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Abstract: 

A new fully parallel architecture for the computation of a two-dimensional (2D) discrete cosine 

transform (DCT), based on the row-column decomposition is presented.   It uses the same one-

dimensional (1D) DCT unit for the row and column computations and (N2+N) registers to 

perform the transposition.  It possesses features of regularity and modularity, and is thus well 

suited for VLSI implementation.  It can be used for the computation of either the forward or the 

inverse 2D DCT.  

 

Each 1D DCT unit uses N fully parallel vector inner product (VIP) units.  The design of the VIP 

units is based on a systematic design methodology using radix-2n arithmetic, which allows 

partitioning of the elements of each vector into small groups.  Array multipliers without the final 

adder are used to produce the different partial product terms.  This allows a more efficient use of 

4:2-compressors for the accumulation of the products in the intermediate stages and reduces the 

numbers of accumulators from N to 1.   Using this procedure, the 2D DCT architecture requires 

less than N2 multipliers (in terms of area occupied) and only 2N adders.  It can compute a N×N-

point DCT at a rate of one complete transform per N cycles after an appropriate initial delay.  
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Introduction: 

The discrete cosine transform (DCT) has emerged as the most popular transform for many 

image/video compression applications owing to its near optimal performances compared to the 

statistically optimal Karhunen-Loeve transform [1]. Its energy compaction efficiency is also 

greater then any other transform. The 2D DCT, in particular, is one of the major operations in 

current image/video compression standards [2-5].  It is today the most widely used orthogonal 

transform for applications including videophone, video conferencing and high definition 

television.  

 

The 2D DCT is computationally intensive and as such there is a great demand for high speed, 

high throughput and short latency computing architectures. Due to the high computation 

requirements, the 2D DCT processor design has been concentrated on small nonoverlapping 

blocks (typical 8x8 or 16x16). Many 2D DCT algorithms have been proposed to achieve 

reduction of computational complexity and thus increase the operational speed and throughput. 

The various algorithms and architectures for the 2D DCT can be divided into two categories: the 

row-column decomposition methods and the non-row-column decomposition methods. 

 

Several hardware design methods for the implementation of the 2D DCT have been developed 

in recent years [6-9].   Hsia et. al [6] reported an algorithm and architecture to calculate the 2D 

inverse DCT (IDCT) directly by skipping the zero DCT coefficients, since they do not affect the 

transform results of the IDCT. The IDCT algorithm is realised by a pipelined architecture and 

modular design and it utilises pipelined combinational multipliers to decrease the critical path. 

The implementation uses relatively less hardware to achieve sufficient speed for real 

applications. It achieves an average pixel rate varying from 150 MHz to a maximum pixel rate 

of 400 MHz when using a 50 MHz clock. The main advantage of the architecture is that it uses a 

lower operation frequency to obtain a very high pixel rate. However, the disadvantage of this 
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architecture is that it can only perform the inverse DCT. This is because it utilises the fact that in 

many image coding systems, most of the DCT coefficients are quantised to zeros and that in 

interframe coding the nonzero coefficients is even smaller due to the motion compensation in 

sequential images. As such this system cannot be used to implement both the DCT and IDCT 

using the same hardware. 

 

Chiang et. al [7] reported a 2D DCT/IDCT architecture which utilises the overlapped row-

column operation, instead of the transpose memory, in order to reduce the total latency of the 

structure. The core processor is organised into two cascaded 1D DCT/IDCT units and one 

control unit. The multiplication block is implemented by using look-up tables. In order to reduce 

the size of the table, the precalculated partial products of the DCT/IDCT coefficients and the 

input data are stored in two separate tables. By avoiding the use of multipliers and the transpose 

RAM the architecture can achieve an operation speed of up to 100 MHz. The disadvantage of 

this architecture is that different structures are used for the computation of the two 1D DCT 

blocks. 

 

Fernández et. al [8] reported an 8×8 2D DCT processor using the row-column decomposition 

method, based on the residue number system (RNS). The processors utilise a fast cosine 

transform algorithm that requires a single multiplication stage for each signal path. Thus each 

1D DCT block consists of 14 multipliers and 32 adders and subtractors. Linear combinations of 

the DCT coefficients are precalculated and stored in ROMs, thus the DCT can be calculated 

with look-up table multipliers. The transposition unit consists of an 8×8 matrix of registers and 

multiplexers interconnected to allow the transposition of parallel input data. One of the 

drawbacks of this system is the practical implementation of RNS-based systems, which 

possesses serious limitations in the conversion stage. RNS-to binary conversion requires the use 
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of 32-bit (since the input data and the selected moduli are 8-bit width) word-length adders and 

large multipliers thus resulting in more hardware and degradation of system performance.  

