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Towards a Complete Design of Linear Functional Observers 

B. Larroque, F. Noureddine, F. Rotella

Abstract - This paper provides a procedure for the design of a reduced order observer of a state 
linear functional for a linear lime-invariant system. The case, defined in[!], where the observer 
order p is given by the number m of single independenl linear functionals to be observed, is called 
in this paper the minimum case where p = m. The minimum case is revisited and numerically
simpl{fied The aim of this paper is lo extend the minimum case to the case where m < p < n-l, 
narned minimal case. A constructive procedure is given to design the linear functional observer. 

Keywords: Linear functional observers, linear lime-invariant systems, generalized inverse 

Nomenclature 

Vectors and scalars 
Name 

State x(t) 
Input u(I) 
Output y(/) 
Observer state 
z(/) 
Observer 
output w(t) 
p 
E: 
System Matrices 

Narne 
A 

A, A2 À3 

A11 A12 An 
A21 A22 Â23 
Â31 Â32 Â33 

B 
C
K 

Size (or definition) 
n 
y 
I 

p 

m 

l+m+µ 
n-l-m

nx l 
lx I 
mxl 
E:X l 

Size 
11 X 11 

nx m nx E 

lx m lx c 
mxm mxc 
E:Xm ex c 

nx y 
lx n 
mx n 

Observer Matrices 
Name Size 

pxp D 

D2 

D12 

D22 
H 
E 

E2 
p 
V 
T 

Ti 
T21 
T22 

T23 

(p-m)x m 
mxm 

(p-m)x m 

mxl 

mxm 
mx (p-m) 

(p-m) x (p-m) 
pxy 
px I 

mxp 
mxl 
mxn 

(p-m)xl 

mx n (p-m)x n 
(p-m)x I 
(p-m)x m 
(p-m)x E: 

Other Matrices 
Name 

Q 
:E 

'l' 
(Jl 

J 
N1 M1 

Nz M2 
N3 M3 

L 
L, z 

l2 Z1 

l3 Z2 

r1 r2 

Size 
nx n 

(m+2/)x n 
pxp 
l+m 
px/ 

(2/+m)x I nx I 
(2/+m)x m nx m 
(2/+m)x I nx I 

(1-µ)xp 
(l-µ)x I mx (2/+m) 
(l-µ)x m mxp 
(/-µ)Xµ mx (/-µ) 
mxm (p-m)x m 

I. Introduction

From the seminal Luenberger's paper [2), several 
attempts have been proposed to design a reduced order 
observer of a linear functional of the state of a linear 
time-invariant system (see for instance [l], [3]-[16]). 
Thus: 

- For the state space linear system

x(t) = Ax(t)+ Bu(t) 

y(t) = Cx(t) 
(1) 

- For a linear functional of the state, the aim is to
design a system

z(t) = Dz(t)+ Hu(t)+ Ey(t) 
w(t) = Pz(t)+ Vy(t) 

where for every t, the state z ( t) , such that: 

(2) 



lim ( w(t)-Kx(t)) = 0 
I➔«> 

If this last condition is fulfilled, then (2) is a linear 
functional observer (LFO). For instance, (2) can be used 
to implement a state feedback control with a minimal 
order controller. 

From [2], it is known that such an observer exists if 
and only if the following well-known conditions are 
satisfied: 

D is a Hurwitz matrix 

TA-DT=EC 

K= PT+VC 
H=TB 

(3) 

(4) 

(5) 

where T is an unknown constant matrix such that 
/im 1➔"'( =(t)-Tx(t)) = 0. lt can be seen that the last 
relation gives H. Thus, the design consists in 
determining the constant matrices of appropriate 
dimensions D, E, P, V and T and the order of the 
observer p such that conditions (3), (4) and (5) are 
verified, keeping in mind that we are looking for a 
minimal LFO. 

Remark 1. ln our study we have to define 2 different 
cases. ln the first case, the minimum LFO is the LFO 
where p = m and P = lm. ln the second case, the minimal 
LFO is the minimal order LFO, where m < p < n-1 
which exists when existence conditions for minimum 
LFO are not fulfilled. 

