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ABSTRACT 
The effects of as-produced and treated by HNO3(3M) carbon nanohorns on the microviscosity of 
rat erythrocyte membranes and the viscosity of the water-<ontaining plasma protein matrix were 
investigated by the method of spin probes. Addition of nanohoms at the concentration of lO0µg/ 
ml to a suspension of erythrocytes led to an increase in membrane microviscosity during 4 h 
(about 60% effect). ln addition, it was shown that nanohorns also induced an increased polarity of 
the microenvironment for lipophilic probes in the outer layer of membrane phospholipids, as well 
as disorders in erythrocytes membranes. Addition of nanohorns to plasma led to a little decrease 
in the viscosity of water and protein matrix, apparently, due to its partial destruction, impacting 
especially albumin. Pristine and treated by HNO3(3M) acid nanohorns was found more cytotoxic 
than nanoparticles of oxidized graphene, and significantly less than carbon nanotubes, which are 
known to dramatically increase the miaoviscosity of the membranes of erythrocytes and disrupt 
their integrity. 
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1. Introduction

Carbon nanomaterials are of particular interest in the field 
of scientific research and in industrial applications. One of 
the areas of research and application of carbon nanomateri
als is biomedicine.11•21 Carbon-based nanostructures are not 
rejected by living tissues and can be used as drug delivery 
and imaging agents. However, the use of such materials 
requires an assessment of health risks and an assessment of 
the environmental impact of nanomaterials.12.3! One of the
first studied carbon nanostructures for medical applications 
was the molecule �- Injection of C60 into a living organ
ism does not exert a toxic effect, which was observed in the 
vital activity of animais. (3-

61 However, it bas also been 
shown that C60 molecules can accumulate in the liver 
and spleen. 

Unlike the fullerene molecule, the discovery of carbon 
nanotubes (CNTs) introduced a controversial view of their 
toxicity. Their interaction with the cell and the effect on the 
living organism as a whole may depend on such parameters 
as the state of the aggregates, the production method, aspect 
ratio, cleaning and functionalization of the surface. 171 Of the
various types of CNTs, the toxicity of single-wall carbon 
nanohorns (CNHs) is not clear. 

CNHs were füst discovered by lijima and coworkers. 18•91 

CNHs are carbon nanostructures belonging to the family of 
CNTs. They consist of single layers of a graphene sheet 

wrapped in a tubule with conical caps, a diameter of 
2-4 nm, tubule length of 40 to 50 nm and cone angle
of 20°.IS.9!

CNHs form spherical aggregates with a diameter of 
80-l00nm, inside which there are randornly oriented horn
like layers of graphene about 10 nm in size and a distance
between planes about 4-5 nm. 110-121 In general, CNHs are
interacting very strongly in these aggregates and it is thus
very difficult to separate them into individual nanoparticles.
Covalent modification of CNHs modifies their solubility,
both in organic solvents and aqueous media. It bas signifi
cance for studying the biological properties of nano
horns. 112•131 Aqueous dispersions of modified nanohorns
obtained without the use of surfactants do not cause the
death of primary phagocytic cellsP41 It indicates that after
penetration into the cells, the carbon nanopartides do not 
exhibit negative effects, at least for several days. Many
researchers, working with CNHs, consider that functional
ized nanohorns are not toxic and can be successfully used as
carriers of biologically active substances and medicines for
targeted delivery to organs and tissues of living
organisms.18•101 

The interaction of the "needles" of the nanohorns aggre
gates with the surface of cell membranes can lead to 
destruction of the outer membranes bilayer. This may be the 
main mechanism of nanohorns cytoto xicityl10,15l
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The method of spin probes was already shown to be use
fui to solve similar problems. 116'171 It can be used to estimate 
the disorder parameter of phospholipids as well as to evi
dence an increase in the polarity of the microenvironment 
of the probe in the outer lipid layer of membranes when 
they are damaged, using electron paramagnetic resonance 
(EPR) spectra of paramagnetie labels (stable nitro
xide radicals ). 

The purpose of this paper is to describe the influence of 
the features of initial and treated CNHs by HNO3(3M) acid 
on the microviscosity of the erythrocyte membranes in rats, 
as well as the change in the polarity and orientation (dis
order) of the phospholipids of their outer layer by the 
method of spin probes. It was evaluated the influence of 
CNHs on the viscosity of the surface water-protein matrix 
of blood plasma, primarily on serum albumin (SA) and the 
interaction features of paramagnetic models of drugs with 
nanohorns, as potential means of their targeted delivery. 

