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Abstract—High integrated power electronic modules are more
and more designed with the emergence of new semi-conductor
technologies. Thus, increase of reliability of power modules
induces the precise knowledge of the local temperature, even
if it can not be measured at any location. Moreover, some
external variables of having an effect on the system may be
unknown. In this paper, the application of an unknown input
observer is proposed. It allows us to estimate the temperature at
any location using measurements provided from thermal sensors
located at a few precise points without measuring all inputs of
the system. The aim is then to estimate internal temperature of
a system in order to prevent over-temperature operations and
then fault of the system. Consequently, a linear unknown input
functional observer (LUIFO) of minimal order observer is design
for thermal estimation of silicone gel used in power electronic
modules.

Keywords-Unknown input observer, functional observer, ther-
mal estimation, power electronic modules monitoring.

I. INTRODUCTION

The joint emergence of Wide Band Gap materials (SiC,

GaN, C) and new generation hybrid integration techniques

significantly enhance performances of power electronic mod-

ules. Such modules should operate in severe environment

and constraints: high temperature and high power density,

fast switching, etc. Consequently of high temperature, new

constrains appear and become critical for power electronics

assemblies. Several studies aim at identifying failure modes

or critical interfaces [1], [2]. Thus, estimation of local tem-

peratures becomes a real challenge in new generation of

power modules to monitor their behavior and to increase

their lifetime. Indeed, it has been shown in [3], [4] that the

evolution of local constraints in a power electronic module,

which can be thermal or thermo-mechanical, have a negative

effect on the lifetime of the module. These constraints increase

the occurrence of potentially critical defects and failures on

the module. Consequently, it becomes necessary to have a

precise knowledge of the temperatures at specific locations in

the module, such as the temperature of semi-conductor chips

or wire bondings. However, due to the size of sensors and

possible electromagnetic field disturbances close to measure-

ment points, the use of thermal sensors may be difficult at

some locations inside of the power module. Moreover, some

external variables that affects thermal response of the module,

such as heat dissipation to environment may not be precisely

measured. For these reasons the objective of the following

work is to estimate internal temperature in a specific non

measured location, using measured data by few sensors and

without knowledge of some inputs of the system.

As a case study, a simple one-dimension (1D) thermal sys-

tem is considered in this paper and then modeled. Equations of

thermal evolution of the system with respect to time and space

can be rewritten using a linear state-space representation with

unknown inputs. Using this representation, the temperature can

be estimated at any location with a LUIFO or an unknown

input partial state observer.

The first section deals with the construction of a thermal

model of the proposed system and its representation in state

space. In this work, the thermal behavior of a (160mm) 1D
bar of silicone gel which may represent the thermal behavior

of one of the materials used in power electronic modules is

considered as a test benchmark of our technics. The matrix

representation of previous model is established and aims to de-

sign a LUIFO. We propose in the third section a way to design

such an observer, based on the use of successive derivatives of

the measured outputs. The interest of the observer design lies

in the possibility to observe the temperature at any location

in the system. Finally, through comparison with experimental

data, the application of the proposed observer is validated in

the last section.

II. SYSTEM MODELING

As this paper deals with the feasability of the design of a

LUIFO for thermal phenomenon, it is not necessary to take

into account a whole power electronic module. In order to

simplify the problem and highlight the proposed estimation

approach, this study deals with the case of a bar of silicone gel

of length much more larger than radius. Thermal phenomena

occurring along different directions of the main dimension of

the bar will be neglected. Thus, the bar will be considered

thermally insulated outside of its main dimension. Thermal

expansion induced by thermal behavior will also be neglected.

Indeed, thermal expansion coefficient of the material is about

10−4K−1. This means that thermal resistance and capacitance

of the material, that depends on geometrical parameters, are

considered as constant whatever the considered temperatures.
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Fig. 1. Studied system

The modeling methodology is based on a discretization of the

heat equation described in [5].

