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Abstract

Ants are fascinating creatures - not so much because they are intelligent

on their own, but because as a group they display compelling emergent be-

haviour (the extent to which one observes features in a swarm which cannot

be traced back to the actions of swarm members). What does each swarm

member do which allows deliberate engineering of emergent behaviour?

We investigate the development of a language for programming swarms of

ant agents towards desired emergent behaviour. Five aspects of stigmergic

(pheromone sensitive computational devices in which a non-symbolic form of

communication that is indirectly mediated via the environment arises) and

message passing ant agents (computational devices which rely on implicit

communication spaces in which direction vectors are shared one-on-one) are

studied.

First, we investigate the primitive behaviours which characterize ant agents'

discrete actions at individual levels. Ten such primitive behaviours are iden-

ti�ed as candidate building blocks of the ant agent language sought. We

then study mechanisms in which primitive behaviours are put together into

XSets (collection of primitive behaviours, parameter values, and meta in-

formation which spells out how and when primitive behaviours are used).

Various permutations of XSets are possible which de�ne the search space for

best performer XSets for particular tasks.

Genetic programming principles are proposed as a search strategy for best

performer XSets that would allow particular emergent behaviour to occur.

XSets in the search space are evolved over various genetic generations and

tested for abilities to allow path �nding (as proof of concept). XSets are

ranked according to the indices of merit (�tness measures which indicate

how well XSets allow particular emergent behaviour to occur) they achieve.

Best performer XSets for the path �nding task are identi�ed and reported.
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We validate the results yield when best performer XSets are used with regard

to normality, correlation, similarities in variation, and similarities between

mean performances over time. Commonly, the simulation results yield pass

most statistical tests.

The last aspect we study is the application of best performer XSets to dif-

ferent problem tasks. Five experiments are administered in this regard. The

�rst experiment assesses XSets' abilities to allow multiple targets location

(ant agents' abilities to locate continuous regions of targets), and found out

that best performer XSets are problem independent. However both categories

of XSets are sensitive to changes in agent density. We test the in�uences of

individual primitive behaviours and the e�ects of the sequences of primi-

tive behaviours to the indices of merit of XSets and found out that most

primitive behaviours are indispensable, especially when speci�c sequences

are prescribed. The e�ects of pheromone dissipation to the indices of merit

of stigmergic XSets are also scrutinized. Precisely, dissipation is not causal.

Rather, it enhances convergence.

Overall, this work successfully identify the discrete primitive behaviours of

stigmergic and message passing ant-like devices. It successfully put these

primitive behaviours together into XSets which characterize a language for

programming ant-like devices towards desired emergent behaviour. This

XSets approach is a new ant language representation with which a wider

domain of emergent tasks can be resolved.
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Chapter 1

Introduction

Ant agent systems are successfully used in many areas of simulated construc-

tion (Werfel et al., 2006), search (Dorigo, 1992.; Dorigo et al., 1996), data

mining and clustering (De Wolf, 2007), as well as for optimization purposes

(Bonabeau et al., 1999). The collective e�ects of the individual activities

of ant agents produce complex emergent behaviour at swarm levels with no

central swarm organization at individual levels (Dorigo et al., 1999.; Dorigo

et al., 2006.; Poon and Maher, 1996). What does each individual ant agent

do in the swarm which allows deliberate engineering of emergent behaviour?

This thesis investigates the development and formalization of a language for

programming swarms of ant agents towards deliberate engineering of desired

emergent behaviour. In this context, emergent behaviour is the extent to

which one can observe features in a swarm which cannot be traced back

to the low level activities of the individual agents in a swarm (Fisher and

Lipson, 1999.; Krink and Vollrath, 1998). In fact, the emergent behaviour

that is observed in a swarm is more than the sum of the contributions of the

individual agents in the swarm (Sato and Matsuoka, 2009.; Priesterjahn et

al., 2005.; Stepney et al., 2007.; Negulescu and Barbat, 2004).

1
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To achieve its goals, this thesis starts by investigating the low level activities

of computational ant-like devices that are modelled on the behaviours of

simulated ant agents. We refer to low level ant agent activities as primitive

behaviours (a term derived from the works of Andersson et al. (2002) and Cao

et al. (1997), where agent activities e.g. wandering, following, aggregation,

dispersion, and homing - are referred to as communication primitives).

Successful identi�cation of primitive behaviours, and appropriate combina-

tion of these primitive behaviours into sets of activities which characterize

each ant agent's behaviour over time poses a number of challenges. Which

primitive behaviours de�ne ant agents' activities? How are these primitive

behaviours put together in order to de�ne an ant agent language? Even

harder is to understand the meta information which presents the rules and

conditions regarding how and when each primitive behaviour is used in or-

der to guarantee deliberate engineering of predictable emergent behaviour at

swarm levels. In this context, meta information relates to information about

the use and functionality of primitive behaviours in a given context.

This work refers to a collection of primitive behaviours, parameter values of

these primitive behaviours, and meta information, as an XSet (an acronym

for �eXtended Set�). Thus, the primary goal of this thesis, and the key contri-

bution thereof, is the identi�cation of XSets which best describe a � language�

for programming swarms of ant-like devices towards deliberate engineering

of desired and predictable emergent behaviour.

Successful identi�cation and formalization of XSets as a language for pro-

gramming swarms of ant-like devices towards predictable emergent con�gu-

ration has three bene�ts to the �eld of computer science. First, it extends

knowledge in emergent systems, swarm algorithms, and agent coordination

systems. It also extends the application of techniques from evolutionary

programming and wireless sensor networks to ant systems. Most impor-

tantly, the results of this work have direct implications to future researches
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towards practical application of ant swarm architectures in commercial prob-

lem domains. The next section presents a succinct overview which mainly

introduces the key concepts of the thesis.

1.1 Background

This section presents a brief background of the research problem we investi-

gate in this thesis (which is the development and formalization of a language

for programming swarms of ant-like devices towards deliberate engineering

of desired emergent behaviour).

We build this work on the knowledge of researches that have been presented

in the past whose aims have been to achieve predictable emergent behaviour

from simulated swarms of similar agents (Burke and Kendall, 1999.; Geer

et al., 2003.; Nagpal, 2001.; Nagpal et al., 2002.; Kondacs, 2003.; Mason,

2002.; Werfel, 2002.; Rothemund, 2006). This �eld remains an interesting

research area in computer science for a number of reasons such as; the de-

sire to simplify the creation of deterministic emergent behaviours; ambitions

to eliminate the unpredictable nature of emergent behaviour in distributed

systems comprising of many individual functional units, in favour of directed

and purposeful design of global problem solving emergent behaviours; the

hope to create and formalize agent �languages� for achieving desired emer-

gent behaviour; the hope to reduce the costs of developing emergent systems;

and the desire to achieve even more robust and fault tolerant agent based

solutions with, potentially, practical applications.

This thesis particularly pays attention to the design of ant agents that can

demonstrate most of the advantages that are mentioned in the previous para-

graph. Most importantly, we emphasize on the design of ant agent languages
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that can allow deliberate engineering of desired emergent behaviour. How-

ever, we acknowledge that the concepts, methods, and theories that can help

in identifying the key primitive behaviours that would su�ciently charac-

terize ant agent XSets for these purposes can be found from a number of

disciplines such as; entomology, arti�cial life, general biology, or other previ-

ously simulated ant systems. It is an ambitious task to try and investigate the

viewpoints of all these possible disciplines regarding the primitive behaviours

sought. As a case study and proof of concept, we focus our investigations on

the views that are implied when ant-like computational devices or simulated

ant agents are proposed.

We described an ant agent as a computational device that is modelled on

the behaviour of simulated ant systems (see the preamble of this chapter,

in the third paragraph for this description). A group of ant agents is de-

scribed as a swarm. Each ant agent in a swarm is designed with abilities

to follow a clear set of rules (collection of primitive behaviours) in order to

collectively contribute towards the creation of desired emergent behaviour.

In theory, a primitive behaviour characterizes an ant agent's discrete action

in one movement step. Some examples of ant agent primitive behaviours

that have been proposed or implied in the literature include (for illustration

purposes); dropping pheromone (Fernandes et al., 2005.; Panait and Luke,

2004b), agent orientation (Chibaya and Bangay, 2007.; Panait and Luke,

2004b), agent movement (Cerello eta al., 2010), �ipping between di�erent

internal states (Panait and Luke, 2004b. Chibaya and Bangay, 2007), and

sharing vectors (Nasipuri and Li, 2002.; Payton et al., 2001).

A combination of a collection of primitive behaviours with meta information

de�nes an XSet. Our assumption is that an XSet encapsulates four pieces

of information namely; the primitive behaviours that are required by ant

agents; the parameter values of the primitive behaviours; conditions which

stipulate how and when primitive behaviours are used; meta data (regarding
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the cardinality of XSets, agent memory, and number of internal states), and

the sequences in which primitive behaviours are presented to ant agents.

Ant agent languages have been represented in many ways (see the catego-

rization of agent interaction techniques in Chapter 2). This work regards

the XSets approach as a foundation towards the development of a language

for programming swarms of ant agents towards deliberate engineering of de-

sired emergent behaviour. However we restrict our interest to the primitive

behaviours of two categories of ant agents namely; stigmergic and message

passing ant agents. Stigmergic ant agents support indirect and environment

mediated interactions in which virtual pheromone chemicals are the key in-

gredients for ant agent orientation and movement (Dorigo et al., 1999). On

the other hand, message passing ant agents support direct agent-to-agent

interactions in which implicit communication spaces arise. A potential ex-

tension of this work arises when the primitive behaviours of other forms of ant

agents (such as talking ants, leader following or queen managed ants, etc) are

studied and incorporated into the search space we achieve in this thesis (thus

extending the search space for best performer XSets, as well as increasing

the chances of achieving generic combination of primitive behaviours).

Ant agents are designed with awareness of their low level task domains at

all times (e.g. ant agents are always aware that they are exploring the en-

vironment or they are navigating, recruiting, or updating information). An

ant agent's knowledge of its task domain de�nes its internal state, and such

knowledge connotes ant agents as having some basic memory in which to

hold internal state information.

An intriguing feature regarding stigmergic ant agents is that they drop spe-

ci�c levels of pheromones in every movement step (Panait and Luke, 2004a,

2004b). The levels of pheromones thereof mark trails with directional cues

to other ant agents in the swarm. Thus, the levels of pheromones that are

placed on the environment create shared memories for the swarm. On the
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other hand, adjacent ant agents in the message passing category can explic-

itly exchange directional information in the form of geometric vectors that

are weighted by set con�dence parameters (see Chapter 3 for details regard-

ing these con�dence parameters). This background and the assumptions

we make in this section and in the preamble, motivate the need for a clear

statement of the research question that is addressed in this thesis.

1.2 Problem statement

Literature informs us that simulated ant agents are guided by de�ned sets

of rules (Werfel, 2002.; Cerello et al., 2010). Our work refers to these sets

of rules as XSets. It is that explicit identi�cation of the elements of XSets

that is of interest to us because emergent behaviour is generally di�cult to

predict when we do not know its building blocks. Even harder would be

an attempt to decompose emergent behaviour into component units, and

hopefully characterize each unit in terms of its contribution to the emergent

behaviour reported (Funes et al., 2003).

The particular research statement we address in this thesis is: an investiga-

tion into XSets of primitive behaviours that can allow deliberate engineering

of emergent behaviour in swarms of ant-like agents. This is an ambitious

task in an extensive emerging �eld, hence we constrain our investigations to

�ve sub-problems, all of which contribute towards achieving our overall goal.

Figure 1.1. shows the breakdown of our research problem into these �ve sub-

problems as follows: (a) the identi�cation of ant agent primitive behaviours

in the two categories we study, (b) devising strategies for putting primitive

behaviours together in order to create XSets, (c) describing methods for

evaluating and ranking XSets based on the outcomes of the swarms that use

XSets for particular purposes, (d) validating the measures of emergence that
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Figure 1.1: Generalization of the research problem and the concept of XSets

arise when particular XSets are used, and (e) application of XSets to di�erent

problem domains.

While these sub-problems may not address the very general ant agent pro-

gramming problem, we believe that the XSets sought will provide a solid

foundation for the development of, at least, a basic �language� for program-

ming swarms of ant agents towards desired emergent behaviours. The next

�ve subsections describe and motivate each sub-problem in details.

1.2.1 Identi�cation of primitive behaviours

We can re-phrase this sub-problem as follows: what are the low level activities

of ant agents that can be used to describe the domain of primitive behaviours

that allow emergent behaviour to occur? Generally, primitive behaviours are

viewed as agent instructions which cause emergent behaviour. However in
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computational terms, these are, in fact, parametrized routines which code

ant agent controls, rules and conditions over time.

To identify these primitive behaviours and answer this sub-problem, we har-

ness lessons learned from the cooperative behaviour of simulated foraging

ant agents (Panait and Luke, 2004a, 2004b, 2004c). Chapter 3 addresses

this sub-problem and reports the identi�cation of ten candidate primitive

behaviours namely: (a) pheromone based orientation, (b) vector based ori-

entation, (c) dropping levels of pheromones, (d) pheromone evaporation, (e)

pheromone di�usion, (f) normalizing vectors, (g) detecting target indicators

and converting these to vectors, (h) agent movement, (i) switching between

di�erent internal states, and (j) the no action control.

Chapter 3 also describe meta information which de�ne system level param-

eters such as (a) the type of ant agents that are supported in the work, (b)

the number of internal states swarms of ant agents support, (c) the design

and amount of memory an ant agent supports, (d) as well as agent density

limits that would achieve meaningful results in the environments set.

The key response to this sub-problem and the main outcome of Chapter

3 are therefore twofold; (a) the list of primitive behaviours, (b) the meta

information about the primitive behaviours.

1.2.2 Creating XSets

The second sub-problem can be re-phrased as follows: how do we represent

XSets which can summarize su�cient collections of ant agent actions that

would allow deliberate engineering of emergent behaviour? This sub-problem

requires us to present a mechanism with which to put primitive behaviours

together in order to form useful XSets. In this work, genetic programming

principles are proposed as a search strategy for evolving and identifying best
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collections of primitive behaviours and parameter values that would allow

deliberate engineering of desired emergent behaviour.

First, we propose a mechanism for de�ning the initial genetic population

which serves as the search domain for desired components of useful XSets.

To achieve this, a set of candidate primitive behaviours U is formed (see

Figure 1.1). Precisely, U is the set of the ten primitive behaviours that

are listed in section 1.2.1 in paragraph 2. A power set P (U) of U consists

of all the possible subsets of U . We propose the de�nition of an ordered

power set P (U), where subsets are partial permutations of the ten primitive

behaviours. For example, if U = {a, b}. Then the ordered power set would

be P (U) = {φ0; {a}1; {b}2; {a; b}3; {b; a}4}. Thus, each element of P (U) is

a unique subset without repetition and has a unique index in the power set.

In this context, subsets {a; b}3 and {b; a}4 are regarded as di�erent since the

composite primitive behaviours are presented in unique sequences.

A combination of every ordered subset set with meta information creates a

member of the initial genetic population of XSets from which new generations

of XSets are evolved over time (the search space for desired XSets). In

this case, meta information spells out system level parameters such as the

category of XSets sought at the time (stigmergic, message passing, or hybrid

XSets), the highest cardinality of the XSets, the number of internal states ant

agents support, the number of memory blocks ant agents can hold at a time,

agent density, genetic parameters, as well as other environment de�nition

parameters.

This sub-problem is addressed in Chapter 4. The key outcome of Chapter 4

is therefore; the creation of the initial genetic population, evolution of XSets,

and the identi�cation of best performer XSets for resolving a particular case

study scenario (the path �nding problem) which serves as a task domain for

proving the concept of XSets.
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1.2.3 Evaluating XSets

The initial genetic population of XSets that arises from partial permutations

of primitive behaviours in the set U is the basis for the creation of a search

space for best XSets for desired emergent behaviour. In this sub-problem,

we present a mechanism in which to quantify the extent to which emergent

behaviour is manifest as a result of using particular XSets. The quantity

sought is referred to as an index of merit of an XSet. In other words, an

index of merit is a value that is associated with the performances of swarms

of ant agents that use an XSet for a particular purpose. It is the relative

�tness rank of the XSet within a given genetic population of XSets.

We can re-phrase this sub-problem as follows: how do we quantify the extent

to which emergent behaviour is manifest as a result of using a particular XSet

for a known purpose? We also tackle this sub-problem in Chapter 4. Five

measures of emergence are proposed with which we determine the indices

of merit of XSets. These measures of emergence are: speed of emergence,

quality of emergence, average delivery rate, average end-to-end delays, as

well as Shannon's information value.

A mechanism which spells out how these �ve measures of emergence are

combined in order to determine the index of merit is presented in the same

Chapter 4. At the end of the chapter, we administer an experiment which

validates the processes and the measures of emergence that arise when best

performer XSets for the path �nding task are used.

1.2.4 Validation of measures of emergence

The fourth sub-problem investigates four aspects with regards to the validity

of the measures of emergence that are reported as relatively best. First, we
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assess whether the outcomes we report are normally distributed (evidence of

normal distribution is tested using Kolmogorov - Smirnov tests on the sets of

measures of emergence). Then we investigate the degrees of association that

exist between di�erent sets of measures of emergence that are reported from

replicated runs when best performer XSets are used. In particular, correla-

tion analyses between sets of measures of emergence, comparisons between

the mean performances, as well as analyses of variances are the key statistics

we report.

This sub-problem is addressed in Chapter 5. Results which report success-

ful Kolmogorov-Smirnov tests for normality, signi�cant correlations between

sets of measures of emergence, similar variations and mean performances are

presented in this Chapter. These results indicate that, generally, the in-

dices of merit we see are indicative of the extent to which the XSets thereof,

represent repeatable dictionaries for an ant agent language that can allow

deliberate engineering of desired emergent behaviour - hence the recommen-

dations we make of testing the same XSets on di�erent task domains in the

next sub-problem.

1.2.5 Application of XSets in di�erent task domains

The last sub-problem investigates the extent to which path �nding XSets

can form useful toolboxes for allowing other forms of emergent behaviour to

occur. Precisely, we investigate elements of these XSets which support mul-

tiple targets location. In the context of this work, multiple targets location

is about deploying swarms of ant agents in order to locate, as a case study

and proof of concept, continuous regions of targets.

The choice of the setups of the continuous regions of targets we propose is

motivated for in Chapter 2. In particular, we investigate the performances
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of best path �nding XSets for abilities to allow the location of continuous re-

gions of targets that are arranged in cross patterns, four-way cross patterns,

polygonal layouts (such as triangles, rectangles, pentagon, hexagon, hep-

tagon, and octagon), or in the form of circular shapes. These are su�ciently

many examples of di�erent goal setups to reveal the emergent properties we

want to investigate in best performer XSets. We address this sub-problem

in Chapter 6 and report results which indicate that, generally, path �nding

XSets are problem independent.

1.3 Strategy

We address the �ve sub-problems in search of best performer XSets that

can allow emergent properties to emerge in swarms of ant-like devices. The

following are the steps we follow to achieve these goals:

1. First, we explore the literature in search of the key concepts, methods,

and theories that would help us in describing stigmergic and message

passing ant agents' primitive behaviours. Other concepts and theories

are derived from observing electronic versions of simulated ant systems.

To augment the views we get from these sources, we develop a proto-

type which simulates foraging ant agents that are tasked to �nd a food

source that is situated in an environment, and upon �nding this food

source, return back to the starting point and commence the search

journeys all over again. The key outcome of this search is a list of ant

agent activities that are commonly inferred as ant agent control rules

or conditions. Let a set of all ant agent activities that are found be

denoted as U .

2. Second, we algebraically manipulate the set U in order to determine

its power set and the initial genetic population of XSets. A power set
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contains all possible subsets of U . Let the power set of U be denoted

as P (U).

3. Meta information is then considered, which spells out particular sim-

ulation parameters depending on the task domain that is being tested

at the time. A combination of meta information with every element

of P (U) creates the initial genetic population of XSets which de�nes a

search domain for best performer XSets we require.

4. Experiments are administered thereafter, which genetically evolve bet-

ter and better XSets using particular genetic operations. In each case,

the XSets are ranked by the indices of merit they achieve when swarms

of ant agents are deployed to solve a given task domain. In the end,

best performer XSets are identi�ed and reported.

5. The performances of the same best performer XSets are validated with

regards to normality, signi�cance of correlations that arise between

pairs of measures of emergence, as well as the similarities between the

means and variances thereof.

6. The same XSets are then evaluated for abilities to allow other forms of

emergent properties in di�erent task domains.

This strategy spells out the steps we follow before arriving at a conclusion

regarding the possibilities of generalizing particular XSets as control dictio-

naries for achieving predictable emergent behaviour in swarms of ant-like

devices.

1.4 Motivation

This section presents our general motivation for undertaking this research, as

well as motivation for the di�erent choices we make throughout this research.
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It particularly motivates our choice of studying the behaviours of stigmergic

and message passing ant agents, and the choice we make of using the XSets

approach over traditional swarm control techniques. We also justify why

we mainly test our XSets on the path �nding task domain, and conclude

the section with a motivation for choosing speci�c measures of emergence as

emergent quanti�ers.

1.4.1 General motivation for this work

A key drive for undertaking this research work arises from the literature. Ant

agent systems have shown bene�ts over other agent control systems in terms

of e�ciency, the speed and quality of services, robustness, and fault tolerance

(Abelson et al., 2000). This is because ant agents use local interaction rules

when solving problems. We understand local interaction rules as agent abil-

ities to perceive environments only within their observable neighbourhood

(De Wolf, 2007).

Inspired by these numerous bene�ts, we develop a software engineering paradigm

that constructs solutions from swarms of interacting ant-like devices. At

present, the accepted de�nition of emergent behaviour as a non-reducible

phenomenon prevents the use of accepted software decomposition strategies

to characterize this software engineering paradigm.

A number of examples of plausible ant systems products that demonstrate

these bene�ts can be listed. For example, successful nest construction has

been reported (Downing and Jeanne, 1988.; Aleksiev et al., 2007.; Franks

et al., 1992). Other ant systems simulated molds of anthill-like structures

(Werfel et al., 2005.; Werfel et al., 2006), while others achieved pit construc-

tion (Burgess, 2009) and brood tending behaviour (Detrain and Deneubourg,

2006.; Merkle et al., 2006). We have also previously demonstrated shortest
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path formation and following behaviour (Chibaya and Bangay, 2007.; Porta

et al., 2009.; Solé et al., 2000). However object segmentation properties

(Tao et al., 2007), shape construction (Liu and Mohamed, 2008.; Soloveichik,

2008.; Meinhardt, 1982.; Werfel, 2002.; Yamins, 2007), and image evolution

(Fernandes et al., 2005.; Rezaee, 2008) are even more inspiring examples.

The possibilities of developing ant based XSets with properties for achieving

similar swarm intelligence are many and far-ranging.

Another motivating factor emanates from software engineering principles

that are applied in the �eld of amorphous computing (Abelson et al., 2000).

Amorphous computing is a program designing principle whose aim is to de-

velop programming paradigms for achieving coherent behaviour from the

cooperation of unreliable swarms of devices (Grochow, 2002.; Nagpal and

Coore, 1998). In this context, the terms �devices� and �agents� are syn-

onymous. We note that the accepted de�nition of amorphous computing

systems (Irons and Monk, 2006) draws closely to our de�nition of emergent

behaviour (Poon and Maher, 1996.; Seevinck and Edmonds, 2008). As a

result, the XSets we propose may inspire further developments of computa-

tional constructs for amorphous computing.

In addition, the demand to formalize swarm coordination principles is even

higher in software engineering methodologies for nanotechnology (North,

2006). Nanotechnology is a new science aimed at building structures atom

by atom using tiny mobile robotic devices known as nanites (Cavalcanti and

Freitas, 2005.; North, 2006.; Schneider et al., 2006). The hope of nanotech-

nology is that swarms of nanites, under the control of reliable controller

XSets, would successfully self-organize into robust and fault tolerant objects

at nano-meter scales (Treder, 2004). Our work therefore comes at the right

time when contributions towards describing such controller XSets are sought.

The development of Micro-Electro-Mechanical Systems (MEMS) devices (Gage,

1993) has also inspired the development of this thesis. Although it is now
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possible to manufacture millions of MEMS devices and con�gure them, for

example, into paintable materials (Butera, 2002.; Bullock and Cli�, 2004),

formal control principles with which to guarantee predictable outcomes are

still pending. Our hope is that the XSets we propose can be adapted for

coordinating MEMS devices towards commercial con�gurations (Couzin and

Franks, 2002).

Furthermore, calls for contributions towards building paradigms with which

to coordinate smart ant colonies have been made in the past (Saenz, 2011).

The key highlights of these calls are the demands for control routines that

can tell ant agents to �nd paths, giving preferences to �nding the resources,

as opposed to wandering at random. The work of Win�eld et al., (2013)

also con�rmed lack of practical examples, as yet, where collective foraging

systems have been successfully employed in real-world applications. Our

work directly addresses this problem. As such, the academic bene�ts of the

results of this work, particularly to novice programmers in the �eld, make

this research work worthwhile.

Given this wide range of motivating factors, governments around the world

have began to show interest in funding related projects. In South Africa

alone, the National Research Foundation (NRF) announced a provision to

fund projects categorized as the Blue Skies Researches, aimed at developing

novel, cutting edge, and speculative research ideas with potentials to shift

disciplinary paradigms (Van Jaarsveld and Bozzoli, 2009). Our work falls into

this category. As a result, the Jindo project at Rhodes University, funded

by the NRF and Rhodes University Centre of Excellence, was established.

These numerous funding opportunities are a motivating factor on their own.
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1.4.2 Motivation for stigmergic/message passing swarms

Various agent control metaphors have been proposed in the literature. Domi-

nant are agent control metaphors which support language based interactions

(Nagpal et al., 2002.; Nagpal et al., 2003.; Sussman, 1999.; Belani et al.,

2002.; Stefano and Santoro, 2001.; Kraus and Lehmann, 1995.; Nagpal and

Coore, 1998.; Cao et al., 1997.; Butera, 2002.; Beal 2005a, 2005b.; Abelson

et al., 2000.; Nagpal et al., 2006.; Crane�eld et al., 2000). These metaphors

attempt to develop agent languages with a vocabulary, full syntax, and se-

mantics that are understood by the agents. However such language based

models are generally impractical and unrealistic for application in the devel-

opment of ant agent systems because there is lack of su�cient vocabulary for

this purpose.

Other agent control metaphors heavily rely on the laws of mathematics, ge-

ometry, or physics as origins of agent control axioms (Ngo et al., 2005.; Harris,

2007.; Tro�mova et al., 1998.; Spears et al., 2004a, 2004b, 2005.; Azzag et

al., 2007.; Beckers et al., 1989.; Balch and Arkin, 1999.; Cao et al., 1997).

However these metaphors are often economically not feasible for the develop-

ment of simple and naive ant agents since they serve best when sophisticated

robots are required.

A few agent systems consider the message passing metaphors (Trianni and

Dorigo, 2005.; Rajbhupinder et al., 2010.; Hara and Ichimura, 2005.; Montes

De Oca et al., 2005.; Lien et al., 2005.; Rodriguez et al., 2007.; Bayazit et al.,

2002.; Bayazit et al., 2005.; Caicedo et al., 2001). Most of the works that have

been presented in this regard make use of agents with substantial amount

of memory capacities to hold blocks of messages and historic information

that is shared one-on-one. However, vector arithmetic is a general algebra

that is applicable for computation in many domains (from machine learning,

network analysis, and spatial representation) so has potential to allow ants



CHAPTER 1. INTRODUCTION 18

to solve problems relevant to these domains. In this case, it also allows

location reasoning which is important for spatial problems. To the best

of our knowledge, the message passing metaphor has not been su�ciently

explored for application in the development of naive agents such as ant-like

devices - hence the choice we make to investigate the primitive behaviours of

ant agents in this category. Successful identi�cation of primitive behaviours

that characterize the activities of ant agents in this category would constitute

novel �ndings in the �eld.

Most ant agent metaphors consider swarms in which interactions are envi-

ronment mediated (Dorigo, 1992.; Dorigo et al., 1999.; Dorigo et al., 1996.;

Di Caro et al., 2004.; Negulescu et al., 2006.; Chibaya and Bangay, 2007.;

Montgomery et al., 2007.; Panait and Luke, 2004a, 2004b, 2004c.; Caval-

canti and Freitas, 2005.; Cavalcanti et al., 2005b). We take advantage of

the availability of profound literature in which the key concepts, methods,

and theories for describing and developing ant agent primitive behaviours are

likely comprehensive - hence the choice we make to study stigmergic swarms.

It is an ambitious task to try and identify the primitive behaviours of all

possible agent metaphors, especially in this preliminary study of the concept

of XSets. As a case study and proof of concept, we restrict ourselves to

the study of stigmergic (environment mediated) and message passing ant

metaphors. The notion is that similar studies on other agent metaphors

would only extend the set of candidate primitive behaviours, and increase

the cardinality of the power set P (U), as well as the diversity of the initial

genetic population. That on its own would diversify the search space for even

better XSets with a wider application domain.
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1.4.3 Motivation for proposing the XSets method

The XSet method is a novel approach (invented by the author) for repre-

senting the syntax and semantics of a language for programming swarms of

ant agents towards deliberate engineering of desired emergent behaviour. It

creates a new data structure which encapsulates meta information, agent

activities, and the key simulation parameters with the view of purporting

some degree of generality that would potentially allow the same XSets to

�nd solutions in a wide task domain. That theory we envision regarding the

possibilities of generalizing the ant agent language thereof, to a wide task

domain, is what inspires the choice of the XSets approach.