 

Chang and Wang [9] reported an implementation of the 2D DCT/IDCT based on the row-

column decomposition and uses a systolic array without the matrix transposition hardware. The 

system is achieved in three steps and requires N2 multipliers and N2+3N adders. With a 

throughput rate of one N×N-point DCT per N cycle and a pixel rate of about 320MHz, it has a 

good area-time performance and it is very attractive for very high-speed applications. However, 

the significant drawbacks in this work is that the architecture is not modular, it uses different 

structures to achieve the two 1D DCT blocks and different structures for computing the forward 

and the inverse 2D DCT. 

 

In this paper, a new fully parallel 2D DCT/IDCT architecture using the linear systolic matrix-

vector without the RAM based matrix transposition is presented. It is shown that the architecture 

is highly modular, parallel and can be used to compute both the forward and the inverse 2D 

DCT. Finally, it is shown that the proposed architecture enables the realisation of the 2D DCT 

with a relatively smaller hardware compared to the conventional approaches, and it also results 

in an extremely regular structure such that its realisation is very simple.  A new transposition 

matrix is introduced which uses (N2+N) registers and N (N:1) multiplexers.  This allows the 

reading of N output coefficients from the 1st 1D DCT and the feeding of N coefficients to the 2nd 

1D DCT in a pipelined fashion.  Also, a systematic methodology, which allows the design the 

vector inner products used to implement the matrix-vector multiplier is presented.  It is based on 

the radix-2n arithmetic which allows partitioning of the operands to n-bit digits each and hence 

providing the designer with more flexibility between throughput rate and hardware cost, by 

varying the digit-size n, the pipelining level and also the type of architecture.  In this paper, the 

radix-2B/4 vector inner product architecture is described and is used within the 2D DCT 
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architecture, where B is the data wordlength.  The resulting 2D DCT architecture is compared to 

previously reported architectures. 

  

1. The 2D DCT Algorithm 

For a given 2D spatial data sequence {Xij; i, j = 0, 1, … , N-1}, the 2D DCT data sequence   {Ypq 

; p, q = 0, 1, … , N-1} is defined by: 
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The forward and inverse transforms are merely mappings from the spatial domain to the 

transform domain and vice versa.  The DCT is a separable transform and as such, the row 

column decomposition can be used to evaluate equation (1). Denoting:    
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and the row transform can be expressed as: 
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In order to compute an N x N-point DCT (where N is even), N row transforms and N column 

transforms need to be performed. However, by exploiting the symmetries of the cosine function, 

the number of multiplications can be reduced from N2 to N2/2.  In this case, each row transform 

given by equation (3) can be written as matrix-vector multipliers via,  
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Using a matrix notation, for N=8, equation (4) can written as 
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Equations (5) and (6) describe the computation of the even and odd coefficients, for the row 

transform for N=8, respectively.  The computation for the second 1D DCT i.e. the column 

transform described by equation (2) can also be computed using matrix-vector multipliers 

similar to that described by equation (4).  Hence both the row and column transform can be 

performed using the same architecture. 

 

The architecture for computing the row transform, for N = 8, is depicted in figure 1. It is based 

on Step 1 of the systolic array implementation proposed by Chang et al [9]. It consists of N/2 

adder/subtractor cells for summing and subtracting the inputs to the 1D DCT block as required 

by equation (4). The pair of inputs Xij and X(N-1-i)j enters the (i+1)th adder/subtractor cell. In the 

proposed architecture, all the pairs of input data enter the adder/subtractor cells at the same time.   

Figure 1 shows that the architecture also consists of N vector inner products, where half are used 

for the added pairs as described by equation (5) and the other half for the subtracted pairs as 

described by equation (6).  Each vector inner product consists of N/2 multiplier/accumulator 

cells.  Each cell stores one coefficient cpi in a register and evaluates one specific term over the 

summation in (4).  The multiplications of the terms cpi with the corresponding data are 

performed simultaneously and then the resulting products are added together in parallel.  This 
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addition is carried out using carry save arithmetic modules incorporated within the multipliers 

structure as will be described is section 4.  

