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PENYEDIAAN, PENCIRIAN DAN SIFAT-SIFAT NANOKOMPOSIT 

MUSKOVIT/AKRILONITRIL BUTADIENA STIRENA 

 

ABSTRAK 

Penghasilan nanokomposit akrilonitril butadiena stirena (ABS) berdasarkan 

mineral tanah liat tidak boleh dikembangkan menunjukkan pendekatan yang 

berpotensi yang belum diteroka secara relatif. Muskovit telah dipilih daripada 

sejumlah mineral tanah liat yang biasa digunakan disebabkan oleh nisbah aspek yang 

lebih tinggi berbanding montmorilonit (MMT). Oleh itu, kajian ini meneliti 

kemungkinan muskovit mengembang dan berfungsi sebagai pengisi pengukuhan 

dalam matriks ABS melalui proses pertukaran ion dua peringkat untuk penyerasian 

matriks pengisi dan penyebatian lebur bagi pembuatan polimer. Proses 

pengubahsuaian melibatkan rawatan menggunakan LiNO3 (peringkat pertama) dan 

pengubahsuaian menggunakan setiltrimetilammonium bromida (CTAB) dengan 

kepekatan yang berbeza sebagai tindak balas pertukaran kation. Percirian terhadap 

muskovit terawat dinilai menggunakan pendarflour sinar-X (XRF), belauan sinar-X 

(XRD), inframerah transformasi Fourier (FTIR), Brunauer–Emmett–Teller (BET), 

mikroskopi elektron imbasan pancaran medan (FESEM) digandingkan dengan 

spektroskopi sinar-X tenaga terserak (EDX), dan mikroskopi electron pancaran 

(TEM). Hasil eksperimen menunjukkan bahawa bukan sahaja jarak dasar tetapi juga 

luas permukaan tertentu bertambah sementara bilangan lapisan silikat bertindan 

organo tanah liat semakin berkurang pada kepekatan tinggi CTAB yang menandakan 

pemisahan dalam lapisan muskovit. Perubahan jarak dasar seterusnya membuktikan 

bahawa muskovit menunjukkan kemungkinan untuk mengembang. Matlamat 

seterusnya dalam penyelidikan ini adalah untuk memperluaskan aplikasi matriks ABS 



 

xviii 

 

berisi organomuskovit (OM). Dalam kes ini, OM dan muskovit yang tidak diubah suai 

dimasukkan  ke dalam matriks ABS dengan muatan pengisi 1, 3, dan 5 wt %. Aspek-

aspek kajian yang menjadi tumpuan  termasuk kesan pertukaran ion, tahap penyebaran 

yang dicapai, dan kesan pelbagai muatan pengisi terhadap sifat mekanik nanokomposit 

ABS. Maka, kajian ini telah menunjukkan bahawa nanokomposit ABS/OM 

mempunyai kecenderungan untuk menunjukkan sifat  mekanikal yang dipertingkatkan 

berbanding ABS/muskovit. Walau bagaimanapun, penggabungan muskovit pada 

semua muatan pengisi telah mengakibatkan pengurangan tidak ketara dalam kekuatan 

tegangan, penurunan yang ketara dalam pemanjangan takat putus, sedikit peningkatan 

dalam modulus dan kekerasan, serta peningkatan dalam kestabilan terma berbanding 

dengan sampel ABS tulen. Kekuatan lentur dan modulus masing-masing meningkat  

sebanyak 10% dan 28% berbanding dengan keputusan yang  diperoleh daripada ABS 

tulen. Belauan sinar-X sudut lebar dan analisis TEM menunjukkan pembentukan 

campuran  struktur terselit dan terkelupas dengan penggabungan OM. Oleh itu, 

penghasilan muskovit yang tidak boleh dikembangkan yang digabungkan dengan 

matriks polimer membuka peluang untuk meneroka fungsi-fungsi baharu selain 

daripada yang terdapat dalam bahan konvensional. 
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PREPARATION, CHARACTERISATION AND PROPERTIES OF 