A. Description of the experimental system

The proposed system is composed of an encapsulating

gel bar dedicated to power electronic modules submitted to

thermal stress. The material is a silicone gel (Silgel 616),

with constant thermal properties that have been experimentally

measured or deduced from its datasheet:

Thermal properties:

• conductivity: λ = 0, 1W.(m.K)−1,

• heat capacity: Cp = 80W.K−1.kg−1,

• density: ρ = 970 kg.m−3,

• convection coefficient: h = 70W.m−2.

The material is cast and crosslinked in a glass tube of in-

ternal diameter d = 1.10−2 m over a length L0 = 16.10−2 m.

The tube is then placed vertically on a temperature-controlled

heating plate of temperature Th(t) that is measured by a

thermocouple. Heat dissipation to environment φa(t) is not

measured. Thermocouples are inserted into the silicone gel

at different positions along length of the bar to measure

the local temperature. All thermocouples are placed at the

center of the bar along its radius. Finally, a thermal insulator

composed of extruded polystyrene is positioned around the

tube. It has a thermal conductivity approximately ten times

lower than the silicone gel, avoiding heat transfer along the

radius axis of the cylinder. Consequently, the experimental

setup allows us to maximize the mono-dimensional nature of

thermal phenomena.

B. Thermal model

To establish the model, the system is sampled into n = 16
elementary volumes of length ∆x (see Figure 1).

The thermal boundary conditions are therefore defined on

the two orthogonal bases to the main length of the bar. One

of the bases is in convection with environment. The thermal

boundary condition on the opposite base is defined as a

heating temperature Th(t). This temperature corresponds to

the operating temperature of a semiconductor component in

a power module. It is chosen so as to be lower than the

maximum limit temperature of use of the silicone gel. Finally,

the gel is submitted to temperature included between its glass

transition temperature and its destruction temperature.

Within the framework of the considered system, thermal

transfers are governed by the heat equation [6].

Using spatial sampling, we get equations n equations for

n elementary volumes that can then be easily written in a

matrix form (1) where x(t) is the state vector of the local

temperatures, u(t) = Th(t) and f(t) = φa(t) are the vectors

of measured and unknown inputs respectively. Note that the

thermal dynamic matrix A is of size n × n, B and E are of

size n× 1.

ẋ(t) = Ax(t) +Bu(t) + Ef(t) (1)

The thermal properties of the material allows us to calculate

thermal resistance and capacity used in the model and matrices

A, B and E express respectively as (2) and (3).
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(3)

with: α = −0.0387, β = −0.0258, γ = 0.0129, δ =
−0.0329 and ξ = 1.

Depending on measured temperature locations, an equation

for output measured temperatures is established (4) with C the

measurement matrix of size (m× n).

Tmes(t) = Cx(t) (4)

The temperature of the 8th node x8(t) is measured by a

thermocouple. This means that the measurement matrix C is

of size (1× 16):

C = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

III. ESTIMATION OF NON-MEASURED STATE VARIABLES

A. Linear unknown input functional observer

Let us consider a system described by the linear state space

equations:
{

ẋ(t) = Ax(t) +Bu(t) + Ef(t)

y(t) = Cx(t)
(5)

where, ∀t ∈ R
+, x(t) is the n-dimensional state vector, u(t)

is a p-dimensional control vector supposed to be measured,

y(t) is a m-dimensional measured output vector, and, f(t) is

a r-dimensional unknown input vector. A(n × n), B(n × p),
C(m × n) and E(n × r) are constant matrices. Without loss



of generality C and E are respectively of full row and of full

column ranks.

To design a functional observer, the triplet (A,C,L) has to

be functionally observable (6) where OA,C,n is the observation

matrix of the system [9].

rank

([

OA,C,n

L

])

= rank (OA,C,n) (6)

Moreover, in order to avoid a trivial algebraic part in the

observer (where observed functional can be estimated through

linear combination of measured outputs), it is supposed with-

out loss of generality that:

rank

([

C

L

])

= m+ l.