2. Materials and methods

2.1. Synthesis of CNHs 

CNHs were synthesized by the electric arc discharge synthe
sis on an apparatus described earlier. 118•191 The apparatus 
consists of a water-cooled reaction chamber made of stain
less steel with a volume of ~150 L with changeable graphite 
electrodes moved by a manipulator; it is equipped with a 
vacuum system and gas regulation and is operated with DC 
power. During the simultaneous evaporation of seven graph
ite electrodes with a diameter of 6 mm in the electric arc 
under the standard synthesis conditions (He pressure of 
~ 104 Pa, current of ~ 1200 A) carbon nanomaterials are 
formed on cold walls of the chamber (inCNH). 

Carbon nanomaterials in general are poorly soluble in 
most organie and aqueous solvents. Therefore, to study the 
properties of CNHs, their surface was treated by nitric acid 
solution (3 M) at 70 °C for 1 h. l13l After treatment in acid. 
the sample was washed to neutral pH and dried in a muffle 
furnace at 100 °C for 10 h (oxCNH). 

The probe is a stable nitroxide radical based on palmitic 
acid (Figure 1). It contains a quaternary ammonium frag
ment which can be considered as an ionic surfactant com
patible with both hydrophobie and hydrophilic media. The 
lipophilic alkyl fragment of the probe allows it to penetrate 
into the lipophilic layer of erythrocyte membranes. From the 
EPR spectra of the probe, the correlation time of Brownian 
rotational diffusion of the probe in membrane cells and 
hydrophobie cavities of plasma proteins was evaluated. 120•211 

The probe was added to a suspension of erythrocytes or 
blood plasma from a concentrated solution in DMSO or 
methanol. The final concentration of the solvent in the sus
pension of samples was in the range 0.5-1 vol.%. 

The preparation procedure of erythrocyte mass and 
plasma from rat blood was described earlier.1201 The erythro
cytic mass and plasma obtained after centrifugation were 
diluted 2-fold with saline buffer. The erythrocyte concentra
tion was about 9 x 106/mm3.The SA in dilute plasma was at 
30 ± 5 mg/mL. 121 .22! Selection and work with animais, 

Figure 1. Structure of used spin probe. 

statistical processing of the experimental results was carried 
out as described earlier·1201 

2.2. Characterization 

The structure of CNHs was studied using transmission elec
tron mieroscopy (TEM) with a Jeol 2010 microscope with a 
lattice resolution of 1.4 A and point resolution of 1.8 A as 
well as by Raman Spectroscopy with Triplemate (Spex) using 
Ar + laser 488 nm. 

Identification of functional groups at the surface of car
bon nanostructures was investigated by infrared spectros
copy on IR Fourier spectrometer VERTEX 80. 

XPS spectra were measured at the Berlin 
Elektronenspeicherring für Synchrotronstrahlung (B ESSYII) 
using the Russian-German beamline of monochromatized 
radiation and the MUSTANG experimental station. The XPS 
spectra were recorded with a VG CLAM-4 hemispherical 
analyzer. The photon excitation energy was 800 eV. 

Prior to the experiment, the aqueous suspension of nano
horns was sonicated for 30 min by Ultrasonic Cleaner 
( 100 W, 40 kHz). The final concentration of the initial and 
treated by dilute nitric acid CNHs in the aqueous suspen
sion of erythrocytes or plasma was about 100 µg/mL. 

The EPR spectra of the paramagnetic probes in the sus
pension were recorded at 24 °C using the ESR Spectrometer 
CMS8400 radio spectrometer. The magnitude of the mag
netie field was 2 mT. Microviscosity of erythrocyte mem
branes was evaluated on the basis of processing the intensity 
and width of the lines of the EPR spectra of stable nitroxide 
radicals, spin probes interacting with the external environ
ment (lipid bilayer of erythrocyte membranes, hydrophobie 
pockets of SA, water).120.21 ! The following formula 1 was 
used to calculate the correlation time of the Brownian rota
tional diffusion of the probe (te):

te(+!/ 1) = 6.65 X 10 10C.1H+i[(h+1 /h-1) 112-l], (1) 
where '1H+1 is the width of the component with the mag
netie quantum number of the 14N nucleus (M = +l), 
h+1, h I is the intensity of the components of the EPR spec
trum with the magnetic quantum number of the 14N 
nucleus (M = +1,-1). 

