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a b s t r a c t 

In gas turbines, transitional flows are likely to occur over many components depending on the geometri- 

cal arrangement, inlet turbulence and Reynolds number. In the case of a low-pressure turbine, the transi- 

tion from a laminar to a turbulent boundary layer is generally either a bypass process due to free stream 

turbulence or a separation-induced transition due to the adverse pressure gradient on the blade. The 

overall blade losses and the operating point are strongly dependent on the ability to predict this bound- 

ary layer state, the size and length of the separation bubble. Therefore, turbomachinery designers require 

tools which accurately predict the laminar-turbulent transition. The Reynolds Averaged Navier–Stokes 

(RANS) formalism is currently commonly used due a to relatively low computational cost. Except partic- 

ular developments, this approach is not suited to predict transition processes. The Large Eddy-Simulation 

(LES) approach is able to predict transition processes at a higher computational cost making it suitable 

for low-pressure turbine applications in conjunction with inlet turbulence injection since the free-stream 

turbulence is generally non-negligible and affect near-wall flow behavior. The present study introduces a 

description of the flow in a linear cascade with an upstream hub cavity at a Reynolds number represen- 

tative of low-pressure turbines by three different approaches (RANS, LES and LES with inlet turbulence 

injection). This study shows the influence of turbulence modelling and turbulence injection at the inlet 

of the domain on the boundary layer state at hub and shroud modifying the secondary vortices radial 

migration in the blade passage and the cancelling of suction side separation bubble at high free-stream 

turbulence. The Kevin–Helmholtz instability at the rim seal interface is also cancelled at high free-stream 

turbulence. 
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. Introduction 

The turbofan is currently the most common and efficient gas

urbine architecture in commercial airlines used in conjunction

ith multi-spool arrangement. The fan at the inlet of the gas tur-

ine that provides most of the thrust is linked to the low-pressure

urbine. Due to the relatively large fan diameter and to prevent

hocks at its tip, its rotational speed is generally low and conse-

uently low for the low-pressure turbine. In typical operating con-

itions, the flow over a low-pressure turbine is characterized by

 relatively low Reynolds number, among the lowest in the differ-

nt components of the gas turbine [1] . Based on the chord and
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aximum blade suction side velocity, the Reynols number is in

he order of magnitude of 10 5 for medium sized low-pressure tur-

ines. This value evolves all along the mission of the gas turbine

nd can differs of a factor five between take-off and cruise [2] .

his relatively low Reynolds number can promote the development

f a laminar boundary layer over the blade suction side and in-

rease the possibility of a separation-induced bubble [3] compared

o a turbulent boundary layer. The experimental study of Abu–

hannam and Shaw [4] on a flat plate with various upstream tur-

ulence levels and streamwise pressure gradients have shown that

he boundary layer may remain laminar under no free-stream tur-

ulence until high Reynolds number typically 3 × 10 6 . However,

s soon as the free-stream turbulence level is around Tu � 2–

% that can be commonly observed in turbine main flow path,

he boundary layer may become turbulent for the characteristic

eynolds number in low-pressure turbines. The free-stream tur-

ulence promotes early transition processes of the blade bound-

ry layer and potential cancelling of suction side separation bub-
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Fig. 1. View of the experimental set up. Adapted from Schuler [23] . 

Table 1 

Characteristics of the cascade rig. 

cascade details nominal conditions 

Inlet blade angle 37.9 ◦ Re 5.6 × 10 5 

Outlet blade angle 66.3 ◦ Ma 0.22 

Axial chord C x 75 mm ˙ m m 1.13 kg.s 
−1 

H NGV / C x 1.3 p tot,in / p out 1.035 

Pitch/ C x 0.884 ˙ m c / ˙ m m 0, 0.5, 1% 
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Nomenclature 

Latin letter 

˙ m mass flow rate [ kg.s −1 ] 

ω specific rate of turbulent dissipation [ s −1 ] 

k turbulent kinetic energy [ kg.m 

2 
. s −2 ] 

(x,y,z) Cartesian coordinates [m] 

C p pressure coefficient [ - ] 

C x axial chord-length [m] 

E energy [ kg.m 

2 
. s −2 ] 

H NGV blade height [m] 

Ma Mach number [ - ] 

Re Reynolds number [ - ] 

St Strouhal number [ - ] 

Tu turbulence intensity [ - ] 

u velocity [ m.s −1 ] 

Greek letters 

δ boundary layer thickness [m] 

ε turbulent dissipation [ kg.m 

2 
. s −3 ] 

γ sealing flow angle, tan −1 (u z /u x ) [deg] 

κ artificial viscosity coefficient [ - ] 

σ standard deviation [ - ] 

τ turbulence decay characteristic time [s] 

ζ total pressure loss coefficient [ - ] 