The aim of a functional observer is to estimate state vari-

ables, at least asymptotically, from the measurements on the

system. Estimated state variables are defined by :

v(t) = Lx(t) (7)

where L is a constant full row rank (l × n) matrix selecting

estimated components.

The observation of v(t) can be carried out by a linear

unknown input functional observer which is a Luenberger

observer, [10], [11], described by the state equations:
{

ż(t) = Fz(t) +Gu(t) +Hy(t)

v̂(t) = Pz(t) + V y(t)
(8)

where z(t) is a q-dimensional state vector and v̂(t) is a l-

dimensional vector. The constants matrices F (q×q), G(q×p),
H(q×m), P (l×n), V (l×m) and the order q are determined

such that lim
t→+∞

(v(t)− v̂(t)) = 0.

The necessary and sufficient conditions for the existence of

an asymptotic observer (8) for the system (5) if and only if F

is Hurwitz and there exists a matrix T (q × n) such that [12],

[13]:

FT +HC − TA = 0, (9)

L− PT − V C = 0, (10)

G− TB = 0, (11)

TE = 0. (12)

Moreover, a LUIFO cannot be designed if there are unstable

transmission zeros from the unknown input to the output [14].

Figure 2 expresses the structure of unknown input observer.

B. Design of a LUIFO observer

This section deals with the search for a minimal order

LUIFO. Let us define recursively the matrices Kν and Σν ,

ν ∈ N:

• K0 = In and for ν ≥ 1, Kν =
[

AKν−1 D
]

;

• Σ0 = C and for ν ≥ 1,

Σν =
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Fig. 2. Unknown input observer principle

More explicitly, we get:

Σν =

































C 0 · · · 0 0 0
L 0 · · · 0 0 0
CA CD · · · 0 0 0
LA LD · · · 0 0 0

...
...

...
...

...
...

... 0 0 0
CAν−1 CAν−2D · · · CAD CD 0
LAν−1 LAν−2D · · · LAD LD 0
CAν CAν−1D · · · CA2D CAD CD

































.

where the ”0” blocks are of adapted dimensions.

In the following we use the notation:

Σν =



























Cν, 0

Lν, 0

Cν, 1

Lν, 1

...

Cν, ν−1

Lν, ν−1

Cν, ν



























, (13)

where the matrices Cν, i, for i ∈ J0; νK, and Lν, i, for i ∈

J0; ν−1K, are respectively of dimensions (m× (n+ rν)) and

(l × (n+ rν)).

Moreover, let q the smallest integer such that (14) is

satisfied.

rank
(

Σq

)

= rank

([

Σq

LKq

])

(14)

1) First step: The design of the observer uses the successive

derivations of v(t). After q derivations of v(t) = Lx(t), we

obtain:

v(q)(t) = LAqx(t) +
q−1
∑

i=0

LAiBu(q−i−1)(t)

+
q−1
∑

i=0

LAiEf (q−i−1)(t)

(15)

It can be noticed from (14) that it exists matrices, Γi, i ∈

J0 ; qK and Λi, i ∈ J0 ; q − 1K such that:



LKq =

q
∑

i=0

ΓiCq, i +

q−1
∑

i=0

ΛiLq, i, (16)

Note that Γi and Λi matrices are derived from partitioning

of Σq in (13) and the unique solution of the equation X =
LKqΣ

†
q where Σ†

q is the pseudo-inverse of Σq . Moreover, (16)

can be explicitly written as:

LAq =

q
∑

i=0

ΓiCAi +

q−1
∑

i=0

ΛiLA
i,

LAq−1E =

q
∑

i=1

ΓiCAi−1E +

q−1
∑

i=1

ΛiLA
i−1E,

...

LAq−kE =

q
∑

i=k

ΓiCAi−kE +

q−1
∑

i=k

ΛiLA
i−kE, (17)

...

LAE = ΓqCAE + Γq−1CE + Λq−1LE,

LE = ΓqCE.

