
Two Dimensional DCT/IDCT Architecture

Authors: A. Aggoun and I. Jalloh

Address: Faculty of Computing Sciences and Engineering.

 De Montfort University, The Gateway Leicester LE1 9BH.

Contact: Dr. A. Aggoun

Tel: +44 (0)116 2577055

Fax: +44 (0)116 2577692

Email: aggoun@dmu.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Abstract:

A new fully parallel architecture for the computation of a two-dimensional (2D) discrete cosine

transform (DCT), based on the row-column decomposition is presented. It uses the same one-

dimensional (1D) DCT unit for the row and column computations and (N2+N) registers to

perform the transposition. It possesses features of regularity and modularity, and is thus well

suited for VLSI implementation. It can be used for the computation of either the forward or the

inverse 2D DCT.

Each 1D DCT unit uses N fully parallel vector inner product (VIP) units. The design of the VIP

units is based on a systematic design methodology using radix-2n arithmetic, which allows

partitioning of the elements of each vector into small groups. Array multipliers without the final

adder are used to produce the different partial product terms. This allows a more efficient use of

4:2-compressors for the accumulation of the products in the intermediate stages and reduces the

numbers of accumulators from N to 1. Using this procedure, the 2D DCT architecture requires

less than N2 multipliers (in terms of area occupied) and only 2N adders. It can compute a N×N-

point DCT at a rate of one complete transform per N cycles after an appropriate initial delay.

 3

Introduction:

The discrete cosine transform (DCT) has emerged as the most popular transform for many

image/video compression applications owing to its near optimal performances compared to the

statistically optimal Karhunen-Loeve transform [1]. Its energy compaction efficiency is also

greater then any other transform. The 2D DCT, in particular, is one of the major operations in

current image/video compression standards [2-5]. It is today the most widely used orthogonal

transform for applications including videophone, video conferencing and high definition

television.

The 2D DCT is computationally intensive and as such there is a great demand for high speed,

high throughput and short latency computing architectures. Due to the high computation

requirements, the 2D DCT processor design has been concentrated on small nonoverlapping

blocks (typical 8x8 or 16x16). Many 2D DCT algorithms have been proposed to achieve

reduction of computational complexity and thus increase the operational speed and throughput.

The various algorithms and architectures for the 2D DCT can be divided into two categories: the

row-column decomposition methods and the non-row-column decomposition methods.

Several hardware design methods for the implementation of the 2D DCT have been developed

in recent years [6-9]. Hsia et. al [6] reported an algorithm and architecture to calculate the 2D

inverse DCT (IDCT) directly by skipping the zero DCT coefficients, since they do not affect the

transform results of the IDCT. The IDCT algorithm is realised by a pipelined architecture and

modular design and it utilises pipelined combinational multipliers to decrease the critical path.

The implementation uses relatively less hardware to achieve sufficient speed for real

applications. It achieves an average pixel rate varying from 150 MHz to a maximum pixel rate

of 400 MHz when using a 50 MHz clock. The main advantage of the architecture is that it uses a

lower operation frequency to obtain a very high pixel rate. However, the disadvantage of this

 4

architecture is that it can only perform the inverse DCT. This is because it utilises the fact that in

many image coding systems, most of the DCT coefficients are quantised to zeros and that in

interframe coding the nonzero coefficients is even smaller due to the motion compensation in

sequential images. As such this system cannot be used to implement both the DCT and IDCT

using the same hardware.

Chiang et. al [7] reported a 2D DCT/IDCT architecture which utilises the overlapped row-

column operation, instead of the transpose memory, in order to reduce the total latency of the

structure. The core processor is organised into two cascaded 1D DCT/IDCT units and one

control unit. The multiplication block is implemented by using look-up tables. In order to reduce

the size of the table, the precalculated partial products of the DCT/IDCT coefficients and the

input data are stored in two separate tables. By avoiding the use of multipliers and the transpose

RAM the architecture can achieve an operation speed of up to 100 MHz. The disadvantage of

this architecture is that different structures are used for the computation of the two 1D DCT

blocks.

Fernández et. al [8] reported an 8×8 2D DCT processor using the row-column decomposition

method, based on the residue number system (RNS). The processors utilise a fast cosine

transform algorithm that requires a single multiplication stage for each signal path. Thus each

1D DCT block consists of 14 multipliers and 32 adders and subtractors. Linear combinations of

the DCT coefficients are precalculated and stored in ROMs, thus the DCT can be calculated

with look-up table multipliers. The transposition unit consists of an 8×8 matrix of registers and

multiplexers interconnected to allow the transposition of parallel input data. One of the

drawbacks of this system is the practical implementation of RNS-based systems, which

possesses serious limitations in the conversion stage. RNS-to binary conversion requires the use

 5

of 32-bit (since the input data and the selected moduli are 8-bit width) word-length adders and

large multipliers thus resulting in more hardware and degradation of system performance.