 

2. VLSI Architecture for the 2D DCT 

The 1D DCT module accepts N samples of the input data in parallel and produces N coefficients 

in parallel.  The proposed 2D DCT architecture is shown in figure 2 for N=8. It is based on the 

row-column algorithm and is divided into three main stages.  Stage one and stage three 

computes the row and column transforms, respectively.  Both the row and column transforms 

are implemented using the same 1D DCT module shown in figure 1.  The second stage performs 

the transposition using (N2+N) registers and N (N:1) multiplexers.  The (N2+N) registers are 

divided into two sets of (N2+N)/2 skewed registers and the data is fed from one set to the other 

via the multiplexers.  The 1D DCT unit accepts input vectors in parallel and produces the N 

DCT coefficients in parallel.  The N outputs from the row transform are fed into an array of 

skewed shift registers as shown in figure 2 to enable the reading of only one coefficient from the 

same output vector at any one time.  This achieves the appropriate reordering of the data into the 

second array of skewed registers.  The skewed registers are made of N shift registers with 

lengths varying from 1 to N, respectively.  For simplicity the N shift registers in either arrays of 

skewed registers are termed mR1 , mR2 , …, m
NR  where the lower index specifies the length of the 

shift register and the upper index, m, specifies either the first or the second array of skewed 

register for m=1 or 2, respectively.  An array of N (N:1) multiplexers is used to send the output 

data to the correct shift registers in the second array of skewed registers. Each of the outputs 

from the row transform is fed into one of the shift registers 1
1R , 1

2R , …, 1
NR .  Each of the shift 

registers, 1
1R , 1

2R , …, 1
NR , produces one output every clock cycle which is fed into one of the 

shift registers, 2
1R , 2

2R , …, 2
NR  via one of the (N:1) multiplexers.  Figure 3 shows the utilisation 

of the skewed registers during the first four cycles.   In the first cycle the results of the first 1D 
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DCT are stored in R1 as shown in figure 3a.  During the second cycle, the data from 1
1R  (i.e. Z00) 

is fed into the shift registers 2
NR  (see figure 3b).  In the third cycle the data from 1

1R  (Z01) is fed 

into 2
1−NR  and the data from 1

2R (Z10) is fed into 2
NR  (see figure 3c).  In the fourth cycle, the 

data from 1
1R  (Z02) is fed into 2

2−NR , the data from 1
2R (Z11) is fed into 2

1−NR  and the data from 

1
3R  (Z20) is fed into 2

NR  (see figure 3d).  This process is continued until the entire data is 

transferred.  At the (N+1)th cycle the data from 1
1R  (Z0,N-1)  is fed to 2

1R , while the data from 1
NR  

(ZN-1,0) is fed into 2
NR . At this point, the N point data incoming from the first VIP or register 1

1R  

is available at the output of the registers 2
1R , 2

2R , …, 2
NR  and ready to enter the column 

transform as shown in figure 4 for N=8.  In the following cycle the data from the second VIP or 

the register 1
2R  is ready to enter the column transform, while the data from the first VIP or 

register 1
1R  is being processed by the second 1D DCT.  This process continues till all the 

remaining coefficients in the skewed registers 2R  have entered the column transform.   Hence 

after an initial delay of (N+1) cycles, the proposed architecture will output N 2D DCT 

coefficients every clock cycle.  Whilst the 1D DCT coefficients stored in the array of skewed 

registers R2 are being processed by the second 1D DCT block, the transfer from the first 1D 

DCT block into the array of the skewed registers R2 via the array of skewed registers R1 and the 

array of multiplexers continues until all the input data has been processed.  

 

For N=8, a 3-bit control signal is required to enable the 8:1 multiplexers to select one of the 

eight input words.  During the first cycle of the transfer of data from R1 to R2, the first 

multiplexer from the right will select its port 1 as its output.  In the second cycle, the second 

multiplexer on the right will select port 1 as its output while the first multiplexer from the right 

will select port 2 as its output and so on.  Hence, the control signal is connected to all 

multiplexers through delay elements as shown in figure 2.   
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3. Radix-2n Vector inner product algorithm: 

