibility are
not well-suited to account for conditional plans and introduce a third modal
operator ([π])γ, read “π is strong for γ”. Such an operator was already proposed
for conformant planning in some of the above papers. Just as these proposals,
([a])ϕ will be equivalent to 〈a〉⊤ ∧ [a]ϕ for atomic actions a. More generally, for
sequences of atomic actions a1; . . . ; an we have

([a1; . . . ; an])ϕ ↔ (〈a1〉⊤ ∧ [a1](· · · (〈an〉⊤ ∧ [an]ϕ)· · ·)).

_https://doi.org/10.1007/978-3-030-19570-0 43

We here go beyond sequential compositions and integrate nondeterministic com-
position and test. We show that this accounts for contingent planning, in the
sense that there is a policy solving a contingent planning task 〈S, γ,MAct〉 with
initial states S, goal formula γ and set of actions Act if and only if there is a
program π such that MAct, S � ([π])γ, where MAct is the PDL Kripke model
that captures the semantics of the actions Act.

The paper is organised as follows. In the next section we briefly recall PDL
and define planning tasks and their sequential solutions. In Sect. 3 we define
policies and contingent planning. In Sect. 4 we extend PDL by the new operator
([·]). In Sect. 5 we associate to every program a policy and, the other way round,
we associate to every policy a program in Sect. 6.

2 Background: PDL and Sequential Plans

Propositional Dynamic Logic (PDL) is a modal logic that can immediately cap-
ture at least some forms of planning. Let us detail this for the case of sequential
plans under full observability. We start by a brief introduction of star-free PDL;
the reader is referred to [8,9] for more details.

Let Prp denote a finite set of propositional variables and Act a finite set of
actions. A Kripke model MAct = 〈W, {Ra}a∈Act, V 〉 then consists of a set W

of states (alias possible worlds), each action a ∈ Act is modelled by a binary
relation Ra on W , and V : W −→ 2Prp is a valuation associating to every state
the propositional variables that are true there. Given a state s ∈ W , the possible
outcomes of executing a at s is the set of states Ra(s) = {t ∈ W | 〈s, t〉 ∈ Ra}.
When Ra(s) 	= ∅ we say that a is applicable at s.

A set of states S ⊆ W is called valuation determined if for all distinct s, t ∈
S we have V (s) 	= V (t). So S is valuation determined if all states in S are
distinguishable via their valuation. In automated planning, the set of states of
a planning domain is often just taken to be a subset of 2Prp, and hence the
set of all states is trivially valuation determined. However, in PDL, models are
rarely restricted to only allow one state per valuation, so we will not make that
restriction here either. However, to ensure a match between PDL programs and
policies, we need at least to make the following weaker assumption.

We will assume all Kripke models to be locally valuation determined : For
all actions a ∈ Act and all states s ∈ W , Ra(s) is valuation determined. This
requirement ensures that distinct outcomes of nondeterministic actions are nec-
essarily distinguishable via their valuations. This requirement is necessary to
guarantee that every policy can be translated into a corresponding program.
Policies are going to be defined as relations between states and actions. A pol-
icy could for instance contain 〈s, a〉, 〈t1, b〉, 〈t2, c〉, assigning action a to state s,
action b to state t1 and action c to state t2. Suppose Ra(s) = {t1, t2}. Then the
policy specifies to execute a in s, and depending on the outcome, do either b or
c. If the two possible outcomes t1 and t2 of a are not distinguishable by their
valuation, there might not exist a formula distinguishing them, and hence there
can be no PDL program representing the policy.

Any model MAct can be unravelled to a bisimilar, and hence modally equiv-
alent, tree model [6,9]. It follows that we can assume all our Kripke models to be
acyclic. We recall that a PDL Kripke model is cyclic if there is a natural number
n ≥ 1 and sequence of states 〈s0, s1, . . . , sn〉 such that s0 = sn and for every
k ≥ 1, 〈sk−1, sk〉 ∈ Rak

for some ak. Unravelling a locally valuation determined
model will of course give a model that is also locally valuation determined.

h s0

bs1 t s2

w

s3 s4

ride ride

cab

bus tram

bus

cab

Fig. 1. A Kripke model.

Example 1. Consider the Kripke model given in Fig. 1. The story goes as follows:
Initially, we are at home (h) and our goal is to get to work (w). We can get a
lift by a friend who, depending on the traffic situation, will either drop us off
at the train station (t) or the nearby bus station (b). We can then continue via
multiple means of transportation, including the tram, the bus or a cab. At the
bus station, taking the tram is not possible. Also, while we can take a bus from
the train station, it will not get us to work.

Kripke models can interpret formulas and programs of PDL. We recall that
the syntax of these is defined by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ

π ::= a | π;π | π∪π | ϕ?

where a ranges over Act and p over the set of atomic propositions Prp. We use the
standard abbreviations; in particular, the programs skip and fail respectively
abbreviate ⊤? and ⊥?. Furthermore, we use the notation

⋃

x∈X πx for finite
nondeterministic compositions, understanding that the latter equals fail when
X is empty. A sequential program is a PDL program of the form a1; . . . ; an, for
n ≥ 0. By convention, when n = 0 we identify such a program with skip.

Example 2. Intuitively, in Example 1, the programs π1 = ride; (tram ∪ cab) and
π2 = ride; ((b?; bus) ∪ (t?; tram)) successfully get us to work. Note that in π1,
after the application of ride, it becomes clear from the applicability of the actions
whether the action cab has to be taken or whether we can choose either of tram

or cab. In contrast, the program π2 relies on tests to ensure that we make a good
choice and, in particular, don’t take the bus from the train station.