In the aforementioned literature we can underline 
interesting works. [1 ], [3], [ 4] propose a procedure to 
design a LFO in case p = m [7] gives a procedure for a 
single LFO only. ln [17], the authors use an LFO 
without feedthrough from input to output. Thus, the 
design problem of a minimal order LFO is not, to our 
standpoint, completely solved. lndeed, it can be seen 
that [15] uses the observable lower Hessenberg form of 
(A, C) which is numerically stable with respect to the 
observable canonical form. This form is also used in 
[7], [11 ], [16]. In the following, for numerical stability 
sake, we consider that C is full row rank only and the 
pair (A, C) is not supposed to be in a particular 
canonical form. Moreover, if a row of K is linearly 
dependent on the rows of C, the corresponding 
component of the linear functional (2) can be observed 
with the output alone. Hence it is supposed in the 
following that C and K are linearly independent. This 
property is a very important point of our development. 

ln [ 1 ], a necessary and sufficient condition has been 
proposed in the case whcn p - 111. \\'hen the e>.istence 
conditions are fulfilled, the observer design is based on 
the use of the Moore-Penrose pseudo-inverse of a 
matrix, and on an eigenvalue placement procedure to 

verify the Hurwitz condition for D. Extending the 
previous work, [14] proposes conditions for the 
existence of a second order observer for a scalar linear 
functional of the state. 1t can be noted that it uses an 
observable form for the observer to obtain a procedure 
for the design of a minimal LFO. 

The aim and the main motivation of our paper is 
twofold. Firstly, by considering the property between C 
and K mentioned before, the minimum case developed 
by [l J is revisited and some numerical reductions are 
introduced (minimum case section). Secondly, it is 
interesting to extend the standpoints proposed in [ l ]
[14] in case the necessary and sufficient conditions are
not fulfilled for a minimum LFO (p = m). The case 
p > m can therefore be called the minimal case and the 
observer is called minimal LFO (minimal case section). 

These points of view induce the following 
organization for the paper. Firstly, the minimum case is 
revisited. Secondly, we develop the existence 
conditions for the minimal case. This leads us to 
propose a design procedure to get a minimal LFO. ln 
our work, we propose to use the generalized inverse 
concept which offers more possibilities in the calculus 
than the Moore-Penrose pseudo-inverse generally used. 
Sorne useful results on generalized inverses are 
developed in [18]. 

II. The Minimum Case

Il./. The Minimum Case 

We have P = lm and following [! ], the condition (5) 
is written T = K -VC. lntroducing J = E -D V , 
condition (4) can be written: 

According to [2] this linear system has a solution if 
and only if: 

(6) 

When (6) is fulfilled, the solution is: 

[J D v] = KAL 111 +z(, -H(I} )
2/+m (7) 

where L l 11 is a generalized inverse of L (see [ 18]).
Thal is to say, it verifies the relationship LL (t}L = L 
and Z is an arbitrary (mx(2l+m)) matrix. With the 

following partitions: 



we obtain: 

E{l} = [ M 1 M2 M3 ] 

f21+m -EE{l} = [N1 N2 N3 ] 

J=KAM 1 +ZN 1 

D= KAM2 +ZN2 

V= KAM
3 
+ZN

3 

As seen in [1) the following theorem is recalled. 

Theorem l [/] The necessary and sufficient conditions 
for the existence and stability of the minimum (p = m) 
fimctional observer (2) for system (!} are condition (6) 
and the pair (KAM

2
,N

2
) is detectable. 

11.2. The Minimum Case Revisited 

The aim of this section is to simplify the Theorem 1 
established in [1]. We have to consider the prnperties 
mentioned before between C and K. 

A full rank decomposition of E with rank (E) = p 
leads to write: 

FG="i- (8) 

where F and G are such that rank ( F) = rank( G) = p 

with FE 91(2/+m)xp and GE \llpxn.
Firstly, considering 1:, we order the row of C by 

making a suitable permutation in the output components 
in order to assure that theµ first rows of CA are linearly 
independent from each other and linearly independent 

of [ �] too. We can deduce: 

p=l+m+µ (9) 

Let ( CA)' be defined as these µ rows of CA. By 

choosing on the one hand F = [ 
1 
P ] where L,-µ,p 

l1-11,p 
will be identified later and on the other hand 

G = [ � 1 • (8) is verified.