In this section the design of a fully parallel architecture for computing the product of two vectors 

is presented. The proposed architecture of the vector inner product is derived from a design 

methodology using radix-2n arithmetic reported by A. Aggoun et.al. [10].   To demonstrate the 

proposed methodology, the inner product of the vectors Ui = cpi and Vi = Xij + (-1)p
�X(N-1-i)j 

described by equation 4 is considered.  Using the radix-2n arithmetic and assuming unsigned 

numbers, Ui can be divided into K digits of n-bit each and can be written as [10], 
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where uri represents the rth digit of the Ui.  The vector inner product can be computed according to 

the following equation [10], 
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It is worth noting that the path of the generation of the partial products is independent of the 

propagation path of the accumulating partial sums as shown in figure 5.  In the proposed radix-2n 

design methodology, any composite summations, as that given in Equation (8), can be combined 

into one. Hence equation 8 can be rewritten as,  
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where Ws = uri ⋅Vi⋅2rn and s=iK+r.  As a result, the partial products can be carried out 

simultaneously and the resulting N/2×K sums are added together in parallel.  This can be carried 

out using carry save arithmetic and a final carry lookahead adder. 

 

The advantage of describing the vector inner product using the radix-2n algorithm and merging 

summations, as in equation 9, is to provide designers with more flexibility not only by varying the 
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digit size n, but also in the way the accumulation of the partial sums is carried out.  This is evident 

when it is realised that there are numerous ways in which the summation in equation (9) can be 

decomposed; the decomposition in equation (8) being only one of those.  In other words, the sum in 

equation (9) can be split into several nested sums where each sum can be carried out in an 

independent way using either a tree or a liner structure. Each one of these different mappings would 

lead to a different architecture with its own are-time complexity. As an example, the conventional 

word level VIP architecture is obtained by splitting the summation in equation (9) into the two 

summations in equation (8) and performing the summation over index r first.  In this paper, a new 

implementation is proposed which is derived without splitting the summation in equation  (9).  

 

4. Design of a two's complement parallel vector inner product:  

In this section the architecture of a two’s complement radix-2B/4 VIP, where B is the data 

wordlength, is discussed.  The radix-2n VIP algorithm described by equation (8) assumes 

unsigned numbers.  In what follows, the two's complement array multiplication proposed by 

Baugh and Wooley [11] is adapted to two’s complement radix-2n multiplication.  Let consider 

the multiplication of two B-bit two's complement numbers, where the multiplier and the 

multiplicand, Ui and Vi, are written in the form  

VvV
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where U
~  and V

~ are  (B-1)-bit positive number comprising the B-1 least significant bits of Ui and Vi, 

respectively, and 1−B
iu  and 1−B

iv  are their most significant bits.  Following the same procedure as in 

[10] and [12], the multiplication of two B-bit two’s complement numbers, Ui and Vi, can be written 

in a form involving only positive partial products provided that all partial products which involve a 

sign bit and a nonsign bit are complemented.  The final product is then obtained by adding a fixed 

correction term to the final result, viz., 
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Two’s complement representation is adapted to normal multiplication by simply replacing the AND 

with a NAND gate for all the partial product involving the sign bits, 1−B
iu  and 1−B

iv , as can be seen 

from equation (11), except for the product 11 −− ⋅ B
i

B
i vu , which is carried out using an AND gate. 

 

In the new implementation, each of the N/2×K products, Ws, is computed using the array multiplier 

shown in figure 6 for B=16 and K=4.  As can be seen in figure 6, the two top carry save adders 

(CSAs) and the column of full adders (FAs) involving the sign bit 1−B
iv  required in conventional 

array multipliers, are removed since they have empty bit positions.  However, on the right hand side 

of each array a column of half adders (HAs) is needed to add the two bits 10
iri vu ⋅ and 01

iri vu ⋅  and 

propagate the carry bits from the top to the bottom as shown in figure 6.  Each array multiplier 

produces a (5B/4-1)-bit sum word and a B-bit carry word for K=4.  As a result, N×K words are fed 

into the accumulation path and arranged with respect to their significance as shown in figure 7 for 

N/2=K=4.  

 

The addition of the term -22B-1 is taken care of by adding a 1 to the most significant bit of the result 

and the term 2B by adding a 1 to the (B+1)th column of the final result [4].  This is achieved by 

extending the carry word of the products, iiK Vu ⋅− ,1  , by one nonzero bit as shown in figures 7 and 8 

for the -22B-1 term and feeding a one into the empty bit position of the AND gated FA, ( 22
,0

−⋅ B
ii vu ), 

of the array multiplier which computes the product ii Vu ⋅,0  for the term 2B, as shown in figure 6 for 

B=16. 