Subscripts and superscripts 

∞ upstream conditions 

. azimuthally averaged quantity 

. 
′ 

fluctuating quantity 

. + non-dimensional wall-units 

c cavity 

edge edge of the boundary layer 

m main annulus 

ref reference state 

tot total quantity 

turb turbulent 

ble due to a turbulent nature of the boundary layer [5] . The radial

migration of secondary flows developing in the passage are also

impacted when hub or shroud boundary layer nature are mod-

ified [6] . These different interaction processes between Reynolds

number effect, adverse pressure gradient and free-stream turbu-

lence become more and more important to be understood to de-

velop future turbines. Indeed, the current design trend with gear-

boxed engines that aim at reducing the number of airfoils per

row for the same performance (High Lift (HL) and even Ultra High

Lift (UHL) blades) [7] will promote higher adverse pressure gra-

dients experienced by the flow as well as potential higher free-

stream turbulence due to reduced inter-stage gaps. The Compu-

tational Fluid Dynamics (CFD) tool can give insight in the near-

wall behavior of gas turbine. The most common and computation-

ally affordable approach is the Reynolds Averaged Navier Stokes

(RANS) formalism. Some models have been developed taking into

account the transition process in RANS including the one of Jones

and Launder [8] . This model introduces the turbulent kinetic en-

ergy gradients in the so-called low-Reynolds number versions of

the k- ε model allowing to handle transition without a dedicated

transition model as for the γ − Re θ model developed by Menter

et al. [9] . However, these approaches are scarcely able to capture

transition processes in gas turbine context. The Large Eddy Simu-

lation (LES) [10] approach is able, for sufficient grid and near-wall

refinement levels to handle the transition process from a laminar

to a turbulent regime [1] without additional transition modelling

steps. Furthermore, the Reynolds number in low-pressure turbine
s low enough such that Direct Numerical Simulation (DNS) ap-

roach [11–13] or LES [14–16] would be used at a high but more

nd more affordable comput ational cost [17,18] in conjunction with

urbulence injection to provide representative inlet conditions [19–

2] . 

This paper describes the flow in a linear cascade with an up-

tream cavity at a Reynolds numbers representative of a low-

ressure turbine based on RANS, wall-resolved LES simulation with

r without inlet turbulence injection. A special emphasis is given

o better understand the influence of turbulence modelling (RANS

r LES) and turbulence injection at the inlet for LES on the flow

ehavior. The first part of this paper introduces the configura-

ion and the numerical setup. The simulations performed are then

ompared against available experimental data with a focus on the

hysical roots of the discrepancy between the different simulations

erformed and the experiments. Once discussed, the analysis of

he physical phenomena in the linear cascade are described for the

ES with turbulence injection which is the most representative of

he experimental test case. Finally, conclusions on the study are

rawn. 

. Configuration and numerical methods 

.1. Linear cascade experimental setup 

The configuration under study is a low-Mach linear cascade

omposed of five nozzle guide vane installed at Karlsruhe Univer-

ity, Germany (see Fig. 1 ). The rig is set in an open circuit which

ncludes an upstream honeycomb settling chamber, a centrifugal

lower and a Venturi pipe in order to target the desired inflow

onditions. Upstream of the blade leading edge, the rim seal is in-

luded in a cavity module linked to the test section allowing to

asily set different rim seal designs. The purge flow is supplied to

he cavity (c) as a fraction of the mainstream flow (m), respec-

ively ˙ m c / ˙ m m 

= 0, 0.5 or 1%. Main rig characteristics are gathered

n Table 1 . 

In order to promote periodic conditions on the lateral sections

f each blade of the cascade, adjustable tailboards were moved

long rig channel’s wall. Their position was moved until a low dis-

repancy for the pressure distribution around the blade for the

hree inner blade was reached. The tolerated pressure coefficient

ismatch at midspan was set to 1 %. This requirement is neces-
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Fig. 2. Simulation domain. 
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Fig. 3. y + 
1 

distribution around the wetted surfaces: unwrapped blade (top), hub and 

shroud (bottom) for the RANS simulation (configuration A05). LE and TE stand re- 

spectively for leading and trailing edge. 

Fig. 4. Midspan averaged grid dimension at wall for the LES1 no.inj. , configuration 

A05. 
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ary to ensure that the comparison with numerical simulations for

hich only the central blade is simulated and periodic conditions

re applied on the lateral sections is compliant. Three different

im seal geometries are studied experimentally including an axial

learance (A) and two geometries using axial overlapping: simple

S) and double (D) (see Fig. 2 ). In this paper, the different cases

tudied with the different geometries and purge flow rates will be

enoted by a letter for the rim seal geometry considered (A: axial,

: simple overlapping, D: double overlapping) and a figure for the

urge flow rate imposed (0: 0%, 05: 0.5%, 1: 1%). For example, the

onfiguration A05 stands for the axial rim seal geometry with 0.5%

f the mainstream flow supplied in the cavity. Total pressure, tem-

erature, azimuthal and radial angles profiles are provided at one

xial chord length upstream of the blade leading edge by the ex-

eriments. The free-stream turbulence is produced by a turbulence

rid positioned at seven axial chord length upstream of the blade

eading edge and a turbulent intensity of Tu = 6% at the blade

eading edge was measured. 