The interpretation of formulas and programs is defined by mutual recursion
as follows:

Rπ1;π2
= Rπ1

◦ Rπ2

Rπ1∪π2
= Rπ1

∪ Rπ2

Rϕ? = {〈s, s〉 | MAct, s � ϕ}
MAct, s � p iff p ∈ V (s)

MAct, s � 〈π〉ϕ iff MAct, t � ϕ for some t ∈ Rπ(s)
MAct, s � [π]ϕ iff MAct, t � ϕ for every t ∈ Rπ(s)

The truth conditions for the boolean connectives are the standard ones. From
the provided abbrevations and semantics we get Rskip = idW = {〈s, s〉 | s ∈ W},
Rfail = ∅, and Ra1;...;an

= Ra1
◦ . . . ◦ Ran

, with the standard convention that it
equals idW when n = 0 (which justifies our identification of the empty sequential
program with skip).

Before proceeding we generalise some semantic definitions from states to sets
of states S ⊆ W . First, a is applicable at S if a is applicable at every s ∈ S.
Second, Ra(S) =

⋃

s∈S Ra(s). Third, MAct, S � ϕ iff MAct, s � ϕ for every
s ∈ S. So MAct, ∅ � ϕ for all ϕ, and we can rewrite the last truth condition of
the semantics more compactly as: MAct, s � [π]ϕ iff MAct, Rπ(s) � ϕ.

A planning task is given by a triple 〈S, γ,MAct〉 with a valuation determined
set of initial states S ⊆ W , goal formula γ of PDL and set of actions Act whose
semantics is given by the Kripke model MAct. Traditionally, planning tasks have
a single initial state, but generalising to arbitrary (valuation determined) sets
makes the technicalities in the following cleaner. A sequential program a1; . . . ; an,
alias a sequential plan, is a solution of 〈S, γ,MAct〉 if and only if

– n = 0 implies MAct, S � γ;
– n > 0 implies a1 is applicable at S and a2; . . . ; an is a solution of

〈Ra1
(S), γ,MAct〉.

Sequential solutions of planning tasks can immediately be characterised in
PDL when all actions are deterministic, i.e., when every Ra(s) is either empty
or a singleton: then the sequential plan a1; . . . ; an is a solution of 〈S, γ,MAct〉
iff MAct, S � 〈a1; . . . ; an〉γ. Things are less straightforward when actions can
be nondeterministic. We follow [1,2,5,12] and introduce a third modal operator
([a1; . . . ; an]) (noted �a1; . . . ; an� in [1] and ((a1; . . . ; an)) in [2,5]) whose semantics
is defined recursively by:

MAct, s � ([skip])ϕ iff MAct, s � ϕ

MAct, s � ([a;π])ϕ iff a is applicable at s and MAct, Ra(s) � ([π])ϕ

So ([a1; . . . ; an])ϕ is equivalent to 〈a1〉⊤∧[a1](· · · (〈an〉⊤∧[an]ϕ)· · ·). It was estab-
lished by several authors, e.g. [2,5,12], that a1; . . . ; an is a solution of 〈S, γ,MAct〉
iff MAct, S � ([a1; . . . ; an])γ.

In the rest of the paper we are going to extend the argument of this new
modal operator to arbitrary star-free PDL programs. We are going to show that
these programs capture policies, which means that our framework accounts for
contingent planning.

3 Policies and Strong Solutions to Planning Tasks

Policies relate states to actions and provide the solution concept for contingent
planning. We here introduce a slight generalisation of strong policies as defined
in [4]. Note that we have assumed our models MAct to be acyclic, and hence our
policies will also automatically be acyclic, consistent with the notion of a strong
policy in [4].

Given a model MAct, a policy (called state-action table in [4]) is a relation
Λ ⊆ W × (Act ∪ {stop}). It is defined at a set of states S ⊆ W if for every s ∈ S

there is an x ∈ Act ∪ {stop} such that 〈s, x〉 ∈ Λ. It is strongly executable if for
every s ∈ W and a ∈ Act, 〈s, a〉 ∈ Λ implies a is applicable at s and Λ is defined
at Ra(s). Note that our policies can be nondeterministic, since Λ is any relation
between states and actions (instead of a partial function from states to actions).
So we can for instance have 〈s, a〉, 〈s, b〉 ∈ Λ, which means that the policy specifies
two actions a and b in s that nature will choose nondeterministically between.

The special symbol stop is a ‘license to stop’: the elements of the set

Stop(Λ) = {t ∈ W | 〈t, stop〉 ∈ Λ}

are the checkpoints of Λ where we are going to evaluate whether the goal is
fulfilled. Such an entity is not a standard ingredient of polices, but makes sense
in a nondeterministic setting: we can have policies such as Λ = {〈s, stop〉, 〈s, a〉}
which at s specifies a nondeterministic choice by nature between stoping to act
(terminating policy execution) and performing action a. If the model MAct is
such that some goal γ is true at s and at every outcome state Ra(s), then we
are entitled to say that Λ guarantees γ.

Given a finite policy Λ, the depth of Λ from a set of states S ⊆ W is recursively
defined by:

d(Λ, S) =

{

0 if Λ \ (S × {stop}) = ∅

1 + d(Λ,
⋃

〈s,a〉∈Λ\(S×{stop}) Ra(s)) otherwise

So when d(Λ, S) = 0, the only elements of Λ are of the form 〈s, stop〉. The
function d(Λ, S) is well-defined because Λ is finite and MAct is acyclic.