Chang and Wang [9] reported an implementation of the 2D DCT/IDCT based on the row-

column decomposition and uses a systolic array without the matrix transposition hardware. The

system is achieved in three steps and requires N2 multipliers and N2+3N adders. With a

throughput rate of one N×N-point DCT per N cycle and a pixel rate of about 320MHz, it has a

good area-time performance and it is very attractive for very high-speed applications. However,

the significant drawbacks in this work is that the architecture is not modular, it uses different

structures to achieve the two 1D DCT blocks and different structures for computing the forward

and the inverse 2D DCT.

In this paper, a new fully parallel 2D DCT/IDCT architecture using the linear systolic matrix-

vector without the RAM based matrix transposition is presented. It is shown that the architecture

is highly modular, parallel and can be used to compute both the forward and the inverse 2D

DCT. Finally, it is shown that the proposed architecture enables the realisation of the 2D DCT

with a relatively smaller hardware compared to the conventional approaches, and it also results

in an extremely regular structure such that its realisation is very simple. A new transposition

matrix is introduced which uses (N2+N) registers and N (N:1) multiplexers. This allows the

reading of N output coefficients from the 1st 1D DCT and the feeding of N coefficients to the 2nd

1D DCT in a pipelined fashion. Also, a systematic methodology, which allows the design the

vector inner products used to implement the matrix-vector multiplier is presented. It is based on

the radix-2n arithmetic which allows partitioning of the operands to n-bit digits each and hence

providing the designer with more flexibility between throughput rate and hardware cost, by

varying the digit-size n, the pipelining level and also the type of architecture. In this paper, the

radix-2B/4 vector inner product architecture is described and is used within the 2D DCT

 6

architecture, where B is the data wordlength. The resulting 2D DCT architecture is compared to

previously reported architectures.

1. The 2D DCT Algorithm

For a given 2D spatial data sequence {Xij; i, j = 0, 1, … , N-1}, the 2D DCT data sequence {Ypq

; p, q = 0, 1, … , N-1} is defined by:

N

qj
N

pi
X

N
EEY

N

i

N

j
ijqppq ��

−

=

−

=
��

�
��

� +
��

�
��

� +=
1

0

1

0 2
)12(

cos
2

)12(
cos

2 ππ
 (1)

where

�
	

≠
==

0x ,

0x ,
E x

1
21

The forward and inverse transforms are merely mappings from the spatial domain to the

transform domain and vice versa. The DCT is a separable transform and as such, the row

column decomposition can be used to evaluate equation (1). Denoting:
2

)12(
 cos ��

�
��

� +
N

lh π
by clh

and neglecting the scale factor qp EE
N
2

, the column transform can be expressed as:

1N ,... 2, 1, 0, q p,cZY
N

j
qjpjpq −==�

−

=
 ,

1

0

 (2)

and the row transform can be expressed as:

1N ,... 2, 1, 0, j p,cXZ
N

i
piijpj −==�

−

=
 ,

1

0

 (3)

In order to compute an N x N-point DCT (where N is even), N row transforms and N column

transforms need to be performed. However, by exploiting the symmetries of the cosine function,

the number of multiplications can be reduced from N2 to N2/2. In this case, each row transform

given by equation (3) can be written as matrix-vector multipliers via,

 7

�
−

=
−−−+=

1

0
)1(

2

])1([
N

i
pijiN

p
ijpj cXX Z (4)

Using a matrix notation, for N=8, equation (4) can written as

�
�
�
�

�

�

�
�
�
�

�

�

+
+
+
+

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

4030

5020

6010

7000

63626160

43424140

23222120

03020100

60

40

20

00

XX
XX

XX
XX

cccc
cccc

cccc
cccc

Z
Z

Z
Z

 (5)

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−
−

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

4030

5020

6010

7000

73727170

53525150

33323130

13121110

70

50

30

10

XX
XX

XX
XX

cccc
cccc

cccc
cccc

Z
Z

Z
Z

 (6)

Equations (5) and (6) describe the computation of the even and odd coefficients, for the row

transform for N=8, respectively. The computation for the second 1D DCT i.e. the column

transform described by equation (2) can also be computed using matrix-vector multipliers

similar to that described by equation (4). Hence both the row and column transform can be

performed using the same architecture.