.2. Numerical parameters 

The RANS and LES without inlet turbulence injection

LES1 no.inj. ) simulations have been performed using the Onera

ode elsA [24] which solves the compressible Navier-Stokes equa-

ions over multi-block structured grids. For the RANS simulation,

he topology for the nozzle guide vane is built to have a minimal

rthogonality higher than 30 ◦ and a maximal aspect ratio lower

han 1,0 0 0. In the near-wall regions, these criteria are checked to

e higher than 80 ◦ for orthogonality, lower than 500 for aspect

atio and 1.2 for the expansion ratio. The first off-wall point y 1 is

et to y 1 / C x = 7 × 10 −4 in order to reach the quality requirements

or a wall-resolved simulation y + 
1 

< 1. Fig. 3 shows y + 
1 

distribution

round the blade, at the hub and shroud obtained from the RANS

imulation. y + 
1 

remains below unity for the different wetted sur-

aces. The mesh is refined at the blade leading and trailing edges,

n the wake region and at the interface between the cavity and

he main annulus. The mesh is composed of around 7 × 10 6 cells

or the different geometries. 

For the LES1 no.inj. , the expansion was set to 1.03 to ensure

round 30 grid points in the viscous layer until y + = 50. The min-

mum orthogonality remains higher than 30 ◦ with values around

0 ◦ in the near-wall regions. The aspect ratio is also decreased

ompared to the RANS approach by applying the criteria furnished

n the literature to fulfil the recommendation for wall-resolved

ES [25–27] . These criteria were set to 50 ≤ �x + ≤ 80; y + 
1 

≤ 1;
5 ≤ �z + ≤ 25 leading to a mesh of around 60 × 10 6 cells

see Fig. 4 ). The in-house unstructured AVBP solver [28] is used

o perform an additional LES simulation without turbulence injec-

ion (LES2 no.inj. ) to assess the validity of the two LES and the sim-

lation with inlet turbulence injection (LES2 turb.inj. ). A layer of 20

risms in near-wall regions is applied with an expansion ratio of

.03 and a maximum y + 
1 

� 2–3 on the blade suction side. Tetra-

edra elements fill the remaining domain. A grid refinement from

he inlet to the blade leading edge is applied to transport turbu-

ent structures generated at the inlet leading to a mesh of around

0 × 10 6 cells. 

For the RANS simulation, an upwind Roe scheme with third-

rder limiter [29] is used for the convective terms. The Wilcox k- ω 

wo-equations model with Zheng’s limiter [30] is used according

o the practice provided by Gourdain et al. [31,32] in a turboma-

hinery context. For the LES1 no.inj. , a second order centred scheme

ith a low Jameson artificial viscosity [33] ( κ4 
jam . 

= 0.002) is used.

he temporal integration is achieved with a Dual Time Step (DTS)

pproach based on an implicit backward Euler scheme with sub-

terations Newton’s algorithm [34] (second order accurate). The

ime step �t is adapted to the mesh resolution close to the wall

t + = �t u ∞ 

/ C x = 10 −5 (i.e. 1 500 time steps per axial chord

ength). The Sub-Grid Scale model (SGS) is the Wall-Adapting Local
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Table 2 

Numerical setup for the different numerical approaches. 

Numerical approach Convective scheme Temporal scheme Turbulence model/SGS 

RANS elsA Upwind (3rd order) DTS k- ω Wilcox 

LES elsA (LES1 no.inj. ) Centred Jameson ( κ4 
jam . 

= 0.002) DTS ( �t + = 10 −5 ) WALE 

LES AVBP (LES2 no.inj. / LES2 turb.inj. ) TTGC (3rd order) Explicit (CFL = 0.7) �t + � 10 −6 WALE 
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Fig. 5. Iso q -criterion q = 10 7 colored by the vorticity showing the turbulence injec- 

tion at the inlet of the domain in the first time steps (a) and the turbulent kinetic 

energy decay from the inlet of the domain to the blade leading edge based on a 

theoretical HIT decay and obtained in the simulation LES2 turb.inj. (b), configuration 

A05. 

3

 

l  

a  

t  

5  

o  
Eddy-viscosity model (WALE) [35] . For the LES solver AVBP used

to run the additional LES simulation without (LES2 no.inj. ) and with

turbulence injection (LES2 turb.inj. ), the convective operator is dis-

cretized by the two-step Taylor–Galerkin scheme [36] (3rd order

accurate). The simulation time step based on the explicit time ad-

vancement is �t + � 10 −6 . A summary of the numerical parame-

ters is given in Table 2 and a mesh dependency for the different

numerical simulations performed is proposed in Appendix A . 