Example 3. Consider the following policies for the model from Example 1:

Λ1 = {〈s0, ride〉, 〈s1, cab〉, 〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉}

Λ2 = {〈s0, ride〉, 〈s1, bus〉, 〈s2, tram〉, 〈s3, stop〉}

Both policies are acyclic, finite, strongly executable, and have a depth of 2 from
{s0}. More importantly, we can see that following these policies will always lead
us to the goal w. Also, Λ1 and Λ2 intuitively correspond to the programs π1 and
π2 from Example 2. Note that Λ1 is a nondeterministic policy, which allows us
to take either the tram or the cab from s2.

In the following, we will define what it means for a policy to solve a planning task.
Later, we will also define the correspondence between policies and programs.

Definition 1. A policy Λ is a strong solution of a planning task 〈S, γ,MAct〉
iff all of the following hold:

1. Λ is finite and strongly executable;

2. Λ is defined at S;

3. MAct,Stop(Λ) � γ.

Lemma 1. The policy S × {stop} is a strong solution of a planning task

〈S, γ,MAct〉 iff MAct, S � γ.

Proof. The policy S × {stop} is strongly executable, and is defined at S. It is
also finite, since the set S of initial states of any planning task is valuation
determined, and hence finite (there is only a finite set of propositional variables
and hence only a finite set of possible valuations).

Lemma 2. If Λ is a strong solution of a planning task 〈S, γ,MAct〉 then Λ is a

strong solution of 〈Ra(s), γ,MAct〉 for every s ∈ S and 〈s, a〉 ∈ Λ.

Proof. Let Λ be a strong solution of 〈S, γ,MAct〉 and 〈s, a〉 ∈ Λ for some s ∈ S.
In order to establish that Λ is a strong solution of 〈Ra(s), γ,MAct〉 it is enough
to prove that Λ is defined at Ra(s). This holds because Λ is strongly executable.

Lemma 3. Suppose Λ1 and Λ2 are both strong solutions of the planning task

〈S, γ,MAct〉. Then Λ1 ∪ Λ2 is also a strong solution of 〈S, γ,MAct〉.

Proof. Condition 1 of Definition 1: We need to prove finiteness and strong
executability. Λ1 ∪ Λ2 is clearly finite, as both Λ1 and Λ2 are. For strong
executability, note that if 〈s, a〉 ∈ Λ1 ∪ Λ2 then 〈s, a〉 ∈ Λi for i = 1 or
i = 2. Strong executability of Λi implies that Ra(s) is non-empty and Λi is
defined at Ra(s). Therefore Λ1 ∪ Λ2 is defined at Ra(s), too. Condition 2: If
Λ1 is defined at S, then any extension of Λ1 is also defined at S, including
Λ1 ∪ Λ2. Condition 3: If MAct,Stop(Λ1) � γ and MAct,Stop(Λ2) � γ then
MAct,Stop(Λ1) ∪ Stop(Λ2) � γ, and Stop(Λ1) ∪ Stop(Λ2) = Stop(Λ1 ∪ Λ2).

Lemma 4. Suppose Λ1 is a strong solution of 〈S1, γ,MAct〉 and Λ2 is a strong

solution of 〈S2, γ,MAct〉. Then Λ1 ∪Λ2 is a strong solution of 〈S1 ∪S2, γ,MAct〉.

Proof. Condition 1: As in the proof of the previous lemma. Condition 2: Λ1 ∪Λ2

is clearly defined at S1 ∪S2. Condition 3: MAct,Stop(Λ1 ∪Λ2) � γ just as in the
proof of the previous lemma.

The policy Λ−stop is obtained from Λ by deleting all licenses to stop: Λ−stop =
Λ \ (W × {stop}). This definition is useful to combine policies sequentially.

Lemma 5. Suppose Λ1 is finite, strongly executable and defined at S, and sup-

pose Λ2 is a strong solution of 〈Stop(Λ1), γ,MAct〉. Then Λ
−stop
1 ∪Λ2 is a strong

solution of 〈S, γ,MAct〉.

Proof. Condition 1: Λ
−stop
1 ∪ Λ2 is clearly finite. Let us show that it is also

strongly executable. Suppose 〈s, a〉 ∈ Λ
−stop
1 ∪ Λ2. If 〈s, a〉 ∈ Λ2 then, as Λ2 is

strongly executable, a is applicable at s and Λ2 is defined at Ra(s), and so is
Λ

−stop
1 ∪ Λ2. Otherwise, if 〈s, a〉 ∈ Λ

−stop
1 then, as Λ1 is strongly executable, a

is applicable at s and Λ1 is defined at Ra(s). The latter means that for every
t ∈ Ra(s) there is an xt ∈ Act∪{stop} such that 〈t, xt〉 ∈ Λ1. We distinguish two
cases: (1) when xt ∈ Act then 〈t, xt〉 ∈ Λ

−stop
1 , and so Λ

−stop
1 ∪ Λ2 is defined at t;

(2) when xt = stop then t ∈ Stop(Λ1), and as Λ2 is defined at Stop(Λ1) we have
that Λ

−stop
1 ∪ Λ2 is defined at t. It follows that Λ

−stop
1 ∪ Λ2 is defined at Ra(s).

Condition 2: let us show that Λ
−stop
1 ∪ Λ2 is defined at S. Let s ∈ S be

chosen arbitrarily. As Λ1 is defined at S, either there is an a ∈ Act such that
〈s, a〉 ∈ Λ1, and hence 〈s, a〉 ∈ Λ

−stop
1 ∪Λ2, as required. Otherwise, 〈s, stop〉 ∈ Λ1.