To estimate the erythrocyte membranes structure, the 
anisotropy parameter of the EPR spectra (e) was used. This 
parameter was determined by the following formula (2i 16.171: 

e= [(ho/h+1) I12 -1)]j[(ho/h 1) 112 - 1)] (2) 
where ho is the intensity of the components of the EPR 
spectrum with the magnetic quantum number of the 14N 
nucleus (M=0).

Ali recorded EPR spectra were processed with a com
puter. Aiso parameters, h0, h+1, h 1, the time of correlation 



Figure 2. Nanohorns SEM images of (a) initial (inCNH) and (b) treated CNH by HN03(3M) (oxCNH); TEM images (c) initial (inCNH) and (d) treated CNH by 
HNÛJ(3M) (oxCNH). 

of the rotational diffusion of the probe were automatically 
measured and calculated. 

3. Results and discussion

The morphology of initial and modified CNHs was investi
gated using SEM and TEM (Figure 2). According to the 
SEM images, CNHs are agglomerated partides. The average 
diameter of such partides for inCNH is 70 nm (Figure 2a). 
After treatment by HNO3(3M) the nanoparticle size 
decreased (Figure 2b). The average oxCNH size was 60 nm. 
TEM images show that CNHs are horn-like nanostructures 
agglomerated into nanopartides. The angle of the top of the 
nanohorns varies from 14° to 17°. 

Raman spectra of initial and treated by dilute nitric acid 
nanohorns are characterized by mainly two modes, D 
(1350cm 1

) and G (1580cm 1
). The G mode corresponds

to tangential atomic vibrations of the graphite lattice (not 
presented here). 1201 The D mode indicates defect carbon
states in the graphite mesh.123

•
241 The I(D)/I(G) ratio meas

ured for the determination of sample defectiveness was 1.1 
and 1.2 for inCNH and oxCNH, respectively. A slight 
increase in the ratio of integral intensities may be due to 
decrease in the size of nanopartide agglomerates. This fact 
is supported by the SEM data presented above. 

The functional groups at CNH surface were identified by 
infrared spectroscopy (Figure 3a). A broad band at 
3400 cm 1 is attributed to the presence of O-H vibrations of 
hydroxyl groups and adsorbed water in the samples. 

Absorption bands at 1720 cm 1 and 1560 cm 1 correspond
to C=O vibrations of carbonyl groups and the graphite lat
tice (C=C), respectively. The band at 1030cm 1 is assigned 
to C-O vibrations of carboxyl groups on the surface of 
nanohorns. 1251 Another band at 1170 cm 1 can be attributed
to hydroxyl groups. 1261 It is seen that after treatment by
HNO3(3M) the band intensity decreases from the spectra. 
This can indicate a decrease in the oxygen concentration in 
the sample. This change can be caused by that during treat
ment by dilute nitric acid the carboxyl groups (COOH) are 
formed first, and on heating decarboxylation occurs with the 
release of carbon dioxide. This is confümed by the XPS Ols 
spectra shown in Figure 3b. The XPS Ols spectra were fitted 
by three components. The peak at 532.5 eV is assigned to 
C =  0 groups. The peaks at 531.1 eV and 534.6eV are 
assigned to COOH and C-OH or C-O-C groups, respect
ively.121-291 After treatment in HNO3(3M) the COOH-com
ponent decreases. The oxygen atomic ratio calculated from 
the peak areas in the survey spectrum shows that its magni
tude decreased from 7.4 at. % to 5.3 at.% after treatment by 
HNO3(3M) (not represented). 

EPR spectra were recorded in a field of 2 mT. The arrow 
indicates the direction of the sweep of the magnetic field of 
the radio spectrometer. The EPR spectrum of the spin probe 
can be described as an ionic surfactant, compatible with 
both a lyophilic and a lyophobic medium due to the pres
ence of the quaternary nitrogen. In aqueous solutions, probe 
forms micelles, reminiscent of the structure of the liposome 
membrane of cells of living organisms. The EPR spectra of 
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Figure 3. (a) FT IR and (b) XPS Ols spectra and of CNH before (inCNH) and after modification by treatment by nitric acid (oxCNH). 