MUSCOVITE/ ACRYLONITRILE BUTADIENE STYRENE 

NANOCOMPOSITES 

ABSTRACT 

The development of acrylonitrile butadiene styrene (ABS) nanocomposite 

based on non-expandable clay minerals presents a promising approach that has been 

relatively unexplored. Muscovite was chosen over the most commonly used clay 

minerals, due to its higher aspect ratio when compared to montmorillonite (MMT). As 

such, this study investigated the possibilities of muscovite to expand and to function 

as reinforcement filler in ABS matrix via two-stage ion exchange process for filler-

matrix compatibilisation and melt compounding for polymer fabrication. The 

modification process involved treatment with LiNO3 (first-stage) and modification 

with cetyltrimethylammonium bromide (CTAB) at various concentrations as a second-

stage cation exchange reaction. Characterisation of treated muscovite was assessed by 

using X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared 

(FTIR), Brunauer–Emmett–Teller (BET), Field emission scanning electron 

microscopy (FESEM) coupled with Energy dispersive x-ray spectroscopy (EDX), and 

Transmission Electron Microscopy (TEM). The experimental outcomes showed that 

not only basal spacing, but also specific surface area increased while the number of 

stacked individual silicate layers of organoclay kept decreasing at high CTAB 

concentrations, which signified separation within the muscovite layers. The changes 

in basal spacing further evidenced that muscovite displayed a possibility for expansion. 

A further goal of this research is to extend the application of organomuscovite (OM) 

filled ABS matrix. In this case, OM and unmodified muscovite were embedded in ABS 
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matrix at various filler loading of 1, 3, and 5 wt.%. The aspects addressed included the 

effect of ion-exchange process, the degree of dispersion that was achieved, and the 

effect of various filler loading on the mechanical properties of ABS nanocomposites. 

Along this line, this study reveals that the ABS/OM nanocomposites possessed a 

tendency to exemplify enhanced mechanical properties, in comparison to those of 

ABS/muscovite. Nevertheless, incorporation of muscovite at all filler loadings led to 

a slight reduction in tensile strength, a significant decrease in elongation at break, a 

slight improvement in modulus and hardness, and increment in thermal stability over 

those of the neat ABS. Flexural strength and modulus were improved by 10% and 

28%, respectively, when compared to those retrieved from neat ABS. Both wide angle 

x-ray diffraction (WAXD) and TEM analyses indicated the formation of mixed 

intercalated and exfoliated structures with incorporation of OM. Therefore, the 

development of non-expandable muscovite incorporated with polymer matrices  

provide the opportunities to explore new functionalities beyond those found in 

conventional materials.
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CHAPTER 1  

 

INTRODUCTION 

1.1 Overview  

Polymer nanocomposites based on layered silicate (LS) have garnered much 

interest in the present materials field due to their possibility in achieving impressive 

enhancements in the properties, in comparison to virgin polymers (Ray et al., 2005). 

Such improvements include high moduli, enhanced strength and heat resistance, as 

well as decreased gas permeability and flammability (Liu, 2007; Pavlidou & 

Papaspyrides, 2008). Interestingly, these improvements can be attained without 

significantly increasing the density of polymer or changing its opaque properties after 

incorporating minimal loading of fillers. These unique characteristics enable its use in 

broad applications, such as automotive, aerospace, filling industries, electronics, and 

food packaging (Alexandre & Dubois, 2000; Fu et al., 2008). As a result, this scenario 

has attracted interest from researchers at the global scale. 

Among all the LS, those based on clays have been more widely investigated 

probably because the starting clay materials are easily available, naturally abundant, 

economical, and more importantly, possess higher aspect ratio, hence making them a 

favourable material to be applied in polymer layered silicate nanocomposites (PLSN). 