The architecture for computing the row transform, for N = 8, is depicted in figure 1. It is based

on Step 1 of the systolic array implementation proposed by Chang et al [9]. It consists of N/2

adder/subtractor cells for summing and subtracting the inputs to the 1D DCT block as required

by equation (4). The pair of inputs Xij and X(N-1-i)j enters the (i+1)th adder/subtractor cell. In the

proposed architecture, all the pairs of input data enter the adder/subtractor cells at the same time.

Figure 1 shows that the architecture also consists of N vector inner products, where half are used

for the added pairs as described by equation (5) and the other half for the subtracted pairs as

described by equation (6). Each vector inner product consists of N/2 multiplier/accumulator

cells. Each cell stores one coefficient cpi in a register and evaluates one specific term over the

summation in (4). The multiplications of the terms cpi with the corresponding data are

performed simultaneously and then the resulting products are added together in parallel. This

 8

addition is carried out using carry save arithmetic modules incorporated within the multipliers

structure as will be described is section 4.

2. VLSI Architecture for the 2D DCT

The 1D DCT module accepts N samples of the input data in parallel and produces N coefficients

in parallel. The proposed 2D DCT architecture is shown in figure 2 for N=8. It is based on the

row-column algorithm and is divided into three main stages. Stage one and stage three

computes the row and column transforms, respectively. Both the row and column transforms

are implemented using the same 1D DCT module shown in figure 1. The second stage performs

the transposition using (N2+N) registers and N (N:1) multiplexers. The (N2+N) registers are

divided into two sets of (N2+N)/2 skewed registers and the data is fed from one set to the other

via the multiplexers. The 1D DCT unit accepts input vectors in parallel and produces the N

DCT coefficients in parallel. The N outputs from the row transform are fed into an array of

skewed shift registers as shown in figure 2 to enable the reading of only one coefficient from the

same output vector at any one time. This achieves the appropriate reordering of the data into the

second array of skewed registers. The skewed registers are made of N shift registers with

lengths varying from 1 to N, respectively. For simplicity the N shift registers in either arrays of

skewed registers are termed mR1 , mR2 , …, m
NR where the lower index specifies the length of the

shift register and the upper index, m, specifies either the first or the second array of skewed

register for m=1 or 2, respectively. An array of N (N:1) multiplexers is used to send the output

data to the correct shift registers in the second array of skewed registers. Each of the outputs

from the row transform is fed into one of the shift registers 1
1R , 1

2R , …, 1
NR . Each of the shift

registers, 1
1R , 1

2R , …, 1
NR , produces one output every clock cycle which is fed into one of the

shift registers, 2
1R , 2

2R , …, 2
NR via one of the (N:1) multiplexers. Figure 3 shows the utilisation

of the skewed registers during the first four cycles. In the first cycle the results of the first 1D

 9

DCT are stored in R1 as shown in figure 3a. During the second cycle, the data from 1
1R (i.e. Z00)

is fed into the shift registers 2
NR (see figure 3b). In the third cycle the data from 1

1R (Z01) is fed

into 2
1−NR and the data from 1

2R (Z10) is fed into 2
NR (see figure 3c). In the fourth cycle, the

data from 1
1R (Z02) is fed into 2

2−NR , the data from 1
2R (Z11) is fed into 2

1−NR and the data from

1
3R (Z20) is fed into 2

NR (see figure 3d). This process is continued until the entire data is

transferred. At the (N+1)th cycle the data from 1
1R (Z0,N-1) is fed to 2

1R , while the data from 1
NR

(ZN-1,0) is fed into 2
NR . At this point, the N point data incoming from the first VIP or register 1

1R

is available at the output of the registers 2
1R , 2

2R , …, 2
NR and ready to enter the column

transform as shown in figure 4 for N=8. In the following cycle the data from the second VIP or

the register 1
2R is ready to enter the column transform, while the data from the first VIP or

register 1
1R is being processed by the second 1D DCT. This process continues till all the

remaining coefficients in the skewed registers 2R have entered the column transform. Hence

after an initial delay of (N+1) cycles, the proposed architecture will output N 2D DCT

coefficients every clock cycle. Whilst the 1D DCT coefficients stored in the array of skewed

registers R2 are being processed by the second 1D DCT block, the transfer from the first 1D

DCT block into the array of the skewed registers R2 via the array of skewed registers R1 and the

array of multiplexers continues until all the input data has been processed.