(CA)' 
We consider a coordinates transformation Q which 

leads to define a similar matrix such that: 

fQ=E (10) 

with f E 91(m+it)xn. By comparing (8) with ( 10), Q and
f are identified. 

Due to the fact that Q must be nonsingular, 
transfonnations must be made. If (! + m + µ) < n , 

( n - µ - / - m) arbitrary components noted Y are 
added to G it can be deduced: 

(11) 

As a consequence, by adding a column to F we 
finally obtain: 

op.n-p 
] 

0,-,,,11-p 
(12) 

where L1_11_p is a known matrix obtained by identifying

the sub-matrix of: 

By using this state variable change, we obtain 
A= QA Q-1 and:

ë = co- 1 
= [1 o o ] � I l.111 l,n-1-m 

K=KQ-1 =[Om.1 lm Om.n-t-m]
(13) 

Remark 2. For notational simplicity, if one of the 
dimensions of the null matrix vanishes or is negative, 
this matrix must not be considered. 

Let us partition l as: 

L=[Li � L_,] (14) 

Moreover A is partitioned as: 

(15) 

where: 



From theorem l described before, the following 
corollary can be deduced: 

Corollary 1 A necessa,y and sufficienl condition for the 
existence of an observer of order m is: 

1. rank [ïî13 ] = rank[�13],
A23 

2. pair (A22 ,Li) is detectable.

Proof 1 Starting from (6) and according to the state 
variable change, (2) has a solution if and on/y (f-

(16) 

where 'f is given by ( 12). Using (13) and ( 15) we get:

A22 A23] KA =[ÏÏ21 

CA = [ïî11 A,2 ÏÎ13] 

Thus, ( 16) becomes: 

[ ,, rank O�
,.t

A11 

r ,, 
nk 0111./ra -

A11 

A2 1 

0,,111 o,,-,- ]-
1/11 O m,n-1-m -
A,2 A13 

o,.m 

0,,-,-1 
'"' om-!!_-1-m 

A,2 A1 3 
A22 An 

(17) 

which denotes that then n - p last columns of A23 must 
be null or linearly dependent on the n - p last columns 
of A 13. Eventually, the existence condition (16) 
becomes: 

rank [ ÏÏ13] = rank [�13]
Az3 

(18) 

which constitutes condition of corollary 1. 
Concerning the second condition of this corollary, if 
( 18) is fui li lied. (7) is written in the basis defined in
(11),so:

To solve (19), we use the expression of KA defined 
in ( 17) and as f is defined by ( 12), we can choose for 
fPl (see [18]): 

f(l} =[ Jp Qp.l-11 ] 
0,,-p.p on-p.l-11 ⇒

I - �Lill = [O P,P O p.l-11] 2t+m -L 1 l-11

The particular choice of fil} Jeads to major 
simplifications in the design of the LFO. 

Remembering that p = I + m + µ , î { l} can be 
partitioned as: 

1, o,,m o,.µ 0,,1-,u 

om.l I om.11 om./-p 
f{l} =

m (20) 
0 p./ 011 ,m [µ 011.1-11 

on-p,I on-p.m on-p,Ji on-p.l-11 

Using the partition of l defïned in ( 14), we have: 

I -D::{'l =[O.u.1 

2/+m 

-'4 

op ,m 

This partition induces to write Z as: 

op.1-11
] (21),,_,, 

(22) 

where z, E 91 mxp and Z2 E 91mx(i-p). We will see m
the following that only 22 has to be considered. 
Eventually, (19) can be expressed as 3 equations: 

(23) 

Thanks to (23), if ( ÏÏ22 
,.Li) is detectable, Z can be

determined by using a standard eigenvalue assignment 
technique (SEAT) which provides D as a Hurwitz 
matrix. 

The last point is to see that the detectability condition 
is independent of the cboice of L(!J and this is shown 
in the appendix. 

This standpoint simplifies the design in the minimum 
case by introducing numerical simplifications in the 
necessary and sufficient conditions of Theorem 1. Ali 
required matrices are obtained without calculation of 
any generalized inverse. 

