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Abstract  

Securing enough water and food for everyone is a great challenge that the humanity faces 

today. This challenge is aggravated by many external drivers such as population growth, climate 

variability, and degradation of natural resources. Solutions for weak water and food securities 

require holistic knowledge of the different involved drivers through a nexus approach that looks 

at the interlinkages and the multi-directional synergies to be promoted and increased and trade-

offs to be reduced or eliminated. In particular, the interlinkages between water, food, and 

climate, the so-called Water-Food-Climate Nexus (WFC Nexus) is critical for the given 

challenge in many regions around the world such as the Nile Basin (NB). Studying the WFC 

Nexus synergies and trade-offs might provide entry points for the required interventions that 

are potential to induce positive impacts on water and food securities. However, these synergies 

and trade-offs are not well known due to factors such as the complexity of the interactions 

which involve many dimensions within and across spatial and temporal domains and 

unavailability of reliable ground observations that could be used for such analysis. Therefore, 

multidisciplinary research that encompasses different methodologies and employs datasets with 

adequate spatial and temporal resolutions is required.  

The recent advancement in Earth Observation (EO) sensors and data processing algorithms 

have resulted in the accumulation of big data that are produced in rates faster than their usage 

in solving real challenges such as the one that is in the focus of the current research. The 

availability of public-domain datasets for several parameters with spatial and temporal coverage 

offers an excellent opportunity to discover the WFC Nexus interlinkages. To this end, the main 

goal of the current research is to employ EO data derived from public-domain datasets and 

supplemented with other primary and secondary data to identify WFC Nexus synergies and 

trade-offs in the NB region, taking the agricultural systems in Sudan as a central focus of this 

assessment. By concentrating mainly on the agricultural systems in Sudan, which are 

characterized by low performance and efficiency despite the huge potentials for food 

production, the current research provides a representative case study that could deliver helpful 

and transferrable knowledge to many areas within and outside the NB region.  

In the current research, multi-scale analysis of the WFC Nexus synergies and trade-offs was 

conducted. The assessment involved investigations on a country scale as a strategic level, and 

on river basin, agricultural scheme (both irrigated and rainfed systems) and field scales as 

operational levels. On a country scale, a general analysis of the vegetation’s Net Primary 

Productivity (NPP) and Water and Carbon Use Efficiencies (WUE and CUE, respectively) in 

different land cover types was carried out. A comparison between the land cover types in Sudan 
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and Ethiopia was conducted to understand and compare the impact of inter-annual climate 

variability on the NPP, WUE and CUE indicators of these different land cover types under 

relatively different climate regimes. The results of this analysis indicate low magnitude of the 

three indicators in the land cover types that are in Sudan compared to their counterparts in 

Ethiopia. Moreover, the response of these indicators to climate variability varies widely among 

the land cover types. In addition, land cover types such as forests and woody savannah represent 

important natural sinks for the atmospheric CO2 that need to be protected. These observations 

suggest the need for effective policies that enhance crop productivity, especially in Sudan, and 

at the same time ensure preserving the land cover types that are important for climate change 

mitigation.  

On a river basin scale, which represented by the Blue Nile Basin (BNB), precipitation 

estimation is of utmost importance, as it is not only the main source of water in the basin but 

also because precipitation variability is controlling food production in the agricultural systems, 

especially in the rainfed schemes. The high spatial and temporal variation in precipitation within 

the BNB suggests the need for water storage and water harvesting be promoted and practiced. 

This would ensure water transfer spatially from wet to dry areas and temporally from wet to 

dry seasons.  

As a major staple cereal crop in Sudan, the performance of sorghum production in irrigated 

and rainfed schemes was investigated on agriculture schemes and field scales. A noticeable low 

and unstable sorghum yield is detected under both agricultural systems. This low performance 

represents a serious challenge, not only for food production but also for water availability. The 

current low performance was found to be controlled by many factors of physical, socio-

economic and management nature. As many of these factors are closely linked, effectively 

addressing some of them might induce positive impacts on the other controlling factors. To 

conclude, the identified synergies and trade-offs of the WFC Nexus could be used as entry 

points to increase the efficiency of water use and bridge the crop yield gap. Even simple 

interventions in the field might induce positive effects to the total crop production of the 

agricultural schemes and water use efficiency. The increase of water availability in the river 

basin and improved production in the schemes would enhance the overall water and food 

security in the country and would minimize the need to convert land covers that are important 

for climate change mitigation into croplands. This paradigm shift needs to be done through a 

comprehensive sustainable intensification (SI) framework that is not only aimed at increasing 

crop yield but also targets promoting a healthy environment, improved livelihood, and a 

growing economy.  



xvii 
 

Zusammenfassung 

Genügend Wasser und Nahrung für alle Menschen zu sichern, ist eine große Herausforderung, 

der sich die Menschheit heute gegenübersieht. Diese Herausforderung wird durch viele externe 

Faktoren wie Bevölkerungswachstum, Klimavariabilität und die Verschlechterung der 

natürlichen Ressourcenbasis verschärft. Lösungen, um die geringe Wasser- und 

Nahrungsmittelsicherheit zu verbessern, erfordern ein ganzheitliches Wissen über die 

verschiedenen beteiligten Treiber durch einen Nexus-Ansatz, welcher sektorübergreifende 

Zusammenhänge untersucht, deren multidirektionale Synergien fördert und skaliert sowie 

Kompromisse reduziert oder beseitigt. Insbesondere die Zusammenhänge zwischen Wasser, 

Nahrung und Klima, der sogenannte Wasser-Nahrung-Klima-Nexus (Engl.: WFC Nexus), sind 

für die gegebenen Herausforderung in vielen Regionen der Welt, wie auch dem Nilbecken 

(NB), von entscheidender Bedeutung. Die Untersuchung der WFC Nexus-Synergien und 

Kompromisse könnte Ansatzpunkte für erforderliche Interventionen liefern, die potenziell 

positive Auswirkungen auf die regionale Wasser- und Lebensmittelsicherheit haben können. 

Diese Synergien und Kompromisse sind jedoch aktuell wenig bekannt, aufgrund von Faktoren 

wie der Komplexität der Wechselwirkungen, welche viele Dimensionen innerhalb und über 

räumliche und zeitliche Domänen umfassen sowie der Nichtverfügbarkeit zuverlässiger 

Beobachtungen, die für eine solche Analyse verwendet werden könnten. Daher ist eine 

multidisziplinäre Forschung erforderlich, die verschiedene Methoden umfasst und Datensätze 

mit angemessenen räumlichen und zeitlichen Auflösungen verwendet.  

Die jüngsten Fortschritte bei Erdbeobachtungssensoren (EBS) und 

Datenverarbeitungsalgorithmen haben dazu geführt, dass sich große Datenmengen ansammeln, 

die schneller erzeugt werden, als sie zur Lösung realer Herausforderungen, wie derjenigen, auf 

die sich die aktuelle Forschung konzentriert, benötigt werden. Die neue Verfügbarkeit und 

Qualität öffentlich zugänglicher und relevanter Datensätze bietet eine hervorragende 

Gelegenheit, die WFC-Nexus-Verknüpfungen weiter zu erforschen. Zu diesem Zweck besteht 

das Hauptziel der aktuellen Forschung darin, EBS-Daten zu verwenden, die aus öffentlich 

zugänglichen Datensätzen abgeleitet und mit anderen primären und sekundären Daten ergänzt 

wurden, um WFC-Nexus-Synergien und Kompromisse in der NB-Region zu identifizieren, 

wobei die landwirtschaftlichen Systeme im Sudan im Fokus der Analyse stehen. Die 

landwirtschaftlichen Systeme im Sudan, zeichnen sich, trotz des enormen Potenzials für die 

Lebensmittelproduktion, durch geringe Leistung und Effizienz aus. Unsere Studie ist eine 

repräsentative Fallstudie, die hilfreiches übertragbares Wissen für viele weitere Bereiche 

innerhalb und außerhalb der NB-Region liefert.  
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In der aktuellen Forschung wurde eine mehrskalige Analyse der WFC Nexus Synergien und 

Kompromisse durchgeführt. Die Bewertung umfasste Untersuchungen auf Länderebene, als 

strategische Ebene, sowie auf der Ebene des Wassereinzugsgebiets, des landwirtschaftlichen 

Systems (sowohl Bewässerungs- als auch Regenwassersysteme) und der Ebene einzelner 

landwirtschaftlicher Flächen, als operationelle Ebene. Auf Länderebene wurde eine allgemeine 

Analyse der Netto-Primärproduktivität (NPP) der Vegetation sowie der Wasser- und 

Kohlenstoffnutzungseffizienz (WUE bzw. CUE) in verschiedenen Landnutzungstypen 

durchgeführt. Zusätzlich, wurde ein Vergleich zwischen den Landnutzungstypen im Sudan und 

in Äthiopien durchgeführt, um die Auswirkungen der jährlichen Klimavariabilität auf die    

NPP-, WUE- und CUE-Indikatoren dieser verschiedenen Landnutzungstypen unter relativ 

unterschiedlichen Klimaregimen zu verstehen und zu vergleichen. Die Ergebnisse dieser 

Analyse zeigen unterschiedliche Auswirkungen von Klimavariabilität auf die drei untersuchten 

Indikatoren und eine geringe Größenordnung der Indikatoren der Landnutzungstypen im Sudan 

im Vergleich zu denen in Äthiopien. Darüber hinaus stellen Ökosysteme wie Wälder und 

Waldsavannen wichtige natürliche und schützenswerte Senken für atmosphärisches CO2 dar. 

Diese Beobachtungen legen die Notwendigkeit einer wirksamen Politik nahe, welche die 

Ernteproduktivität, insbesondere im Sudan steigert, gleichzeitig aber auch die für die 

Eindämmung des Klimawandels wichtigen Arten der Bodenbedeckung bewahrt.  

Auf der Ebene des Einzugsgebiets, das vom Blauen Nil (BNB) repräsentiert wird, ist die 

Niederschlagsüberwachung von größter Bedeutung, da sie nicht nur die Hauptwasserquelle im 

Einzugsgebiet darstellt, sondern auch die Variabilität der Niederschläge in hohem Maße die 

Nahrungsmittelproduktion in landwirtschaftlichen Systemen kontrolliert, vor allem im 

Regenfeldbau. Die starken räumlichen und zeitlichen Unterschiede in den Niederschlägen 

innerhalb des BNB legen nahe, dass die Wasserspeicherung und die Wassernutzung stärker 

gefördert und praktiziert werden müssen. Dies würde den Wassertransfer räumlich von nassen 

in trockene Gebiete und zeitlich von nassen in trockene Jahreszeiten sicherstellen.  

Da Sorghum eines der wichtigsten Grundnahrungsmittel im Sudan darstellt, wurde die 

Sorghumproduktion in den Bewässerungs- und Regenfeldbausystemen im Sudan untersucht. In 

beiden Systemen, dem großflächigen Bewässerungs- und dem kleineren Regenfeldbausystem, 

wurde ein auffallend niedriger und instabiler Sorghumertrag festgestellt. Diese geringe 

Leistung ist nicht nur für die Nahrungsmittelproduktion, sondern auch für die 

Wasserverfügbarkeit eine große Herausforderung. Es wurde festgestellt, dass die derzeitige 

niedrige Leistung durch viele Faktoren physischer, sozioökonomischer und wirtschaftlicher 

Natur bedingt wird. Da viele dieser Faktoren eng miteinander verknüpft sind, wird 
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angenommen, dass eine wirksame Verbesserung einzelner Faktoren auch positive 

Auswirkungen auf die anderen Steuerungsfaktoren haben. Zusammenfassend lässt sich 

festhalten, dass die identifizierten Synergien und Kompromisse des WFC Nexus als 

Einstiegspunkte zur Steigerung der Wassernutzungseffizienz und zur Überbrückung der 

Ertragslücke genutzt werden könnten. Sogar einfache Eingriffe auf Feldebene könnten positive 

Auswirkungen auf die gesamte Ernteproduktion der regionalen landwirtschaftlichen 

Produktion und auf die Wasserverfügbarkeit haben. Die Erhöhung der Wasserverfügbarkeit im 

Wassereinzugsgebiet und die Verbesserung der Produktion der einzelnen landwirtschaftlichen 

Systeme würde die allgemeine Wasser- und Ernährungssicherheit im Land verbessern und die 

Notwendigkeit minimieren, die für die Eindämmung des Klimawandels wichtigen Ökosysteme 

in Ackerland umzuwandeln. Dieser Paradigmenwechsel muss durch ein umfassendes Konzept 

zur nachhaltigen Intensivierung (SI) erreicht werden, das nicht nur auf die Steigerung des 

Ernteertrags abzielt, sondern auch auf die Förderung einer gesunden Umwelt, einer 

verbesserten Lebensgrundlage und einer wachsenden Wirtschaft. 
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1.1. Background 

Access to water and food is a basic right for everyone. Currently, with a world of 7.7 

billion people in 2019 (UN-DESA, 2019), there are more than two billion people live in 

countries experiencing high water stress (UNESCO, 2019) and around two billion suffer 

moderate and severe levels of food insecurity (FAO et. al., 2019). Taking into consideration 

the planetary boundaries (Steffen et al., 2009), and the impacts of external drivers such as 

population growth, urbanization and climate change, the picture of the world might be worse 

in the future. Fostering socio-economic development and fulfilling shared goals set in the 

global agenda (e.g. Sustainable Development Goals, SDGs) require extensive use of natural 

resources (e.g. water and land). This may put such resources under great pressure in the 

future, especially in the areas that already suffer from natural resources scarcity and 

degradation. Ensuring water and food security under drivers such as climate change while 

preserving these resources remains a great challenge, especially in Africa (Misra, 2014; 

Schmidhuber and Tubiello, 2007).  

Earth systems such as water, land, and climate are closely linked, and interactions and 

feedbacks between them are numerous. Recently, an approach that looks at the interlinkages 

between the different systems and sectors, the so-called the “Nexus concept”, has emerged 

and gained large attention from researchers, practitioners, and policy-makers (Rasul, 2014), 

for instance, the Water-Food-Energy Nexus. The ultimate goal of the Nexus approach is to 

discover potential synergies between the systems and sectors to be promoted or increased and 

trade-offs to be eliminated or reduced (Hoff, 2011). For the Water-Food-Climate Nexus 

(WFC Nexus), an improved understanding of these synergies and trade-offs is essential to 

better predict, adapt and mitigate the expected global climate changes and to ensure water and 

food availability. However, this is hindered by limited information from the ground. In this 

regard, information from Earth Observation (EO) could act as an alternative that can be used 

as an essential input for developing this understanding (Sudmanns et. al., 2019; ESA, 2015).   

1.2. Problem statement and motivation 

Following the Nexus thinking, an in-depth analysis of the interactions between water, food, 

and climate within and across spatial domains would provide insights on the potential 

synergies and trade-offs. These potential synergies and trade-offs are helpful to identify 

effective entry points to address the challenge of securing water and food under climate 

variability and climate change impacts. However, the interactions between the three are not 
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always known. One reason behind this is the complexity of the interactions and involvement 

of many disciplines that require using multiples datasets with adequate temporal and spatial 

resolutions employed in diverse methodologies. Moreover, environmental challenges are 

usually complex and often cross spatial scales (Yee et. al., 2012; Knol et. al., 2010), which 

requires comprehensive analyses that encompasses several spatial and temporal domains and 

involve multiple dimensions (e.g., physical, socio-economy, and governance). Lack of data 

with adequate spatial and temporal resolutions is particularly the main challenge in this 

regard. The recent advancement in EO has resulted in massive freely available datasets 

(Augustin et. al., 2019), which provide continuous information with different spatial and 

temporal resolutions for several parameters (e.g. climate variables and vegetation indices) that 

could be used to study the WFC Nexus. The availability of these public-domain datasets has 

paved the way to conduct such integrated research and to improve our understanding of the 

cross-cutting interactions between the systems, spatially and temporally. Still, extracting the 

needed information from this large amount of EO datasets is both, a great opportunity and a 

great challenge (Augustin et. al., 2019; Sudmanns et. al., 2019).  

The Nile Basin (NB) is located in the northeastern part of Africa. The economies of the 

riparian countries of this basin are chiefly agricultural-based (Swain, 2011), where agriculture 

represents not only the main source for livelihood (Awulachew et. al., 2010), but it is the 

sector where most of the water withdrawals occur (Swain, 2011). Taking into consideration 

that complex interlinkages between water, food, and climate exist in the agricultural sector 

and numerous interactions take place within and across the systems, assessing the WFC 

Nexus in the NB will provide useful insights for this area where the impact of climate 

variability is a formidable challenge and closely associated with achieving water and food 

securities. Despite the wide acceptance and applicability of the Nexus concept, integrated and 

multi-scale analysis of the WFC Nexus in this region using EO data is still limited. In the NB 

region, relevant previous research had usually targeted one spatial scale (region, country, river 

basin or agricultural scheme). No previous studies have been conducted to employ these 

datasets in an integrated framework that crosses spatial domains. Therefore, the current study 

aims at orchestrating multiple EO datasets supplemented by other primary and secondary data 

to enhance our understanding of the synergies and trade-offs of the WFC Nexus in the NB 

with a special focus on Sudan. The rationale behind this special focus on Sudan will be 

discussed and concluded in Chapter 2, where the regional context is presented.   
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1.3. Earth Observation for water, food, and climate: State-of-the-art 

Traditionally, the EO term is associated with satellite-based information. However, the 

recent usage of the term involves multiple datasets from different sources, including in-situ 

measurements (Hamm et. al., 2015; Yang et. al., 2013). The large expansion in EO has led to 

an accumulation of big data that are characterized by 5 Vs (Lynch, 2008): (1) extreme 

volume, (2) a wide variety of form, (3) require high velocity of data processing, (4) need to 

deal with the veracity of data uncertainty, and (5) need to be turned into value. Many 

operational missions and platforms provide measurements of different variables related to 

water, food, and climate. The number of public-domain products that can be used for the 

WFC Nexus assessment is increasing. For instance, within the framework of the current 

research, the author was able to identify more than 40 different precipitation products that are 

free and publicly available. Reviews on the satellite missions, platforms and derived data and 

indices that could be used to study the water cycle components, vegetation status and climate 

are available in many studies (Fritz et. al., 2019; Huang et. al., 2018; Sheffield et. al., 2018; 

Sun et. al., 2018; Xue and Su, 2017; Guo et. al., 2015; Thies and Bendix, 2011; Kidd, 2001).  

During the last few decades, the usage of EO datasets for multiple purposes experienced a 

large increase (Tomás and Li, 2017). We conducted a scoping review using the Scopus 

publication database (www.scopus.com) to study the trend and focus of publications related to 

the topic of using EO for water, food, and climate. This review was confined to the last 30 

years (1989-2018), the period which noticed the largest increase in the number of publications 

dealt with this topic. To identify relevant studies, potential keywords have been listed and five 

search syntaxes were formulated (Fig. 1.1). The results of this review show a noticeable 

increase in the number of studies published every year, especially during the years post-2000. 

The total number of retrieved publications, which has any of the five research focuses adopted 

in the review, is 940,522 study. Compared to EO for climate (focus 5) and EO for food (focus 

4), EO for water shows a noticeable lower total number of publications (448,673, 340,891 and 

140,617, respectively). Using EO for monotopic (water, food or climate) is more common 

than integrated “nexus” studies that consider the three (Fig. 1.1). Only a small number of 

publications used the term WFC Nexus in combination with any of the EO-related keywords 

(e.g. remote sensing, and satellite). These results indicate a gap in the research that focuses on 

utilizing EO for WFC Nexus.    
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Fig. 1.1. Time series of 30-years (1989-2018) of the total number of publications retrieved by 

the Scopus database, which are related to the topic of using Earth observation for water, food, 

and climate. Different search strategy syntaxes were used to cover 5 main research focuses. 

The analysis was conducted on 7 October 2019.  

Examples of previous studies conducted in the NB region that employed EO datasets to 

understand water, food and/or climate include, among others, estimating of water balance 

(Gleason et. al., 2018; Seyoum, 2018; Abera et al., 2017; Bastiaanssen et. al., 2014; Senay et. 

al., 2014, 2009), detecting water stress (Elnmer et. al., 2018), assessment of Water Use 

Efficiency (WUE) in irrigated schemes (Al Zayed et. al., 2016, 2015), monitoring of 

vegetation conditions (Teferi et. al., 2015; Meroni et. al., 2014; Tadesse et. al., 2014; Lenney 

et. al., 1996), the impact of drought on vegetation productivity (Bayissa et. al., 2019; Gidey et 

al., 2018), and implications of agricultural and water policies (Al Zayed and Elagib, 2017). To 

the best of our knowledge, no previous study has been conducted to identify and quantify 

synergies and trade-offs of the WFC Nexus in the NB using EO and following a multi-scale 

approach.    

1.4. Research concept and research questions 

The subject of WFC Nexus is a multidisciplinary subject that encompasses multiple 

disciplines and may require investigation to be conducted at different spatial and temporal 

domains. As mentioned earlier, this complexity requires multidisciplinary research that uses 
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different types of data and several methodologies. Therefore, the current research is an 

“integrated” analysis that amalgamates diverse types of data in several methodologies to 

investigate the WFC Nexus within and across different spatial scales. The integration in the 

current research involves:  

➢ Multidiscipline inclusion: The current research includes several disciplines such as water 

resources management, agriculture, climate, remote sensing, socio-hydrology, and 

science-policy interaction.   

➢ Data integration: Using different types of data of primary (obtained through a field 

survey) and secondary origins (public-domain EO datasets and ancillary data). 

➢ Methods integration: Involving multiple methods, including spatial correlation, time 

series analysis, data validation, and field survey mission supplemented by statistical 

analysis and modeling. 

➢ Spatial multi-scale: The synergies and trade-offs of the WFC Nexus are investigated 

within and across several spatial domains in a nested approach. These spatial domains are 

(i) Country scale: taking Sudan and Ethiopia as a case study for the NB region, (ii) River 

basin scale: considering the Blue Nile Basin (BNB) as a basic unit for water management 

and as one of the most important water and food production spots in the two riparian 

countries, i.e. Sudan and Ethiopia, (iii) Agricultural schemes: targeting the two main 

agricultural systems in the BNB (i.e. irrigated and rainfed) and (iv) field scale: aiming to 

detect the most influential factors on crop yield of sorghum as an example of the main 

staple crops in the basin.  

Based on the above background, the knowledge gaps regarding WFC Nexus in the NB has 

been identified. Within the current study, five research questions need to be answered. These 

questions are:  

Q1. How consistent are public-domain precipitation products, as an example for EO datasets? 

Q2. How to employ EO data for WFC Nexus analysis?    

Q3. What is the current status and trend of performance of water use and main food crops in 

the agricultural sector in the NB?  

Q4. Can EO datasets detect nexus synergies and trade-offs in the Nile Basin?  

Q5. How to convert nexus knowledge into action?  
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To summarize the different components of the current research, a conceptual framework is 

established (Fig. 1.2). The focus of the current research is subdivided into two main levels: (i) 

strategic level, which consists mainly of the country scale, and (ii) operational level, which 

comprises of the river basin, agricultural scheme and agricultural field scales. For each of 

these scales, specific objectives were proposed based on the identified knowledge gap. The 

ultimate cross-cutting objective is to identify synergies and trade-offs of the WFC Nexus 

within and across the selected spatial scales that could be used as entry points to enhance 

water and food security under a variable climate. The expected outcomes of the current 

research are:  

➢ Assessment of the consistency of some EO datasets that potential to be used for spatial 

analysis of the WFC Nexus. 

➢ Analysis of the interactions between water, food and climate systems within and 

across different spatial scales.  

➢ Assessment of the spatio-temporal variation of agricultural productivity and the main 

controlling factors.  

➢ Evaluation of the current status and trend of agricultural performance in some of the 

main irrigated and rainfed schemes.  

➢ Identification of potential synergies and trade-offs between water, food, and climate  

➢ Diagnosis of entry points to promote or increase WFC Nexus synergies and reduce or 

eliminate trade-offs 

1.5. Structure of the dissertation 

This dissertation consists of seven chapters. Along with introductory and conclusion 

chapters, five chapters are dealing with the five research questions listed in the previous 

section (Section 1.4).  

Chapter 1 - Introduction: This chapter provides an overview of the focus problem of the 

current research. Besides, it provides information about the objectives and research questions 

of the research. Moreover, an overview of this dissertation is supplied, how is it subdivided?, 

supporting publications by the researcher and how each of the research questions is covered in 

each of these publications.  
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Fig. 1.2. The conceptual framework adopted in the current research.  
 

Chapter 2 - Regional context: In this chapter, a general overview of the geographical setting 

of the NB and the current patterns of water uses and agricultural production in the riparian 

countries is provided. It concludes and delivers information on the rationale behind selecting 

Sudan for the subsequent analyses.  

Chapter 3 - Sensitivity and response of vegetation to climate variability: This chapter 

compares the behavior and response of different land cover types in Sudan and Ethiopia under 

climate variability. This comparison is helpful to identify the resistivity and response of the 

studied land cover types in terms of their Net Primary Productivity (NPP), Water Use 

Efficiency (WUE) and Carbon Use Efficiency (CUE), as important indicators for ecosystem 

function. Such analysis is important to detect the variation of the different land cover types in 

terms of these indicators and to recognize how they react to climate variation. 
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Chapter 4 - Consistency of public-domain precipitation products: Usually a river basin is 

considered as the basic unit water resources management. As precipitation is the main source 

for water in many sub-basins in the NB, it is crucial to estimate it and detect its spatio-

temporal variation accurately. In this part, the Blue Nile Basin (BNB), which is a 

transboundary basin shared between Sudan and Ethiopia was selected as a case study to 

recognize the spatial and temporal variation of precipitation, as detected by 17 Public-domain 

Precipitation Products (PPs). This basin is the most important region for water and food 

security for both riparian countries, as it is the main source of water resources in the NB 

region. In addition, it accommodates major irrigated and rainfed agricultural schemes, among 

which some were selected for the subsequent analysis of WFC Nexus in the current research 

(chapters 5 and 6). 

Chapter 5 - Yield gap and pathways for sustainable intensification in irrigated schemes: The 

Gezira Irrigation Scheme in central Sudan, irrigated from the Blue Nile river, was targeted to 

study the socio-hydrological determinants of agricultural productivity. Combining EO data, 

field survey and statistical modeling, the most important factors controlling the crop yield of 

sorghum (the main staple crop in the country) were detected. The synergies and trade-offs 

identified within the WFC Nexus were used to build a framework for Sustainable 

Intensification (SI) in the scheme, as a potential approach to provide more food while 

preserving a healthy environment and promoting improved livelihood and growing economy.    

Chapter 6 - Crop vulnerability and resilience to climate in rainfed schemes: As the main 

source for food production in the NB region, an assessment of the rainfed system is included 

in the current research. The major area for mechanized sorghum production, located in the 

central and eastern parts of Sudan was studied using different methodologies to detect the 

resilience and vulnerability of sorghum production in dry and wet years. El Gedaref state was 

selected for further spatial and temporal analysis using multiple EO datasets including remote 

sensing and models.   

Chapter 7 - Synopsis, synthesis, and perspectives: The major observations and findings of the 

current research are summarized in this chapter. Moreover, the identified synergies and trade-

offs within and across spatial scales are listed. In this last chapter, lessons learned and 

transferability are discussed. In addition to recommendations for policymakers, researchers 

and local farmers, topics for future studies are suggested.  
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1.6. Research publications supporting this dissertation  

This dissertation is supported by four journal articles and one book chapter (Table 1.1). 

Among the journal articles, three have been published in peer-reviewed journals and one is 

submitted to a journal for a possible publication. All the published articles have undergone at 

least two blind reviews. The relative contribution of each publication in answering the 

research questions is provided in Table (1.2).   

Table 1.1. List of research publications supporting this dissertation. 
 

Spatial Scale Chapter Corresponding publication 

Region Chapter 2 
Regional context 

Nile basin 
1. Khalifa, M., Thomas, S., Ribbe, L., 2020. The Nile River 

Basin, in: Schmandt, J., North, G., Ward, G., Kibaroglu, A., 

(eds). Sustainability of engineered rivers in arid lands: 

Challenge and Response. Cambridge University Press (In 

preparation).  
Country Chapter 3  

Sensitivity and response 

of vegetation to climate 

variability  

Sudan and Ethiopia 
2. Khalifa, M., Elagib, N.A., Ribbe, L., Schneider, K., 2018. 

Spatio-temporal variations in climate, primary productivity and 

efficiency of water and carbon use of the land cover types in 

Sudan and Ethiopia. Science of the Total Environment, 624, 

790–806.  

River basin Chapter 4 

Consistency of public-

domain precipitation 

products 

Blue Nile Basin 
3. Khalifa, M., Korres, W., Saif, S., Elagib, N.A., Baez-

Villanueva, O.M., Basheer, M., Ayyad, S., Ribbe, L., Schneider, 

K., 2020., Consistency of public-domain precipitation products: 

coupling traditional evaluation approaches with data mining 

techniques (Submitted). 

Agricultural 

scheme 

and field 

Chapter 5 
Yield gap and pathways 

for sustainable 

intensification in 

irrigated schemes  

 Irrigated system 
4. Khalifa, M., Elagib, N.A., Bashir, M.A., Ribbe, L., 

Schneider, K., 2020. Exploring socio-hydrological determinants 

of crop yield in under-performing irrigation schemes: Pathways 

for sustainable intensification. Hydrological Sciences Journal, 

55 (2), 153-168.  

Chapter 6 
Crop vulnerability and 

resilience to climate in 

rainfed schemes 

Rainfed system  
5. Elagib, N.A., Khalifa, M., Rahma, A.E., Babker, Z., 

Gamaledin, S.I., 2019. Performance of major mechanized 

rainfed agricultural production in Sudan: Sorghum vulnerability 

and resilience to climate since 1970. Agricultural and Forest 

Meteorology, 276–277. 
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Table 1.2. Contribution of the publications to the research questions (Qs) of the current 

dissertation. 
 

No. Publication title Research questions* 

Q1 Q2 Q3 Q4 Q5 

 

1 

 

The Nile River Basin  

 

 
     

 

2 

 

Spatio-temporal variations in 

climate, primary productivity 

and efficiency of water and 

carbon use of the land cover 

types in Sudan and Ethiopia 

     

 

3 

 

Consistency of public-domain 

precipitation products: coupling 

traditional evaluation approaches 

with data mining techniques 

 

    

 

4 

 

Exploring socio-hydrological 

determinants of crop yield in 

under-performing irrigation 

schemes: Pathways for 

sustainable intensification 

     

 

5 

 

Performance of major 

mechanized rainfed agricultural 

production in Sudan: Sorghum 

vulnerability and resilience to 

climate since 1970 

     

 

Legend 

  
* Research questions are listed in section 1.4.  

 

 

 

No coverage of 

research question    

Partial coverage of 

research question              

Full coverage of 

research question               



Chapter 2* 

Regional Context 

 

 

  

 

 

 

 

 

Based partially on:  

Khalifa, M., Thomas, S., Ribbe, L., 2020. The Nile River Basin, in: Schmandt, J., North, G., 

Ward, G., Kibaroglu, A., (eds). Sustainability of engineered rivers in arid lands: Challenge 

and Response. Cambridge University Press (In preparation)  

* List of data sources used in the current chapter can be found in the appendix A: Table S2.1 
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2.1. The Nile River Basin  

2.1.1. Physical setting  

The Nile Basin (NB) is one of the largest transboundary basins all over the world. It occupies 

an area around 10% of the total area of the Africa continent (Barnes, 2017). With a total length 

of 6,695 km, the River Nile is the longest in the world. The NB is shared between 11 countries, 

namely, Burundi, Congo, Egypt, Eritrea, Ethiopia, Kenya, Rwanda, South Sudan, Sudan, 

Tanzania and Uganda (Fig. 2.1a). The two main tributaries of the Nile river, the Blue Nile and 

the White Nile originate, respectively, from the Ethiopian Highlands and the Equatorial Lakes. 

These two major tributaries meet at Khartoum, the capital of Sudan, to form the main Nile river 

which flows northwards through northern Sudan and then to Egypt to drain into the 

Mediterranean Sea. The Eastern Nile basin consists of four main sub-basins, namely, Tekeze-

Atbara-Setit, Blue Nile, Main Nile and Baro-Akobo-Sobat and White Nile (Fig. 2.1b).   

Fig. 2.1. Location map of the Nile Basin: (a) the Nile basin with 11 riparian countries, (b) The 

Eastern Nile Basin with four main sub-basins. Sources of data: boundaries of the countries: 

GADM, River basin boundaries: delineated using SRTM Digital Elevation Model, relief 

background: Natural Earth Data. 

According to the estimates of the Population Division of the United Nations Department of 

Economic and Social Affairs (UN DESA), the current (2019) total population of the 11 riparian 

countries of the Nile is around 0.54 billion people. Among all of the riparian countries, Ethiopia, 
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Egypt and Congo have the largest population with estimates of 115, 102, and 95 million people, 

respectively. Within the NB countries, there are six cities with a population of 3 million 

inhabitants or more. Only Cairo (Egypt) is classified as a megacity – with a population of over 

10 million people. Other large cities such as Kinshasa (Congo), Khartoum (Sudan), and 

Alexandria (Egypt) exhibit the typical characteristics of megacities. These include large peri-

urban populations at their fringes, with dominant illegal settlements and inadequate housing, 

sanitation, and other essential services. Other features of megacities include traffic congestion, 

water, and air pollution, smog, unemployment, lack of open spaces, and very high population 

densities.  

The NB has diverse land cover types (Fig. 2.2). Most of the area in the basin is bare lands, 

which represent around 28% of the total area of the basin. Bare lands extend in the northern 

arid and semi-arid regions, mainly in Egypt and northern Sudan. Forests, shrublands, 

grasslands, and croplands cover vast areas in the basin. While large irrigated croplands are in 

Egypt (Delta) and central Sudan, rainfed agriculture characterizes the eastern, central, and 

southern countries of the basin, where precipitation is higher. Savannas, grasslands, shrublands, 

and forests are located mostly in the central part of the NB. The basin wetlands are concentrated 

in two areas, namely, the Equatorial Lakes region and the Sudd area in South Sudan. The Nile 

Delta north of Egypt, once an area of natural wetlands, has now been almost entirely converted 

into agricultural lands. 

 

Fig. 2.2. Land cover map created based on Globcover 2009 data.   
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The NB is characterized by large spatial and temporal variations in climate conditions, for 

instance, precipitation and temperature. Spatially, the northern regions of the basin receive 

negligible precipitation (Fig. 2.3) and characterized by high temperatures (Fig. 2.4). High 

precipitation occurs generally in the eastern (Ethiopian highlands) and southern (Equatorial 

lakes) regions of the basin. The average monthly precipitation ranges between 0 and 450 mm. 

While the basin receives low amounts of rain from November to April, except in some locations 

in the Equatorial Lakes, the main rains fall during the period from June to October (Fig. 2.3). 

The average monthly temperature ranges between 1oC and 35.5 oC.   

2.1.2. Water resources and water use patterns 

As mentioned earlier, the river Nile originates in two main regions; the Ethiopian highlands 

(Lake Tana) and the equatorial lakes (Lakes Victoria, Kyoga, and Albert), which are the sources 

of the two major tributaries of the Nile, the Blue Nile and White Nile rivers, respectively (Fig. 

2.5). The main tributaries of the Blue Nile river are Rahad and Dinder, which originate in the 

Ethiopian highlands and join the Blue Nile river upstream Khartoum. Several major tributaries 

are contributing to the White Nile, namely, Bahr el Jabal, Bahr el Gazal, Baro, Pibor and Sobat 

rivers. Compared to the high seasonality of the water flow in the Blue Nile river, the White Nile 

is regulated by the large Sudd swamp in South Sudan. The only major tributary of the Main 

Nile (downstream of the confluence of the Blue Nile and the White Nile) is Atbara/Tekeze 

river, which contributes around 12 km3 per year. The historical flow of the Nile is 84 km3 as 

measured at the High Aswan dam in Egypt (Sutcliffe and Parks, 1999), from which, 

approximately 62% is contributed by the Blue Nile river (Amdihun et al., 2014). 