For N=8, a 3-bit control signal is required to enable the 8:1 multiplexers to select one of the

eight input words. During the first cycle of the transfer of data from R1 to R2, the first

multiplexer from the right will select its port 1 as its output. In the second cycle, the second

multiplexer on the right will select port 1 as its output while the first multiplexer from the right

will select port 2 as its output and so on. Hence, the control signal is connected to all

multiplexers through delay elements as shown in figure 2.

 10

3. Radix-2n Vector inner product algorithm:

In this section the design of a fully parallel architecture for computing the product of two vectors

is presented. The proposed architecture of the vector inner product is derived from a design

methodology using radix-2n arithmetic reported by A. Aggoun et.al. [10]. To demonstrate the

proposed methodology, the inner product of the vectors Ui = cpi and Vi = Xij + (-1)p
�X(N-1-i)j

described by equation 4 is considered. Using the radix-2n arithmetic and assuming unsigned

numbers, Ui can be divided into K digits of n-bit each and can be written as [10],

�
−

=
=

1

0

2
K

r

rn
rii uU (7)

where uri represents the rth digit of the Ui. The vector inner product can be computed according to

the following equation [10],

� �
−

=

−

=

⋅=
12

0

1

0

2)(
N

i

K

r

rn
iri VuW (8)

It is worth noting that the path of the generation of the partial products is independent of the

propagation path of the accumulating partial sums as shown in figure 5. In the proposed radix-2n

design methodology, any composite summations, as that given in Equation (8), can be combined

into one. Hence equation 8 can be rewritten as,

�
−

=

=
12

0

NK

s
sWW (9)

where Ws = uri ⋅Vi⋅2rn and s=iK+r. As a result, the partial products can be carried out

simultaneously and the resulting N/2×K sums are added together in parallel. This can be carried

out using carry save arithmetic and a final carry lookahead adder.

The advantage of describing the vector inner product using the radix-2n algorithm and merging

summations, as in equation 9, is to provide designers with more flexibility not only by varying the

 11

digit size n, but also in the way the accumulation of the partial sums is carried out. This is evident

when it is realised that there are numerous ways in which the summation in equation (9) can be

decomposed; the decomposition in equation (8) being only one of those. In other words, the sum in

equation (9) can be split into several nested sums where each sum can be carried out in an

independent way using either a tree or a liner structure. Each one of these different mappings would

lead to a different architecture with its own are-time complexity. As an example, the conventional

word level VIP architecture is obtained by splitting the summation in equation (9) into the two

summations in equation (8) and performing the summation over index r first. In this paper, a new

implementation is proposed which is derived without splitting the summation in equation (9).

4. Design of a two's complement parallel vector inner product:

In this section the architecture of a two’s complement radix-2B/4 VIP, where B is the data

wordlength, is discussed. The radix-2n VIP algorithm described by equation (8) assumes

unsigned numbers. In what follows, the two's complement array multiplication proposed by

Baugh and Wooley [11] is adapted to two’s complement radix-2n multiplication. Let consider

the multiplication of two B-bit two's complement numbers, where the multiplier and the

multiplicand, Ui and Vi, are written in the form

VvV

UuU
BB

ii

BB
ii

~
2

~
2

11

11

+−=

+−=
−−

−−

 (10)

where U
~ and V

~ are (B-1)-bit positive number comprising the B-1 least significant bits of Ui and Vi,

respectively, and 1−B
iu and 1−B

iv are their most significant bits. Following the same procedure as in

[10] and [12], the multiplication of two B-bit two’s complement numbers, Ui and Vi, can be written

in a form involving only positive partial products provided that all partial products which involve a

sign bit and a nonsign bit are complemented. The final product is then obtained by adding a fixed

correction term to the final result, viz.,

 12

121112211 222)~~(~~2)(−−−−−−− −+⋅⋅+⋅+⋅+⋅⋅=⋅ BBBB
ii

B
iiii

BB
i

B
iii uVvUVUvuVU (11)

Two’s complement representation is adapted to normal multiplication by simply replacing the AND

with a NAND gate for all the partial product involving the sign bits, 1−B
iu and 1−B

iv , as can be seen

from equation (11), except for the product 11 −− ⋅ B
i

B
i vu , which is carried out using an AND gate.