1.4.4 Motivation for using the path �nding task domain

We are informed by the literature that environment exploration, ant interac-

tion and recruitment, as well as path formation are pre-requisites for resolving

most tasks in the ants inspired robotics domain (Nouyan and Dorigo, 2007.;

Panait and Luke, 2004a, 2004b, 2004c.; Dorigo et al., 1999). This piece of

information is, on its own, a motivating factor for testing our proposed XSets

on the path �nding problem since it is a pre-requisite for resolving other re-

lated tasks. The notion is that, if our XSets successfully demonstrate emer-

gent properties in this respect, then they can serve as building blocks for

adapted XSets with which we can create related swarm con�gurations with,

potentially, practical bene�ts.

On the other hand, we also learn from related works that most ACO algo-

rithms are initially tested (alpha, beta, and functional tests) on the path

formation or foraging problem (Win�eld et al., 2013.; Dorigo, 1992.; Cordon

et al., 2002.; Panait and Luke, 2004b). Tests on new approaches in ant sys-

tems are often mainly inspired by Dorigo (1992)'s �rst experiment in the �eld
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(the two-way bridge setup) which assesses path �nding abilities in swarms.

Our XSets approach is a new innovation in the �eld which requires testing

from the �rst principles as well - hence the choice of the path �nding task

domain as proof of concept.

In addition, we indicated earlier on that the path formation problem is a well

researched task domain where concepts, methods, and theories are likely pro-

foundly documented. Thus, we have a wider search space for useful primitive

behaviours and controls for developing the XSets we want.

However, it is important to note that the aim of this work is not to demon-

strate path formation behaviour and compare the outcomes with known tra-

ditional ant system models. Rather, our concern is to be able to explicitly

pinpoint the low level activities of ant agents in swarms which characterize

a language for building desired emergent behaviour (such as path �nding).

Thus, the path �nding domain (or any other task domain) is used only to

demonstrate successful or unsuccessful identi�cation of such XSets.

1.4.5 Motivation for speci�c measures of emergence

The ability to quantify emergent behaviour is another young research dimen-

sion in swarm intelligence systems. Only a few measures of emergence have

been reported and formalized for this purpose so far. Our work looks at the

merits and demerits of most of these measures of emergence and recommend

those that are suitable for assessing emergency in ant systems.

Commonly, measures of emergence have been reported which study the rela-

tionships among events in simulation (Gore and Reynolds, 2008). A prevalent

view in these measures of emergence is the determination of the amount of

change in a system (comparing the proportion of outputs to the amount of

inputs) (Schaefer et al., 2002.; Hinchey et al., 2005.; Rou� et al., 2004.;
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Hamann et al., 2011.; Chan, 2011). We can re-phrase this measure of emer-

gence as a measurement of the throughput of a system. Our choice to assess

the average delivery rates in swarms translates to an evaluation of system

throughput as well. Thus, our choice of this measure of emergence is directly

inspired by similar works in the literature.

There are emergent systems in which the frequency of agent interaction are

assessed (Noble and Letsky, 2002.; Wang and Zhu, 2007). Other works evalu-

ate the time a system takes to converge (Wang and Zhu, 2007.; Hovda, 2008.;

Minati, 2002.; Chan, 2011). This work interprets time in simulation in two

contexts (speed of emergence and average end-to-end delays of ant agents in

the swarm). Thus, the choices we make of these two measures of emergence

are also informed by related works in the literature.

In other cases, the quality of the products yield determines the extent to

which emergent behaviour was achieved (Noble and Letsky, 2002). This work

adopts this metric and re-phrases it to the quality of emergence. The last

measure of emergence we consider takes from Shannon's information theories

(Bavaud et al., 2005.; Martin, 2006.; Schneider, 2007). This is, in a way,

similar to quantifying emergent behaviour in terms of the amount of change

in a system (Schaefer et al., 2002). However this work treats the measure of

information di�erently (see Chapter 4 for this aspect of the thesis).

A few more measures of emergence exist in the literature. However most

of these involve rigorous mathematics which would defeat our goal of de-

signing and using simple rules and naive ant-like devices. Some examples

of these mathematically biased measures of emergence include correlation

analysis (Wang and Zhu, 2007.; Valverde et al., 2006), axiomatic geometry

(Sumpter et al., 2001.; Parunak and VanderBok, 1997.; Bonabeau et al.,

1999.; Haglich et al., 2010.; Shalizi, 2001.; Grossman et al., 2009), formal

reasoning (Sumpter et al., 2001.; Fulbright and Stephens, 2003.; Wang and

Zhu, 2007.; Tofts, 1991), and cognitive analysis (Crutch�eld, 1994).
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1.5 Contributions

While that singular most important substantial and original contribution

of this thesis is the identi�cation of XSets which characterize a software

engineering paradigm for constructing solutions from swarms of interacting

ant-like devices, the value of this thesis is further emphasized by a number

of incremental contributions, both from an academic, practical, and general

point of views.

On the academic side, we demonstrate the following contributions:

1. Successful identi�cation of the primitive behaviours which characterize

ant agents' behaviours at individual levels, which give rise to particular

forms of emergent behaviour at swarm levels, is a big milestone in the

study of ant systems. If we get to know what each ant agent does as

an individual, then we can control swarms of similar ant-like devices to

produce desired and predictable emergent behaviour at global levels.

Success in this regard creates new and relevant knowledge in the �eld,

particularly to the bene�t of future researches and studies in the area.

2. We present a creative mechanism in which primitive behaviours are

combined with meta information in order to form XSets that can char-

acterize necessary and su�cient rules for controlling swarms of ant

agents. This mechanism may inspire the development of useful emer-

gent based object assemblers with practical and commercial impacts.

3. Representation of primitive behaviours in computational terms (in the

form of algorithms) is innovative (see Chapter 3 for these algorithms).

The abstract implementation we show in each case creates relevant

content with which the ant agent programming problem is further ad-

dressed.
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4. Available literature lacks clarity with regards to how we can detect and

quantify ant based emergent behaviour. We propose �ve innovative

measures of emergence with which we can determine the extent to which

emergent behaviour is manifest as a result of using a particular XSets

(see Chapter 4 for details regarding these measures of emergence). In

addition, the properties of most of these measures of emergence make

them suitable for verifying other di�erent forms of emergent behaviours

that are achieved in similar swarm con�gurations. Thus, we open up

new research avenues in the �eld.

5. The processes we follow when we validate the results we achieve when a

a particular XSet is used (determining correlations, comparing means

and variances) are innovative. Similar validation techniques may in-

spire further developments in other swarm intelligence models.

On the practical side, we present the following contributions:

1. The ability to explicitly specify ant agents' primitive behaviours at in-

dividual levels, and combine these into XSets that are useful at swarm

levels, has direct relevancy to many �elds in science. Swarms of sim-

ulated ant-like devices such as nanites, amorphous devices, or MEMS

devices, can be deployed in similar simulation environments using simi-

larly designed XSets and create commercially attractive emergent struc-

tures. Thus, the results of this work may potentially inspire industrial

and commercial developments.

2. Our emphasis on speci�city, both in terms of the XSets sought, as well

as in terms of the emergent behaviour thereof, changes the way we see

and think of the consequences of upcoming sciences such as nanotech-

nology (Joy, 2000). Generally, nanotechnology is feared that, one day,

nanites may aggregate into unpredictable emergent formations that are
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disastrous to nature and life (Joy, 2000). The XSets we propose may

guarantee predictable nanites outcomes. Success in this regard may

even inspire new developments in nano-medicine, nano-construction,

and other related �elds.

From a general point of view, we make the following contributions:

1. Although the thesis does not solve the very general agent programming

problem, it provides a working baseline upon which further investiga-

tions in the �eld may arise. This work provides a solid foundation

for investigations aimed at identifying more primitive behaviours with

which the ant agent programming solutions can be generalized.

2. Many ant systems that exist in the literature do not explicitly present

the white-box side of the routines ant agents follow in computational

terms. As a result, the domain of the solutions that are presented

in the literature is currently limited, especially for commercial recom-

mendations. Our emphasis on speci�city, and explicit description of

the routines that characterize each ant agent behaviour may inspire

the development of a wider range of ant based solutions.

1.6 Notation

This section introduces the notation and syntax we use to represent primitive

behaviours and XSets. We explain the semantics of each of the ten primitive

behaviours we identify and, at the end of this section, provide an arbitrary

representation of an XSet.

primitive-behaviours: although, in general, primitive behaviours are ant

agent activities at individual levels, we view them as computational
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routines with parameter values and code which spells out what ant

agents should do at a particular point in time. Below are the ten

primitive behaviours we study, emphasizing on the mnemonics we use,

as well as the parameter values they take:

◦ (MvH : p1, p2, ......, pn, w1, w2, .....wn) - this is a stigmergic prim-

itive behaviour for orientation. It supports multiple levels of

pheromones pi, each weighted by a speci�c attractiveness value wi.

The primitive behaviour is used to determine a direction an ant

agent would follow next based on the levels of pheromones around

the ant agent. Di�erent levels of pheromones pi are assigned in-

teger aliases, while related weights wi are assigned �oat aliases.

Target indicators, in this case, are regarded as di�erent levels of

pheromones, thus bearing integer aliases as well. For example, the

primitive behaviour - (MvH : 1, 2, 3, 0.5, 0.5,−0.8) tells a stigmer-

gic ant agent to favour movements towards higher concentrations

of target indicator 1 with a 50% chance of success, while at the

same time biasing its movements towards locations that contain

relatively higher levels of pheromone 2 whose attractiveness value

is set to 50%. The same ant agent should however penalize move-

ments towards locations which contain relatively higher levels of

pheromone 3 whose weight, at the moment, is set to a negative

value.

◦ (MsP : vc, vj, lj) - this is an orientation primitive behaviour in

the message passing category. This primitive behaviour presents

the vector components that can be shared at the time, as well

as the levels of con�dence thereof. Vectors and con�dence levels

are stored in separate memory blocks in the ant agent's internal

state. For example, the primitive behaviour - (MsP : 1, 1, 2) tells

a message passing ant agent to favour movements towards higher

concentrations of target indicator 1, sharing geometric vectors that
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are stored in memory block 1, whose related con�dence levels are

stored in memory block 2.

◦ (MvP : xi, yi, zi) - this is a general primitive behaviour that is

used by both categories of ant agents to relocate an ant agent to

a speci�ed location. The x and y values are unit o�sets from the

ant agent's current position. The z value is often always set to 0

because, in this case, we operate in 2D environments. However its

inclusion in the routine is necessary in view of the future possible

generalizations of the work to 3D environments. For example,

the primitive behaviour - (MvP : 1,−1, 0) tells an ant agent to

relocate to one cell along the positive direction of the x−axis and
one cell along the negative direction of the y − axis (↘).

◦ (Drp : pi, q) - this is a stigmergic primitive behaviour which tells

an ant agent in this category to drop speci�c levels of pheromones

pi in speci�c quantities q. For example, the primitive behaviour

- (Drp : 1, 1) tells a stigmergic ant agent to drop the levels of

pheromone 1 in unit quantities.

◦ (Evp : α) - this is a pheromone dissipation control which when

triggered evaporates, at a speci�ed evaporation rate α, all types

of the levels of pheromones that are on the environment at the

time.

◦ (Dfs : α) - this control di�uses pheromones to neighbouring loca-

tions at a speci�ed dissipation rate.

◦ (Nrm : vx, vy, vz) - this is a message passing primitive behaviour

with which the resultant vector and any other vectors are normal-

ized. This is an important control which guarantees that related

ant agents do not make unrealistic movement steps in simulation.

It guarantees that ant agents move at a constant speed of one grid

cell per step.
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◦ (PtV : pi, x)- this primitive behaviour assesses the quantities of

speci�c target indicator pi around a message passing ant agent,

and trigger appropriate actions. For example, (PtV : 3, 0.5) tells

a message passing ant agent to detect the levels of pheromone

3 around, evaluating if these levels are above a threshold value

0.5. If so, the ant agent must drop its directional knowledge and

follow the direction of the location which contains high levels of

pheromone 3 (because hopefully the ant agent has arrived on tar-

get). The choice to follow this new direction sets the ant agent's

con�dence factor to the highest level possible .

◦ (StS : m,n, x) - this is a general primitive behaviour which tells an

ant agent to switch between di�erent internal states when set con-

ditions are met. The �rst parameter in this primitive behaviour

indicates the ID of the new internal state an ant agent would

switch to. The second and third parameters are components of

the condition for switching from one internal state to another.

For example, the primitive behaviour - (StS : 2, 3, 1) tells an ant

agent to �ip to internal state 2 if the levels of pheromone 3 are

above 1 at the agent's current location.

◦ (NOp :)- this instruction tells an ant agent to do nothing. In

computer terms, it is a �ller instruction which we use to complete

the XSet template when fewer instructions are required than those

proposed in the meta information.

U- Figure 1.1. uses U to symbolize the collection of primitive behaviours

that are identi�ed as building blocks of the desired XSets. In this thesis,

U = {(NOp :); (StS : m,n, x); (MvH : p1, p2, ......, pn, w1, w2, .....wn); (MsP :

vc, vj, lj); (MvP : xi, yi, zi); (Nrm : vx, vy, vz); (Drp : pi, q); (PtV :

pi, x); (Evp : α); (Dfs : α)}.

M - Figure 1.1 also uses M to indicate a collection of meta information
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that are required as initial simulation information, which includes agent

memories, number of internal states, agent density, and agent types.

XSet - An XSet is mathematically de�ned as a combination of meta infor-

mation and sets of primitive behaviours.

◦ In combining these two pieces of information, we �rst provide meta

information regarding the category of ant agents that are preferred

at the moment. There are three possibilities (stigmergic, message

passing, or hybrid ant agents (which combine primitive behaviours

from the other two categories).

◦ Three parameters follow which respectively indicate the cardinal-

ity of the XSet in each ant agent internal state, the number of

internal states supported, and the number of memory blocks an

ant agent can hold at a time. Each memory block can only hold

one unit of data at a time.

◦ The rest of the entries that follow are elements of the sets of

primitive behaviours in the the power set. In our representation,

primitive behaviour and their parameters are enclosed in round

brackets. Di�erent primitive behaviours that are supported in the

same XSet are separated by commas. A vertical bar separates the

lists of primitive behaviours that are required in di�erent internal

states.

◦ The following is an example of the representation of an XSet (for

illustration purposes). In this case, we illustrate the composition

of an XSet that is marked as an msgXSet. The cardinality of the

same XSet in each internal state is set to 6 primitive behaviours.

Each ant agent can support 3 internal states. Ant agents can hold

up to 8 memory blocks at a time.



CHAPTER 1. INTRODUCTION 29

msgXSet[6,3,8]:<(MsP : 0, 0, 1), (PtV : 0, 0), (Nrm : 0, 0, 0), (MvP : 0, 0, 0), (NOp :), (StS : 1, 0, 0)|(Drp :

4, 1), (NOp :), (NOp :), (NOp :), (NOp), (StS : 2, 0, 0)|(MsP : 2, 2, 3), (PtV : 1, 1), (Nrm : 2, 2, 2), (MvP :

2, 2, 2), (NOp :), (StS : 3, 1, 0)>

Figure 1.2: An arbitrary representation of an XSet

1.7 Overview of the thesis

The chapters of the thesis, and the manner in which these chapters are related

to each other, are arranged as shown in Figure 1.3, and are further outlined

as follows:

◦ Chapter 2 reviews literature relating to the �ve sub-problems of this

thesis. First, we take a survey of the various agent control mechanisms

that have been proposed in the past, and position the ant agent con-

trol problem in the literature. This review mainly identi�es the key

concepts and methods that are useful in characterizing ant agents. In

these reviews, we split ant agent systems into two categories namely:

interactive and non-interactive control systems. We further divide each

category into particular sub-groups depending on the mechanisms in

which agent interactions are achieved (see chapter 2 for details). Then,

the chapter discusses the key parameters of emergence in various agent

control systems. Related work follows which describes how speci�c

emergent behaviour has been successfully simulated in the past. Lastly,

literature relating to the measures of emergence that have commonly

been proposed in di�erent scenarios is reviewed, closing the chapter

with conclusions which highlight the contributions of the chapter to

the thesis.
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Figure 1.3: Chapters of the thesis and their relationship
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◦ The �rst sub-problem of the thesis is addressed in chapter 3. Key in

this chapter is the identi�cation and detailed description of ant agent

activities at individual levels. The semantics of the rules and conditions

that are encoded in each routine further illustrate the functionality of

the primitive behaviours that are identi�ed.

◦ Chapter 4 develops a strategy for creating XSets and mechanisms for

quantifying the extent to which emergent behaviour is manifest as a

result of using particular XSets. The key outcome of this chapter are

XSets which best characterize path �nding behaviour.

◦ Chapter 5 validates the measures of emergence that are reported when

best performer XSets are used, as a case study, to resolve the path

�nding problem. It precisely establishes any correlations between dif-

ferent measures of emergence, and compare the means and variances

that arise thereof. Understanding these relationships is critical when we

explain the phenomena that arise, as well as when we provide insights

into which primitive behaviours are causal.

◦ Chapter 6 responds to the �fth sub-problem of the thesis, investigating

the application of best performer XSets (in the path �nding context)

to di�erent problem domains (particularly multiple targets location).

◦ Chapter 7 summarizes the thesis, presenting the overall observations

we make and the contributions of the work, along with the proposed

future directions of researches in this �eld.



Chapter 2

Related Work

2.1 Introduction

The literature review we present in this chapter explores, in an incremen-

tal manner, the concepts, agent control mechanisms, theories, and methods

that help us in responding to the research problem of this thesis. First,

we take a detailed survey of di�erent agent control systems with the aim

of �nding common control rules and popular agent communication and in-

teraction strategies. These reviews give useful insights into which strategies

best characterize ant agent activities at individual levels - relating to the �rst

sub-problem of the thesis.

The second sub-problem emphasizes on discovering the representation, in

computational terms, of constructs that give rise to emergent behaviour. We

particularly scrutinize literature which explores the common parameters of

emergence that have been reported in di�erent agent control systems. In this

context, a parameter of emergence is a view, construct, data structure, or a

system component which directly or indirectly in�uences the performances

32
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of simulated swarms, whether positively or negatively. These reviews give

foresight towards understanding the representation of �collections of agent

activities� that can allow deliberate engineering of desired emergent solutions

- thus inspiring our proposed representation of XSets - relating to the second

sub-problem of this thesis.

The third sub-problem pays attention to the mechanisms in which emergent

behaviour is detected and quanti�ed. We take a succinct survey of the liter-

ature which discusses strategies and approaches that have been proposed as

emergence quanti�ers in the past. That way, the choices we make of using

speci�c measures of emergence are motivated.

The aim of the fourth sub-problem is to validate the measures of emergence

that are recorded when particular XSets are used. It seeks to gather evidence

for justifying the use of particular XSets as dictionaries for achieving a wide

range of emergent behaviours. In the �fth sub-problem, we go on and assess

possibilities of applying valid XSets to di�erent task domains, testing the

same XSets for properties and controls that can allow the creation of speci�c

emergent behaviours. An abstract survey is taken which reports the common

forms of speci�c emergent behaviours that have been simulated in the past -

motivating the solutions sought in the �fth sub-problem.

2.1.1 Overview of the chapter

Figure 2.1 summarizes the sections of this chapter, as well as the topics that

are discussed in each section. The details of the content covered in each

section are further outlined as follow:

◦ Reviews which provide a detailed survey of di�erent agent control sys-

tems with the goal of identifying key concepts, rules, theories, as well

as the common agent interaction and communication strategies are
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Figure 2.1: Overview of chapter 2
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presented in section 2.2. In these reviews, we distinguish between two

categories of agent control systems namely: non-interactive and inter-

active agent control systems.

◦ Section 2.3 takes a survey of the common parameters of emergence

that have been reported in the literature, emphasizing on the factors

which commonly in�uence emergent behaviour and how these factors

are represented in computational terms. Two categories of parame-

ters of emergence are identi�ed, namely; system level and agent level

parameters of emergence. In our context, system level parameters of

emergence translate to meta information, while agent level parameters

relate to the primitive behaviours. These two categories of parame-

ters of emergence motivate the de�nition we proposed of XSets (meta

information plus sets of primitive behaviours).

◦ In Section 2.4, we review literature which informs the choices we make

regarding the measures of emergence which we propose when we address

the third sub-problem of this thesis.

◦ Section 2.5 is developed with the assumption that generalized XSets

exist which can allow di�erent forms of speci�c emergent behaviour

to occur. We then emphasize on scrutinizing related works in which

speci�city has been de�ned in di�erent scenarios, the representation of

speci�c tasks, and discuss how swarms of ant agents have been encoded

with abilities to recognize these speci�c target goals.

◦ Section 2.6 concludes the chapter summarizing our �ndings, as well

as highlighting the observations we make and the contributions the

chapter makes to the thesis and board of knowledge.



CHAPTER 2. RELATED WORK 36

2.2 Common agent control systems

The �rst sub-problem of this thesis investigates the key concepts, theories,

and methods with which we can describe computational constructs which

best characterize ant agent behaviours at individual levels. To review litera-

ture related to this sub-problem, we identify two categories of agent control

systems and look at these categories separately. These categories are; non-

interactive agent control systems and; interactive agent control systems.

2.2.1 Non-interactive agent control systems

Agent control systems in this category are commonly modelled on mathemat-

ical and physics laws of motion in which movement trajectories are de�ned

using equations, matrices, or vectors. Agents in this category are often char-

acterized by large memory capacities (Ngo et al., 2005) in which they keep

information related to positions of objects on the environments (Mullen et

al., 2009.; Sudd, 1960.; Montes De Oca et al., 2005). These agents may

also keep record of vector information which indicates the preferred direc-

tions of motion (Wu et al., 2005). In other cases, agents are able to recall

the properties of landmarks and beacons in the environment (Wehmer et al.,

2006).

Three classes of non-interactive agent control systems are observed, namely:

mathematically driven agent control systems, physics based agent control

systems, and intelligent agent control systems. Each of these classes of agent

control systems possesses unique control rules, unique agent communication

policies, di�erent agent orientation techniques, and di�erent agent movement

controls. We discuss each of these three classes of non-interactive agent

control systems separately.
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2.2.1.1 Mathematically driven agent control systems

This class of agent control systems heavily relies on rigorous mathematics for

swarm coordination. The mathematics rules of motion thereof de�ne agent

orientation and movement policies (Ngo et al., 2005). However a question

often arises regarding which �eld of mathematics is used for these purposes.

We categorize mathematically driven agent control systems into two groups,

one in which geometric controls are dominant, and another one where agents

resolve navigation problems using calculus.

Geometry based agent control systems - neither require direct nor

indirect agent interactions. Rather, each agent's positional preferences are

based on Cartesian geometry (Tro�mova et al., 1998). Agents in this cate-

gory are designed with computational abilities to self-localize relative to the

positions of speci�c objects in the environment. These agents can perform

independent calculations out of which they can orientate, measure distances

to the targets, and estimate the angles to turn relative to speci�c objects

in the environment (Ngo et al., 2005). Agent motion is handled using ve-

locity pro�les and collision avoidance schemes that are often in-built in the

system. Thus, the key parameter of emergence in this group are agent mem-

ories, agents' individual abilities, and the mathematics laws of motion that

are de�ne in the geometries thereof (Ngo et al., 2005).

A number of disadvantages are noted in this group of agent control systems

which discourage us from recommending similar control mechanisms for ant

agents. First, geometry based agents must possess extra computational abili-

ties to generate local coordinate systems in which to self-localize. In addition,

related agents require large memory capacities to record movement trajec-

tories and environment features that would steer future orientation. Worse

still, the same agents must be able to calculate velocities, distances, orienta-
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tion angles, and de�ne movement and collision avoidance pro�les. These are

handy characteristics for the simple and naive ant agents we propose.

Calculus based agent control systems - neither require direct nor in-

direct agent interactions either (Sarfati, 2001). Instead, each agent in this

category can calculate its movement trajectories based on the relative po-

sitions of globally perceived objects of the environment. Here, the main

activity of every agent is to self-localize. Jacobian matrices have been suc-

cessfully proposed for this purpose (Harris, 2007). However these agents must

possess abilities to solve equations and simplify mathematical functions into

directional information. These requirements are too complex for the simple

and naive ant-like devices we propose.

2.2.1.2 Systems driven by physics laws

Physics based control systems are characterized by the laws of motion they

support. Three classes of agent control systems are observed in this �eld,

namely; forces driven agent control systems, mechanical agent control sys-

tems, and hybrid agent control systems.

Forces driven agent control systems - support agents with abilities

to respond to in-built virtual forces for sensing the proximity of one another

(Balch and Arkin, 1999), as in the case of �ocking boids (Reynolds, 1987).

Agents in this category can attract and repel each other depending on their

distances apart (Azzag et al., 2007.; Beckers et al., 1989). That way, move-

ment speed and orientation is regulated depending on the push and pull

e�ects of the virtual forces that are exerted between neighbours at the time

(Bayazit et al., 2002). These virtual forces de�ne agents' positional and di-
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rectional preferences relative to other agents in the swarm (Lua et al., 2005.;

Parrish et al., 2002).

Typical examples of forces driven systems have been presented in the works

of Spears et al. (2004a, 2005) and Spears et al. (2004b). In these works,

agents can successfully self-organize into mobile hexagonal lattices, moving

towards speci�c light-bulb targets. The key drivers, and main parameters

of emergence in these works are agents' sensory skills. Precisely, the poten-

tial �eld of energy which builds around each agent is the key ingredient for

subsequent agent actions. However these agents lack autonomy since their

behaviour heavily relies on the density of attractive and repulsive agents

around (Cao et al., 1997). Worse still, these agents must have mechanical

sensor devices that are physically mount.

Mechanical agent control systems - propel agent movements using

electric motors that are physically mounted on each agent. Agent orien-

tation and movement trajectories are pre-de�ned in the motion routines of

the system with neither direct nor indirect interactions. The electric mo-

tors that are mounted on each agent are often built with enough energy to

run for the duration of the simulation (Paulson, 2008). However mechanical

systems prevalently achieve pre-programmed outcomes rather than emergent

behaviour. In addition, agents in this category must be deployed in speci�c

agent densities, where each agent has a well de�ned schedule of tasks to

accomplish (Paulson, 2008.; Regan et at., 2005). These properties are not

realistic for the ant agents we study.

Hybrid agent control systems - combine the features of forces driven

and those of mechanically motivated agent control systems. A typical hybrid

agent control system is proposed in the work of Pelechano et al. (2007),
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in which both virtual forces and geometry based control rules are put to-

gether to trigger agent navigation. In these cases, displacement equations

are prescribed when agents' sensory abilities detect obstacles ahead. How-

ever the integration of di�erent agent skills, as described in these models,

does not take away the complexities that are associated with using each

model separately. Rather, this would add more special cases to agent motion

requirements (Pelechano et al., 2007).

2.2.1.3 Intelligent agent control systems

The last group of non-interactive agent control systems is referred to as intel-

ligent agent control systems. These are characterized by agents with su�cient

memories to recall previous events in simulation, and use that information

to infer appropriate actions. Two groups of intelligent agent control systems

are dominant in the literature. These two groups are distinguished from one

another by the kind of information the agents keep in memory. One group

of agents has abilities to recall the entire paths or maps they followed from

the start of journey to the destination (Cordon et al., 2002.; Mullen et al.,

2009). The other group relies on landmarks and beacons that are held on

the environment as holders of information with which agent orientation is

achieved (Wehner et al., 2006 ).

Path recalling agents - have selective abilities to choose the control

mechanism to employ at a given time in simulation. At one point, agents

may recall landmarks and beacons around, and use these to steer orientation

(Sudd, 1960). In other cases, agents remember what to do next from the

behaviour of neighbouring agents. However, when isolated, the same agents

may even recall and follow the direction and angle of the sun (Koichi and

Mari, 1996). A similar model has been demonstrated in the work of Erbas
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et al. (2013) where agents successfully use imitation of observed behaviours

of neighbours to navigate environments without any internal state access or

sharing of experiences.

A key parameter of emergence in path recalling agents is the mechanism is

which path records are kept in the system. Commonly, sequence generation

techniques (Cordon et al., 2002), and tabu search strategies (Ghaiebi and

Solimanpur, 2007) are employed. There are models in this category whose

agents can recall other agents' identities (Sheeham and Tibbetts, 2008),

thereby steering one-on-one cooperation or aggression. As such, agent ac-

tivities at individual levels, and the degree of success at swarm levels are de-

pendent on the quality of information that is held in agent memories (Viana

et al., 2007.; Xu et al., 2008). However the demand for large memory capac-

ities in the agents thereof, discourages us from recommending these controls

for the ant agents we propose.

