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Monitoring eye movements in real flight conditions
for flight training purpose
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Eye-tracking is a relevant technique to investigate pilots’ cognitive performance. It offers promising
prospects to enhance pilots’ training and be used for on-line monitoring for smart cockpits purposes.
Most of the studies are conducted in flight simulators which may limit the interpretation of the eye-
tracking data. In this study, we investigate the possibility to measure eye movement in real flight. We
conducted an experiment with 7 pilots performing two traffic patterns and basic flight maneuvers in
a real light aircraft. We analyzed the distribution of attention over the main areas of interest (flight
instruments) during the different flight phases. These data were confronted with operational procedures
and discussed with flight instructors in terms of flight safety and recommendations for training. Also,
a classifier trained on the first traffic pattern could predict the three phases (take-off, downwind, and
landing) of the second one with a mean accuracy of 70%.
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1 INTRODUCTION

Flying is a challenging activity that takes place in a complex, uncertain and dynamic environment. It
is of great importance for pilots to constantly monitor the flight deck as well as the out-of-the window
to update situation awareness and detect potential threats (eg. failure, incoming traffic). Ab-initio
pilots are trained to scan the main panel instruments while glancing at the outside world. It is now well
admitted that several factors such as stress, workload, time-on-task, and fatigue can impair monitoring
abilities to an extent that critical events (eg. flightpath deviation, alarms) remained unnoticed [1–4].
Several studies have pointed out that experts exhibited higher scanning proficiency than novices (see
[5–7] for comprehensive reviews) thus being less affected by the deleterious effects of stressors [8, 9].
These findings suggest that monitoring is a key technical skill that needs to be trained to improve the
efficiency and safety of aircraft operations. However, little is known on how pilots scan the cockpit
especially from an instructor’s point of view when his/her latter gives flight lessons to their trainees.

To that end, eye tracking offers fruitful perspectives for training [10, 11] since it provides both behavioral
[9] and physiological outputs [12] to assess the trainee’s performance and mental effort. For instance,
the video recording of the session can be replayed during the debriefing by the flight instructor to point
out the poor distribution of attention and make recommendations to their students. More sophisticated
analyses can also be performed using metrics such as saccadic activity, fixations and dwell time, gaze
entropy, blink rates and variation of pupil diameter (see [13] for a review). This approach allows
computing objective indicators of visual performance leading to disclose statistical evidence of efficient
or non-efficient ocular behaviors if conducted over large samples of pilots. Eventually, machine learning
techniques could be applied to automatize the detection of abnormal ocular events with regard to a
reference model to assist the flight instructor during the debriefing. In the long run, this approach
would help flying clubs, airlines or aviation authority administrations to improve training and flight
procedures.
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Whereas eye tracking has been extensively used for aviation psychology research since the pioneering
work of Fitts [14], there is still a long way before such an approach could be implemented and system-
atized for training purpose [7, 11]. One reason is that experiments generally involved small cohorts of
pilots and there is an obvious lack of data to constitute reference models of nominal ocular behavior.
Another issue is that most of these experiments have been conducted in simulated conditions thus lim-
iting the interpretability of the data. To date, and to the best of the author’s knowledge, few studies
have collected eye movements under actual flight conditions [15–18].

The objective of the present study was to evaluate the potential of eye-tracking in real flight condi-
tions for training purposes. Seven pilots were asked to perform a flight scenario involving basic flight
maneuvers and two traffic patterns. Their ocular behaviors were recorded using a head-mounted eye-
tracking device. We first performed descriptive analysis related to the dwell times over the different
flight instruments with regards to the different flight phases. Three flight instructors were then asked
to subjectively assess their distribution of attention if they had to fly similar scenarios. Participant’s
eye-tracking data were confronted with operational procedures and compared with the flight instruc-
tors’ subjective data. We eventually used classification techniques over the eye-tracking data collected
during the first traffic pattern to predict the different flight phases of the second traffic pattern. The
motivation was to show that such techniques could be used to classify pilots’ ocular performance.

2 MATERIAL AND METHOD

2.1 Participants

Seven pilots were recruited among the students of the ISAE-SUPAERO engineering school to partici-
pate in the study (all males; 25-35 years old, with 80-250 flight hours experience). All had a normal
or corrected-to-normal vision and no history of neurological or psychiatric disorders. The study was
approved by the European Aviation Safety Agency (2403 2424 2487–EASA 0010011661) and all par-
ticipants gave their informed written consent. Three experienced flight instructors participated in a
subjective dwell time survey.