As an adaptation measure against insufficient water availability and to offer water for food 

and energy production, several dams were built on the Nile tributaries during the last decades. 

The existing major water control structures are listed in Table (2.1). Sediments resulting from 

soil erosion taking place at the upstream parts of the NB represent a serious problem for water 

management of the reservoirs in the basin. For instance, some of the dams in Sudan, i.e. Sennar, 

Roseries, and Khashm El Girba have lost more than 60% of their original storage capacities 

(Ahmed, 2004; Williams, 2009; Shahin, 1993). An increasing trend of 5% in the sediment yield 

during 1980-2009 is detected (Gebremicael et al., 2013). An X-ray analysis coupled with cluster 

assessment and balance modeling conducted by Ali et. al. (2017) on the sediments in the 

Roseires reservoir (in Sudan) and the potential source areas in the Upper Blue Nile Basin 

(UBNB) showed that some sub-basins in Ethiopia are the main sediment source areas of 

sediments accumulated in the reservoir.    
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Fig. 2.3. Long-term monthly average precipitation (1970-2000) over the Nile Basin. These 

maps are created based on the data of WorldClim (Fick and Hijmans, 2017).  

 

 

Fig. 2.4. Long-term monthly average temperature (1970-2000) over the Nile Basin. These maps 

are created based on the data of WorldClim (Fick and Hijmans, 2017).  
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Fig. 2.5. Schematic representation of the water fluxes (inflow, evaporative losses, and outflow) 

in the Nile Basin and annual flow pattern of the major Nile tributaries (Blackmore and 

Whittington, 2008). 

An estimated, 3% (95,926 km2) of the Nile’s open water is in the form of lakes. Notable 

large lakes include Victoria, Kyoga, Albert, George, Edward, and Tana. The lakes are primarily 

located in the Equatorial Lakes Plateau region. The only major lake in the desert biome is Lake 

Nasser/Nubia, which resulted from the damming of the Nile at Aswan. The lakes in the basin 

have various functions, including acting as a habitat for aquatic plant and animal species, 

buffering the discharge of outflowing rivers against seasonal extremes, and acting as a trap for 

sediments from the headwater areas. Natural lakes and artificial reservoirs show large 

evaporative losses. For instance, approximately 94.5, 30.9 and 10.5 km3 of water are evaporated 

annually from Lake Victoria, Sudd swamps and Aswan dam, respectively.  
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Table 2.1. List of major dams in the Nile Basin with their storage capacity.  
  

No. Country Dam Storage capacity (km3) 

1 Egypt Aswan Low Dam 5 

2 Aswan High Dam 162 

3 Sudan Merowe 12.5 

4 Jebel Awlia 3.5 

5 Sennar 0.9 

6 Roseries 3 

7 Khashm Al Girba 1.3 

8 Upper Atbara and Setit Dam Complex 2.7 

9 Ethiopia Grand Renaissance Dam (GERD) 74 (under construction - 2019) 

10 Mendaia 15.9 

11 Tekeze 9 

12 Megech 1.8 

13 Rib 0.2 

14 Uganda Owen falls 80  

 

In addition to surface waters, the NB countries have considerable groundwater resources 

occurring in localized and regional basins. Groundwater is an important resource, supporting 

the social and economic development of the Nile riparian countries and making an important 

contribution to the water and food security in the region. The degree to which it is relied upon 

varies from country to country, but commonly it is the most important source for drinking water, 

especially for rural communities in the basin. The main groundwater aquifers in the NB are (1) 

Victoria artesian aquifer, (2) Congo hydrogeological artesian aquifer, (3) Upper Nile artesian 

aquifer, (4) Volcanic rock aquifers, (5) Nubian sandstone aquifer system, and (6) Nile Valley 

aquifer.  

Using multiple remote sensing data validated with ground measurement of different water 

balance components, Bastiaanssen et. al., 2014 has estimated the water balance in 15 sub-basin 

in the NB over the period from 2005 to 2010. According to this study, while the total 

precipitation falls over the basin is 2013 km3/yr, the total evapotranspiration is around 1987 

km3/yr (Table 2.2), which implies that most of the available water in the NB is lost by 

evapotranspiration process. The contribution of the upstream sub-basins to the flow of the ones 
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located at downstream differs widely. Inter-basin transfer of surface water and groundwater 

between the sub-basins is a small fraction compared to the other water balance components. 

According to the data of AQUASTAT, agriculture is the largest water consumer in the NB 

countries compared to the industrial and municipal uses (Fig. 2.6). For instance, agriculture 

accounts for nearly 96% of the total water use in Sudan. The annual irrigation requirement rate 

varies widely in the NB countries, and it ranges between nearly 8000 m3/ha in Kenya and 

Uganda up to 13,700 m3/ha in the arid and semi-arid regions in Sudan (Awulachew et. al., 

2012). Egypt and Sudan alone account for around 82% (87.26 km3) of the total agricultural 

water withdrawal in the basin. The current agricultural, industrial and municipal water uses in 

countries such as Burundi, Rwanda, South Sudan, Eritrea are very small (Fig. 2.6).    

2.1.3. Agriculture and food production 

Agriculture is the main source of livelihood for most of the population and the main 

contributor to the Gross Domestic Product (GDP) (approximately 20%) and accounts for 

around 40% of all employment in the NB (Appelgren et. al., 2000). The basin has large arable 

lands, from which around 8 million hectares is potential for irrigation (FAO, 2005). Sudan alone 

has approximately 105 million ha of arable land, and only 17% of this large area is currently 

utilized. Rainfed and irrigated agriculture are both practiced in the basin. However, the rainfed 

system is dominating the agricultural lands. While only 3.8% (on average) of the total arable 

land in the Nile’s sub-Saharan countries is irrigated, this percentage is a bit higher in Sudan and 

it reaches 100% in Egypt (Oestigaard, 2012), where precipitation is negligible. Cereal crops are 

dominating the cultivated land in the basin, and among all the NB countries, Sudan and Ethiopia 

have the largest cereal harvested area (Fig. 2.7a), with nearly 9.5 and 9.2 million ha, 

respectively (NBI, 2012). The yield of cereal crops shows high variability among the Nile 

riparian countries. Egypt stood out and exhibits higher cereal yield compared to the other 

countries (Fig. 2.7b). This high yield results in higher total production of cereal crops in Egypt 

compared to other countries with a large harvested area such as Sudan (Fig. 2.7c). Land 

grabbing by foreign countries and large companies is a big issue in some of the NB countries. 

According to a review conducted by Rulli et. al., (2013), land grabbed in four of the NB 

countries, namely, Congo, Sudan, Ethiopia, and Tanzania accounts for more than 33% of the 

total global grabbed lands. According to the same study, land grabbing is associated with large 

water withdrawal. The average withdrawal of blue water estimated to be around 3.18 km3 in 

these four countries, which represents 27.8% of the total average of the globally grabbed blue 

water.   



Chapter 2 - Regional context 

 

20 
 

Table 2.2. Annual water balance (2005-2010) as estimated by Bastiaanssen et. al. (2014) 

using remote sensing over different sub-basins of the Nile basin.  
Abbreviations: P = precipitation, ET = actual evapotranspiration, I = interception, GW = groundwater, SW = 

surface water, ΔS = change in storage.  

Sub-basin Inflow 

(km3/yr) 

P 

(km3/year) 

ET+I 

(km3/yr) 

Net GW 

interbasin 

(km3/yr) 

Net SW 

interbasin 

(km3/yr) 

ΔS 

(km3/yr) 

Outflow 

(km3/yr) 

Main Nile 1 36 2 19 4 1 -0.09 14 

Main Nile 2 55 3 16 4 1 -0.22 36 

Main Nile 3 79 51 71 4 1 0.10 55 

Tekeze- Atbara 0 121 105 1 2 1.19 12 

Main Nile 4 87 4 6 4 2 -0.07 79 

Blue Nile 0 299 237 5 6 1.54 50 

Lower White Nile 25 122 14 -11 -7 -0.25 25 

Bahr el Ghazal 0 435 446 -3 -10 1.00 1 

Sudd 35 162 201 -9 -6 -1.25 12 

Baro-Akobo-Sobat 0 242 232 -1 0 -1.17 13 

Albert - Bahr al Jabal 33 90 91 -2 -1 -0.08 35 

Victoria Nile 28 100 93 3 5 -0.56 28 

Semliki - Lake Albert 0 78 72 0 0 0.43 5 

Lake Victoria 5 246 208 6 8 2.00 28 

Kagera 0 57 52 0 0 0.78 5 

Nile - 2013 1987 5 2 3 14 

 

 

Fig. 2.6. Water use quantities (km3/year) in the Nile Basin countries. Water use is subdivided 

into agricultural, industrial and municipal uses. Data are obtained from the AQUASTAT 

database.  
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The main hydropower dams that are currently in operation are the High Aswan and Merowe 

dams (on the main Nile river), Rosaries and Sennar (on the Blue Nile river), Khashm El Girba 

and Atbara and Setit Complex (on Atbara river), Tekeze (on Tekeze river) and Gebel Aulia (on 

the White Nile). Currently, Ethiopia is building the Grand Ethiopian Renaissance Dam 

(GERD), only 20 kilometers away from the borderline with Sudan. The dam, once completed, 

will produce a peak of 6,000 megawatts of power, and store 74 km3 of water in its reservoir 

(Dessu, 2019), making it the largest hydropower dam in Africa. The GERD consists of a 1.8 

km high gravity dam and a 5 km rockfill saddle dam (Abtew and Dessu, 2019).    

 

2.1.4. The Nile’s transboundary conflict  

The use of the Nile waters has for decades been monopolized by the downstream countries, 

i.e. Egypt and Sudan, that claim ‘historic right’ over the waters, thus, building tensions among 

the riparian countries. The upstream countries which are the source of the water have been 

alienated for long from significantly using the Nile waters. Also, none of the past treaties and 

agreements dealing with the use of the Nile waters – most of them signed during the colonial 

period - involved all the riparian countries and they did not deal equitably with the interests of 

these riparian countries. These agreements and treaties did not consider a comprehensive view 

of the impact of water development on the basin social and biophysical environment and to 

distribute the shares of water properly between the riparian countries. Due to the need for socio-

economic development in the upstream countries, they have recently demanded de-

monopolizing the Nile water use by Egypt and Sudan (Ashton, 2002).  

Fig. 2.7. Time series (1961-

2017) of cereal crops 

statistics in the Nile Basin 

countries: (a) harvested area, 

(b) yield, and (c) production. 

Data are obtained from the 

FAOSTAT database.    
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Despite the long history of conflicts and tension over the Nile waters, yet, there is no a basin-

wide agreement ratified by all riparian states. The 1929 Anglo-Egyptian Treaty gave Egypt the 

right to veto any project in the NB, as agreed upon by Britain and Egypt, to protect the British 

cotton interests in the Nile Valley. The 1959 bilateral agreement increased Sudan’s and Egypt’s 

water allocation to be 55.5 and 18.5 km3, respectively, and stipulated that any increase in water 

yield should be divided equally amongst them. Besides excluding the upstream riparian 

countries, this agreement stated that, if any of the other riparian countries need to make 

significant use of the Nile water, it should send a request to Egypt and Sudan who reserve the 

ultimate decision on approving the request or not (Salman, 2012). The international water law 

promotes reasonable and equitable use of water for the current and future users, increase access, 

share benefits, and encourage broad participation. At present, The Nile Basin Initiative (NBI) 

is operating as the transitional institutional mechanism after the Technical Cooperation 

Committee for the Promotion of Development and Environmental Protection of the Basin 

(TECCONILE). Since 1999, the Nile countries are participating in the NBI, which serves as a 

framework for managing transboundary trade-offs and opportunities such as sharing 

hydropower benefits, stronger integration in agriculture markets and exploiting opportunities 

for regional trade. The Cooperative Framework Agreement (CFA) was introduced in 2010 by 

the NBI to allow for a more equitable distribution of ownership on the Nile between the riparian 

countries. The CFA contains 45 articles clearly defining the intention, utilization, sustainability, 

optimization, benefit-sharing and cost-sharing principles of the Nile riparian states. Burundi, 

Ethiopia, Kenya, Rwanda, Tanzania, and Uganda signed the agreement, but Egypt and Sudan 

insisted on mentioning protecting the current use and the ownership that they held.  

The need for socio-economic development in the Nile countries under the conditions of 

inadequate cooperation and lack of a comprehensive agreed-upon framework for water use in 

this transboundary basin are the driving forces that lead some of the basin’s counties to take 

unilateral actions. The case of GERD in Ethiopia is the most recent example. On April 2, 2011, 

the Ethiopian government started construction of the GERD (Kimenyi and Mbaku, 2015). The 

Bureau of Reclamation of the United States originally surveyed and suggested the dam 

construction in 1956 and 1964, but Ethiopia only submitted a final design in November 2010. 

The GERD will store 74 km3 of water and produce 6000 megawatts (MW) of electricity 

(Kimenyi and Mbaku, 2015). This large dam might significantly affect the hydrology of the 

Blue Nile River and consequently the Main Nile that reaches Egypt. Egypt is afraid that the 

GERD might decrease the Nile share of water that reaches its territories, especially during the 

reservoir filling period. Ethiopia has ignored Egypt’s claims to comply with the 1959 Bilateral 
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Agreement between Egypt and Sudan. Egypt has also used the 1929 Anglo-Egyptian Treaty as 

a basis of vetoing any projects occurring along the Nile river. 

The water conflict in the Nile is not confined only to the riparian countries. Due to the need 

for socio-economic development in the riparian countries of the Nile and the plentiful of natural 

resources (e.g. water, hydropower potentiality, and arable land) in some of these countries, the 

region has attracted large international investments. For example, the push for modernization 

and development in Ethiopia opened doors for international actors such as the China Gezhouba 

Group, Voith Hydro Shanghai, and Salini Construttori who awarded commissions for the 

construction of the GERD. Vast fertile lands in Sudan and South Sudan are grabbed by China, 

Russia, the Gulf States, and other international players. Because of their interests, these regional 

and international players put further stress not only hydrologically but also politically along the 

Nile, as its fertility is sought after by neighboring regions sometimes at the expense of the 

locals.   

2.2. Future dynamics and expected changes in the Nile region 

Based on future forecasts of UN DESA (2019), the total number of populations in the NB 

countries is expected to increase significantly (Fig. 2.8). The medium variant scenario exhibit 

values of 0.73 and 1.20 billion people for the two horizon years 2030 and 2060, respectively. 

While the low variant scenario forecasts a total population of 0.69 and 1.06 billion by 2030 and 

2060, respectively, the high variant scenario expects a population of 0.72 and 1.36 billion 

people for the two years, respectively. This expected large increase in the population of the 

riparian countries would, consequently, put great pressure on the limited water resources of the 

Nile. Environmental problems in the NB are expected to intensify in the future. For instance, 

Onencan et. al., 2016, stated that there is high confidence that the basin will suffer from severe 

shifts in biome distribution, compounded water stress, degradation of marine life and reduced 

crop productivity. In particular, climate change impacts could affect the basin seriously. While 

studies investigated the temperature change in the basin are quite consistent in predicting a 

warming trend during the 21st century, studies focused on the precipitation change exhibit 

inconsistency in their predictions. A review conducted by Barnes (2017) showed that most of 

the studies on temperature change expect an increasing trend over the NB of values ranging 

between 0.3-0.6 oC per decade based on the A2 and B1 emission scenarios. On the other hand, 

some studies on precipitation forecast an increasing trend, while others predict a significant 

reduction in precipitation levels. Due to the high diversity in climatic conditions in the basin, 
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the impact of climate change might have different consequences on the different parts of the 

basin, spatially and temporally (Degefu and He, 2015).  

Studies on some sub-basins (e.g. UBNB) reported that hot and dry years are more frequent 

and this trend seems to continue in the future and consequently may lead to chronic water 

scarcity in the NB (Coffel et al., 2019). The expected increase in temperature will induce an 

increase in the potential evapotranspiration by 7.8% in some headwater sub-basins (Worqlul et. 

al., 2018). Climate changes in the UBNB sub-basin, which represents the primary headwater 

area for the main Nile, could affect the water availability in the downstream countries, i.e. 

Sudan and Egypt, especially due to their sensitivity to the variability of runoff from this 

headwater area (Kim et. al., 2008). Moreover, the forecasted climate changes in some of the 

sub-basins in the Blue Nile region would increase the mean annual sediment yield by 2050 by 

around 16.3% for scenario A2 and 14.3% for scenario B2 (Adem et al., 2016).  

As estimated by FAO (2011), the total agricultural water withdrawal in the NB is 99.19 km3 

(2005). This figure is expected to increase significantly to reach 107.02 km3 and 114.77 km3 by 

the years 2030 and 2050, respectively. The irrigated schemes in Sudan and Egypt are assumed 

to be the main source for this major increase in water withdrawal in the NB (Fig. 2.9). Although 

increasing irrigation efficiency is believed to save substantial amounts of water, some 

researchers assume that this saved water is insufficient to meet the future water demand in the 

basin (Multsch et al., 2017). Using the Water Evaluation and Allocation and Planning (WEAP) 

model, McCartney et. al. (2012) investigated the impact of future development of irrigation and 

hydropower in Ethiopia and Sudan on the system of the BNB. Their results indicate that the 

total water storage in Ethiopia will increase to 167 km3.  Irrigation is expected to increase up to 

13.8 and 3.8 km3 in Sudan and Ethiopia, respectively. The annual hydropower generation in 

Ethiopia is expected to increase to 31,297 gigawatt hours (Gwh).  

2.3. Implications of future changes 

As shown earlier, the large increase in population in the future and the need to foster socio-

economic development in the riparian countries will be the main drivers for increasing demand 

for the main key services, i.e. water, food and energy in the NB region. This substantial increase 

in demand will put natural resources under great pressure to satisfy these ever-increasing 

demands. On the other hand, drivers such as climate change and degradation of natural 

resources are expected to diminish the available natural resources in the basin.  
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Fig. 2.9. Current (2005) and projected (2030 and 2050) agricultural water use in the Nile basin 

countries. This figure is created based on tabulated data obtained from FAO, 2011.  

Fig. 2.8. Time series (1950-2019) of 

population estimation in the Nile 

riparian countries along with future 

forecasts until 2060. The future 

forecasts are based on three fertility 

projections (low, medium and high). 

Data of these graphs are obtained from 

the population division of the UN 

DESA (2019) database.  
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Climate change is believed to affect the way the water resources are managed in the NB. 

Despite the conflicting results between the studies conducted to forecast the future of 

precipitation in the basin, there is a wide acceptance that climate extremes such as droughts and 

floods will be more intense and frequent in the future. This calls for measures that enable better 

adaptation of the local people and require proper policies for better preparedness against such 

extreme events. A striking example of the expected impacts of climate change on the NB is 

forecasted for the Delta region in Egypt. Despite its relatively small area (~2.5% of Egypt’s 

area), this area is highly populated, and it represents the most important area for food production 

in Egypt. This area is highly vulnerable to sea-level changes due to climate changes. It is 

estimated that a 1-meter rise of sea level would cause a loss of 4,500 km2 and displace around 

6.1 million people in the Nile Delta (NBI, 2012).   

Although engineering the Nile river has several positive impacts to secure water, food, and 

energy in the basin, many negative impacts such as changes in the hydrological regime, might 

occur due to these projects, and this might intensify the transboundary conflict. For example, 

Ethiopia’s construction of the GERD modernizes the energy sector and provides a clean and 

sustainable source of energy to Ethiopia, but it might have impacts on the agricultural activities 

and water security in Egypt and Sudan, especially during the dam’s filling period. It is projected 

that the dam is going to reduce flow into Aswan High Dam by 25% (Connif, 2017), causing 2 

billion US$ in economic losses and about 1 million farmers and workers to be unemployed 

(Lazarus, 2018). The Aswan High Dam currently irrigates around 840,000 ha along the Nile 

Valley (Heinz, 1983) and produces almost half of the country’s electricity (Abu-Zeid and El-

Shibini, 1997). Taking into consideration the high demand for water in Egypt and the limited 

other sources of water in this country combined with the lack of cooperation between the 

riparian countries, some researchers argue that the transboundary conflict over the Nile water 

will be escalating during the 21st century (Keith et. al., 2013; Rahman, 2012). To minimize the 

GERD impacts on Sudan and Egypt during the filling period, a synchronized dam operation 

between the three countries is needed (Abtew and Dessu, 2019). Hence, cooperation and 

communication between the Nile riparian countries is a must. As reported by many researchers 

(e.g. Basheer et. al., 2018; Wheeler et. al., 2016), the benefits gained from the Nile waters could 

be maximized if a cooperative approach is followed between the riparian countries. Potential 

solutions for Egypt to overcome the problem of water shortage includes developing 

unconventional water resources such as desalination of seawater, re-use of treated wastewater, 

water-saving technologies, artificial groundwater recharge, inter-basin water transfer and 

virtual water trade (Ashour et. al., 2019; Yihdego et. al., 2017).   
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As found by McCartney et al. (2012), the large increase in water storage in Ethiopia and 

irrigation water in Sudan and Ethiopia would affect the current river regime. These 

developments are expected to decrease the river flow at the Ethiopia-Sudan border from 45.2 

to 42.7 km3 and at Khartoum from 40.4 to 31.8 km3. Despite the significant reduction in the 

river flow at Khartoum, regulating the flow all over the year - as a result of the GERD - would 

provide Sudan with a continuous flow of water throughout the year compared to the current 

seasonal flow that peaks during the rainy season (Fig. 2.5), enabling Sudan to have more 

cropping seasons that could help to secure food in the country. Additionally, it might decrease 

the sediment yield, which accumulates in the downstream dams (Ali et al., 2017), and 

consequently, slows down the capacity loss of these dams and decrease the operation and 

sediment removal costs in the major irrigation schemes.  

2.4. Conclusion  

Based on the above background on the regional context, it can be emphasized that the 

agriculture systems in the NB are important for achieving food security and their serious 

implications on water security, as the major water consumer in the basin. As stated earlier, 

following a cooperative approach between the riparian countries and sharing benefits beyond 

the political boundaries would maximize the benefits gained from the use of natural resources, 

especially water. In terms of potentials for water and arable land, Sudan can be at the heart of 

such a regional cooperative approach that aims at fulfilling water and food security in the 

region. Despite these large potentials for water and food production, Sudan is currently 

struggling to ensure water and food security for its people. This could be attributed to multiple 

factors, i.e., endemic poverty, long history of political instability and military conflicts, 

ineffective policies, inefficient use of natural resources and environmental challenges. An 

essential step towards improving water and food securities in Sudan and the NB, in general, is 

to discover entry points for action and to highlight where an intervention could induce a large 

positive impact. Therefore, the current research focuses mainly on Sudan for the WFC Nexus 

analysis to derive some conclusions and convey some key messages that could be helpful for 

local farmers, research community and policy-makers who work on issues related to water and 

food security, climate change and sustainability of natural resources. Given the huge potentilitis 

for food production in Sudan, the key messages obtained from Sudan’s case might have 

implications beyond the country’s boundaries and could be transferred to similar cases within 

and outside the NB region.  
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Abstract 

The impact of climate variability on the Net Primary Productivity (NPP) of different land 

cover types and the reaction of NPP to drought conditions are still unclear, especially in Sub-

Saharan Africa. This research utilizes public-domain data for the period 2000 through 2013 to 

analyze these aspects for several land cover types in Sudan and Ethiopia, as examples of data-

scarce countries. Spatio-temporal variations in NPP, Water Use Efficiency (WUE) and Carbon 

Use Efficiency (CUE) for several land covers were correlated with variations in precipitation, 

temperature, and drought at different time scales, i.e. 1, 3, 6 and 12 months using Standardized 

Precipitation Evapotranspiration Index (SPEI) datasets. WUE and CUE were estimated as the 

ratios of NPP to actual evapotranspiration and NPP to Gross Primary Productivity (GPP), 

respectively. The results of this study revealed that NPP, WUE, and CUE of the different land 

cover types in Ethiopia have higher magnitudes than their counterparts in Sudan. Moreover, 

they exhibit higher sensitivity to drought and variation in precipitation. Whereas savannah 

represents the most sensitive land cover to drought, croplands and permanent wetlands are the 

least sensitive ones. The inter-annual variation in NPP, WUE, and CUE in Ethiopia is likely to 

be driven by a drought of a time scale of three months. No statistically significant correlation 

was found for Sudan between the inter-annual variations in these indicators with drought at any 

of the time scales considered in the study. Our findings are useful from the viewpoint of both 

food security for a growing population and mitigation to climate change as discussed in the 

present study. 

3.1. Introduction 

Net Primary Productivity (NPP) is defined as the amount of atmospheric carbon that is 

captured by plants and transformed into biomass (Zhao and Running, 2010). The total amount 

corresponding to the photosynthesis process is called Gross Primary Productivity (GPP). The 

difference between NPP and GPP is referred to as respiration (Ardö, 2015), which is the amount 

of carbon previously assimilated by the plant and subsequently used for maintenance of the 

biomass or growth. Monitoring of the variability in primary production is critical because NPP 

provides vital services for human survival (Ardö, 2015). Reduction in NPP potentially 

jeopardizes food security and may increase global warming since a reduction in NPP might 

decrease the available carbon sinks (Zhao and Running, 2010). While the spatial variation of 

NPP depends on vegetation type, soil, climate conditions, and human activities, its temporal 

variation depends mostly on the variability of climatic factors (Li et. al., 2016). Several climate 

factors control the NPP, such as temperature, precipitation and shortwave solar radiation (Li et 
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al., 2016). Temperature and precipitation have more influence on NPP in arid and semi-arid 

areas while solar radiation is the main controlling factor in humid and semi-humid areas (Liu 

et al., 2015). Temperature plays a role in raising NPP (Zhao and Running, 2010). Although the 

period from 2000 through 2009 was the warmest decade in the records since 1880 (NOAA, 

2016), Zhao and Running (2010) found that global NPP has declined by 0.55 petagram carbon 

(Pg C) during the same decade. They suggested that a drying trend in the southern hemisphere 

was the main driver for this reduction. There has been a debate regarding these findings as to 

whether there was a decrease in NPP or whether this decrease was due to artifacts from the 

applied model (Samanta et. al., 2011; Zhao and Running, 2011). If NPP is affected by climate 

as suggested in that model; then, NPP should have decreased during this period (Medlyn, 2011).  

Ecosystems differ in their responses to climate variability (Knapp and Smith, 2001). 

Different plant species respond differently to drought conditions based on their physiological 

and structural characteristics, to prevent loss of water (Van Der Molen et. al., 2011). 

Understanding how vegetation types respond to drought and climate variability can lead to more 

efficient management of these land covers and can, in turn, assist significantly in securing water 

and food in the future. Many studies have been conducted on this matter, yet, most of them 

have focused on the climate driver of the NPP variation on a global scale (e.g. Huang et al., 

2016; Liu et. al., 2015). Recent analyses have found that semi-arid areas are the major 

controllers of the global NPP variation (Huang et al., 2016; Ahlström et. al., 2015). However, 

it is important to examine whether the same pattern of NPP found by Zhao and Running (2010) 

on a global scale also applies to regional and local scales (Chen et. al., 2013). Different patterns 

may reveal when zooming into a local scale. Drought is expected to be more severe in the future 

(Ault et. al., 2014). Therefore, it is important to investigate the effect of drought on primary 

productivity and efficiency of the land cover types in terms of water and carbon use. Analysis 

of these interactions at regional and national levels is useful and provides essential information 

for land cover management and climate policy-making (Peng et. al., 2017; Liu et. al., 2015). 

Recently, a country scale analysis of the relationship between NPP and drought was published 

by Peng et al. (2017). The data used in their work was that of Moderate Resolution Imaging 

Spectroradiometer (MODIS) NPP and the Standardized Precipitation Evapotranspiration Index 

(SPEI) for drought. They found that countries show different trends in NPP for the period 2000 

to 2014, and only 35 countries accounted for more than 90% of the global NPP.  

Continentally, Africa has witnessed an increase in NPP during the same period, i.e. from 

2000 through 2009, by 0.189 Pg C, and this is mostly due to decreased vapor pressure deficit 
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(Zhao and Running, 2010). The African ecosystems produce around 20% of the total global 

NPP (Ciais et. al., 2011), and a large fraction of the inter-annual variability in the global carbon 

cycle is due to ecological processes on the African continent (Williams et. al., 2007). 

Monitoring the variation in vegetation productivity, WUE and CUE, and correlating this 

variation with climate variability for large areas is a challenge, particularly against the backdrop 

of the given limitations of ground data, especially in the countries of Sub-Saharan Africa, where 

ground weather stations are few and sparsely distributed.  

Water Use Efficiency (WUE) and Carbon Use Efficiency (CUE) are useful indicators for the 

assessment of the pattern of water use and carbon sequestration by the plants. WUE is defined 

as “The rate of carbon uptake per unit of water lost” (Tang et. al. 2014), and it can be calculated 

differently according to the purpose of the investigation (Ito and Inatomi, 2012). For this 

research, WUE is defined as the amount of water evaporated for every g carbon/m2 of NPP 

produced, i.e. NPP/ETa, where ETa is the actual evapotranspiration  (Kuglitsch et al., 2008). 

The CUE is defined as a ratio of NPP to GPP. The old conception of the CUE is that it ideally 

equals 0.5 ( Zhang et. al. 2009; De Lucia et al. 2007). However, CUE should not be considered 

as a constant value since the photosynthesis is primarily governed by the Absorbed 

Photosynthetically Active Radiation (APAR) and respiration by temperature. Several 

researchers noted that CUE might vary depending on climate factors (e.g. precipitation and 

temperature) and geographical location (Zhang et. al., 2009). Plants are considered carbon 

sinks, and examining the variability of CUE is useful in climate change and CO2 emissions 

studies (Chen et. al., 2013). A better understanding of WUE and CUE results in better 

management of ecosystems (Tang et. al., 2014; Zhang et. al., 2009). 

Variability in primary productivity affects food availability and food security directly, while 

the magnitude of primary production is directly related to the carbon cycle (Zhao et. al., 2005). 

However, the lack of continuous ground observation hinders the long-term analysis of the 

dynamics of vegetation development. Luckily, many public-domain sources nowadays provide 

continuous spatial climate observations and productivity estimates. The use of many of these 

datasets provides some indication and knowledge about their uncertainty and reliability. These 

datasets also provide a reproducible analysis of the impact of climate variation on primary 

productivity. The general availability of these public-domain data sources provides a unique 

opportunity for examining the climate-plant productivity relationship. Such types of data are 

receiving increasing attention nowadays. In comparison with climatic variables, only a few 

number of public-domain databases are offering data on primary productivity. Many studies 
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used the publicly available product of MODIS satellite of primary productivity (MOD17) to 

detect the variability of primary productivity as well as WUE and CUE of land cover types or 

entire ecosystems and their association with climate conditions. For a summary of the most 

important studies, refer to table (3.1). To the best of our knowledge, apart from the study of 

Peng et. al. (2017) which detected the impact of drought on NPP on a country scale for the 

whole globe, no previous comprehensive study was conducted to bridge the knowledge gap on 

the response of NPP, WUE and CUE of different landcover types to drought and climate 

variability in Sub-Saharan Africa. In this study, inter-annual variations in climate conditions 

and drought with different time scales for the period from 2000 through 2013 were correlated 

with inter-annual variation in NPP, WUE, and CUE in various land cover types in Sudan and 

Ethiopia. The two selected countries are examples of East Africa countries with severe data-

scarcity, despite their high vulnerability to climate variation and food insecurity. The outcome 

of such a spatio-temporal study would be useful for better land cover management in the studied 

countries.  

3.2. Materials and Data 

3.2.1. Area of study and its importance 

East Africa is one of the most challenging areas for managing natural resources due to many 

complex factors. It is a region highly vulnerable to climate change impacts (Abebe, 2014). 

Moreover, most of the countries in this region are considered among the least developed 

countries, with a high and rapidly rising population (UNECA, 2016), consequently putting more 

pressure on the natural resources in the future. With an area of about 3 million km2, Sudan and 

Ethiopia are a good example of land use types in this region (Fig. 3.1). The two countries 

together are characterized by great diversity in land covers, including savannas, permanent 

wetlands, croplands, shrublands, and forests. Accordingly, they show significant spatial 

variation in climate conditions, ranging from hyper-arid in northern Sudan to the humid 

conditions in some parts of the Ethiopian highlands. These features make the two countries 

particularly suitable for our research. Most of the area in Sudan is bare or sparsely vegetated 

land (62% of the total area). These areas are mainly located in the northern half of the country 

(Fig. 3.1). In Sudan, grassland is the dominant land cover type, covering around 20% of the 

total area. In Ethiopia, open shrublands represent the largest land cover type, covering 

approximately 27.6% of the total area. Woody savannas, grasslands, and croplands also 

represent important ecosystems in Ethiopia in terms of area (Fig. 3.2).   
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Table 3.1. Review of some research used MOD17 data of NPP and GPP  
 

Author(s) Scale Time 

period 

Main objective(s) Main findings 

Huang et. 

al. (2016) 

global 2000-2013 To examine the impact of 

drought on inter-annual 

variability on NPP  

NPP is highly controlled by drought, and 

semi-arid ecosystems play an important 

role in the inter-annual variability on a 

global scale. 

Li et. al. 

(2016) 

global 2000-2014 To study the climate 

factors affecting NPP 

variability and its 

feedback to actual 

evapotranspiration (ETa). 

NPP is correlated positively with ETa, 

and it responds differently in the northern 

and southern hemispheres according to 

dominant climate factors in each 

hemisphere.  

Ahlström 

et. al. 

(2015) 

global  To figure out the role of 

semi-arid ecosystems in 

the trend and variability of 

land CO2 sinks.  

The trend and variability of the global 

land CO2 sinks are largely derived by 

variation in temperature and precipitation 

variation occurring over semi-arid 

ecosystems. 

Ardö 

(2015) 

Africa 2000-2010 To compare primary 

production data coming 

from remote sensing and 

dynamic vegetation 

models.  

GPP estimations derived from remote 

sensing data (i.e. MOD17) are higher 

than those derived from dynamic 

vegetation models, while NPP 

estimations are lower. When validated 

against ground-based data, both 

estimations show a significant positive 

correlation.  

Liu et. al. 

(2015) 

China 2000-2011 To assess the WUE of 

ecosystems and their 

response to drought 

Drought has an impact on WUE, and the 

response of WUE to drought is variable 

among ecosystem types and geographic 

location and climate conditions.  

Abdi et. al. 

(2014) 

Sahel 

region, 

Africa 

2000-2010 To estimate and analyze 

the supply and demand of 

NPP in the Sahel 

countries. 

The demand for NPP was increased at an 

annual rate of 2.2%, but with a near-

constant supply. The major increase in 

demand is for food requirements.  

Tang et. al. 

(2014) 

global 2000-2013 To investigate the WUE 

of different ecosystems 

and to study their 

variation and trends.  

WUE varied greatly among ecosystem 

types and ecosystems located under 

different climate conditions. Recent 

changes in land cover led to a decline in 

global WUE.  

Zhang et. 

al. (2014) 

Lower 

Mekong 

Basin 

2000-2011 To assess the effect of 

drought on vegetation 

productivity 

Droughts with varied intensities have 

different impacts on ecosystems, which 

show variation in response to drought.   

Chen et. al. 

(2013) 

global 1997-2009 To analyze the impact of 

drought on NPP 

NPP and drought are positively correlated 

in arid regions, while boreal (sub-arctic) 

areas show a negative correlation, and 

some areas show no correlation.  

Zhao and 

Running 

(2010) 

global 2000-2009 To detect the trend of NPP 

and its relation to drought 

A global reduction trend in the average 

NPP is detected for the investigated 

period. The main driving force of this 

reduction is drought.  

Zhang et. 

al. (2009) 

global 2000-2003 To investigate the pattern 

of CUE (GPP/NPP) in 

different ecosystems, 

geographical and climate 

conditions.   