Landmarks and beacons based agent control systems - make use

of agents that have unlimited memory capacities in which to keep important

information relating to the properties of landmarks and beacons on the en-

vironment (Wehner et al., 2006). The recalled landmarks provide direction

vectors and orientation information which steers agents towards desired direc-

tions. Usually, these landmarks are used to estimate the Euclidean distances

between the agent's current location and the target sought (Wu et al., 2005).

Desert ant agents in particular, have been shown to exhibit the characteristics

of agents in this category (Roumeliotis et al., 2000), thus achieving emergent

behaviour without neither direct nor indirect agent interactions. Stigmergic

interactions are completely impossible in these swarms because all the levels

of pheromones would dissipate before they are useful to the swarms due to

the harsh conditions in desert environments.

In other cases, landmarks based agent control systems possess selective abil-
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ities to decide on how agents can orientate. Isolated agents may re-align

with the rest of the swarm by using sensory hints (Cavalcanti et al. 2006a.;

Cavalcanti et al., 2007). However once they are back in formation, they can

follow speci�c vectors based on the information held in the landmarks and

other agents around (Jackson et al., 2004). Generally, the knowledge held in

an intelligent agent's memory is �ltered in each step until the agent acquires

deterministic directional information (Dhariwal et al., 2004).

2.2.2 Interactive agent control systems

These control systems are predominantly nature inspired and most of them

are modelled on the behaviours of living organisms such as cells (Xi et al.,

2005), birds (Reynolds, 1999), DNA sequences (Reif, 2002), bees (Reynolds,

1987), or ants (Chibaya and Bangay, 2007). Agents in this category depend

on one another in order to complete individual level agenda. All interactions,

whether direct or indirect, are local.

Two classes of interactive agent control systems arise in the literature, namely;

those in which agents interactions are directly one-on-one, and those in which

interactions are indirectly mediated. We discuss these two classes of interac-

tive systems separately.

2.2.2.1 One-on-one agent interaction systems

This class is commonly modelled on the behaviours of agents with abilities

to exchange information one-on-one. The information that is often shared is

in the form of memory blocks which hold speci�c data relating to directions

(Nasipuri and Li, 2002), paths histories (Rajbhupinder et al., 2010), or po-

sitions of speci�c objects (Montes De Oca et al., 2005). In some cases, this



CHAPTER 2. RELATED WORK 43

information relates to explicit calls that are made in a speci�c agent commu-

nication language (Nagpal et al., 2002.; Nagpal et al., 2003.; Abelson et al.,

2000). Some important considerations in all direct agent interaction systems

pertain to the requirement to know what information is transmitted between

agents, how this information is transmitted, and when it is appropriate for

agents to explicitly share information (Haasdijk et al., 2013.; Couzin et al.,

2002). Consequently three types of direct agent interaction systems arise.

Interaction systems in which path histories are explicitly shared -

are prevalent. In these, message blocks which hold path histories in the form

of stacks are shared (Trianni and Dorigo, 2005). The stacks thereof record

the coordinates of the paths an agent followed in the past (Rajbhupinder et

al., 2010), or information relating to the best tours an agent made to that

far (Hara et al., 2005). Other historic records reports the entire environment

maps an agent followed, including pointers to promising locations in the

environment (Montes De Oca et al., 2005).

Usually, a learning framework arises (Lien et al., 2005), in which agents learn

the experiences of their neighbours by explicitly referencing neighbours' path

histories when necessary. These agents would create their own roadmaps

based on the experiences of their neighbours (Rodriguez et al., 2007). Neigh-

bouring agents' path histories can be accessed both directly and indirectly

(Bayazit et al., 2002.; Bayazit et al., 2005).

Although the notion of information sharing is nature inspired (Nouyan and

Dorigo, 2007), there are three obvious disadvantages that arise. First, agents

in this category must possess large memory capacities to hold the message

blocks. In addition, agents' memory structures must be compatible with the

message blocks that are shared. Thus, all agents are similar (Caicedo et

al., 2001). Worse still, important information that is held in the memories
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of less successful agents may be lost when path histories of relatively more

successful agents are inherited.

Interactive systems in which agents can share geometric vectors

- are more inspiring. Agents in this category do not require relatively

excessive memory capacities since they would only keep record of speci�c

vector components for orientation and navigation purposes (Nasipuri and

Li, 2002). The vectors thereof usually interpret the levels of pheromone on

the environment (Payton et al., 2001). In other cases, they are geometric

pointers to speci�c objects or directions in the environment (Nasipuri and

Li, 2002), with x, y, and z components.

Systems in which a communication language - is used have been

reported as well. Agents in this class often have a common communication

language with which to share information one-on-one. Most agent communi-

cation languages are developed with full syntax, vocabulary, and semantics

that are only understood by these agents (Nagpal et al., 2002).

Popular in this category are agent communication languages that are based

on the growing point and origami shape theories (Nagpal et al., 2003). In

particular, the work of Butera (2002) is more inspiring, in which a growing

point language has been used to implicitly enhance pheromone dissipation in

swarms of ant-like devices.

In other agent communication languages, high level description of functions

and relationships among agents are required upfront (Sussman, 1999). Such

agent communication languages often incorporate processes and properties

to coordinate the behaviour of individual agents all the way (Belani et al.,

2002). In most cases, sets of pre-programmed coordination laws and primitive

behaviours are incorporated in the system upfront (Stefano and Santoro,
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2001) together with the vocabulary for the agents (Kraus and Lehmann,

1995).

Other agent languages support call protocols that are explicitly developed

into agent verbs such as �move�, �respond �, �avoid �, �recruit�, or �hello�

(Nagpal and Coore, 1998.; Cao et al., 1997). However these calls are often

broadcast to the entire swarm, a feature which compromises agent privacy

and system security in general.

An agent communication language of geometric primitives and homeostasis

maintenance has been successfully used as an amorphous medium language

in the work of Beal (2005a, 2005b). In this work, Beal (2005a, 2005b) used

this language to describe agent behaviour in terms of the spatial regions of

the amorphous media (Abelson et al., 2000), where neighbouring agents are

only allowed to communicate by means of a shared memory region (Nagpal

et al., 2006).

Investigations aimed at identifying the primitive behaviours of ant agents

with abilities to communicate using speci�c agent communication languages

are outside the scope of this thesis for a number of reasons. First, agent

languages in the literature are, at the moment, very limited in vocabulary

(Nagpal et al., 2002). As such, only a limited domain of emergent behaviours

have been tested using related swarms. Secondly, although researches that

use sentence messages are in progress (Crane�eld et al., 2000), the results

presented so far lack in that the roles of receiver agents are made consequences

of the desires of sender agents (Dastani et al., 2003). In other words, the

independence of the receiver agents is grossly compromised.

2.2.2.2 Indirect agent interaction systems

Models in which agents interactions are indirectly mediated are predomi-

nantly chemically inspired. Virtual chemicals are usually placed on the envi-
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ronment, thus creating shared memories for the swarms. These virtual chem-

icals are placed on the environments in two ways. First, there are cases where

the objects of the environment are the origins of these chemicals (Naeem et

al., 2007). In other cases, the agents place these chemicals on the environ-

ment (Dorigo, 1992.; Dorigo et al., 1999). This thesis refers to interaction

systems in the former group as optimized, and those in the latter group as

stigmergic.

Optimized interaction systems - support chemical markers that are

placed on the environment by the objects in the environment other than the

agents (Naeem et al., 2007). For example, chemical plume gradients have

been created at speci�c sources in the environment which guided agents to

those sources (Dhariwal et al., 2004.; Naeem et al., 2007). What stands out

in optimized interaction systems is the requirement for agents to self-localize

relative to the chemical sources (Nagpal, 1999.; Nagpal et al., 2003). In

other words, local coordinate systems arise in which agents can determine

the direction to follow relative to the quality of the chemicals around the

agent (Merkle et al., 2006).

In most cases, chemicals in optimized systems de�ne uni-directional paths

(Jackson et al., 2004). As a result, elitist mechanisms are often required

which provide extra selective and adaptive characteristics to agents when bi-

directional paths are required (Koichi and Mari, 1996.; Negulescu and Barbat,

2004). A common form of elitism involves agents that can conveniently switch

between di�erent interaction strategies when it becomes necessary (Montes

De Oca et al., 2005). At one point, agents may use sensory cues together with

chemical gradients (Wehner et al., 2006). In other cases, the same agents may

use some form of limited vision to augment chemical tracing (Colin, 2006).

However the bulk of optimized systems supplement chemical tracing with

extra agent memories to facilitate agent recall (Ravary et al., 2007.; Healey

and Pratt, 2008).
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Further studies related to investigations of the primitive behaviours that

characterize optimized ant agents are outside the scope of this thesis because

of that requirement to consider elitism in individual ant agents (Di Caro

et al., 2004.; Yang and Zhuang, 2010). Precisely, elitism takes away agent

autonomy as seen in the works of Gottlieb et al. (2003), Solnon and Fenet

(2006), Svenson and Sidenbladh (2003), and Balch and Arkin (1999).

Stigmergic interaction systems - make use of agents with abilities to

excrete speci�c levels of pheromones (Dorigo, 1992.; Dorigo et al., 1999.;

Dorigo et al., 1996). These agents make use of a non symbolic form of com-

munication which is mediated via the environment (Di Caro et al., 2004.;

Negulescu et al., 2006). The term stigmergy was coined in 1959 by Grassé

(Theraulaz et al., 1998.; Bonabeau et al., 1999.; Socha, 2008). It is formed

from the Greek words �stigma�, which means �signs�, and �ergon� which

means �actions�. The term therefore captures the notion that agents' indi-

vidual activities would leave �signs� on the environment, signs which would

determine agents' subsequent �actions� (Parunak, 2005).

Literature further distinguishes between two forms of stigmergy (White,

1997.; Shell, 2003). The �rst form is called sematectonic stigmergy (Parunak,

2005), which involves changing the physical characteristics of the environ-

ment. Examples of sematectonic stigmergy are demonstrated in the hole

making problem (Ghaiebi and Solimanpur, 2007), pit construction problem

(Burgess, 2009), and nest building problem (Downing and Jeanne, 1988.;

Andrew, 1978.; Aleksiev et al., 2007.; Franks et al., 1992.; Jeanne, 1996).

We are more interested in sign-based stigmergy in which pheromone signs are

marked on the environment. Although these pheromone signs may not have

direct relevancy to the tasks being undertaken by the agents at the time, they

indirectly in�uence subsequent agent actions and behaviours, those behaviour

which may be task related.
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In sign-based stigmergic interactions, agent mobility is probabilistic (Chibaya

and Bangay, 2007). Agents' path selection decisions are biased by the levels

of pheromone that are held on the agent's local environment (Montgomery

et al., 2007). Sign-based stigmergy is further classi�ed into three categories

namely: single pheromone systems, two pheromone systems, and multiple

pheromone systems.

Single pheromone systems - support agents with abilities to excrete and

perceive one and only one form of pheromone. All agents in this category

are sensitive to this single level of pheromone regardless of the task they

have at hand. The sources of these single level of pheromone are the agents

of the swarm themselves (Dorigo et al., 1999). However, there are cases

where search targets in the environment have been designed with abilities

to excrete this single level of pheromone as well (Cavalcanti et al., 2006a).

Nevertheless that would characterize optimized agent systems (Schneider et

al., 2006). In this review, we focus on stigmergic systems in which the sources

of pheromone are the agents of the swarm.

Among the most popular examples of single pheromone systems is the double

bridge scenario (Dorigo, 1992) that is illustrated in Figure 2.2, and adopted

from the work of Cordon et al. (2002). In this experiment, ant agents are

able to excrete and update the same level of pheromone regardless of the

direction in which they are travelling across the bridge. Food sources and

the nest are situated on di�erent ends of the two way bridge. The task of each

ant agent is to travel across the bridge in search of food sources, and upon

�nding them, pick up the resources, and return back to the starting point

(Dorigo, 1992.; Cordon et al., 2002.; Schoonderwoerd et al., 1996). These

trips are repeated for the entire duration of the simulation.

In most cases, the single pheromone trails that arise are uni-directional. Gra-

dients often arise in which agents can only move from low to high chemical
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Figure 2.2: The double bridge experiment setup

concentrations. As a result elitist strategies are required when bi-directional

agent movements are sought (Koichi and Mari, 1996). That requirement for

elitism make single pheromone systems not suitable for the ant agents we

study.

Two pheromone agent control systems - are primarily designed to

minimize the need for elitism in single pheromone agent control systems.

Agents in this category are sensitive to two di�erent levels of pheromone

that can co-exist on the same local environments without interfering with

one another (Panait and Luke, 2004b).
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Commonly, both levels of pheromone are placed on the environment by the

agents of the swarms, where one level is excreted when agents travel from the

starting point in search of the resources, and another level is deposited when

agents travel in return trips (Chibaya and Bangay, 2007.; Solimanpur et al.,

2005). However there are cases where one or both levels of pheromones orig-

inate from other objects of the environment (Alcala et al., 2001.; Nakamichi

and Arita, 2004). This thesis only considers stigmergic systems in which the

levels of pheromones originate form the ant agents of the swarms since our

hope is to, one day, apply the same constructs to di�erent task domains that

are coordinated in di�erently con�gured environments.

Multiple pheromone interaction systems - remedy most �aws that

are noted in optimized, single pheromone, and two pheromone interaction

systems. These models are usually built on the notion that every extra level

of pheromone that is added in the system reduces some form of elitism. As

a result they are more robust and fault tolerant, �exible, and adaptable to

supporting autonomous agents (Cavalcanti et al., 2006a).

A number of examples of multiple pheromone systems are available in the

literature. Most of these examples simulate medical scenarios. The work

of Cavalcanti et al. (2006a) is a typical example in which mobile cancer

cells are simulated as operating in human blood vessel-like environments.

In their model, cancer cells can excrete the �rst level of pheromone called

cancer pheromone, which is attractive to cancer attacking agents. Cancer

free cells excrete the second level of pheromone called obstacle pheromone,

which is repulsive to cancer attacking agents. This mechanism ensures that

the cancer attacking agents do not waste time examining cancer free cells for

the symptoms of cancer.

Upon �nding a cancer cell, an agent excretes the third level of pheromone

called alarm pheromone, which is also attractive to cancer attacking agents
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that are still in the seek mode. As a result, helper agents can be recruited

around the cancer cell and help to destroy the tumor. This model has inspired

the development of many other routines for nanite-like agent coordination in

similarly inside-the-body environments (Cavalcanti and Freitas, 2005.; Cav-

alcanti et al., 2005b).

Closely related to the cancer treatment model (Cavalcanti et al., 2006a), is

the wound detection system (Schneider et al., 2006). In this model, platelet-

like agents are simulated as moving inside vessel-like environments. These

platelet-like agents are tasked to identify and cure wounds that are inside the

blood vessels. The wounds themselves excrete the �rst level of pheromone

called wound pheromone which is attractive to the platelet-like agents. The

platelet-like agents would only stick around a location if the concentration of

wound pheromone on that location is high enough to indicate the presence of

a wound. Agents around a wound can excrete the second level of pheromone

called alarm pheromone in order to attract other platelet-like agents towards

the wound. Clean surfaces in the vessels are similarly obstacle-like and can

excrete a third level of pheromone which is repulsive to platelet-like agents.

This way, platelet-like agents' medical examination time is not wasted on

clean surfaces.

A major �aw in most multiple pheromone systems is that most levels of

pheromone originate from other objects of the environment other than the

agents, which is elitist. In addition, related agents are required to possess

special skills to be able to selectively perceive (Engle and Whalen, 2003),

and distinguish between di�erent levels of pheromone (Nakamichi and Arita,

2004, 2005.; Nowé et al., 2004).

The stigmergic model we propose in this thesis combines the advantages of

two pheromone interaction systems with those of multiple pheromone sys-

tems. It investigates ant agent activities in scenarios where one level of

pheromone is excreted when ant agents travel in search of the targets, and
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another level is excreted when agents forage back to the nest-like starting

point. The environments we propose support multiple levels of pheromones,

including chemical markers which indicate the positions of key objects and

targets. This model has a number of advantages over other agent control

systems in the literature. First, our ant agents are completely free from the

need to have large memory capacities. The important information they re-

quire throughout the simulation is held on the environment in the form of

shared memories. As a result, errors at agent levels do not a�ect comple-

tion of tasks at swarm levels, resulting in relatively robust and fault tolerant

solutions. In addition, elitism in agent activities at individual levels is not

required. Thus, de�ning autonomous ant agent activities.

The next section reviews literature which reports the common parameters of

emergence, concentrating on how such parameters are represented in compu-

tational term (thus motivating the design we follow when we represent the

XSets we propose - relating to the second sub-problem of the thesis).

2.3 Parameters of emergence

This section reviews literature which takes a survey of the common parame-

ters of emergence that have been discussed in di�erent agent control systems.

We emphasize on the description and representation of these parameters of

emergence, thus inspiring the design we follow when we describe and rep-

resent the XSets we propose - relating to the second sub-problem of this

thesis.

Parameters of emergence were de�ned in section 2.1 as factors which in�uence

swarm performance towards emergent behaviour. We learn of a number of

parameters of emergence that are used in di�erent agent control systems.

These parameters of emergence can be classi�ed into two categories namely;
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system level parameters and agent level parameters of emergence. We discuss

each category separately.

2.3.1 System level parameters of emergence

These usually in�uence the performance of the swarm at large. Our work

refers to system level parameters of emergence as meta information. These

parameters spell out and initialize the key components of the simulation

system. Often, they are provided by the user at run-time. The following

are common system level parameters of emergence that are inferred in the

literature:

1. Environment :- simulation environments are the most popular sys-

tem level parameters of emergence. Environments, and the way in

which environments are described, in�uence emergence since they are

designed to hold key system information (Negulescu et al., 2006.; Haas-

dijk et al., 2013). They often record the coordinates of landmarks and

beacons in models where these components are supported (Valckenaers

et al., 2001). In addition, environments provide platforms on which

agents reside (Haasdijk et al., 2013). In stigmergic models, the levels

of pheromones are stored on the environments, thus creating environ-

ment mediated shared memories for the swarms (Panait and Luke,

2004a.; Babaoglu et al., 2006). More importantly, environments usu-

ally handle the high level descriptions of desired emergent behaviour

(Seevinck and Edmonds, 2008.; Mason, 2002), including the �tness

functions with which agents adapt the problem domain over time (Bre-

deche et al., 2012). Practically, environments are tuples with many

�elds of information for the swarm. Given these numerous importance

of environments, this thesis considers our simulation environments as

key independent variables in the experiments we conduct.
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2. Agent density:- Beckers et al. (1989) and Van den Bergh and Engel-

brecht (2001) con�rm the relationships that are observed between agent

density and the quality of emergent behaviour thereof, as well as the

relationships that are observed between agent density and the speed

with which emergent behaviour occurs. However, although large agent

densities are desirable to direct agent interaction systems (Weyns et

al., 2004) where one-on-one interactions are more e�ective when agents

are congested, these may be depletive to indirect agent interaction sys-

tems where dissipative pheromone levels may saturate the environments

early in simulation time (Chibaya and Bangay, 2007). In this thesis,

we try to establish appropriate agent densities in di�erent scenarios,

and express these agent densities as functions of the sizes of the envi-

ronments, as well as functions of the distances between the targets and

starting point.

3. Agent memories :- although most of the simulated system resources

are held on the environments, agents usually require some basic memory

to record speci�c meta information at individual levels (Dorigo and

Blum, 2005). Non-interactive agents in particular, require memories

to record information relating to landmarks and beacons (Wu et al.,

2005). Other agents in this category require memories in which to hold

navigation equations and velocity control functions (Ngo et al., 2005),

or to store the roadmaps the agents would use (Rodriguez et al., 2007).

Interactive agents on the other hand, require limited memories in which

to hold internal state information.

4. Mechanism in which information is stored :- agent control sys-

tems support di�erent ways of handling system information. There

are agent control systems in which information is recorded in sepa-

rate routing tables (Brown et al., 2005) or on virtual noticeboards

(Schoonderwoerd et al., 1996). However that would, in a way, jeop-
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ardize agent autonomy (Nagpal and Coore, 1998.; Kondacs, 2003) and

system security (King et al., 2005).

5. The order of objects :- although the environment is generally the

main holder of the key objects of the system, the order in which these

objects are arranged on the environment in�uences the quality of the

output of the swarms (Gulyas et al., 2006), as well as the speed with

which emergent behaviour occurs. Models have been reported in which

speci�c placement scores have been allocated to important objects of

the environment in order to improve agent awareness (Don and Amos,

2007). Our work sets the starting point at �xed positions in the envi-

ronment, while resources are randomly distributed.

The reviews we presented in this section hint us on the key variables of the

simulation system we require. The representation and composition of the

environments stand out as the key parameter of emergence to consider. In

addition, agent memories, agent density, as well as the order in which objects

are arranged on the environment are also factors of interest in our work. The

next section discusses agent level parameters of emergence.

2.3.2 Agent level parameters of emergence

Agent level parameters of emergence are more inspiring since they describe

what agents do at individual levels which in�uences emergent behaviour.

These give an insight into potential primitive behaviours for ant agent con-

trols. The following are common parameters of emergence in this category:

1. Agent abilities :- this refers to agent activities that are common to all

members of the swarm such as moving, picking up a resource, dropping

resources, orientation, interaction, �ipping between states, or sharing
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information. Similar unit level agent actions have been explicitly men-

tioned in the work of Haasdijk et al. (2013) and Win�eld et al. (2013),

in which the agent's internal cues are the key parameters of emergence.

Our desires to explicitly state and describe ant agent actions at unit

levels is what drives research in this thesis.

2. Laws of motion :- while non-interactive agent control systems rely

mainly on sophisticated mathematics and physics laws of motion for

de�ning agent trajectories (Johnson and Rossi, 2006), interactive agent

control systems are relatively �exible in this respect. Interactive agents

rely on local information, often held in neighbouring agents or on the

environments. Non-interactive agent control systems often combine

various views and axioms in order to solve navigation tasks (Wei-min

et al., 2004). For example power-laws (Adamic et al., 2001) have been

used to empower particular groups of agents that would assume lead-

ership roles. The ant agents we propose are all interactive where stig-

mergic ant agents follow pheromone gradients and message passing ant

agents follow geometric vectors as laws of motion.

3. Information update rules :- apart from being held in di�erent ways,

system information is updated regularly. Di�erent agent control models

update meta information di�erently depending on the tasks at hand.

Algorithm 2.1 (derived from the works of Ke et al. (2008), Montes De

Oca et al. (2004), and Viana et al. (2007)) shows the common compo-

nents of foraging swarms. In this algorithm, we see the requirement to

initialize information (Panait and Luke, 2004c). Orientation is based

on the information available which must be updated in each agent step

(Dorigo et al., 1999). In stigmergic systems, global update rules may be

added which handle pheromone dissipation processes (Chirico, 2004.;

Schoonderwoerd et al., 1996). We design our XSets with this sequential

representation of agent activities in mind (see algorithm 2.1).
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Algorithm 2.1 Components of foraging agent systems

Initialization //environment components

For-each agent in each step

orientate //check direction to follow

move update−info //drop pheromone or update vectors

review−state //is the internal state still valid?

End-for

The reviews we presented in these last two sections augment the concepts,

methods, and theories which we can derive from the previous survey on

agent control systems. We highlight some of the key agent activities that

are inferred as in�uential to emergent behaviour. Generally, agents possess

abilities to orientate, move, interact, and update information. The next

section discusses the mechanisms that are commonly used for quantifying

the emergent behaviours that arise from using agents with similar abilities.

2.4 Quanti�cation of emergence

The third sub-problem investigates the mechanisms for detecting and quan-

tifying the extent to which emergent behaviour is manifest as a result of

using particular XSets. This section discusses the common strategies that

have been proposed for this purpose. In our view, the ability to quantify

emergent behaviour is critical for understanding the validity of XSets and

the extent to which XSets work.

Popular quanti�ers study the relationships that exist among events in sim-

ulation (Gore and Reynolds, 2008). These relationships are described in

various ways depending on the scenarios in which they are measured. The
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following are examples of works in which relationships among events have

been investigated:

◦ Amount of change :- The work of Schaefer et al. (2002) measure

degrees of emergence by mapping inputs to outputs. The gap between

inputs and outputs is interpreted as the amount of emergence thereof.

This however has the disadvantage of requiring that we understand

the full processes through which inputs are processes until outputs are

reported. Hinchey et al. (2005) quantify amount of change in terms

of error frequencies. Thus, the frequency with which, and sequence in

which, certain time-based errors occur is tracked. A variant of error

frequency analysis is threshold analysis in which parameters which vio-

late certain prede�ned system conditions over time are detected (Rou�

et al., 2004). Similar �uctuation theorems compare the probabilities of

observing certain time based entropy over time (Hamann et al., 2011.;

Chan, 2011). Our work interprets amount of change in terms of sys-

tem throughput, and re-phrases this measure of emergence to average

delivery rate.

◦ Frequencies of agents interaction :- There are models in which

emergence has been quanti�ed using the frequency of agent interac-

tions (Noble and Letsky, 2002). In these models, the number of agent

interactions that are completed in a given time frame is recorded, and

the change in interaction frequencies is observed. The gap between the

frequency of interactions over time follow a pattern which indicates the

degree of emergence thereof. Similarly, agent actions can be associated

with certain priority probabilities which evaluate the chances of prior-

ity activities being enabled (Wang and Zhu, 2007). Thus, speci�c agent

activities are marked as priority actions, and the frequency with which

these activities are completed is tracked. We re-phrase this measure of

emergence as average end-to-end delays.
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◦ Convergence time :- The time it takes a system to converge is an

important measure of emergence (Wang and Zhu, 2007). Time in sim-

ulation is often measured in iterations. The work of Hovda (2008) refers

to time in simulation as the �amount of simulation�. Minati (2002) calls

it ergodicity. In particular, ergodicity associates the average behaviour

of a set of agents at a particular time to the average behaviour of an

individual agent. Often, ergodicity changes when emergent behaviour

arises, indicating deviation of the system from its original state (Chan,

2011). In this work, convergence time is re-phrased to speed of emer-

gence.

◦ Quality of products :- The quality of the products, their timeliness,

as well as the e�ciency with which these products are produced is

an important measure of emergence as well (Noble and Letsky, 2002).

In particular, quality assesses agents' adherence to schedules, as well

as their levels of engagement with the task at hand. That degree of

engagement indicates the amount of emergence in the system. Our

work translates this measure of emergence to quality of emergence.

◦ Correlation analysis : - Most inspiring are the correlation analy-

ses that are performed on di�erent system events and metrics (Wang

and Zhu, 2007) as quanti�ers of emergent behaviour. These correlation

measures reveal the relationships among events, and how in�uential

each event is to the system. Correlation analysis gives meanings to

individual parameters of the system. As a result, centrality measure-

ments can be deduced from the data sets (Valverde et al., 2006).

◦ Mathematical analysis : - Rigorous mathematical axioms have also

been proposed as means for quantifying emergence (Sumpter et al.,

2001). Such axioms often rely on statistical theories to identify deter-

ministic dependencies among system elements (Parunak and Vander-

Bok, 1997). The same dependencies can be derived using discrete event
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simulations (Bonabeau et al., 1999), semi-Boolean algebra (Haglich et

al., 2010), or time series analysis techniques (Shalizi, 2001). Mathe-

matical techniques are good pattern discovery techniques, and chang-

ing point detection algorithms have been developed for this purpose

(Grossman et al., 2009).

◦ Formal reasoning approaches :- In these, process algebras are pop-
ular (Sumpter et al., 2001). They measure the ability of a system to

support emergent behaviour, as well as the extent to which the system

can support agent interactions (Fulbright and Stephens, 2003). They

allow formal reasoning about which components of a system contribute

to the overall emergent behaviour (Dixon et al., 2011), and prove that

there exist relationships between these components. An e�ective pro-

cess algebra must be able to predict the emergent behaviour of the

swarm based on its components (Wang and Zhu, 2007). This has been

successfully demonstrated in the work of Tofts (1991).

◦ Cognitive approaches :- These quanti�cation strategies evaluate the
e�ectiveness of collaboration in swarms by quantifying the extent to

which agent collaboration improves team e�ectiveness, and provide rea-

sons for the improvements (Noble and Letsky, 2002). In other words,

cognitive metrics measure the extent to which a swarm understands

what it needs to do. In this context, cognitive metrics are related to

hierarchical frameworks that are based on computational mechanics in

emergence (Crutch�eld, 1994). These metrics take into account deter-

ministic and stochastic complexity factors of the system in order to

determine the e�ectiveness of the system. Most successful measures of

emergence in this category integrate di�erent methods together. For

example, integrating the memory and transition function aspects of X-

Machines with the priority and probability aspects of process algebras

produces a speci�cation method that allows all the necessary aspects
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for specifying emergent behaviour possible (Wang and Zhu, 2007).