2.3. Inlet turbulence injection in LES 

Inlet turbulence injection is made in conjunction to Navier–

Stokes Characteristic Boundary Conditions (NSCBC) [37] (see

Fig. 5 a). Velocity fluctuations are generated using a synthetic eddy-

viscosity method proposed in Smirnov et al. [38] . The integral

length scale is set to 7 mm based on experimental measurements

for similar grid and distance to the cascade [39] and numerical

study from Segui [40] . This parameter drives the turbulence decay

rate since inversely proportional to the integral length scale and

the transition processes since the bypass process is highly sensi-

tive to the integral length scale [41] . The cut-off length scale is set

to 0.2 mm and corresponds to the characteristic length scale of the

mesh at the inlet to the blade. The turbulence spectrum is based

on the one proposed by Passot and Pouquet [42] . Once generated,

turbulence experiences a spatial decay in the axial direction. The

decay of turbulence is compared to the analytical law resulting

from the decay of a homogeneous isotropic turbulent field [43] in

order to reach similar values of turbulence intensity at the blade

leading edge compared to the experiments. The analysis is based

on the initial turbulent kinetic energy E k turb 
(t 0 ) and initial turbu-

lent dissipation at the inlet of the domain εk turb 
(t 0 ) . The time evo-

lution of E k turb 
is: 

E k turb 
(t) = E k turb 

(t 0 ) 
(

1 + 

(
C εk turb 

− 1 

) t 

τ0 

)(
− 1 

C εk turb 
−1 

)
(1)

with τ 0 = ( E k turb 
(t 0 ) / εk turb 

(t 0 ) ) and the analytical model constant

 εk, turb 
= 1.92. From the integral length scale, the initial turbu-

lent dissipation is estimated at εk turb 
(t 0 ) = 2.1 × 10 6 . The time

evolution can then be transformed to a spatial evolution along

a streamline using the Taylor hypothesis [43] , i.e x = u 0 t with

u 0 the velocity at the inlet. Fig. 5 b shows the turbulent kinetic

energy decay from the inlet of the domain in x / C x = −1 to the

blade leading edge (LE) x / C x = 0 obtained by integrating the tur-

bulent kinetic energy on axial planes. The turbulence decay is

stronger in the simulation compared to the theoretical one. This

can be due to two effects: turbulence is not initially a homoge-

neous and isotropic turbulence (HIT) in the synthetic eddy viscos-

ity method and some extent is required to reach this state. Also,

part of the structures are possibly dissipated by numerics (spa-

tial scheme and sub-grid scale model). The ratio E k turb 
(x ) /E k turb 

(0)

at the blade leading edge is around 0.2 meaning that the velocity

fluctuation is around u ′ 
LE 

/ u ′ 
inlet 

= 0.4. The turbulent fluctuations in-

jected at the inlet of the domain have been set to Tu � 15% to

reach the turbulence level at the blade leading edge measured ex-

perimentally Tu = 6%. The value of the turbulence intensity at the

blade leading edge has been checked by setting a probe giving a

turbulence intensity of 6.5%. 
. Numerical/experimental comparison 

Experimental results available are focused on the main annu-

us and the comparison with numerical approaches is made on the

xial clearance at an intermediate purge flow rate (A05 configura-

ion). The pressure coefficient C p around the central blade at 4 and

0% blade height (H NGV ) and pressure loss coefficient downstream

f the blade ζ are used for the comparison. These two quantities
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Fig. 6. Pressure coefficient around the blade at 4% blade height for the different 

numerical approaches and experiments (configuration A05). 

Fig. 7. Pressure coefficient around the blade at 50% blade height for the different 

numerical approaches and experiments (configuration A05). 
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Fig. 8. Pressure loss coefficient downstream of the blade (25% C x ) for the different 

numerical approaches and experiments (configuration A05). 
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re defined as follows 

 p (x, z) = 

p tot , 1 (z) − p blade (x, z) 

p tot , 2 ( z) − p 2 (z) 
, (2) 

(z) = 

p tot , 1 (z) − p tot , 2 (z) 

p tot , 2 ( z) − p 2 (z) 
. (3) 

he overline . indicates that pressure is pitch-wise area averaged.

ubscripts 1 and 2 refer respectively to a position one axial chord

pstream of the blade leading edge and 25% downstream of the

lade trailing edge. The experimental uncertainty was estimated to

e C p ± 0.03 for the pressure coefficient around the blade and

± 0.015 for the pressure loss downstream of the blade. 