the probe presents a clear triplet, indicating the absence or 
loss of exchange interactions between nitroxide fragments 
(Figure 4). The deviations from the ideal triplet 1:1:1 
(broadening of the lines, growth of the line half-width, 
change in the line intensity ratio (ho, h+1, h 1), and shift of 
the g-factor) detected in the spectra indicate a significant 
interaction of the paramagnetic nitroxyl fragment with the 
components of the medium. From the EPR spectra, the cor
relation time ( •c) of the Brownian rotating diffusion probe 
(formula 1) and the anisotropy parameter (s) (formula 2) 
were calculated for different incubation times of nanohorns 
with a probe (t). A slow progressive decrease in the correl
ation time of -r is observed and the parameter of the anisot
ropy (s) of the spectra increases significantly, when the 
micelles of the probe are incubated with the nanohorns 
(Table 1). This means that the nanohorns determine the 
anisotropy of the Brownian rotational diffusion of the probe 
in the micelles.(16) The EPR spectra theory91 relates the
experimental parameter s to the anisotropy of the free rad
ical rotation (d) equal to the ratio of the principal diffusion 
tensors Dn/D.L. A strong increase in s indicates a significant 
increase in the anisotropy of the rotation of the probe d in 
the micelles under the action of nanohorns. Apparently, the 
interaction of long alkyl "tails" of the probe with cone
shaped "needles" of CNHs aggregates takes place, resulting 
in the orientation of the probes along the nanohorns, thus 
increasing the anisotropy of the probe rotation (anisotropy 
of the EPR spectra). 

The EPR spectra of the probe in the blood plasma of rats 
in the presence of CNHs are quite informative about the 
effect of nanohorns on protein components. Only SA has 
three hydrophobie cavities on the surface of the globule 
from ail plasma proteins, which effectively bind various 
endogenous hydrophobie substrates and transfer them to the 
bloodP41 The binding effects of labeled fatty acids with SA 
and the corresponding EPR spectra are well described in the 

2 mT 

ISO 
Field 

Figure 4. EPR spectrum of the probe in physiological solution 24h after the 
introduction of nanohorns. 

literature.120
•
30

-
33! Fibrinogen and a number of plasma apoli

poproteins also have hydrophobie cavities, but their sorption 
capacity for hydrophobie substances is lower compared to 
SA. 120•32-34! Therefore, the addition of probes based on pal
mitic acid in the plasma guarantees their effective binding 
with the basic hydrophobie cavity on the surface of the SA. 
The results of the action of nanohorns on the protein part 
of the plasma should be associated with the macromolecules 
of albumin. 

Figure 5 shows the EPR spectra of the probe in plasma 
(hydrophobie cavities of the SA macromolecules) before and 
4 h after the addition of initial and treated by dilute ni tric 
acid CNHs to the system. 

Despite the qualitatively similar character of the spectra 
shown in Figure 5, the addition of CNHs changes the 
parameters of EPR spectra The data are shown in Table 2. 
To estimate the polarity of the nitroxyl fragment's micro
environment of spin probes in the membrane, the isotropie 
hyperfine structure constant was measured (Aiso). Aiso is 



Table 1. Influence of the CNH suspension on the parameters of the EPR spectra of the probe in saline. 

Correlation time 

Probe environment t, hour 't'c+1/ 1 X 10
9 

e 

Saline Without CNH 
inCNH 1 

4 
2 4  

17.1 ±0.1 

17.1 ±0.1 

17.1 ±0.1 

17.0± 0.1 

0.058 ± 0.002 

0.035 ±0.001 

0.064 ± 0.002 

0.003 ± 0.0001 

0.053± 0.002 

0.044± 0.002 

0.043 ± 0.002 

0.026± 0.001 

0.118±0.005 

0.102 ± 0.004 

0.097 ± 0.004 

0.061 ±0.002 

0.48 0.03 

0.64 0.03 

0.32 0.03 

1.05 0.03 

A,,,• 16.0 

A,,,•16.4 
••••••• 

2.5mT 
Reid 

•�,,..•2.s1·10' 
(a) 
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Figure 5. EPR spectra of probe (2) in plasma: (1) in the plasma, (2) 4 h after introduction of inCNH, (3) 4 h after introduction of oxCNH. 

Table 2. Influence of the CNH suspension on the parameters of the EPR spectra of the probe in plasma. 

Probe environment t hour A;so, Gs 

Plasma inCNH 0 15.9± 015 

0.17 16.0± 015 

1 16.1 ± 015 

4 16.9± 015 

oxCNH 0.17 16.0± 015 

1 16.4±015 

4 16.4±015 

distance in gauss between the central (ho) and high•field 
(h 1) components of the EPR spectra (Figure 4). 