CUE varies considerably based on 

ecosystem type, geographical location, 

and climate conditions and it is not a 

constant value. 

Turner et. 

al. (2006) 

global 2000-2004 To evaluate the 

performance of MOD17 

products across different 

biomes and compare it to 

9 Eddy covariance flux 

towers data. 

MOD17 data provide a good source to 

capture the response of the general trend 

of primary productivity, but it shows 

overestimations in low productivity 

locations and underestimations in high 

productivity locations. 
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Fig. 3.1. Location map of the study area showing the boundaries of the two case studies (Sudan 

and Ethiopia) and the different land cover types located in the region. Landover data in this map 

are that of MCD12Q1 product.  

 

Fig. 3.2. The total area of each land cover in Sudan and Ethiopia as appears in the MDC12Q1 

product.  

3.2.2. Data and Methods  

Using data acquired from public-domain sources offers a solution for such a data-scarce 

region. Along with land cover data, time series of the NPP, GPP, Normalized Difference 

Vegetation Index (NDVI), precipitation, evapotranspiration, temperature and Standardized 

Precipitation Evapotranspiration Index (SPEI), were used in this analysis (Table 3.2). All these 
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data were derived from public-domain sources for a time frame extending from 2000 through 

2013. Most of the remote sensing datasets used in this study are recent products and available 

only for the years after 2000, for instance, the NPP, GPP, and ETa from MODIS. The selection 

of the period (2000-2013) was mainly controlled by the availability of the data from different 

sources for the same period. On the other hand, many studies dealt with the same subjects were 

conducted for somehow a similar period. We choose the period to be consistent with these 

researches to facilitate the comparison of the findings. Moreover, as mentioned earlier, the 

period between 2000-2009 was the hottest on the global record and therefore these years are 

very interesting from the NPP point of view. In this study, the data processing was carried out 

using ArcGIS 10.3 software. 

3.2.2.1. Primary productivity  

Primary productivity data were obtained from MOD17 product (Zhao et al., 2005), which 

provides NPP and GPP data (in g carbon m−2) from MODIS satellite. MODIS is one of the 

sensors on NASA's Earth Observing System (EOS) satellites. It provides continuous global 

monitoring data of primary productivity with a spatial resolution of 1 km and at a temporal 

resolution of 8-day, monthly and annual intervals. MOD17 version 55 data of annual estimates 

of NPP and GPP were downloaded from the Numerical Terradynamic Simulation Group 

website. Invalid values were removed from the raster files; then, each raster file was multiplied 

by a scale factor of 0.1 to restore the original NPP and GPP values, as instructed in the metadata 

file of this dataset. Lastly, using the “extract by mask” tool in ArcGIS, separate raster time 

series of NPP and GPP were produced for each of the two countries, i.e. Sudan and Ethiopia.  

With limited available ground data in comparison with MOD17 data, validation of MODIS 

data is a challenge (Zhao et. al., 2005). Numerous studies were conducted to compare the 

MOD17 data with field measurements. A detailed overview of the performance of this product 

is beyond the purpose of this research. Nevertheless, it is worth mentioning for instance that 

Turner et. al. (2006) used Eddy flux towers to validate MOD17 data and found that MOD17 

show no overall bias when compared with towers data. They found, however, that MOD17 data 

tend to overestimate primary productivity in the low productivity areas and underestimate it in 

high productivity areas. Zhao et. al. (2005) made many enhancements in the main inputs of this 

dataset and reported on correlation analyses between MOD17 and ground-based data. Ardö 

(2015) compared MOD17 NPP with Aboveground NPP (ANPP) data collected from ground 

measurements in 35 sites in Sudan. While, they found a strong correlation between the multi-

year average MOD17 NPP and the ANPP (r = 0.80, RMSE = 135 g), but also reported a 
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systematic over-estimation of MOD17 NPP, which is regarded to the fact that the ANPP only 

considers aboveground biomass.  

Table 3.2. Specification of the data used in this study 

Dataset Source Reference Temporal 

resolution 

Spatial 

resolution 

Dissemination website Performance 

Net Primary 

Productivity 

(NPP) 

MOD17 Zhao et 

al., 2005 

Annual 1 km http://www.ntsg.umt.edu Differ from field 

measurements by 

28% 

Gross 

Primary 

Productivity 

(GPP) 

MOD17 Zhao et 

al., 2005 

Monthly 1 km http://www.ntsg.umt.edu 

Precipitation 

(P) 

CHIRPS Funk et 

al., 2015 

10-day 

composite 

5 km http://earlywarning.usgs.

gov/fews/datadownloads

/Global/CHIRPS%202.0 

CHIRPS 

correlations with 

gridded ground 

precipitation data 

are with R>0.75 in 

many areas of the 

world  

Actual 

Evapotranspi-

ration (ETa) 

MOD16 Mu et al., 

2007; Mu 

et al., 

2011 

Monthly 1 km http://www.ntsg.umt.edu

/project/mod16 

The correlation 

coefficient 

between MOD16 

and tower data is 

0.86 (Mu et. al., 

2011) 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

e-MODIS 

NDVI, 

Famine Early 

Warning 

Systems 

Network 

(FEWS 

NET) 

- 10-day 

composite 

0.25 km http://earlywarning.usgs.

gov/fews/datadownloads

/East 

%20Africa/eMODIS%2

0NDVI 

 

Temperature 

(T) 

University of 

Delaware 

(UDel) 

Willmott 

and 

Matsuura, 

2001 

Monthly 50 km http://www.esrl.noaa.go

v/psd/data/gridded/data.

UDel_AirT_Precip.html

#detail 

 

Drought 

index 

Standardized 

Precipitation 

Evapotransp-

iration Index 

(SPEI) 

 Monthly 50 km http://www.sac.csic.es/s

pei 

 

Land cover MCD12Q1 - - 0.5 km https://lpdaac.usgs.gov/ 

dataset_discovery/modis

/modis_products_table/

mcd12q1 

 

 

3.2.2.2. Normalized Difference Vegetation Index (NDVI) 

Data on the NDVI were obtained from the website of the Famine Early Warning Systems 

Networks (FEWS NET). This dataset was developed by the U.S. Geological Survey (USGS) 

Earth Resources Observation and Science (EROS) Center. The data used herein were 10-day 

composite data with a spatial resolution of 250 m. The raw NDVI images processing involved: 

(i) eliminating the invalid values, as per instruction of the product documentation; (ii) 

http://www.ntsg.umt.edu/project/mod16
http://www.ntsg.umt.edu/project/mod16
https://lpdaac.usgs.gov/%20dataset_discovery/modis/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/%20dataset_discovery/modis/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/%20dataset_discovery/modis/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/%20dataset_discovery/modis/modis_products_table/mcd12q1
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converting the digital numbers (DNs) provided in the raster files to NDVI values, using the 

formula NDVI = (DN − 100) / 100; (iii) using “extract by mask” tool to create separate NDVI 

data for each country from the original tiles of East Africa; (iv) aggregating 10-day composite 

data into monthly time steps, using Maximum Value Composite (MVC) method (Holben 1986), 

which selects the maximum value for each pixel from the three 10-day composite images. 

Integrated NDVI (iNDVI) for the cultivation season was used as a proxy for accumulated 

biomass (Field et. al., 1995; Prince and Goward, 1995). It was calculated as a summation of the 

NDVI for June – October, which represents the main growing season in the region (Elagib, 

2014; 2015). 

3.2.2.3. Precipitation  

In the current study, we used Climate Hazards Group InfraRed Precipitation with Station 

data; CHIRPS (Funk et. al., 2015) version 2.0 with a spatial resolution of 0.05°. Processing of 

precipitation data for this research included aggregation of the original 10-day composite data 

into monthly and annual data. Then, extract by mask tool in GIS was used to produce a time 

series of precipitation for Sudan and Ethiopia. CHIRPS product is a gridded precipitation 

dataset, which is developed by the United States Geological Survey (USGS) to provide high-

quality precipitation data to be used for early warning missions and drought monitoring. 

Blending remote sensing estimations with in-situ data from climate stations, including stations 

in Sudan and Ethiopia, results in good reliability of this dataset (Funk et. al., 2015). 

3.2.2.4. Temperature  

A temperature product developed by the University of Delaware (UDel) was used in this 

investigation. UDel provides gridded monthly air temperature data with a spatial resolution of 

0.5° for the whole globe (Willmott and Matsuura, 2001). This dataset covers the period from 

1901 to 2014. Data of UDel product uses observations from ground weather stations. The last 

version (V4.01) of this dataset was used herein. As with the previous datasets, monthly 

temperature data were also processed and time series rasters were produced for each country 

over the study period and later aggregated to annual averages.  

3.2.2.5. Actual evapotranspiration (ETa) 

Only a few public-domain sources provide data on actual evapotranspiration (ETa). For this 

study, MOD16A2 product was used. MOD16A2 is a monthly ETa dataset offered by a 

NASA/EOS project. It provides global evapotranspiration data using input data from MODIS 

satellite. The data come in a 1 km spatial resolution and at 8-day, monthly and annual temporal 
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resolution. This product uses an ET algorithm developed by Mu et. al. (2007) and improved by 

Mu et. al., (2011) to calculate ETa based on the Penman-Monteith equation (Monteith, 1965). 

MOD16 provides a special product for the Nile basin which is the one used herein. This product 

overcomes the problem encountered by the regular MOD16A2 datasets of not considering 

deserts, which is one of the major ecosystems in the region. Processing of MOD16A2 raw data 

considered excluding invalid values by removing the pixels of these values and restoring the 

original ETa values form the DN. Separate raster time series were created for Sudan and 

Ethiopia. This product was validated using ground data by several researchers. Some 

researchers found an inconsistency between MOD16 ET and ground data. For instance, 

Ramoelo et. al. (2014) used ETa data for savanna and woodland ecosystems between two eddy 

covariance flux towers in South Africa and MOD16 ETa. Their analysis showed that due to 

parameterization of the Penman-Monteith model and flux tower measurement errors, MOD16 

underestimates ETa by 2-7 mm per 8 days. In contrast, Tang et. al. (2015) found a good 

agreement between MOD16 ETa and eddy covariance and large aperture scintillometer 

measurements in north and northwest China. Validation studies of this product over East Africa 

are few. Al Zayed et. al. (2016) have validated MODIS ETa (MOD16A2) among other satellite-

based ETa estimation methods using field-scale water balance over the Gezira scheme in central 

Sudan. They found that, on a regional scale, MOD16A2 is one of the more useful operational 

products, yet, MOD16 algorithm tended to overestimate (underestimate) low (high) ETa values. 

Despite the observed differences between the ground measurements and MOD16, this product 

provides essential knowledge on the water cycle and its interaction with environmental changes 

(Mu et. al., 2007). It provides easily accessible information for areas with limited surface data 

like the region of Sub-Saharan Africa.    

3.2.2.6. Drought index data 

Because drought is a slow phenomenon that develops over a long time without precipitation 

(Wilhite and Glantz, 1985; Gillette, 1950), drought indices that take different timescales into 

account are very useful for drought assessment. Incorporating different time scales in the 

assessment of drought impact is widely used (Potopová et. al., 2015). In the current 

investigation, we used the Standardized Precipitation Evapotranspiration Index (SPEI) 

developed by Vicente-Serrano et al. (2010). With a spatial resolution of 0.5° and a monthly 

time step. SPEI calculation requires precipitation and temperature data to account for the 

difference between precipitation and potential evapotranspiration (PET), i.e. a simple water 

balance. SPEI is a multi-scalar index that allows comparison of drought severity over different 

https://www.researchgate.net/profile/Vera_Potopova
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time scales and across space. For the SPEI scale ranges refer to Table (3.3) As SPEI is a 

standardized variable, it can be compared with other SPEI values over time and space. The most 

widely used time steps are 1, 3, 6, 12 and 24 months, denoted by SPEI01, SPEI03, SPEI06, 

SPEI12, and SPEI24, respectively (Chen et. al., 2013). In the current investigation, we used 

SPEI01, SPEI03, SPEI06 and SPEI12.  

Table 3.3. Categories of the SPEI scale  
  
Class SPEI value 

Extremely wet ≥ 2.00 

Severly wet 1.5 to 1.99 

Moderately wet 1.00 to 1.49 

Normal 0.99 to -0.99 

Moderately drought -1.00 to -1.49 

Severe drought -1.50 to -1.99 

Extreme drought ≤ -2.00 

 

3.2.2.7. Land cover 

In the current research, MCD12Q1 land cover dataset (Friedl et al., 2010) provided by the 

Land Processes Distributed Active Archive Center (LP DAAC) was used. This product 

provides annual land cover data for the whole globe with a spatial resolution of 1 km for the 

period spanning 2001 to 2012. The latest land cover data (version 51) was used herein, with 

land cover classification scheme of the International Geosphere-Biosphere Programme (IGBP). 

The global land cover layer was processed to generate separate land cover classes layers for 

each country.  

3.2.2.8. Correlation of the variables and calculation of water and carbon uses efficiency  

The NPP and climate elements were standardized according to Kraus (1977) to analyze the 

inter-annual variability of the Standardized Anomaly Indices (SAIs). Before standardization, 

the data from all variables were tested for normality using the Shapiro-Wilk test (Ghasemi and 

Zahediasl, 2012; Shapiro and Wilk, 1965). Employing an online calculator (Dittami, 2009), the 

data were found to be normally distributed. For each variable, the SAI was calculated as: {value 

− average (2000 − 2013)} / standard deviation (2000 − 2013). The annual average of each 

climate variable for each land cover class was calculated using the functions of the GIS 

environment. Figure 3.3 shows the procedure followed in this study to correlate the variation in 

the annual NPP and climate indices. This procedure was used for all land cover classes and each 

year using the non-parametric Spearman's coefficients (ρ, rho), with the aid of XLSTAT V.19.4 
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software (Addinsoft, 2017). Croplands and grasslands were considered in the analysis of the 

impact of climate variability on food production on a monthly time step for two selected years 

(2007 and 2009) representing a wet and dry year, respectively (Elagib, 2013; Sulieman and 

Elagib, 2012). For the two years, 10-day composite NDVI data were summed for the five 

cultivation months (June -October), and the seasonal iNDVI was used as a proxy of vegetation 

productivity as explained before. Annual average WUE and CUE were calculated for each land 

cover type as the ratios of NPP to ETa and NPP to GPP, respectively. 

 

Fig. 3.3. Flowchart of the methodological procedure followed in this study to correlate the inter-

annual variability in NPP, CUE and WUE and their response to climate variability and drought 

conditions. 
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3.3. Results and discussion 

3.3.1. Climate conditions during 2000-2013 

In general, precipitation in Sudan is much less than in Ethiopia. Temporally, precipitation shows 

some variation from year to year in both countries (Fig. 3.4a). The year with the lowest 

precipitation in Sudan was 2004, recording 180.3 mm. For the period 2000-2013, the average 

total annual precipitation is 227.9 mm and the Coefficient of Variation (CV) is 0.13 for Sudan. 

As for Ethiopia, the corresponding values are 808.8 mm and 0.08 (Fig. 3.4a). The results on 

average precipitation obtained from CHIRPS are comparable with the 1970-2000 averages, i.e., 

225.5 mm and 799.1 mm for Sudan and Ethiopia, respectively, as estimated using WorldClim 

(Fick and Hijmans, 2017). Most of the vegetation in Sudan is found on an east-west belt located 

in the southern part of the country and characterized by precipitation amounts between 250-500 

mm and rarely above 1000 mm. Large areas of the northern part of Sudan receive less than 250 

mm per year. As for Ethiopia, the annual precipitation is on average more than 2000 mm, with 

the highest precipitation occurring in the western part while the lowest precipitation is recorded 

in the northeastern and southeastern portions of the country.  

In the study area, the timing of precipitation is very important to understand the vegetation 

development. Sudan and Ethiopia are relying mostly on rainfed agriculture for domestic food 

production. The rainy season and growing season are identical, and they extend between June 

and October. Even in Sudan, where irrigated agriculture is widely practiced, the main growing 

season timing remains the same, especially in the large irrigated schemes (e.g. Gezira and 

Rahad). This is because the water supply in these schemes is highly dependent on the River 

Nile flow which is highly variable due to the seasonal variability in precipitation.  

On average, most of Sudan shows an annual ETa of less than 500 mm. The southern part 

displays ETa up to 1500 mm. Some of the irrigated agricultural schemes (e.g. Gezira) in central 

Sudan show an average ETa between 500 mm and 1000 mm. The country’s annual average of 

ETa is 204.4 in Sudan and 530.2 mm in Ethiopia (Fig. 3.4b). Spatial variation in ETa takes the 

same pattern as that of precipitation. The highest ETa values are of water bodies, e.g. Lake Tana 

in Ethiopia (Fig. 3.4b).  
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The 14-year annual average temperature is 28.1 oC in Sudan and 23.1 oC in Ethiopia. During 

the study period, the highest average temperature detected for each country was 29.0 oC in 

Sudan in 2010 and 23.5 oC in Ethiopia in 2009. Regionally, the center of Sudan is the area 

characterized by the highest temperature (Fig. 3.4c).  

Fig. 3.4. Temporal and spatial variation in climate variables in the two countries considered in 

this study: (a) precipitation, (b) actual evapotranspiration and (c) temperature.     

On a monthly time scale, the most severe droughts in the region during the study period 

occurred in 2004, 2005 and 2009 (See Appendix B: Fig. S3.1). During these years, Sudan was 

affected by moderate to severe drought, while moderate drought conditions prevailed during 

only a few months in these years in Ethiopia. Based on the annual data (Fig. 3.5a and b), Sudan 

was affected by a moderate drought in 2009, while the rest of the years were normal. Ethiopia 

experienced normal moisture conditions during the same period.  
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Fig. 3.5. Time series of SPEI for in the study area with different time steps 1, 3, 6 and 12 

months, (a) Sudan and (b) Ethiopia.  

3.3.2. Net primary productivity during 2000-2013 

Spatially, the highest NPP values in Sudan are found along the southeastern and 

southwestern borders of the country where most of the savannas are located (Fig. 3.6a). The 

majority of the northern parts of the country are barren areas with too low NPP rates compared 

to the vegetated areas within the country. In Ethiopia, the highest NPP values characterize the 

middle part of the country that is covered mostly by woody savannas and evergreen broadleaf 

forests (Fig. 3.6b). The areas with the lowest NPP rates are located in the northeastern part of 

the country which is mostly barren, sparsely vegetated or covered by open shrublands. The 

annual average NPP is 87.24 and 501.92 g carbon for Sudan and Ethiopia, respectively. All of 

the land covers in Ethiopia show higher NPP than their correspondents in Sudan. This could be 

attributed to the higher precipitation and larger areas of the vegetation landcover types in 

Ethiopia compared to Sudan. On average, evergreen broadleaf forests and woody savannas in 

Ethiopia show the highest annual NPP, with NPP values of 1279.5 and 845.3 g Carbon/m2, 

respectively.  
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3.3.3. Variation of primary productivity and correlation with climate variability 

Throughout the period from 2000 to 2013, the NPP displayed high inter-annual variability 

in both countries. In Sudan, most of the land cover types showed negative anomalies during the 

years 2000-2008 (Fig. 3.7a). The year 2007 was an exception, probably because it was a year 

with relatively high precipitation. The last five years (2009-2013) witnessed an increase in NPP 

of all land cover types. NPP for the year 2002 was associated with the largest decline for all 

land covers. The drought effect in two successive years (2001 and 2002) is likely to be the 

reason behind this considerable decrease in NPP. In comparison with Sudan, some land covers 

in Ethiopia displayed positive NPP anomalies during the first years of the study period, mainly 

due to the high precipitation. From the data, the impact of drought of 2002 in some land cover 

types (e.g. closed shrublands, croplands mixed forest and savannas) was notable as NPP in these 

land covers showed negative anomalies.   

 

Fig. 3.6. (a) Spatial variation 

of the average NPP in Sudan 

and Ethiopia as modeled by 

MOD17. (b) Multiyear annual 

average (2000-2013) of NPP 

for land cover types in Sudan 

and Ethiopia. Abbreviations 

for names of land cover types 

can be found in figure 3.2. 
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Fig. 3.7. The anomaly of inter-annual NPP in different land covers in Sudan and Ethiopia, with 

the anomalies in climate conditions (precipitation, temperature, and drought (SPEI)) prevailed 

in each land cover type are plotted.    

As mentioned earlier, many drivers regulate the inter-annual variability of NPP. In arid and 

semi-arid areas, such as the study area, patterns of precipitation and temperature are likely to 

be the most important climatic factors, but the interactions of these climatic factors on 

vegetation activities are complex (Li et. al., 2016). From the analysis, it can be noted for 

Ethiopia that the variability in NPP is influenced directly by the variability in precipitation (Fig. 

3.7). This is manifest by the in-phase response of NPP to changes in precipitation and by 

Spearman’s ρ (See Appendix B: Fig. S3.2). Among all land cover types in Ethiopia, grasslands 
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revealed the strongest correlation ρ value (ρ = 0.82, p = 0.05). While the correlation with closed 

shrublands, croplands, deciduous broadleaf forests, grasslands, and permanent wetlands were 

significant, the correlation for evergreen broadleaf forests, mixed forests, open shrublands 

savannas, and woody savannas was statistically insignificant. In Sudan, the correlation was 

statistically insignificant at p = 0.05 (See Appendix B: Fig. S3.3). Zhang et. al., (2014) listed 

many biotic and abiotic factors (e.g. soil properties, nutrient availability, and temperature) to 

be responsible for the lack of immediate response of NPP to the current-year precipitation. 

Spatially, the highest correlation between NPP and precipitation is detected in the eastern and 

southern Ethiopia (Fig. 3.8). Spearman’s ρ in these areas is more than 0.6. These areas are 

dominated by croplands, grasslands, and savannas. Only small spots in the central (El Gedaref 

and Blue Nile states) and western parts of Sudan exhibited ρ values more than 0.6. The central 

part of Sudan is characterized by extensive croplands (both irrigated and rainfed agriculture). 

However, the correlation between NPP and precipitation in these areas was statistically 

insignificant. Statistical analysis showed no significant correlation between the inter-annual 

variation in mean annual temperature and NPP for all land covers in both countries. Several 

land cover types showed an insignificant correlation between the inter-annual variation in 

temperature and NPP (Fig. 3.8). Lack of correlation between temperature and inter-annual 

variability in NPP in arid and semi-arid regions were detected in some parts of the world, as 

reported by Liang et al. (2015) for China. These findings may suggest that the land cover types 

in Ethiopia are more sensitive to variation in precipitation than those characterizing Sudan. 

However, since this analysis was conducted on only an annual basis, further analysis of the 

varying seasonal effects on vegetation development is deemed imperative to draw a more solid 

conclusion.   

 

Fig. 3.8. The spatial pattern of correlation between NPP and climate variables for the period 

2000-2013.   
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3.3.4. Drought impact on primary productivity 

Drought affects the annual NPP in the land covers of Sudan and Ethiopia differently. While 

all land cover types in Ethiopia show a positive significant correlation (p = 0.05) between NPP 

and drought severity, no statistically significant correlation was detected for Sudan. Lack of 

correlation between annual NPP and the SPEI was also found by Peng et al. (2017) for many 

countries (e.g. Indonesia, Philippines, and Malaysia). Correlating SPEI at different time scales 

(1, 3, 6, and 12 months) with NPP anomalies, we found the highest correlation with the annual 

NPP anomalies for SPEI03 in Ethiopia. Thus, drought events on a time scale of 3 months largely 

control NPP in this country. This high correlation is detected spatially. Large areas in Ethiopia 

showed a statistically significant correlation between NPP and SPEI03 compared to other 

drought time steps (Fig. 3.8). Savannas also showed a very strong positive correlation between 

NPP anomalies and SPEI at a time step of three months (ρ = 0.93, p = 0.05). Open shrublands 

in Ethiopia seem to be more sensitive to drought as their NPP showed a strong positive 

correlation with a drought of one month (SPEI01) (ρ = 0.84, p = 0.05). The NPP for croplands 

and permanent wetlands displayed the weakest relationship with SPEI03 (ρ = 0.66 and 0.63 

respectively, p = 0.05). This relatively lower correlation suggests that these two land covers are 

less sensitive to drought than the other land covers due to agricultural management (e.g. 

irrigation) and/or sufficient water supply from tributaries or groundwater. Evergreen broadleaf 

forests seem to be quite resistant to drought since their inter-annual NPP variation showed a 

moderate correlation with SPEI (ρ = 0.54 with SPEI01, p = 0.05). Deeper rooting (Song et. al., 

2017) and access to larger water stores in soils and groundwater could be a reason. All of the 

land cover types in Sudan showed no statistically significant correlation between their annual 

NPP anomalies and SPEI at any of the SPEIs. 

 The total NPP in the dry year 2009 increased by 20.1% in Sudan and decreased in Ethiopia 

by 11.4% from the 14-year country’s average (2000-2013). The increase of NPP in dry years is 

reported in many areas around the world, for example in Northeast China (e.g. Sun et. al, 2016; 

Liu et. al, 2015; Pei et. al, 2013) and Phoenix, USA (Frolking, 1997). Generally, there are three 

potential causes of this phenomenon (Yang et. al., 2016; Liu et. al., 2015; Pei et. al., 2013). 

These causes are (i) the association of the increase in temperature with drought, (ii) the memory 

effect of the previous year drought on the current year NPP and (iii) the characteristics of 

drought. In the case of the dry year 2009 in Sudan, it seems that all these factors are playing a 

role in this increase. It can be explained partly by the notable increase in the annual temperature 

in this year (Fig. 3.7), which was the hottest in the record (Sulieman and Elagib, 2012). 
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Temperature is an important factor in this regard, as it plays a key role in the plant respiration 

process contributing to increasing NPP (Zhao and Running, 2010). In particular, mild drought 

when coupled with high temperature might increase the NPP (Sun et. al., 2016). This is because 

an increase in temperature during the drought period might partly offset the decrease of NPP 

induced by water deficit (Liu et. al., 2015). In contrast, the dry year of 2004 witnessed a 

decrease in the average temperature from the multi-year average which might contribute to the 

decrease in the annual NPP. On the other hand, the drought of the previous year might have an 

impact on the NPP of the current year, a phenomenon called the memory effect (Yang et. al., 

2016). This effect is notable in the dry year of 2002, where the NPP was decreased significantly, 

probably by the cumulative effect of the drought of 2002 and the drought of 2001. The relatively 

better drought condition in 2008 probably weaknesses the drought impact of 2009. The timing 

of drought is also an important factor determining the response of NPP and the crop yield 

(Elagib, 2015). NPP has different responses to droughts that occur during different seasons of 

the year. In the case of Northeast China, while spring drought has an insignificant impact on 

the vegetation NPP, autumn drought leads to a larger reduction in NPP (Liu et. al., 2015). 

Frolking, (1997) found that late summer drought in Phoenix increased NPP by about 20% due 

to reduced respiration. A careful analysis of drought characteristics in Sudan showed that, while 

the intensity of drought in 2009 was stronger than that of other dry years (e.g. 2002), the timing 

of drought during the beginning of the season (e.g. July) was stronger in the other years than in 

2009, and the spatial extent of the drought was lesser in 2009. According to Bussmann et. al., 

(2016), the optimum sowing date for rainfed agriculture in the main agriculture area in Sudan 

is the 8th of July. Drought at the sowing period is very critical and could lead to a significant 

decrease in crop yield. A mild drought during July-August could lead to a significant drop in 

cereal crop yield in the country (Elagib, 2013). This resulted in a relatively higher NPP in many 

land covers (e.g. croplands and shrublands) in July 2009, which is less by 33% from the NPP 

of the same month in the wet year, 2007. It is not realistic to attribute the increase of NPP in 

the dry year of 2009 to only one factor. As shown in this case, this increase is probably caused 

by the combined effects of temperature, the memory effect, and the drought characteristics. 

This conclusion goes in line with the findings of Pei et. al., (2013).  

3.3.5. Intra-annual variability of primary productivity and drought 

Results of monthly GPP and NDVI for croplands and grasslands showed the same temporal 

pattern in 2007 and 2009. GPP and NDVI start to increase remarkably at the beginning of the 

rainy season (i.e. June) as shown in Fig. 3.9. The average NDVI showed lower values during 
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the drought year 2009 in both countries and for both types of land covers. A strong correlation 

was found between the monthly NDVI and monthly GPP for the two land covers in both 

countries (See Appendix B: Fig. S3.4). The drought condition of 2009 reduced both the monthly 

NDVI and GPP during the rainy months. The reduction in the NDVI was more noticeable in 

Sudan as compared to Ethiopia. Accordingly, the decline in NDVI for croplands and grasslands 

in 2009 compared to 2007 were 16.9 and 14.9% in Sudan and 7.1 and 16.1% in Ethiopia, 

respectively. Statistical correlation between the intra-annual variations in GPP with 

precipitation, temperature, and SPEI revealed a weak correlation for croplands and shrublands 

in both countries. The highest correlation between GPP and SPEI03 was detected for Sudan 

with Spearman’s ρ of 0.58 and 0.59 for croplands and shrublands, respectively.  

3.3.6. Water Use Efficiency (WUE) 

The magnitude of WUE varies depending on the magnitudes of NPP and actual 

evapotranspiration. The national multi-year average WUE for Sudan is lower (0.24 g C kg-1 

H2O) as compared to that for Ethiopia (0.74 g C kg-1 H2O) due to low NPP production and high 

evapotranspiration for the former. Literature shows comparable values for the Ethiopian 

average WUE and the national average WUEs of China (0.79 g C kg-1 H2O) as reported by Liu 

et. al. (2015), and for the southern United States (0.71 g C kg-1 H2O) as indicated by Tian et. al. 

(2010), but higher values for the global average (0.92 g C kg-1 H2O). 

Fig. 3.9. Monthly GPP, NDVI, and precipitation during the wet year 2007 and the dry 2009 for 

croplands and grasslands in the two countries.   
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Large variations in WUE are evident for different land cover types due to differences in 

carbon uptake and water consumption (Liu et. al., 2015). This dissimilarity is mainly due to 

physiological differences and climate conditions (Tang et. al., 2014). Variations are also 

noticeable for the same land cover types under different climate conditions in Sudan and 

Ethiopia. Generally, all the land cover types in Ethiopia show higher WUE than their 

counterparts in Sudan (Fig. 3.10). For instance, savannas show an average WUE of 0.31 g C 

kg-1 H2O in Sudan but 0.75 g C kg-1 H2O in Ethiopia. In Ethiopia, evergreen forests have higher 

WUE than deciduous forests. This is in agreement with forests in similar latitudes (Tang et. al., 

2014). Among all the land cover types in the region, evergreen broadleaf forests and woody 

savannas exhibit the highest average WUE. They displayed an average WUE of 1.4 and 1.07 g 

C kg-1 H2O, respectively.  

 

Fig. 3.10. Time series of WUE of the land cover types in Sudan and Ethiopia. 

In Sudan, the highest WUE is that of Savannas, which shows an average value of 0.31 g C 

kg-1 H2O. WUE of open shrublands, grasslands, and croplands are 0.278, 0.274 and 0.236 g C 

kg-1 H2O, respectively. WUE shows a great inter-annual variation in the region during the study 

period. In Sudan, it displays a positive anomaly during the period 2009-2013. This increase is 
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detectable for all land cover types and is due to an increase in NPP and a decrease in 

evapotranspiration. When the inter-annual variation in WUE was correlated with SPEI, the land 

cover types in Sudan exhibited no significant correlation (See Appendix B: Fig. S3.5). Most of 

the land covers in Ethiopia show the strongest correlation between annual NPP and SPEI01 and 

SPEI03 (See Appendix B: Fig. S3.6). This might reflect a high degree of sensitivity of the land 

covers found in Ethiopia to drought compared to those found in Sudan. A negative correlation 

between variations in WUE and drought is typical for arid areas (Huang et. al., 2017).  

In the current study, the drought of 2009 induced an increase in WUE in most land cover 

types in Sudan. The highest increase in this year is detected in woody savannas with a 

percentage of up to 42.2% of the multi-year average WUE in Sudan. An increase in precipitation 

in arid and semi-arid areas may induce a larger increase in NPP than in evapotranspiration (Liu 

et. al., 2015). Though, the response of WUE to drought is not so clear (Liu et. al., 2015), many 

studies (e.g. Dong et. al., 2011;  Tian et. al. 2011; Reichstein et. al., 2002) reported an increase 

in WUE due to drought. The increase in WUE under drought results mainly from internal 

stomata mechanisms that work to reduce water losses as a measure of adaptation to water stress 

(Reichstein et.. al. 2002). In contrast, all the land cover types in Ethiopia showed a decrease in 

the same year in WUE for all the land cover types. The largest drop (13.3%) was in permanent 

wetlands when compared to the multi-year average WUE. These observations suggest different 

responses of WUE under different climate conditions.  

3.3.7. Carbon Use Efficiency (CUE) 

In comparison with CUE for Sudan, CUE in Ethiopia shows less inter-annual variability for 

most land cover types. This could be attributed mainly to the high precipitation in Ethiopia since 

where precipitation is high, CUE usually shows a constant value (Zhang et. al., 2009). However, 

statistical analysis showed an insignificant correlation between variation in CUE and 

precipitation for most land covers. As with WUE, CUE also increased during the years 2009 - 

2013 in Sudan. The lowest CUE was found in 2005 and 2006 (Fig. 3.11) as dry years exhibit 

high respiration (Metcalfe et. al., 2010) and low NPP.  

All of the land cover types in Sudan display much lower CUE values than their counterparts 

in Ethiopia (Fig. 3.11), mostly due to higher temperature inducing higher respiration (Shaver et 

al. 2000) in Sudan compared to Ethiopia. In turn, this suggests a larger release of CO2 rate from 

the land cover types in Sudan, or in other words, land cover types in Ethiopia uptake more CO2. 

Generally, net CO2 is released through respiration where the climate is dry and warm and is 

uptaken where the climate is cool and moist (Ahlström et. al., 2015). CUE exhibits a great 
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variation among the vegetation land cover types. Croplands in Ethiopia show the highest annual 

average CUE (0.59) among all land cover types in the region. Open shrublands show the lowest 

CUE among all land covers, giving annual CUE of 0.27 and 0.35, respectively for Sudan and 

Ethiopia. While the inter-annual variation in CUE in Sudan’s land covers show insignificant 

correlation with drought (See Appendix B: Fig. S3.7), land covers in Ethiopia are positively 

correlated with SPEI, giving highest Spearman’s ρ values with SPEI1 and SPEI03 for most land 

covers (See Appendix B: Fig. S3.8). These local-scale results support the previous global-scale 

findings by  Zhang et. al. (2009) and DeLucia et al. (2007). 

 
Fig. 3.11. Time series of CUE of the land cover types in Sudan and Ethiopia. 

The multi-year average of CUE is about 0.50 for Ethiopia, which is close to the global 

average of 0.52 (Zhang et. al., 2009), and within the realistic range of CUE for Africa, i.e. 0.45 

to 0.60 (Amthor, 2000). In contrast, the average CUE for Sudan (0.31) is much lower than both 

the global and the continental averages. This result indicates higher respiration from the land 

cover types in Sudan compared to the same land cover types in Ethiopia. One of the major 

conclusions of these findings is that, future climate change might impact the efficiency of land 

cover types as sinks for atmospheric carbon by affecting carbon sequestration capacity (Xiao 
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et. al., 2013). However, large uncertainty is expected in estimating CUE for Africa because of 

uncertainty in estimating vegetation productivity in the continent in addition to the relatively 

limited field measurements in comparison with other continents (Ardö, 2015; Valentini et. al. 

2014).  