Using expression of LAq in (17), (15) can be written as:

v(q)(t) =

q
∑

i=0

ΓiCAix(t) +

q−1
∑

i=0

ΛiLA
ix(t)

+

q−1
∑

i=0

LAiBu(q−i−1)(t) +

q−1
∑

i=0

LAiEf (q−i−1)(t)

(18)

2) Second step: The second step is to eliminate the state

x(t) and unknown input f(t) from (18) so that v(q)(t) will

be expressed only with v(t), y(t), u(t) and their successive

derivatives. Indeed, from y(t) = Cx(t) and the expression of

the matrices LAiE from (17), for i ∈ J0; q − 1K, it leads to:

v(q)(t) =

q
∑

i=0

Γiy
(i)(t)+

q−1
∑

i=0

Λiv
(i)(t)+

q−1
∑

i=0

Φiu
(i)(t), (19)

where, for i ∈ J0; q − 2K:

Φi =



LAq−1−i −

q
∑

j=i+1

ΓjCAj−i−1

−

q−1
∑

j=i+1

ΛjLA
j−i−1



B,

(20)

and Φq−1 = [L− ΓqC]B.

3) Third step: The third step consists in realizing the input-

output differential equation (19) [15], [16], as:
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y(t),

v̂(t) = [ 0l · · · 0l Il ]z(t) + Γqy(t),

(21)

with:

F =
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,

and the observer design is complete with Il the identity matrix

of size l.

When F is a Hurwitz matrix, it is demonstrated that (21)

is an asymptotic observer of the functional linear Lx(t).
Otherwise, it becomes necessary to increase the order q and

to do again the building procedure with a higher order, [17],

[18].

Moreover, it is demonstrated in [19] that for l = 1, if q is

the smallest integer satisfying (14), if F is a Hurwitz matrix,

if conditions (9)-(12) are verified, then the obtained observer

is of minimal order. Finally, it has to be noticed that the matrix

T is determined through the proposed recursive procedure and

its properties are verified a posteriori.

IV. APPLICATION TO THE THERMAL SYSTEM

First of all, it has to be remarked that a classical full-state

unknown input observer cannot be designed considering that

its design criteria is not satisfied (22) [12], [20].

rank(CE) 6= rank

(

CE

E

)

(22)

A. Preliminary checks

The observer will be designed to estimate the temperature

at a distance of 1cm from the heated plate. The estimation

point corresponds to the average temperature of the first and

the second node in the model i.e. the functional matrix L is

of size (1× 16) with l = 1:

L = [0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

A thermocouple is inserted at the estimation position for the

validation of the results of the observer. Moreover, as l = 1, the

integer q defined in the procedure corresponds directly to the

order of the resulting observer. Note that other locations have

been considered for temperature estimation. The same results

have been observed. The presented case mainly correspond



to the estimation of chip temperature in power module i.e.

temperature estimated as close as possible to heating source.

First of all, it has to be verified that the triplet (A,C,L) is

functionally observable (6) and we get:

rank

([

OA,C,n

L

])

= rank (OA,C,n) = 16.

In a second step, it is verified that the system has no unstable

transmission zeros from unknown input to output. To do that,

transfer function is obtained with:

G(s) = C(sIn −A)−1E

Numerator of G(s) is of seventh order and all its roots are of

strictly negative real parts.

Considering preliminary checks, it is concluded that a

LUIFO can be designed. Moreover, as the system has 7
detectable invariant zeros, the LUIFO will be at least of

seventh order and these zeros will appear as poles of the

observer [21].

B. Design of a minimal-order observer

First of all, the minimum integer g that verifies the condi-

tion in (14) is looked for. All positive integers from 1 are

iteratively tested. For q = 1, we get rank(Σ1) = 3 and

rank

([

Σ1

LA LD

])

= 4 and a first-order minimum

observer cannot be designed. For q = 2, we get rank(Σ2) = 5

and rank

([

Σ2

LK2

])

= 6 and a second-order minimum

observer cannot be designed.