However when the existence conditions are not 
fulfilled, we have to study the case where p > m. This 
last case constitutes the next section called minimal 
case. 



III. The Minimal Case

Our philosophy for the minimal case is to find, for a 
given p, the necessary and sufficient existence 
conditions for an asymptotic observer. The minimal 
order observer will be obtained by increasing p until 
these conditions are fulfilled. To study the minimal case 
we have to consider conditions (3), (4) and (5), using 
the frame we have already defined for the minimum 
case. 

Ill. 1. A nalys is 

ln order to simplify the design procedure, we 
suppose that the observer is written in an observable 
canonical form (see [2]): 

with: 

P = [1
,,, 

Om .p-m],D = [ D1 Di ) 

D2 =[ / p-m 
]

om,p-m 

(24) 

(25) 

We choose to define the above mentioned 
partitioning in order to treat (4). 

Remark 3. D 12 and D22 are a specific partitioning of the 
p - m last columns of D2• For a given p, these 2 matrices 
are known. 

Using partitions (24) in ( 4) yields: 

(27) 

According to the definition of matrix P, Ij = K - VC 
and by setting J1

= E1 -D11 V and J2
= E2 -D21 V, 

(26)-(27) can be written as: 

KA-D12T2 =VCA+ D11K +J1C 
T2 A-D22Ji = D2 1 K+J2C 

or equivalently: 

(28) 

where q> = [ �l 
(28)-(29), in the new basis, are defined by: 

(30) 

(3 J) 

Thanks to (13), (31) can be expressed as: 

As seen in the proof of corollary l, we express �{I} 
by (20) and l21+m -'E{ 1} by (21 ). In addition to the
partitioning already defined for L, A and Z respectively 
in ( 14 ), ( 15) and (22), Ti is partitioned as: 

(33) 

JJI.2. Design 

To salve (30)-(31 ), existence conditions must be 
established. 

Existence condition of (30) is established thanks to 
{ 1 }-inverses properties. Multiplying (30) by f{l}f 
leads to: 

to: 

(KA-D f.)(1 -fPlf)=o 
12 2 11 (34)

Due to the particular form of l,, -f {I lf , (34) leads

_ 
[

oµ,n-p
] 

= _ [oµ.11-p
] A23 D12T23 

I,,_P l,,_P 
(35) 

(35) constitutes the first relation which constrains
Ti

3 
to obtain a solution for (30). 

Furthennore, partition of (31) allows to write: 

(36) constitutes the second relation which constrains
fi

3 
to obt.:in a solution for (31). 

So, if T23 is sucb that (35) is fultilled, a solution for 
(30) is given by:

(37)



where Z is an arbitrary matrix. 
By expressing KA using (17) and substituting Ï: (1) 

and /2/+m -LL{l) in (37), 3 equations are deduced: 

OµJ-µ ] 
011-p.l-µ 

(38) 

(39) 

(40) 

Using the partitions of A and T-z given respectively 
in (15) and (33), and by considering that (36) is 
fulfilled, (31) can be written as: 

(4 l)  

(42) 

with D11 defined (39) and D21 (42), D given in (25) 
can be written as follows: 

where: 

(43) 

(44) 

D can also be decomposed into the canonicat forrn 
allowing the application of a SEA T: 

(45) 

where: 

4'- [ A22 

op-m,m
( 46) 

According to remark 2. 'f' is kno,\n, so if the pair 
('+1,;1., 0 .. ,; ,,,J) i� ol>,,ervable, 11 and r

2 
can be 

deterrnined by choosing arbitrary eigenvalues and using 
a SEAT to fulfill (3). If the pair ('l',[i

m 
Om.p-m]) is 

detectable (3) is fulfilled and r 1 and 12 are fixed and 
not choosen. 