This implies s ∈ Stop(Λ1), and since Λ2 applies to Stop(Λ1), there must exist an
x ∈ Act∪{stop} such that 〈s, x〉 ∈ Λ2, implying 〈s, x〉 ∈ Λ

−stop
1 ∪Λ2, as required.

Condition 3: As Stop(Λ−stop
1 ∪ Λ2) = Stop(Λ2) and Λ2 is a strong solution of

〈Stop(Λ1), γ,MAct〉, we must have MAct,Stop(Λ−stop
1 ∪ Λ2) � γ.

The above lemmas basically show that union and sequential composition of two
policies preserve strong solutions.

The sequential policy associated to a sequential program a1; . . . ; an and a set
of states S ⊆ W is

SPol
(

a1; . . . ; an, S
)

=

{

∅ if n = 0

(S × {a1}) ∪ SPol
(

a2; . . . ; an, Ra1
(S)

)

otherwise

It is then straightforward to prove that the sequential program a1; . . . ; an

is a solution of the planning task 〈S, γ,MAct〉 if and only if the policy
SPol

(

a1; . . . ; an, S
)

is a strong solution of 〈S, γ,MAct〉. The other way round, it
is clearly not the case that any policy can be mapped to a sequential program.
For example, consider the policy Λ2 from Example 3. This policy assigns the
action bus to s1 and tram to s2. Since the action ride executed in s0 can either
result in s1 or s2, the policy specifies distinct actions depending on the outcome
of ride. This policy can hence not be represented as a sequential program, as after
the execution of ride, the choice of action to follow is conditional on the outcome
of ride. This is also why the PDL program π2 of Example 2 corresponding to Λ2

includes tests on the outcome of ride: π2 = ride; ((b?; bus) ∪ (t?; tram)).

4 Extending PDL by the Modal Operator ([π])

As announced, we extend the language of PDL by a third modal operator on
programs ([π]). The interpretation of ([π]) is defined inductively:

MAct, s � ([a])ϕ iff a is applicable at s and MAct, Ra(s) � ϕ

MAct, s � ([π1;π2])ϕ iff MAct, s � ([π1])([π2])ϕ
MAct, s � ([π1∪π2])ϕ iff MAct, s � (([π1])⊤ ∨ ([π2])⊤) ∧

(([π1])⊤ → ([π1])ϕ) ∧
(([π2])⊤ → ([π2])ϕ)

MAct, s � ([ψ?])ϕ iff MAct, s � ψ and MAct, s � ϕ

Satisfiability and validity are defined in the standard way. For example, the
equivalence ([π])ϕ ↔ ([π;ϕ?])⊤ is easily seen to be valid. Furthermore, it can be
checked that the equivalences ([a])ϕ ↔ 〈a〉⊤ ∧ [a]ϕ and ([a])⊤ ↔ 〈a〉⊤ are valid.
These equivalences however do not generalise to arbitrary programs.

For the model from Example 1, one can easily verify that MAct, s0 � ([π1])w
and MAct, s0 � ([π2])w.

Remark 1. Programs that are equivalent in PDL are no longer necessarily equiv-
alent under the new modality. To witness, consider the programs ride and
(ride; b?) ∪ (ride;¬b?), which have the same interpretation in PDL. In our run-
ning example, ride is applicable at s0 and nondeterministically produces either
b or ¬b. Thus MAct, s0 � ([ride])⊤, while MAct, s0 	� ([(ride; b?) ∪ (ride;¬b?)])⊤
because MAct, s0 	� ([ride; b?])⊤ and MAct, s0 	� ([ride;¬b?])⊤.

Remark 2. Our semantics has two kinds of nondeterminism. The nondetermin-
ism of atomic programs is demonic: it is the environment who chooses for exam-
ple the outcome of the nondeterministic ride action. The nondeterminism of the
choice-operator ∪ has an angelic component: while all applicable actions have to
be successful, it is not required that all actions are applicable. Let us illustrate
this by a couple of examples.

The choice operator necessarily has to be given a semantics that has such an
angelic flavour if we want to account for nondeterministic policies. In our running
example, the policy Λ3 = {〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉} is a strong solution of
the planning problem of getting from the train station to work. So MAct, s2 �

([tram])w ∧ ([cab])w. The only reasonable description of Λ as a PDL program is
tram∪cab, and indeed, MAct, s � ([tram∪cab])w. Now let us contrast this with
states s1 and s2 where MAct, s1 � b∧ ([bus])w and MAct, s2 � ¬b∧ ([tram])w. The
policy Λ4 = {〈s1, bus〉, 〈s2, tram〉, 〈s3, stop〉} is a strong solution of the planning
problem 〈{s1, s2}, w,MAct〉. The only reasonable description of Λ4 seems to be
the PDL counterpart of the conditional program “if b then bus else tram”,
namely (b?; bus)∪(¬b?; tram); and indeed, we have MAct, {s1, s2} � ([(b?; bus)∪
(¬b?; tram)])w.