3.3.8. Relevance to food security and climate change  

As mentioned earlier, the decrease in NPP may affect food security and increase global 

warming (Zhao and Running, 2010). From a food security perspective, NPP is key for food 

production. The ability of the plant to assimilate atmospheric CO2 and convert it into biomass 

is of supreme importance for food production. Increasing NPP will consequently increase crop 

yield. Cereal crops such as sorghum, millet, and wheat are the main staple crops in Sudan and 

Ethiopia. The two countries are facing gaps between the demand and supply in these crops. Any 

additional reduction in the current yield values (in kilogram/hectare) or the cultivated area 

would widen this gap and consequently put the food security of the country in danger. Drought 

may affect the crop yield and may also have a negative impact on the suitability of areas for 

rainfed agriculture, which is also considered as a loss. According to the data from the Food and 

Agriculture Organization of the United Nations (FAOSTAT, 2017), many years in the 

investigation period exhibit a decrease in the cereal crop yield and the cultivated area. For 

instance, the dry year of 2002 witnessed a reduction in the yield of cereal crops and the 

cultivated area from the multi-year average (2000-2013). The drop in crop yield and the 

cultivated area is about 15.8% and 11.5% in Sudan and 11.8% and 23.8% in Ethiopia, 

respectively. This reduction is comparable to the decrease in NPP in croplands in 2002 in both 

countries. Consequently, a drop in the total production of cereal crops by 25.6% and 33.9% in 

Sudan and Ethiopia, respectively, were reported. More in-depth analysis is needed to detect the 

impact of drought on the crop yield. Crop models such as WEAP-MABIA (Jabloun and Sahli, 

2012), AquaCrop (Vanuytrecht et. al., 2014.) and Cropsyst (Stöckle et. al., 2003) are very useful 

for such analysis. The impact of drought on suitability for rainfed agriculture could provide a 

clue on the contribution of drought in reducing the cultivated area in the overall decrease in 

food production. 

From a climate change perspective, vegetation represents an important sink for atmospheric 

CO2. High CUE of a landcover means that vegetations in this landcover are more efficient in 

assimilating CO2. In this direction, the land cover types in Sudan are less efficient than the 

landcover in Ethiopia in this process. The findings of the current CUE analysis emphasize the 

importance of some natural vegetation such as permanent wetlands, evergreen broadleaf forests 

http://www.sciencedirect.com/science/article/pii/S0378377416304589#bbib0205
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savanna and woody savannas in mitigating climate change. Especially in Ethiopia, these land 

covers exhibit high CUE values. This high CUE indicates that the vegetation in these land 

covers have a higher ability for CO2 assimilation, which is very important to reduce the CO2 in 

the atmosphere and consequently contributing to climate change mitigation. The noticeable 

increase in CUE in all landcover types in Sudan is a positive sign showing an enhancement of 

the efficiency of these landcover types during the last years of the current analysis. Under the 

climate change threat, conserving these landcover types is important. Analysis of the landcover 

changes should be addressed since it is responsible for a large share of global greenhouse gases 

emission (Smith et. al., 2014). Converting natural land covers into cultivated lands to ensure 

food security should be optimized, taking into consideration also the consequences of/on 

climate change. Sustainable intensification in the existing croplands, especially in developing 

countries, is very crucial to ensure increased food production while maintaining the 

sustainability of natural resources and mitigating climate change (Campbell et. al., 2014). To 

conclude, understanding how NPP responds to climate variability can lead to more efficient 

management of these land covers and can, in turn, assist significantly in securing food and 

reducing the impacts of climate change. Improved land use management is crucial to strengthen 

the ability of the countries to address food security and climate change. 

3.4. Limitation and Uncertainty 

Public-domain data based on remote sensing and models can provide outstanding spatial and 

temporal coverage of primary productivity and climate, especially in data-scarce regions. 

Nevertheless, all these data sources have inaccuracy and uncertainty. One major drawback of 

using these data in the current research was the lack of ground-based data of NPP, WUE, and 

CUE to validate the findings. All the studies reviewed so far, however, note this as the greatest 

challenge.  

MOD17 NPP data come with a quality control dataset (QC), where QC is measured in 

percentage of the number of days with poor quality of data (due to clouds) from the total number 

of days in the growing season. In MOD17 algorithm, the data with poor quality are artificially 

filled with Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Leaf Area 

Index (LAI); thus, higher QC values represent lower quality (Ardö, 2015). In the current 

research, processing of these QC data for the study area revealed lower QC values for most land 

cover types in Sudan (Fig. 3.12) because Sudan is drier than Ethiopia and, hence, with less 

cloud frequency. This suggests MOD17 NPP data as being more reliable for Sudan than for 

Ethiopia. The croplands type is an exception since it exhibited a better QC for Ethiopia, perhaps 

http://land.copernicus.eu/global/products/fapar
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due to their occurrence mostly in areas with higher precipitation and, hence, high frequency of 

occurrence of clouds. Evergreen broadleaf forests in Ethiopia represent the land cover with the 

least reliable data (QC of about 58% of days). Open shrublands exhibited the best QC for both 

countries because they are located mostly in areas with low precipitation and less occurrence 

of cloud, hence, their NPP data could be considered more reliable in comparison with those for 

other land cover types. The overall mean QC is 24% for Sudan and 32% for Ethiopia. 

 

Fig. 3.12. Quality control of NPP data for each land cover in Sudan and Ethiopia. 

There are tens of public-domain precipitation products available online. According to many 

literature, these products have different accuracies and their performance could be quite 

different. Generally, the overall accuracy using remote sensing precipitation estimations in 

water accounting is about 82% (Karimi and Bastiaanssen, 2015). Many studies were conducted 

to check the performance of CHIRPS along with other public-domain precipitation products in 

many areas in Sudan and Ethiopia. Hence, a literature review was conducted to detect the 

performance of CHIRPS in the study area in order to detect the degree of uncertainty in 

precipitation estimations using this product. According to Funk et. al., 2015, CHIRPS exhibits 

the lowest bias than the other products. This high accuracy is, in part, due to the inclusion of 

ground station data in producing it. Several in-depth performance studies showed that, this 

product has greater accuracy in the study area than the other public-domain precipitation 

products. Although CHIRPS has a high performance, there is still some uncertainty in this 

product. Compared to other precipitation products, CHIRPS shows the highest Pearson 

correlation of coefficient of 0.61-0.79 and the lowest bias and mean absolute error when 

compared with ground station data (Bayissa et. al., 2017; Gebremicael et. al., 2017). According 

to the Gebremicael et. al. (2017), a percent bias (PBIAS) in CHIRPS of -8% is estimated. The 
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mean error of this product is quite low compared to other products. A mean error of about -27.9 

mm in some locations in the study area is estimated (Bayissa et. al., 2017). Given the potential 

error in this product, uncertainty in precipitation estimations presented in the current study using 

CHIRPS needs to be taking into consideration.  

Some studies found that, WUE calculated on a global scale using remote sensing data to be 

consistent with tower measurements (Tang et. al., 2014). However, calculating WUE and CUE 

using public-domain data may involve a high degree of uncertainty. Lack of ground data with 

good spatial coverage makes it impossible to validate the regional WUE and CUE estimates for 

this study. The currently available data are suitable only for analyzing the NPP, WUE, and CUE 

for various land cover types but not for different plant species. It will be useful to detect the 

NPP, WUE, and CUE across species if more detailed data are available. Results from this 

analysis should be interpreted with caution though, as the relationship between primary 

productivity and climate variability only hold if other factors remain constant (e.g., 

management, technology, and crop variety).  

Nevertheless, these datasets are very valuable to understand the spatial and temporal patterns 

of the NPP, WUE, and CUE of land cover types in data-scarce areas like the region of Sub-

Sharan Africa. Besides, they enable the investigation of the relationship between land covers 

and climate processes, a type of information that is not available for many areas around the 

world. Such understanding, in turn, is useful to understand interactions of land use, land cover 

and ecosystem management.  

3.5. Conclusion 

In this study, we provide new insights into the interaction between land cover types and 

climate in two countries in Sub-Saharan Africa. Results of the current research confirm that 

NPP responds differently among different land cover types and among the same land cover 

types located in different climate conditions. The variation of NPP in the region is primarily 

driven by climate variation. The last few years of the study period (2009-2013) showed positive 

NPP anomalies in all vegetation land cover types in Sudan. This was mainly induced by the 

recent recovery of precipitation. The current analysis revealed that a moderate drought, such as 

that of 2009, leads to reduced annual NPP, and vice versa for the wet year 2007. Drought 

decreases the growing season iNDVI of the croplands and grasslands remarkably in both 

countries. Low iNDVI reflects low productivity and results in negative effects on food 

production.  
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There is a strong positive correlation between the inter-annual variability of NPP and drought 

severity of three months, i.e. SPEI03, in most of the vegetation land cover types in Ethiopia, 

but no statistically significant correlation was found between the two indices for Sudan. This 

suggests that land cover types in Sudan are more resistant to drought than those present in 

Ethiopia. In Ethiopia, savannas are the most sensitive land cover to drought in the time step of 

three months while croplands and permanent wetlands are the least sensitive land cover types. 

Analysis of WUE and CUE is often performed for short periods and individual plants or 

small plots (Zhang et al., 2009). However, this study offered spatio-temporal analysis of both 

indicators. The results of this analysis showed that all land cover types in Ethiopia have higher 

WUE and CUE than their counterparts in Sudan, thus reflecting the prevalent climate conditions 

in each country. WUE and CUE displayed differences in magnitude among the land cover types. 

They also respond differently to climate conditions and drought severity. Despite the limitation 

and uncertainty encountered in using public-domain data, the current study provided a useful 

analysis of using these data for monitoring and analyzing NPP, WUE and CUE and their 

interaction with climate variables on a country scale. Moreover, this analysis provides an 

essential understanding of the interactions between ecosystem productivity and efficiency and 

climate variability. The findings of the current research could be considered as a basis for 

further analysis of the impact of climate variability on food production. They also provide 

essential information for the critical role some land cover types play as sinks for atmospheric 

carbon dioxide and, therefore, for climate change studies. 
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Abstract 

The efficient use of water requires understanding its spatial and temporal availability and 

pattern of use. However, in-situ measurements of the components of the hydrological cycle are 

often unavailable. This is particularly the case for precipitation. In this respect, Public-domain 

Precipitation Products (PPs) represent an alternative source of information. Nonetheless, 

precipitation estimates by PPs show discrepancies in spatial and temporal domains; thus, in-

depth analyses of similarities and differences of these products is imperative to provide accurate 

precipitation estimations for water applications. We introduce and test a novel approach for 

evaluating the performance of PPs. This approach couples traditional evaluation methods 

(pixel-to-point and pixel-to-pixel) with data mining techniques (Hierarchical Clustering and 

Principal Component Analyses). It was used to assess the performance of 17 PPs over the Blue 

Nile Basin (BNB) for the period 2001-2005 on monthly and annual scales. A sensitivity analysis 

was carried out to test the affinity of the studied PPs. The analysis results were used to guide 

assimilating several PPs to create Merged Precipitation Products (MPPs). Results exhibit 

considerable differences between the studied PPs. Noticeable spatial and temporal 

discrepancies were found between the 17 PPs on the one hand and between PPs and rain gauge 

data on the other hand. Data mining techniques proved to be useful in detecting similar and 

dissimilar PPs. Given their advantages over traditional methods, these techniques should be 

used routinely in PPs assessment. The findings of the current research provide helpful insights 

to advance the use of PPs in water resources applications. 

 

4.1. Introduction 

Water monitoring is crucial for hydrological, ecological, and development purposes. Due to 

population growth and climate change, water has become increasingly scarce in many parts of 

the world (Kummu et. al., 2016; Liu et. al., 2017). Therefore, decision-makers are required to 

adopt immediate, efficient and sustainable management practices to meet current and future 

human development and environmental water demands. However, the lack of ground-based 

data is one of the main challenges that hinder good practices of water management (McDonnel, 

2008). Effective management of water resources requires continuous monitoring and an 

accurate estimation of the spatio-temporal patterns of different components of the hydrological 

cycle such as precipitation, evapotranspiration, runoff, and water storage changes (Ayyad et. 

al., 2019; Cosgrove and Loucks, 2015; Fernández-Prieto et. al., 2012; Su et. al., 2010; Sun et. 

al., 2018). In most regions of the world, water availability is directly linked to precipitation 
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amount and seasonality (Dinku et. al., 2007; Ligaray et. al., 2015; Noy-Meir, 1973). Variations 

in the spatio-temporal patterns of precipitation can cause environmental hazards such as floods 

and droughts, which have direct socio-economic impacts (Brown and Lall, 2006), and often 

result in loss of lives and infrastructure. For example, Masih et. al., (2014) reported that during 

1965-2012, drought events affected ~67 million people over Ethiopia, bringing an estimated 

economic loss of above 92 million US$ and a death toll of more than 400,000. These numbers 

emphasize the need for accurate precipitation data to support decision-making, especially in 

areas vulnerable to high climate variability such as the Nile Basin (Bastiaanssen et al., 2014; 

Beyene et. al., 2010; Cao et. al., 2018b).    

Traditionally, precipitation has been measured using in-situ rain gauges (Gabriele et. al., 

2017; Kidd, 2001). However, the accuracy in the characterization of precipitation, when only 

ground-based measurements are used, depends largely on the density and distribution of the 

rain gauge network (Shaghaghian and Abedini, 2013). While radar data can provide a spatially 

distributed estimation of precipitation (Yoon et. al., 2012), rain gauges are considered the most 

reliable source of precipitation measurements at the point scale (Villarini et. al., 2008) and they 

still required for calibration and validation purposes. Despite that, the rain gauges are sensitive 

to environmental conditions (Michelson, 2004), and the accuracy of their records has to be 

controlled (Levy et. al., 2017).  However, in many regions (especially in developing countries), 

rain gauges are sparsely distributed (Kaba et. al., 2014), and their number is decreasing (Sun et 

al., 2018). Rain gauges are sensitive to environmental conditions (Michelson, 2004), and the 

accuracy of their records needs to be checked (Levy et. al., 2017). A dense network is expensive 

and hard to maintain, hindering an accurate spatial representation of the precipitation patterns, 

especially in high altitude areas. Systematic under-catch of gauge measurements (Beck et. al., 

2019), unsystematic errors such as gaps in time series (Woldesenbet et. al., 2017), latency in 

data availability, in addition to inaccessibility of data are additional challenges that limit the use 

of rain gauge data in many regions of the world (Montesarchio et. al., 2015; Thiemig et. al., 

2012). In Africa, the implementation of an adequate rain gauge network is challenging because 

of driver factors such as the desired accuracy and the cost of implementation, maintenance and 

data collection (Pardo-Igúzquiza, 1998).  

The recent technological development in sensors, algorithms and new satellite missions 

designed to measure environmental processes, have enabled the opportunity to derive gridded 

precipitation estimates. This has enabled the opportunity to account for the spatial distribution 

of precipitation (Kidd, 2001; Zambrano-Bigiarini et. al., 2017), thus providing data which is 
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otherwise often not feasible to obtain. The public-domain policy of these products has 

encouraged the use of their datasets for different applications such as drought assessment 

(Agutu et. al., 2017; Gao et. al., 2018; Sahoo et. al., 2015; Zambrano-Bigiarini et. al., 2019), 

flood forecasting (Tekeli et. al., 2017), hydrological modeling (Kite and Pietroniro, 1996; 

Siddique-E-Akbor et. al., 2014), water balance studies (Bastiaanssen et. al., 2014; Karimi, et. 

al., 2013), among others. 

A wide range of sensors, input data, and estimation algorithms are used to produce these 

Public-domain Precipitation Products (PPs) (Sun et. al., 2018). Accuracy of the PPs estimation 

can be affected by climatological of catchment-specific factors such as elevation (Ayehu et. al., 

2018; Dinku et. al., 2018; Habib et. al., 2012; Hirpa et. al., 2010). Hence, the accuracy of the 

PPs in representing the spatio-temporal precipitation patterns varies greatly depending on the 

region. Although some studies have reported an overall accuracy as high as  95% (Karimi and 

Bastiaanssen, 2015), the accuracy of these PPs might vary at different temporal scales and 

geographic settings (Baez-Villanueva et. al., 2018). 

Traditionally, the PPs are evaluated by comparing their estimates with in-situ measurements, 

for example, (i) using a pixel-to-point analysis, where the rain gauge data are compared to the 

estimates of the respective grid-cells of the PPs (Bai and Liu, 2018; Burton et. al., 2018; Cao 

et. al., 2018; Gebrechorkos et. al., 2018; Thiemig et. al., 2012); (ii) using a pixel-to-pixel 

approach, which compares a gridded version of the rain gauge data with the corresponding grid-

cell of the PPs product (Amitai et. al., 2009; Bajracharya et. al., 2015; Chen et. al., 2014; Saber 

et. al., 2016). Additionally, the evaluation of PPs could be carried out indirectly by using the 

PPs to force a hydrologic model and evaluate the simulated discharge with streamflow 

observations (Beck et. al., 2017; Casse et. al., 2015; Chintalapudi et. al., 2014; Tramblay et. al., 

2016; Voisin et. al., 2007). In some cases, there are no enough ground-based data to evaluate 

these products; and therefore, information on the performance of the different PPs can be 

assessed through a cross-correlation analysis (Salih et. al., 2018). Such inter-comparison would 

provide the relative differences in precipitation between the different PPs and might shed some 

light on their similarities and differences. Given the large number of data that needs to be 

handled in such evaluation approaches using grid-cells values, data mining techniques, such as 

Hierarchical Clustering Analysis (HCA) and Principal Components Analysis (PCA) can be 

effective in reducing effort and time needed to assess these big data (Lever et. al., 2017; Zhang 

et. al., 2017).  
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Since all PPs have advantages, limitations, and uncertainties, merging different PPs may 

provide a better estimation for precipitation (Baez-Villanueva et. al., 2020; Bastiaanssen et. al., 

2014; Peña-Arancibia et. al., 2013; Xie et. al., 2003). However, most of the available merging 

algorithms are complex to implement, and their performance normally improves when 

increasing the number of rain gauges (Baez-Villanueva et. al., 2020). Therefore, merging 

products over extremely data-scarce regions such as the Nile Basin remains a challenge. To this 

end, simple merging methods, like the one followed in the current research, would benefit 

massively from the comprehensive assessment that couples traditional evaluation methods with 

data mining techniques suggested herein.  

Many previous studies have been conducted to evaluate the performance of PPs over the 

Blue Nile Basin (BNB) (e.g. Abera et. al., 2016; Mekonnen and Disse, 2018; Romilly and 

Gebremichael, 2011). For a summarized review of some of these studies, the reader is referred 

to Appendix C (Table S4.1). These studies have focused only on the upstream part (Upper BNB: 

UBNB) of the basin, with few exceptions that targeted the lower BNB (Lower BNB: LBNB) 

(e.g. Basheer et. al., 2018), and only a limited number of PPs were evaluated. These studies 

have evaluated the PPs products performance through a direct comparison with rain gauge data 

to assess their ability to represent the precipitation patterns (Thiemig et. al., 2012). This 

approach is limited over data-scarce regions because there is no enough data to implement an 

informative evaluation (Bastiaanssen et. al., 2014). It is worth to mention here that the number 

of rain gauges in operation over the BNB is decreasing (not shown).  

Therefore, the objectives of the current research are: (i) to detect the similarities and 

differences between 17 PPs over the BNB at monthly and annual temporal scales using mean 

annual precipitation values through a pixel-to-pixel inter-comparison and data mining 

techniques, and to cluster them into groups based on their similarities;  (ii) to evaluate the 

performance of these PPs over the BNB using rain gauge data; and (iii) to evaluate the 

applicability of this integrated analysis of PPs in guiding simple merging procedures of PPs. 

The merging exercise aims at creating Merged Precipitation Products (MPPs) to improve the 

precipitation estimation, as a potential solution to improve precipitation estimation of PPs over 

data-scarce regions. The present analysis aims to advance the current understanding of the 

performance of PPs over the BNB, as an example of data-scare regions. To the best of our 

knowledge, such a comprehensive investigation at the given scale integrating traditional 

evaluation approaches with data mining techniques has not been conducted so far, neither for 

the BNB nor any other river basins. 
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4.2. Data and Materials  

4.2.1. Study area 

The BNB is a transboundary river basin shared by Ethiopia and Sudan (Fig. 4.1a). The basin 

has an area of about 307,177 km2, of which around two-thirds are located in Ethiopia (UBNB) 

and the rest is in Sudan (LBNB). Whereas the UBNB is characterized by complex topography, 

the LBNB is relatively flat. The BNB contributes to nearly 62% of the total streamflow of the 

Nile River (Amdihun et al., 2014), and is crucial for food and hydropower production (Allam 

and Eltahir, 2019; Elagib et. al., 2019; Wheeler et. al., 2016). The rainfed and irrigated 

agricultural schemes in the basin produce a large fraction of the annual domestic food 

production of Ethiopia and Sudan (Awulachew et. al., 2012; Elagib et. al., 2019).  

 

Fig. 4.1. The Blue Nile Basin (BNB): (a) location and riparian countries, (b) rain gauges used 

in the current research and corresponding Thiessen polygons and their areas in km2, (c) 

topography. 

The BNB is the main source of water for the Gezira irrigation scheme - one of the largest 

irrigated schemes in the world with an area of around 0.88 million hectares (World Bank, 1990). 

Precipitation in the BNB is difficult to predict (Cheung et. al., 2008; Meze-Hausken, 2004) and 
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highly variable in time and space (Beyene et. al., 2010; Conway, 2000). The intra-annual and 

inter-annual variability of precipitation has a direct impact on rainfed agriculture, and  also on 

irrigated agriculture as a result of reduced river flows under drought conditions (Kim et. al., 

2008; Siam and Eltahir, 2017). The rainy season in the basin is relatively short and lasts for 

only five months (from June to October). The mean annual precipitation in the basin varies 

from ~120 mm at the outlet of the basin in Khartoum (in the LBNB) to more than 2000 mm in 

some parts of the UBNB (Roth et. al., 2018). 

4.2.2. Data description 

Based on a detailed literature review, we identified 17 PPs particularly important for the 

BNB. Comprehensive reviews of available PPs can be found in the literature (e.g. Kidd, 2001; 

Sun et. al., 2018). PPs are typically categorized based on their spatial resolution and input data, 

which are some of the main factors that determine their performance (Vergara et. al., 2013). 

For the current analysis, the 17 selected PPs have been categorized into four groups: (1) ground-

based; (2) remote-sensing-based; (3) blended; and (4) PPs based on re-analysis of atmospheric 

models. Although some researchers such as Sun et. al., (2018) have grouped all the satellite-

related products into one category, even if they contain information form rain gauges, we 

preferred to separate the purely remote sensed PPs from those blended with rain gauge data. 

The 17 selected PPs and their main characteristics are listed in Table 4.1. For a full description 

of each PP, the reader is referred to the corresponding literature of each product. The full names 

of the products selected in this study are defined in the list of abbreviations (pages xiii – xiv). 

Table 4.1. List and characteristics of the 17 PPs considered in the current study 

 Product name Provider Product 

category* 

Spatial 

resolution ** 

Temporal 

resolution** 

Period of 

record 

Reference(s) 

   
a b c d    

  
 

1 GPCC 7 DWD x    0.5° Monthly 1901-2013 Schneider et al., (2015) 

2 CRU TS 3.23 UEA x    0.5° Monthly 1901-2014 Harris et al., (2014) 

3 PERSIANN CHRS-UCI  x   0.25° Annual 2000-present Hsu et al., (1997) 

4 PERSIANN-CCS CHRS-UCI  x   0.04° Annual 2003-present Hong et al., (2004) 

5 TRMM 3B42 RT NASA  x   0.25° Daily 1998-2019 Huffman et al., (2007) 

6 CMORPH CPC, NOAA  x   0.25 Daily 2002-present Joyce et al., (2004) 

7 ARC 2.0 CPC, NOAA   x  0.1° Daily 1983-present Novella & Thiaw, (2013) 

8 CHIRPS 2.0 CHG   x  0.05° Annual 1981-present Funk et al., (2015) 

9 GPCP-1DD GPCP   x  1.0° Daily 1996-present Huffman et al., (2001) 

10 MSWEP 2.0 JRC, EC   x  0.1° 3-hourly 1979-2017 Beck et al., (2019) 

11 PERSIANN-CDR CHRS-UCI   x  0.25° Annual 1983-present Ashouri et al., (2015) 

12 PGF 1.0 THRG- PU    x  0.25° Daily 1984-2008 Sheffield et al., (2006) 

13 RFE 2.0 CPC, NOAA   x  0.1° Daily 2001-present Xie & Arkin, (1996) 

14 TAMSAT 3.0 UoR   x  0.0375° Daily 1983-present Maidment et al., (2017) 

15 TRMM 3B42 NASA   x  0.25° Daily 1998-2019 Huffman et al., (2007) 

16 MERRA-2 NASA    x 0.5° × 0.625° Hourly 1980-present Gelaro et al., (2017) 

17 ERA-Interim ECMWF    x 0.75° Monthly 1979-2019 Dee et al., (2011) 
* Precipitation product categories: (a) ground-based; (b) remote sensing-based; (c) blended and (d) based on re-analysis of atmospheric models.  
** These are the spatial and temporal resolution of the precipitation products considered in the current study. However, some of these products might 

have different versions with various characteristics. 
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The performance of the 17 PPs was evaluated from 2001 to 2005 over the BNB except for 

PERSIANN-CSS and CMORPH, which’s data start from 2003 and 2002, respectively.  The 

study period was determined mainly because of the availability of rain gauge data (2001-2005) 

included in the product records. Time series from 11 rain gauges distributed across the BNB 

(Fig. 4.1b) were obtained from the Sudan Meteorological Authority (SMA) and the Eastern 

Nile Technical Regional Office (ENTRO) at the monthly temporal scale. The same rain gauge 

data have been used in previous studies (e.g. Basheer and Elagib, 2018; Elagib, 2014b, 2013; 

and Wheeler et. al., 2016). The availability of rain gauge data over the BNB is a great challenge 

because (i) this region has a sparse network of rain gauges; (ii) the time series contains several 

missing values (Woldesenbet et. al., 2017); and (iii) the inexistent data sharing policies between 

the riparian countries of the Nile basin due to the transboundary conflict. It is worth mentioning 

that most of the PPs considered in this study use precipitation measurements from rain gauges 

to correct their estimates, i.e. the products from the ground-based and blended PPs categories. 

A common understanding is that such products have better performance compared to other PPs 

that do not include rain gauge data (e.g. purely remote sensing-based PPs).  

A Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) as 

shown in Figure 1c was obtained from the Consultative Group for International Agricultural 

Research-Consortium for Spatial Information (https://cgiarcsi.community/data/srtm-90m-

digital-elevation-database-v4-1). This SRTM DEM covers the globe with a resampled version 

of 250 m. The DEM was used to delineate the boundaries of the BNB and to develop one of the 

reference precipitation datasets, as will be explained later in Section 4.3.2.  

4.3. Methods  

4.3.1. Data processing 

Raster files for the 17 PPs were downloaded from their dissemination websites and processed 

in a Geographic Information System (GIS) environment using ArcGIS 10.3 software (ESRI, 

2014). Since the present study focuses on monthly and annual time steps, the PPs with finer 

temporal resolution were aggregated into monthly and annual raster maps. For simplicity, we 

calculated and produced mean annual and mean monthly precipitation raster files for each PP, 

and these raster files were further used in the evaluation and merging processes.    

4.3.2. Interpolation of ground-based precipitation measurements 

One of the main drawbacks of the pixel-to-point evaluation is the assumption that a point-

based measurement is representative of a grid-cell area. Therefore, we implemented different 

https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
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interpolation algorithms to account for the spatial variability of precipitation within the grid-

cells. These interpolation techniques are (i) Thiessen polygons (Fig. 1b); (ii) Inverse Distance 

Weighting (IDW); (iii) Ordinary Kriging; and (iv) a regression-based procedure. These four 

methods were implemented using ArcGIS 10.3 software. As described in Mmbando et al., 

(2018), we used the elevation from the SRTM DEM for the regression-based procedure as the 

independent variable to account for the gradient of precipitation related to elevation, while the 

rain gauge data was used as the dependent variable. This method assumes that there is a linear 

relationship between elevation and precipitation. However, this relationship may not be linear 

in reality, which may lead to bias if the elevation range of the model is not representative of the 

elevation range that needs to be predicted. The four interpolated products were evaluated to 

select the interpolation scheme that derived the best spatial precipitation patterns. The best 

performing interpolated product as identified and used as a reference for the performance 

evaluation of the PPs and MPPs.  

4.3.3. Inter-comparison and evaluation of the precipitation products 

We evaluated the 17 PPs through a pixel-to-pixel analysis using descriptive statistics. Box-

Whisker plots of all pixel values of the PPs provide useful insights about mean, median, 1st and 

3rd quartiles, minimum and maximum values. For the pixel-to-pixel evaluation, four 

performance indices were considered herein; namely, Coefficient of Determination (R2), Root 

Mean Square Error (RMSE), Nash Sutcliffe Efficiency (NSE), and Percent Bias (%Bias). These 

indices were calculated using the HydroGOF package (Zambrano-Bigiarini, 2011) in the R 

Project for Statistical Computing programming language (R Core Team, 2008). Additionally, 

rain gauge datasets were used to evaluate the performance of the PPs through a pixel-to-point 

comparison. We used the same performance indices to detect and quantify the discrepancies 

between PPs and rain gauge measurements.  

 4.3.4. Clustering and merging of the products 

To study the similarities and differences of PPs, HCA and PCA were conducted using the 

grid-cell values of the multi-year monthly and annual means. HCA is a classification method 

that enable clustering datasets into homogenous groups based on their similarities. It offers a 

way to infer inter-relationships between several datasets instead of analysing them in pairs 

(Zolfaghari et. al., 2019).  In order to detect the relationship between the different PPs using 

their grid-cell values, reducing their dimensionality while preserving most of the information 

in data could be highly effective way to understand these products. PCA is a common and 

widely used approach to minimize the complexity of large datasets while retaining trends and 
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patterns (Lever et. al., 2017). To this end, PCA was applied to the grid-cell data with the 

Singular Value Decomposition (SVD). The first two components, which usually explain most 

of the variance in the data (Jolliffe and Cadima, 2016), were plotted against each other in two-

dimensional plots to show the location of the PP points, and hence, the approximate distances 

between the PPs.  

The products were aggregated to a unified 0.25o spatial resolution - the most common 

resolution in the studied PPs - to enable a fair comparison among them. Herein, the grid-cell 

values were used as inputs to the HCA and PCA. For the HCA, we followed an agglomerative 

(bottom-up) approach to group the PPs into distinct clusters, and the Euclidean distance with 

average linkage was used as a distance metric. The relationships between PPs on monthly and 

annual time steps were visualized using dendrograms and heatmaps. The HCA and PCA were 

performed using the ClustVis platform (Metsalu and Vilo, 2015). 

The HCA algorithms do not automatically pre-specify the number of clusters (k) (Kimes et. 

al., 2017; Sebastiani and Perls, 2016; Yim and Ramdeen, 2015). Therefore, it offers an 

opportunity for further analysis of the characteristics and relationships of the PPs and their 

clusters by changing k (Kimes et. al., 2017). The goal of using HCA herein was to explore the 

PPs affinity rather than providing a rigid clustering of the PPs. This is in line with the 

recommendation of Bratchell (1989), but adapted for the current case. Finally, a sensitivity 

analysis was carried out by varying k in the HCA. This sensitivity analysis allows identifying 

the unstable PPs within clusters (Zappia, 2019), and therefore, exploring the PPs similarities 

and differences. Such an analysis is not possible in other non-nested clustering methods such 

as K-mean method (Kimes et. al., 2017). The k range used herein was chosen to be a few steps 

above and below an optimum k. This was decided to avoid over-fitting the model, since the 

higher the k, the less variance the new clusters could explain (Zambelli, 2016). The optimum k 

was determined at the mid-point of the longest branch in the resulting dendrogram, a common 

but inflexible method (Langfelder et. al., 2008). This threshold was then validated and refined 

by applying the Elbow method (Thorndike, 1953), which assumes that the optimum k is the 

lowest k that explains most of the variance in the data (Song et. al., 2018). The Elbow method 

was implemented using a script in R programming language developed by Anand (2019).  

The results of HCA and PCA analyses were used to facilitate the merging of the PPs. To 

merge the products that were grouped in the same cluster, we computed the median value for 

each grid-cell using all PPs within each cluster. We selected the median as it is less affected by 

extreme values compared to the mean (Driscoll et. al., 2000; Manikandan, 2011). The calculated 
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median values for all grid-cells were used to produce gridded MPPs with the same unified 

spatial resolution of 0.25o of the original PPs on annual and monthly time steps. To validate 

these newly created products, the multi-year mean (2001-2005) of MPPs was compared against 

the estimations of the reference datasets and the deviation was quantified using %BIAS.  

4.4. Results and discussion 

4.4.1. Evaluation of gridding methods 

A visual inspection of the gridded precipitation datasets using the four interpolation schemes 

(presented in Section 4.3.2) revealed large differences in the spatial distribution of precipitation 

over the BNB (Fig. 4.2). The Thiessen polygons method is simple to implement but resulted in 

a blocky pattern that does not reflect the spatial distribution of precipitation in the basin. This 

occurred because Thiessen polygons method assumes that a certain rain gauge is representative 

of its area of influence. Therefore, using Thiessen polygons method might lead to systematic 

errors, especially over data-scarce regions. Given the limited number of rain gauges available 

for the current study, this method did not result in an accurate spatial representation of 

precipitation. Although IDW and Kriging methods showed similar spatial distribution of 

precipitation, the resulted grid-cell values vary widely among the two. The results of IDW and 

Kriging methods depend on the distribution of rain gauges, which are typically installed at areas 

of accessible altitudes, while the mountainous areas with higher precipitation values are often 

unequipped with rain gauges. Hence, IDW and Kriging methods failed to represent annual 

precipitation higher than 2000 mm, which are expected to prevail in some regions in the 

Ethiopian highlands. The regression-based procedure seems to produce better spatial 

representation compared to the other three methods. The correlation between precipitation and 

elevation on a monthly time step has R2 of up to 0.83 (at a significant level p < 0.01). The mean 

annual precipitation over the BNB exhibited an estimation of 877 mm, less by around 10% 

compared to the results obtained by Bastiaanssen et. al., (2014). The difference between the 

two estimations can be a result of the different periods considered in both studies. Therefore, 

the precipitation-elevation regression product was selected as the reference ground-based 

dataset (hereinafter referred to as Regression PP) and was used to evaluate the PPs performance. 

Our conclusion on the regression method goes in line with the findings of Goovaerts (2000), 

where the linear regression between elevation and precipitation outperforms other interpolation 

methods such as IDW and Thiessen polygons.   
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Fig. 4.2. Spatial distribution of multi-year average precipitation using four gridding methods: 

(a) Thiessen Polygons, (b) Inverse Distance Weighting (IDW), (c) Kriging and (d) 

precipitation-elevation regression. 

4.4.2. Statistical characteristics of public-domain precipitation products 

The evaluated PPs exhibit variations in their mean annual precipitation (2001-2005) over the 

BNB (Fig. 4.3) ranging from 660 mm (ARC 2.0) to 1734 mm (ERA-Interim), while the mean 

annual precipitation based on the Regression PP was 877 mm. Previous studies estimated the 

mean annual precipitation in the BNB; for instance, Bastiaanssen et al., (2014) reported 978 

mm for the years 2005-2010, while Hilhorst et. al., (2011) reported 1042 mm for 1960-1990. 

Compared to the other PPs, Re-analysis products; i.e., ERA-Interim and MERRA-2, show 

higher mean annual precipitation (Fig. 4.3). This observation is supported by the results 

reported by Sun et. al., (2018) who conducted an analysis of 30 different PPs on a global scale 

and found a similar tendency of Re-analysis PPs to overestimate precipitation. Conversely, 

ARC 2.0 and RFE 2.0 show the lowest mean precipitation estimates, especially over the UBNB. 

The largest difference from the mean annual value calculated using Regression PP was recorded 

by ERA-Interim, MERRA-2, ARC 2.0 and RFE 2.0 (100.6%, 25.9 %, −23.7%, and −15.9%, 
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respectively). CRU TS 3.23 and CHIRPS 2.0 display the lowest deviation from the values 

estimated by Regression PP with 7.9% and 11.6%, respectively. 