Thus, the value of the parameter A;so = 16.0 Gs for probe 
in the hydrophobie pocket SA (Figure Sa) indicates the 
localization of the probe on the surface of the protein glob· 
ule (for the probe in water Aiso = 17.2 Gs). Incubation of 
pro teins with a suspension of initial CNHs for 4 h leads to 
an increase from 16.0 to 16.9 Gs (Figure Sb), due to the 
interaction between CNHs and the globule SA, increasing 
the accessibility of the probe to water or weakening the con· 
nection of the probe (2) with the hydrophobie pocket of the 
protein. In this case, the anisotropy parameter s of the spec• 
t rum does not change, because the connection with the 
hydrophobie SA cavity is preserved. Also, Table 1 data show 
that incubation of SA with nanohorns leads to a slight 
decrease in the correlation time (rc+l/ 1), which is most 
sensitive to changes in probe mobility in the medium. The 
interaction (sorption) of SA macromolecules with the sur· 
face of CNHs aggregates is accompanied by numerous con· 
tacts with cone•shaped "needles" of single•walled nanohorns 
with the water·protein SA matrix. It leads to its loosening 
and weakening of the probe connection with the hydropho• 
bic cavities of the protein. 

When treated CNHs are added to the "plasma•probe" 
system, the value of Aiso was 16.4 G after 4 h of incubation 
(Figure Sc). The polarity of the microenvi ronment of the 
probe in the region of the hydrophobie cavity of the protein 
did not change (see Table 1). The correlation time •c+l/ 1 
of the probe tends to insignificantly decrease compared to 
the initial system before the injection of the nanohorns. 

Correlation time 

't'c+1 X 109 'te 1 X 1a9 't'c+1/ 1 X 1a9 e 

1.78±0.09 1.03±0.05 2 .87±0.14 0.21 ± 0.03 

1.72±0.08 1.02± 0.05 2 .78±0.14 0.22±0.03 

1.65±0.08 1.01 ± 0.05 2 .63±0.13 0.21 ± 0.03 

1.66±0.08 0.94±0.05 2 .63±0.13 0.21 ± 0.03 

1.75±0.08 1.04± 0.05 2 .80±0.14 0.21 ± 0.03 

1.75±0.08 1.06±0.05 2 .79±0.14 0.21 ± 0.03 

1.65±0.08 1.00±0.05 2 .64±0.13 0.21 ± 0.03 

Thus, it can be concluded that the effect of treated CNHs 
on the structure of plasma proteins is somewhat milder 
compared to the initial hydrophobie nanohorns. 

The EPR spectrum of the probe in the erythrocyte slurry 
after 4 h of incubation (Figure 6) exhibits a strongly dis· 
torted triplet, which indicates a considerable inhibition of 
the free rotation of the probe when it is localized in the lipid 
environment in the membrane.[16•171 The presence of CNHs
in the system affects the parameters of the EPR spectra, and 
this effect can be seen in the dynamics. Figure 7 shows the 
EPR spectra of the probe in a suspension of erythrocytes 
with the injection of initial and treated CNHs after 10 min 
and 1 h. The calculated data on the parameters of the spec• 
tra are gathered in Table 1. 

Thus, the incubation of erythrocytes with CNHs already 
after 10 min slightly increases Aiso from 14.3 to 14.5 Gs and 
greatly increases ail three parameters of the correlation time 
of the probe in erythrocyte membranes (the microviscosity 
of the membranes increases) (Table 3). After 1 h of incuba• 
tion, Aiso increased to 16.1 Gs, evidencing an increase in 
polarity in the region of the upper layers of membranes and 
an even greater increase in their microviscosity. According 
to our estimates, the increase in microviscosity of erythro· 
cyte membranes under the action of CNHs is more than 
60%. The special geometry and sufficiently developed surface 
of CNH nanoparticles, as in the case of CNTs, l24.2

5J facilitate 
their binding to the surface of membranes of erythrocytes. 
This leads to a sharp inhibition (retardation) of the con· 
formational mobility of phospholipids and a decrease in the 
lateral diffusion of phospholipids along the surface of the 



membranes. The effect of nanostructures on the disordering 
of membrane phospholipids is also indicated by the decrease 
in the anisotropy parameter s from 0.23 to 0.19. 