Note that we cannot have a purely angelic semantics where ∪ is interpreted
as disjunction, that is, where ([a1 ∪ a2])ϕ ↔ (([a1])ϕ ∨ ([a2])ϕ). To see this, first
note that we have MAct, s2 � ([tram])w ∧ ([bus])⊤ ∧ ([bus])¬w. A purely angelic
semantics would hence give us MAct, s2 � ([tram ∪ bus])w, something we would
not like to assert: the agent does not have a free choice between tram and bus

to guarantee w (if taking the bus, the agent will not end up at the workplace).
Contrast with the fact that MAct, s1 � ([bus])w ∧ ¬([tram])⊤. According to our
semantics, we actually get MAct, s1 � ([bus ∪ tram])w. This is OK, since tram

is not even applicable at s1, so the only possible execution of bus ∪ tram in
s1 is to execute bus. One can think of ∪ as giving a demonic nondeterministic
choice where nature chooses which action will be executed, but only among the
applicable ones. From the perspective of the acting agent, we can think of it
as the agent choosing an arbitrary action, but again only among the applicable
ones.

An axiomatisation of the validities of our language is obtained by adding the
following to the axiomatisation of PDL:

([a])ϕ ↔ 〈a〉⊤ ∧ [a]ϕ (Atom)

([π1;π2])ϕ ↔ ([π1])([π2])ϕ (Seq)

([π1∪π2])ϕ ↔ (([π1])⊤ ∨ ([π2])⊤) ∧ (([π1])⊤→([π1])ϕ) ∧ (([π2])⊤→([π2])ϕ) (NDet)

([ψ?])ϕ ↔ ψ ∧ ϕ (Test)

The first four axioms are reduction axioms for program operators. They can
be used from the left to the right to eliminate complex programs, applying
the rule of replacement of equivalents (that can be derived without the rule of
equivalents for ([π])) to subformulas that are not in the scope of any ([π]). This
results in formulas where all programs are of the form a.

Soundness of our axioms can be proved straightforwardly, given that the
axioms closely match the truth conditions for ([π]). Completeness of the axioma-
tisation can be proved by eliminating all ([π]) from formulas via the above reduc-
tion axioms. If all ([π]) are eliminated from a formula, what remains is a formula
in the language of standard PDL whose satisfiability can be checked by solvers
for PDL [7,10]. It follows that satisfiability and validity in our augmented PDL
are both decidable.

We note that

([π1∪π2])ϕ ↔ (([π1])ϕ∧([π2])ϕ) ∨ (([π1])ϕ∧¬([π2])⊤) ∨ (¬([π1])⊤∧([π2])ϕ)

is a propositionally equivalent formulation of the axiom for nondeterministic
composition. In the rest of the section we provide some properties of our logic.

The modal operator ([π]) has almost all the properties of a normal modal
operator: it satisfies the rule of monotony and the axiom of conjunction, and
therefore also the K-axiom [3]. However, the rule of necessitation does not pre-
serve validity.

Proposition 1. The following rule of monotony for ([π]) is derivable:

if ϕ → ϕ′ then ([π])ϕ → ([π])ϕ′ (RM([.]))

Proof. By induction on the form of π. We only give the case of nondeterministic
composition. Suppose ϕ → ϕ′. ([π1∪π2])ϕ is logically equivalent to

(([π1])⊤ ∨ ([π2])⊤) ∧ (([π1])⊤→([π1])ϕ) ∧ (([π2])⊤→([π2])ϕ).

Applying to the latter the induction hypothesis that ϕ → ϕ′ implies
([π1])ϕ → ([π1])ϕ

′ and ([π2])ϕ → ([π2])ϕ
′ (twice), we obtain

([π1∪π2])ϕ → (([π1])⊤ ∨ ([π2])⊤) ∧ (([π1])⊤→([π1])ϕ
′) ∧ (([π2])⊤→([π2])ϕ

′),

which is equivalent to ([π1∪π2])ϕ → ([π1∪π2])ϕ
′.

Given that we have rules of equivalence for the other PDL connectives, it
follows from the above that the rule of replacement of equivalents is derivable.
Note that the theorem ([π])ϕ → ([π])⊤ directly follows from RM([.]).

Proposition 2. The following axiom of conjunction is a theorem:

(([π])ϕ ∧ ([π])ϕ′) → ([π])(ϕ ∧ ϕ′) (C([.]))

Proof. The proof is by induction on the form of the program. The base cases use
axioms Atom and Test and PDL theorems. The induction step uses the above
rule of monotony RM([.]). For sequential composition we have:

1. (([π1])([π2])ϕ ∧ ([π1])([π2])ϕ
′) → ([π1])(([π2])ϕ ∧ ([π2])ϕ

′) (by IH)
2. (([π2])ϕ ∧ ([π2])ϕ

′) → ([π2])(ϕ ∧ ϕ′) (by IH)
3. ([π1])(([π2])ϕ ∧ ([π2])ϕ

′) → ([π1])([π2])(ϕ ∧ ϕ′) (from 2 by RM([.]))
4. (([π1])([π2])ϕ ∧ ([π1])([π2])ϕ

′) → ([π1])([π2])(ϕ ∧ ϕ′) (from 1 and 3)
5. (([π1;π2])ϕ ∧ ([π1;π2])ϕ

′) → ([π1;π2])(ϕ ∧ ϕ′) (from 4 by Axiom Seq)

The case of nondeterministic composition is similar but a bit lengthy due to the
size of Axiom NDet.

The equivalence (([π])ϕ ∧ ([π])ϕ′) ↔ ([π])(ϕ ∧ ϕ′) can be proved from Axiom
C([.]) and the derived inference rule RM([.]).

Altogether, it looks like ([·]) is a normal modal operator. However, the rule
of necessitation ‘from ϕ infer ([π])ϕ’ fails to preserve validity. Indeed, ([π])⊤ fails
to be valid. To see this, consider a model where Ra is empty: then 〈a〉⊤ is false
at any state s, and therefore ([a])⊤ is false everywhere, too. This is as it should
be: if 〈a〉⊤ was valid then any action a would be applicable. Worse, validity of
〈π〉⊤ for any program π would mean that e.g. the ‘fail’ program ⊥? would be
applicable.