In the new implementation, each of the N/2×K products, Ws, is computed using the array multiplier

shown in figure 6 for B=16 and K=4. As can be seen in figure 6, the two top carry save adders

(CSAs) and the column of full adders (FAs) involving the sign bit 1−B
iv required in conventional

array multipliers, are removed since they have empty bit positions. However, on the right hand side

of each array a column of half adders (HAs) is needed to add the two bits 10
iri vu ⋅ and 01

iri vu ⋅ and

propagate the carry bits from the top to the bottom as shown in figure 6. Each array multiplier

produces a (5B/4-1)-bit sum word and a B-bit carry word for K=4. As a result, N×K words are fed

into the accumulation path and arranged with respect to their significance as shown in figure 7 for

N/2=K=4.

The addition of the term -22B-1 is taken care of by adding a 1 to the most significant bit of the result

and the term 2B by adding a 1 to the (B+1)th column of the final result [4]. This is achieved by

extending the carry word of the products, iiK Vu ⋅− ,1 , by one nonzero bit as shown in figures 7 and 8

for the -22B-1 term and feeding a one into the empty bit position of the AND gated FA, (22
,0

−⋅ B
ii vu),

of the array multiplier which computes the product ii Vu ⋅,0 for the term 2B, as shown in figure 6 for

B=16.

The partial sums and carries from all the N/2×K multipliers are accumulated together in parallel

using carry save arithmetic implemented with 4-2 compressors as shown in figure 8. The partial

 13

sums and carries are repartitioned into digits of B/4-bit each as shown in figure 7. All the terms

with the same significance, k, are added together using an array of B/4-bit 4:2-compressors as

shown in figure 9 for k=4. The B/4-bit 4:2-compressors are obtained by interconnecting two B/4-bit

CSAs with fast input and output. The output from the first CSA with the longest path (i.e. path

through two XORs) is fed into the carry input of the second CSA. This makes the total delay

through the 4:2-compressors equivalent to three XORs. The critical path in the accumulation of the

partial sum and carry terms consists of four B/4-bit 4:2-compressors which is obtained for k=4 as

shown in figure 9. Hence, the longest delay in the accumulation of the all the sum and carry terms

is equivalent to that of six FAs.

It is worth mentioning that carry bits are propagated between the array of 4-2 compressors from

right to left. Let Pk be the array used for the accumulation of all terms with the same significance,

k. For k < 4, the output carries from the array Pk are fed directly into the carry inputs of the array

Pk+1. However, for k ≥ 4, the number of carries generated by the array Pk is greater than the number

of carry inputs available to the array Pk+1. As a result, extra FAs and/or HAs are required to

accommodate the extra carries. This is shown as an example in figure 10 for k=5, where the array

P5 takes carries from P4. Each 4-2 compressor produces two 1-bit carry outputs and has one 1-bit

carry input. Furthermore, all the 4-2 compressor of the arrays Pk, except the ones in the top, will

have an extra two 1-bit empty position, which can accommodate carry bits. To compress 24 bits

into 2 bits, the array P5 would require a total of eleven 4-2 compressors, where six are in the top

row and five in remaining stages. Hence the array P5 can take up to 21 carry bits. However, the

array P4 will produce a total of 30 carry bits, one of which is fed to the carry look ahead adder and

the remaining 29 are fed into the array P5. To take care of the remaining eight carry bits, a 1-bit and

a B/4-bit 4-2 compressors are added to the array P5 as shown in figure 10. Similarly, 4-2

compressors are added to the arrays P6 and P7 to accommodate the extra carry bits from the array P5

and P6, respectively.

 14

5. Performance analysis:

In this section, the performance of the proposed parallel 2D DCT architecture is compared with the

design proposed in [9]. The proposed architecture employs 2N vector inner product units and

parallel-in parallel-out I/O form. Each vector inner product unit are implemented using N/2

parallel multipliers without the final adder. The addition of the partial product from the N/2

multipliers is carried out in parallel and is embedded within the structure of the parallel multipliers.