Aside from these properties, there are two essential characteristics that make it a good 

candidate in preparing PLSN. First, their layered structures enable them to be separated 

into individual sheets, thus generating an aspect ratio of as high as 1000 (Lin et al., 

2010). Second, ion-exchange within the interlayers provides clay with rich 

intercalation chemistry. This surface chemistry can be fine-tuned with various organic 



 

2 

 

or inorganic cations to make them compatible with a wide range of polymer. In fact, 

the intercalation chemistry has been assessed since a long time and has gained attention 

since the pioneering work of Toyota researchers in the late 1980s, whom have 

demonstrated an outstanding application of clay-polyimide 6 nanocomposites within 

the automotive industry  (Kojima et al., 1993; Okada & Usuki, 1995). Ever since then, 

a vast range of scientific publications have emphasised on the incorporation of LS with 

several polymers, such as polyethylene terephthalate (PET) (Ammala et al., 2008; 

Parvinzadeh et al., 2010), polypropylene (PP) (Ataeefard & Moradian, 2011; 

Hasegawa et al., 2000), polycarbonates (PC) (Xiao et al., 2013), polylactic acid (PLA) 

(Chang et al., 2003), polyethylene (PE) (Yang et al., 2003) , polyester (Sreekanth et 

al., 2009), and epoxy (Lin et al., 2010).  

The commonly used clays for preparing PLSNs belong to the same general 

family of 2:1 layered or phyllosilicates. MMT, hectorite, saponite, and koalinite, are 

among the most widely used fillers in PLSN since decades ago (Mittal, 2009). Be that 

as it may, despite the numerous studies that have focused on these types of clay 

minerals, none has looked into muscovite, a subdivision of the Mica group. Muscovite 

is a kind of clay mineral that has been employed for various applications, including 

electrical installations and equipment, wastewater absorbent, and as fillers in polymer, 

paint, and cosmetics industries. In truth, very rarely has the literature reported 

regarding the application of muscovite in thermoplastic composites, especially in its 

micron size. Hence, a need emerges for the development of a new filler material, in 

which this present work has undertaken to address the suitability of muscovite to be 

incorporated in polymer matrix. Exploring these abilities has been reckoned as a good 

starting point in preparing PLSN with extensive delaminated clay stacks. 



 

3 

 

In this aspect, a substantial number of PLSN preparation methods have 

embedded LS materials into polymer matrix materials in a fine dispersion manner 

(Lebaron et al., 1999; Pavlidou & Papaspyrides, 2008; Ray et al., 2003; Usuki et al., 

1993). Surface modification by organic surfactant on silicate layers is a vital process 

to generate conditions for PLSN. A proper surface modification technique can be 

performed by using a variety of mechanisms, such as silanization (Di Gianni et al., 

2008; Romanzini et al., 2015), grafting (Solhi et al., 2012), and ion exchange (Metz et 

al., 2015). In relation to this, the ion-exchange reaction method has been widely 

implemented because it is an easy and rapid technique (Lagaly et al., 2006). 

Additionally, a study was reported for muscovite, wherein modification via ion 

exchange seemed to be a better choice than using silylating agents that failed to reach 

the few hydroxyl groups buried within aluminosilicate crystals (Proust et al., 1988). 

This method helps to modify the surface properties of inert minerals through the 

ionically-bound organic monolayers (Osman et al., 2003). The diverse applications of 

the ion exchange process has been extensively used to prepare various organoclays, 

such as sepiolite (Pratap Singh et al., 2016), bentonite (Kwolek et al., 2003; Shen, 

2001), MMT (Gallego et al., 2010; Jian et al., 2016; Merijs Meri et al., 2015; Pourabas 

& Raeesi, 2005), and hectorite (Voulgaris & Petridis, 2002). 

Therefore, this  study  investigated the potential of non-expandable muscovite 

to serve as reinforcement filler in polymer matrix. Although muscovite particles used 

are in micron size, it is believed that they could be delaminated into nanometre 

platelets with approximately one nm thickness. Likewise, muscovite is believed to be 

non-exchangeable with inherent expansion and incompatible with most of the polymer 

systems. Due to such issues, studies on muscovite of clay mineral-polymer 
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