2.2 Aircraft

We used the ISAE-SUPAERO experimental Robin DR400 light aircraft. This four-seated aircraft is
powered by a 180HP Lycoming engine and equipped with classical gauges, radio navigation equipment,
and actuators such as rudder, stick, thrust, and switches to control the flight.

2.3 Experimental scenario and protocol

The flight scenario consisted of performing basic maneuvers such a steep turn, climb and descent and
two consecutive standard traffic patterns at Lasbordes airfield (Toulouse). The scenario lasted around
40 minutes. The steep turn was a left 360-degree turn with a 45-degree bank angle while maintaining
altitude, speed, and bank. The descent was initiated at 2500 feet to reach an altitude of 1500 feet and
consisted of maintaining a constant negative vertical speed (500 feet per min) and a constant speed of
150 km per hour. The climb was following the descent and consisted of adapting the pitch to maintain
a constant speed of 150km per hour until an altitude of 2500 feet was reached. The pilots were then
asked to achieve two consecutive traffic patterns. Each traffic pattern, according to the standards of
visual flight rules (VFR), is divided into five flight phases—the upwind take-off leg, the crosswind leg
(2000 ft), the downwind leg, the base leg and the final landing (see Fig. 1).
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Figure 1: A) Traffic pattern at Lasbordes airfield. B) Pilot equipped with a Pertech eye tracker.

2.4 Measurements

Eye movements were recorded using a head-mounted Pertech eye-tracker (Pertech, Mulhouse, France).
This device has a 0.25◦ accuracy and a 50 Hz sampling rate. The data from a field view camera and a
monocular infrared-sensitive eye camera mounted to the head support were recorded by the computer
unit installed in the aircraft baggage compartment. A calibration procedure was performed using five
distant points on the instrument flight panel.

2.5 Analyses

2.5.1 Objective and subjective dwell times. The participants’ fixations were mapped on an image of refer-
ence, chosen for each participant so that it contained 8 Areas Of Interest (AOI): SPEED, ATT (attitude
indicator), ALT (altimeter), VS (Vertical Speed), HDG (heading), TS (turn and slip indicator), RPM
(engine power) and OTW (out-of-the window). We then computed descriptive analyses by computing
mean percentage dwell fixation time over the 8 AOIs during the three main phases of the two traffic
patterns (take off, downwind, and final) and the three basic maneuvers (360-degree steep turn, climb
and descent).

The real flight eye-tracking data were used to obtain objective dwell times. We also asked three
experienced flight instructors to describe ideal division of attention among instruments during each
maneuver. We compared these subjective dwell times with the objective dwell times of our seven
participants collected with the eye tracker.

2.5.2 Flight phase classification. Similarly to Scannella et al. [15], we trained a classifier to discriminate
the three different phases (take-off, downwind and final) using eye metrics. To meet this goal, we
epoched our data in non-overlapping and continuous 5s time-window and computed, for each leg, the
mean dwell time on the SPEED, OTW, ATT, ALT and RPM AOIs. The other three AOIs were
excluded as they did not receive a sufficient amount of fixations. We then trained a support vector
machine classifier on the first traffic pattern (5 fold, 10-time cross-validation procedure) to discriminate
the three phases of the second traffic pattern. Please not that the number of trials in each class was not
equal as the three flight phases had not the same duration. This could bias our classification results so
we computed and reported the mean balanced accuracy that is the average of the proportion corrects
of each class individually.
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Figure 2: Heatmaps during a) take-off, b) downwind, c) final landing, d) 360-degree turn, e) descent and f)
climb.

Figure 3: Objective distribution of dwell time (top row) and subjective distribution of attention (bottom row,
as reported by three experienced instructors) over the 8 different AOIs during the different flight exercices.
Labels for the AOIs with less than 3% of dwell time were ignored for the ease of reading.

3 RESULTS

3.1 Dwell time on the 8 AOIs across the different phases

Figure 2 represents typical heatmaps of one of the participant during the different flight phases.

Figure 3 shows the mean percentage of dwell time (top row) on the 8 different AOIs during the different
flight phases of the traffic pattern, the 360 steep turn, the descent and climb.
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3.2 Flight phases classification during the landing

The next table presents the mean balanced accuracy to classify the three flight phases of the second
traffic pattern using eye tracking features collected during the first run.

Table 1: Mean balanced classification accuracy for the different features.