For q = 7, we get rank(Σ7) = 15 and rank

([

Σ7

LK7

])

=

15. Thus the seventh order observer is a candidate as LUIFO.

From the unique solution X = LK7Σ
†
7, we obtain Λi and

Γi parameters. That yields to:

F =





















0 0 0 0 0 0 −8, 85.10−13

1 0 0 0 0 0 −6, 41.10−10

0 1 0 0 0 0 −1, 34.10−7

0 0 1 0 0 0 −1, 24.10−5

0 0 0 1 0 0 −5, 88.10−4

0 0 0 0 1 0 −1, 49.10−2

0 0 0 0 0 1 −0, 193





















.

As expected the eigenvalues of F are the detectable zeros of

the systems. Consequently, all eigenvalues of F are of strictly

negative real parts and F is a Hurwitz matrix.

Moreover, to design the seventh-order observer we get using

(21):

G =





















7, 67.10−13

4, 17.10−10

6, 47.10−8

4, 3.10−6

1, 39.10−4

2, 16.10−3

0, 0129





















, H =





















1, 18.10−13

2, 29.10−12

4, 96.10−20

1, 02.10−18

9, 39.10−18

2, 35.10−16

1, 99.10−15





















P =
[

0 0 0 0 0 0 1
]

, V = −1.91.10−16.

The observer design is complete. Matrix T is computed and

conditions (9) to (12) are verified. It is then concluded that the

candidate is the minimal order LUIFO for the system.

As it can be seen, the poles of the observer are completely

determined and its dynamic cannot be set. In order to modify

the dynamic of the observer, it is necessary to increase the

integer q and design a new observer with some degrees of

freedom that allows us to tune its eigenvalues [19].

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup is shown in Fig. 3. Only thermal

insulator is not depicted.

Fig. 3. Experimental setup

B. Experimental results

As the estimated temperature is obtained by integration of

(21), initial conditions of the state vector z(t) may have an

influence on the the results. Consequently, identical initial

conditions between the system and the observer are considered

to check convergence properties and different initial conditions

are considered to study the dynamic of the observer.



1) Identical initial conditions: First of all, experimental

measured temperature at a distance of 1cm from the heated

plate is compared in figure 4 with the simulated temperature at

the same position using thermal model in (??). This simulation

shows a good accuracy of the model regarding the experimen-

tal system. Note that the dissipation heat flux is known for

simulation through its measure in experimental environment.

Moreover, figure 4 shows that the designed LUIFO allows us

to asymptotically estimate the temperature with identical initial

conditions.

Fig. 4. Estimation results with identical initial conditions

2) Different initial conditions: In this section, the given

local temperature is estimated using previously designed ob-

server with arbitrary initial conditions. First of all, it has to

be noticed that the decay rate of the estimation error in figure

5 is consistent with the greater time constant of the observer.

Moreover, an erratic behavior of estimated temperature can be

seen at the very beginning of the curves. This is due to unstable

transmission zeros in the transfer function of the observer from

the measure y(t) to the estimated output v̂(t). In order to avoid

this behavior, unstable zeros must be compensated with the

poles of the observer. To do that, poles of the observer must

be tuned using degrees of freedom obtained by increasing the

order of the observer.

VI. CONCLUSION

In this paper, the design of LUIFO has been presented

and the corresponding implementation procedure has been

given. This kind of observer induces a relevant reduction in

the observer order comparing to the initial system dimension.

It has been demonstrated, using experimental data, that the

observer was able to accurately estimate the temperature

evolution of a desired location in the considered system.

Finally, with this study, it is demonstrated that in a power

module, knowing heating sources related to Joule losses, the

temperature and then the thermal constraint on materials and

elements such as power chips can be accurately estimated

using few sensors and without knowledge of the environment

such as dissipation heat flux.

Fig. 5. Estimation results with different initial conditions
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