JJJ.3. Determination of Ti and Z 

Once 11 and r 2 are calculated, T
2 

and Z must be 
found by solving (35), (36), (43) and (44) using the 
Kronecker product (see [ 19)). Let vec ( X) be the vector 
value fonction of a matrix X, defined by: 

vec(X)= 

where X is defined by: 

[XII 

X= 
Xml 

X1 ·•· X ] n mn 

... X l 

ln 

Xmn 

T 

So using the following property, 
vec( AXB) = (Br ® A) ( X) where ® is the Kronecker 

product, (35), (36), (43) and (44). Eventually, we obtain 
(system (47)): 

vec(r 1 ) = (! m ®-D12 )vec(Ti2 )-( J!; ® lm )vec(Z2 ) 

vec(r 2) =(A
{

® I 
p-m) vec(fi)-(1 m ® D22) vec(Tz2) 

0 = ( AJ
° 
® l p-m) vec( Ti)-( l,,_,_m ® D22) vec(fi3)

[ T ] [ l [
oµ,n-p

] (
-

) 
- [oµ.n-p

] l,,_P
®D12 vec T23 =vec A23 l,,_P 

Due to the decomposition of fi (33), it is assumed 
that: 

with: 

vec(f;
2) = G1 vec(f;) 

vec(fi
3 ) = G2 vec(fi)

(48) 

c, = [ o(p-m)m,(p-m)I l(p-m)m o(p-m)m,(p-m)(n-1-m)] 

and: 

G2 = [ O(p-m)(n-1-m).(p-m)(l+m) l(p-m)(n-1-m)] 

By placing ( 48) into ( 4 7) we get: 



with: 

H =1 

((ïï[ ©Jp-m)-(1,,, © D22 )G1 )

((ïï[ © fp_,,,)-(In-1-m © D22)G2 )

[[O;,::: r ®D,,)c,

vec(r2) 

o(n-1-m)(p-m).1 

A solution for T2 exists if and only if: 

rank(H
1
)=rank([H

1 
112 ]) 

and is given by: 

(51) 

(52) 

where Y is an arbitrary matrix that can be taken equal 
to zero as shown in the presented exarnple. 

Once T2 is deterrnined, a solution for Z2 exists if 
and only if: 

and a solution is given by: 

(54) 

where W is an arbitrary matrix. As mentionned above 
for Y, W can be taken equal to zero. 

The previous development leads to propose the 
following theorem: 

Theorem 2. The necessary and sufficient conditions for 
the existence and stability of the minimal functional 
observer (2) oforder p, for system (1) are: 

1. ( 'P, [ / 
111 

0 m,p-m ]) is detectable,

2. (51) and (53) are fulfilled.

IV. Design Procedure

The following procedure is proposed: 

Minimum LFO 

l. Set p = m
2. Compute Q with (11) and deduce Y, A and L

3. Existence condition:
if (18) is true then go to step 4

else go to step 8 
4. [f (A22, L2 ) is observable, thea go to step 5

else if (An , L2) is detectable, then go to step 6 
else go to step 8 

5. Choose eigenvalues for D and calculate Z with a
SEAT

6. Compute D , V and J which are defined in
(19) and compute E = J + DV and T = K. - VC

7. End: a minimum LFO is designed

1 Minimal LFO 

8. Increase p: p = p+ 1
if p < n - / , then go to step 9

else the reduced order observer has to be 
considered 

9. Compute 'I' with (46)
1 O. If ('P, [!

,,, 
0 D is observable, then go to step 11

else if ('P,[!,,, oD is detectable, then go to step 12 
else go to step 8 

11. Choose observer eigeavalue, get Jï and r2 by
taking Y= W = 0 .  Calculate D with (45)

12. Existence condition
Tf (51) and (53) are fulfilled, calculate f,_ and Z2

with (52) and (54) 
else go to step 8 

13. Compute Z, J with(21-38) and V with(40).

Compute E and T with E = and - [J1 +D11 V
] 

J2 + D21 V 

f =[K. f:c] 
14. End: a minimal LFO is designed

V. Numerical Examples

V l. Case I: A Minimum Order Observer Exists 

Considering the following system: 



-1 0 0.1 -1
2 l 0 0.5 1 2

-1 0 0 0 2 -1 
A= 

0.5 1 0 0.1 0.2 
2 -0.1 0.2 0.3 0.9 0
0 0 1 2 0.1 0.5 

C•l: 
0 0 0 0 

n 1 0 0 0 
0 0 0 

K = [� 0 0 1 0 

�] and 
0 0 0 1 

From this system we get n = 6 , l = 3 and m = 2 . 
Using the design procedure we get: 