 

Fig. 4.3. Multi-year (2001-2005) mean annual precipitation over the Blue Nile Basin as 

estimated by the 17 public-domain precipitation products and the reference datasets; i.e., 

Regression PP. 

The PPs show different dispersions of the grid-cell values on a monthly and annual time 

scales. On the annual temporal scale, the grid-cell values generally range from 47 mm to more 

than 3200 mm (Fig. 4.4). ARC 2.0 (a blended PP) show the lowest dispersion and the lowest 

maximum value compared to the other products. ERA-Interim and MERRA-2 (atmospheric re-

analysis PPs) display higher dispersion in the grid-cell values and the highest maxima compared 

to the other products (Fig. 4.4). Notably, the PPs that belong to the same category and are 

generated from rain gauge data show different dispersion in the grid-cell values (GPCC7.0 and 

CRU TS 3.23). The blended products; i.e. ARC 2.0, CHIRPS 2.0, GPCP 1DD, MSWEP 2.0, 

PGF, RFE 2.0, TAMSAT3.0, and TRMM 3B42 display relatively less variability among each 

other compared to the variability within other product categories (Fig. 4.4).  

The median and mean, as measures for central tendency, show large differences between all 

PPs (Fig. 4.4). For instance, while the median and mean values of ERA-Interim and MERRA-

2 exhibit the highest values compared to the Regression PP, ARC 2.0 showed the lowest mean 

and median values among all PPs. The differences detected in the dispersion of the grid-cell 

values of the PPs on an annual basis were also observed at the monthly temporal scale (Fig. 
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4.4). Analyzing the distribution of the grid-cell values at the monthly scale, we noticed that the 

PPs show different behaviour in terms of seasonality and precipitation distribution. For 

example, whereas many products show less dispersion over dry months (i.e. January), products 

such as CMORPH and TRMM 3B42 RT exhibit outliers (generally, are those values lying 

outside 1.5 times the interquartile range) of around 100 mm in several months. ERA-Interim 

and MERRA-2 show a larger data range compared to the other products during dry months 

(November - May). The higher precipitation values of ERA-Interim and MERRA-2 compared 

to the Regression PP and the other PPs are also noticeable in most months (Fig. 4.4). This 

observation suggests that precipitation overestimation is an inherited characteristic in these two 

products. Overestimation of precipitation by Re-analysis PPs could be attributed to their 

inefficiency in representing convective precipitation (Hu et al., 2016) compared, for instance, 

to satellite-based PPs, which are better in detecting convective precipitation (Paola et. al., 2012). 

The low annual precipitation level of ARC 2.0 can be attributed to the lower estimation of 

monthly precipitation, in the wet months (June, July, and August).  

4.4.3. Pixel-to-pixel inter-comparison between public-domain precipitation products 

A pixel-to-pixel inter-comparison of the PPs allows detecting and quantifying similarities 

and differences between the PPs at the grid-cell level. Discrepancies between the 17 PPs were 

detected at the monthly and annual scales. On the annual scale, some PPs show some 

similarities. For instance, ARC 2.0 and RFE 2.0 scored R2 of 0.96, RMSE of 90.4 mm, NSE of 

0.91 and %BIAS of 6.9%; CHIRPS 2.0 and MSWEP 2.0 achieved R2 of 0.93, RMSE of 126.8 

mm, NSE of 0.92 and %BIAS of −4.5%. The similar performances of ARC 2.0 and RFE 2.0 is 

because the two PPs are produced using a similar approach in blending satellite estimates with 

rain gauge data and comparable input datasets (Maidment et. al., 2017). On the contrary, many 

PPs show no or low agreement with each other. For instance, the correlation results of two of 

the remote sensing-based PPs; i.e., PERSIANN and PERSIANN-CSS, with most of the other 

PPs show no or weak correlation. Although PERSIANN-CDR is produced using the same 

algorithm as PERSIANN and PERSIANN-CSS, this product exhibit a better correlation with 

the other PPs compared to its sister products. This is mainly due to the use of rain gauges data 

to correct the bias of PERSIANN-CDR (Ashouri et. al., 2015). 

On the monthly temporal scale, the correlation between the PPs is weaker than that detected 

at the annual scale, especially during the dry months. This might be because small differences 

of precipitation over dry months can have large impacts on the performance of the product. 

However, the four performance indices show relatively similar behaviour between the 
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individual PPs as those detected at the annual scale. Most of the PPs display similar spatial 

patterns of precipitation, with a decreasing precipitation gradient from south to north (Fig. 4.5). 

The weak agreement between PPs, as indicated by the four measures of goodness-of-fit, 

suggests that using these PPs at the monthly and annual scales may derive different results for 

many water applications (e.g. water balance and drought characterization).   

 

Fig. 4.4. Box-Whisker plots of all pixel values on monthly and annual precipitation of the 17 

precipitation products and the Regression PP, showing the mean and median (middle horizontal 

lines and asterisks inside the boxes, respectively). The lower and upper box boundaries 

represent the 1st and 3rd quartiles. Outliers in pixel values are shown as isolated points below 

and above Whiskers.  
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Fig. 4.5. Spatial distribution of the multi-year (2001-2005) mean annual precipitation over the 

Blue Nile Basin as depicted by 17 public-domain precipitation products and a Regression PP.  
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4.4.4. Pixel-to-point evaluation of public-domain precipitation products 

The PPs exhibit varying performances when evaluated against rain gauge data (pixel-to-

point evaluation) at the monthly and annual temporal scales. Figure 4.6 shows the monthly 

correlation results from 2001 through 2005. These correlations display that the measures of the 

performance indices range between R2 = 0.44 and 0.89, RMSE = 37 mm and 102.9 mm, NSE 

= −1.7 and 0.87, and %BIAS = −60.8% and 37.5%. As mentioned earlier, some of the PPs are 

only based on rain gauge data (i.e., GPCC 7.0 and CRU TS 3.23), and others blend different 

types of information (e.g. CHIRPS 2.0, MSWEP and ARC 2.0). Although it is only logical to 

expect a strong correlation between these PPs and rain gauge data if the PP used the same rain 

gauge that are being used in the evaluation, as mentioned earlier, this was not fully true as some 

of these PPs exhibit low correlation levels. While GPCC 7.0 show the best performance among 

all the PPs considered in the current research (R2 = 0.98, RMSE = 36.96 mm, NSE = 0.87, and 

%BIAS = −5.3%), CRU TS 3.23 reveal a moderate performance (R2 = 0.79, RMSE = 52.03 

mm, NSE = 0.68, and %BIAS = −8.8%), and ARC 2.0 show a lower performance (R2 = 0.72, 

RMSE = 71.20 mm, NSE = −0.20, and %BIAS = −60.80%). 

When evaluated with the R2, the decrease in performance of PPs follows this order: GPCC 

7.0 > CHIRPS 2.0 > TRMM 3B42 > TAMSAT 3.0 > CMORPH > CRU TS 3.23 > GPCP 1DD 

> PERSIANN CDR > MSWEP > PGF > ERA-Interim > RFE 2.0 > ARC 2.0 > TRMM 3B42 

RT > MERRA-2 > PERSIANN CSS > PERSIANN. The two worst performing PPs using NSE 

were ARC 2.0 and RFE 2.0 with negative values that ranged between −1.7 and −0.2 reflecting 

a noticeable underestimation of precipitation. Based on RMSE, PERSIANN and ERA-Interim 

exhibit the largest error compared to the rain gauges, with RMSE values of 84 mm and 103 

mm, respectively.  

While two of the remote sensing-based PPs; i.e., PERSIANN and PERSIANN CSS, show 

the worst performance (R2 = 0.44 and 0.5, RMSE = 88.46 mm and 80.29 mm, NSE = 0.25 and 

0.26, %BIAS = 14.30% and −6.30% for the two products, respectively), CMORPH exhibit 

better performance (R2 = 0.82, RMSE = 48 mm, NSE = 0.79, and %BIAS = −7.6%). Several 

blended PPs were better off (e.g. CHIRPS 2.0, TRMM 3B42, TAMSAT 3.0). The good 

performance of TRMM 3B42 RT compared to the other remote sensing products is remarkable. 

The strongest correlation in the blended group was identified for CHIRPS 2.0 (R2 = 0.88, RMSE 

= 38.18 mm, NSE = 0.87, and %BIAS = −3.2%), and TRMM 3B42 (R2 = 0.87, RMSE = 40 

mm, NSE = 0.85, and %BIAS = 2.7%). A good performance of these PPs was found in many 

other regions around the world (Duan et. al., 2016; Habib, et. al., 2012; Luo et. al., 2019).  
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Fig. 4.6. Plots of pixel-to-point evaluation, on a monthly scale (in mm units), of precipitation 

of the 17 precipitation products using rain gauges data as a reference (in mm). Values of the 

four measures of fit, i.e., R2, RMSE, NSE, and %BIAS are indicated. Each symbol represents 

one of the rain gauges used in the current validation. 
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The improved performance of the PPs of this category is due to the inclusion of precipitation 

data from rain gauges in their algorithms, which might include also some of the rain gauges 

used in the current evaluation. For example, the calibration TRMM 3B42 with rain gauge data 

has enhanced its performance compared to the TRMM 3B42 RT product. From the results of 

the evaluation of the PPs with gauge data, most of the algorithms that were used to create the 

ground-based and blended PPs have benefited from incorporating ground estimations. This is 

evidenced by the relatively high R2 and NSE values and the lower RMSE and %BIAS compared 

to the values corresponding to the satellite-based and atmospheric re-analysis PPs (Fig. 4.6). 

However, not all blended products show high performance. For instance, RFE 2.0, ARC 2.0 

display a lower correlation with rain gauges data on monthly and annual scales over the BNB 

(Fig. 4.6). The different performances detected herein among these PPs indicate relative 

differences in benefiting from including rain gauge in their algorithms and could be attributed 

partially to the interpolation techniques used to produce each of the two PPs (Chen et. al., 2017). 

Considering the four performance indices; i.e. R2, RSME, NSE, and %BIAS, it can be 

concluded that CHIRPS 2.0 and TRMM 3B42 products benefited the most from the inclusion 

of ground-based data, a conclusion that agrees with previous studies reported high 

performances of CHIRPS 2.0 in the Nile Basin (Ayehu et. al., 2018). 

The PPs that show the lowest BIAS% are GPCP 1DD, TRMM 3B42, and CHIRPS 2.0 with 

values of 2.8, −2.7, and −3.2%, respectively. On the other hand, MERRA-2 and ERA-Interim 

exhibit the largest positive %BIAS of 14.3% and 37.5%. A systematic overestimation of 

precipitation by ERA-Interim and MERRA-2 is detected, as most of the points lie above the 1:1 

line. This systematic overestimation increases with precipitation amount. In contrast, the scatter 

points of the plot of REF 2.0 and ARC 2.0 versus rain gauge data fall below the 1:1 line 

indicating underestimating of precipitation amounts by these products compared to the rain 

gauge data and exhibit the largest negative %BIAS of −49.3% and −60.8% for the two products, 

respectively.  

4.4.5. Hierarchical Clustering and Principal Component Analyses 

Results of HCA and PCA revealed similar affinity/differences of the PPs as those shown in 

the cross-correlation evaluation (see Section 4.3). The connection level between each 

product/cluster of products on the left side of the dendrograms (Fig. 4.7) exhibits the relative 

relationship between the PPs at the grid-cell level; i.e. the products that are connected first are 

much similar to each other compared to the products that connect at higher levels. For instance, 

GPCC 0.7 and PGF in January, and CHIRPS 2.0 and TAMSAT 3.0 in September could be 
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considered as the most similar PPs in terms of their grid-cell values. On the contrary, MERRA-

2 and ERA-Interim, and PERSIANN and EPRSIANN-CSS are the PPs with most dissimilarities 

compared to other products in January and September, respectively. The quantitative 

differences between the PPs are scaled using unit variance (using means and standard 

deviations) and shown graphically using heatmaps. MERRA-2 and ERA-Interim show 

substantial higher positive differences (red shades) in the heatmaps at the annual and monthly 

(for several months) scales. These results reflect higher precipitation in these PPs compared to 

the others. The dark blue color for ARC 2.0, RFE 2.0, and MERRA-2 in July, for instance, 

indicates lower precipitation estimates in these products compared to other PPs. Apart from 

MERRA-2, ERA-Interim, ARC 2.0 and RFE 2.0 products, which display different estimations 

from the other products, all products exhibit better affinity in their precipitation estimation in 

the dry months compared to wet months. The findings of PCA goes in line with those found 

using both the pixel-to-pixel comparison and the HCA reported earlier. For instance, in a two-

dimensional plot, the first and second PCs showed that the same examples mentioned above; 

i.e. MERRA-2 and ERA-Interim in January, and PERSIANN and PERSIANN-CSS in 

September, are located far away from the points of the other PPs (Fig. 4.7), reflecting their 

difference compared to other PPs. The location of the plotted points approximates the 

similarities and differences between the studied PPs. 

The results of data mining techniques do not only support the findings of the traditional 

evaluation methods but also show an advantage over the traditional methods in identifying 

discrepancies between the PPs in a graphical form, i.e. heatmaps, dendrograms, and PCA plots. 

The graphical representation in heatmap offers an opportunity to discover where the products 

differ and quantify these differences. In addition to the simplicity of applying the data mining 

techniques using scripts and online tools, such as ClustVis, the ability of such algorithms to 

handle large datasets at once is remarkable. This ability would advance the routines of 

comparing different PPs. Additionally, the outstanding offer of minimizing the complexity in 

big datasets while preserving information regarding variation between the products as shown 

by the results of PCA is notable. These results indicate that the application of data mining 

techniques can be beneficial when evaluating several PPs performance over extremely data-

scarce regions. 
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Fig. 4.7. Hierarchical clustering of the 17 precipitation 

products with heatmaps for the annual and monthly 

precipitation using the multi-year average over the period 

2001-2005. The connecting level shown on the left represents 

the relationship between the products. Heatmaps show the 

relative differences (scaled in unit variance) between the pixel 

values among the products. The grids are arranged from left 

as the upper left corner to right as the lower right corner of the 

basin (Fig. 4.1). 
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4.4.6. Sensitivity and stability of clusters 

Based on the Elbow method, four clusters were determined to be the optimum k. Therefore, 

a sensitivity analysis was conducted on the products by creating 2-7 clusters. To illustrate 

examples for the analysis of clusters stability, results on annual time step along with those for 

February and August (as examples for dry and wet months, respectively) are presented in Figure 

4.9. At the annual scale, the most dissimilar PP was ERA-Interim, as it is isolated immediately 

from the other 16 PPs when two clusters are created (Fig. 4.9, Table 4.2). The separation of the 

products from the 17 PPs group, when 2-7 clusters were created, follows this order: (i) ERA-

Interim, (ii) PERSIANN and PERSIANN-CSS, (iii) MERRA-2, (iv) CMORPH, (v) RFE 2.0 

and ARC 2.0, (vi) TRMM 3B42 RT, PERSIANN-CDR, and GPCP 1DD. The association of 

Fig. 4.8. Two-dimensional plots of the two first Principal 

Components (PCs). The distance between the points 

approximates the relative similarity/dissimilarity between 

the products. The data used to create these plots are the 

grid values of the multi-year annual and monthly averages 

over the period 2001-2005.   
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the products grouped in clusters 3, 6 and 7 indicates a relative similarity of these PPs compared 

to their affinity to other ones. In particular, the association of RFE 2.0 and ARC 2.0, when five 

clusters are created, supports the close similarity of these two products, as reported earlier. 

Generally, all the PPs that are grouped in the same cluster could be considered, to some extent, 

to be more related compared to the other PPs that are grouped in a different cluster. This 

observation is emphasized by the results of the HCA and PCA.  

At the monthly temporal scale, MERRA-2 and ERA-Interim split first when two clusters are 

created in the dry months (November – May) and wet months (July – October), respectively. 

The sensitivity analysis conducted herein was useful to identify the months in which 

precipitation estimate deviates the most between the PPs. For example, PGF was separated into 

an isolated cluster in February and November, suggesting that most of the differences that are 

detected in this product from the other PPs could be attributed to its precipitation estimates over 

these two months. Such findings are helpful for data providers to improve their data estimation.   

4.4.7. Merging of products 

The results of the MPPs displayed varying performance when compared to the Regression 

PP estimates (Fig. 4.9). For instance, at the annual scale, the deviation between the multi-year 

mean precipitation between the MPPs (bars in the figure) and the estimates of the reference 

dataset (horizontal line in the figure) ranged from −20.7% to 53.7%. In many cases, creating 

MPPs by merging all the PPs of cluster 1 resulted in precipitation estimates relatively close to 

that estimated using the Regression PP dataset (horizontal line). For instance, the mean annual 

values estimated with the MPPs of the first cluster deviates by only −0.6% to −3.8% from that 

estimated using Regression PP. This characteristic could be seen in the annual temporal scale 

and in most of the individual months (Fig. 4.9).  

The relatively good performance of the MPPs that were created by merging the products of 

the first cluster could be attributed mainly to the exclusion of the most dissimilar PPs. 

Moreover, merging different PPs might enable capturing additional information compared to 

the individual PPs, and hence, providing more accurate input data for water resources 

application (Abera et al., 2016; Peña-Arancibia et al., 2013). For example, merging the annual 

PERSIANN and PERSIANN-CSS, which were grouped in the same cluster (cluster 3), was 

found to result in a better precipitation estimate compared to their original precipitation 

estimates. This is also true for the precipitation estimates of the same two products when 

compared with those of many other PPs (e.g. ERA-Interim (cluster 2), MERRA-2 (cluster 4) 

and RFE 2.0 and ARC 2.0 (cluster 6)), as shown in Figure 4.9. However, merging PPs which 
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were grouped in the same cluster does not always result in better precipitation estimates 

perhaps, because such products agree in their precipitation estimates but still be biased. For 

example, cluster 5 in the case of the annual time step and cluster 4 in the case of August resulted 

in poor estimates of the annual precipitation compared to other clusters. The deviations found 

in the two above-mentioned cases are, respectively, −20.8% and −23.2% from the mean annual 

precipitation as estimated by the Regression PP (Fig. 4.9). These two clusters include ARC 2.0 

and RFE 2.0, which displayed an underestimation of precipitation when compared to the 

reference data (Figs. 4.6 and 4.7).  

At the grid-cell level, merging PPs on the annual scale display better performance than the 

monthly scale and in dry months compared to wet months. Generally, MPPs exhibit %BIAS up 

to 40.4% on an annual scale. While, %BIAS ranges from 4.8% to 7.9% for the first cluster on 

an annual scale, it showed values from −0.1% to −10.7% and from 96% to 97.8%, in February 

and August, respectively. These results indicate that merging PPs that are grouped in the first 

cluster, i.e. after separating the most dissimilar PPs, result in an enhanced estimation of 

precipitation at the annual scale compared to the monthly scale, especially for the wet months. 

This could be attributed to the large discrepancies found using HCA, between the studied PPs 

during wet months at different grid-cells (See Section 4.4.5 and Figure 4.7). Therefore, the 

merging of different PPs should be done carefully by considering the performance of the 

individual PPs spatially and temporally, as low performing products may worsen the 

precipitation estimation of the MPPs. 

4.5. Conclusion 

This study provided an analysis of 17 selected PPs over the BNB using traditional evaluation 

approaches and data mining techniques; thus, providing an innovative contribution to the field 

of PPs in the BNB and other similar data-scarce regions. First, this research has evaluated and 

compared 17 PPs commonly used in water resources research and development projects, 

usually without prior evaluation. Second, the methodological approach suggested in the current 

study on utilizing data mining techniques proved to be effective, easier and more informative 

than the traditional evaluation methods. Finally, this research displayed an innovative approach 

to investigate the potential for creating improved precipitation estimates using simple merging 

methods based on the results of comprehensive analysis of PPs. Even though there are several 

merging methods available nowadays, our approach is easier to implement and the procedure 

is straightforward.   
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Fig. 4.9. Three examples (annual, 

February and August) of the 

sensitivity analysis conducted on the 

precipitation products to check the 

stability of clusters. The multi-year 

average (2001-2005) of the reference 

dataset (Regression PP) is used to 

validate the results of this stability 

analysis. Products that are clustered 

together were merged to produce 

precipitation estimates. For the 

names of the products in each cluster 

refer to the associated table (Table 

4.2). 
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Table 4.2. Product clusters resulted from stability analysis on annual and monthly (February 

and August) time scales.    

Annual 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

2 clusters PERSIANN, PERSIANN-CSS, MERRA-2, ARC 2.0, RFE 
2.0, CMORPH, GPCC7, TRMM 3B42, TRMM3B42 
RT, CRU TS 3.23, PGF, MSWEP 2.0, CHIRPS 2.0, 
TAMSAT 3.0, GPCP 1DD, PERSIANN-CDR   

ERA Interim           

3 clusters MERRA-2, ARC 2.0, RFE 2.0, CMORPH, GPCC7, 
TRMM 3B42, TRMM3B42 RT, CRU TS 3.23, PGF, 
MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, GPCP 1DD, 
PERSIANN-CDR   

ERA Interim PERSIANN 
PERSIANN-
CSS 

        

4 clusters ARC 2.0, RFE 2.0, CMORPH, GPCC7, TRMM 3B42, 
TRMM3B42 RT, CRU TS 3.23, PGF, MSWEP 2.0, 
CHIRPS 2.0,    TAMSAT 3.0, GPCP 1DD, PERSIANN-
CDR   

ERA Interim PERSIANN 
PERSIANN-
CSS 

MERRA-2       

5 clusters CMORPH, GPCC7, TRMM 3B42, TRMM3B42 RT, 
CRU TS 3.23, PGF, MSWEP 2.0, CHIRPS 2.0,    
TAMSAT 3.0, GPCP 1DD, PERSIANN-CDR   

ERA Interim PERSIANN 
PERSIANN-
CSS 

MERRA-2 ARC 2.0, RFE 
2.0 

    

6 clusters GPCC7, TRMM 3B42, TRMM3B42 RT, CRU TS 3.23, 
PGF, MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, GPCP 
1DD, PERSIANN-CDR   

ERA Interim PERSIANN 
PERSIANN-
CSS 

MERRA-2 ARC 2.0, RFE 
2.0 

CMORPH   

7 clusters GPCC7, TRMM 3B42, CRU TS 3.23, PGF, MSWEP 
2.0, CHIRPS 2.0, TAMSAT 3.0,  

ERA Interim PERSIANN 
PERSIANN-
CSS 

MERRA-2 ARC 2.0                
RFE 2.2 

CMORPH TRMM3B42 
RT, GPCP 
1DD, 
PERSIANN-
CDR  

February 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

2 clusters ERA-Interim, PERSIANN, PERSIANN-CSS, ARC 2.0, 
RFE 2.0, CMORPH, GPCC7, TRMM 3B42, TRMM3B42 
RT, CRU TS 3.23, PGF, MSWEP 2.0, CHIRPS 2.0,    
TAMSAT 3.0, GPCP 1DD, PERSIANN-CDR   

MERRA-2           

3 clusters ERA-Interim, PERSIANN, PERSIANN-CSS, ARC 2.0, 
RFE 2.0, CMORPH, GPCC7, TRMM 3B42, TRMM3B42 
RT, CRU TS 3.23, MSWEP 2.0, CHIRPS 2.0, TAMSAT 
3.0, GPCP 1DD, PERSIANN-CDR   

MERRA-2 PGF         

4 clusters ERA-Interim, PERSIANN, PERSIANN-CSS, ARC 2.0, 
RFE 2.0, CMORPH, GPCC7, TRMM 3B42, TRMM3B42 
RT, CRU TS 3.23, MSWEP 2.0, CHIRPS 2.0, TAMSAT 
3.0,  

MERRA-2 PGF GPCP-1DD                
PERSIANN-CDR 

 
    

5 custers ERA-Interim, PERSIANN, ARC 2.0, RFE 2.0, CMORPH, 
GPCC7, TRMM 3B42, TRMM3B42 RT, CRU TS 3.23, 
MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0,  

MERRA-2 PGF GPCP-1DD                
PERSIANN-CDR 

PERSIANN-CSS     

6 clusters PERSIANN, ARC 2.0, RFE 2.0, CMORPH, GPCC7, 
TRMM 3B42, TRMM3B42 RT, CRU TS 3.23, MSWEP 
2.0, CHIRPS 2.0, TAMSAT 3.0,  

MERRA-2 PGF GPCP-1DD                
PERSIANN-CDR 

PERSIANN-CSS ERA-Interim   

7 clusters PERSIANN, ARC 2.0, RFE 2.0, CMORPH, GPCC7, 
TRMM 3B42, TRMM3B42 RT, CRU TS 3.23, MSWEP 
2.0, CHIRPS 2.0, TAMSAT 3.0 

MERRA-2 PGF GPCP-1DD                
PERSIANN-CDR 

PERSIANN-CSS ERA-Interim ARC 2.0, 
TAMSAT 3.0, 
CPC Unified, 
PERSIANN, 
MSWEP 2.0 

August 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

2 clusters MERRA-2, PERSIANN, PERSIANN-CSS, CPC Unified, 
ARC 2.0, RFE 2.0, CMORPH, GPCC7, TRMM 3B42, 
TRMM 3B42 RT, CRU TS 3.23, PGF, MSWEP 2.0, 
CHIRPS 2.0, TAMSAT 3.0, GPCP 1DD, PERSIANN-CDR   

ERA-Interim           

3 clusters MERRA-2, CPC Unified, ARC 2.0, RFE 2.0, CMORPH, 
GPCC7, TRMM 3B42, TRMM 3B42 RT, CRU TS 3.23, 
PGF, MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, GPCP 
1DD, PERSIANN-CDR   

ERA-Interim PERSIANN, 
PERSIANN-CSS 

        

4 clusters MERRA-2, CPC Unified, ARC 2.0, RFE 2.0, CMORPH, 
GPCC7, TRMM 3B42, TRMM 3B42 RT, CRU TS 3.23, 
PGF, MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, GPCP 
1DD, PERSIANN-CDR   

ERA-Interim PERSIAAN, 
PERSIANN-CSS 

ARC 2.0, RFE 
2.0 

 
    

5 custers MERRA-2, CMORPH, GPCC7, TRMM 3B42, CRU TS 
3.23, PGF, MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, 
GPCP 1DD, PERSIANN-CDR   

ERA-Interim PERSIAAN, 
PERSIANN-CSS 

ARC 2.0, RFE 
2.0 

TRMM 3B42 RT     

6 clusters CMORPH, GPCC7, TRMM 3B42, CRU TS 3.23, PGF, 
MSWEP 2.0, CHIRPS 2.0, TAMSAT 3.0, GPCP 1DD, 
PERSIANN-CDR   

ERA-Interim PERSIAAN, 
PERSIANN-CSS 

ARC 2.0, RFE 
2.0 

TRMM 3B42 RT MERRA-2   

7 clusters GPCC7, TRMM 3B42, CRU TS 3.23, PGF, MSWEP 2.0, 
CHIRPS 2.0, TAMSAT 3.0, GPCP 1DD, PERSIANN-CDR   

ERA-Interim PERSIAAN, 
PERSIANN-CSS 

ARC 2.0, RFE 
2.1 

TRMM 3B42 RT MERRA-2 CMORPH 
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Despite the usefulness of PPs, especially for data-scarce regions such as the BNB, the current 

analysis revealed great variations between the studied PPs, which could potentially lead to 

varying results in water resources application, for instance, drought characterization, water 

balance estimation, and hydrological modeling. Therefore, a comprehensive analysis is required 

before employing any PPs in those applications. The results of the current research highlighted 

that there are still variations between the selected PPs over the BNB for the analysed period. 

The variation at the grid-cell level was quantified using descriptive statistics; i.e. pixel 

dispersion and central tendency of the grid-cell data, and analysed through a pixel-to-pixel 

comparison. The direct correlation of these PPs with rain gauges data (pixel-to-point) revealed 

the degree of proximity of these PPs to in-situ measurements. Among the individual PPs, GPCC 

7.0, CHIRPS 2.0 and TRMM 3B42 showed the highest performance at the monthly scale when 

the PPs were correlated directly with the rain gauges data (pixel-to-point). Two of the remote 

sensing-based PPs, i.e. PERSIANN and PERSIANN-CSS, exhibited the poorest performance. 

CMORPH revealed the best performance among the studied remote sensing-based products.    

A limitation of the pixel-to-point evaluation conducted herein is the limited number of rain 

gauges and the unavailability of a dataset that is independent of all the selected PPs. This is 

particularly true for two groups of the selected PPs; i.e. purely ground-based, and blended 

categories. However, due to the limited available rain gauges in this data-scarce areas, several 

previous studies (Basheer et. al., 2018; Sahlu et. al., 2017) have used data from non-independent 

rain gauges to validate some of these PPs. Despite the inclusion of rain gauge data in the 

composition of several PPs, we provided evidence that even such products might not reveal a 

strong correlation with rain gauge data, which could be related to the interpolation process. 

However, this remains an open question to be analysed in further research.      

Results of data mining techniques, i.e. HCA and PCA, identified the similarities and 

dissimilarities between the 17 PPs. These results confirm the findings obtained using traditional 

approaches and suggest the usefulness of data mining approaches in such evaluations. Given 

their simplicity and their ability to handle big datasets from different PPs at the same time, 

provision of graphical representation of the difference between PPs, and their feasibility to 

conduct a sensitivity analysis of products, these techniques should gain more attention in 

assessing the performance of PPs.  

The merging of different PPs showed, in many cases, the potential for generating improved 

precipitation estimates compared to those of the original PPs. For example, the MPP that was 

created by combining the PPs that were clustered in the first group at the annual scale, deviates 
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only by −0.6% to −3.8% from the reference data.  However, the performance of MPP is 

dependent, largely, on the PPs being merged, their underlying characteristics such as spatial 

resolution and source of data, as many MPPs showed large deviations from the reference 

dataset. Given the results emerging from the proposed merging approach, we recommend 

testing it over different geographical settings and, perhaps, testing more other PPs. This research 

direction might result in the development of a simple operational approach to improve the PPs 

performance.  
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Abstract 

Understanding the human–water–food–climate nexus is central to achieving sustainable 

intensification (SI) in agriculture. This research uses a socio-hydrological approach to 

understand the underpinning for implementing SI in the Gezira Irrigation Scheme, Sudan, by 

integrating vegetation indices derived from remote sensing, ancillary, gridded soil, and 

precipitation data, supplemented by interviews with 393 farmers. The productivity gap was 

estimated as the difference between the potential and actual productivities. Based upon data on 

farmers’ socio-economic status and field practices, a regression tree model was built to 

determine the factors that control the sorghum yield. The model revealed that the financial 

status of farmers and access to water are the most influential factors on sorghum yield. A 

conceptual framework that elucidates SI and its bi-directional feedback to the environment, 

society and the economy is proposed. Implementing SI in the scheme has implications on water 

and food security in Sudan and beyond its borders. 

5.1. Introduction 

In the Anthropocene, human activities induce large global environmental changes (Steffen 

et. al., 2007). Among all these activities, agriculture is the largest driver of such changes in this 

new geological epoch (Rockström et. al., 2017; Kuyper and Struik, 2014). Agriculture is an 

important pillar for the achievement of Sustainable Development Goal (SDG) 2 on eradicating 

hunger and securing food for an ever-growing population (Rockström et. al., 2017). Despite the 

recent improvement in agricultural productivity, undernourishment and hunger still affect 

millions of people (Webb et. al., 2018; Powledge, 2010). Even in scenarios of modest economic 

growth, the future global demand for food will require agricultural production to increase by 

50% by the year 2050 as compared to 2013 (FAO, 2017). It is expected that the increasing 

demand for food will aggravate environmental impacts (Tilman, 1999). Providing more food 

with limited water and land resources while ensuring the sustainability of resource use is a great 

challenge to future development (Davis et. al., 2016; Steffen et. al., 2015).  

Coping strategies to address this challenge, such as (1) closing the yield gap for the already 

existing croplands, (2) reducing food waste, (3) managing diet behavior, and (4) enhancing the 

efficiency of resource use, have the potential to double the agricultural production while 

minimizing the negative environmental impacts (Foley et. al., 2011). The approach of 

sustainable intensification (SI) of agriculture in already cultivated lands is promising (Burke et. 

al., 2017; Davis et. al., 2016), as it emphasizes preserving the land for the coming generations 
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(Davis et. al., 2016). Intensification of agriculture to tap the unused potential in existing 

agricultural schemes, especially in underperforming ones, is the best choice to address the 

challenge of future food security (Pradhan et. al., 2015; Finger, 2011; Foley et. al., 2011). A 

paradigm shift towards SI would change the position of agriculture from being one of the largest 

drivers of global environmental change to becoming a key contributor toward a more 

sustainable environment (Rockström et. al., 2017). A key research issue in this context is to 

quantify the potential of SI for increasing food production and to develop suitable intervention 

strategies to reap the benefits of this potential. The issue at hand has a spatio-temporal as well 

as natural and socioeconomic dimensions. 

In order to develop pathways for SI, it is crucial to analyze the interactions between humans 

and hydrological systems and, consequently, their impacts on water and food production. Socio-

hydrology (Sivapalan et. al., 2012) is a science that emphasizes understanding the bi-directional 

perspective of interactions and feedbacks between humans and water at long time scales (Blair 

and Buytaert, 2016). This paradigm has the potential to lead to a new understanding of human–

water interactions (Pande and Savenije, 2016), which may result in more sustainable solutions 

to the challenges ahead.  

In Sub-Saharan Africa in particular, suitable data and knowledge to address these dimensions 

are scarce, while the need to improve crop yield is particularly important for food security 

(Pretty et. al., 2011). Agricultural production in the irrigation sector is a particularly relevant 

field of research for investigating the concept of socio-hydrology and to explore pathways for 

SI. In this regard, the Gezira Irrigation Scheme in Sudan is a suitable model to investigate. The 

scheme plays a major role in the food security of the country, with the main season extending 

from June to October (Elagib, 2015, 2014) and the dominant crop being sorghum (See 

Appendix D: Fig. S5.1). 

Against this background, an integrated approach that uses multi-data to analyze the 

productivity gap, its temporal and spatial variation and the controlling factors affecting the 

sorghum yield in the scheme provides useful insights into potential pathways for SI in the 

Gezira Scheme and other irrigation schemes that are facing similar challenges. Therefore, the 

main objectives of this research are: (1) to understand the spatial and temporal variations of the 

productivity gap in the summer seasons in the Gezira Irrigation Scheme; (2) to detect the most 

important factors controlling the yield of sorghum in the scheme; and (3) to identify 

underpinnings and entry points to SI policies for the scheme. 
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5.2. Materials and methods 

5.2.1. Gezira Irrigation Scheme 

The Gezira Irrigation Scheme lies in the flat area located to the south of the confluence of 

the Blue Nile and the White Nile in central Sudan (Fig. 5.1). This scheme was chosen for the 

current research since it is considered a model for most irrigation schemes in Sudan (Osman et. 

al., 2017). With a total command area of around 0.88 × 106 ha (World Bank, 1990), the scheme 

is considered the largest irrigation scheme in the world under one administrative body (Bicciato 

and Faggi, 1995). In recent years, the scheme has greatly deteriorated due to multiple and 

complex factors. Currently, it suffers from low irrigation efficiency (Mohamed et. al., 2010), 

low crop yield (Mahgoub et. al., 2017) and several problems in the irrigation system (See 

Appendix D: Fig. S5.2). Using remote sensing, Al Zayed and Elagib (2017) detected tens of 

canals with water spillover in the Gezira Irrigation Scheme, thus reflecting inefficient water 

distribution and over-supply of irrigation water. 

 

Fig. 5.1. Location map of the Gezira Scheme showing the Administrative Groups (AGs) and 

the two main irrigation canals. The source of irrigation water is Sennar reservoir at the south-

eastern border of the scheme. Locations of the selected field survey blocks are shown as dots. 
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Whereas sorghum, cotton, and groundnuts are the main crops being cultivated during the 

summer season (June–October), wheat and chickpea are the main winter season (November–

April) crops (See Appendix D: Fig. S5.3). Beside these main crops, vegetables are also 

cultivated on a smaller scale. As shown in Fig. 5.1, the scheme is divided into 18 administrative 

groups (AGs), each group is subdivided into smaller units called blocks (Adam et. al., 2002). 