One of the operands of each multiplier is divided into four groups, which produces four carry words

and four sum words. The total of 4N words are added together using carry save arithmetic

implemented with arrays of 4-2 compressors. The 4-2 compressors within each array are arranged

in a tree structure and used to add terms with the same significance. In what follows ACSA(N,B)

denotes the hardware cost required by the addition of the 2N (5B/4-1)-bit partial sum words and the

2N B-bit carry words using carry save arithmetic. Assuming a B-bit input data, one

(2B+log2(N/2)+1)-bit carry lookahead adder is required for each vector inner product unit. The 1D

DCT unit also requires N B-bit adder or subtractor units to add or subtract pairs of input data before

being fed into the vector inner products. Hence, the total cost of the 1D DCT unit is given by

()() () ()��
�

�
�
�

�
++��

�

��
�

�
+�
�

�
�

�++−+= B,NABA1
2
N

logB2AA2BBAB
2
N

N)N,B(A CSACLA2CLAFAAND
2

DDCT1

where AAND, AFA and ACLA(B) are the area taken by an AND, an FA and a B-bit carry lookahead

adder. Assuming that the data is truncated to B-bit before entering the transposition buffer, which

is made of (N2+N)/2 registers and N B-bit 8:1 multiplexers. Each 8:1 multiplexers could be

implemented using a tree of seven 2:1 multiplexers. The cost of a B-bit 2:1 multiplexer is that of

3B AND gates. Hence the total cost of the buffer transposition unit is given by

)(
2

21),(Re

2

BA
NN

NBANBA gANDbuffer

++=

 15

where AReg(B) is the cost of a B-bit register. The total cost of the proposed 2D DCT architecture is

that of two 1D DCT units plus that of the buffer transposition unit, via

)N,B(A)N,B(A2)N,B(A bufferDDCT1DDCT2 +=

The 2D DCT architecture in [9] consists of three stages. The first stage consists of N B-bit adder or

subtractor units and N vector inner products. In conventional DCT implementation, the vector

inner products are usually implemented with a linear array of multiplier accumulators. To carry out

a fair comparison the parallel multipliers are implemented using the same structure as in [12]. In

this case, each vector inner product unit will require N/2 arrays of B/4-bit 4-2 compressors and N/2

(2B+1)-bit carry lookahead adders. Each array of 4-2 compressors will have a cost ACSA(1,B).

Also, N/2 (2B+1)-bit delay elements are required to be placed at the output of the multiply-

accumulator cells. Furthermore, N(N-2)/4 B-bit registers are required at the input of stage 1.

Hence, the total cost of the first stage of the architecture in [9] is given by

()

())(
4

2

)12()12(),1()2(
2

),(

Re

2

Re
2

2

1

BA
NN

BNA

BABABAABBAB
N

NBA

gCLA

gCLACSAFAANDstage

−++

+++++−+=

Stage 2 of the architecture in [9] consists of N basic cells plus N(N-2)/4 B-bit registers. Here, it is

assumed that the data from the first stage is truncated to B bits. Each basic cell consists of three B-

bit registers, two B-bit adder/subtractor units and one B-bit 2:1multiplexers.

() ()BA
4

N10N
)B(A2BABA3N)N,B(A gRe

2

CLATAND2stage �
�

�

�
�

�

� ++++=

The third stage of the architecture in [9] consists of N2/2 cells and (N2/2) B-bit registers. Each cell

consists of a B-bit multiplier, two (2B+1)-bit adders, two 2B-bit registers, two 2B-bit 2:1

multiplexers and one 2B-bit 3:1 multiplexer. Each B-bit multiplier consists of arrays of 4-2

compressors, four B×B/4-bit array multipliers and one (2B+1)-bit adder. Hence the total cost of the

third stage is given by

 16

()()

()BA
N

BABABAABBABB
N

NBA

g

gCSACLAFAANDstage

Re

2

Re
2

2

3

2

)2(2),1()12(32)26(
2

),(

��
�

��
�

�
+

++++−++=

The total hardware cost of the architecture proposed in [9] for the computation of the forward 2D

DCT is

)N,B(3stageA)N,B(2stageA)N,B(1stageADDCT2'A ++=

Table 1 shows the area occupied by the proposed 2D DCT architecture and the architecture in [9]

for N=4, 8 and 16. The area for each unit in both architectures is computed using the procedure

reported in [13], where AT is the area required in an inverter circuit. It is assumed that AAND=2AT,

AFA=10AT and AReg(1)=7AT. It can be seen that for N=8 about 33% reduction in the hardware cost

has been achieved by the proposed architecture over the architecture in [9].

6. Conclusions

In this paper, a new fully parallel architecture based on row-column decomposition has been

proposed for the computation of the 2D DCT. The system involves no memory transposition,

and is highly modular and utilises a highly parallel structure to achieve high-speed performance.