.1. Cross-validation of LES approaches 

The two LES simulations without inlet turbulence injection

LES1 no.inj. and LES2 no.inj. ) are first compared based on the pressure

oefficient around the blade and pressure loss downstream of the

lade to assess the validity of the two LES approaches based on a

ross-comparison. The two simulations show a very good match-

ng for the pressure coefficient around the blade close to the hub

z/H NGV = 4%) and at midspan (see red and dark yellow curves

n Figs. 6 and 7 ). For the pressure loss coefficient downstream of

he blade, the two simulations show a low discrepancy below 5%

see Fig. 8 ) with the two main loss peak at z/H NGV = 20% and

/H NGV = 80% in good agreement. In addition, the mean flow field

as also been analysed for the two simulations and the low dis-

repancy indicates that despite different meshing strategies and

umerical parameters, the two simulations may be used without

uestioning the approach. In the following, since these two sim-

lations are in good agreement and the inlet turbulence injection

s performed with the LES2 turb.inj. , only the LES2 no.inj. will be used
s the LES simulation with homogeneous inlet conditions for the

omparison against experiments and analysis of the flow field. 

.2. Comparison with experimental data 

The pressure coefficient close to the hub on the blade suction

ide is well predicted by the different numerical approaches on the

avourable pressure gradient portion of the blade until x / C x = 0.7

orresponding to the throat where experimental results are avail-

ble. On the diffusion portion downstream of the throat, the differ-

nt numerical approaches show low discrepancy. On the pressure

ide a similar agreement with experiments can be observed with

 maximum discrepancy around 2%. At midspan, a similar agree-

ent with experimental data can be observed. However, LES2 no.inj. 

hows a lower recompression on the diffusion portion of the blade

ompared to the RANS and LES2 turb.inj. . 

Regarding the pressure coefficient downstream of the blade, the

wo main regions of pressure loss at z/H NGV = 0.35 and 0.7 are

ell predicted by RANS and LES2 turb.inj. both in terms of amplitude

nd position with maximum discrepancy of around 8%. LES2 no.inj. 

hows a strong discrepancy compared to the experimental data

ith lower radial migration and amplitude (locally lower of around

0%) at the two main loss regions. In the following Section 4 , the

ANS, LES2 no.inj. and LES2 turb.inj. simulations are analysed to ex-

lain the discrepancy between the different approaches. 

. Analysis of the numerical comparison 

.1. Near-wall blade flow 

Figs. 9 and 10 show the boundary layer profiles on the forward

nd rear portions of the blade for the different simulation per-

ormed. The positions where the boundary layer profiles have been

xtracted are given in Fig. 11 . 

The boundary layer profiles are compared against the Blasius

nalytical profile solution of the steady two-dimensional Prandtl

quation in laminar regime for the LES2 no inj. . 

For the RANS and LES2 turb.inj. , a power-law boundary layer

rofile [44] representative of a turbulent boundary layer

u/u edge ) = (y/ δ) 1/7 is used. The wall-normal coordinate and

elocity in the boundary layer have been non-dimensionalized by

he boundary layer thickness δ and velocity at the edge of the

oundary layer u edge . The boundary layer profile for the RANS

imulation in the forward part of the blade suction side shows

hat the boundary layer can be considered as turbulent with a

hifted profile due to the favourable pressure gradient. For the

ES2 turb.inj. , the boundary layer profile matches the analytical

urbulent boundary layer profile. For the LES2 no inj. , the boundary

ayer profile shows a good agreement with the laminar boundary
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Fig. 9. Boundary layer profiles on the blade suction side in the favourable pressure 

gradient portion for the RANS/LES2 turb.inj. (a) and the LES2 no.inj. (b) (configuration 

A05), see positions 5, 6 and 7 in Fig. 11 . 

Fig. 10. Boundary layer profiles on the blade suction side in the adverse pressure 

gradient portion for the RANS/LES2 turb.inj. (a) and the LES2 no.inj. (b) (configuration 

A05), see positions 8, 9 and 10 in Fig. 11 . 

Fig. 11. Boundary layer profiles extraction position for the numerical simulations 

and probe position (p r ). 
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ayer profile with a favourable pressure gradient (m = 0.1). 2 On

he rear region of the blade, the boundary layer profile for the

ANS and LES2 turb.inj. is shifted from the wall due to the adverse

ressure gradient but remains attached. For the LES2 no.inj. , a profile

nversion indicates a boundary layer separation. This is characteris-

ic of some low-pressure turbine where at relatively low Reynolds

umber and/or turbulence level, the boundary layer may remain

aminar on the blade suction side and is more prone to separate

ompared to a turbulent boundary layer [5,45,46] . A similar flow

opology around the blade suction side with a separation bubble

n the aft portion of the blade was obtained by Hodson and

ominy [47] in the experimental study of a linear cascade with

imilar blading, lower Reynolds number (290,0 0 0), higher Mach

umber (Ma = 0.7) and low free-stream turbulence (0.5%). This

oundary layer separation is characterized by a constant pressure

egion for the LES2 no.inj. compared to the RANS/LES2 turb.inj. ob-

erved in the comparison of pressure coefficient around the blade

t midspan. 

.2. Secondary vortices in the blade passage 

Regarding the difference of pressure loss coefficient down-

tream of the blade for the different simulations performed, some

nformation can be obtained from the secondary vortices develop-

ng in the inter blade channel. 