Features used
Leg SPEED EXT ATT ALT RPM All features

Take-off 61.0 53.0 50.0 50.0 50.0 49.3
Downwind 50.0 72.8 76.1 81.7 56.2 85.5

Landing 58.0 76.1 74.4 66.4 53.4 75.2
Mean accuracy 56.3 67.3 66.8 66.0 53.2 70.0

4 DISCUSSION

The objective of the present study was to investigate the potential of eye-tracking for training purposes.
The originality of this work was that the data were collected in real flight conditions and discussed with
flight instructors. We mainly focused our analysis on the qualitative measure of the mean dwell time
over the different AOIs. One first observation is that the flight phases have an impact on the distribution
of the pilot’s attention over the different AOIs. For instance, pilots’ attention is highly focused during
the landing while it is more spread during the other phases (see Fig 2 and 3). More specifically, no AOIs
received the same dwell time across the different phases as their relative relevancy highly depends on the
maneuver to be performed. Despite these local differences, our findings indicated that the outside world
corresponded to the most glanced AOI, whatever the flight maneuvers were. This result was expected
as long our participants are only allowed to fly in Visual Flight Rules (VFR) conditions and are trained
to spend most of their time ”head up” to supervise the environment to anticipate potential threats
(clouds, traffic, terrain). Another finding is that the speed indicator was the second most glanced
AOI. This flight parameter is of paramount importance and has to be frequently monitored during the
take-off, landing and climb to avoid stalls and during the downwind or the descent not to exceed speed
limits. Inadequate monitoring of the speed is thought to be a precursor of poor performance [19] and
fatal accidents [20]. Eventually, it is interesting to denote that a highly procedural flight phase such as
the downwind leg is well reflected by the eye-tracking measures: the engine thrust power has to be set
properly (6% of dwell time) to reduce the speed (13% of dwell time) so as to lower the flap, the altitude
has to be carefully maintained (11 %) leading to slight attitude (3%) and vertical speed adjustment
(4%) while spending much time on the outside world over (60%) to keep an eye on the runway. Taken
together these findings indicated that eye-tracking appears to be a reliable sensor to be used in actual
flight conditions as previously demonstrated by [17].

It is interesting to compare these numbers with a dwell time that the flight instructors would expect
their trainees to have on the flight deck. There are some obvious discrepancies between our participants’
scan patterns and the ideal ones defined by our three experts for each maneuver, to the exception of
the downwind phase. The main difference was related to the time spent on the outside view that was
much lower than thought by the instructors. Specifically, these latter were particularly surprised to
find out that the participants spent most of their time head down (64%) when performing the 360◦

steep turn. During this latter maneuver, pilots are taught to take cues from the outside world (e.g.
sighting the horizon line) to fly their aircraft as this steep maneuver can lead to a potential collision
with traffic. However, the flight instructors confirmed that steep turn remains difficult to control from
a psycho-motor and proprioception point of views leading to focus on the flight parameters to maintain
constant the attitude indicator, the altitude and the speed of the aircraft while ending the turn at the
correct heading as indicated by the dwell time over these AOIs. These findings intrigued the flight
instructors who concluded that the systematic use of eye-tracking would benefit to improve training.
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One last analysis was related to the use of classification techniques. In the best case, the balanced
accuracy reached 70% to discriminate the three legs of the second run when combining all the AOIs
collected during the first run. This result is more than promising considering that it is a three-class
problem and that we randomly mixed the data from all our participants (i.e. intersubject classification).
It shows, similarly to [15], that eye metrics are quite robust over time and do not differ across pilots. We
used 5s-windows, which means that it might be technically possible to assess pilots’ ocular behavior with
regard to a specific flight phase in an online fashion. Such a goal would be reachable by collecting more
data with expert pilots to build a reference model that could be learned by classification algorithms
and used to classify trainees’ performance.

This study has several limitations as our sample of pilots and experts were small data thus preventing
us from building an “attentional” model of a good vs bad student pilot. We also only reported mean
dwell time that does not account for the dynamic of attention and future study should focus on the
temporal aspect and the analysis of scan patterns. The incorporation of such metrics could help to
improve classification accuracy and using exponential moving averaged so as to meet aeronautical
standards in terms or reliability. Eventually, one has to consider that measuring eye movements in real
flight conditions remains challenging as the infrared radiation from the sun can degrade the tracking
of the pupil. This particularly true in summer during warm weather. To that end, our experiments
were collected during the morning and signal quality was higher during high-level cloudy conditions.
One possibility would be to integrate solar glass canopy to shield against such contamination for future
operation. Nonetheless, we believe that this first study offers relevant perspectives for the consideration
of eye-tracking for flight safer and more efficient flying [11, 21].
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