Due to its widely identical units, it will be relatively easy to implement and very suited to VLSI

implementation. It uses two identical units for the computation of the row and column

transforms and arrays of shift registers to perform the transposition operation. As compared to

the pipelined regular architecture in [9], the proposed architecture achieves the same throughput

rate at much lower hardware cost and communication complexities. It also requires a much

simpler control than the architecture in [9], which requires shuffling of the input data to allow a

relatively simplified architecture for the second and third stages. It is also worth mentioning that

in the proposed design, the same architecture can be used for the computation of both the

forward and the inverse 2D DCT.

 17

Acknowledgement: This works is sponsored by the United Kingdom Engineering and Physical

Sciences Research Council.

References

[1]. K. R. Rao and P. Yip. Discrete Cosine Transform; Algorithms, Advantages and

Applications. Academic Press Inc., 1990.

[2]. M. Liou. Overview of the p × 64 kbits/s Video Coding Standard. Commun., ACM, vol.

34, no. 4, pp. 59 – 63, Apr. 1991.

[3]. G. K. Wallace. The JPEG Still Picture Compression Standard. Commun., ACM, vol. 34,

no. 4, pp. 30 – 40, Apr. 1991.

[4]. D. LeGall. A Video Compression Standard for Multimedia Applications. Commun.,

ACM, vol. 34, no. 4, pp. 46 – 58, Apr. 1991.

[5]. ISO/IEC DIS 13818 – 2, MPEG-2 Video. Draft Int. Standard.

[6]. S. C. Hsia, B. D. Liu, J. F. Yang and B. L. Bai. VLSI Implementation of Parallel

Coefficient-by-Coefficient Two-Dimentional IDCT Processor. IEEE Trans. on Circuits

and Systems for Video Tech., vol. 5, no. 5, pp. 396 – 406, Oct. 1995.

[7]. J. S. Chiang, Y. F. Chui and T. H. Chang. A High Throughput 2-Dimensional DCT/IDCT

Architecture for Real-Time and Video System. IEEE Proc. of Int’l Conf. on Electronic

Circuits and Systems, vol. 2, pp. 867 – 870, Sept. 2001.

[8]. P. G. Fernández et. al. Fast RNS-Based 2D-DCT Computation on Field-Programmable

Devices. IEEE Workshop on Signal Processing Systems, pp. 365 – 373, Oct. 2000.

[9]. Y. T. Chang and C. L. Wang. New Systolic Array Implementation of the 2D Discrete

Cosine Transform. IEEE Trans. on Circuits and Systems for Video Tech., vol. 5, no. 2,

Apr. 1995.

 18

[10]. A. Aggoun et.al.: ‘Bit-level pipelined digit-serial array processors’ IEEE Trans. Circuit

and Systems, vol. 45, no. 7, pp. 857-868, July 1998.

[11]. R. Baugh and B. A. Wooley. ‘A Two’s Complement Parallel Array Multiplication

Algorithm’, IEEE Trans. Computers, vol. C-22, no. 12, pp. 1045 – 1047, Dec. 1973.

[12]. A. Aggoun. ‘Two’s Complement Parallel Multiplier’. Electronic Letters, vol. 34, no. 16,

pp. 1570 – 1571, Aug. 1998.

[13]. C. L. Wey and T. Y. Chang: ‘Design and analysis of VLSI based parallel multipliers’

IEE Proc. E, vol. 137, no. 4, pp. 328-336, 1990.

 19

 Proposed Architecture Architecture in [9] Improvement

N=4 73608AT 99976AT 27%

N=8 281456AT 418144AT 33%

N=16 1099744AT 1544896AT 29%

Table 1: Hardware cost of the proposed architecture and that in [9] for a 16-bit wordlength.

 20

(a)

(b)

Figure 1: (a) Architecture of a 1D DCT Block for N=8. (b) basic cell.

.. Z22 Z21 Z20

.. Z02 Z01 Z00

.. Z42 Z41 Z40

.. Z62 Z61 Z60

 .. Z12 Z11 Z10

.. Z32 Z31 Z30

.. Z52 Z51 Z50

.. Z72 Z71 Z70

VIP Processor

C21 C22 C23 C20

C01 C03 C00

C41 C42 C43 C40

C61 C62 C63 C60

C11 C12 C13 C10

C31 C32 C33 C30

C51 C52 C53 C50

C71 C72 C73 C70

C02

X11 X31 X01 X21 X61 X41 X71 X51

X10 X30 X00 X20 X60 X40 X70 X50

cpi

Sin Sout

Xij +(-1)p X(N-1-i)j

 21

Figure 2: Block diagram of the 2D DCT for N=8.