◦ Entropy measures - system �uctuation theories have been consid-

ered as measures of emergence (Hamann et al., 2011), mainly inves-

tigating entropy measures over time. These entropic mechanisms are

often based on Shannon's measurement theories (Bavaud et al., 2005.;

Martin, 2006.; Schneider, 2007). A review of Shannon's information

theory as a measure of emergence is proposed and detailed in the work

of Fernández et al. (2013). Precisely, Shannon proposed a function

to measure the value of information a process produces by considering

the choices that are involved (Fernández et al., 2003). An analogy to

Shannon's de�nition of information value can be derived for ant agent

swarms. For example, suppose a stigmergic ant agent has the follow-

ing possible destinations in a movement task : L1, L2, ......, Ln. This

collection of possible destinations form a set of the possible choices

where each destination has an associated probability of being cho-

sen (p1, p2, ......, pn). Shannon determines how uncertain an agent in

this situation is of the outcome using the function (
∑
pilog2pi). Our

work takes advantage of this analogy and determines information values

around ant agents in simulation. In this case, the average information

value we observe indicates the extent to which emergent behaviour oc-

curred. In determining this metric, we bear in mind the �aws that arise

when not all agents are part of the emergent behaviour being evaluated

at the time.

This work considers correlation analysis in Chapters 5. However mathe-

matical analysis, formal reasoning, and cognitive approaches are outside the

scope of this work because they involve rigorous mathematical axioms which

rely on statistical theories, semi-Boolean algebra, or time series analysis. Al-

though these techniques are good pattern discovery techniques, they would

compromise our intention to develop simple and naive ant agent XSets.



CHAPTER 2. RELATED WORK 62

2.5 Multiple targets location

Our work gathers evidence for justifying the use of particular XSets as dic-

tionaries for creating di�erent forms of emergent behaviours by assessing

particular measures of emergence. Once justi�ed, which forms of speci�c

emergent behaviours can we create? How do we describe speci�city? How

do agents perceive speci�city? Generally, there is no conclusive stand as to

which speci�c emergent behaviours are better testbeds than others. We take

an abstract survey of the various experiments that have been administered

for assessing agent abilities to generate speci�c emergent behaviours. These

reviews will inspire the choices we make of simulating the creation of speci�c

emergent formations.

Nature inspired solutions are dominant in the literature. They are also more

successful in this respect owing to relatively better robustness, adaptability,

and fault tolerance (Eyiyurekli et al., 2013.; Polack et al., 2005). For ex-

ample, a number of speci�c emergent behaviours have been achieved using

cell propagation theories (Nagpal, 2006.; Bai et al., 2008), cellular automata

(Geer et al., 2003.; Green, 1994.; Sanders and Smith, 2009), cell growth and

morphogenesis theories in developmental biology (Nagpal et al., 2002), as

well as using sca�olding DNA origami theories (Rothemund, 2006). This

work extends the list and investigates the use of ant agents for generating

speci�c emergent behaviour.

Simulation systems in which agents create emergent geometric structures are

common. This is often because success or failure is easily measured in these

setups (D'Hondt, 2000.; Kaewkamnerdpong et al., 2007). We particularly

identify how speci�city has been described in most of the geometric structures

that have been simulated.

The smallest unit of drawings is a point. Systems have been reported in

which point plotting is implicitly achieved. For example, the hole-making
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problem is practically a point marking solution (Ghaiebi and Solimanpur,

2007), as well as the pit construction problem (Burgess, 2009), and target

location in our work (Chibaya and Bangay, 2007).

Works have also been presented in which swarms of agents successfully create

crosses (Nagpal et al., 2002). These cross structures have been generated

using the growing circles theory in which the agents are able to reproduce

children agents in the process. However the major drawback of using growing

circles theory is the requirement to use power laws which set parent agents

as more powerful than children agents. Parent agents have authority to hold

leadership roles, and power to act as cardinal references to children agents.

In this case, speci�city is de�ned in the parent agents' architectures (Nagpal

et al., 2002).

On the other hand, the triangulation problem has been tackled in similar

ways (Rothemund, 2006.; Werfel, 2002.; Kaewkamnerdpong et al., 2007).

Triangulation solutions are important for solving graphics and surface sub-

division problems (Hardy, 2005). Popular agent coordination techniques in

which the triangulation problem has been addressed include DNA origami

languages (Rothemund, 2006) and beacon based approaches (Werfel, 2002).

Often, beacon based approaches make use of agents with awareness of the

solutions sought. Such awareness may include knowledge of the coordinates

of the vertices of the target (Werfel, 2002).

Mechanical processes have also been proposed for generating triangular struc-

tures (Kaewkamnerdpong et al., 2007). In these, agents are magnetized in

order to attract each other towards desired formations. The same agents are

structurally built into unique concave or convex shapes which would tessellate

into desired structures, including triangles.

Research aimed at generating swarm based polygons such as rectangles, pen-

tagons, hexagons, and even trapeziums have been reported as well (Seevinck
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and Edmonds, 2008.; Mason, 2002.; Kaewkamnerdpong et al., 2007). Nonethe-

less, the use of beacons to mark the vertices of the structures sought is dom-

inant (Mason, 2002). Magnetized agents in the work of Kaewkamnerdpong

et al. (2007), where the agents are tailor designed to tessellate into desired

structures have also been popular for this purpose. Other models proposed

the use of �no �t polygon� theories for the same purposes (Burke and Kendall,

1999).

The generation of swarm based circular structures is however rare. Never-

theless, natural ants have been shown to e�ciently converge into circular

formations when they are restricted to con�ned areas (Parrish et al., 2002).

This observation has inspired the development of related circular structures

in the works of Couzin and Franks (2002) and Butera (2002).

More complex structures such as the gear shape, oval shape, and diamond

structures have also been simulated, where Chemotaxis methods are used

(Eyiyurekli et al., 2013.; Bai et al., 2008). Even complex are the E andX
shaped structures that have been generated in the works of Kondacs (2003)

and Nagpal (2006) respectively. However the agents that are often used to

create such complex structures predominantly possess multiple abilities. For

example, they may have abilities to use both the growing point language (for

�lling spaces in the structures) and origami shape language (for shape scaling

properties) (Nagpal, 2006).

Inspired by these works, we assess ant agents' abilities to achieve multiple

targets location and construct geometric shapes. The ant agents we propose

di�er in that they neither support the use of growing circles and children

agents (Nagpal et al., 2002), nor use origami languages (Rothemund, 2006).

The use of beacons and global information to mark shape vertices is not

supported either (Werfel, 2002). Similarly, tailor designed agents that can

tessellate into desired formations (Kaewkamnerdpong et al., 2007) are elitist,

hence not supported. Our ant agents are simple naive and autonomous,



CHAPTER 2. RELATED WORK 65

mainly relying on local interactions. Precisely, we assess our ant agents'

abilities to form cross structures, four-way structures, polygonal structures

(triangles, rectangles, pentagons, hexagons, heptagons, and octagons), as

well as circular structures.

2.6 Conclusion of the chapter

The chapter mainly distinguished between interactive and non-interactive

agent control systems with the goal of placing ant agent systems in the liter-

ature. In discussing each category, the chapter emphasized on identifying key

concepts, methods, and theories with which to describe ant agent activities

at individual levels.

Table 2.1 summarizes the key properties of most of the agent control models

we reviewed. It shows the categories of agent systems (interactive or non-

interactive). Each category is further split based on the agent interaction

techniques they support (direct, indirect, mathematical, physics based, or in-

telligent systems). In addition, the table shows the di�erent classes of agents

that are common in the literature (path recalling, geometric, language based,

optimized, stigmergic, calculus based, forces driven, mechanical, hybrid, or

beacon and landmarks based agents), and highlight the communication media

they commonly use (direct message passing, environment mediated, sensor

based, vision, or hybrid mechanisms).

More so, the table shows the type of information that is used by each class

of agents (stacks, vectors, chemicals, forces, landmarks, or beacons). Agent

orientation strategies are also summarized in the same table (vector based,

language based, probabilistic, calculated directions, forces based, or steered

by landmarks).
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Table 2.1: Summary of the categories of agent control systems
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Furthermore, we summarize the key agent activities (reading stacks, inter-

preting language verbs, detecting chemicals, self localizing, motion planning,

or calculating directions), and indicate the key parameters of emergence that

characterize each class of agents (agent memory, verbs, elitism, agent abili-

ties, environment, laws of motion, or communication mechanisms). We make

the following observations in this respect:

1. Generally, all agent interaction systems emphasize on agent orientation

and movement as the key ingredients for swarm intelligence. Orienta-

tion is guided by some form of meta information such as agents' sensory

skills or agent memories. On the other hand, movement is commonly

based on speci�c displacement factors such as attraction or repulsion

e�ects. This observation inspires our selection of primitive behaviours

with which ant agents achieve orientation and movements.

2. Successful agent orientation relies on the availability of locally per-

ceived information around the agents (mathematical equations, geom-

etry, forces, sensory factors, chemicals, or other agents). This informa-

tion is updated regularly in order to appropriately inform the swarms.

Our choice of pheromone update rules (dropping levels of pheromones,

pheromone evaporation and di�usion), as well as vector modulation

policies (message passing, detecting targets, and normalizing vectors)

are inspired by this observation.

3. We learn about the requirement to design ant agents that possess some

basic memory in which to keep important information regarding the

tasks at hand. This observation inspires the design we follow when we

represent ant agent memories and internal states.

4. Although agents remain autonomous, interactive systems often create a

learning framework (Haasdijk et al., 2013) - both at individual and so-

cial levels - in which agents collectively engineer solutions from locally
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shared information. Related interactive ant agents are fascinating de-

vices, not because they are intelligent as individuals, but because they

collectively achieve compelling emergent behaviours as swarms. Our

choices to investigate the primitive behaviours of stigmergic and mes-

sage passing ant agents is partly inspired by the cooperative nature of

these classes of interactive agents. We are also inspired by the learning

framework that arises, the dominance of interactive systems in achiev-

ing stable solutions, as well as the simplicity of related agents regarding

memory requirements.

Table 2.2 summarizes the characteristics of the common measures of emer-

gence that are observed in most agent control systems. Then, table 2.3 shows

the common shapes that have been simulated as speci�c emergent behaviours

in the past. These tables also show the types of agents that have successfully

created desired shapes. We make the following observations in this respect:

◦ The description of amount of change translates to our understanding

of system throughput. Our choice of average delivery rate as a measure

of emergence is inspired by the characteristics, pros, and cons of this

measure of emergence.

◦ Frequencies of interactions determine the average end-to-end delays

per agent. On the other hand, convergence time indicates the speed of

emergence in a system. On the contrary, the quality of products that

are yield relates to quality of emergence. The characteristics, pros,

and cons of these measures of emergence motivate our choice to assess

similar measures of emergence on ant agent metaphors.

The value of this chapter is further emphasized by the following four contri-

butions that it makes to the thesis:
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Measure of emergence typical measure Pros Cons

-mapping I/O -I/O proportion -understand processes

Amount of change -error frequency -time based changes -individual errors trivial

-threshold analysis -entropy �uctuation

Frequencies -agent interactions - no. of interactions -not all interactions are useful

-priority probabilities -chances of actions -subjective

-amount of simulation -time in simulation -ignore outliers

Time -ergodicity

-time to converge

-timeliness -adherence to schedules - hard to �nd limits

Quality e�ciency - levels of engagement

on metrics -supports centrality tests

Correlation analysis -meanings to parameters -reveals relationships

-in�uences of events

Table 2.2: Pros and cons of particular measures of emergence

Shape characteristics of agents

point mostly hole making ant agents

line path �nding ant agents,

cross growing circle theory, reproductive agents, use power laws, parents are leaders

triangle DNA origami language, agents often have awareness, some agents are mechanical

polygons mechanical agents dominate, but beacon based agents are also many

circular ant agents

shapes e.g. X and E chemotaxis, growing point theory, origami language

Table 2.3: Common geometric structures

1. Categorization of agent control systems, as summarized in table 2.1,

positions ant interaction systems in the literature. We believe that the

XSets we propose and evaluate in future chapters are motivated and

inspired by some of the concepts and theories in this classi�cation.

2. The parameters of emergence that are discussed in section 2.3 inspire

the choices we make of the quanti�ers we propose. The same quanti�ers
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show potentials to successfully detect emergency in other agent systems

in the future.

3. Quanti�cation of the degree of emergence in a system is critical. The

survey we provided in this regard highlights the pros and cons of using

speci�c measures of emergence in di�erent situations, thereby motivat-

ing our choices of which measures of emergence to use in the context of

this work. The pros and cons we refer to are summarized in table 2.2.

4. Works in which speci�c emergent behaviours have been investigated

indicate a common bias towards simulating geometric emergent struc-

tures. In these, speci�city is de�ned in many ways. We get inspirations

from these reviews regarding particular emergent behaviours to simu-

late. Table 2.3 summarizes the top ten geometric structures that have

been achieved in this respect, indicating at least the type of agents that

has been used for these purposes.

The next chapter explores the computational representation, and detailed

description, of the ant agent activities we identify.



Chapter 3

Ant Agent Primitive Behaviours

3.1 Introduction

Figure 1.1 in Section 1.2, as well as the system architecture shown in Figure

3.2stipulate our obligation to address two issues of this thesis in this Chapter.

First, we are required to characterize meta information which we de�ned

in Section 1.2.1 (and in Figure 1.1) as those parameters of the simulation

system which spell out when (indicated in ant agent internal states) and

how (stored in ant agent memories) primitive behaviours are used, and by

which ant agents (indicated by the type of ant agent and the agent density

supported).

Thereafter, we are required to investigate the primitive behaviours which

characterize ant agent activities in the two categories we study. A motivation

for the choice to investigate the primitive behaviours of these two classes of

ant agent metaphors was presented earlier on in Section 1.4.2. However

in summary, we cannot consider language based metaphors (Nagpal et al.,

2002.; Nagpal et al., 2003.; Sussman, 1999.; Belani et al., 2002.; Stefano

71
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and Santoro, 2001.; Kraus and Lehmann, 1995.; Nagpal and Coore, 1998.;

Cao et al., 1997.; Butera, 2002.; Beal 2005a, 2005b.; Abelson et al., 2000.;

Nagpal et al., 2006.; Crane�eld et al., 2000) since literature lacks su�cient

vocabulary (Nagpal et al., 2002) to describe agent verbs and the semantics

of the language. In addition, language based models grossly compromise the

independence of receiver agents in the communication circles (Dastani et al.,

2003) - a feature which is not attractive for the ant agent devices we propose.

In addition, this work neither recommends mathematical (Ngo et al., 2005.;

Harris, 2007.; Tro�mova et al., 1998) nor physics based metaphors (Spears

et al., 2004a, 2004b, 2005.; Azzag et al., 2007.; Beckers et al., 1989.; Balch

and Arkin, 1999.; Cao et al., 1997) because their design mainly consists of

complex equations and knowledge bases which basically characterize sophis-

ticated robotic actions. The ant agents we propose in this work are naive

devices that can follow very simple rules at individual levels (Chibaya and

Bangay, 2007).

Most message passing metaphors that have been tried in the literature pre-

scribe agents which support large memory capacities (Trianni and Dorigo,

2005.; Rajbhupinder et al., 2010.; Hara and Ichimura, 2005.; Montes De Oca

et al., 2005.; Lien et al., 2005.; Rodriguez et al., 2007.; Bayazit et al., 2002.;

Bayazit et al., 2005.; Caicedo et al., 2001) - a design feature which is also

unattractive for the simple and naive ant-like devices we propose. However,

a novel class of ant agent system can be derived from related theories in

this category. Precisely, ant-like agents can be designed to use local interac-

tion rules in which they explicitly share direction vector components which

indicate the preferred directions of motion (Wu et al., 2005.; Nasipuri and

Li, 2002). Vector arithmetic is a general algebra that is applicable for com-

putation in many domains (from machine learning, network analysis, and

spatial representation) so has potential to allow ants to solve problems rele-

vant to these domains. In this case, it also allows location reasoning which
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is important for spatial problems.

Message passing ant agents can use the shared vector components to perform

independent calculations out of which they can orientate (Ngo et al., 2005).

Thus, swarm level successes are based on the quality of the resultant vectors

that are calculated in each ant agent step using the shared direction vectors.

The message blocks that are shared can be in the form of stacks (Trianni

and Dorigo, 2005) of (x; y; z) vector components. Implicit communication

spaces arise in which these message blocks are passed between neighbouring

ant agents one-on-one (Viana et al., 2007.; Xu et al., 2008). The message

blocks are always similar in structure (Caicedo et al., 2001). To the best of

our knowledge, detailed investigations and application of such a framework

to the ant agent problem is novel. The message passing model we propose

in this work is thus new, motivated by these promising features. As a result,

most of the primitive behaviours we propose in this respect are deduced from

logic and innovational in the �eld.

The bulk of interactive agent control systems are environment mediated

(Dorigo, 1992.; Dorigo et al., 1999.; Dorigo et al., 1996.; Di Caro et al.,

2004.; Negulescu et al., 2006.; Chibaya and Bangay, 2007.; Montgomery et

al., 2007.; Panait and Luke, 2004a, 2004b, 2004c.; Cavalcanti and Freitas,

2005.; Cavalcanti et al., 2005b). The primary advantage of environment me-

diated ant systems is that the ant-like devices thereof would require minimal

communication using very little processing power (Panait and Luke, 2004a).

The same ant agents can tolerate a degree of agent error (Mason 2002) with-

out jeopardizing the completion of the task at hand.

In our search for the key concepts, methods, and theories around ant agent

activities, we take advantage of profound documentation of ant systems in

this category. We remind the reader at this point that our aim in this thesis

is not to report the forms of emergent behaviours that arise. Rather, we

are interested in the actions of ant agents in swarms, actions which give rise
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to emergent behaviour. Identi�cation of these low level actions requires us

to take a detailed and reliable literature survey. Such detailed and reliable

literature is prevalent in the stigmergic ant agent group - hence the choice we

make to study this class of ant agents over relatively new and poorly explored

ant system models.

Although many other ant system metaphors could be studied and potentially

give similar or more insightful results, our premise is that any further studies

on related ant control metaphors would merely extend the set of primitive

behaviours - U that we present in this work, thus raising the cardinality of

the power set P (U) and widening the search space for even better and more

generic XSets with potentially a wider application domain.

3.1.1 Problem statement

The two particular issues we address in this chapter can be re-phrased as

follows:

1. How do describe meta information M , which sets forth the parameters

for spelling out when and how ant agents use particular primitive be-

haviours that are included in an XSet? This question requires us to

present our assumptions upfront, the technical setup of our simulation

system, the design of the components and parameters of the system,

as well as the design of the ant agent we propose regarding memory

and internal states. In doing so, we emphasize on the computational

representation of these meta items, and motivate why each is relevant

to the ant system we propose.

2. Which ant agent activities describe the domain of primitive behaviours

that can allow emergent behaviour to occur? - Once the system design
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issues are in place, the second question requires us to take a detailed

survey of the commonly inferred agent activities and relate these to the

context of stigmergic and message passing ant agents - thus identify-

ing common primitive activities and the ingredients of these primitive

behaviour in computational terms.

Consequently, the key outcome of this Chapter is an explicit set of primitive

behaviours U . This set of primitive behaviours is the basis for the answer to

the formulated research problem, as well as the basis for a system that will

function as a proof of concept in Chapters 4, 5, and 6.

3.1.2 Overview of the chapter

The rest of the sections of this chapter are arranged as follows:

◦ Section 3.2 presents a detailed architecture (how the system is laid out)

of the simulation system we propose. In this section, we �rstly present

our assumptions regarding the purpose of the swarms, the design of the

ant agents we use, as well as assumptions regarding the environments

in which ant agents reside. Thereafter, we discuss the technical setup of

the system in Section 3.2.2, followed by a description of the components

and parameters of the same system (Section 3.2.3).

◦ The �rst question of this chapter (see Section 4.1.2 for this aspect of

the thesis) is addressed in Section 3.2.4, where we describe the design of

the ant agents we propose, particularly characterizing their memories

and internal states.

◦ Figure 3.1 summarizes the sub sections of Section 3.2.5 which presents

the bulk of the work of this chapter. Precisely, this section identi�es

and justi�es the various lemmas which we accept in order to �nd out
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Figure 3.1: Overview of chapter 3

whether the XSet approach works. Discrete mathematics de�ne a

lemma as a minor result whose purpose is to help in proving a theorem
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(a stepping stone on the path to proving a theorem). The primitive

behaviours we propose, as well as the design choices thereof, are pro-

posed as building blocks for proving the concept of XSets. We describe

the ingredients which characterize each of these primitive behaviours

in computational terms.

◦ We conclude the chapter in section 3.3, summarizing the work pre-

sented, as well as highlighting the contributions of the chapter to the

thesis and the board of knowledge.

3.2 System Architecture

3.2.1 Assumptions

As an anticipated setting for our simulation system, consider a swarm of

ant-like devices that are deployed in an unknown continuously wrapping en-

vironment. Every ant agent's goal is to locate food-like resources that are

situated somewhere in this environment, and upon �nding these resources,

travel back to a nest-like starting point (Chibaya and Bangay, 2007.; Panait

and Luke, 2004a, 2004b.; Solimanpur et al., 2005). Although both the food-

like resources and the nest-like starting point can be placed at randomly

picked location of the environment, we assume �xed location in order to

achieving fair experiment results. This is a common ant problem setup in

the literature from which we will likely gather su�cient theories, methods

and ideas regarding ant agent activities at individual levels.

We make an assumption that all ant-like devices in this system are very

simple and naive. They do not have neither a prior knowledge of the envi-

ronment in which they reside, nor knowledge of the positions of the targets

sought. All ant agents are assumed to remain in motion throughout the
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simulation, travelling at a constant speed of one grid step per cycle. Note

that variation of ant agent speed is not a subject of study in this work. The

movement speed of our ant agents is implicitly regulated to remain constant

(Bayazit et al., 2002.; Lua et al., 2005.; Parrish et al., 2002).

Although ant agents do not have knowledge of the environment, a learning

framework often arises (Lien et al., 2005) with which global-level perceptions

are built, either on the environment (stigmergic ant agents), or in ant agent

memories (message passing ant agents). To learn from others, ant agents

reference (directly or indirectly) other ant agents' historic experiences (Ro-

driguez et al., 2007.; Bayazit et al., 2002.; Bayazit et al., 2005.; Nasipuri

and Li., 2002). Often, the referenced information expands the ant agent's

awareness of the environment in which it resides.

Please note that ant agents do not require any physical contact with one

another in order to learn from each other. Instead, it is su�cient that ant

agents read and interpret each other's perceptions (directly or indirectly). In

the message passing ant agent context, implicit communication spaces arise

in which vectors are sent across spaces between adjacent neighbours. In our

case, detection of proximity is encoded in ant agents' abilities to create local

coordinate systems (see section 3.2.5.2 for details regarding local coordinate

systems). These abilities also rely on the internal states of the ant agents

(Balch and Arkin, 1999). We presume that ant agents can co-exist, implying

that we do not assume one ant agent max per location.

As a case study, we propose obstacle free environments since environment

complexity is not a subject of study in this work. In addition, inclusion

or exclusion of obstacles does not connote any special ant agent design re-

quirements, particularly at individual levels. We assume environments in 2D

or 3D. The sizes of these environments can vary. Each cell of the environ-

ment is, in fact, a tuple which keeps record of a collection of data regarding

ant agent activities on that cell at each time (Negulescu et al., 2006.; Haas-
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dijk et al., 2013). Other examples of data that is held in the cells of the

environment include positions of target objects (Valckenaers et al., 2001),

positions of starting points (Mullen et al., 2009.; Sudd, 1960.; Montes De

Oca et al., 2005), or chemical markers (Panait and Luke, 2004a.; Babaoglu

et al., 2006). An environment also provides a platform on which the agents

reside (Haasdijk et al., 2013). Most importantly, they also handle the high

level description of the emergent outcome sought (Seevinck and Edmonds,

2008.; Mason, 2002).

Our system is not suggested as a replacement or an improvement to any

existing ant system in the literature. It is rather, an alternative approach

for describing ant agent languages that may allow deliberate engineering of

emergent behaviour over time. Although comparisons of the outcomes of this

work with the results yield in similar traditional studies are of importance,

this work emphasizes on justifying the validity of the XSets approach as an

ant agent design paradigm. We are content with the demonstration of the

functionality of XSets as toolboxes for desired emergent behaviour.

We make another assumption that all ant agents are identical. Agent density

is variable depending on the size of the environment in use at the time. Ant

agents in a swarm operate synchronously, executing the same sets of primitive

behaviours all the time. The measures of emergence that are required are

based on information with which ant agents interact (levels of pheromone or

direction vectors). In this work, ant agent neighbourhood is restricted to one

grid cell around the ant agent ((see section 3.2.5.2 for details regarding local

coordinate systems).

Figure 3.2 shows the important design aspects of our system. Precisely, it

emphasizes on three key areas of interest: (a) identi�cation of agent infor-

mation - indicating the data that is necessary for the simulation to start, (b)

some search heuristic for identifying useful combination of agent information,

and (c) evaluation of best combination of agent information for application
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in di�erent problem domains. This chapter addresses the �rst of these three

aspects. The rest of the issues are addressed in future chapters of the thesis.

3.2.2 Technical setup

As a by-product of this research, we propose a simulation system which

searches for novel control processes (XSets) that would drive ant-like de-

vices towards emergent behaviour. We propose a Single-Instruction-Multiple-

Data (SIMD) agent simulator which runs on a general-purpose graphics-

processing-unit (GP-GPU) architecture. This system makes use of a stan-

dard technology adapted to handle large numbers of identical ant-like devices,

all limited in memory, computing, and communication capabilities.

Although the requirement for high processing power and computer memory

can be met in principle by most machines today, our simulator is designed

to run on a Supercomputer (hydra) which minimizes limitations related to

CPU speed. However for illustration purposes, most of the test results we

present in this work are recorded from simulations that were coordinated on

an Intel(R) Core (TM) i5 CPU, M450 @ 2.4GHz with 3GB RAM.

3.2.3 System components and parameters

Our ant agent control algorithms are all implemented in C on a CUDA plat-

form which gives us direct access to the virtual memory and increases com-

puting performance by harnessing the power of the GPU. However the visu-

alization modules are written in C++ using Qt widgets in Qt Designer. The

system consists of mainly three subsystems: the central resource, the XSets

generator, and the visualizer.
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Figure 3.2: A complete system architecture

The central resource - is loaded �rst. This subsystem mainly manages all

interactions between the graphical objects of the system. It de�nes the canvas

(a bitmap drawing surface) and acts as a repository for the objects that are

shared in the system. Most importantly, this subsystem veri�es that the

architectures available are compatible with the hardware assumptions, and

double checks that the selected parameters and meta information correspond

to the tasks.

XSets generator - addresses three key tasks of the system. First, it

prompts for speci�c user level data entries. Then, this subsystem uses the
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meta data provided and the parameters that are input by the user to cre-

ate a population of XSets. Remember that XSets are created by adding

meta information to every possible ordered element of the power set (i.e

XSet = M+ ∈i P (U), such that i ∈ [0;nn], where n is the number of prim-

itive behaviours under consideration). The remainder of the parameters are

used to create an inference engine which selectively isolates those XSets that

satisfy some criteria set. Figure 3.2 shows that these three tasks are all ad-

dressed in the left column of our system architecture. Among the key user

choices are the following:

◦ Ant type:- there are three possible choices, namely; stigmergic, mes-

sage passing, or hybrid. Selecting a stigmergic ant type sets a rule for

the inference engine to isolate XSets that are formed using stigmergic

primitive behaviours only. The same rule would apply when a message

passing ant type is selected. Hybrid ant type considers XSets that are

made from any combination of primitive behaviours regardless of their

origins.

◦ Environment size:- the user is allowed to indicate the number of cells

of the environment in each direction, assuming a square environment

in 2D or a cubical environment in 3D. This feature allows �exibility

when we test swarm performances. The default assumption is that all

evaluation environments are 100× 100 grids in 2D.

◦ Environment dimension:- our simulator allows visualization of environ-

ments in 2D or 3D. For illustration purposes, and as proof of concept,

we report results that are extracted from simulations in 2D environ-

ments. This is because environment complexity is not a subject of

study in this work.

◦ Evaluation environment:- this parameter selects an environment to be

used at a time. Environments include in their properties the �tness
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functions which stipulate the type of emergent behaviour sought. In

this work, we developed ten evaluation environments (path �nding envi-

ronment, cross formation, four-way cross, triangle, rectangle, pentagon,

hexagon, heptagon, octagon, and circle formation environments). The

default choice is the path �nding environment.

◦ Scoring time:- this is the time frame in which the system is allowed to

score swarm performances (speed of emergence, quality of emergence,

average delivery rate, average end to end delays, and Shannon's infor-

mation value) before an index of merit is calculated. In this work, time

is measured in iterations.

◦ Agent density :- this parameter indicates the number of ant agents that

are deployed into the environment at a time. We set the default agent

density to 5000 ant agents.

◦ Ant memory:- this parameter indicates the number of message blocks

an ant agent can hold in memory at a time. In C, this is a vector data

structure. Smaller values are desirable since that would comply with

our dictum to design simple and naive ant agents. However one has to

allocate su�cient memory blocks to, at least, allow every ant agent to

hold state information. Our default setting is 4.

◦ Cardinality:- this parameter indicates the maximum number of primi-

tive behaviours that an ant agent would execute in each internal state.

The choice of this parameter is mainly based on one's perception of

the task. However users often cannot predict this correctly. Choosing

a bigger value than required will not jeopardize the XSet since a �ller

primitive behaviour (NOp :) can be used in any extra slots.

◦ Internal states:- this parameter indicates the number of internal states

each ant agent can support. The decision regarding how many internal
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states one can choose often depends on one's high level interpretation

of the task as well. Our default setting is 4.