Water is supplied to the scheme from the Sennar Reservoir, which is located to the southeast of 

the scheme, through two main open canals, namely Gezira and Managil (Fig. 5.1). With an 

annual discharge of 6–7 km3 of water to the scheme (Al Zayed and Elagib, 2017), the Gezira 

Irrigation Scheme consumes around one-third of the total share of the Nile water allocated to 

Sudan according to the Nile Treaty of 1959 between Sudan and Egypt. Hence, the current 

underperformance of the scheme is not only affecting the food security in Sudan but has also 

implications on achieving water security goals (SDG 6: to ensure availability and sustainable 

management of water and sanitation for all). 

5.2.2. Data 

Within the framework of the current integrated research, diverse primary and secondary data 

were used. Primary data were collected through interviews with farmers in different blocks of 

the Gezira Scheme. These data focus mainly on socio-economic information and field 

management practiced by the farmers who cultivate sorghum (Table 5.1). Secondary data were 

obtained from the official authorities in Sudan. Agricultural statistics of crops, i.e. cultivated 

area, crop type and crop yield, and the quantity of water discharged from Sennar Reservoir to 

the scheme were obtained from the Gezira Scheme Board and the Ministry of Water Resources, 

Irrigation, and Electricity, respectively. 

Gridded data were obtained from public-domain sources (Table 5.2). Two types of remote 

sensing data were used as a proxy for vegetation productivity, namely the Normalized 

Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging 

Spectroradiomenter (MODIS) satellite, and the Fraction of Absorbed Photosynthetically Active 

Radiation (FAPAR) from the Satellite Pour l’Observation de la Terre (SPOT-Vegetation). 

These two datasets are widely used to quantify productivity levels of vegetation and to monitor 

vegetation dynamics in many areas around the world. Examples of such studies include the 

Gezira Scheme (Al Zayed and Elagib, 2017; Al Zayed et. al., 2015, 2016), Sudan and Ethiopia 

(Khalifa et. al., 2018), the Horn of Africa region (Meroni et. al., 2014), Europe (Kowalik et. al., 

2014) and Finland (Wang et. al., 2004). 

 



Chapter 5 - Yield gap and pathways for sustainable intensification in irrigated schemes  

 

91 
 

Table 5.1. List of primary information collected for the current research through a questionnaire. 
 

Socio-economy Age 

Level of education 

Years of experience in farming 

Source of income 

Number of household members 

Farm information Size  

Location along tertiary canal 

Pre-sowing land 

preparation 

Date of land preparation 

Use of machinery 

Pre-sowing land watering 

Sowing Sowing date 

Seed density (rate) 

Crop variety 

Irrigation Method of irrigation: furrow, basin 

First irrigation (days after sowing) 

Number of applications 

Fertilizers Number of applications 

 Timing of application (days after sowing) 

 Applied quantity 

Yield Average achieved yield 

Maximum achieved yield during previous seasons 
 

Table 5.2. Characteristics of secondary data collected from public-domain sources and official 

authorities in Sudan. NDVI: Normalized Difference Vegetation Index; FAPAR: Fraction of Absorbed 

Photosynthetically Active Radiation; OCC: Organic Carbon Content. AGs: Administrative Groups. 

GSB: Gezira Scheme Board; MOWIE: Ministry of Water Resources, Irrigation, and Electricity; 

MODIS: Moderate Resolution Imaging Spectroradiomenter; CHG-UCSB: Climate Hazard Group, 

University of California, Santa Barbara. 
 

Category Data type Spatial 

resolution 

Temporal 

resolution 

Time 

period 

Provider Link to data 

Ancillary 

data  

Crop  - Cultivated 

areas 

- Crop yield 

Scheme  Seasonal* 2000-2016 GSB - 

AGs.  Seasonal* 2015-2016 

Water - Daily water 

discharge 

from 

Sennar 

Dam 

Scheme Daily 2015-2016 MOWIE - 

Remote 

sensing data 

NDVI 250 m Dekadal 2001-2016 MODIS https://earlywarning.

usgs.gov/fews  

FAPAR 1000 m Dekadal 2001-2016 VITO - 

Copernicus 

Global Land 

Service 

https://land.copernic

us.eu/global/  

 Precipitation 0.05o Daily 2001-2016 CHG-UCSB  http://chg.geog.ucsb.

edu/data/chirps/ 

Soil data  pH 

OCC 

Bulk density 

250 m - -  Soil Grids https://soilgrids.org/  

* Summer season (June to October) 
 

Soil properties and nutrient availability are the major biophysical constraints to crop yield in 

Africa (Tittonell and Giller, 2013). Variables such as pH, Organic Carbon Content (OCC) and 

bulk density are among the most studied soil properties that affect crop yield (Quan and Liang, 

2017; Reichert et. al., 2009; Dam et. al., 2005; Bauer and Black, 1994). For our research, 

spatially distributed data of pH, OCC, and bulk density were obtained from the SoilGrids 

project (see Table 5.2).  

https://earlywarning.usgs.gov/fews
https://earlywarning.usgs.gov/fews
https://land.copernicus.eu/global/
https://land.copernicus.eu/global/
https://soilgrids.org/#!/?layer=TAXNWRB_250m&vector=1
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Gridded precipitation data were obtained from the Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS), where CHIRPS 2.0 is a blended product that includes 

precipitation estimation from remote sensing merged with in situ measurements (Funk et. al., 

2015). This product is considered one of the best performing public domain products over the 

East Africa region (Lemma et. al., 2019; Gebrechorkos et. al., 2018; Bayissa et. al., 2017). 

5.2.3. Methods 

Humans should be considered as a main component of the hydrological system (Pande and 

Sivapalan, 2017). Therefore, to explore pathways for implementing SI in the Gezira Irrigation 

Scheme, our research follows an integrated approach to highlight the interactions between the 

socioeconomic status of farmers and their field management practices on the one hand, and 

water resources and climate on the other hand. Figure 5.2 provides a graphical representation 

of the approaches adopted in this study in view of the data obtained as described in Section 

5.2.2. Along with recognizing the intensity and spatio-temporal variation of the productivity 

gap in the scheme, two main approaches were followed to detect the most important factors that 

affect the agricultural productivity in the Gezira Irrigation Scheme. First, a spatial correlation 

was conducted to detect the effect of physical drivers (e.g. precipitation and soil characteristics). 

Second, a regression-tree model was built to determine the most influential socio-economic and 

management drivers. The results of these assessments were used to identify some entry points 

for SI in the scheme. 

 

Fig. 5.2. Flowchart of the approach developed in the current study. 
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5.2.3.1. Processing of gridded data 

Gridded data of NDVI, FAPAR, soil properties, and precipitation were processed using 

ArcGIS 10.3 software (ESRI, 2014). The NDVI and FAPAR raster files were processed as per 

instruction of the product documentation. In line with the approach followed by many 

researchers (e.g. Al Zayed and Elagib, 2017; Panda et. al., 2010), a threshold value NDVI and 

FAPAR of 0.25 was considered to differentiate between the vegetation and non-vegetation 

pixels. Raster files on NDVI, FAPAR and soil variables (pH, OCC, and bulk density) were 

clipped to the boundaries of the Gezira Irrigation Scheme. 

5.2.3.2. Calculation of the productivity gap 

The productivity gap was calculated as the difference between the potential/attainable 

productivity and actual productivity. Integrating NDVI and FAPAR values over the growing 

season serves as a proxy for the actual vegetation productivity throughout the season (Meroni 

et. al., 2014; Lobell, 2013,). Integrated NDVI (iNDVI) and integrated FAPAR (iFAPAR) were 

produced following the approach described by Field et. al. (1995), Prince and Goward (1995) 

and Al Zayed et. al. (2015, 2016) over the growing season months from June to October. Using 

the Maximum Value Composite (MVC) method (Holben, 1986), the maximum value for each 

pixel in the iNDVI and the iFAPAR images within 2001–2016 were selected to generate 

maximum iNDVI and maximum iFAPAR images, respectively. The maximum value that was 

extracted from the time series was used as a proxy for the potential productivity of the given 

pixel. However, this maximum productivity itself might be below the potential productivity at 

that given pixel. The productivity gap for each year within the investigation period was 

calculated as a percentage difference between the iNDVI and iFAPAR in a given year and the 

maximum iNDVI and iFAPAR for the data period (2001–2016), respectively: 

iNDVIgap = 100 – (iNDVI(y) / iNDVIMax × 100) ……………………………………. (5.1) 

iFAPARgap = 100 – (iFAPAR(y) / iFAPARMax × 100) ………………………….…… (5.2) 

where subscript (y) denotes the individual year. 

Using Equations (5.1) and (5.2), maps of the productivity gap were produced for all years 

over the data period. A special focus was put on the two successive years of 2015 and 2016 as 

they show distinctive variation in productivity and precipitation level based on the satellite-

derived data. The collected data on sorghum yield were used to estimate the yield gap as the 
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difference between the maximum yield achieved by the farmer during the previous years and 

the average yield obtained by the same farmer in the 2017/18 summer season. 

5.2.3.3. Standardization of vegetation index and classification of the administrative groups 

This study used the Standardized Vegetation Index (SVI) and the corresponding 

classifications according to Peters et. al. (2002) which are based on estimating z-scores. The 

purpose of this SVI classification is to study the performance of the AGs of the Gezira Irrigation 

Scheme relative to the overall scheme performance using the proxy for productivity. To this 

end, the Shapiro-Wilk W-test for normality (Shapiro and Wilk 1965) was first employed to 

check the normal distribution of the iNDVI and iFAPAR time series before calculating the 

SVIs. Then, the z-scores for all pixels of the Gezira Irrigation Scheme and a corresponding 

average z-score for each AG were calculated. Peters et. al. (2002) suggested the following 

classes based on the z-scores: very poor (0–0.05), poor (0.05–0.25), average (0.25–0.75), good 

(0.75–0.95) and very good (0.95–1). Without an independent reference dataset, it is difficult to 

prefer one of the two vegetation indices, i.e. iNDVI and iFAPAR, against the other. However, 

due to the higher resolution of the iNDVI data compared to that of iFAPAR (i.e. 250 m versus 

1000 m), the iNDVI was used instead in the correlation analysis with the independent variables, 

i.e. precipitation, the distance between the AG and the Sennar Reservoir and soil characteristics. 

5.2.3.4. Field survey 

Taking into consideration the large area of the scheme (0.88 × 106 ha), conducting a field 

survey for the whole scheme to collect data on crop yield, socio-economic conditions of farmers 

and field practices was not feasible within the scope of this research. Based on the general 

pattern of productivity, which varies from south to north across the scheme (Al Zayed et. al., 

2015), five blocks that reflect this spatial variation were selected for the interviews. The selected 

blocks (Fig. 5.1) were North West (NW) Sennar and Haj Abdallah (southern region), Noor Al-

Huda and Hamdnallah (central region) and Miailig (northern region). A total of 393 farmers – 

distributed in the five selected blocks – were randomly selected for the interviews, while 

ensuring the variations in the socio-economic status of the farmers and the geographical 

distribution between the farms (See Appendix D: Section S5.4). Most of the respondent farmers 

(two-thirds) had completed only primary education and were aged 40–60. Around half of the 

respondents had only one source of income derived from in-farm activities. The other portion 

of the farmers also had off-farm income, including governmental or private jobs, next to their 

in-farm jobs. Some researchers argue that farmers who have other off-farm sources of income 
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have relatively better economic status than those who are dependent only on in-farm income 

(Birthal et. al., 2014; Ibrahim et. al., 2013). 

The field survey took place during the period from December 2017 to February 2018. The 

interview questions were designed based on consultation with 27 experts from the fields of 

agriculture and water resources management in Sudan. These questions focused on the most 

important factors affecting the sorghum yield in the Gezira Irrigation Scheme. A list of the types 

of data collected during the interviews with farmers is presented in Table 5.1. The interview 

questions were tested first on a small sample of five farmers to check their comprehension of 

the questions and to estimate the average time needed for each interview. Consequently, the 

interview questions were modified before conducting the final, longer interviews. 

5.2.3.5. Statistical analysis 

Spearman’s rho (ρ) was used in this investigation to measure the strength of the correlation 

between iNDVI/sorghum yield and the influential factors. Correlation between the average 

sorghum yield with the individual socio-economic and field practices factors was performed 

using regression-tree modeling (Breiman et. al., 1984). Regression-tree models have been found 

to be informative and more appropriate for detecting the relationship and interaction between 

the variables in such analyses compared to the traditional linear regression (Lobell et. al., 2005). 

5.3. Results 

5.3.1. Spatio-temporal variation of the productivity gap 

Although the two satellite-based vegetation indices, i.e. iNDVI and iFAPAR, exhibit similar 

spatial and temporal variation of vegetation productivity across the Gezira Irrigation Scheme, 

the results of the F-test (not shown) indicate a significant difference between the two population 

variances. Based on the SVI values, the AG categories obtained according to their productivity 

levels are given in Table 5.3. The classification of the AGs based on the iNDVI- and iFAPAR-

derived SVIs are comparable. While the best performing AGs are Shawal (iNDVI SVI = 0.98) 

and Hosh (iFAPAR SVI = 0.97), the worst AG is North West, showing iNDVI SVI = 0.05 and 

iFAPAR SVI = 0.03. On the scheme-wide scale, a large spatial and temporal variation in the 

productivity gap is detected. Spatially, the northern part of the scheme shows a higher gap level 

compared to the southern, central and western parts (Fig. 5.3). The average productivity gap 

over the Gezira Irrigation Scheme for the period 2001–2016 is around 32% and 24%, with a 

standard deviation of 19.03 and 14.03, based on iNDVI and iFAPAR, respectively (Fig. 5.4). 

On the AG scale, the largest productivity gap is found in the northern AGs. In some locations 
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of the northern part of the scheme (e.g. North West AG), the productivity gap in some years 

(e.g. 2015) is more than 90%. Using iNDVI, West, Abu Gouta and North show the largest 

average gaps among all the AGs, i.e. with averages of 40%, 37% and 35%, respectively (Fig. 

5.5a). The same AGs exhibit the largest gaps using iFAPAR (Fig. 5.5b), but with a lower 

magnitude of 34%, 27% and 28%, respectively. Using iFAPAR systematically leads to lower 

productivity gap estimates as compared to iNDVI (Fig. 5.5c). Temporally, the years 2002 and 

2015 show the largest productivity gaps, and this high gap is detected in most of the AGs. The 

lowest productivity gap is found for 2003, with scheme average gaps of 21% and 13% for 

iNDVI and iFAPAR, respectively (Fig. 5.5a and b). 

The productivity gap varied strongly for the two successive years 2015 and 2016 (Figs. 5.3, 

5.4 a and c). The results indicate an average gap for the scheme for these two years of 47% and 

36%, respectively, using iNDVI and 32% and 17%, respectively, using iFAPAR. At the AG 

level, the productivity gaps estimated by iNDVI and iFAPAR show a highly significant 

correlation (ρ = 0.93, P < 0.01). Using iNDVI for the year 2015, Tahameed and Abu Gouta 

exhibit the highest gaps among the AGs, with averages of 56% and 51%, respectively, while 

for 2016, there is a noticeable reduction in the productivity gaps to 34% and 30%, respectively 

(Fig. 5.5a and b). 

Table 5.3. Classification of the administrative groups (AGs) of the Gezira based on the 

standardized vegetation index (SVI) derived from z-scores of iNDVI and iFAPAR. SVI 

classes are obtained from Peters et. al. (2002). 
 

Administrative 

group (AG) 

SVI class using 

iNDVI 

SVI class using 

iFAPAR 

 
 

 

SVI classes 

From To SVI Class 

0 0.05 Very poor 

0.05 0.25 Poor 

0.25 0.75 Average 

0.75 0.95 Good 

0.95 1 Very good 

 SVI Class SVI Class 

Abu Guta 0.16 Poor  0.11 Poor 

Center 0.86 Good 0.95 Good 

Gamusi 0.67 Average 0.40 Average 

Hosh 0.84 Good 0.97 Very good 

Huda 0.24 Poor 0.25 Average 

Mansi 0.80 Good 0.94 Good 

Masallamia 0.44 Average 0.60 Average 

Ma'toug 0.89 Good 0.49 Average 

Matouri 0.66 Average 0.81 Good 

Mikashfi 0.71 Average 0.58 Average 

North 0.18 Poor 0.30 Average 

North West 0.05 Poor 0.03 Very poor 

Shawal 0.98 Very good 0.58 Average 

South 0.32 Average 0.55 Average 

Tahameed 0.36 Average 0.43 Average 

Wad Habouba 0.12 Poor 0.16 Poor 

Wad Sha'eer 0.13 Poor 0.17 Poor 
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Fig. 5.3. Spatial productivity gap for the Gezira Scheme based on (a) iNDVI and (b) iFAPAR. 
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Based on the results of the standardized iNDVI discussed above, the five blocks selected for 

field surveys are located within AGs of poor, average and good productivity (Table 5.3). Thus, 

these five blocks have the potential to reflect the spatial variation in productivity. As shown in 

Fig. 5.6, the results of the farmers’ responses for the blocks located in the southern and central 

parts of the scheme, i.e. North West Sennar, Haj Abdalla and Hamadnalla, show a higher 

average yield of sorghum than for the northern part (Miailig block). Considering the five blocks 

where ground surveys were taken, the average yield of sorghum in the summer season of 

2017/18 is 431 kg/ha. This average sorghum yield is significantly lower than the yield reported 

by Bashir et. al., (2015) in experimental controlled plots in Gezira; they reported a yield of 

2000–4000 kg/ha in the seasons of 1998/1999. 

 

Fig. 5.4. Statistical measures of pixel-to-pixel productivity gap based on iNDVI (a and b) and 

iFAPAR (c and d) represented by the Box-Whisker plot. 
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Fig. 5.5. Average productivity gap for the Gezira Scheme and the administrative groups: (a) 

time series based on iNDVI, (b) time series based on iFAPAR and (c) multi-year average over 

2001-2016. The line colors in (a) and (b) correspond to the colors used for the administrative 

groups in Figure 5.1. 
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Fig. 5.6. Average yield and maximum yield of sorghum achieved by all respondent farmers in 

each block selected for the field survey. 

5.3.2. Factors controlling productivity in the scheme 

5.3.2.1. Physical factors 

A negative correlation of the average iNDVI and the distance from the center of the AG to 

the source of water supply, i.e. Sennar Reservoir, is detected (Fig. 5.7). The sorghum yield in 

the selected field survey sites is found to be negatively correlated with the location of the 

farmland along a tertiary canal (scheme-wide: −0.56, p < 0.01 and AG-wide: ρ = −0.36 to 

−0.598, p < 0.01). Water shortage at the end stage of sorghum development, i.e. after mid-

September, is striking in the Gezira Irrigation Scheme. Farms located at the head of the tertiary 

canals have the advantage of better access to water as compared to the farms located at the tails 

of these canals. The latter are either left without water or face water shortages. In view of the 

farmers’ responses, the overall average sorghum yield of all farms located at the head of the 

tertiary canals is higher than that for farms located at the tail, i.e. 504 kg/ha vs 328 kg/ha. 

Detailed analysis of the location along the tertiary canals revealed a correlation with other 

irrigation-related factors, namely the frequency of irrigation and the sowing date. 

Although the Gezira Irrigation Scheme receives a substantial amount of precipitation, this 

quantity is not fully accounted for in scheduling irrigation for the scheme (Al Zayed et. al., 

2016). The analysis of annual precipitation data shows that the highest iNDVI and iFAPAR 

occur during wet years (e.g. 2014), whereas dry years, such as 2002, 2004 and 2015, show the 

lowest iNDVI and iFAPAR (Fig. 5.4a and c). The years 2015 and 2016, taken as examples with 

below- and above-average precipitation (Fig. 5.8a), respectively, according to Elagib (2015) 

show higher rainfall in the southern AGs than in the northern ones (Fig. 5.8b), and similarly in 

the southern AGs than in the northern ones (Fig. 5.8b). Whereas total precipitation of only 42.8 
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mm was received during June and July 2015, a larger amount of 145.5 mm was recorded during 

the same period in 2016 (Fig. 5.8c and d). Analysis of the water supply data at the beginning of 

the season shows that the water released from Sennar Reservoir remained almost the same 

during the two years. Productivity was also higher for the year 2016. Using the yearly data over 

2001–2016, the correlation of the time series of iNDVI and precipitation reveals a ρ value of 

0.48 (p < 0.01), as shown in Figure (5.9a). A relatively higher correlation with ρ of 0.61 (p < 

0.01) is obtained when the multi-year average is considered (Fig. 5.9b).  

 

Fig. 5.7. Dependence of crop productivity index (iNDVI) on the average distance of the 

administrative groups of the Gezira Scheme to Sennar Reservoir: (a) average seasonal iNDVI 

(2001–2016) and distance for each administrative group and (b) Spearman’s Rho of the 

correlation between the two variables. 

The spatial distribution of soil properties (pH, OCC and bulk density) in the Gezira Irrigation 

Scheme exhibits large variation (Fig. 5.10). The pH values indicate that alkaline soils (pH > 7) 

are dominant in the scheme. While soils with the highest alkalinity (up to 9.8) and large bulk 

density characterize the northern part of the scheme, the highest OCC values are found in the 

central AGs. A negative correlation between iNDVI and pH and bulk density can be found 

whereas a positive correlation can be detected between iNDVI and OCC (Fig. 5.11 a–c)). A 

significant correlation between iNDVI and the three soil properties is found for most of the 

year-to-year investigations (Fig. 5.11 d–f). 
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Fig. 5.8. Areal average precipitation using CHIRPS 2.0 precipitation product: (a) over the 

Gezira Scheme for the years 2000–2016; (b) over the different administrative groups during 

2015 and 2016; (c and d) daily precipitation over the scheme during the summer seasons of 

2015 and 2016, respectively. 

 
 

Fig. 5.9. Scatter plot of pixel iNDVI versus total seasonal precipitation: (a) for all years (2001–

2016) and (b) multi-year average over the Gezira Scheme. 
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Fig. 5.10. Spatial distribution of soil properties: (a) pH, (b) organic carbon content (OCC) and 

(c) bulk density clipped from the original SoilGrids data to the boundaries of the Gezira 

Scheme. The units of OCC and bulk density are g/kg and g/m3, respectively. 

 

Fig. 5.11. Pixel-to-pixel correlation between multi-year (2001–2017) average iNDVI and three 

soil properties: (a) pH, (b) Organic Carbon Content and (c) bulk density. Spearman’s Rho 

values of the correlation for each year are shown in d, e, and f for the three soil properties, 

respectively. 
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5.3.2.2. Socio-economic factors 

The analysis of the field survey data collected from the five selected blocks shows that many 

socio-economic factors are correlated with the sorghum yield. On a scheme-wide level, there is 

a strong positive correlation between the average sorghum yield and the source of income of 

the respondent farmers (ρ = 0.62, p < 0.01). At the block-wide level, the correlation coefficient 

ranges from 0.48 to 0.69. Furthermore, a positive correlation is detected between sorghum yield 

and the number of household members (ρ = 0.12, p < 0.05) and the farm size (ρ = 0.16, p < 

0.01). 

5.3.2.3. Management and field practices 

It is found in this study that the sorghum yield is controlled by several management factors 

and field practices. The correlation between the sorghum yield and timing of land preparation 

is significantly negative (ρ = −0.22, p < 0.01). In many cases, the results of the interviews show 

that farmers who start their preparation in June are able to achieve a relatively higher yield of 

sorghum (474.8 kg/ha on average) than those who prepare their fields later (412.6 kg/ha on 

average).  

Statistical analysis of the collected data on the sowing date and average yield shows a 

significant negative correlation (ρ = −0.22, p < 0.01) between the two variables. Ideally, the 

first irrigation is usually conducted immediately after seeding. However, some of the 

respondent farmers delay the first irrigation to as long as two weeks, mainly due to the 

unavailability of water in the irrigation canals. This delay, in turn, has a negative impact on the 

sorghum yield; thus, delayed timing of the first irrigation is found to reduce the sorghum yield 

(ρ = −0.16, p < 0.01). This result is in line with the finding of Elagib (2015). The scheme-wide 

correlation between the sorghum yield and frequency and quantity of fertilization is positive (ρ 

= 0.40, p < 0.01 and ρ = 0.47, p < 0.01, respectively). 

Regression-tree modeling of all the field survey data on the scheme-wide scale revealed two 

most influential factors to the sorghum yield during the summer season of 2017/18 to be the 

source of income (as a proxy for financial condition) and the location of the farm along the 

tertiary canal (Fig. 5.12). 
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Fig. 5.12. Regression-tree detecting the most important factors that control the average sorghum 

yield in the Gezira Scheme. 

 

5.4. Discussion 

5.4.1. Satellite-based productivity gap 

The correlation between the two vegetation indices, iNDVI and iFAPAR, indicates that the 

two indices are independent (See Appendix D: Section S5.2). The difference in the results of 

the two vegetation indices in estimating the productivity gap can be attributed mainly to 

differences in the characteristics of the NDVI and FAPAR data, especially in the spatial 

resolution. Therefore, one would assume that the higher resolution of NDVI data makes the 

corresponding result on the productivity gap more accurate for spatial analysis than those 

estimated using FAPAR, which has a coarser resolution. 

The noticeable variation in SVI across the northern and southern AGs is in line with the 

earlier findings by Al Zayed et. al. (2015) on the spatial variation of the Modified Vegetation 

Condition Index (MVCI) across the scheme. These results further support the correctness of the 

selection of AGs, which aimed to represent a wide-range of AG performance. Moreover, the 

wide productivity gap indicates a large potential to increase crop productivity in the scheme. 
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Given the large spatial resolution of the pixels for the two different products (NDVI and 

FAPAR), different crops may exist within each pixel. Correlation of sorghum yield with iNDVI 

and iFAPAR at the AG level reveals no significant correlation. This lack of correlation is mainly 

due to the mismatch in spatial scale between the remote sensing and the reported yield data. 

Based upon our local knowledge and field surveys, we inspected iNDVI and iFAPAR values 

for some known sorghum fields scattered across the scheme. The variation in productivity of 

these fields reflects the scheme’s low and high productivity in 2015 and 2016, respectively. 

While the cultivated area of sorghum remained almost the same, the yield of sorghum varied 

between the two years. These observations suggest that sorghum is the dominant crop and, thus, 

the variation in its yield can be considered as the largest driver of the productivity gap at the 

AG level for the summer seasons of 2015 and 2016 (See Appendix D: Section S5.3). 

5.4.2. Yield gap of sorghum 

Taking into account the experimental sorghum yield that was achieved by Bashir et. al. 

(2015) in the Gezira Irrigation Scheme (as referred to in Section 5.3.1), one can infer that the 

maximum achieved yield found herein is much lower than the potential yield of sorghum. This 

indicates further that the gap in sorghum yield is much higher (at least 3 times more) than the 

yield gap estimated by considering the farmer’s maximum achieved yield. This result suggests 

that, based on the average yield estimated in the current investigation, the yield gap of sorghum 

in the Gezira Irrigation Scheme may reach 78–89% when a potential yield of 2000–4000 kg/ha 

is considered. However, estimating the yield gap based on the maximum yield that is achieved 

by the farmers seems more realistic, considering the actual spatio-temporal differences in the 

environmental (e.g. climate), socio-economic status (e.g. level of income) and field 

management practices (e.g. sowing date and fertilization). The yield gap of sorghum reported 

in the present analysis provides field-based evidence in support of the productivity gap 

identified from the satellite-based vegetation indices. 

5.4.3. Factors influencing agricultural productivity 

The significant correlation between iNDVI/sorghum yield and some physical, socio-

economic and management factors in the Gezira Irrigation Scheme indicates that many agents 

are playing a role in the detected variation of sorghum yield in the scheme. The interdependence 

between many of the studied factors (See Appendix D: Fig. S5.10) indicates that addressing 

one of them might have impacts on the others. The negative correlation between the vegetation 

productivity and the distance from water source confirms an uneven distribution of water across 

the scheme and between the upstream and downstream AGs, as noted by previous studies (e.g. 
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Al Zayed and Elagib, 2017; Al Zayed et. al., 2015, 2016; Woldegebriel et. al., 2012; Bashir et. 

al., 2011). It also indicates inequality in access to water among the farmlands that share the 

same tertiary canal. Multiple factors contribute to this inequality in access to irrigation water, 

including weed growth and sedimentation in the irrigation canals, improper maintenance and 

collapse of many of the irrigation control systems, and the fragmentation of authorities 

responsible for regulating the water distribution (Woldegebriel et. al., 2012). In this regard, the 

significant correlation between precipitation and iNDVI, as reported herein, stresses the role 

precipitation could play in determining productivity if accounted for in the irrigation scheduling 

(Al Zayed et. al., 2015). The correlations between iNDVI and some soil properties, i.e. pH, 

OCC and bulk density, and between sorghum yield and the number and quantity of fertilizer 

applications emphasize the importance of soil properties in determining spatial variations in 

productivity in the scheme. These results suggest that measures towards ameliorating the soil 

characteristics, especially in the northern part of the scheme, could help increase productivity 

and, thereby, bridge the productivity gap. The use of organic manure and chemical fertilizers 

may enhance soil properties by enriching the OCC and mineral content of the soil and adjusting 

the pH, all of which could increase the crop yield (Ge et. al., 2018; Dong et. al., 2012; Holloway 

et. al., 2001). 

The significant correlation between sorghum yield and several socio-economic and 

management factors indicates that these factors are as important as physical factors in 

determining the sorghum yield. For instance, the role of a farmer’s financial status in the 

determination of the sorghum yield in the Gezira Irrigation Scheme is remarkable (Fig. 5.12). 

Farmers with multiple financial sources, i.e. in-farm and off-farm, generate more income and 

are, therefore, able to invest in adequate agricultural inputs (machinery, enhanced seed varieties, 

and fertilizers), which enhance the sorghum yield. Furthermore, the positive correlation 

between sorghum yield and the number of household members indicates that bigger families 

are more productive due to the larger labor force, and can generate higher total income, which 

helps with more farming investments. This finding is in line with the results found by Hassan 

(2015) in Darfur, Western Sudan. 

Field practices and agricultural management also contribute to the variation in the sorghum 

yield in the Gezira Irrigation Scheme. In particular, weed growth is considered one of the main 

factors resulting in the drop in sorghum yield (Peerzada et. al., 2017). Pre-sowing watering is 

one of the important strategies to constrain the growth of weeds during the season (Oshunsanya, 

2013; Erkossa et. al., 2006). However, due to the unavailability of water for irrigation during 



Chapter 5 - Yield gap and pathways for sustainable intensification in irrigated schemes  

 

108 
 

the period from March to May, pre-sowing watering of the fields is not practiced in the Gezira. 

Apparently, the location of the farm along a tertiary canal governs the access to water, thus 

greatly affecting the crop yield. Ishag et. al. (2007) found a similar effect of farm location along 

tertiary canals on the yields of cotton and wheat in some locations in the Gezira Irrigation 

Scheme. 

In this research, a significant correlation has been found between the sowing date and 

average yield. Such a result confirms earlier findings by Ishag et. al. (2007) regarding the 

association of early sowing (mid-July or earlier) with higher sorghum yield. Although water 

availability plays a crucial role in determining the sowing date, many non-physical factors, such 

as availability of seeds, fertilizers, and machinery, force farmers to postpone the sowing dates 

(Bussmann et. al., 2016). The scheme-wide correlation between sorghum yield and the 

frequency and quantity of fertilization emphasizes the role of soil management in increasing 

the yield. 

5.5. Conclusion 

Based on our analysis, several entry points for SI in the Gezira Irrigation Scheme could be 

identified. These entry points could be grouped into three main categories, as suggested by 

Schut et. al. (2016) but adapted to the situation in the Gezira Irrigation Scheme: (1) agricultural 

productivity, (2) natural resources management, and (3) institutional measures. The main aim 

of the SI measures included in these entry points is to bridge the crop yield gap, which 

consequently promotes a healthy environment, improved livelihood for the farmers and a 

growing economy (Fig. 5.13). Positive impacts on the environment, society, and the economy 

can feedback to SI measures. For instance, the expected positive impact of increasing crop yield 

on the farmer’s income constitutes additional revenues that could be used to enhance both their 

livelihood and that of their families and the farming conditions in terms of machinery, fertilizers 

and simple in situ rainwater harvesting techniques. Policies promoting SI should take into 

consideration the impact on the environment. For example, an adequate level of fertilization is 

believed to help overcome the problem of unfavorable soil properties in some areas within the 

scheme. Nevertheless, it is imperative that appropriate levels of fertilizers that are safe for water 

resources be used, thus emphasizing the important role of authorities in monitoring and 

enforcing relevant regulations. Since sustainability rests on three pillars: the environment, the 

economy and the social dimensions (Barbier, 2013), SI has to address these dimensions and 

may not be limited in scope to increasing the food production and minimizing the negative 

environmental impacts (Kotu et. al., 2017; Schut et. al., 2016; Robinson et. al., 2015). 
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Fig. 5.13. A conceptual framework for sustainable intensification in the Gezira Scheme 

showing the identified entry points and their proposed measures. 

It also has to integrate social and economic systems (Loos et al. 2014). Therefore, it is 

important to recognize that any particular practice or measure of SI cannot succeed in isolation 

but only in consideration of the whole system (Thompson, 2007). Such an integrative approach 

enables discovering synergies and trade-offs of the human–water–food–climate nexus which, 

in turn, helps to identify feedback mechanisms between measures for agriculture intensification 

and the sustainability pillars. 

Despite the obvious consequences of implementing SI policies in the Gezira Irrigation 

Scheme for more than 100000 farmers across the scheme and their families and the benefits 

that could be gained for Sudan, it has several implications beyond the borders of the country. 

Firstly, as stated by Elagib et. al. (2019), with an area of nearly 12% of the global harvested 
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area of sorghum, Sudan produces only 5.4% of the total global sorghum production. Thus, 

bridging the yield gap in the agricultural schemes in Sudan would provide a good contribution 

to the global sorghum production without depleting additional natural resources (e.g. water and 

land). As the yield gap is a common phenomenon that is widespread among crops around the 

world, the methodological approach followed herein, and the interactions highlighted between 

the different controlling factors will help address the challenge of full utilization of hidden 

potentials in such underperforming agricultural schemes. As already mentioned, this scheme 

alone consumes around one-third of the total share of Sudan from the Nile water and around 

8% of the historical average Nile flow (84 km3: Sutcliffe and Parks, 1999), as measured at 

Aswan Dam in Egypt. Al Zayed et. al. (2015) detected both a low and a decreasing trend in 

irrigation efficiency since 1993/94 in the Gezira Irrigation Scheme. This low efficiency 

suggests the need for water saving in the scheme. In particular, oversupply and leakage of water 

from the irrigation canals need to be quantified and reduced or eliminated. Attempting to 

improve the irrigation efficiency in the Gezira Irrigation Scheme may have its positive 

implications on balancing supply and demand in the Eastern Nile basin. Lastly, the lessons 

learned from the Gezira Irrigation Scheme case towards implementing SI could be transferred 

to similar underperforming irrigation schemes around the world, to contribute to enhancing 

global water and food securities. 
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Abstract 

Food security in the African Sahel has frequently been threatened by climate variability and 

change. A large part of the farming system in the arid and semi-arid region of Sudan is heavily 

rainfed, with sorghum representing the major crop. This study sheds light on the performance 

of sorghum production in the major mechanized sector in Sudan since 1970. Despite a 

significant extensification of the mechanized cultivated area of sorghum, a drastic loss of area 

at harvest took place during 1970–2016. The sorghum production showed both increases and 

decreases in the average over time besides high year-to-year variability. Synchronous with the 

above findings, a significant steady decline of sorghum yield occurred from the 1970s level 

(744.3 kg/ha) to 476.6 kg/ha since 1982. Based on the ratio of growing season precipitation to 

reference evapotranspiration, a Standardized Multi-Criteria Drought Index (SMCDI) for the 

period 1941–2015 was introduced using three drought characteristics, namely drought severity, 

dry spell and time relative frequency of drought. There occurred 23 mild to extreme droughts 

and 17 mild to extreme wet cases over the period 1970-2015. Aggregation of the SMCDI with 

“climatic” sorghum yield revealed highly variable performance of this crop. Accordingly, 26 

vulnerable and 20 resilient sorghum yield years were discernible under drought, near normal or 

wet conditions due to a combination of factors not only climate, i.e. physio-geographic, socio-

economic and institutional factors. Apart from the regional analysis, one representative state 

was also selected for further in-depth spatio-temporal assessment of the SMCDI, integrated 

Normalized Difference Vegetation Index (iNDVI), Modified Vegetation Condition Index 

(MVCI), sorghum yield, precipitation, and reference evapotranspiration data over the period 

2001–2014. The results also underscored the spatio-temporal and local-scale vulnerability of 

the farming system under study to climate variability. Such findings urge for interventions in 

the mechanized rainfed sorghum farming system to enable improvement of its performance, 

drought vulnerability reduction, development of alternatives, and achievement of food security. 