 

The partial sums and carries from all the N/2×K multipliers are accumulated together in parallel 

using carry save arithmetic implemented with 4-2 compressors as shown in figure 8.  The partial 
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sums and carries are repartitioned into digits of B/4-bit each as shown in figure 7.  All the terms 

with the same significance, k, are added together using an array of B/4-bit 4:2-compressors as 

shown in figure 9 for k=4. The B/4-bit 4:2-compressors are obtained by interconnecting two B/4-bit 

CSAs with fast input and output.  The output from the first CSA with the longest path (i.e. path 

through two XORs) is fed into the carry input of the second CSA.  This makes the total delay 

through the 4:2-compressors equivalent to three XORs.  The critical path in the accumulation of the 

partial sum and carry terms consists of four B/4-bit 4:2-compressors which is obtained for k=4 as 

shown in figure 9. Hence, the longest delay in the accumulation of the all the sum and carry terms 

is equivalent to that of six FAs. 

 

It is worth mentioning that carry bits are propagated between the array of 4-2 compressors from 

right to left.  Let Pk be the array used for the accumulation of all terms with the same significance, 

k.  For k < 4, the output carries from the array Pk are fed directly into the carry inputs of the array 

Pk+1.  However, for k ≥ 4, the number of carries generated by the array Pk is greater than the number 

of carry inputs available to the array Pk+1.  As a result, extra FAs and/or HAs are required to 

accommodate the extra carries. This is shown as an example in figure 10 for k=5, where the array 

P5 takes carries from P4.  Each 4-2 compressor produces two 1-bit carry outputs and has one 1-bit 

carry input. Furthermore, all the 4-2 compressor of the arrays Pk, except the ones in the top, will 

have an extra two 1-bit empty position, which can accommodate carry bits. To compress 24 bits 

into 2 bits, the array P5 would require a total of eleven 4-2 compressors, where six are in the top 

row and five in remaining stages.  Hence the array P5 can take up to 21 carry bits.  However, the 

array P4 will produce a total of 30 carry bits, one of which is fed to the carry look ahead adder and 

the remaining 29 are fed into the array P5.  To take care of the remaining eight carry bits, a 1-bit and 

a B/4-bit 4-2 compressors are added to the array P5 as shown in figure 10.   Similarly, 4-2 

compressors are added to the arrays P6 and P7 to accommodate the extra carry bits from the array P5 

and P6, respectively.    
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5. Performance analysis: 

In this section, the performance of the proposed parallel 2D DCT architecture is compared with the 

design proposed in [9].  The proposed architecture employs 2N vector inner product units and 

parallel-in parallel-out I/O form.   Each vector inner product unit are implemented using N/2 

parallel multipliers without the final adder.  The addition of the partial product from the N/2 

multipliers is carried out in parallel and is embedded within the structure of the parallel multipliers.   

One of the operands of each multiplier is divided into four groups, which produces four carry words 

and four sum words.  The total of 4N words are added together using carry save arithmetic 

implemented with arrays of 4-2 compressors.  The 4-2 compressors within each array are arranged 

in a tree structure and used to add terms with the same significance.  In what follows ACSA(N,B) 

denotes the hardware cost required by the addition of the 2N (5B/4-1)-bit partial sum words and the 

2N B-bit carry words using carry save arithmetic.  Assuming a B-bit input data, one 

(2B+log2(N/2)+1)-bit carry lookahead adder is required for each vector inner product unit.   The 1D 

DCT unit also requires N B-bit adder or subtractor units to add or subtract pairs of input data before 

being fed into the vector inner products.  Hence, the total cost of the 1D DCT unit is given by 
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where AAND, AFA and ACLA(B) are the area taken by an AND, an FA and a B-bit carry lookahead 

adder.  Assuming that the data is truncated to B-bit before entering the transposition buffer, which 

is made of (N2+N)/2 registers and N B-bit 8:1 multiplexers.  Each 8:1 multiplexers could be 

implemented using a tree of seven 2:1 multiplexers.  The cost of a B-bit 2:1 multiplexer is that of 

3B AND gates.  Hence the total cost of the buffer transposition unit is given by 
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where AReg(B) is the cost of a B-bit register.  The total cost of the proposed 2D DCT architecture is 

that of two 1D DCT units plus that of the buffer transposition unit, via 

)N,B(A)N,B(A2)N,B(A bufferDDCT1DDCT2 +=  

The 2D DCT architecture in [9] consists of three stages.  The first stage consists of N B-bit adder or 

subtractor units and N vector inner products.   In conventional DCT implementation, the vector 

inner products are usually implemented with a linear array of multiplier accumulators.  To carry out 

a fair comparison the parallel multipliers are implemented using the same structure as in [12].  In 

this case, each vector inner product unit will require N/2 arrays of B/4-bit 4-2 compressors and N/2 

(2B+1)-bit carry lookahead adders.   Each array of 4-2 compressors will have a cost ACSA(1,B).   