The following theorems can be proved by induction on the form of programs,
except item (7).

Proposition 3. The following are theorems.

([π])⊥ ↔ ⊥ (1)

([π])ϕ → 〈π〉ϕ (2)

[π]ϕ ∧ ([π])⊤ → ([π])ϕ (3)

([π∪⊥?])ϕ ↔ ([π])ϕ (4)

([π1∪π2])⊤ ↔ (([π1])⊤ ∨ ([π2])⊤) (5)

([(π1;π2)∪(π1;π
′
2)])ϕ → ([π1; (π2∪π′

2)])ϕ (6)

([ψ1? ∪ ψ2?])ϕ ↔ (ψ1 ∨ ψ2) ∧ ϕ (7)

None of the implications in Proposition 3 can be extended into equivalences.
To see this for item (2), it suffices to consider a nondeterministic atomic action a

with two possible outcomes p and ¬p: then 〈a〉p holds but ([a])p does not. For item
(3), this follows from the falsifiability of ([π])ϕ → [π]ϕ. To see this, consider the

program π = p? ∪ (a;¬p?) and a model MAct with a state s where p is true and
where a nondeterministically produces outcome p or ¬p. Then MAct, s � ([π])p,
in particular because MAct, s � ¬([a;¬p?])⊤. On the other hand, MAct, s 	� [π]p
because MAct, s 	� [a;¬p?]p. For item (6), this can be seen from from the example
that we have given in Remark 1.

5 From Programs to Policies

In this section we associate a policy to a given program. Recall that models MAct

are assumed to be acyclic (without loss of generality). We recursively associate
to every program π and set of states S a policy Pol(π, S) as follows:

– If MAct, S 	� ([π])⊤ then Pol(π, S) = ∅;
– If MAct, S � ([π])⊤ then, depending on the form of π:

Pol(ψ?, S) = S × {stop}

Pol(a, S) =
(

S × {a}
)

∪
(

Ra(S) × {stop}
)

Pol(π1;π2, S) =
(

Pol(π1, S)
)−stop

∪ Pol(π2,Stop(Pol(π1, S)))

Pol(π1∪π2, S) =
⋃

s∈S

(

Pol(π1, {s}) ∪ Pol(π2, {s})
)

Example 4. Suppose MAct is such that Ra1
= {〈s1, t1〉} and Ra2

= {〈s2, t2〉}.
Then Pol(a1∪a2, {s1, s2}) = {〈s1, a1〉, 〈s2, a2〉, 〈t1, stop〉, 〈t2, stop〉}. This justifies
the case of nondeterministic composition: Pol(a1∪a2, {s1, s2}) would be empty
had we defined Pol(π1 ∪π2, S) as Pol(π2, S)∪Pol(π2, S) (plus Pol(a, S) as empty
if a is inapplicable at some s ∈ S).

Example 5. Suppose MAct is the model from our running example (Fig. 1). For
the program h? we have Pol(h?, {s0}) = {〈s0, stop〉}. Consider the program
ride; b?. Then MAct, s0 	� ([ride; b?])⊤, and therefore Pol(ride; b?, {s0}) = ∅. Con-
sider the program π = h? ∪ (ride; b?). Then MAct, s0 � ([h?])⊤ and MAct, s0 	�
([ride; b?])⊤, and therefore Pol(π, {s0}) = {〈s0, stop〉}.

While Rπ(S) contains Stop(Pol(π, S)) for every set of states S (the proof is
by induction on the form of π), the converse fails to hold. This can be seen from
the above example: s1 is not in Stop(Pol(π, S)), although it is in Rride(s).

Example 6. For the model from our running example and the program consisting
of the single action ride, we obtain the following policy:

Pol(ride, {s0}) = ({s0} × {ride}) ∪ ({s1, s2} × {stop})

= {〈s0, ride〉, 〈s1, stop〉, 〈s2, stop〉}

For the program π1 = ride; (tram ∪ cab) we then obtain the following policy:

Pol(π1, {s0})

= Pol(ride, {s0})−stop ∪ Pol(tram ∪ cab,Stop(Pol(ride, {s0})))

= {〈s0, ride〉} ∪ Pol(tram ∪ cab, {s1, s2})

= {〈s0, ride〉} ∪
⋃

{Pol(tram, {s1}) ∪ Pol(cab, {s1}),

Pol(tram, {s2}) ∪ Pol(cab, {s2})}

= {〈s0, ride〉} ∪ ∅ ∪ {〈s1, cab〉, 〈s3, stop〉}

∪ {〈s2, tram〉, 〈s3, stop〉} ∪ {〈s2, cab〉, 〈s3, stop〉}

= {〈s0, ride〉, 〈s1, cab〉, 〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉} = Λ1

This verifies that indeed Λ1 is the policy corresponding to π1 as claimed in
Example 3.

Lemma 6. Suppose S is finite. Then Pol(π, S) finite, and for every a ∈ Act,

〈s, a〉 ∈ Pol(π, S) implies that a is applicable at s.

Proof. We can prove by induction on the form of π that for every a ∈ Act,
if 〈s, a〉 ∈ Pol(π, S) then a is applicable at s. Now note that since models are
assumed to be locally valuation determined, for every action a and state s,
Ra(s) must be finite. Finiteness of Pol(π, S) is then due to finiteness of S and
to finiteness of every Ra(s); the proof is by induction on the form of π.