The injection of oxCNH into the erythrocyte probe sys
tem causes a sharp increase in the microviscosity of mem
branes. All three correlation time parameters increase, and 
the spectrum anisotropy parameter decreases to 0.16. This 
indicates a marked change in the orientation of phospholi
pids (disordering) as a result of the binding of oxCNHs 
with the cells. After 1 h incubation, a certain relaxation of 
the membrane state is observed. The microviscosity values 
remain high, but 10-15% lower than immediately after the 
introduction of treated nanohorns into erythrocytes. The 
parameter s also relaxes to 0.19. In this case, the adaptive 
mechanisms of the cell are included after some stress caused 
by the introduction of treated CNH into the red blood cells. 
Conformational changes in the main protein of erythrocyte 
membranes can be attributed to these factors, which ensure 
the strength of the membrane structure, partial restoration 
of the initial orientation of phospholipids in the membrane, 
etc. Also, after 1 h incubation of cells with oxCNHs, A;so 

increased from 14.3 to 15.6 Gs. This may be due to an 
increase in polarity in the region of the nitroxide probe 

2 mT 

Field 

Figure 6. EPR spectrum of probe in the erythrocyte suspension after 4 h incu 
bation of the CNH suspension . 

2mT 

Field 

head, which is due to the introduction of carbon nanopar
ticles deep into the membrane. The increase in microviscos
ity of erythrocyte membranes, estimated by us in terms of 
parameters •

c
+l/ 1, •

c 1 and •
c
+1 is 52, 79 and 60%, respect

ively. The relaxation effect of the erythrocyte membrane 
after the introduction of oxCNH has been recorded on 
nanoparticles of this type, which possess less cytotoxicity 
(compared to the initial nanohorns). 

4. Conclusion

The study of the effect of nanohorns on the structure of the 
membrane of erythrocytes using the spin probe method 
revealed a number of new structural changes which were 
not observed in similar earlier studies.120

•
32.33l Interaction 

between CNHs and the erythrocyte membrane quickly led 
to a disorder in the phospholipids of the membrane surface 
with a simultaneous sharp increase in the polarity of the 
surface lipid layer of the erythrocytes membranes (Figure 8). 
The increase in the polarity of the lipid layer of erythrocytes 
membranes and the disorder of phospholipids on the surface 
of membranes in the presence of CNHs can be explained by 
the partial destruction of the outer layer of membranes due 
to their interaction with the nanohorns. Firstly, this is due 
to the peculiarities of the needle structure of the CNHs. 
Perhaps, this is the main mechanism of the cytotoxic effect 
of nanohorns. By comparison with earlier data obtained 
with CNTs, the cytotoxicity of the initial and treated CNHs 
can be ranked between the low cytotoxicity of oxidized gra
phene and cytotoxic nanotubes capable of significantly 
increasing the microviscosity of erythrocytes membranes 
and breaking their integrity. Due to low their toxicity, spe
cial geometry and high specific surface area, CNHs may be 
considered as promising carriers of biological substances 

membrane \\}\} ,AJ
\l\l\{\fl/W\ f\ 11(\l\f\t \n (\ f\ (\/\ f\ 
···············-·

0 H20

Figure 7. EPR spectra of the probe in the erythrocyte suspension after10 min Figure 8. Schematic representation of the nanohorn fragment interaction (nee 
(a, b) and 1 h (c, d )  after introduction of the inCNH (a, c) and oxCHN (b, d). die like n anotubes) with a cell membrane .  

Table 3. Influence of  the CNH suspension on the parameters of  the EPR spectra of  the probe in  erythrocytic mass from the blood of  rats. 
Correlation time 

Probe environment t, hour A;,o, Gs 't'c+1 X 10
9 9 

'te 1 X 10 't'c+1/ 1 X 10
9 

e 

Erythrocyte mass inCNH 0 14.3±015 5.41. ± 0.43 1.86. ± 0.15 9.41. ± 0.75 013±0.03 
0.17 14.5±015 7.93 ±0.63 2.80±012 13.5 ± 1.08 0.19±0.03 
1 16.1±015 8.87 ±0.71 2.76±012 1516±112 0.19±0.03 

oxCNH 0.17 14.3±015 8.63 ±0.7 3.33±016 14.3± 1.14 0.16±0.03 
1 15.6±015 8.31 ±0.66 2.96±014 13.6± 1.08 0.19±0.03 



and medicines for targeted delivery to the membranes of 
cells of living organisms. 
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