6.1. Introduction 

By 2050, the world will need to increase the agricultural production by 60–110% to meet 

the increasing demand for food (Ray et al., 2013). Consequently, this will put more pressure on 

resources such as water, land, and energy. Increasing agricultural production will be one of the 

greatest challenges to face humanity in the near future (Godfray et al., 2010; Licker et al., 2010). 

Among the many dimensions of this challenge, water availability for food production has 

become most critical (Fereres et al., 2011). If agricultural activities must grow substantially to 
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meet future demand for food of increasing populations while ensuring the sustainability of 

natural resources (e.g. water and land), agricultural expansion is not an option but rather 

strategies that consider, for instance, closing the yield gaps on underperforming lands and 

increasing the cropping efficiency are imperative (Foley et. al., 2011; Godfray et. al., 2010). 

Compared to the large increase in agricultural productivity in many parts of the world during 

the last decades, the level of agricultural production in many African countries is still low 

(Pretty et. al., 2011). According to a review conducted by Schmidhuber and Tubiello (2007) of 

the potential impacts of climate change on food security, poorest regions, such as sub-Saharan 

Africa, encounter, and will continue to encounter, dramatic fluctuation and reduction in food 

production and supplies (stability) as a result of climate fluctuations (droughts and floods). 

Realizing the impacts of climate change to date on food availability can avail the efforts made 

to anticipate future effects (Lobell et. al., 2011).  

Rainfed agriculture plays a crucial role in the food supply in many regions around the world 

(Devendra, 2012; Rockstrom et. al., 2010; Lal, 2008). This farming system accounts for around 

75% of the total global cropland area (Bradford et al., 2017), and will continue to play this 

essential role in food production in the future (Rockstrom e.t al., 2010). For instance, it is argued 

that more than 75% of future food security in the Nile Basin could be achieved through rainfed 

agriculture with supplementary irrigation (Siderius et. al., 2016). In many cases, however, 

rainfed systems across the world are characterized by lower crop yield levels compared to 

irrigated systems (Chapagain and Good, 2015; Elagib, 2014; Rockstrom et. al., 2010). This low 

yield is mainly due to the direct impact of climate on water availability (Valverde et. al., 2015; 

Elagib, 2014; Asseng and Pannell, 2013; Sultan et. al., 2013; Al-Bakri et. al., 2011). 

Mechanization of the farming activities has been introduced in the rainfed sector as a strategy 

to improve productivity. For instance, mechanization of farming is found to be the main source 

for increasing the efficiency of rice cultivation among smallholder farmers in Kenya (Mlengera 

et. al., 2015). 

Sorghum is the fifth main cereal crop for millions of people around the globe (Iqbal et. al., 

2010; Tuinstra, 2008). In many regions, sorghum is cultivated under rainfed systems, where the 

direct connection between crop growth and climate affects the sustainability of sorghum 

production and jeopardizes the food security for millions of people (Kukal and Irmak, 2018; 

Gebrekiros et. al., 2015; Sultan et. al., 2013; Chipanshi et. al., 2003; Rosenzweig et. al., 1995). 

In view of the above background, there seems to be a fundamental need for understanding 

the performance of the rainfed sorghum system under different climate conditions. Analyzing 
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the statistics of rainfed sorghum would provide insights into the recent and current status of this 

important agricultural sector. Such an analysis will help in adopting adequate policies for the 

future.  

Therefore, the objective of the current study is threefold: (1) to develop a Multi-Criteria 

Drought Index (MCDI) useful for assessing the drought state in the central and eastern parts of 

Sudan, taken as an example for intensive rainfed and mechanized agriculture, using station 

meteorological data, (2) to study the temporal resilience and vulnerability of mechanized 

sorghum cultivation under dry and wet years, using the developed MCDI and sorghum statistics 

measured on the ground, and (3) to examine the spatio-temporal state of agricultural 

productivity of the mechanized rainfed farming based on the MCDI and remotely-sensed 

vegetation indices for a case study. The ultimate goal of this research is to provide insights into 

the performance of sorghum cultivation in the mechanized rainfed system in Sudan and, 

therefore, to provide crucial knowledge to realize the opportunities and challenges for food 

security and sustainability of this system in the country. Previous studies carried out on rainfed 

sorghum farming in the study region include, among others, tillage practices and their impacts 

on sorghum yield (Willcocks and Twomlow, 1992), impacts of governmental policies on 

sorghum production (Elawad et. al., 2017), and factors determining the sowing date of sorghum 

(Bussmann et. al., 2016). Although these literature provide useful information about the major 

sorghum cultivation areas in Sudan, a comprehensive overview of the performance of this 

agricultural system is still lacking. 

Sorghum is the main staple crop in Sudan, with at least 90% of the cultivated area is mainly 

under rainfed system (Elagib, 2014). To highlight the importance of the present investigation 

for Sudan, the status of sorghum production in general in Sudan is placed within the global 

production picture using the FAO (2018) sorghum statistics (harvested area, production, and 

yield) for several countries over the world. Among the top sorghum producing countries, Sudan 

is ranked third in terms of harvested area of sorghum, following India and Nigeria (Fig. 6.1a). 

However, with an area of 12% of the global harvested area of sorghum, Sudan is only producing 

5.4% of the total global production on average. Despite the large harvested area of sorghum in 

Sudan, the low production ranks Sudan in the 7th place among the global sorghum producers 

(Fig. 6.1b). On average, with almost the same harvested area (Fig. 6.1a), the United States of 

America (USA) is producing fourfold the sorghum production in Sudan, and the yield level in 

the USA exceeds that in Sudan by more than 81% (Fig. 6.1c). The sorghum yield in the USA 

was highly improved due to the green revolution programs that started in the 1960s (Pingali, 



Chapter 6 - Crop vulnerability and resilience to climate in rainfed schemes  

 

115 
 

2012). Comparison of the sorghum production in Sudan with that in a country of harsh socio-

economic conditions like Ethiopia indicates a lower performance in the former country. With a 

harvested area of only 32% of that in Sudan, Ethiopia is producing around 86% of Sudan’s total 

production of sorghum. To understand the reasons behind such a poor performance of sorghum 

production in Sudan, more detailed analysis and discussion are therefore given in the following 

sections. 

 

Fig. 6.1. Ranking of the top sorghum-producing countries in terms of (a) harvested area, (b) 

production and (c) yield. The data represent the multi-year averages (1961-2016) calculated 

from FAOSTAT data (http://www.fao.org/faostat/en/#data/QC). G = Giga. 

 

6.2. Materials and methods 

6.2.1. Study area 

The study area consists of six states, namely Khartoum, Gezira, Kassala, El Gedaref, Sennar 

and Blue Nile, located in central and eastern Sudan (Fig. 6.2). Together, these six states occupy 

an area of 232,590.3 km2. The region is characterized by arid and semi-arid climate with the 

average maximum temperature rises to more than 40 °C during April/May, the average 

minimum temperature drops to below 20 °C during January, and the median annual rainfall 

ranges between 87 in the northernmost part and 660 mm in the southwestern zone according to 

the 1971–2000 normals (Elagib, 2009). Wet conditions prevail during July to September in the 

arid part and extend longer from June to October in the semi-arid part (Elagib, 2009). Prominent 

http://www.fao.org/faostat/en/#data/QC
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features of climatic changes in the region have been reported including increasing temperatures, 

droughts, rainfall variability, etc, during the last five decades which have brought about 

implications for the main human activities, such as farming and herding, resources, land 

use/cover changes, etc (Sulieman and Ahmed, 2013; Sulieman and Elagib, 2012; Elagib and 

Elhag, 2011; Elagib, 2010; Sulieman and Buchroithner, 2009; Elagib and Mansell, 2000). 

 

Fig. 6.2. Location map of the study area, regional states, and meteorological stations. 

This area accommodates some of the major agricultural schemes in Sudan including rainfed 

and irrigated systems. Around one-third of the total production of sorghum in Sudan comes 

from El Gedaref State. While the six states were considered in the regional analysis, El Gedaref 

State was selected for more detailed analysis. Mechanization was introduced in El Gedaref in 

1944 and spreaded southeast to other areas in the Blue Nile region in 1958/1959 (Mustafa, 

2006). Although the purpose of the expansion was to take advantage of the vast potential of the 

rainfed area in this region and to overcome the problems facing the traditional rainfed farming 

(e.g. soil workability), rainfed farming in this region is still far beyond full mechanization as 

the use of machineries is confined only to some land preparation procedures (El Karouri, 2010). 

Semi-mechanized operations such as land preparation and sowing are carried out in farms larger 

than 420 ha (Bussmann et. al., 2016). With the mechanized farming accounting for about 65% 
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of the sorghum production in Sudan, three out of the five main contributing states in Sudan are 

located in the study region, namely El Gedaref, Sennar and Blue Nile, for which the records 

show that El Gedaref alone shares the largest contribution to the national sorghum production 

both in the mechanized rainfed sub-sector (45%) and in general (26%). 

6.2.2. Data 

The dataset used in the current study consists of climatic data (from stations and gridded 

data sources), sorghum statistics and satellite-based vegetation indices. The data on rainfed 

sorghum statistics, i.e. planted and harvested areas, production, and yield, come from only four 

out of the six states in the study region, namely Kassala, El Gedaref, Sennar, and Blue Nile. 

These data were obtained from MAF (2006) and CBS (2008) and updated from the Department 

of Agricultural Statistics, General Administration of Planning & Agricultural Economics of the 

Ministry of Agriculture and Forestry. These statistics were available from 1970 to 2016. 

Sorghum is selected for the current investigation because it is the major food crop cultivated in 

the region, as mentioned earlier. However, the capital of Sudan (Khartoum State) is not famous 

for cultivating this crop. Moreover, sorghum farming in Gezira State is overwhelmingly 

irrigated, and the available rainfed sorghum (traditional farming) data are not recognized on the 

records as mechanized. To obtain regional datasets for the sorghum statistics, the data for the 

four states were summed up. Finally, the sorghum yield was calculated as the ratio of regional 

sorghum production to the regional harvested sorghum area in the targeted states. 

Part of the climate data consists of monthly temperature (maximum and minimum) and 

precipitation for the period 1941–2015 and was acquired from Sudan Meteorological Authority 

for six meteorological stations (Fig. 6.2). These stations are the main observing ones in the 

study area. One state (El Gedaref) was considered for further detailed analysis of the spatio-

temporal variation of climate and vegetation productivity, using gridded data on climate 

elements, i.e. precipitation, temperature, and potential evapotranspiration, and vegetation index 

(Normalized Difference Vegetation Index, NDVI). The gridded data for El Gedaref State were 

acquired as shown in Table 6.1 and are described below. As reported earlier, sorghum is the 

major crop grown in El Gedaref State. Although masking the data for the sorghum areas alone 

is the best approach to reduce the uncertainty, unfortunately, there are no detailed data officially 

or readily available on the farm scale in Sudan. This information was confirmed by Mustafa 

(2006) for El Gedaref thus: “the data obtained from different sources [are] recorded on average 

for the whole region without in-depth details. The methods of keeping records on area grown, 

area harvested, costs, production, and yield are not regular, not systematic and only for a short 
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period” (Mustafa, 2006). Therefore, the present study attempted to relatively overcome this 

limitation as will be explained in the following section. 

Tropical Precipitation Measuring Mission (TRMM 3B42) version 7 (Huffman et. al., 2007) 

of Multi-satellite Precipitation Analysis (TMPA) was used in this study. It is produced jointly 

by the United States National and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA). TRMM 3B42 v.7 is a blended product, which merges data from 

satellites with ground data from climate stations to obtain the final precipitation estimations. 

This precipitation product is widely used for many research purposes (Zulkafli et. al., 2014). 

TRMM provides precipitation estimations on different temporal domains (3 hourly, daily and 

monthly) on a spatial resolution of 0.25° from 1998 to the present. Daily precipitation data of 

TRMM 3B42 v.7 were processed online using GIOVANNI tool (Table 6.1). 

Table 6.1. Characteristics of the gridded data used in the current study. 

Variable Data source Spatial 

resolution 

Time 

period  

File 

format 

Reference 

Precipitation (P) The Tropical Precipitation Measuring 

Mission (TRMM 3B42 v.7) Multi-

satellite Precipitation Analysis (TMPA) 

https://giovanni.gsfc.nasa.gov/giovanni    

0.25o Monthly  

2001-

2014 

GeoTiff Huffman 

et. al. 

(2007) 

Potential 

evapotranspi-

ration (PET) 

Global Data Assimilation System 

(GLDAS) 

https://earlywarning.usgs.gov/fews/data

downloads     

1.0o Dekadal  

2001-

2014 

GeoTiff Rodell et. 

al. (2004) 

Temperature (T)  University of Delaware (UDel) version 

4.01 

https://www.esrl.noaa.gov/psd/data/grid

ded/data.UDel_AirT_Precip.html     

0.5o Monthly  

2001-

2014 

NetCDF Willmott 

and 

Matsuura 

(2001) 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

 

Moderate Resolution Imaging 

Spectroradiometer (MODIS)  

eMODIS Aqua NDVI 

https://earlywarning.usgs.gov/fews/data

downloads 

250 m Dekadal  

2001-

2014 

GeoTiff Swets et. 

al. (1999) 

 

Daily potential evapotranspiration (PET) were obtained from the website of Famine Early 

Warning System Networks (FEWS NET), as indicated in Table 6.1. These gridded data were 

produced using the climate variables output from the Global Data Assimilation Systems 

(GLDAS). PET data of this global product were calculated following the standard method of 

FAO Penman-Monteith for grass reference evapotranspiration, ETo (Allen et. al., 1998). 

Terrestrial air temperature data were obtained from the public-domain product provided by 

the University of Delaware (UDel), as shown in Table 6.1. This product provides gridded 

temperature data derived from ground climate stations (Willmott and Matsuura, 2001). The 

production process used a combination of traditional interpolation and interpolation assisted 

https://giovanni.gsfc.nasa.gov/giovanni
https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html
https://modis.gsfc.nasa.gov/about/
https://modis.gsfc.nasa.gov/about/
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with Digital Elevation Model (DEM). To minimize the bias, this dataset went through an 

extensive validation process by the data providers (Willmott and Matsuura, 2001). For the 

current research, version 4.1 of this product was used. It provides monthly average data on air 

temperature with global coverage. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite was used in this 

study as the source of NDVI data. This dataset is maintained by the United States Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Center. For the purpose of 

the current research, dekadal data (10-day composites) with a spatial resolution of 250 m for 

the years 2001 through 2014 were downloaded from the website of FEWS Net (Table 6.1). 

6.2.3. Processing of gridded datasets 

Processing of the gridded datasets, i.e. precipitation, PET, temperature, and NDVI, was done 

in Geographic Information System (GIS) environment using ArcGIS 10.3 software (ESRI, 

2014). These data went through several processing procedures. The processing of PET data 

included restoring the original PET values by dividing the raster images by a factor of 100 using 

the “raster calculator” function in ArcGIS. The NDVI data were processed by removing the 

invalid raster values and applying the formula (NDVI = (value−100)/100) on all the dekadal 

data to restore the NDVI values. Each of the processed precipitation, PET and NDVI data were 

summed up to produce seasonal values (June to October), and the monthly temperature raster 

files were averaged to produce average seasonal temperature. This five-month period represents 

the main growing season in the region (Elagib, 2014). All the seasonal images of the three 

variables along with the air temperature data from UDel were clipped to the boundaries of El 

Gedaref State using the “Extract by mask” function in ArcGIS software. 

To relatively overcome the limitation of unavailable data on specific sorghum farms, the 

present study considered the approach of masking the agricultural pixels alone with a threshold 

of NDVI > 0.25, as adopted by Al Zayed and Elagib (2017) for the Gezira Irrigation Scheme 

within the study area. However, the scale mismatch between NDVI and gridded meteorological 

data, i.e. precipitation, temperature, and potential evapotranspiration), does not allow such an 

extraction. 

6.2.4. Drought assessment 

Because long-term data over the period 1941–2015 that cover the full range of climatic 

elements for applying FAO Penman-Monteith are not available, the station data on temperature 

were used to calculate the ETo using the method developed by Hargreaves and Samani (1985) 
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and Hargreaves et. al. (1985), which is based on temperature. For this purpose, the values of 

extraterrestrial radiation for Sudan were taken from Elagib et. al. (1999). Using the precipitation 

and ETo data for the main growing season (June to October), the drought severity measured as 

the ratio of precipitation to ETo was calculated based on the concept of the aridity index (AI) 

of the United Nations Environment Programme (UNEP, 1992). This index has been used widely 

for drought studies for Sudan (Elagib, 2015, 2014, 2009; Elagib and Mansell, 2000). For the 

present work, a drought index was devised based partly on this ratio and partly on the drought 

risk index developed by Elagib (2014). Accordingly, three drought characteristics, namely 

drought severity (S), dry spell (DS) and time relative frequency of drought (TF), were used in 

a multiplication function to develop the MCDI: 

MCDI = (1 - S) × DS × TF                                                                                                         (6.1) 

where S is the ratio of the total precipitation to the total ETo for the growing season (June to 

October). S is subtracted from 1 since the drought risk (probability of drought occurrence) 

reduces with increasing S. If S ≥ 1; then, the term 1 − S does not represent a dryness condition 

and is not considered in the calculation; DS is the ratio of the number of dry months to the total 

number of months (length) of the growing season in the given year; A month was considered 

dry if its UNEP AI was<0.5; TF is the frequency of drought occurrences during the growing 

season (five months) over the whole study period 1941–2015; thus, it is a constant value for all 

the time series. 

Each state MCDI was then standardized (SMCDI) after testing the normality of, and/or 

normalizing, the dataset of the given MCDI. To calculate a regional average time series of 

SMCDI, Thiessen polygons were constructed using GIS tools, as shown in figure 6.3. The 

regional SMCDI was validated by comparing it with the June-October regional Standardized 

Precipitation Index, SPI (Mckee et. al., 1993). In this regard, the correlation between the two 

indices was investigated using the non-parametric Kendall tau correlation test (Kanji, 1993). 

Further validation was performed by comparing the synchronization and frequency of 

occurrence of drought and wet events as assessed by the two indices. The SPI time series was 

calculated following the same statistical procedure as described above for SMCDI, i.e. by 

testing the normality of, normalizing and/or standardizing the precipitation data. The 

development and use of the SMCDI in this study are justifiable for several reasons. First, the 

MDCI presented in Eq. (6.1) was tested for a large arid drought risk to food crops on both 

entire- and early-growing season scales (Elagib, 2015, 2014). Second, it was also able to capture 

the main drought events and El Nino – Southern Oscillation episodes that occurred in the region 
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(Elagib, 2014). Third, unlike other standardized drought indices (e.g. SPI; Standardized 

Precipitation Evapotranspiration Index, SPEI), it involves not only drought severity but also 

other drought characteristics, such as dry spells and time frequency of drought, as shown in Eq. 

(6.1). 

For the spatial analysis of drought, the SMCDI was based on the gridded meteorological 

data. Each year was considered separately to calculate the MCDI, using the UNEP AI for all 

the pixels covering El Gedaref State, and to standardize the pixel MCDI based on the state-wide 

average and standard deviation of the MCDI for the given year.  

 

Fig. 6.3. Polygons represented by the meteorological stations as constructed by GIS. 

6.2.5. Analysis of regime shift, vulnerability and resilience of sorghum production 

To investigate the performance of sorghum production in the region under study, two 

approaches were followed. In the first approach, the regime shift analysis was performed over 

the study period using the Regime Shift Detector (RSD) software (Rodionov, 2004) in order to 

shed light on the significant change in the mean of sorghum statistics. The other approach 

utilized both the yield and SMCDI to classify the sorghum yield in terms of vulnerability and 

resilience during the dry and wet years. Simelton et. al. (2009) separated the vulnerable from 

the resilient cases by defining the former as years when significant harvest losses occurred 

despite only minor droughts, and the latter as years when harvest losses were minimal under a 

major drought. In the present study, six sorghum yield situations were explored, namely drought 

vulnerable (DV: yield loss under drought), drought resilient (DR: yield gain under drought), 
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near-normal climate resilient (NNR: yield gain under near-normal climatic condition), near-

normal climate vulnerable (NNV: yield loss under near-normal climatic condition), wet 

vulnerable (WV: yield loss under wetness), and wet resilient (WR: yield gain under wet 

condition). It is worth mentioning that vulnerability (crop losses) could occur not only under 

extreme drought conditions, but also under extreme wet conditions due to oversaturation. 

Without a prior removal of the effect of technology and other management measures taken 

by the farmers, using detrending techniques, one cannot use the yield data to establish a 

correlation with climatic elements, or infer the risk of climate (see for example, Elagib, 2015, 

2014; Zhang, 2004; Nicholls, 1997). In other words, only the so-called “climatic yield” or the 

yield due to climate conditions can reflect such a crop yield-climate relationship. To do this, 

the trend in sorghum yield was removed over each regime shift period in the time series 

independently using linear regression to remove the non-climatic effects (e.g. technology, 

management, etc.); then, the resulting residuals were normalized by the linear regression to 

generate a dataset of yield anomalies or production levels (see Elagib (2014)). Negative 

anomalies refer to yield losses whereas positive anomalies indicate yield gains. Those 

anomalies were then compared with the SMCDI values considering three main climatic 

categories (drought, near normal and wet), each of which was further sub-divided to identify 

the years with sorghum vulnerability and resilience according to the six classes as defined 

earlier. 

6.2.6. Vegetation productivity indices 

Both the NDVI and Vegetation Condition Index (VCI) are used for drought detection and 

tracking; however, the former is “a better indicator of soil moisture than precipitation” 

(Nicholson et al., 1990) whereas the latter better portrays precipitation dynamics (Kogan, 1990). 

Since the study under evaluation herein concerns drought vulnerability of the farming system, 

the use of integrated NDVI (iNDVI), as a productivity index (Al Zayed and Elagib, 2017), over 

the potential growing season (June to October) is relevant rather than the decadal NDVI. To 

assess the vegetation or drought condition, the use of iNDVI also seems more appropriate than 

the average NDVI because it thus refers to vegetation or drought in terms of productivity. With 

reference to Al Zayed et al. (2015), the Modified Vegetation Condition Index (MVCI) was 

calculated on a spatial basis rather than temporally. This way, the MVCI can be used herein to 

assess the scalar, spatial ‘vegetation productivity drought’ for a particular year as follows: 

     MVCI = 100 ×
iNDVI𝑖−iNDVImin

iNDVImax−iNDVImin
                                          (6.2) 



Chapter 6 - Crop vulnerability and resilience to climate in rainfed schemes  

 

123 
 

where iNDVIi is the integral (or sum) of the growing season decadal NDVI values of the 

present image pixel, and iNDVImax and iNDVImin are the maximum and the minimum 

iNDVIs, respectively, of the given area under consideration. Note that MVCI qualitatively 

(rather than quantitatively) reveals the persistently dry or wet areas over the years (Al Zayed et 

al., 2015) in terms of growing-season vegetation productivity or greenness. Following Bhuiyan 

et al. (2017), the present study used the following classifications of indices for drought-related 

vegetation or moisture-related stresses to define the MVCI: 0 ≤ Extreme drought < 10; 10 ≤ 

Severe drought <20; 20 ≤ Moderate drought <30; 30 ≤ Mild drought <4 0; No drought ≥ 40. In 

the present research work, the analysis of vegetation productivity indices was confined to El 

Gedaref State case study. 

6.2.7. Trend analysis 

The Kendall tau correlation test (Kanji, 1993) was used whenever a decreasing or an 

increasing trend in a climatic or a vegetation index was necessary to be examined. 

6.3. Results and discussion 

6.3.1. Drought and wetness during the period 1941–2015 

The three drought characteristics used to derive the MCDI for the six stations are shown in 

figure 6.4 based on the AI < 0.5 condition. The figure shows that three stations, namely 

Shambat, Wad Medani, and Kassala, are usually under drought, Sennar has a fluctuating 

drought and non-drought conditions, El Gedaref experiences drought only very infrequently 

while Ed Damazin is always under wet conditions. The dry spell over the growing season during 

the period 1941–2015 varies widely among the stations. Shambat has 4–5 dry months, Wad 

Medani and Kassala experience 2–5 dry months, El Gedaref indicates 0–4 dry months, Sennar 

shows 1–5 dry months and Ed Damazin reveals 0–3 dry months. The total cases of drought 

during the entire 75-year period range from 31% at Ed Damzin station to 95% at Shambat 

station. The above results reveal in general that the northern part of the study area is more 

vulnerable to drought than the southern part. 

The developed regional SMCDI time series was divided into quantiles (using deciles) to 

classify the severity of drought into 10 main classes as shown in Table 6.2. However, an extra 

class, namely normal, was added in Table 6.2 to the main ten classes in case SMCDI is 0. 

Accordingly, a positive SMCDI indicates drought and vice versa, and the classes range from 

extreme drought to extremely wet. The SMCDI time series in figure (6.5a) that was compared 

with that of SPI in figure (6.5b) gave a Kendall tau of −0.749 at a significance level of 0.0001. 
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Furthermore, the SMCDI matched the SPI in the occurrence of 34 dry cases and 27 wet cases, 

i.e. 61 out of a total of 75 dry and wet events. This result indicates that the SMCDI is accurate 

in synchronizing 81.3% of the widely accepted SPI events. Both results thus indicate reasonable 

reliability of the developed SMCDI. Figure 6.5a reveals that until the end of the 1960s, there 

were only 5 drought years of mild to moderate severity and at least 11 severely to extremely 

wet years. The period extending from 1980 to 1991 witnessed consecutive drought conditions 

interrupted by only 2 wet years, viz. 1988 and 1989. Exceptionally heavy rainfall event in early 

August 1988 (Hulme and Trilsbach, 1989) was reported to cause severe flooding (Sutcliffe et. 

al., 1989). The 1980s represent the period notoriously known for the Sahel drought which 

culminated in the year 1984 (Hulme, 2001, 1990; Nicholson, 1985). During this period, a 

drought occurred with varying severities, i.e. 2 mild, 2 moderate, 2 severe and 1 extreme. 

Although the region somewhat recovered in the following two decades with 7 mildly to 

extremely wet years, still 12 drought years characterized this period, during which a 5-year long 

drought (2009–2013) took place. Extremely wet conditions occurred in the years 1999, 2007 

and 2014. Evidence of devastating river flooding in for example 1998 and 2007 in Kassala State 

was reported by Amarnath et. al. (2016). 

 

 

 

 

 

 

 

 

Fig. 6.4. Components of the 

multi-criterial drought index 

(MCDI) for the stations under 

consideration obtained using 

the ratio of rainfall to grass 

reference evapotranspiration: 

(a) Dry spell; (b) Drought 

severity; (c) Time frequency. 

 



Chapter 6 - Crop vulnerability and resilience to climate in rainfed schemes  

 

125 
 

Table 6.2. Drought and wetness classes for the standardized multi-criteria drought index 

(SMCDI). 

Class Range 

Extremely wet < −0.69 

Severely wet −0.69 to < −0.41  

Moderately wet −0.41 to < −0.14  

Mildly wet −0.14 to < −0.04  

Near normal (or incipient wet) −0.04 to < 0  

Normal 0 

Near normal (or incipient 

drought) 

> 0 to 0.11 

Mild drought > 0.11 to 0.34 

Moderate drought > 0.34 to 0.64 

Severe drought > 0.64 to 1.87 

Extreme drought > 1.87 

 

     

Fig.  6.5. Regional drought assessed by polygon-based average: (a) multi-criterial drought index 

(MCDI) compared to (b) Standardized Precipitation Index (SPI). 
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6.3.2. Performance of regional sorghum production during 1970–2016 

The sorghum production statistics obtained during 1970–2016 are given in figure 6.6, with 

the regime shift means indicated on the time series and additionally summarized in Table 6.3. 

Three time series, namely planted area, harvested area, and yield, experienced significant 

changes in means in the early 1980s (1980 or 1982). The production also witnessed a significant 

change in the mid of this decade. These changes prominently concurred with the decade of the 

Sahel drought. Both the planted and harvested areas of sorghum have increased in the study 

region (Fig. 6.6 a and b). However, the former witnessed three different increases over the study 

period, with the greatest increase of 2.43 times being during the 1980s whereas the longest 

occurred over 18 years starting from 1991 (Table 6.3). The last shift in the mean sorghum 

planted area occurred towards the end of the first decade of the 21st century, i.e. in 2009. The 

harvested area had a prolonged shift in mean of 2.66 times over three and a half decades (Table 

6.3; Fig. 6.6b). It is only until 2009 that a regime shift in the area lost at harvest occurred: from 

∼542,300 ha to ∼1,690,100 ha (Table 6.3; Fig. 6.6c). On average, the ratio of the harvested-to-

planted area indicates a drastic area loss at harvest of ∼20% doubling to ∼40% during the last 

decade and, additionally, with high variability from year to year (Fig. 6.4d). The average total 

production of sorghum increased from 743.7 million kg during the first 15 years to 1524.9 

million kg, i.e. doubled during the next decade and a half (Fig. 6.6e and Table 6.3). Since 1999, 

the average production of sorghum decreased by 33%. This period reflects the distraction of the 

country’s economic attention from agricultural production to the oil industry before the 

secession of South Sudan in 2011 where 75% of the explored oil existed. It is interesting to 

notice from figure 6.6e that, despite the varying levels of production from one year to another, 

there has been a tendency towards increasing levels again following the separation of the two 

countries. Finally, with all the above shifts in sorghum statistics, the yield levels have decreased 

significantly from 744.3 to 476.6 kg/ha since 1982. 

6.3.3. Resilience and vulnerability of sorghum yield to climate during 1970-2015 

Figure 6.7 shows the classification of the regional sorghum yield as being climate vulnerable 

or resilient over the 46-year study period (1970–2015). During the same period, 23 mild to 

extreme droughts and 17 mild to extreme wet cases can be identified (Fig. 6.5a). Based on the 

anomalies of sorghum yield and SMCDI, 13 drought resilient years, 10 drought vulnerable 

years, 1 near-normal resilient years, 5 near-normal vulnerable years, 6 wet resilient years and 

11 wet vulnerable years can be identified.  
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Fig. 6.6. Time series of particulars of mechanized sorghum farming and corresponding regime 

shift detection: (a) Planted area; (b) Harvested area; (c) Area lost at harvest; (d) Harvested-to-

planted area ratio; (e) Production; (f) Yield. M = Million. 

 

Table 6.3. Summary of results of the regime shift analysis. 

Year Length of shift (years) Significance level, p Ratio of present to past means Mean 

Planted area (1000 ha)    
1970 11   1061.0 

1981 10 0.0001 2.43 2578.5 

1991 18 0.0112 1.24 3193.5 

2009 8 0.0001 1.38 4411.2 

Harvested Area (1000 ha)    
1970 11   0893.7 

1981 36 0.0001 2.66 2381.2 

Area lost at harvest (1000 ha)    
1970 39   0542.3 

2009 8 0.0064 3.16 1690.1 

Production (million kg)    
1970 15   0743.7 

1985 14 0.0010 2.00 1524.9 

1999 18 0.1070 0.75 1017.3 

Yield (kg/ha)    
1970 12   744.3 

1982 35 0.0001 0.65 476.6 
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The occurrence of regional yield losses and gains under both dry and wet years suggests that 

the mechanized sorghum yield was highly variable in terms of vulnerability and resilience 

during the period of investigation. For instance, the yield of the regional mechanized rainfed 

sorghum was drought vulnerable in 1981–1984, 1995, 2000 and 2009, which were reported as 

salient meteorological drought years in the region according to Elagib (2009, 2014), Elagib and 

Elhag (2011) and Sulieman and Elagib (2012). However, years known to be dry on the record 

like 1970, 1990 and 1991 (Elagib (2014, 2009); Elagib and Elhag (2011); Sulieman and Elagib 

(2012)) are herein indicated as sorghum yield wet vulnerable in the first case but drought 

resilient in the other two cases. On the other hand, wet years like 1999, 2003 and 2006 in El 

Gedaref region (Sulieman and Elagib, 2012) or like 2003 and 2007 in Kassala State (Amarnath 

et. al., 2016) are classified herein for the regional sorghum yield as wet vulnerable (three years) 

or wet resilient (one year). 

 

Fig. 6.7. The occurrence of drought and wetness resilience and vulnerability of sorghum. 

The above findings indicate that sorghum production could, in fact, become vulnerable or 

resilient to both drought and wet conditions. Such results can be attributed to several factors. 

Although rainfall characteristics, such as onset (and in turn sowing date), distribution over the 

season and variability (Bussmann et. al., 2016; Elagib, 2015; Sulieman and Elagib, 2012) are 

in particular very important determinants of the crop yield. The instability of sorghum 

production can be influenced by several other factors that are perceived differently by farmers 

and agriculture experts and that have varying impacts from one year to another (Bussmann et. 

al., 2016). Among these factors, Bussmann et. al. (2016) identified degraded soil characteristics 

as a result of monoculture, limited crop rotation and neglected fallow periods, sorghum variety, 

weeds and parasites, and use of machinery, all of which in turn depend on socio-economic 

conditions, and finally institutional framework. Mustafa (2006) also elaborated on the factor of 

large fluctuations in agricultural inputs that affect production-related decisions and delay the 

agricultural development. These inputs include the financial constraints, as the majority of 

farmers depends on substantial amounts of loans to finance their agricultural activities and the 

high cost of labor, lack of infrastructures, absence of effective extension services and lack of 

knowledge about the use of technologies. Biro et. al. (2013) considers the rapid land use and 

land cover changes responsible for land degradation (change of the physical and chemical 
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properties of the soil) occurring in the agricultural areas. Even though farmers may be well 

aware of various forms of soil degradation that are taking place on their cultivated lands, the 

mitigation measures adopted by them may not be sufficient to restore the soil fertility (Sulieman 

and Buchroithner, 2009). 

6.3.4. Case of El Gedaref State 

6.3.4.1. Temporal variation in climatic factors and productivity indices 

Figure 6.8a shows the time series of the areal average (2001–2014) of precipitation, 

temperature and potential evapotranspiration (PET) over the growing season (June to October) 

for El Gedaref State. Over this period, the precipitation and temperature show ups and downs 

but no significant trends could be found using the non-parametric Kendall tau correlation test. 

However, the figure clearly shows successive below-average precipitation (521.8 mm) from 

2009 to 2013. Additionally, the PET is persistently increasing at a significant rate (p=0.0012), 

as per Kendall tau correlation test. Consecutively, the low P/PET ratio is recognizable over 

2009–2013 (Fig. 8b) and indicates an overall semi-arid condition for the growing season. Years 

such as 2003 and 2007, which had high rainfall amounts and UNEP aridity indices, had 

noticeably high iNDVI values (Fig. 6.8c). Both the iNDVI and the sorghum yield (Fig. 6.8c and 

d, respectively) show decreasing trends, though insignificant, in El Gedaref State during the 

period spanning from 2001 through 2014. The decline in the sorghum yield/iNDVI could be 

attributed mainly to the drought conditions, especially during the years extending from 2009 

through 2013 (Fig. 6.8b). In view of the approximate approach adopted in this study to extract 

the land use area of sorghum, more detailed quantitative analysis over a longer period is needed 

to support with confidence the use of iNDVI as a proxy for sorghum yield in this state. 