1. Minimum case: p = 2
2. A change in the state variable ( Q) in order to

compute C in the form (12) is given by:

0 0 0 0 0 

Q•[(c:J
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
-1 0 0.1 -1

where (CA)
1 

(µ = 1 )  is the first line of CA linearly 

independent of [ �]. So, the matrix A is sucl, that:

0 0 0 0 0 
4 1 -0.2 -1.5 3 2 

À =QAQ-
1 = 

-2 0 0.1 1 1 -1 
1.2 0.5 0.98 -0.2 0.3 0.2
2 -0.1 0.2 0.3 0.9 0

-0.5 0.6 1.74 1.1 0.1 -0.4

Following (9) as p=l+m+µ=6=n, (18) is 
always fulfilled. 

3. With Q, f is such that:

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 

f= 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 
4 -0.2 -1.5 3 2

-2 0 O.J -1

By partitioning the matrix L , we obtain 

� =[-� � -i�
2

l½ =[
-

�-
5 
�J 

and½ =[�J 

4. Following the partition for A defined in (15), we
have:

ÏÏ = [
-0.2 0.3

]22 0.3 0.9 

(A22,Li) is observable: A
21 

is a (2x2) matrix and 

rank([ ½�tJ) = 2 .  

5. Eigenvalues for D are chosen in -1 and -2, it
follows that:

[
-0.1111 0.6333

] Z= 
0.5778 1. 1667

6. D , V, J, E and T are such that:

D= [
-1
0 �2]

[ 
2.7111 0.6111 0.9144

] J= 
2.0222 -0.6778 0.1989 

[
1.0556 0 

�] V= 
0.0111 0 

E = [
l.6

i
56 0.6111 0.9144

]-0.6778 0.1989 



1. 
2. 

T=[-1.0556 0 0 1 0 O] -0.0111 0 0 0 1 0
V2. Case 2: A Minimum Order Observer Exists 

Considering the following system: 
0 2 0.5 

1 -0.5 1 0 
-3 -4 -0.5

0.5 3
1.8 0.1 3.8 

A= -1 1.5 1 1 
2 -1 0.5 -0.25
3 0 -2 -1

-1 0.25 -0.5 0.6
1 0 -2

-2 0.1 0.2 0 1 
2 2 0 
-1 -5 -2.1 -2.2 -4 -1
-4 0.5 -0.8 -0.6 -2 2

-4.4 0 -0.1 2 -0.4 2
-10 -1 -2.8 -2.6 -6 2
1.2 1.4 0 0 -2 1

-0.25 0.1 2 -1 0 l 
0.3 0.1 1 -1 3 0 

0 -1.3 1.2 0.8 -1

c a [j 0 0 0 0 0 0 0 0 

�1 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 

and K =[� 0 0 0 1 0 0 0 0 
�] 0 0 0 0 0 0 0 

Using the design procedure, we obtain: 
Minimum case: p = 2 
A change in the state variable ( Q) in order to 
compute C in the form (12) is given by: 

C 
K 

Q= (CA)
1 

(CA), 

X 

1 

0 

0 

0 

0 

0 

0 

0 

0 
1 

0 
0 
0 
0 
0 

-0.5
0
0

0 
0 
0 
0 
0 
2 
1 
0 
0 

0 0 
0 0 
0 0 
1 0 
0 1 

0 0 
0.5 -2
0 2 
0 0 
0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 
0.1 0.2 0 1 

1 2 0 
0 1 0 0 0 
0 0 0 0 

as the two first lines of CA are linearly independent of 
[C] - -

K , µ = 2 . So, matrices A and E are such that: 

1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 
�= 

0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 -2 -1 -2 0 0
0 0 0 0 2 -0.5 2 -1 0 0

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 
0 0 0 0 2 

0 0 0 0 0 
A= 0 0 0 0 0 

2.2 1.05 0.75 -] .8750 2.07 
-1 0.5 -8.5 -1.05 2.55
2 -1.5 -0.5 -0.75 5.2
2 0 -4 -1.5 1.75
0 1 0 0 0 
0 0 1 0 0 