The boundary layers developing on the hub and shroud plat-

orms separate when approaching the blade leading edge due to

he potential effect. This induces the formation of horse shoe vor-

ices split by the blade leading edge in suction side and pressure

ide legs. The pressure side leg travels in the inter-blade channel

ue to the cross pressure gradient while the suction side leg trav-

ls on the blade suction side. The two legs merge on the blade suc-

ion side and initiate the development and migration of the pas-

age vortex at hub and shroud [48–50] (see Fig. 12 ). These two vor-

ices are associated to strong entrainment and mixing effects that

nduce pressure losses and correspond to the two main loss peaks
2 The value of m corresponds to the power value of velocity at the edge of 

oundary layer u edge = x m before being injected in the boundary layer equations 



7 

Fig. 12. Lateral sight of blade suction side with iso q -criterion q = 10 6 colored by streamwise vorticity for the LES2 turb.inj. , configuration A05. 

Fig. 13. Time averaged streak lines at the shroud including the boundary layer sep- 

aration distance from blade leading edge for LES2 no inj. (a) and LES2 turb.inj. (b), con- 

figuration A05. 
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Fig. 14. Inlet hub boundary layer profiles for RANS/LES2 turb.inj. (a) and LES2 no.inj. (b) 

(configuration A05), see positions 1, 2 3 and 4 in Fig. 11 . 
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3 The surface roughness, free-stream turbulence characteristics, pressure and cur- 

vature effects may have significant effect on the transition process between the flat 

plate experiment and current configuration but the experiment by Abu-Ghannam 
bserved downstream of the nozzle guide vane in the comparison

f the different simulations against experiments. When analysing

he separation point of the hub/shroud boundary layer, some dif-

erences can be exhibited between RANS/LES2 turb.inj. and LES2 no inj. :

he boundary layer for LES2 no inj. separates upstream compared to

he RANS/LES2 turb.inj. (see Fig. 13 ). Fig. 14 shows boundary layer

rofiles on the hub platform for the different simulations per-

ormed. The boundary layer at the hub for the RANS/LES2 turb.inj. 

imulations indicates a profile close to a turbulent one with slight

dditional momentum close to the wall (see Fig. 14 a). For the

ES2 no inj. , the boundary layer profile is close to a laminar boundary

ayer profile over a flat plate (see Fig. 14 b). 

The turbulent boundary layer is more resistant to an adverse

ressure gradient imposed by the blade potential effect since the

uctuating velocities in the turbulent boundary layer greatly in-

rease the transfer of momentum and energy towards the wall. The

urbulent boundary layer is consequently less prone to separate

hen facing an increasing stagnation pressure due to the blade

ompared to a laminar boundary layer as stated by Cui et al. [6] .

herefore, the horse shoe vortex process is given an early start for

he LES2 no.inj. compared to the RANS/LES2 turb.inj. . 

A main consequence is that the radial migration of the pas-

age vortices at hub and shroud is lower (see Fig. 15 ). Since the

wo main loss pressure region downstream of the blade can be

ssociated to the passage vortices at hub and shroud, the lower

adial migration of the two main loss pressure loss peak down-

tream of the blade for LES2 no inj. can be attributed to the tur-
ulent nature of the hub/shroud boundary layer in the experi-

ents while laminar in the LES2 no inj. . The work of Abu-Ghanam

nd Shaw [4] on the transitional Reynolds number of the bound-

ry layer over a flat plate depending on the free-stream turbulence

an provide informations on the near-wall flow behavior. From a

implified view, the boundary layer transition processes over hub,

hroud and blade suction side can be considered as the one occur-

ing over a flat plate. 3 At no free-stream turbulence, the boundary

ayer may remain laminar until Reynolds number typically equal to
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Fig. 15. Streak lines on the suction and pressure side for LES2 no inj. (a) and 

LES2 turb.inj. (b) (unwrapped blade), configuration A05. 
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Fig. 16. Velocity vector close to the rim seal: face to leading edge (a)(c) and at the 

center of the channel (b)(d) for the A05 and S05 configuration based on LES2 turb.inj. . 
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3 × 10 6 . As soon as 2–3% of free-stream turbulence, the transi-

tional Reynolds number is decreased of around one order of mag-

nitude. In current configuration with characteristic Reynolds num-

ber Re = 50 0,0 0 0, a free-stream turbulence level of 6% is sufficient

to promote a turbulent boundary layer on the hub an shroud. This

explains the better behavior of RANS/LES2 turb.inj. compared to the

LES2 no inj. . Around the blade suction side, the boundary layer be-

comes quickly turbulent close to the leading edge under a bypass

process and no separation bubble on the rear portion is observed

compared to the LES2 no inj. . From these observations, it can be con-

cluded that the LES2 no inj. fails to represent the flow in the linear

cascade due to uniform inflow conditions that keep hub, shroud

and blade boundary layer laminar. A better agreement is obtained

for the RANS approach due to the turbulent nature of the different

boundary layers. The best agreement is obtained for the LES2 turb.inj. 