◦ Pheromones:- this parameter indicates the maximum number of the

levels of pheromone each ant agent in the swarm can interpret or per-

ceive. Thus, our system can be adapted to support single pheromone

metaphors, two pheromone metaphors, or multiple pheromone metaphors,

as suggested in various related works (see chapter 2 for this categoriza-

tion).

Our premise is that giving users the choice to provide speci�c parameter val-

ues enhances system �exibility and adaptability in di�erent contexts. How-

ever we simplify the system by proposing default values in each case.

The visualizer - basically addresses the requirements of the middle and

right columns of Figure 3.2. It sequentially accesses the XSets which meet

the criteria set in the inference engine (de�ned by user de�ned parameters

and meta information), and allow swarms of ant agents to work towards

achieving the emergent behaviour whose �tness functions are characterized

in the selected evaluation environment. It scores the performances of the

XSet thereof, and report their indices of merit. Our visualizer allows users

to see the con�guration of the XSets in use, as well as to see the visual

performances of the swarms thereof (showing mobile ant agents in action).

Once instantiated, the parameters of the visualizer are stored in the system

and are e�ectively immutable. Thus, further manipulation of the parameters

or the XSet itself will have no e�ect on the visualization process. As a result,

multiple visualization is supported without interfering with one another. This

feature allows users to visually compare the outcomes of two or more XSets

at a time.
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Although most of the system parameters are held on the evaluation envi-

ronment, management of conversions into serialized formats and subsequent

transfer to the GPU to facilitate accelerated simulations, as well as trans-

portation of parameters over the network to the visualization subsystem, is

an independent functionality.

3.2.4 Ant Agent Design

This section describes our view of the design of an ant agent. Key is the

design of our ant agent memory which we discuss in Section 3.2.4.1. We

emphasize on the type of data that is stored in these memories including

ant agents' internal states (discussed in Section 3.2.4.2), as well as message

passing ant agent vectors (discussed in Section 3.2.4.3) and vector weights

(discussed in Section 3.2.4.4).

3.2.4.1 Ant agent memories

Characterization of agents by their memory capacities is very common (Ngo

et al., 2005). Generally, agents require some basic memory in which to record

speci�c meta information (Dorigo and Blum, 2005), internal states (Wu et

al., 2005), landmarks and beacons (Wu et al., 2005), roadmaps (Rodriguez

et al., 2007), or navigation equations and velocity control functions (Ngo et

al., 2005). Conforming to this norm, and in line with our dictum to prescribe

simple and naive ant agents, our ant agents are designed with basic memory

in which they keep navigation information.

Figure 3.3 shows the composition of stigmergic and message passing ant agent

memories. We discuss the memory contents of each type of ant agent in the

following three subsections.
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Figure 3.3: Ant agent memories

3.2.4.2 Ant agent internal states

Internal state is the most important and common parameter of emergence

that is required by most agent control systems (Chan, 2011.; Dorigo and

Blum, 2005). Ant systems in particular, commonly place internal state infor-

mation in the agent's memory (Merkle et al., 2006). This has the advantage

of speeding up information access when ant agents make path decisions.

We view internal state as a logical �eld in which one, and only one option, is

possible at a time. It is a self-contained computational object whose contents

are invisible to other agents, but would in�uence other agents' internal states

(Parunak, 2005). Please note that this work does not view ant agent internal

states as state variables as in the case of cellular automata, but rather as

merely Boolean �ags. As a result, an ant agent switches between
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Figure 3.4: Ant agent internal state

these mutually exclusive logical options when particular system conditions

are satis�ed.

In the literature, agents �ip between di�erent internal states based on their

location on the environment (Parunak, 2005). Sometimes they �ip between

internal states as a reward for their actions (Panait and Luke, 2004a). It is

also common to trigger state changes based on the behaviour of neighbouring

agents (Soloveichik, 2008.; Shalizi, 2001). However in this work we adopt the

views of (Panait and Luke, 2004a) where an ant agent �ips from one internal

state to another as a reward for successfully searching for a target. Figure

3.4 visualizes our ant agent's internal state setup.

By default, ant agents are deployed in the seek mode. Such basic knowledge

(indicating whether the ant agent is searching for food sources or returning to

the starting point) spells out the ant agent's purpose at the time (Panait and



CHAPTER 3. ANT AGENT PRIMITIVE BEHAVIOURS 88

Luke, 2004a). It in�uences the way other ant agents in the swarm interact

with that agent (Soloveichik, 2008.; Shalizi, 2001). In stigmergic ant agent

context, internal state determines which levels of pheromones the ant agent

will drop in each step, as well as which levels of pheromones are attractive or

repulsive at the time. This is useful information when stigmergic ant agents

orientate (see section 3.2.5.1 for this aspect of the thesis).

On the other hand, message passing ant agents use state information to de-

termine which vectors to read from neighbours, as well as those vectors to

penalize. They would also appropriately associate vector weights to cor-

responding vector components. Likewise, this information is important to

message passing ant agents when they orientate and make movement deci-

sions (see section 3.2.5.2 for this aspect of the thesis).

Lemma 1: the ability of an ant agent to review it's internal state in each

step, and switch to appropriate internal states when it becomes neces-

sary, is a discrete autonomous action that is undertaken at individual

levels - hence a primitive behaviour in ant systems.

- We de�ned a primitive behaviour in Section 1.1 as an ant agent's discrete

activity at individual levels. This is a view we make which will be

validated in chapter 4 when we evaluate XSets for causal properties.

Algorithm 3.1 shows the computational interpretation of how an ant

agent evaluates and switches from one internal state to another. This is

an innovative algorithm of our own making which resulted from various

pre-tests and evaluations.

- Let (StS : m,n, x) represent the mnemonic of this primitive behaviour.

This is, in our context, a mnemonic for (Set State to : m if n is true

in x). In this mnemonic, m is the ID of the new internal state the

ant agent would conditionally switch to. Internal state IDs are integer

parameters ranging from 1 to the number of internal states that are
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Algorithm 3.1 Switch internal state

/* DEFINITION OF PARAMETERS

st ← internal state at time t
n← input to a condition

x← domain of the problem

m← new internal state

st+1 ← internal state at time t+1

L←current location

*/

(StS : m,n, x)
{

foreach agent i at L
{

if (n is true in x)

st+1 ← m

}

}

supported (NB: the number of internal states supported is a user entry

- see section 3.2.3). On the other hand, n is a condition which indicates

what aspects of the simulation would trigger an ant agent's desires to

switch from the current internal state to another. Then, x sets the

domain in which n must be satis�ed before internal state changes are

e�ected.

- For example, (StS : 1, 0, 0.5) is read as: Set internal state to 1 if the levels

of pheromone whose ID is 0 are above 0.5.
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3.2.4.3 Message passing ant agent vectors

Figure 3.3 also shows that a message passing ant agent requires relatively

more memory space than stigmergic ant agents. This is because message

passing ant agents are designed to also keep a record of the direction vectors

that point in their perceived directions of the targets and the starting point.

Inspired vector geometry and by the work of Trianni and Dorigo (2005),

where (x; y; z) vector components are shared as message blocks and used

to calculate new directions, our message passing ant agents similarly share

message blocks of the format: (xi, yi, ~sv, sw, ~rv, rw) and use this information

to determine resultant vectors. In this tuple, (xi; yi) indicates the relative

o�set of the ant agent from the receiver ant agent. Only those ant agents

whose o�sets are one cells away; ((0; 0), (0; 1), (1; 0), (0;−1), (−1; 0), (−1; 1),

(1;−1), (−1;−1) or (1; 1)) can share message blocks. This assumption insin-

uates that message passing ant agents can self-localize relative to their local

neighbours.

The components; ~sv (search vector) and ~rv (return vector) are respectively

geometric vectors that point in the perceived directions of the target and

starting point. On the other hand, sw and rw are the respective weights of

these geometric vectors. These geometric vectors and their weights are up-

dated and hopefully improved in every ant agent step in order to incorporate

and acknowledge the views of neighbouring ant agents. In this work, we view

the ability of an ant agent to determine the next direction to follow, and that

ability to update its knowledge (ant agent orientation) as an autonomous low

level activity - hence a primitive behaviour. These abilities are discussed in

details in Section 3.2.5.2.
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3.2.4.4 Message passing vector weights

We mentioned earlier on that the vectors that are carried in message passing

ant agents' memories are associated with some weight parameters which in-

dicate how well an ant agent has performed in the past. This is not the �rst

time con�dence weights have been proposed for attaching a trust factor on

paths (Zarnani and Rahgozar, 2006). In our view, vector weights re�ect the

quality of the information that is shared between ant agents.

We propose vector weights that are �oat indicators between 0 and 1 inclu-

sively. A vector whose weight is 1 is regarded as distinctly pointing to the

location of the target. This would indicate that the ant agent that holds the

corresponding vector �knows� where the target is and must be trusted more

when neighbouring ant agents determine their own paths.

Equation (3.1) shows how the weights of direction vectors are adjusted in

each ant agent step. To the best of our knowledge, this is a new update rule

that has not been used before. In this equation, let wi(t) represent the weight

of vector i at time t. Suppose there exist k neighbouring ant agents around

the ant agent that is holding vector i. If we denote each of the neighbouring

ant agents' vector as j, then the expression
P
∀k
wj(t)

k
indicates the average

weight of the weights of neighbouring ant agents' vectors at time t. This

average weight indicates the average trust of neighbouring ant agents in the

vectors they are following.

However, we acknowledge that, although average values desirably determine

the central tendency, they often neglect outlier cases. As a result, we establish

a dispersion factor which indicates how similar or how spread the views of

neighbouring ant agents are. This dispersion factor is, in fact, the standard

deviation of the weights of the vectors that are carried in neighbouring ant

agents' memories.
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Let the dispersion factor sought denoted as c. Mathematically, this value is

smaller when the weights in neighbouring ant agents' memories are relatively

similar,and bigger when the weights are too di�erent. However these values

are remain in the range 0 to 1 because all the weights are within this range

as well. To penalize bigger values in favour of smaller standard deviations,

our system uses (1 − c) as the dispersion factor. Thus, a bigger dispersion

factor implies consensus among neighbouring ant agents and trust in the

information received.

An average measure between the ant agent's own weight of its direction

vectorwi(t) and the weighted average weight of the neighbours, give the up-

dated weight of the direction vector which the ant agent is following next

- wi(t + 1). Some minimal degree of randomness λ is added to the result-

ing weight in order to enhance the ant agent's independence in subsequent

actions. That randomness is especially useful when the ant agent is isolated.

wi(t+ 1) =
1

2

(
wi(t) +

∑
j∈k wj(t)

k
∗ (1− c)

)
+ λ (3.1)

Variable Meaning of variable in equation 3.1

wi(t+ 1) vector weight of ith agent at time t+ 1

wi(t) vector weight of ith agent at time tP
j∈k wj(t)

k
average vector weight of k neighbours

c stdev of vector weights of k neighbours

λ some degree of randomness

In this work, a message passing ant agent's ability to update the weight of the

direction vector it is following is incorporated in the ant agent's orientation

processes because they concurrently occur. We discuss the movement, orien-

tation, target detection, and information update rules in the next section.
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3.2.5 Primitive behaviours

Generally, agents in the literature are designed with abilities tomove around

the environment in search of speci�c targets to detect e.g. searching for

food sources (Dorigo, 1992.; Cordon et al., 2002.; Panait and Luke, 2004b),

tracing chemical sources (Naeem et al., 2007), moving towards a light source

in formation (Spears et al., 2004a), detecting wound-like targets (Schneider et

al., 2006), or searching for cancer infected cells (Cavalcanti et al., 2006a). To

make useful movements, agents must orientate appropriately before taking

a step (Dorigo et al., 1999.; Chibaya and Bangay, 2007.; Panait and Luke,

2004c). Orientation is based on local information around an agent (Panait

and Luke, 2004b). This information is updated regularly (Chibaya and

Bangay, 2007).

This section interprets the ant agent framework we propose in technical

terms. It proposes and characterizes unit level primitive behaviours for

achieving ant agent orientation, movement, information update, and detect-

ing targets. This is not the �rst time unit level agent actions have been

explicitly mentioned as drivers of ant agents (Haasdijk et al. ,2013.; Win�eld

et al., 2013). However, explicit interpretation of these primitive behaviours

in computational terms is an innovative approach in this work.

3.2.5.1 Stigmergic ant agent orientation

We characterized a stigmergic model as an indirect and environment medi-

ated ant agent interaction model in which virtual pheromone chemicals are

the key ingredient for ant agent orientation (Dorigo et al., 1999.; Montgomery

et al., 2007.; Nakamichi and Arita, 2004, 2005). We also characterized our

stigmergic model as a multiple pheromone interaction system (see section

2.2.2.2 for details regarding this categorization). An ant agent can only
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Figure 3.5: An ant agent's local environment

perceive and use the levels of pheromones that are held on its local environ-

ment (Panait and Luke, 2004a.; Chibaya and Bangay, 2007).

Figure 3.5 visualizes an ant agent's local environment which de�nes the

agent's radius of vision. It shows eight possible directions an ant agent can

follow. To orientate, a stigmergic ant agent's �rst task is to determine the rel-

ative attractiveness of the eight possible destination locations around (Panait

and Luke, 2004c). A location's attractiveness is based on the concentration

of the levels of attractive and repulsive pheromones it holds (Chibaya and

Bangay, 2007). The attractiveness of each level of pheromone is based on

the ant agent's internal state. In the path �nding context, attractive levels

of pheromones are those that have been placed on a location by ant agents

that visited that location when they were in an opposite internal state to

the current ant agent's internal state. Repulsive levels are those that have

been placed on a location by ant agents that were in the same internal state

when they visited the location. The notion is that an ant agent would rather

follow the trails that are formed by ant agents in the opposite state because

they have, at some point in simulation, found their seek targets.
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The stigmergic orientation model we propose is inspired by the works of

(Chibaya and Bangay, 2007) and (Panait and Luke, 2004a,2004b,2004c). Let

a neighbouring location around an ant agent be denoted as L. For each L, an

ant agent retrieves the levels of attractive and those of repulsive pheromones.

For illustration purposes, let the levels of attractive pheromones at location L

be denoted as τL and the levels of repulsive pheromones that can co-exist at

the same location L be denoted as ηL. The the sum of the levels of attractive

pheromones around the ant agent can be expressed as
∑

k∈N τk, and that

of the levels of repulsive pheromones can be expressed as
∑

k∈N ηk, where

N = 8, indicating the number of possible destination locations around the

ant agent.

We can �nd the relative weights of each level of pheromone on every L by di-

viding the concentration of the same levels of pheromones by the sum around

the ant agent (thus giving τLP
k∈N τk

and ηLP
k∈N ηk

for each L). Our simulator

initializes all levels of pheromones to a negligibly very small quantity in order

to avoid over�ow errors - division by zero - when we calculate these weights.

The �nal attractiveness value is obtained by subtracting the weight of repul-

sive levels of pheromones from the weight of attractive levels of pheromones

at the same location. Let the attractiveness value of a location L be denoted

as AL. Equation (3.2) de�nes this relationship in mathematical terms (taken

from (Chibaya and Bangay, 2007)). It is possible to get negative attractive-

ness values when the weights of the levels of repulsive pheromones are higher

than the weights of the levels of attractive pheromone. We geometrically

translate such attractiveness values relative to the smallest measure found.

This is done in order to avoid having locations with negative chances of being

selected. Let the adjusted attractiveness value of a location L be denoted as

ALT . Equation (3.3) illustrates this adjustment.
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AL ←
(

τLP
k∈N τk

)
−
(

ηLP
kεN ηk

)
(3.2)

ALT ← (AL − ALT ,min) (3.3)

Variable Meanings of variable in equation 3.2 and 3.3

AL Attractiveness value of location L

τL Quantity of attractive levels of pheromone at location L

ηL Quantity of repulsive levels of pheromone at location L

τLP
k∈N τk

Weight of attractive levels of pheromones at location L

ηLP
kεN ηk

Weight of repulsive levels of pheromones at location L

ALT Adjusted (translated) attractiveness value of location L

The attractiveness values we get for each of the locations around an ant agent

are further scaled so that they add up to 1 (merely to comply with proba-

bilistic selection schemes). This is achieved by dividing each attractiveness

value ALT by the sum of all the attractiveness values found. Let the scaled

attractiveness value be denoted as ALs . Therefore, the scaled attractiveness

value of location L is expressed as: ALs ←
ALT

Σi∈NALT
.

Associating each location with an adjusted and scaled attractiveness value

creates a probabilistic scheme in which a roulette wheel selection scheme

arises (Jadaan et al., 2008). This is a stochastic selection scheme in which

competing outcomes are allocated roulette intervals based on their chances

of being selected (Jadaan et al., 2008). In this case, we would have eight

intervals, each corresponding to each of the eight possible destinations. The

width of each interval would correspond to the relative size of the scaled

attractiveness value of the possible destination location.

Figure 3.6 shows an example of a roulette wheel setup in which each arc length

represents the scaled attractiveness value of the corresponding location.
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Figure 3.6: An example of a roulette wheel selection scheme

In this setup, location 2 is the most attractive destination because its arc

length is longest.

Orientation is completed when a stigmergic ant agent �spins� the roulette

wheel pointer in order to randomly pick an interval to follow. Spinning the

roulette pointer is a stochastic process where the arrow would always stop

pointing towards a randomly picked interval. That location whose corre-

sponding roulette interval is pointed to by the roulette pointer, is the ant

agent's direction of choice. In computational terms, �spinning� the roulette

wheel refers to generating a �oat random number ρ whose value is in the

range (0, 1]. Although this mechanism is fairly random, highly attractive

locations are likely selected more often because their roulette intervals are

wider. These intervals would get even wider with time in simulation be-

cause every time corresponding locations are visited, more and more levels

of pheromones are added.
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Algorithm 3.2 Stigmergic orientation

/* DEFINITION OF PARAMETERS

ωτ ← weight of attractive levels

ωη ← weight of repulsive levels

AL ← attractiveness value of location L

ALs ← scaled attractiveness value

ρ← random number between 0 and 1
~di ← direction to follow

L←ant's current location

*/

(MvH : τi, τi, ηi, wτ , wτ , wη)
{

foreach location L around ant agent i
{

ωτ← τLP
j∈N τj

ωη← ηLP
j∈N ηj

AL ← ((ωτ − ωη)−min(Ai))
ALs ← ALP

j∈N Aj

}

Generate roulette wheel intervals

ρ←pick a random number in (0; 1]
~di ←L whose interval contains ρ

}

Lemma 2- stigmergic ant agents' ability to orientate based on the concen-

tration of the levels around is a discrete autonomous action that is

undertaken at individual levels - hence a primitive behaviour in ant

systems.

- Algorithm 3.2 interpret these orientation processes in computational terms.

Let (MvH : p1, p2, p3, w1, w2, w3) represent the mnemonic of this prim-
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itive behaviour. This is an acronym for Move to Highly attractive lo-

cation. The algorithm is an innovation we make from pre-tests and

observation of the simulation over time. In this case, pi are IDs of

di�erent levels of pheromone an ant agent can perceive and use during

orientation. On the other hand,wi are the weights that are associated

with using each level of pheromone.

- For example, (MvH : 1, 1, 2, 0, 1,−1) is read as: Consider movements to-

wards locations with higher levels of pheromone 1 while at the same time

penalizing locations with higher levels of pheromone 2 given that the lev-

els of pheromone 1 are weighted by 1 while the levels of pheromone 2

are weighted by −1.

3.2.5.2 Message passing ant agent orientation

We indicated in the introduction of this chapter that the processes through

which our message passing ant agent orientate are derived from related the-

ories, and that most of the formula we propose are innovative. However the

idea of sharing vector components with which to perform independent calcu-

lations for orientation is not new (Ngo et al., 2005). As such, the main activity

of every message passing ant agent is referencing neighbour ant agents' his-

toric experiences (Rodriguez et al., 2007.; Bayazit et al., 2002.; Bayazit et al.,

2005.; Nasipuri and Li., 2002) and use the gathered information to calculate

vectors for orientation purposes. That way, they expand their awareness of

the environment in which they reside.

These ant agents are deployed in the default seek mode for the same purpose

as stigmergic ant agents (Panait and Luke, 2004b). Upon deployment, we

make an assumption that message passing ant agents pick direction vectors

to follow at random. However they would assign the least con�dence weights

possible to these vectors. The hope is that these ant agents would work
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Figure 3.7: An ant agent's local coordinate system

towards improving their con�dence weights based on the reward they achieve

with time in simulation.

We indicated earlier on that message passing ant agents can self-localize

relative to their neighbours. Each ant agent creates a local coordinate system

in which the ant agent is placed at the origin. This coordinate system spans

over three grid cells of the environment in each axis. Figure 3.7 illustrates

this view. As a result, message blocks are only shared between the ant agent

at the origin and those that are within accepted o�sets within the de�ned

local coordinate system.

To cut down on computing time, an ant agent in this category only references

sets of attractive vectors at the time, as well as the related vector weights.

The notion is that it is not necessary to explore directional history towards

the opposite direction of the journey. However the main challenge the ant

agent faces at this point is to decide on which of those attractive vectors

would be best to follow. Mechanisms are required with which a new vector

is selected which would fairly represent the ant agent's own perception of the
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Figure 3.8: Intersection points and points of closest approach

direction to follow, as well as represent the views of its neighbours. That

way a learning framework would arises (Lien et al., 2005).

To determine that fair direction vector to follow next, our message passing ant

agent performs a number of computations. First, it calculates and creates a

set of intersection points and points of closest approaches between all possible

pairs of the vectors that are taken from its neighbours. The notion is that,

two vectors which represent the knowledge of two independent ant agents in

the neighbourhood would possibly intersect at a point which is most likely

at the target. That vector which originates from the origin of the local

coordinate system to that intersection point between a pair of vectors is a

strong candidate direction vector for the orientating ant agent to follow.

In the event of a pair of vectors not intersecting within the de�ned envi-
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ronment span, we determine the point of closest approach between the two

vectors, and record the vector that points to that point of closest approach

as the candidate direction the orientating ant agent can follow. Figure 3.8

illustrates this framework using an example of a scenario in which a message

passing ant agent has four neighbours. Two of these are situated at the same

location. However each of the four neighbouring ant agents is following a

unique direction vector (indicated by dashed arrows in red). The intersec-

tion points and points of closest approach between pairs of vectors in this

scenario are marked using circular discs in black. The set we require records

the x and y coordinates of each of the points marked by these circular discs.

However, how do we �nd the actual values of x and y where these intersection

points are, or where the points of closest approach are located? These are

purely geometric tasks which we address in the next two section.

3.2.5.3 Intersection points between vectors

The problem of �nding the coordinates of a point where two vectors intersect

in a 2D plane is geometric (Xu et al., 2008). In our particular scenario, let

the vector that is being followed by the ith neighbouring ant agent around

an orientating ant agent be denoted as ~di. Therefore the vector that is being

followed by the the jth neighbouring ant agent is denoted as ~dj. The task

we resolve in this section is to �nd the coordinates of a point at which the

vector ~di intersects with the vector ~dj, if ever they do.

Suppose the o�sets of the ith and jth neighbouring ant agents relative to

the origin where the orientating ant agent is situated are (xi; yi) and (xj; yj)

respectively. It is possible to determine another point along each line segment

that is represented by ~di and ~dj. We can �nd these points geometrically using

the expressions: ~di + s× ~̂di and ~dj + t× ~̂dj respectively. In these expressions,
~̂di and ~̂dj are unit vectors of ~di and ~dj respectively. The parameters s and
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t are the magnitudes or relative weights of these two vectors. Suppose the

coordinates of the points de�ned by the two expressions: ~di + s × ~̂di and
~dj + t× ~̂dj are (xi+1; yi+1) and (xj+1; yj+1) respectively. With two points

x =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ xi yi

xi+1 yi+1

∣∣∣∣∣
∣∣∣∣∣ xi 1

xi+1 1

∣∣∣∣∣
∣∣∣∣∣ xj yj

xj+1 yj+1

∣∣∣∣∣
∣∣∣∣∣ xj 1

xj+1 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ xi 1

xi+1 1

∣∣∣∣∣
∣∣∣∣∣ yi 1

yi+1 1

∣∣∣∣∣
∣∣∣∣∣ xj 1

xj+1 1

∣∣∣∣∣
∣∣∣∣∣ yj 1

yj+1 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(3.4)

y =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ xi yi

xi+1 yi+1

∣∣∣∣∣
∣∣∣∣∣ yi 1

yi+1 1

∣∣∣∣∣
∣∣∣∣∣ xj yj

xj+1 yj+1

∣∣∣∣∣
∣∣∣∣∣ yj 1

yj+1 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ xi 1

xi+1 1

∣∣∣∣∣
∣∣∣∣∣ yi 1

yi+1 1

∣∣∣∣∣
∣∣∣∣∣ xj 1

xj+1 1

∣∣∣∣∣
∣∣∣∣∣ yj 1

yj+1 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(3.5)

along each neighbouring ant agent's direction vector, we can determine that

point at which the two vectors ~di and ~dj intersect (Line Intersection, 2014),
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Algorithm 3.3 The closest point of approach method

let w = Li − Lj
= (di + s× ~̂di)− (dj + t× ~̂dj)

Therefore:

w× ~̂di = (di + s× ~̂di− dj − t× ~̂dj)× ~̂di = 0 (1)

w× ~̂dj = (di + s× ~̂di− dj − t× ~̂dj)× ~̂dj = 0 (2)

From equation (1), after expanding the brackets:

di × ~̂di + s× ~̂di × ~̂di − dj × ~̂di − t× ~̂dj × ~̂di = 0

= s× ~̂di× ~̂di− t× ~̂dj × ~̂di = ~̂di× (dj − di) (3)

From equation (2), after expanding the brackets:

di × ~̂dj + s× ~̂di × ~̂dj − dj × ~̂dj − t× ~̂dj × ~̂di = 0

= s× ~̂di× ~̂dj− t× ~̂dj× ~̂dj = ~̂dj× (dj−di) (4)

Let: ~̂di × ~̂di = a
~̂di × ~̂dj = b,

~̂dj × ~̂dj = c,

~̂di × (dj − di) = d,

and ~̂dj × (dj − di) = e
Substituting in equations (3) and (4), t and s are:

t = ae−bd
ac−b2

s = be−cd
ac−b2

if ever they do. Equations (3.4) and (3.5) show how the x and y coordinates

of the required intersection point are calculated. These equations calculate

the matrix determinants using the coordinates of the points found.

3.2.5.4 Points of closest approach between vectors

In cases where two vectors ~di and ~dj do not intersect within the de�ned envi-

ronment, a point of closest approach between these two vectors is determined



CHAPTER 3. ANT AGENT PRIMITIVE BEHAVIOURS 105

and recorded as the orientating ant agent's candidate direction to follow. Let

the geometric equations of the line segments along the vectors ~di and ~dj be

de�ned as Li = ~di + s × ~̂di and Lj = ~dj + t × ~̂dj respectively. The point at

which these two vectors have a minimum o�set w = Li − Lj is the point of
closest approach we require. This point occurs when w is perpendicular to

both Li and Lj. This is the same point where w× ~̂di = 0 and w× ~̂dj = 0. We

show in algorithm 3.3 how the two equations (w × ~̂di = 0 and w × ~̂dj = 0)

are solved for s and t, and how we arrive at the points Ps and Pt along the

line segments Li and Lj where w is smallest. This algorithm is derived from

vector geometry (Sunday, 2007).

Note that the denominator ac − b2 in algorithm 3.3 is always non-negative

because ac − b2 = | ~̂di|2| ~̂dj|2 − (| ~̂di|| ~̂dj|cosθ)2 = (| ~̂di|| ~̂dj|sinθ)2 > 0 (Sunday,

2007). When ac−b2 = 0, the two vectors ~di and ~dj are parallel to each other.

We handle cases where two vectors are parallel by �xing the value of one

parameter, and use either equations to solve for the other. In the end, that

parallelism is completely absorbed. For the purpose of the message passing

ant agents we propose, the direction we consider when ~di is parallel to ~dj is

that of the midpoint along the line segment w.

3.2.5.5 The choice of a direction vector

Once a set of (x; y) coordinates of the intersection points and points of closest

approaches for all possible pairs of the direction vectors that are taken from

neighbours is in place, the ant agent's next challenge is to make a choice of

which way to follow based on the information gathered so far. The vector

sought must represent the general consensus of all neighbouring ant agents.

We determine this vector using least squares point estimation (Francis, 1990).

This approach is applied on the set of coordinates of the intersection points

and points of closest approaches.
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Two least squares regression lines are derived from the set of intersection

points and points of closest approaches, one for y on x, and another for x on

y. The regression line for y on x is represented as y = a1x+ b1, and that for

x on y is represented as x = a2y + b2 (Francis, 1990). Thus, equations (3.6)

and (3.7) calculate the values of a1 and b1 in the regression equation for y on

x, while equations (3.8) and (3.9) determine the values of a2 and b2 in the

regression equation for x on y. In both cases, m indicates the density of ant

agents around the orientating ant agent, from which the set of intersection

points and points of closest approach are obtained. Thus,
∑
y sums up the

y coordinates, and
∑
x adds the x coordinates of the intersection points and

points of closest approach in the set. Therefore
∑
xy sums up the products

of corresponding x and y coordinates of every intersection point or point of

closest approach in the set.