6.3.4.2. Spatial variation in climatic and vegetation-related drought indices 

The SMCDI-based spatial distribution of drought zones across El Gedaref State (Fig. 6.9) 

shows a northwest-to-southeast gradient of the dry-to-wet conditions in most of the years. 

However, there is still a remarkable spatial variation in the degree of drought condition from 

one year to another. Based on the areal average SMCDI, the year 2009 was the driest within the 

data period followed by the year 2003 when SMCDIs of only −0.17 and −0.18 were obtained, 

respectively. However, the latter year had the most spatially variable SMCDI values. It is worth 

mentioning here that the average value may not always be a good sign in arid areas. For 

instance, the state average iNDVI shows that the year 2003 had the highest value (iNDVI=5.78) 

within the study period followed by the year 2007 (iNDVI=5.58). In these two years, the most 
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unproductive part of the state in the northwest shows a diminishing zone of iNDVI ≤ 3 (Fig. 

6.10a). 

 

Fig. 6.8. Temporal areal average growing season (a) precipitation, temperature and potential 

evapotranspiration (PET) and (b) UNEP aridity index (AI), c) productivity index and d) 

sorghum yield for El Gedaref State.  

Based on MVCI (Fig. 6.10b), the years 2003, 2007 and 2009 show area average MVCI 

values of 48% (best productivity conditions), 46% (second best productivity condition) and 

37% (second worst productivity condition), respectively. Despite the variations in drought 

characterizations as obtained by the areal average values, the three indices, i.e. SMCDI, iNDVI, 

and MVCI, still show a consistent northwest-to-southeast gradient of drought to-wet conditions 

and productive-to-non-productive conditions. The areal averages of both iNDVI and MVCI 

reflect low vegetation productivity (or noticeable drought conditions) during the last years of 

the investigation period, namely 2009-2014. As for iNDVI, all years except 2012 had iNDVI 

of <5. Using MVCI, values below 40% (drought) also characterized all the years except 2012. 

The year 2011 had the lowest iNDVI (4.2) and MVCI (33%) within the period 2001–2014. 

These observations could be taken as signs of a drought vulnerable region for rainfed 

agriculture. During the study period, the area of El Gedaref State under mild to extreme 

droughts as assessed by SMCDI ranged from 20% in 2014 to 40% in 2003 with an average of 

33% (Fig. 6.11). 
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Fig. 6.9. Spatial distribution of drought zones in El Gedaref State assessed by the Standardized 

Multi-criteria Drought index (SMCDI) for the growing season.  

During the same period, there seems to be a tendency towards intensifying low productivity 

conditions that can be inferred from the expanding area with iNDVI <5 and MVCI < 40% (Fig. 

6.11), though the positive trend direction investigated by Kendall tau test was not significant at 

p=0.05. The area corresponding to iNDVI<5 ranged from 29% in 2003 to 72% in 2011. Based 

on MVCI < 40%, the area reached 27% and 70%, also obtained in 2003 and 2011, respectively. 

The average area during 2001–2014 was found to be 54% and 52%, respectively for the iNDVI 

and MVCI thresholds. The incompatibility in the trends of the areas inferred from the drought 

index and the two vegetation indices is, at least partly, due to the fact that SMCDI was 

calculated for all land uses unlike the vegetation indices, which were based on only green areas 

(NDVI < 0.25), as explained earlier. The results of the analysis of the three indices, as described 

above, can be placed in the context of results based on ground observations of climatic and 

sorghum yield, as indicated in previous studies. They seem to have led to similar conclusions. 

For example, Sulieman and Elagib (2012) reported for El Gedaref State that the year 2009 was 

exceptionally characterized by high temperature, poor rainfall distribution over the growing 

season and low sorghum yield.   
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Fig. 6.10. Spatial distribution of vegetation indices across El Gedaref State for the growing 

season (June to October): a) productivity index (iNDVI) and b) Modified Vegetation Condition 

Index (MVCI). 

a 

b 
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The present results on lower productivity in 2011 and better conditions in 2012 are consistent 

with those reported by Hermance et. al. (2016), who classified the growing season of the two 

years as dry and relatively wet, respectively. For their study area in El Gedaref, Hermance et. 

al. (2016) also reported a lower height of sorghum plants in 2011 than that in 2012. 

 

Fig. 6.11. Percentage area of El Gedaref State under drought and/or low productivity condition 

as measured by SMCDI > 0.11, iNDVI < 5 and MVCI < 40%. 

6.3.4.3. Production level as a function of low precipitation 

To investigate the effect of low total rainfall amount, i.e. drought, during June-October on 

the production level, the relationship between the two variables was established (Fig. 6.12). 

Obviously, low rainfall amount has a non-linear effect on the production level, with the best fit 

showing reduced effect of drought on sorghum production levels as the rainfall increases until 

an optimum amount of around 550 mm is reached. Beyond this optimum rainfall, the reduction 

in production level due to drought starts to magnify again. One can infer from the non-linearity 

and scatter of the points in this plot that factors other than just the total rainfall amount during 

the growing season play a role in defining the production level. In fact, Sulieman and Elagib 

(2012) gave an illustrative example of the prominent role played by the distribution of rain and 

rain days over the season in changing land use and land cover in El Gedaref region. This was 

exactly the reason why Elagib (2015, 2014) involved several drought characteristics, such as 

severity, frequency, and duration, in developing and applying a drought risk index for food 

crops. 
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Fig. 6.12. Sorghum production level under drought versus low growing season (June to 

October) rainfall for El Gedaref State. PL is the production level and RF stands for rainfall. 

6.4. Conclusion 

The performance of the production of the main mechanized rainfed staple crop, i.e. sorghum, 

during the period 1970–2016 has been analyzed in relation to the prevalent moisture/drought 

conditions using diverse data observed on the ground and by remote sensing. A novel SMCDI 

together with other ground- and satellite-based meteorological and vegetation indices have all 

characterized the study area as spatiotemporally prone to drought and low productivity 

conditions. 

As detected by regime shift analysis, a significant decrease in the sorghum-harvested area 

has manifested in the region despite the large agricultural extensification that is taking place. 

The total sorghum production increased during the period of the Sahel drought and doubled 

until the end of the last century when a drop occurred followed by strong ups and downs. Since 

the early 1980s, i.e. the date of peak Sahel drought, the average sorghum yield has decreased 

significantly by more than one-third its 1970s level. The current investigation has also 

characterized the mechanized rainfed sorghum production as variably vulnerable and resilient 

to drought, wet and normal moisture conditions. Since 1970, sorghum vulnerability has been as 

frequent as 57% of the years. 

With the above findings in the backdrop, and given the fact that the economy, livelihood and 

food security of Sudan are mainly relying on agricultural activities, it can be concluded that the 

mechanized rainfed sorghum production in Sudan has yet performed below average. 
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Commensurate with a global awareness of advances in technology within the farming system 

(Lobell et al., 2011; Garcia et al., 1987), mechanization of rainfed sorghum in the study area 

has not yet been able to improve the production; rather, the increase in sorghum production 

remains significantly offset by the high dependence on a combination of physio-geographic, 

socio-economic and institutional factors.  

This conclusion has its negative implications for food security in the country in the future. 

The decision making processes concerning the improvement of the sorghum agricultural sector, 

as recommended by Bussmann et. al. (2016), necessitates the understanding of the complexity 

of interdependence among the causes of such instability in the performance of mechanized 

rainfed sorghum production in the study area. There is a need to call for genuine intervention 

plans and policies toward improving the performance in the mechanized rainfed agriculture in 

Sudan, especially in terms of bridging the gap between the sorghum cultivated and harvested 

areas (or at least narrowing it) besides raising the yield. This study reiterates the 

recommendation put forth earlier by Bussmann et. al. (2016) that increasing recognition of 

rainfed agriculture is needed in Sudan to minimize the productivity losses that could lead to a 

series of consequences, including expanding the agricultural activities, increasing land 

degradation, conflict over resources, food insecurity and rural-urban migration. To reduce the 

sorghum vulnerability and increase the sorghum yield, several measures seem appropriate 

including improved technological packages, governmental incentives, infrastructure, basic 

services, and credit system (Mustafa, 2006). Foley et. al. (2011) suggest increasing the 

resilience of the food system for a cultivated planet through new practices. For India, Kumar 

et. al. (2018) stated that the categorization of rainfed agriculture and interventions should be 

based on agro-climatic conditions and hydro-meteorological parameters. Adopting this 

approach seems to be appropriate for the present study region. For instance, Sulieman and 

Buchroithner (2009) recommended the application of appropriate fertilizers, rotational 

cropping system and prolonged fallow periods. 
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7.1. Synopsis 

The current research was conducted to study the nexus between water, food, and climate in 

the NB region, using mainly EO datasets in addition to other primary and secondary data. In 

this area, agriculture is not only considered as the backbone of food security and the main 

source of livelihood for the local people but also as the main water consumer. Selecting the 

agriculture systems in Sudan as a central focus of the current research was due to the low 

performance of the rainfed and irrigated agriculture schemes which suggests huge potentials 

to contribute to water and food security in the NB region. This research followed a multi-

disciplinary and multi-scale approach to identify potential synergies and trade-offs of the 

WFC Nexus within and across spatial scales. We investigated the nexus between the three 

systems on four different scales: (i) country, (ii) river basin, (iii) agriculture scheme and (iv) 

field. This approach is helpful to connect the strategic level (country) with operational levels 

(basin, scheme, and field). The analysis conducted in this research proved the usefulness of 

integrating different methodologies and datasets, especially EO datasets to identify and 

quantify these synergies and trade-offs. This integration has provided unprecedented spatial 

and temporal coverage that was not available for the study region. Besides, the current 

research suggested innovative approaches on how the EO dataset can be employed and 

augmented with other datasets for WFC Nexus analysis. Shedding lights on the potential 

interactions between the water, food and climate is critical for policy intervention that seeks to 

enhance water and food security under climate variability while ensuring the sustainability of 

natural resources.  

7.2. Synthesis 

The NPP, WUE, and CUE are important indicators to detect the behavior and functionality 

of vegetation, which represent the main source for food and major sink for the atmospheric 

CO2 (Ardö, 2015; Zhao and Running, 2010). Comparing the magnitudes of the three 

indicators and their sensitivity and feedback to climate variation on the country scale (chapter 

3), taking Sudan and Ethiopia as examples, provided essential knowledge that could lead to 

better policies for land cover management. The results of the current research showed that 

most land cover types in Sudan are characterized by relatively low annual precipitation and 

evapotranspiration levels and higher temperatures compared to Ethiopia. This difference in 

the prevailing climatic conditions is the main responsible factor of the varying magnitudes of 

NPP, WUE, and CUE calculated for the different land covers in the two countries (Liu et. al., 

2016; Tang et. al., 2014). Generally, all the land cover types in Sudan exhibit lower 
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magnitudes in the three indicators compared to their counterparts in Ethiopia. This implies 

that the land cover types in Sudan are less efficient in terms of vegetation productivity and 

water/carbon use compared to those in Ethiopia. The noticeable increase in NPP, WUE, and 

CUE of the land cover types in Sudan in the years between 2009-2013 implies a relative 

enhancement in the vegetation conditions in these years, though their magnitude stills lower 

than those detected for Ethiopia. 

The current investigation confirmed that climate variability and drought conditions have 

different effects on the different land cover types and the response of these land cover types to 

such variability is, to a large extent, controlled by the climate regime prevailing in the area in 

addition to other factors such as vegetation type, soil properties, water, and nutrient 

availability. The NPP in the studied land cover types showed relatively higher resistivity to 

drought in Sudan compared to those located in Ethiopia. This could be explained by the fact 

that vegetations that grow under climate stress might develop mechanisms (e.g. decreasing 

transpiration) to cope with such harsh climate conditions (Basu et. al., 2016; El-Sharkawy, 

2007). The current research found that whereas the evergreen broadleaf forests and woody 

savannah in Ethiopia exhibit the highest NPP levels, savannah is the land cover with the 

highest NPP in Sudan. Savannah, grasslands and open shrublands are the most sensitive land 

cover types to drought, and a cumulative drought of a duration of three months is largely 

controlling the annual variability in NPP of these land cover types, especially in Ethiopia.  

Duration of drought, its association with changes in temperature, timing and spatial extent 

of drought were found to control the impact of drought on vegetation NPP. Long-lasting 

drought conditions such as drought events in two successive years (e.g. 2001 and 2002) might 

induce a considerable decrease in NPP. Drought at the start of the season might lead to a 

larger reduction in NPP compared to a drought occurs at other stages of crop development. 

The lack of immediate response of vegetation to climate variability, especially in Sudan, 

might be a result of the intervention of other factors rather than climate (e.g. soil properties, 

nutrient availability, and technological solutions). Drought might increase WUE due to a 

decrease of water losses from the vegetation as a mechanism to cope with water stress 

conditions (Dong et al., 2011; Reichstein et al., 2002). This is evidenced by the case of NPP 

changes in Sudan during the dry year of 2009. CUE of the land covers in Ethiopia was found 

to be not regulated by water availability, as they show less inter-annual variability compared 

to those located in Sudan. These results have implications for food security and climate 

change mitigation in the two countries.    
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Adequate monitoring of precipitation is important for water and food security policies.   

Analysis of the regional setting in the larger NB region (chapter 2) emphasized the 

importance of the BNB, not only for the two riparian countries; i.e. Ethiopia and Sudan, but 

also for Egypt and the whole Nile River system. As the river basin is considered as the basic 

unit for water management (Newson, 1997; Teclaff, 1967; White, 1957), the BNB needs to be 

managed beyond the political boundaries. On the basin level, precipitation represents the main 

water source that needs to be monitored properly. Inadequate monitoring network of 

precipitation is seriously affecting the water management in the basin. Therefore, PPs could 

be considered as a potential alternative to ground monitoring network that has limited ground 

stations. However, they provide variable precipitation estimations and exhibit different spatial 

and temporal representations of precipitation on the basin scale. The results of the current 

analysis revealed large discrepancies between 17 studied PPs, which requires careful use of 

these products, preferably after bias correction.  

Agriculture systems in the NB can be divided into two main types; i.e. irrigated and 

rainfed. Within the BNB, rainfed and irrigated schemes show low performance with low 

levels of yield in the main cereal crops (e.g. sorghum).  Therefore, these schemes have a large 

room to produce more food from the same cultivated area and large potentialities to save 

water resources. In both sectors, the cultivated area shows a noticeable increase during the last 

few decades. However, this large horizontal expansion (extensification) in the cropland area 

did not couple with a parallel vertical development that includes substantial improvement in 

crop yield. The current research analyzed the performance of irrigated and rainfed schemes in 

the BNB, mainly those located in central and eastern Sudan and represent the main sorghum 

production area in the country. Assessing the performance of these schemes is critical to 

navigating the development and implementation of development pathways in the agriculture 

sector that aims at securing food production.   

In the Gezira Irrigation Scheme, as an example of the irrigated sector, many factors of 

physical, socio-economic, and management nature are affecting the sorghum yield. Among all 

the studied factors, access to water, as represented by the location of farmland along tertiary 

canals, and farmer’s financial status were found to be the most influential factors. It is 

believed that addressing some of the main influential factors would affect other factors, as 

many of them showed interlinkages. The identified controlling factors on crop yield could be 

considered as entry points for SI in the scheme. The developed conceptual framework for SI 
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presented in the current research aims not only at targeting crop yield enhancement but also at 

promoting a healthy environment, improved livelihood, and a growing economy.  

Besides the low yield levels of sorghum, a drastic loss of area at harvest took place in the 

rainfed sector during the period 1970–2016. The yield gap and the losses at harvest, if 

reduced, have the potential to boost the total production of these schemes. Consequently, this 

would reduce the pressure on other important land covers types that are important for climate 

change mitigation and experiencing declining trends. As some of these land cover types are 

playing a key role as carbon sinks as sources for water production, preserving them is highly 

crucial for mitigating climate change. On the other hand, enhancing crop production in the 

rainfed sector would relieve some pressure on the limited river waters that are subject to 

transboundary conflict, as discussed in chapter 2.   

7.3. Perspectives 

7.3.1. Synergies and trade-offs on the country scale 

➢ The low NPP, WUE, and CUE in the land cover types in Sudan compared to their 

counterparts in Ethiopia, especially for croplands, implies large rooms for improvement 

of vegetation productivity and efficiencies of water and carbon use in Sudan.  

➢ The impact of climate variability on NPP is a good indicator of the anticipated impact 

on crop yield. Developing policies to cope with the impact of climate variability (e.g. 

improved seeds, climate insurance, and rainwater harvesting) would strengthen the 

abilities to face such external drivers.  

➢ Some of the studied land cover types, especially the evergreen broadleaf forests, woody 

savannah and permanent wetlands in Ethiopia represent important sinks for CO2, as 

exhibited by their high NPP and CUE levels. This suggests that a special focus should 

be given to protect these land cover types. Converting natural vegetation into croplands 

should be evaluated carefully and should take into consideration the vital functions 

these land cover paly in the carbon cycle.  

7.3.2. Synergies and trade-offs on the river basin scale 

➢ As a basic unit for water resources management, managing water in the BNB currently 

is lacking a basin perspective. This has its implications on water and food production in 

the basin. For example, water harvesting might increase the water availability in some 
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parts of the basin while relieving the pressure on the limited river water that is needed 

in other drier and more vulnerable parts of the basin to water stress.  

➢ Precipitation is not only the main source of water in the BNB, but it also represents the 

most important source of water to sustain food production in the basin. Because most 

of the agricultural land in the BNB is under the rainfed system, inadequate monitoring 

of precipitation and its characteristics is responsible for large losses in crop yield and it 

is jeopardizing food security in the basin. For example, the unavailability of continuous 

precipitation monitoring may lead to wrong decisions regarding water availability and 

consequently, on agricultural field practices such as selecting the sowing date, which 

may result in serious implications on crop yield.  

➢ The availability of the PPs could be considered as an approach to mitigate the 

disadvantage of weak ground precipitation monitoring. However, their performance 

over the basin in the studied timeframe is rather diverse and might also lead to wrong 

decisions regarding water resources management. For example, the total amount of 

precipitation falling annually over the BNB could be estimated by the annual average 

precipitation rate as calculated from any of the PPs. However, when the area of the 

basin (307,177 km2) is considered, this total amount could range between 202.58 

(−32.25%) and 532.71 (+78.16%) billion m3 when the products of ARC 2.0 and ERA-

Interim are used, respectively. This big difference requires a careful quality assessment 

of these products for water resources planning and management.  

➢ The short duration of the rainy season (June-October) in the basin calls for water 

harvesting to be practiced to increase the water storage capacities. Water storage would 

play a key role in increasing water availability as it helps in transferring water 

temporally across seasons from wet to dry seasons (November-May) and spatially from 

dry to wet regions.  

7.3.3. Synergies and trade-offs on irrigated scheme scale 

➢ The Gezira scheme has large potentials that are still untapped. In the current research, it 

was calculated that the sorghum production in this scheme can be tripled if the yield 

gap between the actual and potential/attainable yields is bridged.  

➢ Stabilizing the yield of sorghum and bridging the yield gap would provide more food 

without the need to cultivate additional land. The interventions should take into 

consideration the spatial and temporal dimensions of the yield gap. 
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➢ A paradigm shift towards SI in such underperforming schemes using the identified 

entry points and their proposed measures would maximize the crop production and 

would not only minimize the environmental problems related to agriculture activities 

but would also contribute to enhancing the socio-economic status of the local farmers.  

➢ More efficient water management in the scheme would help in securing water 

resources to irrigate additional areas within and/or outside the scheme or to be used for 

other purposes. 

7.3.4. Synergies and trade-offs on rainfed scheme scale 

➢ The current performance of this system is below average, and it has experienced a 

steady decline in sorghum yield, high variability from year to year and substantial loss 

of area at harvest during the last decades. Enhancing the performance of the rainfed 

agriculture in Sudan would minimize the need for unsustainable extensification of 

agriculture that took place in this sector during the last few decades. Additionally, 

focusing on increasing crop yield under the rainfed system would minimize the need 

for using surface and groundwater in irrigation. 

➢ The association of vulnerability and resilience of sorghum production with wet and dry 

conditions, respectively, indicates that non-climatic factors such as technological and 

socio-economic factors are playing key roles. The strong dependence of sorghum 

vulnerability and resilience on a combination of physio-geographic, socio-economic 

and institutional factors might hinder improving the production. However, at the same 

time, it offers an opportunity, if the interactions are well understood and properly 

addressed, to offset the impacts of climate variability on crop yield. Examples of such 

interventions include, for instance, improved technological packages, governmental 

policies, infrastructure and credit systems. 

7.3.5. Synergies and trade-offs on the field scale 

➢ The sorghum yield in the Gezira Scheme is affected by several field practices. It can be 

concluded that even small interventions at the field scale, like adjusting the sowing date 

or preparing the farmland early, could have positive impacts on the total production of 

the scheme. Many of these factors have synergies and trade-offs with each other. 

Therefore, addressing some of them might induce changes in other related factors. For 

example, securing water sources and early preparation of land would help farmers to 

adjust the sowing date, which could contribute to increasing the crop yield.  
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➢ The loss of area at harvest in the mechanized rainfed system has reached 1.69 million 

ha in the years post-2009, which represents approximately 40% of the total planted 

area. Solutions to reduce this on the field scale could boost the total production of 

sorghum in this system.    

7.3.6. Cross-scale synergies and trade-offs  

➢ Bridging the yield gap and increasing efficiency on a field scale and implementing SI 

in the underperforming agriculture schemes means more food to be produced and 

substantial savings in the water resources can be assured. The saved water in the 

irrigated system would increase water availability on a basin scale for other users or for 

cultivating more areas, which might enhance the overall water and food security 

situation in the country. This would contribute to enhancing food security in the NB 

basin through exports and to improve water security by water savings 

➢ Rational use of natural resources in the riparian countries of the NB would minimize 

the transboundary conflict and would promote benefit sharing and cooperative 

management of the Nile waters beyond the political boundaries.  

7.4. Final Remarks 

Through the findings of this research, lights were shed on the interlinkages between water, 

food, and climate in the study region within and across spatial scales. Therefore, the results of 

this dissertation can assist to enhance our current understanding regarding the importance of 

the nexus approach to improve water and food security under climate variability and for 

mitigating climate change. A holistic way of systems management is more effective than the 

silo approach, which is characterized by governing each system in isolation from the other 

ones. The findings of the current study are useful for researchers, policy-makers and local 

farmers. For researchers, it provides innovative approaches on how EO data can be used to 

provide unprecedented knowledge on the interactions between water, food, and climate over 

time and space. The approaches can be transferred to many areas that share similar contexts. 

As many SDGs exhibit synergies and trade-offs (Kroll et. al., 2019), policy-makers should 

consider these interlinkages when planning and taking actions.  This knowledge improves the 

understanding of how to benefit from the WFC Nexus synergies and how to reduce trade-offs. 

Mainly, it emphasizes on the importance of following a vertical development pathway that 

minimizes water use and cultivated land expansion. Although the horizontal expansion might 

help to fulfill SDG 2 on achieving zero hunger, this development pathway may have several 
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trade-offs that might affect the achievement of the other SDGs (e.g. water security (SDG 6) 

and mitigating climate change (SDG13)). For local farmers, it shows clearly that several field 

practices are contributing to the prevailing crop yield gap. Spreading knowledge among 

farmers regarding the best practices and increasing the rate of their adoption in operation is 

crucial to address the challenge of securing water and food security. 

Despite the key information that this research has provided, many areas still need more 

research in the future. For instance, (i) due to the unavailability of crop maps for the 

agricultural schemes, it was not possible to detect the productivity level, WUE, and CUE for 

specific crops and the climate variability impacts on these parameters on specific crops, (ii) 

although the performance of many public-domain precipitation products was tested using 

traditional and data mining techniques, which could be considered as an innovative 

contribution of this research, employing these products in hydrological models would shed 

light on their performance in simulating hydrological system in the BNB, and (iii) The current 

research was not intended to provide a complete list of WFC synergies and trade-offs. 

Therefore, there might be others that can be identified using, perhaps, other types of data and 

different methodologies than those used in the current investigation. 
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Appendix A: Chapter 2 

Table S2.1. List of data sources used to produce maps, tables, and graphs 
 

No. Data source Website 
1 GADM www.gadm.org/index.html 

2 WorldClim www.worldclim.org/version2 

3 GlobCover www.due.esrin.esa.int/page_globcover.php 

4 FAOSTAT www.fao.org/faostat/en/#data/QC 

5 AQUASTAT www.fao.org/nr/water/aquastat/data/query/index.html?lang=en 

6 World Bank database www.data.worldbank.org/indicator 

7 UN DESA population www.population.un.org/wpp/Download/Standard/Population/ 

 

 

  

https://gadm.org/index.html
http://worldclim.org/version2
http://due.esrin.esa.int/page_globcover.php
http://www.fao.org/faostat/en/#data/QC
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
https://data.worldbank.org/indicator
https://population.un.org/wpp/Download/Standard/Population/
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Appendix B: Chapter 3 

  

 

 

Fig. S3.1. Monthly time series of SPEI for (a) Sudan and (b) Ethiopia, with different time steps: 

1, 3, 6 and 12 months. 

 

Fig. S3.2. Spearman values of correlating NPP with precipitation, temperature, and SPEI with 

different time steps (1, 3, 6 and 12) for land cover types in Ethiopia.  
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Fig. S3.3. Spearman values of correlating NPP with precipitation, temperature and SPEI with 

different time steps (1, 3, 6 and 12) for land cover types in Sudan.  

 

Fig. S3.4. Spearman values of correlating intra-annual variation of GPP of croplands and 

shrublands in Sudan and Ethiopia with NDVI, temperature, precipitation, and SPEI with a 

drought of 1, 3, 6 and 12 months time scales. The correlation is conducted for years 2007 and 

2009. 

 

Fig. S3.5. Spearman values of correlating WUE and SPEI with a drought of 1, 3, 6 and 12 

months time scales for land cover types in Sudan. 

 

Fig. S3.6. Spearman values of correlating WUE and SPEI with a drought of 1, 3, 6 and 12 

months time scales for Land cover types in Ethiopia. 
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Fig. S3.7. Spearman values of correlating CUE and SPEI with a drought of 1, 3, 6 and 12 

months time scales for Land cover types in Sudan. 

 

Fig. S3.8. Spearman values of correlating CUE and SPEI with a drought of 1, 3, 6 and 12 

months time scales for Land cover types in Ethiopia. 
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Appendix C: Chapter 4 

Table S4.1. Summarized review of the previous studies conducted to compare different 

Public-domain precipitation products in the Blue Nile Basin (BNB) region.   

 Author(s) Area of 

study 

PPs used Temporal 

domain 

Main findings 

1 Abera et al. 

(2016) 

UBNB TRMM 3B42, 

CMORPH, 

TAMSAT, 

SM2R-CCI, and 

CFSR 

daily  

(2003-2012) 
• CMORPH, TAMSAT, and SM2R-CCI outperform 

SM2R-CCI and CFSR 

• PPs performs better in the high lands than over the 

lowlands 

2 Allam et al. 

(2016) 

UBNB CRU TS 3.0, 

TRMM 3B43, 

GPCP 

annual 

(2002-2012) 
• TRMM 3B43 is the best performing PP 

3 Ayehu et al. 

(2018) 

UBNB CHIRPS, 

TAMSAT 3.0; 

ARC 2.0 

dekadal; 

monthly 

(2000-2015) 

• CHIRPS showed better performance compared to 

ARC 2 and TAMSAT 3   

• CHIRPS showed less dependency with elevation  

4 Basheer et al. 

(2018) 

LBNB ARC 2.0, 

CHIRPS 2.0, 

PERCIANN-

CDR, TAMSAT 

Daily (1999-

2007) 
• ARC 2.0 shows the best performance compared to the 

other three PPs.  

5 Fenta et al. 

(2018) 

UBNB TAMSAT, 

CHIRPS, ARC 

daily; dekadal; 

monthly; 

seasonal 

(1995-2010)  

• The three products are underestimating rainy events 

• TAMSAT showed better performance 

• all the products underestimate moderate and heavy 

rain rates 

6 Gebremichael et 

al. (2014) 

UBNB CMORPH, 

TRMM 3B42, 

TRMM 3B42 RT 

3-hourly 

(2012-2013) 
• All the 3 PPs tend to overestimate the mean 

precipitation rate at the lowland plain sites but 

underestimate it at the highland mountain site. 

• The products are influenced by elevation 

7 Lakew et al. 

(2017) 

Gilgel 

Abbay 

(UBNB) 

CMROPH, 

TRMM 3B42, 

ECMWF 

daily  

(2000-2011) 
• PPs are better representing the Q in hydrological 

modeling when they are first calibrated independently 

• All the products underestimate the precipitation 

compared to the rain gauges values 

8 Romilly and 

Gebremichael 

(2011) 

UBNB CMORPH, 

PERSIANN, 

TRMM 3B42  

annual 

(2003-2007) 
• CMORPH and TRMM 3B42 RT are outperforming 

PERSIANN 

• CMROPH and TRMM 3B42 RT give good 

estimations for precipitation at highlands and 

overestimating precipitation at low lands  

• The elevation is influencing the performance of these 

products 

9 Sahlu et al. 

(2016) 

UBNB GPM (IMERG), 

CMORPH 

wet season: 

daily and hourly 

(2014) 

• The two products are approximately equivalent in 

performance 

• GPM (IMERG) showed relatively better performance 

compared to CMORPH. 

• The products are moderately underestimated 

precipitation.  

10 Sahlu et al. 

(2017) 

UBNB TRMM, 

CMORPH, 

PERSIANN, 

ECMWF ERA 

Interim, MSWEP 

daily 

(2000-2013) 
• CMROPH showed the best performance during the 

wet season 

• MSWEP outperforms ERA-Interim 

 

11 Valley et al. 

(2014) 

UBNB CMORPH, 

TMPA-RT v7, 

TMPA-RP v7. 

seasonal 

(2012-2013) 
• Elevation plays a role in the variation in performance 

of the products 

• The products are underestimated and overestimate 

precipitation at the low and high elevation areas, 

respectively 

• Underestimation of heavy rains and overestimation of 

the light rain are detected 

12 Worqlul et al. 

(2014) 

UBNB TRMM 3B42, 

MPEG, CFSR 

daily 

(2010) 
• MPEG and CFSR are better performing than TRMM 

3B42 

• While TRMM 3B42 is unbiased, MAPEG and CFSR 

are systematically underestimating and overestimating 

P, respectively 
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Appendix D: Chapter 5 

S5.1. Gezira Irrigation Scheme and Field survey 

 

 

Fig. S5.1. The cultivated area of the main summer crops in the Gezira Scheme for the seasons 

2000/2001 – 2016/2017. 

 

Fig. S5.2. Problems in the irrigation canals in the Gezira Scheme: (a) weeds, (b) siltation, (c) 

improper maintenance resulted in different levels in the canals and (d) broken water gates. 
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Fig. S5.3. Main crops in the Gezira Scheme: (a) cotton, (b) groundnuts (c) sorghum and (d) 

chickpea during the 2017/2018 season. 

 

 

Fig. S5.4. Summary of socio-economic characteristics of the respondent farmers: (a) the 

number of interviewees in each block, (b) age, (c) level of education and (c) source of income. 

Values inside the pie charts b, c, and d are in percentage. 
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S5.2. Consistency of iNDVI and iFAPAR datasets 

The data on iNDVI and iFAPAR indicators exhibited a significant positive correlation 

between the two indices (p < 0.01) at the pixel level. While the Spearman’s Rho (ρ) value of 

correlating multi-year average (2001-2016) of iNDVI and iFAPAR was 0.72, correlating the 

maximum value composites of iNDVI and iFAPAR revealed expectedly lower ρ of 0.4 (Fig. 

S5.5). Using all pixel values for the years 2001-2016, the relative frequency distribution shows 

similar patterns but differences in the actual relative frequency values between the two 

indicators (Fig. S5.6). CV values of the time series of the two indicators were found to be 32% 

and 30% for iNDVI and iFAPAR, respectively. However, the difference between the two 

population variances using T-test was found to be significant. On the other hand, CVs for all 

pixel values of maximum iNDVI and maximum iFAPAR were around 14% and 18% for the 

two datasets, respectively (Fig. S5.7). The result of F-test showed a significant difference 

between the two population variances. The maximum iNDVI and iFAPAR share some 

similarities in their spatial distribution (Fig. S5.8). The differences in the spatial distribution 

could be attributed mainly to the difference in their spatial resolution. These results indicate 

that the two indicators are independent. Therefore, one should take the magnitude of the 

productivity gap derived by using them with caution.   

 
Fig. S5.5. Correlation between iNDVI and iFAPAR: (a) multi-year average (2001-2016), and 

(b) maximum value composite.   
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Fig. S5.6. Relative frequency distribution of all pixel values of (a) multi-year average and (b) 

maxima of iNDVI and iFAPAR over the whole Gezira Scheme for the period 2001-2016.  

 

 

Fig. S5.7. Spatial distribution of coefficient of variation (CV) of iNDVI and iFAPAR for the 

period 2001-2016 over the Gezira Scheme.  
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Fig. S5.8. Maximum productivity levels created from the iNDVI and iFAPAR datasets for the 

years 2001-2016 using the Maximum Value Composite (MVC) method.  

 

S5.3. Cultivated area and sorghum yield in Gezira Scheme during 2015 and 2016  

Taking the years 2015 and 2016 as examples of low and high productivity levels, 

respectively, it could be noted that while there are no large differences in the cultivated areas 

of sorghum, large differences in the average yield were detected for the two years (Fig. S5.9). 

 

Fig. S5.9. Comparison between the cultivated area and average yield of sorghum for years 2015 

and 2016 at the level of administrative groups. 
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Fig. S5.10. Matrix of spearman’s Rho (ρ) values shows the degree of correlation between the 

main average sorghum yield, socio-economic factors and field practices of farmers.    

 

 

  

Average 

yield

Source of 

income
Age

No. 

household 

members

Experience 

in 

agriculture

Farm size

Location 

along 

tertiary canal

No. 

irrigation 

event

Seed 

density

Frequency 

of fertilizer 

application

Quantity of 

fertilizer

First 

irrigation

Sowing 

date

Land 

preparation

Average yield 1 0.62
** 0.1 0.12

* 0.05 0.16
**

-0.56
**

0.27
** -0.01 0.40

**
0.47

**
-0.16

**
-0.22

**
-0.22

**

Source of 

income
1 0.06 0.06 0.01 0.17

**
-0.34

**
0.22

** -0.1 0.27
**

0.30
** 0.01 -0.12

*
-0.14

**

Age 1 0.10
*

0.51
**

0.13
** -0.04 -0.02 0.09 0.04 0.04 -0.09 -0.08 -0.07

No. household 

members
1 0.09 0.06 -0.07 0.06 0.06 0.08 0.09 -0.05 -0.02 -0.03

Experience in 

agriculture
1 0.09 0.01 0.02 0.03 0.02 0.04 -0.02 -0.1 -0.07

Farm size 1 -0.16
** 0.06 -0.03 0.08 0.15

** -0.03 -0.07 -0.06

Location along 

tertiary canal
1 -0.46

** -0.04 -0.30
**

-0.37
**

0.11
*

0.12
* 0.08

No. irrigation 

event
1 0.02 0.19

**
0.14

** -0.01 0.02 0.03

Seed density 1 0.04 0.02 -0.08 0.04 0.02

No. of 

application
1 0.66

** -0.04 -0.01 -0.06

Quantity 1 -0.12
*

-0.14
**

-0.17
**

First irrigation 1 0.01 0.03

Sowing date 1 0.93
**

Land 

preparation
1

*
 Correlation is significant at p level of  0.05

**
 Correlation is significant at p level of 0.01
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Appendix E: Erklärung 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die 
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