since it matches the inlet boundary conditions of the experiments

and there is a fine agreement with the experimental results. There-

fore, the LES2 turb.inj. is used to describe the flow in the linear cas-

cade with upstream hub cavity in the next Section 5 including

RANS/LES2 no inj. results when turbulence modelling/injection mod-

ify the flow behavior. 
and Shaw [4] provides generally a good estimate for the transition Reynolds num- 

er 

b  

t  

u

s  

a  
. Study of the flow field 

.1. Rim seal flow 

The boundary layer developing on the hub platform separates

t the rim seal left corner. The velocity gap between the main

nnulus flow close to the hub and the cavity flow is filled over

 short layer typically in the order of magnitude of the incident

oundary layer at the rim seal interface (see velocity vector map

or the simple gap (A) and simple overlapping (S) rim seal geome-

ries in Fig. 16 ). 

This localized region of velocity adaptation between the cavity

nd main annulus flow is a shear layer in both axial and azimuthal

elocity components since the flow at the inlet was introduced

ith an azimuthal component that mimic the flow downstream

 rotor row. The velocity gap at the interface is shown to be re-

uced for overlapping geometries compared to simple gap. The ax-

al overlapping arms of these more complex geometries promote a

ore intense localized recirculation zone that reduce the velocity

ap compared to the simple gap geometry. Under no free-stream

urbulence as for the homogeneous LES simulation (LES2 no inj. ), the

hear layer promotes the development of vortical structures that

an be associated to the development of a Kelvin–Helmholtz (KH)

nstability (see Fig. 17 ). 

A three-dimensional Dynamical Mode Decomposition

DMD) [51] has been performed using fully three-dimensional

napshots in time and made possible to isolate a few modes

nitiated at the rim seal interface and considered as the instability.

he spatial reconstruction of this mode can be seen in Fig. 18

haracterized by alternating positive and negative density modes

round the mean density value at the rim seal interface. 

The Kelvin–Helmholtz instability that was developing at the rim

eal interface in the LES2 no inj. is not observed in the case with tur-

ulence injection since no rolling up process is observed. In addi-

ion, a probe has been set at the rim seal interface for both sim-

lations. While the Power Spectral Density (PSD) of the LES2 no inj. 

hows the peak associated to the Kelvin–Helmholtz instability, no

mplified mode can be identified at the rim seal interface for the
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Fig. 17. Iso q-criterion q = 10 6 colored by the streamwise vorticity from an instan- 

taneous LES2 no inj. solution (b) with Kelvin–Helmholtz rolling structures, configura- 

tion A05. 

Fig. 18. Three-dimensional density modes related to Kelvin-Helmholtz instability 

based on fully three-dimensional DMD decomposition, configuration A05. 
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Fig. 19. Power spectral density (PSD) at the rim seal interface for the LES2 no inj. (a) 

and LES2 turb. inj. (b) simulations (see Fig. 11 for probe position), configuration A05. 

The dotted line indicates the Kelvin–Helmholtz characteristic frequency. 

Fig. 20. Density frequency spectrum in x, z cuts and around the blade correspond- 

ing to the fundamental Kelvin–Helmholtz density mode for the LES2 no inj. , configu- 

ration A05. 

Fig. 21. Total temperature distribution at the hub from LES2 no inj. , configuration A05. 
ES2 turb inj. (see Fig. 19 ). This may be explained by the cancelling of

his instability at a sufficiently high free-stream turbulence since

 natural instability of the flow can be fully bypassed in relatively

igh free-stream turbulence similarly to the natural boundary layer

ransition bypassed by high free-stream turbulence [52] . 

.2. Unsteady phenomena in the cascade 

From the spectral content, the horse shoe vortex process and

elvin–Helmholtz instability are the two main unsteady phenom-

na observed in the cascade for the LES2 no inj. at the rim seal

nterface, around the blade and downstream of the blade (see

ig. 20 ) while only the horse shoe vortex process remains for the

ES2 turb. inj. . Part of he main annulus flow is deviated downwards

nto the cavity when facing the blade potential effect. The mass

alance for the cavity is fulfilled by some cavity flow blowing in

he main annulus at the center of the inter-blade passage where

otential effects are lower. This low momentum emerging flow is

rone to be entrained by the pressure side leg of the horse shoe

ortex process in a similar manner to the low momentum hub

oundary layer. This phenomenon can be observed in Fig. 21 show-

ng a temperature map close to the hub. Since the cavity flow is

ntroduced with a lower temperature compared to the main annu-

us flow, this quantity can be used as a passive scalar of the mixing
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Fig. 22. Pressure standard deviation σ (p) around the blade suction side (a), at hub 

and shroud (b) for the LES2 turb. inj. , configuration A05. 

Fig. 23. Pressure coefficient and domain of fluctuation at 4% blade height (a) and 

downstream blade (b) where the period T corresponds to the characteristic period 

of time of the horse shoe vortex process for LES2 turb. inj. , configuration A05. 