∑
y = a1

∑
x+mb1 (3.6)∑

xy = a1

∑
x2 + b1

∑
x (3.7)

∑
x = a2

∑
y +mb2 (3.8)∑

xy = a2

∑
y2 + b2

∑
y (3.9)

a1 =
m
∑
xy −

∑
x
∑
y

m
∑
x2 − (

∑
x)2 (3.10)

b1 =

∑
y
∑
x2 −

∑
x
∑
xy

m
∑
x2 − (

∑
x)2

(3.11)
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Algorithm 3.4 Message passing orientation

/* DEFINITION OF PARAMETERS

Li;Lj;Li2 ;Lj2 ← points on vectors
~di; ~dj ← direction vectors

si; sj ← weights/magnitudes

x; y ← intersection points

Psj ;Psi ←points of closest approach

< Set >← vector of directions

Lk ←new direction to follow */

(MsP : vc, vj, vj)
{foreach agent k at origin

{foreach agent j around k

{ Lj ← (xj; yj; zj) : ~dj : sj

Lj2 ← ~dj + sj × ~̂dj
forevery other agent i around k
{ Li ← (xi; yi; zi) : ~di : si

Li2 ← ~di + si × ~̂di
if (~dj ∩ ~di)

{x←from equation (3.4)

y←from equation (3.5)

}

else

{ x←Psj
y←Psi

}

vector <Set >+= {(x, y,z)}

}

}

Lk ← (x̄; ȳ;z̄) in vector <Set >
c←stdev (s) : ∀s in agents j

wk(t+ 1) = 1
2

(
wk(t) +

P
i∈k wi(t)

k
∗ c
)

+λ

}

}



CHAPTER 3. ANT AGENT PRIMITIVE BEHAVIOURS 108

Equations (3.10) and (3.11) show how the �rst set of simultaneous equations

is simpli�ed for the values of a1 and b1. Flipping the values of x and y in

these equations gives the formula to solve for a2 and b2 in the second set of

simultaneous equations. Least squares point estimator �nds that point at

which the two regression lines intersect. Francis (1990) shows that this point

coincides with the centre of mass of all the points that are recorded in the

set of intersection points and points of closest approach, (x̄; ȳ). That vector

which originates from the origin towards the centre of mass (x̄; ȳ) is the path

the orientating ant agent must follow in the next step.

3.2.5.6 Message passing put together

Algorithm 3.4 summarizes the message passing and orientation processes.

These processes are viewed as an autonomous primitive activity of every ant

agent in this category - hence a primitive behaviour. Note that this prim-

itive behaviour comprises of three key components namely; using shared

direction vectors to create sets of intersection points and points of closest

approach,determining the least squares point estimator which fairly repre-

sents the new direction to follow, and updating vector weights. We gave the

details of how vector weights are updated in section 3.2.4.4.

Lemma 3 - the ability of a message passing ant agent to orientate and up-

date its knowledge regarding the direction vectors to follow, is a dis-

crete autonomous action that is undertaken at individual levels - hence

a primitive behaviour in ant systems. - Let the mnemonic for this al-

gorithm be (MsP : vc, vj, vj), which is an acronym for Message Pass.

The �rst parameter of this primitive indicates the region in the agent

memory where the vector weight parameter should be read. The sec-

ond parameter indicates the memory block where the required vector
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should be taken from. Then the last parameter indicates the message

block in which the results of the calculations are stored.

- For example; (MsP : 0, 0, 1) tells an ant agent to retrieve con�dence

weights that are stored in the ant agent's memory components num-

ber 0, as well as retrieve vector components that are stored in memory

component 0, and accumulate these vectors and weights in order to get

the resultant vector which would be stored in the orientating ant agent's

memory component number 1.

3.2.5.7 Ant agent movements

Upon successful orientation, an ant agent must relocates to the selected lo-

cation. Movement is a critical ability in ant systems with which swarm level

tasks are accomplished (e.g. locating food-like resources) (Chibaya and Ban-

gay, 2007.; Panait and Luke, 2004a, 2004b.; Solimanpur et al., 2005). In line

with the literature, we made an assumption that our ant agents remain in

motion throughout the simulation - which is an autonomous activity that is

undertaken at individual levels.

Lemma 4 - ant agents' abilities to move around the environment in response

direct or indirect interactions are discrete autonomous actions that are

undertaken at individual levels - hence a primitive behaviour in ant

systems.

- Algorithm 3.5 interprets ant agent movement policies after successful ori-

entation. This algorithm is inspired by the works presented in Panait

and Luke (2004a, 2004b). Three parameters are required which indi-

cate the o�set of the preferred destination. These o�set coordinates are

acquired when the ant agent orientates. Let (MvP : x, y, z) represent

the mnemonics for Move−to−a−Preferred L.
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Algorithm 3.5 Ant agent movements

/* DEFINITION OF PARAMETERS

~di(t)← position or vector at time t
x; y; z ← coordinates of current position
~di(t+ 1)←new position at time t+ 1
xi; yi; zi ← offset of new position

*/

(MvP : xi, yi, zi)
{

foreach agent i
{

~di(t)←(x; y; z)
~di(t+ 1)←(x+ xi;y + yi;z + zi)

}

}

- In this context, the ant agent simply adds the o�set values to the coordi-

nates of its current position. For example; (MvP : 1,−1, 0) tells an ant

agent to relocate to the location that is south-east of its current posi-

tion (one cell in the positive direction of x and one cell in the negative

direction of y. The z component remains at 0 because we operate in

2D).

3.2.5.8 Stigmergic information update: Drop pheromone

Communication between stigmergic ant agents is environment mediated, and

pheromone chemicals are the key ingredient for ant agent orientation (Dorigo

et al., 1999.; Montgomery et al., 2007.; Nakamichi and Arita, 2004, 2005).
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Algorithm 3.6 Drop pheromone

/* DEFINITION OF PARAMETERS

pi ←levels of pheromone to drop

QL(t)← quantity of pi at L at time t
QL(t+ 1)←updated quantity of pi
q ← amount of pheromone to drop

*/

(Drp : pi, q)
{

foreach agent i at L

{

QL(t)←quantity of pi at L at time t
QL(t+ 1)← QL(t) + q

}

}

These pheromone chemicals are placed on the environment by the ant agents

(Dorigo et al., 1999.; Panait and Luke, 2004b.; Chibaya and Bangay, 2007).

In line with the norm, stigmergic ant agents can update the levels of speci�c

pheromones on their current location in each step.

Lemma 5 - the ability of a stigmergic ant agent to update the levels of

pheromones that are held at its current location is a discrete autonomous

action that is undertaken at individual levels - hence a primitive be-

haviour in ant systems.

- Algorithm 3.6 summarizes the semantics through which stigmergic ant

agents retrieve and update these speci�c levels of pheromone in a move-

ment step. This algorithm is also inspired by the works of Panait
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and Luke (2004a, 2004b). The algorithm requires two parameters, one

which indicates the ID of the levels of pheromones to be detected and

updated (pi), and another which indicates the amount of pheromones

the ant agent can place on the environment at the time (q).

- Let the mnemonic of this primitive activity be denoted as (Drp : pi, q) , an

acronym for Dropspecific levels of pheromone. Precisely, a particular

level of pheromone is stored in a cell tuple with two �elds (ID and

Quantity). For example; (Drp : 1, 1) tells a stigmergic ant agent to

retrieve the levels of pheromones whose ID is 1 that are held at location

L at time t and top them up by 1 unit of the same levels. In this work,

stigmergic ant agents can place a �xed amount of the same levels of

pheromones. Variation of the amount of pheromone an ant agent can

place on the environment in each step is not a subject of study in this

work.

3.2.5.9 Stigmergic information update: Pheromone evaporation

In stigmergic systems, global update rules may be added which handle pheromone

dissipation processes (Chirico, 2004.; Schoonderwoerd et al., 1996). This

refers to pheromone updates through evaporation and di�usion. Pheromone

evaporation in particular, refers to a process whereby a certain percentage

of the levels of pheromone that are held on each location of the environment

is lost without any ant agents or user intervention. It is, in fact, a fault

tolerance control in the stigmergic model with which sub-optimal trails are

cleared o� from the environment (Dorigo et al., 1999).

Lemma 6 - a pheromone update rule which triggers pheromone evaporation

is a fault tolerance control which occurs at low levels - hence a primitive

behaviour in ant systems.
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Algorithm 3.7 Pheromone evaporation

/* DEFINITION OF PARAMETERS

pi(t)←levels of pheromone at time t
α← evaporation rate

*/

(Evp : α)
{

foreach location L

foreach pheromone pi at L

pi(t)← (1− α)× pL(t)

}

- Algorithm 3.7 describes the semantics which characterize pheromone evap-

oration. These semantics are built on the works of (Dorigo et al., 1999)

and (Panait and Luke, 2004a, 2004b). Let the mnemonic for this primi-

tive activity be denoted as (Evp :). The algorithm requires one parame-

ter (α), which indicates the evaporation rate supported at the time. All

levels of pheromones that are on the environment are simultaneously

dissipated. In technical terms, the algorithm retrieves the quantities of

each level of pheromone at a particular location. A percentage of the

retrieved quantity is taken o�, and the remaining quantity overwrites

the original quantity of the same levels of pheromone at that location.

3.2.5.10 Stigmergic information update: Pheromone di�usion

Stigmergic information is also updated through pheromone di�usion (Panait

and Luke, 2004b.; Chibaya and Bangay, 2007). This is a process whereby a

certain percentage of the levels of pheromone that are held on one
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Algorithm 3.8 Pheromone di�usion

/* DEFINITION OF PARAMETERS

Qj(t)←quantity of pi at J at time t
α← diffusion rate

*/

(Dfs : α)
{

foreach location L
foreach location j around L

foreach pheromone pi at L
if (Qj(t) < QL(t) and Qj(t) > 0)

Qj(t)← Qj(t) + α×QL(t)

}

location of the environment spills over to other locations without ant agents

or user intervention. Precisely, pheromone di�usion integrates dynamics into

ant agents' low level behaviour (Rajbhupinder et al., 2010), smoothing and

widening the trails that are formed with time in simulation (Chibaya and

Bangay, 2007).

Lemma 7 - a pheromone update rule which triggers pheromone di�usion is

a fault tolerance control which occurs at low levels - hence a primitive

behaviour in ant systems.

- Although pheromone dissipation is practically an environment manipula-

tion control, it is a useful parameter of emergence worth exploring.

Algorithm 3.8 describes the semantics which characterize pheromone

di�usion. These semantics are also built on the works of (Dorigo et al.,

1999) and (Panait and Luke, 2004a, 2004b). This algorithm, which we
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denote in mnemonics as (Dfs :), requires one parameter as well, which

indicates the di�usion rate supported at the time.

- We make an assumption that pheromone di�usion is only possible when

the levels of pheromone on the source location are higher than the same

levels of pheromone on the receiving location. In addition, the receiving

location must contain a minimum threshold amount of the same levels

of pheromone before dissipation updates are allowed. Such controls pre-

vent environment saturation which often occurs when pheromone dif-

fusion controls are executed unconditionally (Panait and Luke, 2004b).

3.2.5.11 Stigmergic information update: A combined update rule

This section summarizes stigmergic information update. Precisely, Equa-

tion (3.12) shows how we put together the e�ects of the levels of pheromone

that are placed on a location by ant agents, the levels that are acquired

through di�usion, as well as the levels that are left on a location after evap-

oration. This equation connotes that the updated levels of pheromone at

a particular location L at time t + 1 are a result of adding the levels of

pheromone that are acquired from neighbouring locations through di�usion

(
∑∀j(L)>L

1 α×Qj(t)), and the total amount of the same levels of pheromone

that are placed on the same location by ant agents that visited the location

at time t, which is (
∑∀Agent(L)

1 q). The quantity that is left at the same loca-

tion L after pheromone evaporation, (1− α) × QL(t), is added to the sum,

giving QL(t+ 1) in equation (3.12).

QL(t+ 1) = (1− α)×QL(t) +

∀Agent(L)∑
1

q +

∀j(L)>L∑
1

α×Qj(t) (3.12)
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Variable Meaning of variable in equation (3.12)

α dissipation rate

QL(t) Quantity of pheromone at location L at time t

q Quantity of pheromone that an ant agent can drop

(1− α)×QL(t) Remaining quantity of pheromone after evaporation∑∀Agent(L)
1 q Total quantity of pheromone dropped by ant agents at time t∑∀j(L)>L

1 α×Qj(t) Total quantity of pheromone di�used from neighbour locations

3.2.5.12 Message passing update: Normalizing vectors

Message passing orientation involves lots of calculations in which the resul-

tant vectors thereof have magnitudes that are variable. These magnitudes

can be smaller, equal, or greater than 1 depending on the direction vectors

that are summed up. Assuming that these magnitudes translate to the con-

�dence measures of the ant agents, then a contradiction arises where these

magnitudes di�er from the con�dence weights that are stored in ant agents'

memories. To avoid this possible mix up, we normalize the resultant vectors

and restore the con�dence factors. Practically, normalizing the resultant

vector standardizes an ant agent's step size throughout the simulation.

Lemma 8 - message passing ant agents' ability to normalize vectors is a

discrete and autonomous action at individual levels - hence a primitive

behaviour in ant systems.

- Algorithm 3.9 presents the semantics for normalizing vectors in the message

passing category. This algorithm accepts three parameters relating to

the components of the resultant vector thereof. First, the algorithm

computes the length of the vector, which is always anon-zero value

when the orientating ant agent has neighbours around. A normalized
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Algorithm 3.9 Normalize vector

/* DEFINITION OF PARAMETERS

vx, vy, vz ←vector components

ρ← a randomly generated vector component

wv(t)←confidence weight of vector v at time t

*/

(Nrm : vx, vy, vz)
{

v_length← v2
x + v2

y + v2
z

if (v_length 6= 0)
{

vx ← vx
v−length

vy ← vy
v−length

vz ← vz
v−length

}

else

{

vx ← ρ (random x component)

vy ← ρ (random y component)

vz ← 0.0
wv(t)← 0.0
(Nrm : vx, vy, vz)

}

}

vector is found by dividing each component of the resultant vector

by the length of the vector. However isolated ant agents would yield

resultant vectors whose magnitudes are 0 because they do not have

neighbours. In this case, our ant agents rather assume random direc-

tion vectors and follow them with the least con�dence weight possible.

These randomly picked vectors are normalized before they are used.
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- Let the primitive routine with which vectors are normalized be denoted as

(Nrm :), an acronym for Normalize. For example (Nrm : 0, 0, 1) tells

an ant agent to: normalize a vector whose components are stored in

memory block 0 and store the normalized vector's components in mem-

ory block 0, while keeping possible random choices in the �rst memory

block.

3.2.5.13 Target detection

It is critical that ant agents possess abilities to detect the targets and any

other objects of the environment (Cavalcanti et al., 2006a). In line with

the work of Naeem et al. (2007), the positions of key objects, including

targets, are marked using speci�c pheromone-like chemical indicators. These

chemical indicators are neither produced by the ant agents nor by objects in

the environment. They neither change in quantity, nor dissipate. Instead,

they are set as constants when the environments are created and initialized.

While stigmergic ant agents are designed with implicit abilities to detect and

interpret chemicals, message passing ant agents can only understand vectors.

A mechanism is therefore required with which message passing ant agents

can, at least, detect target indicators and interpret them.

Our message passing ant agents are therefore particularly designed with an

extra agent level ability to detect and convert target indicators to vector

information. This is not the �rst time vectors have been used to interpret

the meaning of some levels of pheromone on the environment (Payton et

al., 2001). In this case, the length of the vector thereof is non-zero if the

chemical indicators are detected, connoting arrival around the vicinity of the

target. However the same length will remain zero when the ant agent has

not found the target sought. Whatever outcome, the con�dence weight is

updated accordingly (dropping or raising depending on vector length).
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Algorithm 3.10 Detect target indicators

/* DEFINITION OF PARAMETERS

QL ←quantity of target indicators at L

x←minimum levels of pi required
~di←ant agent's current vector

wi(t)←confidence weight of agent i

*/

(PtV : pi, x)
{

for-each location L around agent i
{

if (QL > x)
{

~di←(Lx;Ly;Lz)
wi(t) = 1.0

}

}

}

Lemma 9 - message passing ant agents' ability to detect speci�c target indi-

cators and convert these to corresponding vector information is an ant

level ability - hence a primitive behaviour in ant systems.

- Algorithm 3.10 presents the semantics of the routine with which message

passing ant agents detect and convert target indicators to vector infor-

mation. Two parameters are key in this algorithm, one which indicates

the ID of the target indicator the message passing ant agent must de-

tect, and another one which sets the minimum levels of the same target

indicator that the ant agent must detect in order to trigger behavioural

changes.
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- We call this algorithm in mnemonics as (PtV :), which is an acronym for

detect−and−convert−Pheromone to V ector. This algorithm captures

the notion that an ant agent i that is situated at location Li, where Li
is adjacent to location Lj, can detect the levels of a particular target

indicator pi at Lj provided the levels of pi exceed a threshold quantity

x. If this is the case, the ant agent overwrites the vector it is follow-

ing, ~di, and assumes the vector which points to location Lj where the

target is likely placed. The ant agent's con�dence weight is changed

immediately, indicating that the ant agent has arrived at its target.

- For example, (PtV : 3, 1) tells a message passing ant agent to detect and

convert target indicators whose ID is 3 to vector information, provided

the levels of the same target indicators around the ant agent are above

the threshold quantity of 1.

3.2.5.14 No action

The design of the XSets we propose is such that a �xed number of instructions

are required in each ant agent state. In the event of an ant agent requiring

less instructions in one internal state, a No−Action instruction is used as a

�ller primitive behaviour. The mnemonic (NOp :) tells an ant agent to do

nothing. In departure from the norm, multiple inclusion of this behaviour

in an XSet does not count as redundant. In computational terms, this is

an algorithm with no code (see Algorithm 3.11). Although this completes

(�lls) the sets, ant agents would ignore these behaviours and jump to the

next di�erent behaviour in the sequence.

Lemma 10: ant agents' ability to do nothing is a low level and autonomous

skill - and hence a primitive behaviour.



CHAPTER 3. ANT AGENT PRIMITIVE BEHAVIOURS 121

Algorithm 3.11 No action

/* DEFINITION OF PARAMETERS

Algorithm without code

*/

(NOp :)
{

//No action

}

3.3 Conclusion of the chapter

This chapter addresses two aspects of this thesis. First, it established the

meta information and parameters which set forth the simulator. These are

basically user de�ned. The system architecture is presented, along with the

assumptions we make, as well as a discussion of the components and pa-

rameters of the simulation simulation system. Key design issues were also

presented. The second aspect we address is the identi�cation of primitive be-

haviours which characterize the activities of ant agents at individual levels,

and presented routines which interpret these primitive behaviours in com-

putational terms. It is important to note at this stage that these primitive

behaviours are still claims (lemmas - claims whose purposes are help in prov-

ing a theorem) that will be veri�ed and validated in Chapters 4, 5, and 6

regarding their usefulness to the XSet approach we propose. We make the

following conclusions regarding these two aspects:

1. The key meta information de�nes agent design and environment setup

parameters. First, our system requires us to make an explicit choice of
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the type of ant agents we want to use at the time between stigmergic,

message passing, and hybrid. It requires us to state the agent density

upfront, agent memory, the number of internal states an ant agent

supports, as well as the number of pheromone chemicals the same ant

agents can perceive and interpret. It is also important to state the

size of the environment we want to use, the dimensions in which we

operate, the simulation time we are allowed to score the performances

of particular XSets, as well as the number of instructions that are

allowed in each internal state. Most importantly, we need to state the

evaluation environment which describes the form of emergent behaviour

we require. This information particularly spells out the design of the

ant agent, the properties of the XSets sought, as well as the properties

of the environment.

2. Key to both types of ant agents are primitive behaviours with which

ant agents achieve orientation (i.e. (MvH : τi, τi, ηi, wτ , wτ , wη) and

(MsP : vc, vj, lj)). These instructions tell an ant agent to pick an ap-

propriate direction to follow in the next step. A primitive behaviour

for agent movement is also critical ((MvP : xi, yi, zi)). This instruction

relocates an ant agent towards the chosen direction. Ant agents in gen-

eral, require abilities to update key system information. This is achieved

in three ways in the stigmergic category ((Drp : pi, q), (Evp : α), and

(Dfs : α)). These instructions create and maintain the shared memory

for the swarm. In the message passing context, vectors and con�dence

factors are concurrently updated when the (MsP : vc, vj, lj) instruc-

tion is executed. Most of the direction vectors that are yield as a result

of sharing message blocks must be normalized ((Nrm : vx, vy, vz)). In

addition, all ant agents must update their internal states whenever it

becomes necessary ((StS : m,n, x) ). However message passing ant

agents require an extra ability to detect and interpret chemical indica-

tors ((PtV : pi, x)). We can use a �ller instruction when an agent is
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required to do nothing ((NOp :)).

3. The key outcomes of this chapter are the two �ndings that are stated

in points 1 and 2 above. We can explicitly state the set of primitive

behaviours - U as a collection of ten primitive behaviours. In line with

our assumptions, it is possible to extract subsets of U in which all

the primitive behaviours are inspired by stigmergic or message passing

processes. However it is also possible to come up with mixed subsets

of primitive behaviours - hence the three categories of ant type. The

set U is the key input to the next chapter where we generate the power

set and the XSets thereof. Figure 3.9 shows the composition of set U .

U={(NOp:),(MvH:),(Drp:),(MsP:),(MvP:),(Evp:),(Dfs:),(Nrm:),(PtV:),(StS:)}

Figure 3.9: The set of primitive behaviours - U

A number of contributions emanate from this chapter, both to the thesis and

to the board of knowledge. Some of these contributions are:

1. Ant agent control routines have always been �black box� processes with

regard to explaining how the primitive behaviours of ant agents are

implemented. This chapter presents ant agents' primitive behaviours,

along with the computational routines which characterize the semantics

of these primitive behaviours. This way we create relevant knowledge

in the �eld.

2. The mechanisms in which ant agent orientation is achieved, both in

the stigmergic and message passing ant agent systems, are innovative.

In particular, the mathematical models we proposed for determining

the attractiveness of locations around a stigmergic ant agent, and the

geometric calculations we proposed for combining vectors and deter-

mine the desired target, are both of our own making. Besides creating
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new knowledge in the �eld, these mathematical models and ant agent

orientation processes may inspire the development of new ant systems

with practical bene�ts.

3. The concept of orientation shows potentials for possible extension for

use in scenarios where geometry is not available, for example, routing

in graphs. As such, we create new avenues of research in the �eld.

4. Stigmergic ant agents reinforce the knowledge of the swarm by plac-

ing more and more levels of pheromone on the environment in each

step. However the mechanisms in which message passing ant agents

update each other's knowledge are innovative. Precisely, the knowledge

of message passing swarms is held in the memories of swarm members

in the form of vectors and levels of con�dence. Again, the thesis creates

knowledge in this respect, knowledge with potentials to attract more

useful researches in the �eld.

5. The algorithms which interpret the semantics of di�erent ant agent

activities, along with the parameter values they take, form useful dic-

tionaries from which ant agent systems can be programmed for di�erent

con�gurations in the future.

6. The mechanism in which the con�dence weights of message passing ant

agents are updated is creative. This may inspire the development of

formal principles for updating similar parameters.

The next chapter validates the primitive behaviours we identi�ed in this chap-

ter, as well as investigating a methodology for searching for best combination

of primitive behaviours and meta information which would create XSets of

primitive behaviours that can allow emergent behaviour to be manifest in

swarms of ant-like devices.



Chapter 4

Creation and Evaluation of XSets

4.1 Introduction

Figure 1.1 sub-divided the research problem of this thesis into �ve sub-

problems, namely: (a) the identi�cation of primitive behaviours, (b) inves-

tigation of strategies for combining primitive behaviours into XSets and ge-

netically evolve these XSets into useful dictionaries for achieving predictable

emergent behaviour, (c) evaluation of XSets using particular measures of

emergence, (d) validation of primitive behaviours, XSets, and the measures

of emergence that arise from using particular XSets, and (e) application of

validated XSets to di�erent problem domains (the reader is also referred to

section 1.2 for a detailed presentation of each of these �ve sub-problems).

Chapter 2 went on to review works in which each one of these sub-problems

is placed in the literature and board of knowledge. In Chapter 3, we ad-

dressed the �rst sub-problem of the thesis (identi�cation of discrete candi-

date primitive behaviours of ant agents in the stigmergic and message passing

categories), and proposed the design and implementation of ten such primi-

tive behaviours in computational terms. In each design decision we made, a

125



CHAPTER 4. CREATION AND EVALUATION OF XSETS 126

lemma was proposed whose purpose has been to set up a stepping stone on

the path to proving the concept of XSets and the search for optimal solutions

in this respect.

Although Chapter 3 made claims regarding the identi�cation, design, and

implementation of discrete candidate primitive behaviours of ant agents in

the two categories we study, it neither veri�ed nor justi�ed the choices we

made as appropriate, suitable, and su�cient constructs for de�ning a lan-

guage for programming ant agents towards predictable emergent behaviour

- explaining why we stated these candidate primitive behaviours as lemmas.

Creation of potentially useful XSets from the proposed candidate primitive

behaviours, evaluation of these XSets for emergent properties, and the evo-

lution of even better XSets using genetic programming principles, are the

subjects of investigation in this Chapter. Our goal is to search for best

performer XSets for predictable emergent behaviour (evolutionary algorithm

search for optimal solutions). Although we may have insights into the struc-

ture of the XSets we want, it is di�cult from a human's point of view to

predict appropriate combination of the candidate primitive behaviours. It

is hard to tell the suitable parameter values of these primitive behaviours.

Worse still, we can not foretell appropriate sequences in which these primitive

behaviours must be arranged in XSets by a naked eye.

In the light of these challenges, we propose a genetic programming system

which is inspired by the work of Koza (1992). This genetic programming sys-

tem forms the basis for our search for appropriate combination of primitive

behaviours, search for proper sequences of primitive behaviours, and search

for appropriate parameter values for the primitive behaviours that would de-

�ne a language for programming ant agents towards deliberate engineering

of particular forms of emergent behaviour. We believe that successful dis-

covery of such XSets may provide useful insights and a baseline upon which

researches aimed at assembling deterministic emergent products may arise.
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4.1.1 A brief overview of genetic algorithms

Genetic algorithms are a searching tool which works well in search spaces

where very little is known about the solution sought (Murphy, 2003). They

use the principles of selection and evolution to produce several potential solu-

tions (a genetic population) to a given problem and evaluate these solutions

in order to identify the closest solution to the problem (Koza, 1992). Thus, a

genetically generated solution may not be the exact solution to the problem

but can be very close to the exact solution.

A genetic algorithm begins by creating an initial population of candidate

solutions. Most works in the literature randomly generate the initial popu-

lation of solutions (Koza, 1992). The algorithm then creates a sequence of

new generations of populations through genetic evolution (Koza, 1992). In

genetic terms, each member in the genetic population is referred to as an

individual. In our case, every XSet which represents a possible solution to

the problem at hand is an individual. The processes through which indi-

viduals are manipulated in order to create other individuals is called genetic

operations. At each step, the algorithm uses the individuals that are in the

current generation and population to create new individuals and the next

population.

In creating a new population, the algorithm �rst ranks the individuals that

are in the current population by computing some form of �tness values.

In this work, we refer to this �tness value as the XSet's index of merit (see

section 4.4.7 for details regarding how this value is calculated). The algorithm

then selects individuals, called parents, biased by their �tness levels. Parent

individuals are used to produce children individuals either by making random

changes to their composition �mutation�or by combining the components

of two parents�crossover. However there are always a few individuals that

are directly promoted to the next population as elite members in order to

enhance population diversity as we go down the generations (Murphy, 2003).
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Note that the population size remains constant when new individuals and

new populations are created, meaning that for each new individual, an old

one is removed from the population. Generally, successful implementation

and application of genetic algorithms depends on the following three criteria:

◦ It must be possible to evaluate the �tness of each individual relative

to other potential solutions that are in the population (Murphy, 2003).

Our work presents mechanisms in which we can quantify the amount of

emergence that arise as a result of using a particular XSet (see section

4.4 for this aspect of the chapter).

◦ It must be possible to break a potential solution into discrete parts

that can vary independently. The description of the structure of XSets

allows us to explicitly reference each composite primitive behaviour and

its parameters and vary these components independently (see section

4.2.1 for details regarding the structure of XSets).

◦ It must be possible to get a relatively �better� solution even if that

solution is not the absolute best solution.