The hypotheses of Lemma 6 are not enough to guarantee strong exe-
cutability of Pol(π, S). Consider our model from Fig. 1 which clearly satis-
fies the hypotheses of Lemma 6. Here, Pol(ride; tram, {s0}) is empty because
MAct, s0 	� ([ride; tram])⊤. The next result says that Pol(π, S) is strongly exe-
cutable under the condition that ([π])γ is true at S (for any γ, so in partic-
ular when γ is ⊤). It moreover says that then Pol(π, S) is defined at S and
MAct,Stop(Pol(π, S)) � γ.

Proposition 4. Let 〈S, γ,MAct〉 be a planning task and suppose MAct, S �

([π])γ. Then Pol(π, S) is a strong solution of 〈S, γ,MAct〉.

Proof. Since 〈S, γ,MAct〉 is a planning task, S is valuation determined, and
hence finite. Thus, by Lemma 6, Pol(π, S) is finite, and 〈s, a〉 ∈ Pol(π, S) implies
that a is applicable at s for every a ∈ Act. To show that Pol(π, S) is strongly
executable it remains to show that 〈s, a〉 ∈ Pol(π, S) implies that Pol(π, S) is
defined at Ra(s). Furthermore, we have to show that Pol(π, S) is defined at S

and that MAct,Stop(Pol(π, S)) � γ. We proceed by induction on the form of π.
MAct, S � ([ψ?])γ implies MAct, S � ψ and MAct, S � γ by the truth con-

dition for test. By Lemma 1, Pol(ψ?, S) = S × {stop} is a strong solution of
〈S, γ,MAct〉.

MAct, S � ([a])γ implies MAct, Ra(S) � γ. The policy Pol(a, S) =
(

S×{a}
)

∪
(

Ra(S)×{stop}
)

is defined at S and at Ra(S) (so due to the latter it is strongly
executable). Hence Pol(a, S) is a strong solution of 〈S, γ,MAct〉.

MAct, S � ([π1;π2])γ implies MAct, S � ([π1])([π2])γ. By induction hypothesis
Pol(π1, S) is a strong solution of 〈S, ([π2])γ,MAct〉. So MAct,Stop(Pol(π1, S)) �

([π2])γ. We apply the induction hypothesis again: Pol(π2,Stop(Pol(π1, S))) is a
strong solution of the planning task 〈Stop(Pol(π1, S)), γ,MAct〉. Then

Pol(π1;π2, S) =
(

Pol(π1, S)
)−stop

∪ Pol(π2,Stop(Pol(π1, S)))

is a strong solution of 〈S, γ,MAct〉 thanks to Lemma 5.

MAct, S � ([π1∪π2])γ implies that for every s ∈ S, one of the following holds:
1. MAct, s � ([π1])γ and MAct, s � ([π2])γ;
2. MAct, s � ([π1])γ and MAct, s 	� ([π2])⊤;
3. MAct, s 	� ([π1])⊤ and MAct, s � ([π2])γ.

Remember that by definition Pol(πi, S) is empty if MAct, S 	� ([πi])⊤. Therefore
by the induction hypothesis one of the following holds:

1. Pol(π1, {s}) and Pol(π2, {s}) are both strong solutions of 〈{s}, γ,MAct〉;
2. Pol(π1, {s}) is a strong solution of 〈{s}, γ,MAct〉 and Pol(π2, {s}) = ∅;
3. Pol(π1, {s}) = ∅ and Pol(π2, {s}) is a strong solution of 〈{s}, γ,MAct〉.

In each of these three cases we have that Pol(π1, {s}) ∪ Pol(π2, {s}) is a strong
solution of 〈{s}, γ,MAct〉, where in the first case we apply Lemma 3. Finally, by
Lemma 4 we conclude that Pol(π1∪π2, S) =

⋃

s∈S

(

Pol(π1, {s}) ∪ Pol(π2, {s})
)

is a strong solution of 〈S, γ,MAct〉. This completes the proof.

We immediately get the following, given that by definition Pol(π, S) is empty
when MAct, S 	� ([π])γ.

Corollary 1. Let 〈S, γ,MAct〉 be a planning task. Then MAct, S � ([π])γ iff

Pol(π, S) is a strong solution of 〈S, γ,MAct〉.

6 From Policies to Programs

In this section we associate a program to a given policy. Given a model MAct =
〈W, {Ra}a∈Act, V 〉, the characteristic formula of a state s ∈ W is

χs =
(

∧

p∈V (s)

p
)

∧
(

∧

p/∈V (s)

¬p
)

Such formulas will be tested in the program associated to a policy Λ in order to
correctly capture the actions of Λ that apply at s. The crucial property is that
χs is only true in states that have the same valuation as s, as is immediately
seen from the definition of the χs.

The abbreviation skipifstopΛ(s) =
⋃

〈s,stop〉∈Λ skip will be convenient: when

〈s, stop〉 ∈ Λ then it is equivalent to skip; otherwise (by our convention of
Sect. 2) it equals fail. Now we are ready to associate to every finite policy Λ

and finite set of states S a program πΛ,S as follows:

πΛ,S =
⋃

s∈S

χs?;

skipifstopΛ(s) ∪
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

)

The function πΛ,S is well-defined because Λ is finite and MAct is acyclic.

Proposition 5. If Λ is a strong solution of the planning task 〈S, γ,MAct〉 then

MAct, S � ([πΛ,S])γ.