Also, N/2 (2B+1)-bit delay elements are required to be placed at the output of the multiply-

accumulator cells.  Furthermore, N(N-2)/4 B-bit registers are required at the input of stage 1.   

Hence, the total cost of the first stage of the architecture in [9] is given by 
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Stage 2 of the architecture in [9] consists of N basic cells plus N(N-2)/4 B-bit registers.  Here, it is 

assumed that the data from the first stage is truncated to B bits.  Each basic cell consists of three B-

bit registers, two B-bit adder/subtractor units and one B-bit 2:1multiplexers.   

( ) ( )BA
4

N10N
)B(A2BABA3N)N,B(A gRe

2

CLATAND2stage �
�

�




�
�

�

� ++++=  

The third stage of the architecture in [9] consists of N2/2 cells and (N2/2) B-bit registers.  Each cell 

consists of a B-bit multiplier, two (2B+1)-bit adders, two 2B-bit registers, two 2B-bit 2:1 

multiplexers and one 2B-bit 3:1 multiplexer.  Each B-bit multiplier consists of arrays of 4-2 

compressors, four B×B/4-bit array multipliers and one (2B+1)-bit adder. Hence the total cost of the 

third stage is given by 
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The total hardware cost of the architecture proposed in [9] for the computation of the forward 2D 

DCT is 

)N,B(3stageA)N,B(2stageA)N,B(1stageADDCT2'A ++=  

Table 1 shows the area occupied by the proposed 2D DCT architecture and the architecture in [9] 

for N=4, 8 and 16.  The area for each unit in both architectures is computed using the procedure 

reported in [13], where AT is the area required in an inverter circuit.  It is assumed that AAND=2AT, 

AFA=10AT and AReg(1)=7AT.  It can be seen that for N=8 about 33% reduction in the hardware cost 

has been achieved by the proposed architecture over the architecture in [9]. 

 

6. Conclusions 

In this paper, a new fully parallel architecture based on row-column decomposition has been 

proposed for the computation of the 2D DCT.  The system involves no memory transposition, 

and is highly modular and utilises a highly parallel structure to achieve high-speed performance. 

Due to its widely identical units, it will be relatively easy to implement and very suited to VLSI 

implementation.  It uses two identical units for the computation of the row and column 

transforms and arrays of shift registers to perform the transposition operation.  As compared to 

the pipelined regular architecture in [9], the proposed architecture achieves the same throughput 

rate at much lower hardware cost and communication complexities.  It also requires a much 

simpler control than the architecture in [9], which requires shuffling of the input data to allow a 

relatively simplified architecture for the second and third stages. It is also worth mentioning that 

in the proposed design, the same architecture can be used for the computation of both the 

forward and the inverse 2D DCT. 
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 Proposed Architecture Architecture in [9] Improvement 

N=4 73608AT 99976AT 27% 

N=8 281456AT 418144AT 33% 

N=16 1099744AT 1544896AT 29% 

Table 1: Hardware cost of the proposed architecture and that in [9] for a 16-bit wordlength. 
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Figure 1: (a) Architecture of a 1D DCT Block for N=8. (b) basic cell. 
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Figure 2:  Block diagram of the 2D DCT for N=8. 
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(a) Cycle 1 

 

 

 

 

 

 

 

 

 

 

 

(b) Cycle 2
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(c) Cycle 3 

 

 

 

 

 

 

 

 

 

 

 

(d) Cycle 4 

Figure 3:  Utilisation of the skewed registers during the first four cycles.  
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Figure 4: Utilisation of the skewed registers at the 9th cycle for N=8. 
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Figure 5: Dependency graph of the proposed radix-2n VIP 
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Figure 6: Array multiplier used for each of the partial product generation uri Vi for B=16. 
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Figure 7: Repartitioning of the partial sum and carry words into B/4-bits and their relative bit 

positions for N=8. 
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Figure 8: Accumulation process of the partial products for N=8 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Partial products accumulation for N=8 and k=4 using a 32-2 compressor. 
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Figure 10: Partial products accumulation for N=8 and  k=5 using a 24-2 compressor.  
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