The research problem of this chapter focuses on searching for best performer

XSets that would describe a language for programming ant-like devices to-

wards predictable emergent behaviour. The de�nition of genetic algorithms

which we presented in this section o�ers a suitable searching tool for these

desired XSets.
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Figure 4.1: Creation and evaluation of XSets

4.1.2 Problem statement

Figure 4.1 reviews the research problem of this thesis and zooms into the

focus of this chapter. First, it shows the two key outputs of Chapter 3 (set

of candidate primitive behaviour U , and a collection of user de�ned meta

information M). These two pieces of information are the main inputs to

Chapter 4, with which we address the second (investigation of strategies for

combining primitive behaviours into XSets and genetically evolve these XSets

into useful dictionaries for achieving predictable emergent behaviour) and

third (evaluating XSets) sub-problems of this thesis (see sections 1.2.2 and

1.2.3 for more details regarding these two sub-problems). We can therefore

re-phrase the key aspects of this chapter into four separate tasks as follows:

1. Creating XSets - In addressing this �rst task, we are guided by the

question which says: how do we create XSets? First, we present an
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analogy from biology which motivates the design decisions we make

regarding the structure of XSets. Thereafter, we describe the structure

of an XSet in terms of the two pieces of information that are input from

Chapter 3 (set of candidate primitive behaviours U , and collections of

user de�ned meta information M). Most importantly, we show how

the set of primitive behaviours U is manipulated in order to generate

revised versions of the same set U depending on the antType and car-

dinality parameters in M (see section 3.2.3 for details regarding the

parameters that are captured as meta information). Power sets are

then described in terms of the revised U . These power sets consist of

the possible ordered subsets of the revised version of U (see section 4.2.2

for an illustration of the concept of indexed and order subsets). Each

element in the power set is a unique subset of U , a partial permuta-

tion, and has a unique index in the power set. In computational terms,

our power set is a vector data structure (see section 4.2.4 for details

regarding the computational representation of power sets). Merging

each element of the power set with speci�c meta information (antType,

cardinality, number of internal states, and agent memory) creates the

initial population of XSets on which the genetic algorithm operates

until optimum solutions are evolved.

2. The search space and genetic population - The second task of this

chapter is to describe a mechanism in which the search space for best

performer XSets is evolved. We describe genetic operations with which

better and better XSets are added into the population. We identify

mechanisms in which we can quantify the extent to which emergent

behaviour is manifest as a result of using particular XSets, and motivate

for �ve measures of emergence that are all linked to related works.

These measures of emergence are scaled within the range [0; 1] before

they are averaged in order to determine each XSet's index of merit (see

section 4.4 for details regarding these measures of emergence).
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3. De�nition of evaluation environments - The third task of this

chapter is concerned with the de�nition and con�guration of the plat-

form on which ant agents that use particular XSets would reside during

simulation (evaluation environments). We mainly show how the meta

information that is provided by the user in the XSets generator sub-

system (see section 3.2.3 for details regarding the parameters that are

captured in this sub-system) in�uence the design of the environment

on which we operate. Most importantly, we explain how the high level

properties of the emergent behaviour sought are incorporated into the

simulation system, mainly paying attention to the purposes of di�erent

environment parameters.

4. Evaluation of XSets - The last task of this chapter is to experimen-

tally search (from the search space) for those XSets that best describe

control rules for creating speci�c emergent behaviour. We particu-

larly investigate the properties of XSets on a well known case study

metaphor of path �nding ant agents in swarms. In conducting this ex-

periment, we �rstly present the path �nding problem and contextualize

it to our ant agent metaphor and environment setup. Swarms of ant

agents are deployed using particular XSets and their performances are

scored. Each XSet is therefore ranked according to the index of merit

it achieves.

The key outcome of this chapter are explicitly stated XSets which best de-

scribe ordered collections of primitive behaviours and parameters with which

a particular class of emergent behaviour is guaranteed. We emphasize, again,

that the choice to evaluate XSets on the case study scenario of path �nding

swarms is only to prove the concept and functionality of XSets. It is not the

path �nding outcome that matters, but rather the discovery of those XSets

that give rise to the outcome.
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4.1.3 Overview of the chapter

The breakdown of the content and sections of this chapter are outlined as

follows:

◦ Section 4.2 comes �rst, describing �ve key aspects of this chapter. First,

it emphasizes on explaining the structure of an XSets before we dwell

on its creation and evolution (see section 4.2.1 for this aspect of the

study). The design of how the initial genetic population is created

follows thereafter (see section 4.2.2 for this aspect of the study). In

section 4.2.3, we describe how parent XSets are selected and evolved

in order to create children XSets as we move down the generations.

Examples are given in this respect in order to clarify the genetic op-

erations thereof. In addition, we explicitly show the representation of

XSets in the genetic populations in section 4.2.4. The last sub-section

of this section describes how ant agents use XSets (see section 4.2.5).

In summary, this section responds to the �rst task of this chapter (see

section 4.1.2 for the list of tasks of this chapter).

◦ Section 4.3 follows thereafter, explaining the design of evaluation en-

vironments based on the meta information and parameter values that

are provided by the user at run-time (see section 3.2.3for this aspect of

the chapter). First, we describe the global environment parameters in

section 4.3.1. Section 4.3.2 then presents swarm level parameters. The

last sub-section of this section presents targets related parameters (see

section 4.3.3). In each case, details regarding how swarm information is

kept on the environment, as well as how information is accessed when

it is required are emphasized on. In summary, this section responds to

the second task of this chapter (see section 4.1.2 for the list of tasks of

this chapter).
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◦ Section 4.4 goes on to describe particular measures of emergence with

which we evaluate XSets for allowing emergent behaviour to occur.

In doing so, we indicate how each measure of emergence is assessed,

starting with the speed of emergence (see section 4.4.1), quality of

emergence (see section 4.4.2), average delivery rate (see section 4.4.3),

average end-to-end delays (see section 4.4.4), and then Shannon's infor-

mation value (see section 4.4.5 for these measures of emergence). Key

in some of these measures of emergence is the requirement to extract

samples of ant agents to track and assess. This section also describes

the sampling technique we use to extract signi�cant samples (see sec-

tion 4.4.6). The last part of this section illustrates how the index of

merit (which tells the extent to which an XSet is useful) is calculated

from the �ve measures of emergence we propose (see section 4.4.7 for

this aspect of the study). In summary, this section responds to the

third task of this chapter (see section 4.1.2 for the list of tasks of this

chapter).

◦ Section 4.5 follows, in which we mainly administer an experiment for

evolving and evaluating XSets for abilities to solve a speci�c tasks -

in this case, the path �nding problem. The measures of emergence

that are prescribed in section 4.4 are used to rank all the XSets in the

search space. To experimentally achieve this ranking, we �rstly present

the framework of the path �nding problem (see section 4.5.1 for this

framework). The experiment design in which we evaluate all XSets for

allowing path �nding behaviour is presented next (see section 4.5.2 for

this aspect of this chapter). Then, the results thereof, which report

the performances and con�guration of best performer XSets in each

category, as well as their relative indices of merit, close this section

(see sub section 4.5.3 for these results). Precisely, this section responds

to the fourth and last task of this chapter.
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◦ Conclusions close the chapter in section 4.6, highlighting the key ob-

servations we make, as well as the contributions of the chapter to the

board of knowledge and the thesis.

4.2 Generation of XSets

The design and envisioned functionality of the XSets we propose is inspired

by an analogy in cell biology, where genes are described as �molecular units

with particular roles in the cellular life of living organisms� (Singh et al.,

2012). Organized collections of genes form chromosomes, and strands of

chromosomes form DNA structures which encode the search space for organ-

isms' abilities, behaviours, characteristics, and any other features.

Identifying the genes that form particular chromosomes in speci�c species,

as well as describing the order in which these genes are con�gured in the

chromosomes are active areas of research in medicine and genetics (Singh et

al., 2012). The notion is that, if we get to understand gene con�guration and

gene sequences in chromosomes, then issues related to genetic disorder can

be tackled and hopefully recti�ed with easy. The results of such researches

are of direct bene�ts to any life, including human life.

This work is motivated by these biological relationships between genes and

chromosomes. Discrete primitive behaviours (those that were identi�ed in

Chapter 3) are viewed as �genes� - units with particular roles in the life

and behaviours of ant agents. Organized collections of primitive behaviours

(XSets) are created with the view of �chromosomes� in mind - collections

of genes in speci�c sequences. The key phrase in this analogy is �organized

collections in speci�c sequences�, which connotes the requirement for order

(similar to the requirement for order of genes in chromosomes (Singh et al.,

2012)).
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The genetic programming system we propose manipulates the primitive be-

haviours that form XSets (mutating these primitive behaviours, mutating

the parameter values, crossing over primitive behaviours, reproducing prim-

itive behaviours, or crossing over parameter values). Mutation, crossover,

and promotion rates are set at 15%, 80%, and 5% respectively (see section

4.2.3 for details). We refer to collections of XSets as a genetic population of

XSets. In this thesis, the size of a genetic population of XSets is su�ciently

large in order to allow diversity in the search space (500 XSets at a time).

Such a population hopefully forms the search space for ant agent abilities,

behaviours, and any other features (similar to the roles of DNA in living or-

ganisms). Each XSet in the genetic population is allowed 10, 000 iterations as

scoring time before it is ranked. Practically, the genetic population of XSets

undergo 10 evolutions before best XSets are recommended, implying that the

maximum evolution limit is 500× 10, 000× 10 (50,000,000 iterations).

We can therefore re-state the focus of this chapter in terms of this analogy

as follows: we investigate the primitive behaviours (genes) which form XSets

(chromosomes) which best describe a language for programming ant agent

behaviours (DNA) - the same way biologists require solutions regarding the

genes that form particular chromosomes in the DNA. To address this prob-

lem, we �rstly describe the structure of an XSet in details.

4.2.1 The structure of an XSet

The key inputs with which an XSet is created are the two main outputs of

Chapter 3, namely:

1. the set of discrete candidate primitive behaviours (set of genes) U =

{(NOp :), (MvH :), (Drp :), (MsP :), (MvP :), (Evp :), (Dfs :),

(Nrm :), (PtV :), (StS :)}
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2. the set of user de�ned meta information M = {AntType, Cardinality,

InternalStates, AntMemory, EnvironmentSize, EnvironmentDimensions,

EvaluationEnvironment, ScoringTime, AgentDensity, Pheromones, GAPop-

ulationSize, GASelectionMethod, GASelectionPressure, EliteGeneRate,

CrossoverRate, MutationRate, EvolutionLimit}.

antType[i,s,n]<(a0,1), (a0,2)..(a0,i)|(a1,1)..(a1,i)|(a2,1)..(a2,i)|..|(as,1)..(as,i)>

Figure 4.2: Template structure of an XSet

In the views of this work, an XSet (an individual in the genetic population)

consists of three components namely: (a) antType, (b) meta information

(cardinality, internalStates, antMemory) and, (c) the list of primitive be-

haviours and parameter values which characterize ant agent behaviours over

time (selected elements of set U and their parameters). For clarity in the ex-

planations which follow, Figure 4.2 shows the template structure of an XSet.

Note that i, s, and n are agent level meta information (maximum cardinality,

number of internal states, and agent memory respectively). Also note that

(ap,q) represents a discrete primitive behaviour that is included on the list of

collections of �genes� of the XSets.

We indicated that we support three categories of antType, namely; stigmer-

gic (whose alias in this thesis is stigXSet), message passing (whose alias is

msgXSet), and hybrid antType (whose alias is hybXSet). Stigmergic XSets

contain lists of primitive behaviours that are only inspired by pheromone

sensitive ant agent processes (such as drop pheromone, evaporate pheromone,

di�use pheromone, etc). On the other hand, message passing XSets consist

of primitive behaviours that are only based on vector geometry (such as nor-

malize, message pass vectors, etc). The last lot (hybrid XSets) consists of

XSets whose primitive behaviours are taken from both the stigmergic and
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the message passing category. The choice of which category of the XSets

(antType) one requires at the time is decided upon by the user in the XSets

generator sub-system (see section 3.2.3 for details regarding the selection of

these parameters).

Once the antType is chosen (stigXSet, msgXSet, or hybXSet), the next com-

ponent in the structure of XSets is a list of ant level meta information. This

information is also provided by the user. First, we state the highest cardi-

nality the XSets can support. This (cardinality) is an integer value which

indicates the maximum number of primitive behaviours an ant agent can

execute in each internal state in each step. XSets with smaller cardinality

which should desired properties are better since that would de�ne simpler

and naive ant agents - which would be in line with our dictum to develop

simple autonomous and naive ant-like devices. Let the variable i represent

the user-selected maximum cardinality of XSets.

Thereafter, the number of internal states each ant agent can support is re-

quired in the de�nition of XSets. Section 3.2.4.2 described the structure of

ant agent internal states. We also indicated that each internal state has an

integer ID. Let the parameter s indicate the number of internal states an ant

agent can support. Therefore the IDs of the internal states supported would

range between 0 and (s− 1) inclusively.

The last ant agent level meta information required indicates the amount of

memory blocks an ant agent can carry at a time. This is a non-zero value

since each ant agent must, at least, hold internal state information. The

structure of our ant agents' memories was described in details in section 3.3.

Let n indicate the number of blocks an ant agent can support at the time.

These three ant agent level meta information are separated from the antType

and the list of primitive behaviours using square brackets (e.g. antType

[i, s, n]�.
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The third component in the structure of XSets is the list of primitive be-

haviours and their parameter values. This list is separated from ant agent

meta information by pointy brackets < >. A single primitive behaviour

within these pointy brackets, along with its parameter values, are enclosed

in parentheses (e.g. antType [i, s, n] < (StS : m,p,x) >). Each primitive

behaviour is separated from its parameter values by a colon sign. The pa-

rameter values of a primitive behaviour are separated by commas. Di�erent

hybXSet [2,2,4]<(MsP : 0, 0, 0), (StS : 1, 0, 1)|(Drp : 2, 1), (Nrm : 0, 0 : 0)>

Figure 4.3: Hybrid XSet: 2 states: 2 instructions per state: 4 memory blocks

primitive behaviours are also separated by commas (e.g. antType [i, s, n]

< (StS : m,p,x) , (MvP : x,y,z) >). Lists of primitive behaviours that are

executed in di�erent internal states are separated by a vertical bar |.

Figure 4.3 illustrates an example of a hybrid XSet. This example can be

used by ant agents which support two internal states, requiring two primitive

behaviours in each internal state, and carrying at most four memory blocks

at a time.

4.2.2 Initial population of XSets

Genetic programming systems begin by creating an initial genetic popula-

tion from which genetic evolution is based. Most works in the literature

randomly generate this initial genetic population of solutions to a problem

(Koza, 1992). The same genetic algorithms then create sequences of new

genetic populations (where children individuals are evolved and introduced

in the new population ) until a set evolution limit is reached. This section
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Figure 4.4: E�ects of selecting ant type

discusses the processes through which we create the initial genetic population

of XSets from which the rest of the genetic operations are based.

In the structure of XSets (see section 4.2.1), the �rst two components are

meta information that are provided by the user when the XSet generator

sub-system is invoked (antType and the parameters [i, s, n]). However the

list of primitive behaviours that follow thereafter, their parameter values, and

the sequences in which these primitive behaviours are arranged are system

generated.

The choice of an antType, which the user makes, �res a rule on the set

of candidate primitive behaviours U . This rule discards all the primitive

behaviours that are outside the scope of the antType choice made and produce
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a revised set of candidate primitive behaviours (one where invalid primitive

behaviours, at the time, are omitted). Figure 4.4 illustrates this view.

We de�ned cardinality as the maximum number of primitive behaviours that

are supported by ant agents in each internal state at the time. The choice of

this parameter (by the user) also �res a rule on the set of candidate primitive

behaviours U , to allow the use of subsets of U whose cardinality are greater

than 1 but less than or equal to the selected highest cardinality. We are

saying that the XSets allowed at the time must comprise of collections of

primitive behaviours in selected groups of 2 to i primitive behaviours - where

i is the user-captured highest cardinality (see Figure 4.2).

Our work determines a set of partial permutations (combination with no

repetitions) between the available candidate primitive behaviours. In this

context, partial permutations reinforce the notion of �ordered collections�

of primitive behaviours (where sets a, b and b, a are considered di�erent).

Partial permutations are also considered in order to enhance diversity in the

potential solutions that would form the initial genetic population.

For illustration purposes, if a cardinality of say, i = 4, is selected by the user

under a stigXSet category. Selection of antType (stigXSet) remains with 6

stigmergic primitive behaviours in U . XSets of cardinality 2, 3, and 4 are

determined where 6!
(6−2)!

= 30 XSets will have two primitive behaviours in

each ant agent's internal state, 6!
(6−3)!

= 120 XSets will have three primitive

behaviours in each ant agent's internal state, and 6!
(6−4)!

= 360 XSets will

have four primitive behaviours in each ant agent's internal state. A set of

510 XSets arises from which the initial genetic population can be picked at

random.

Figure 4.1 illustrates the e�ects of �ring rules on U based on the selected

antType, as well as the e�ects of �ring rules on U based on the selected

cardinality. In this case, identi�cation of partial permutations of U , and
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storage of the permutations thereof is handled by the XSets generator sub-

system.

Seven other genetic related meta information are decided upon by the user

as well. The �rst of these is the genetic population size. This is a constant

number of XSets that can be in the genetic population at a time. Our system

sets a default population size of 500 XSets in case the user decides not to

change this parameter. These 500 XSets are randomly picked from the set

of potential solutions (partial permutations) that are computed as shown in

the previous paragraph.

The parameter values of the primitive behaviours are randomly set. However

these random value are picked from within valid ranges that are pre-de�ned

in the system. The hope is that these initial parameter values would undergo

genetic mutation as we move across generations until the evolution limit is

reached. We discuss the rest of the genetic related meta information in the

next section where we describe how XSets are selected to assume parental

roles, and how children XSets and new generations of XSets arise.

4.2.3 Evolution of new XSets

The initial genetic population of XSets is the input to the genetic system.

The key activity in the genetic system is to evolve children XSets using the

XSets that are currently in the genetic population as parents. The user

has a choice between two parent selection methods (tournament selection, or

roulette wheel selection (Jaadan et al., 2008)).

A tournament selection algorithm randomly picks a group of XSets from the

existing genetic population (Koza, 1992). The picked group of XSets is put in

a �tournament� in order to assess each tournament member's index of merit

for a particular purpose, in this case, assessing the path �nding behaviour.



CHAPTER 4. CREATION AND EVALUATION OF XSETS 142

A winner XSet in each tournament is assigned a parental role. The number

of XSets that can compete in the same tournament at a time is called the se-

lection pressure (another user de�ned parameter). A large selection pressure

enhances the quality of the children XSets that arise because better �t parent

XSets are likely picked and would win the tournaments (Bai et al., 2008).

However this would create strange biases towards populations of highly �t

XSets which lack diversity. We emphasize on the use of small selection pres-

sures in order to give weaker XSets a chance to breed their traits into the

new populations as well. These tournaments are repeated for as many times

as the number of parent XSets required at the time.

Users may also decided to use a roulette wheel selection algorithm (Jaadan et

al., 2008) when they select parent XSets. This approach arranges all XSets

in the current genetic population in a sequence of interval, where the width

of each interval is associated with a particular XSet's index of merit (Koza,

1992). To pick a parent XSet, a random interval selector is spinned. That

XSet whose corresponding interval is hit by the random interval selector is

assigned a parental role regardless of its relative �tness levels. This selection

method has the advantage that a choice is made from the entire population

of XSets rather than from a randomly selected group (Koza, 1992). However

there is a danger that an XSet may serve as a parent in the same generation

for more than once. Other XSets may never serve as parents even when they

are highly �t, thus loosing the genetic traits they possess as we move down

the generations.

In both cases, the selected parent XSets undergo genetic crossover or muta-

tion in order to give rise to children XSets. Crossover refers to the combina-

tion or mixing of the components of two parent XSets (Koza, 1992). Figure

4.5 illustrates point crossover operation on two parent XSets. Although the

crossover rate can be changed by the user at run-time, our illustrations as-

sume a default 80% crossover rate. This is a common crossover rate that has
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been proposed in the literature (Bai et al., 2008.; Koza, 1992).

On the other hand, mutation refers to making random changes to the com-

position of a particular parent XSet (Koza, 1992). Figure 4.6 illustrates an

example of mutation operation on a parent XSet.

The children XSets that arise replace old members in the current genetic

population, thus de�ning a new and better population. Some XSets are

Figure 4.5: An example of crossover operation

Figure 4.6: An example of mutation operation

picked as elite and transferred to the new generation. A 5% promotion

rate is common in the literature (Bai et al., 2008.; Koza, 1992). Promoting
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XSets ensures diversity in the new generation. However there is a danger

of pushing weak XSets through - hence the low promotion rate we propose.

Note that the parameter values of primitive behaviours are also mutated,

crossed over, and promoted across generations. The last parameter is the

evolution limit which sets the time the genetic system is allowed to evolve

di�erent generations of XSets before the best solution is picked.

4.2.4 Representation of XSets in the genetic population

Given the structure of XSets and how XSets are generated and evolved, this

section brie�y discusses how the resulting XSets are stored and represented

in the genetic population. In this work, we store the XSets in a vector data

structure where each node of the vector has three data �elds, namely:

index - this is an integer �eld in which we store the ID of the XSet. This ID

corresponds to the position of the XSet in the vector. Computationally

all IDs are in the range [0;populationSize− 1].

XSet - this �eld is of the type String. It records the full composition of the

XSet in its mnemonic format. All primitive behaviours are stated to-

gether with their parameter values (e.g. msgXSet [5,4,8] : < (PtV:0,1),

(MvP:1,1,0), (MsP:0,0,1), (Nrm:0,0,0), (StS:1,0,0) | (NOp:), (NOp:),
(NOp:), (NOp:), (StS:2,1,0) | (PtV:2,1), (MvP:1,-1,0), (MsP:2,2,3),

(Nrm: 2,2,2), (StS:3,1,0) | (NOp:), (NOp:), (NOp:), (NOp:), (StS:0,2,0)>).

indexOfMerit - this is a measure of how well the XSet achieved desired

emergent formation. This is a �oat value which ranges between 0 and

1. We initialize this value to 0 until the XSet has been evaluated and

ranked.
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Figure 4.7: Representation of XSets in the search space

Figure 4.7 illustrates the representation of the data structure in which we

keep XSets - the genetic population. As a result, we can sequentially access

XSets within a selected range of indices, or directly pick a particular XSet

using its index.

4.2.5 How ant agents use XSets

Upon deployment, all ant agents in a swarm use the same selected XSet at

the time. Although this is the case, ant agents perceive the e�ects of the

primitive behaviours in this XSet di�erently. For example, although two

stigmergic ant agents may orientate using the same primitive behaviour, it

is not guaranteed that they would spin the roulette wheel selector and get

the same outcome. As a result, each ant agent would probabilistically head

in its own perceived direction.

When using the information encoded in an XSet, ant agents read the list of

primitive behaviours sequentially starting from left to right. For example, if

an XSet is represented as follows: hybXSet [2,2,4]:<(Drp:0,1) , (StS:1,1,0)

| (MvP:1,-1,0), MvH:1,1,0,0.5,0,5,-1>. A hybrid ant agent would �rst drop

the levels of pheromone whose ID is 0 in unit quantities before considering to
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switch to internal state 1 if the levels of pheromone whose ID is 1 are above

0. In the next internal state, the same ant agent would �rst relocate to a

cell which is south-east of the current cell before orientation (which would

however characterize a random wandering swarm). This example also shows

why order is a key issue in the study of the con�guration of XSets.

The next section describes the environments on which we assess the perfor-

mances of swarms of ant agents that use the XSets that are recorded in the

genetic population at the time.

4.3 De�nition of environments

The remaining tasks of this chapter are related to setting up the platform

for evaluating the performances of swarms of ant agents when they use par-

ticular XSets that are recorded in the genetic population at the time. The

assumption is that these swarms of ant agents would reside, and operate

in particular evaluation environments where the targets, starting point, and

any other objects thereof, are de�ned and set. In this work, the setup of

evaluation environments is guided by the meta information that is provided

by the user at run-time (when the XSet generator sub-system is invoked).

Figure 4.8 visualizes the internal design of an environment, showing at least

the notion behind cells and cell tuples. Our environments are practically

2D arrays of N rows and N columns, where the intersection of a row and

column form a cell. These cells are containers of data and building blocks of

the shared memories for the swarms. Although the visualization we present

in Figure 4.8 appears as 3D to an outsider, our de�nition of a 2D setup

is that of an array of blocks of memory (blocks of containers) in rows and

columns (without the height or matrix parameter) - hence still 2D.
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Figure 4.8: Evaluation environment

The information that is held in cells is what hints ant agents of what actions

to take at a particular time and location. Similar environment setups have

been proposed in the past (Negulescu et al., 2006.; Panait and Luke, 2004a.;

Babaoglu et al., 2006.; Seevinck and Edmonds, 2008.; Mason, 2002) (see

chapter 2, section 2.3.1 for details regarding di�erent environment setups).

We discuss the key environment parameters in the next sub-section.

4.3.1 Environment parameters

Successful launch of an environment requires the user to provide a number of

optional parameters. This is done to allow system �exibility and adaptability

to di�erent task domains and scenarios. Key in their decisions, users must

provide the number of cells of the environment in each direction (length),

assuming square environments. However this value must not exceed the

resolution of the screen in use. As a result, the values the users provide in

this respect are validated by the central resource sub-system (which veri�es

that the architectures available are compatible with the parameter choices

made). However, in the event of the user not decided on the size of the

environment, our XSet generator assumes a default setup of 100 × 100 grid
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environments in 2D which we pre-tested as motivation to establish that the

size does not detract from the behaviours exhibited.

The users are also free to decide on the number of internal states ant agents

will support, as well as the number of the levels of pheromones each ant agent

would be able to perceive. These two pieces of information guide the design

of environment tuples. For example, the length of the XSet string can be

predicted from knowing the cardinality and the number of internal states.

That way appropriate �eld sizes are declared. Similarly, knowledge of the

number of levels of pheromone an ant agent can perceive informs us of the

likely structures of the records in which di�erent pheromone details will be

recorded on each cell. Therefore a cell is, in fact, a record with many �elds,

where particular information is stored about the activities completed at each

location. Some typical examples of information that is stored on cells include

the di�erent levels of pheromones, target indicators, nest indicators, �tness

parameters, and the IDs of ant agents that are at the cells at the time.

Most importantly, users decide on the forms of speci�c emergent behaviours

they want the swarms to create. In our case, di�erent forms of emergent

behaviours are pre-coded separately, each with speci�c sets of �tness func-

tions and constraints relative to the size of the environment. The choice of a

particular form of emergent behaviour to simulate at the time incorporates

the �tness functions and constraints on stipulated cells of the environment.

For example, suppose we decide to evaluate XSets for resolving the path

�nding problem. This choice, in particular, would include �tness functions

which describe the parameters of a line between two points (the starting point

and the target). This choice makes use of the coordinates of the targets and

those of the starting point and perform geometric calculations to determine

the cells of the environment through which a line that joints these two points

would pass. Those cells would have in their tuples, an indicator of priority.

However that indicator of priority does not, in any way, in�uence ant agents'
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decisions. Rather, it is used to compare how well an ant agent has performed

against the preferred outcome.

It is also critical that the user sets the time frame in which swarms are allowed

to score performances before the index of merit of the particular XSet they

use is calculated. This time frame is stored as the �maximum possible age� of

the environment. Time in simulation is measured in iterations (Hovda, 2008).

This has the advantage of eliminating concerns regarding the measures we

get being in�uenced by the processing power of the computer. As such, our

simulation system allows ant agents to make as many steps as the maximum

possible age of the environment before an index of merit for the XSet in use

is determined. Longer times in simulation are desirable in order to allow

swarms su�cient time to converge. However that may have a negative e�ect

on the operating system's memory management schedules.

4.3.2 Swarm parameters

In addition, users decide on a preferred ant agent density. This parameter

indicates the number of ant agents that are deployed into the environment

at a time. Our ant agents can co-exist on the same cell. As a result, agent

density is independent of environment size. Rather, when deciding on agent

density, one has to consider the processing power of the PC in use. However

in the event of the user not decided on this aspect, the default agent density

is set to 5000, which we also pre-tested to establish that the density does not

detract from the behaviours exhibited.

Information regarding the preferred agent density is relevant in the launching

of environments since it informs the design of the tuples in which ant agent

IDs are stored when they visit particular cells. In our case, ant agent IDs are

merely indices in the array of agents. The format of the �elds in which these



CHAPTER 4. CREATION AND EVALUATION OF XSETS 150

ant agent IDs will be held must comply with the possible IDs that would

arises based on the selected agent density.

4.3.3 Target parameters

We have designed our simulation system in such a way that the starting

point is placed and hard-coded at a �xed position on the environment. This

has the advantage of achieving fair experimental outcomes when we compare

the performances of swarms that use di�erent XSets. However, it does not

matter where the starting point is positioned as long as that position is within

the environment and the same position will be maintained throughout the

experiments. Variation of the position of the starting point is not a subject

of study in this work since environment complexity is not an agent level

parameter of emergence (which is what we investigate), but rather a system

level factor (which is not what we investigate).

On the contrary, placement of targets is based on the �tness functions that

are pre-de�ned. In our case, the centre of the emergent structures sought

must be located at the centre of the environment. Again, variation of the

position of the centre of targets is not a subject of study for the same reason

that environment complexity is not, at this point, an agent level parameter

of interest.

Figure 4.1 shows that once the environment has been successfully launched,

the next step is to deploy swarms of ant agents in speci�c agent densities,

using particular XSets, and evaluate the usefulness of the selected XSets for

achieving the emergent behaviour sought. Mechanisms are therefore required,

with which we evaluate the performances of XSets and determine their indices

of merits.