3-bit Control
Signal

Input
Vector

1D DCT

8:1

1D DCT

Skewed Registers

Output
Vector

8:1

Row Transform

Column Transform

R2

R1

 22

(a) Cycle 1

(b) Cycle 2

8:1

8:1 8:1

8:1

8:1 8:1

8:1

8:1

8 words Bus

Array of skewed
register R1

Z10

Z20

Z30

Z40

Z50

Z60

Z70

Z00

Array of skewed
register R2

Z10
Z20
Z30
Z40
Z50
Z60
Z70

8:1

8:1 8:1

8:1

8:1 8:1

8:1

8:1

8 words Bus

Array of skewed
register R1 Z00

Z11

Z21

Z31

Z41

Z51

Z61

Z71

Z01

Array of skewed
register R2

 23

(c) Cycle 3

(d) Cycle 4

Figure 3: Utilisation of the skewed registers during the first four cycles.

Z11
Z21 Z20
Z31 Z30
Z41 Z40
Z51 Z50
Z61 Z60
Z71 Z70

8:1

Z00

8:1 8:1

8:1

8:1 8:1

8:1

8:1

8 words Bus

Array of skewed
register R1 Z10 Z01

Z12

Z22

Z32

Z42

Z52

Z62

Z72

Z02

Array of skewed
register R2

Z12
Z22 Z21
Z32 Z31 Z30
Z42 Z41 Z40
Z52 Z51 Z50
Z62 Z61 Z60
Z72 Z71 Z70

8:1

Z10
Z00

8:1 8:1

Z01

8:1

8:1 8:1

8:1

8:1

8 words Bus

Array of skewed
register R1

Z20 Z11 Z02

Z13

Z23

Z33

Z43

Z53

Z63

Z73

Z03

Array of skewed
register R2

 24

Figure 4: Utilisation of the skewed registers at the 9th cycle for N=8.

Z17

Z27 Z26

Z37 Z36 Z35

Z47 Z46 Z45 Z44

Z57 Z56 Z55 Z54 Z53

Z67 Z66 Z65 Z64 Z63 Z62

Z77 Z76 Z75 Z74 Z73 Z72 Z71
8:1

Z60

Z50

Z40

Z30

Z20

Z10

8:1 8:1

Z51

Z41

Z31

Z21

Z11

8:1

Z42

Z32

Z22

Z12

Z02

8:1 8:1

Z15

8:1

Z33

Z23

Z13

Z03

8:1

Z24

Z14

Z04

8 words Bus

Array of skewed
register R1 Z70 Z61 Z52 Z16 Z25 Z43 Z24

Z10

Z20

Z30

Z40

Z50

Z60

Z70

Z00

Z00

Z01

Z06

Z05

Z07

Array of skewed
register R2

 25

Figure 5: Dependency graph of the proposed radix-2n VIP

uK-1,N/2 VN/2

V2

V1 u01 u11 uK-1,1

u02 u12 uK-1,2

u0,N/2 u1N/2

Partial product
generation path

Partial sums path

 26

Figure 6: Array multiplier used for each of the partial product generation uri Vi for B=16.

AFA

HA

HA

AFA

AFA

AFA

0
riu

1
riu

2
riu

3
riu

0
iv1

iv2
iv14

iv15
iv

�
�
�

≠
=

00
01

rif

rif

AND gate if r = 3
NAND gate if r ≠ 3

AND gated FA if r = 3
NAND gated FA if r ≠ 3

Sum Word

Carry Word

 27

 4
B 4

B 4
B 4

B 4
B 4

B 4
B

k=3 k=2 k=1 k=0 k=7 k=6 k=5 k=4

14
B −

1
1 1
1
1

Figure 7: Repartitioning of the partial sum and carry words into B/4-bits and their relative bit

positions for N=8.

 28

Partial Product generation

(2B+4)-bit result

Carry LookAhead Adder

k=7 k=6 k=5 k=4 k=3 k=2 k=1

0100

P Q

k=0

32-2 28-2 20-2 12-2 8-2 16-2 24-2 4-2

Figure 8: Accumulation process of the partial products for N=8

Figure 9: Partial products accumulation for N=8 and k=4 using a 32-2 compressor.

Outputs to be fed to the CLA

32 Partial products for k=4

B/4-bit
4-2 Compressor

 29

Figure 10: Partial products accumulation for N=8 and k=5 using a 24-2 compressor.

24 Partial products for k=5

Carry bits from
previous array of 4-2

compressors

Outputs to be fed to the CLA

B/4-bit
4-2 Compressor

1-bit
4-2 Compressor