-2 -1 -2 0 0 
-0.5 2 -1 0 0 
-1.8 2 -0.2 -0.1 1.8

0 2 -3 0 0 
-0.09 -2.7 -6.8 -0.93 -2.76
-7.9 8 -3.9 1.6 -1.8
1.4 -1 0.9 0.8 
-0.9 0 1.9 -1.2 



L=[
O O O O l -2 
0 0 0 0 2 -0.5 

-1 -2]
2 -1

As rank [ .A13] = 2 and rank [�1 3] = 3 , (J 8) is not 
A23 

fulfilled, then the minimal order observer does not exist, 
so go to step 8. 

3. With p = 3, the system is such that p < n-1.
4. tp is given by (46):

5. ('+',[12 02.1]) is observable.

6. By choosing observer eigenvalues in -1 , -2 and
-3,we get r

1 
and r2: 

r = [-3 1.�] 1 0 -.) 

r2 =[-2 o] 

so we get: 

[-3 D= 0 
-2 

7. T
2 

and 22 exist as (51) and (53) are fulfilled: 

8. 

fi=[2.3802 2.1561 -3.8728 -2.7875 5.0277 

-1.7078 2.6248 -0.2414 -0.l 1.8]

z 
=[ 0.3423

2 -1.7143

Matrices J , V , E and T 
by: 

J= 0 [
-2.3802

9.4159 

V= [ 
2.0876

-1.4286

-2.1561
0

2.7853

-0.459
-5.5714

-1.185
]0.8571 

are respectively defined 

3.8728 

27i

75 l 0 
-3.1298 -7.2930 

0.3423 -1.185
] -1.7143 0.8571 

[
-8.6432 -0.7792 2.8458 6.3426 l 

E = 4.2857 16.7143 5.1429 -2.5714 
5.2406 3.7033 -3.8145 -4.9229 

[-208 0.45 -0.34 1.18 
T = 1.42 5.57 1.71 -0.85 0 .J 

2.38 2.15 -3.87 -2.78 5.02 

0 0 0 0 

,:8] 0 0 0 
-1.70 2.62 -0.24 -0.1

VI. Conclusion

We have shown that the procedure established by [ 1] 
can be simplified in the case where p =m. Derived 
from theorem !, corollary I is proposed and 
summarizes our results. Moreover, when it is not 
possible to design a LFO in this case, we propose a 
procedure which enables to design a minimal LFO by 
increasing order p. Theorem 2 gives necessary and 
sufficient conditions in this latter case. 

Appendix 

To verify that the detectability condition is 
independent of the choice of i:{I} , we consider two
different choices for L{i} denoted t{I}' and L:{I}" . 
Supposing that we get two different solutions for (7): 
[l D

° v'] and [i' D" v"] respectively, we

have:

[l n' v']=KAi: 1 'l' + z'(lzt+m-LL {I}')

[/' D" v"] = KAi:\I}" + z" ( lu+m -i:r Pl
"

) 

rl 1l ' and rl 1 l" verify: 

where Y is an arbitrary matrix with appropriate 
dimensions: 

[/ D' v']=KA(i:l1l"+r-L{l}"i:n_:i:{1l")

+z' (f21+m -L( L{I}" + Y -L{l}"i:yE{l}"))

= KAi:{I}" + KAY - KAI(t)"In::r{I}" +

z· - z·I::�::{ll " +-z·Ir +z·Hf1 l "Irn{1l "

For compatibility reasons KAr l1l "r =KA, so: 



[ / n' v'] = KA:E(l}" + KAY(l21-1-m -:E:E{l l") + 

'( {Il") , ( Pl")Z f21+m -LL -Z :EY f21+m -ri: 

= KA:E{ll" +( KAY + z' -z'LY)(I21+m -Lt Pl") 

lf we choose z 
" 

= KAY+z' -z':r.r, we 
" 

get 
[l D v']=[f D v"]. If we suppose now 

that an arbitrary pole placement on D is possible by 
computing a matrix z·, it will always be possible to 
arbitrarily assign the pole of n" by substituting z" for 
KAY+z' -z'tr. 
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