 

 

 

 

 

 

Fig. 24. Comparison of the pressure loss coefficient downstream of the blade for 

the standard and refined grids, configuration A05, (a) : RANS,(b) : LES elsA, (c) : LES 

AVBP. 
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of cavity flow with main annulus one. The cavity flow can be ob-

served as travelling with the pressure side leg of the horse shoe

vortex. 

As stated, unlike the Kelvin–Helmholtz instability at the rim

seal interface, the horse shoe vortex process is conserved inde-

pendently of the free-stream turbulence. This corresponds to the

periodical development of structures orthogonal to the flow that
mpact blade leading edge. A DMD performed at the shroud sur-

ace made possible to identify a few modes with a large amplifi-

ation and related to the periodic horse shoe vortex development.

he main harmonic of the phenomenon is set at Strouhal number

t = ( f r D)/u edge = (250 0.02)/30 = 0.2 where f r is the frequency, D

he distance from saddle point to blade leading edge. The location

here the horse shoe vortices develop and the pressure side leg of

he horse shoe vortices migrate are associated to strong pressure

tandard deviation σ (p) on the hub and shroud (see Fig. 22 right).

n the blade suction side, the strongest pressure deviations are

bserved where the passage vortices migrate (see Fig. 22 left). On

he blade pressure side, the pressure fluctuations correspond to the

eparation bubble between x / C x = 0.1 and x / C x = 0.3 observed in-
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ependently of the homogeneous or turbulence injection at the in-

et of the domain (see Fig. 23 a). Even downstream of the blade, the

ressure loss coefficient experiences amplitude fluctuations in par-

icular in regions of strong losses related to the passage vortices

see Fig. 23 b). 

. Conclusion 

The effect of turbulence on the physical phenomena observed

n a linear cascade with upstream hub cavity has been assessed

y comparing RANS, LES and LES with inlet turbulence injection.

n conjunction with experiments, the numerical results show that

he hub and shroud boundary layers approaching the blade lead-

ng edge turn turbulent under a bypass process due to the free-

tream turbulence. The main effects are a stronger migration to-

ards midspan of the hub and shroud passage vortices compared

o a laminar boundary layer. Also, the suction side boundary layer

s allegedly to become transitional/turbulent. This information is

upported based on the suction side separation bubble (observed

n the LES without turbulence injection) while cancelled in the

ES with turbulence injection due to the turbulent nature of the

oundary layer. The description of the flow field in the cavity

hows an entrainment effect of the high momentum main annu-

us flow on the cavity flow with local recirculation zones in the

im seal for overlapping geometries promoting a reduced shear

ayer at the rim seal interface. The main sources of unsteadiness

bserved in the linear cascade are the horse shoe vortex process,

railing shed and Kelvin-Helmholtz instability at the rim seal in-

erface due to shear layer. This last natural instability is observed

nly at low free-stream turbulence (LES without turbulence injec-

ion) while cancelled at higher free-stream turbulence (LES with

nlet turbulence injection). 
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ppendix A. Mesh dependency 

The assessment of the grid convergence for the different ap-

roaches is made by comparing the pressure loss coefficient down-

tream of the blade for two level of mesh refinement. The first

esh is the one used during this study and a second mesh that

s refined. For the RANS approach, the additional grid has been

enerated with reduced characteristic mesh lengths in the trans-

erse directions (x,z) and the expansion ratio in the wall-normal

irection has been also decreased to 1.1. For the pressure loss co-

fficient downstream of the blade, a similar local discrepancy can

e observed especially in the two main peaks of loss in the or-

er of magnitude of 2%. However, the results for the standard

nd fine grids are in good agreement to indicate grid conver-

ence. For the LES simulation based on structured grid, the mesh
as been refined by decreasing all three near-wall characteris-

ic lengths: �x + ≤ 60, y + 
1 

≤ 0.8 and �z + ≤ 15. The mesh re-

nement has been mainly performed in the spanwise direction.

his parameter have been shown to strongly influence LES sim-

lation quality [27] and fewer in the streamwise direction since

he streaks that are to be captured in wall-resolved LES simula-

ions are elongated structures in the streamwise direction [1] with

ewer variations in the stream direction. The final mesh is com-

osed of around 110 × 10 6 cells compared to the 60 × 10 6 

ells mesh used for the study. For the LES on unstructured grid

pproach, the mesh has been refined in the wall-normal direction

o reach y + 
1 

� 1 and the triangle discretization on surfaces have

een decreased compared to the standard grid used for the study.

ig. 24 shows the comparison of pressure distribution downstream

lade for the configuration A05 for the different LES approaches

ith the two mesh refinement. The change in mesh size shows

ocal discrepancy in the order of magnitude of 4% in loss peak

egion for the elsA and AVBP approaches. Despite these local dif-

erences, the results between standard and refined meshes are in

ood agreement. 
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