Proof. By induction on the depth d(Λ, S) of the policy Λ from S. If d(Λ, S) =
0 then there can be no 〈a, s〉 ∈ Λ for any s ∈ S, and for every s

the subprogram
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

)

of Pol(Λ, S) is the fail program.

Therefore πΛ,S is
⋃

s∈S

(

χs?;
(

skipifstopΛ(s) ∪ fail
))

, which is equivalent to
⋃

s∈S

(

χs?;
(

skipifstopΛ(s)
))

, by Proposition 3, item (4). Suppose Λ is a strong
solution of 〈S, γ,MAct〉. So γ is true at Stop(Λ) = S and Λ applies to S.
The latter means that skipifstopΛ(s) equals skip for every s ∈ S. Therefore
the program πΛ,S equals

⋃

s∈S (χs?; skip), which is equivalent to the program
⋃

s∈S χs? (more precisely, we have Rπ;skip = Rπ ◦ R⊤? = Rπ). By item (7) of

Proposition 3, the formula
([

⋃

s∈S χs?
])

γ is equivalent to (
∨

s∈S χs) ∧ γ; and as

MAct, S �
∨

s∈S χs, we have that MAct, S �
([

⋃

s∈S χs?
])

γ. So we can conclude

that MAct, S �
([

πΛ,S

])

γ.
If d(Λ, S) ≥ 1 then suppose Λ is a strong solution of 〈S, γ,MAct〉. Choose

s ∈ S arbitrarily. We then need to prove MAct, s �
([

πΛ,S

])

γ. By Lemma 2, Λ is
a strong solution of 〈Ra(s), γ,MAct〉 for every 〈s, a〉 ∈ Λ. Then by the induction
hypothesis we have for every 〈s, a〉 ∈ Λ

MAct, Ra(s) �
([

πΛ,Ra(s)

])

γ,

i.e., as Λ applies to s, that for every a such that 〈s, a〉 ∈ Λ:

MAct, s �
([

a
])

([πΛ,Ra(s)])γ.
Therefore,

MAct, s �
∧

a|〈s,a〉∈Λ

([

a;πΛ,Ra(s)

])

γ,

which by the validity of Axiom NDet implies that

MAct, s �
([

⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

)])

γ.

Furthermore, as Λ is a strong solution of 〈S, γ,MAct〉 we have MAct,Stop(Λ) � γ

and hence,

MAct, s � ([skipifstopΛ(s)])γ ∨ ¬([skipifstopΛ(s)])⊤.

Due to the validity of Axiom NDet we can combine the last two lines and obtain

MAct, s �
([

skipifstopΛ(s)∪
(
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

))])

γ.

Since MAct, s � χs, we have:

MAct, s �
([

χs?
])([

skipifstopΛ(s)∪
(
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

))])

γ.

Using the validity of Axiom Seq, we then get:

MAct, s �
([

χs?;
(

skipifstopΛ(s)∪
(
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

)))])

γ.

Since the set S of initial states of any planning task is assumed to be valuation
determined, we must have MAct, s � ¬χt for every t ∈ S \ {s}. This implies
MAct, s � ¬([χt])⊤, and hence:

MAct, s � ¬
([

χt?;
(

skipifstopΛ(t)∪
(
⋃

a|〈t,a〉∈Λ

(

a; πΛ,Ra(t)

)))])

⊤, for t ∈ S \ {s}.

Applying Axiom NDet to the last two lines, we now get

MAct, s �
([

⋃

s∈S

(

χs?;
(

skipifstopΛ(s)∪
⋃

a|〈s,a〉∈Λ

(

a;πΛ,Ra(s)

))

)

])

γ.

In other words, MAct, s �
([

πΛ,S

])

γ as required.

Putting Propositions 4 and 5 together now finally gives us the following.

Corollary 2. A planning task 〈S, γ,MAct〉 has a strong solution iff there exists

a star-free PDL program π such that MAct, S � ([π])γ.

This indicates that PDL with our new modality ([·]) provides an appropriate
linguistic and semantic framework to reason about policies.

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional epistemic planning. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol.
7519, pp. 94–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33353-8 8

2. Bolander, T., Engesser, T., Mattmüller, R., Nebel, B.: Better eager than lazy? How
agent types impact the successfulness of implicit coordination. In: Proceedings of
the 16th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2018). AAAI Press (2018)

3. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

4. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003)

5. Engesser, T., Bolander, T., Mattmüller, R., Nebel, B.: Cooperative epistemic multi-
agent planning for implicit coordination. In: Ghosh, S., Ramanujam, R. (eds.)
Proceedings of the Ninth Workshop on Methods for Modalities, M4M. EPTCS,
vol. 243, pp. 75–90 (2017)

6. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications, Studies in Logic and the Foundations of Mathe-
matics, vol. 148. Elsevier (2003)

7. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 437–452. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 32

8. Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of
Philosophical Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
10. Hustadt, U., Schmidt, R.A.: A comparison of solvers for propositional dynamic

logic. In: Schmidt, R.A., Schulz, S., Konev, B. (eds.) Proceedings of the 2nd Work-
shop on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh, Scot-
land, UK, 14 July 2010. EPiC Series in Computing, vol. 9, pp. 63–73. EasyChair
(2010)

11. Li, Y.: Knowing What to Do: A Logical Approach to Planning and Knowing How.
Ph.D. thesis, University of Groningen (2017)

12. Yu, Q., Li, Y., Wang, Y.: More for free: a dynamic epistemic framework for con-
formant planning over transition systems. J. Logic Comput. 27, 2383–2410 (2017)