In the next section, we discuss �ve measures of emergence with which we can
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quantify the extent to which emergent behaviour is manifest in speci�c eval-

uation environments when swarms of ant agents are deployed using speci�c

XSets as control dictionaries for particular emergent behaviours.

4.4 Measures of emergence

Our motivation for selecting the �ve particular measures of emergence we

study is primarily based on their prevalence in the literature. In this context,

a measure of emergence is a metric which indicates the extent to which an

ant agent's behaviour is in�uenced by the behaviours of other members of the

swarm or by some shared features in the environment as a result of following

some known set of instructions (XSet).

Studying mechanisms in which to quantify emergence has been a popular

research area in recent days. Generally, authors focus on the relationships

that exist among events in simulation (Gore and Reynolds, 2008). For ex-

ample, inputs are mapped to the outputs and the gap observed is regarded

as the amount of emergent behaviour (Schaefer et al., 2002). In others cases,

particular events such as the frequency of certain errors or entropy changes

in the system are tracked (Hinchey et al., 2005.; Rou� et al., 2004.; Hamann

et al., 2011.; Chan, 2011). Thus, there are many events that occur in sim-

ulation that can be measured as indicators of emergent behaviour. Our

measures of emergence complement one another in establishing convergence

time, throughput, and entropy changes.

First, we recommend a quanti�er which infers throughput as a measure of

emergence. Our choices of quality of emergence and average delivery rates

are partly inspired by the works of Schaefer et al. (2002). Precisely, we assess

the percentage of ant agents that arrive on their targets in a given time frame

(which is similarly an investigation of system throughput).
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Quanti�cation techniques in which the actions of selected agents in discrete

steps are tracked and used as indicators of emergence have also been proposed

as well (Noble and Letsky, 2002.; Wang and Zhu, 2007). In these, the average

behaviour of the selected group of agents is mapped to the behaviour of

individual agents and the swarm (Minati, 2002.; Chan, 2011). Our design of

average end-to-end delays, as well as Shannon's information value are partly

inspired by these related assumptions. We particularly determine the average

time it takes a selected group of ant agent to travel a complete journey and

map this average to the swarm's performances in similar tests. Time in

simulation is measured in iterations (Hovda, 2008).

Simpler quanti�ers evaluate the time it takes the swarm to converge (Wang

and Zhu, 2007). In these, the speed of emergence is the key issues. Our design

of the same measure of emergence is inspired by these works, investigating

how quickly ant agent swarms achieve their goals, if ever they do.

Given the focus of most quanti�ers in the literature (system throughput,

speed of emergence, degree of agent engagement on task, etc), issues of qual-

ity and timeliness of emergence become apparent (Noble and Letsky, 2002).

Generally, quality assesses agents' adherence to schedules and the degree of

engagement on task. We are inspired by the contextual de�nition of quality

(as given in Noble and Letsky (2002)). Precisely, we assess the tendencies of

ant agents to follow emergent paths as opposed to random wandering (quality

of emergence).

In addition, how much information do ant agents have when they make path

choices (Shannon's information value)? What is the extent of uncertainty

in these decisions? Similar system �uctuation theories have been tested in

which agent uncertainty has been quanti�ed (Hamann et al., 2011.; Bavaud

et al., 2005.; Martin, 2006.; Schneider, 2007.; Fernández et al., 2013). Our

choice of Shannon's information value as a measure of emergence is motivated

by these related works.
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The discussions we present in this section emphasize on stating the steps we

follow in order to extract each measure of emergence during simulation. In

the end, we will explain how these measures of emergence are put together

in order to determine that index of merit which ranks each XSet against the

rest of the XSets in the genetic population and generation.

Although the validity of the measures of emergence we report in each case

is tested in details in the next chapter, it is worth mentioning at this point

that such validity heavily relies on replicated evaluations of the same tests

in order to achieve centrally placed measures of emergence. Next, we discuss

how each of these measures of emergence is determined.

4.4.1 Speed of emergence

In this measure of emergence, we assess the time it takes ant agents to con-

verge as a result of using a particular XSet. Previous works have assessed

speed of emergence in terms of the frequency of agent interactions in the

swarm (Noble and Letsky, 2002), or in terms of the amount of change that

is observed in the system over time (Wang and Zhu, 2007). Our premise in

this assessment is that, if variations in speed of emergence are observed when

di�erent XSets are used, then there exist primitive behaviours in particular

XSets which cause these variations.

We indicated that time in simulation is measured in iterations so as to elim-

inate concerns regarding the speed of emergence we observe being in�uenced

by the processing power of the computer. In this context, an iteration is a

single ant step for all ants. Smaller measures correspond to shorter times in

simulation before system convergence, implying the use of better XSets.

To measure speed of emergence in a swarm of N ant agents that use a par-

ticular XSet, we go through the following steps:
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1. We establish the time it takes the �rst ant agent in the swarm to hit

the target. For illustration purposes, let this time be denoted as ta.

2. We then determine the time it takes half of the swarm (N
2
ant agents)

to �nd the same target as well. From observations, half of the agent

density is a su�ciently large sample to track in order to reveal the

collective behaviour of the swarm. For illustration purposes, let this

time be denoted as taN
2

.

3. The time gap between taN
2

and ta indicates the speed of emergence of

the swarm towards the target.

4. We also evaluate the time it takes the �rst ant agent to complete a

round trip (travelling from starting point to the target and back). Let

this time be denoted as tb.

5. Speed of emergence towards the starting point is calculated as the time

gap between tb and the time it takes half of the agent density to com-

plete return journeys as well.

6. The average between the speed of emergence towards the target and

the speed of emergence in return trips indicates the overall speed of

emergence of the swarm in one simulation test.

7. A similar test is re-conducted again and again in order to achieve the

central tendency of the swarm (determining the average speed of emer-

gence over many replications).

4.4.2 Quality of emergence

Quality of emergence establishes the frequency with which ant agents in a

swarm successfully arrive at their intended targets within a set time frame.
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Similar quality tests have been assessed in the literature in terms of the

timeliness and e�ciency of the outcomes sought (Noble and Letsky, 2002).

In this work, quality of emergence assesses the tendencies of ant agents to

follow the emergent paths as opposed to random wandering. High frequencies

of arrivals indicate the use of well de�ned and straight paths between the

targets and the starting point.

To determine the quality of emergence when a swarm of N ant agents has

been deployed using a particular XSet, we follow the steps below:

1. A time frame is set in which the frequencies of ant agent arrivals on

targets are recorded. The number of successful trips of ant agents in

each direction within the evaluation time limit set are recorded. These

frequencies of ant agent arrivals on targets indicate the relative quality

of the paths that emerge in each direction.

2. The quality of emergence in one test cycle is, in fact, the average of the

qualities of emergence in both directions.

3. The same quality measures are evaluated again and again in order to

get a centrally placed quality of emergence that is achieved over many

replications.

In this case large measures are better, indicating that more ant agents are

able to �nd their targets within the time frame set.

4.4.3 Average delivery rate

An average delivery rate expresses the frequencies of arrivals of ant agents

on their targets as a percentage of agent density. It establishes the rate of
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success, or throughput of the swarm within a set time limit. Similar evalua-

tions assess average delivery rates in terms of the proportion of outputs that

are achieved relative to the proportion of inputs that are fed into the system

(Schaefer et al., 2002). Other works evaluate average delivery rate in terms

of the frequencies of occurrence of speci�c parameters in the system over

time (Rou� et al., 2004). Relatively bigger average delivery rates correspond

to better swarm throughput and good net bene�t for the swarm (Powell and

Franks, 2007).

To determine average delivery rates in a swarm of N ant agents that are

deployed using a particular XSet, we go through the following steps:

1. A time limit is set within which the qualities of emergence are evalu-

ated.

2. The number of successful trips of ant agents in each direction are

recorded.

3. The qualities of emergence are then expressed as percentages of agent

density.

4. Similarly this is down over a number of replications in order to �nd

average percentages.

4.4.4 Average end-to-end delay

This measure of emergence considers the time it takes an individual ant agent

to travel between the starting point and the target or vice verse (including

the time the ant agent takes wandering or lost). In this case, time refers

to the number of steps an ant agent walks from the time it leaves one end

until the time it arrives at the other end. Smaller average end-to-end delays
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correspond to ant agents walking relatively few steps between the two ends,

implying the use of straight paths.

To determine the average end-to-end delays in a swarm of N ant agents that

are deployed under the control of a speci�c XSet, we go through the following

steps:

1. A sample swarm of n ant agents is randomly drawn from the deployed

swarm, where n ≤ N . The procedure through which we determine a

signi�cantly representative sample size is presented in section 4.4.6.

2. The number of steps each ant agent in the sample group walks from the

starting point to the target and vice verse are tracked and recorded.

An average number of steps walked in both directions per ant agent is

calculated.

3. An average of the average steps of the n ant agents that are tracked is

calculated. That average is assumed to centrally place the number of

steps an ant agent walks in one simulation cycle.

4. The tests are replicated over many repeated simulations in order to

achieve a centrally placed average end-to-end delays.

4.4.5 Shannon's information value

This measure of emergence is built on Shannon's measurement theories (Mar-

tin, 2006.; Schneider, 2007.; Fernández et al., 2013). It determines the aver-

age amount of information that is available to each ant agent when it makes

path selection choices. Precisely, it evaluates the degree of uncertainty that

is associated with an ant agent's path selection decisions in a movement

step (Bavaud et al., 2005). Shannon's information value is an opposite of

uncertainty.
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To determine Shannon's information in a swarm of N ant agents that are

deployed using a particular XSet, we follow the steps below:

1. A sample swarm of n ant agents is drawn from the deployed swarm

(see section 4.4.6 on how a representative sample is drawn).

2. Uncertainty in each sampled ant agent's path choices is determined in

each step. We denote uncertainty as H (Schneider, 2007). In the stig-

mergic category, H = −ALlog2AL, where AL is the attractiveness of

a location L around the ant agent at the time. Chapter 3 explained

how the attractiveness of locations around a stigmergic ant agent are

calculated. The formula to determining H is taken from literature

which discusses Shannon's measurement theory (Martin, 2006.; Schnei-

der, 2007.; Fernández et al., 2013). In the message passing category,

H = 3 × |wi(t + 1) − wi(t)|, where wi(t) and wi(t + 1) are successive

vector weights (levels of con�dence in the vectors followed at time t

and time t + 1 respectively). This formula is mathematically derived

from analogies in Shannon's measurement theories (Schneider, 2007).

3. Shannon's information value is denoted as I, and is calculated as the

gap between the highest uncertainty measure possible and the uncer-

tainty measure yield. In this case I = 3−H because each ant agent has

at most 8 location around, and log28=3 is the highest possible amount

of information.

4. The average amount of Shannon's information around an ant agent in

each step is of interest. This is found as follow:
Pk

0 I

k
, where k is the

number of steps an ant agent walked to this far.

5. The average amounts of information around all sampled ant agents

are put together in order to determine the overall average amount of

information around ant agents in this swarm in one simulation cycle.
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6. The process is replicated a number of times as well in order to smoothen

the average amount of information around each ant agent.

4.4.6 Sampling issues

Determining the average end-to-end delays, as well as �nding Shannon's in-

formation values require us to extract samples of n ant agents to track. It is

a statistical requirement that we extract a sample that fairly represents the

entire swarm. This is a critical statistical problem which requires us to make

a number of assumptions in order to determine that appropriate sample size.

First, we must stipulate an acceptable margin of error which indicates the

biggest di�erence that is allowed between the performances of a sample ant

agent and the performance of any other ant agent in the swarm. Let this

margin of error be denoted as e (an acronym for error). This value is an

estimate which, according to Lohr (2010), is calculated using the formula in

equation (4.1).

To simplify equation (4.1), we decide on a signi�cance level. This is a per-

centage of the sample from which we hope to achieve performances that

would fall within the accepted margin of error (Lohr, 2010). In statistics ,

signi�cance levels are denoted as α, where α = 1 − p, and p is the accepted
percentage of the sample that will give accepted performances. Commonly, p

is set to 99%, 95% or 90% (Francis, 1990). However p = 95% is more popular

because it is centrally placed. In line with the norm, we consider p = 95% as

our accepted percentage of success of ant agents in the sample, which gives

α = 0.05.

Then, we determine the level of dispersion (standard deviation) that is ex-

pected and accepted in the performances of the sampled ant agents. This

measure is denoted as S in equation (4.1). N is the agent density. As a
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result, it is possible to estimate S as 0.5×N
4

, because 95% of the values from

a normally distributed population are within 2 standard deviations of the

mean (Lohr, 2010). Thus, 95% of the values from a normal population are

within the range x̄− 2 ≤ x̄ ≤ x̄+ 2, hence the division by 4 (Lohr, 2010).

The remaining unknown variable in equation (4.1) is n, which represents the

required sample size. Equation (4.2) expresses n as the subject of the formula

by squaring and simplifying equation (4.1).

e = zα
2

√(
1− n

N

) S√
n

(4.1)

n =
z2
α
2
S2

e2 +
z2α

2
S2

N

(4.2)

For example - suppose we have an agent density of 5000. The appropriate

sample size to extract from this swarm is calculated as follows:

N = 5000.
p = 95%. Therefore α = 0.05.
From statistical tables: zα

2
= 1.96.

S = 0.5×5000
4 = 625.

The margin of error is the greatest possible difference

between the average performances of sample ant agents and

the performances of any ant agent in the population. If

our environment is 100× 100, the value of e is the average

of the midpoints along each dimension of the environment.

Thus: e = (50+50)
2 = 50.

Therefore n ≥ 1.962×6252

502+ 1.962×6252
5000

= 535.91357.

Rounding this result forward, n ≥ 536
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4.4.7 Determining the index of merit

The �nal task in quantifying emergent behaviour is to determine the index of

merit that is associated with using a particular XSet. We de�ned an index of

merit (IOM) as a value which indicates the extent to which an XSet allows

speci�c emergent behaviour to occur relative to the performances of other

XSets in the current genetic population and generation. In this section, we

procedurally show how we arrive at this value.

1. We �rst scale the speed of emergence we found in order to have it lie

within the range [0; 1]. This is done in order to standardize the weight of

each of the �ve measures of emergence when we combine their e�ects.

Let the speed of emergence that was yield when a particular XSet i

was used be denoted as si. We indicated in section 4.4.1 that speed

of emergence assesses the time it takes ant agents to achieve a speci�c

task. We also indicated that smaller time measures are favourable. Our

simulations are coordinated over a set time limit (provided by the user

as initial conditions). Let this time limit be denoted as T . Therefore,

0≤ si ≤T and 0 ≤ si
T
≤ 1. However in this measure of emergence,

smaller speed measures correspond to ant agents walking fewer steps

to get to their targets, and are favourable. Mathematically, the scaled

speed of emergence we desired is therefore (1− si
T

), a �oat value within

the range [0; 1].

2. The quality of emergence that is achieved when the same XSet i was

used is also scaled in order to prevent it from unfairly contributing

its e�ects to the �nal index of merit. We indicated that quality of

emergence establishes the frequency with which ant agents in a swarm

successfully arrive at their intended targets within a set time frame,

and bigger values are better. Let the quality of emergence achieved be

denoted as qi. These quality measures are extracted within a set time
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frame T . Therefore 0≤ qi ≤T, and 0 ≤ qi
T
< 1. The scaled quality

measure we require is qi
T
because bigger values are better. Note that

the scaled quality measure is also a �oat value within the range [0; 1].

3. Average average delivery rates are complementary to the qualities of

emergence. They express quality as a percentage of agent density.

Being percentages, they are therefore already scaled to lie within the

range [0; 1]. If we denote average delivery rate of the ith XSet as di,

then 0 ≤ di ≤ 1. The scaled quantity we require remains the same di
expressed as a decimal �oat.

4. Scaling the average end-to-end delays is similar to weighting the speed

of emergence. Let average end-to-end delays be denoted as ai. If our

simulation limit remains T . Then 0≤ ai ≤T, and 0 ≤ ai
T
≤ 1. However,

smaller measures correspond to ant agents walking fewer steps to get

to their targets, and are favourable. As a result, the scaled average

end-to-end delays we require is (1− ai
T

), a �oat value within the range

[0; 1] as well.

5. Shannon's information is the last measure of emergence we consider

and scale. Let this measure be denoted as Ii. We indicated that large

measures indicate more information around an ant agent which is desir-

able. The maximum amount of information in the environment setup

we provide is 3 because log28 = 3, where 8 is the maximum number of

possible destination locations around an ant agent. Therefore 0≤ Ii ≤3,
and 0 ≤ Ii

3
≤ 1. The scaled value we require in this case is Ii

3
since

bigger values are better, which is also a �oat value within the range

[0; 1].

6. Each scaled measure of emergence is an indication of how much emer-

gence has occurred in the system, and these measures are complemen-

tary. Equation (4.3) calculates the average of these �ve scaled measures
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of emergence which, in our context, is called the index of merit of XSet

i. An average measure of the scaled measures is preferred since it de-

picts the common view in performances when a particular XSet is used.

We are saying that the �ve measures of emergence all evaluate the re-

lationships between particular events in simulation, and their average

statistically tells the central tendency in these events - which is the

reason why we evaluate XSets using more than one metric at a time.

Note that all these measures are scaled on the scale in [0; 1]. The av-

erage value is thus used to rank di�erent XSets in the same genetic

generation and population.

IOMi =
(1− si

T )+
qi
T

+di+(1−ai
T )+

Ii
3

5
(4.3)

The next section presents an experimental setup in which we validate the

processes that are discussed in this chapter so far. It validates the gener-

ation of XSets, the creation of environments, the selection of XSet for use

at a particular time in simulation, as well as the measures of emergence we

propose. In the end, the next section provides an answer to the fourth task

of this chapter (see section 4.1.2 for details regarding this task).

4.5 Evaluation of XSets

Three categories of genetic populations of XSets (stigXSets, msgXSets, hy-

bXSets) can arise in which various member XSets are candidate control dic-

tionaries for desired emergent behaviour. This section explores these three

categories of XSets for best controller XSets for allowing a particular case

study example of emergent behaviour to occur - the path �nding behaviour

in swarms of ant-like devices. Our premise in these investigations is that
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evidence of properties in a particular XSet, properties for allowing a partic-

ular form of emergent behaviour to occur will support the hypothesis which

says: there exists collections of particular primitive behaviours and parame-

ters that are arranged in speci�c sequences which form an ant agent language

for creating predictable emergent behaviour.

First, we describe the context of the path �nding problem we assume. Then

we present the design of the experiment in which we search for those partic-

ular XSets that best allow path �nding behaviour to occur in each category

of populations of XSets.

The results of this experiment validate both the primitive behaviours we

proposed, the measures of emergence we suggested as quanti�ers of emergent

behaviour, as well as the XSets themselves. We emphasize again that the

choice to evaluate XSets on the path �nding problem domain is only to prove

the concepts of primitive behaviours and XSets. It is not the path �nding

outcome that matters, but rather the discovery of those XSets that give rise

to a speci�c outcome - the path �nding outcome.

4.5.1 The path �nding problem: A case study

In the context of this thesis, the path �nding problem can be re-de�ned as

follows:

- Ant agents in swarms of speci�c agent density are deployed in selected

evaluation environments, using particular XSets as control toolboxes.

These ant agents have the common task of locating food-like targets

that are situated on the evaluation environment, and upon �nding these

food-like targets, travel back to the starting point. The trips between

the starting point and the food-like targets are repeated again and again
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until the simulation time limit lapses. In each step, every ant agent

has low level and autonomous tasks of orientating, updating swarm

information, evaluating the local environment for target indicators and

act accordingly, and moving to the next selected location.

This is a known and common ant problem domain in the literature (Panait

and Luke, 2004a.; Dorigo et al., 1999). Stigmergic ant agents, in particular,

rely on the levels of pheromone they place on the environment for indirect

interaction (Dorigo, 1992.; Panait and Luke, 2004a, 2004b). On the other

hand, the novel model of message passing ant agents rely on implicit com-

munication spaces that arise in which direction vectors are shared.

All ant agents remain in constant motion, moving at a constant speed of one

grid cell per step, and executing a constant set of instructions throughout.

Although ant agents are completely unaware of the environment in which

they are deployed, paths emerge between the starting point and the target

as emergent behaviour of the swarm (Gulyas et al., 2006). What do ant

agents do as individuals in a swarm which give rise to path �nding behaviour

at swarm level?

4.5.2 Experiment design

We administer an experiment in which the key objective is to search for

optimal XSets in each category which best allow a particular form of emergent

behaviour to occur (in this case, a case study of the path �nding behaviour).

In other words, we evaluate the abilities of swarms of ant agents to establish

the shortest path between a target and the starting point.

The null hypothesis that drives this experiment is that: there are no signi�-

cant di�erences between the average indices of merits that are achieved when
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di�erent XSets that are taken from the same genetic population are com-

pared - (H0 : µ1 = µ2). Therefore the alternative hypothesis is that: there

exist particular XSets in these search spaces which relatively best describe a

language for programming ant agents towards achieving particular emergent

behaviour, in this case, path �nding behaviour.

The only dependent variable in this experiment is the index of merit of an

XSet. In this context, a dependent variable is that parameter which we

measure or investigate in an experiment. We particularly investigate the

indices of merits of XSets using the �ve measures of emergence we discussed

in section 4.4. Our goal is to report the composition and properties of best

performer XSets in each category.

Five independent variables are manipulated in this experiment. In this con-

text, an independent variable is that parameter which we manipulate, vary,

and monitor in an experiment. First, we monitor the category of XSets we

use at a time. We indicated already that there are three categories possi-

ble, namely stigXSets, msgXSets, and hybXSets. Our aim at the end is to

report best controller XSets in each category, and hopefully compare the

performances of these best performer XSets in the next chapter.

The second independent variable of this experiment is the composition of the

XSets we use. Section 4.2 explained how di�erent partial permutations of the

set of primitive behaviours U result in di�erent composition and sequences

in XSets. We also explained how genetic programming processes evolve new

XSets and genetic populations. We monitor the composition and sequences

of XSets with the goal of explicitly reporting, in the end, the composition,

con�guration, cardinality, and other properties of best controller XSets for,

in this case, the path �nding problem.

We also monitor the cardinality of the XSets as we go through the search

spaces. In line with our dictum of proposing simple and naive ant agents, it

is desirable to recommend XSets with the smallest cardinality possible.
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Time in simulation is another key independent variable in this experiment.

We particularly allow a default limit of 10000 iterations in which each XSet's

measures of emergence are scored. However if desired, this limit can be

changed by the user at run-time. Thus, a swarm runs for 10000 steps before

an index of merit is determined. The same swarm is redeployed and allowed

to run for another 10000 iterations, scoring new measures of emergence. The

swarm is allowed to repeat the same tests for ten times, in each case deter-

mining an index of merit. The �nal index of merit of the XSet is the average

of the 10 outcomes that are reported in each replication.

In addition, measures of emergence are extracted at intervals of 1000 iter-

ations. This is also a parameter the user can change before the simulation

commences. We call each interval or simulation stage a control level (1000,

2000, 3000 until the allowed scoring limit, in this case 10000). From ob-

servation, intervals or gaps of 1000 iterations between sample measures of

emergence are su�ciently large to reveal the e�ects of time and that of the

primitive behaviours thereof.

The rest of the variables we require in this experiment are controlled. We

understand controlled variables as those parameters that are kept constant

throughout the experiment because they are not the subjects of study at the

moment. Key on the list of controlled variables are: agent density, environ-

ment con�guration, and evolution limit. For illustration purposes, we use

default settings of 5000 ant agents and 100 × 100 grid environments. Each

category is allowed the same evolution limit of 10, 000, 000 in which to evolve

better XSets. We indicated that these variables can also be changed by the

user at run-time. We also indicated that controlling these variables does not

in�uence the results we report since the goal of this experiment is neither to

investigate the e�ects of agent density nor to study the e�ects of environment

complexity to emergent behaviour. Rather, we investigate the composition

of XSets which give rise to emergent behaviour. From observation, 5000
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Title: To identify XSets which best describe a language for programming ant agents towards achieving particular
emergent behaviour (path �nding towards a particular target).

Null-hypothesis: H0 : µ1 = µ2)- there are no di�erences between the average performances of di�erent XSets that
are taken from the same search space.

Alternative-hypothesis: there exist particular XSets in the search spaces which best describe a language for

programming ant agents towards achieving particular emergent behaviour, in this case path �nding emergent

behaviour.

Dependent variable : index of merit

Independent variables : Category of XSets ; Composition of XSets ; Cardinality (maximum of 10) ; Time in
simulation (maximum of 10000 iterations) ; Control levels (every 1000th iterations).

Controlled variables : Agent density (5000) ; Environment size (100 × 100) ; Position of starting point (�xed) ;
Centre of target (centre of environment)

Procedure - Generator functions are invoked which de�ne a path �nding environment. Ant agents are deployed
at random locations over ten replicated simulations. Average measures of emergence are calculated at each
control level and reported. The algorithm below summarizes the procedure.

foreach category

generate initial population of XSets : bestIOM = 0 : bestXSet=null

foreach generation

foreach XSet j in current generation : deploy n ant agents
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until 10 replications

index of merit =
P10
k=1

xk
10

10
update the XSet's field which holds the index of merit

if current index of merit > bestIOM

bestIOM =current index of merit : bestXSet = ID of current XSet

endif

next XSet in current population

genetic programming processes : Evolve next generation of XSets

until EvolutionLimit

Report bestXSet in the category

next category

Figure 4.9: Experiment design
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ant agents are su�ciently many to reveal the properties we require in each

XSet, especially on 100× 100 grid environments, over a large evolution limit

we propose. The placement of the starting point and targets was discussed

in section 4.3.

To enhance reliability in the indices of merits we report, each experiment

picks an XSet from a particular genetic population and repeatedly evalu-

ate this XSet for ten times (where each cycle has ten control levels). The

measures of emergence that are extracted at each control level of each of

these ten evaluations, and the indices of merits that are computed at each

of these control levels, are accumulated and averaged over the ten replica-

tions (xk = xk + IOMk,i). A standard deviation measure at each control level is

tracked which validates the central tendencies we observe. Thus, each xk is,

in fact, the sum of the ten indices of merits that are achieved at control levels

k×1000. Dividing these sums by 10 give centrally placed indices of merits at

each control level. In this work, the overall index of merit of the jth XSet in

the search space is found by determining the average of the centrally placed

indices of merits per control level, i.e. IOMj =
P10
k=1

xk
10

10
. This is the value we

compare with the performances of the rest of the XSets in the same search

space. The composition of the XSet with the best index of merit value is

reported.

Our simulation system sequentially picks the next XSet for evaluation from

the same genetic population until all XSets are assessed. Every time a new

XSet is chosen for evaluation, the simulation restarts the whole experiment

all over again. At the end, the best XSet in each category is identi�ed. This

process is repeated for all the three categories of XSets. Many generations

are recommended in order to allow the system more time to evolve better

and better XSets.

Figure 4.9 summarizes this procedure, showing the key variables of the ex-

periment, the steps through which the �nal index of merit of each XSet is
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calculated, as well as how the best performer XSets in each category are

identi�ed.

4.5.3 Results

The key outputs of the experiment we administered are: characterization

of the genetic populations that arise, discussion of the composition of best

performer XSets, veri�cation of the performances of best performer XSets,

and demonstrating the visual outputs that arise when ant agents are tracked

for isolation (how frequent do ant agents remain isolated?).

4.5.3.1 Properties of the genetic population

The choice of antType has a number of in�uences over the characteristics of

the genetic population that arises. Three categories of genetic populations

are therefore possible. These are determined by the number of primitive

behaviours that are valid in each category. Six primitive behaviours are

valid in the stigXSet category. On the other hand, there are 5 primitive

behaviours that are valid in the msgXSet category. The biggest chunk of

XSets are in the hybXSet category. In each case, the (NOp :) instruction is

added on the list. Precisely:

◦ The initial population in the stigXSet category is randomly picked from:
7!

(7−2)!
+ 7!

(7−3)!
+ 7!

(7−4)!
+ 7!

(7−5)!
+ 7!

(7−6)!
+ 7!

(7−7)!
= 42 +210 + 840+ 2, 520 +

5, 040 + 5, 040 = 13, 692 possible XSets whose cardinality inclusively

range between 2 through 7. This is a large search space in which a

random selection may miss those XSets with better traits for allowing

desired emergent behaviour, hence the need to allow the user to choose

the highest cardinality.
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◦ The initial population in themsgXSet category is selected from : 6!
(6−2)!

+
6!

(6−3)!
+ 6!

(6−4)!
+ 6!

(6−5)!
+ 6!

(6−6)!
= 30 + 120 + 360 + 720 + 720 = 1, 950

XSets whose cardinality inclusively range between 2 and 6. Randomly

picking 500 XSets out of this sample of 1, 950 candidates may also miss

XSets with better traits to evolve a good population.

◦ The hybXSet category has even a larger sample from which to pick the

initial population. It consists of 10!
(10−2)!

+ 10!
(10−3)!

+ 10!
(10−4)!

+ 10!
(10−5)!

+
10!

(10−6)!
+ 10!

(10−7)!
+ 10!

(10−8)!
+ 10!

(10−9)!
+ 10!

(10−10)!
= 90+720+5, 040+30, 240+

151, 200 + 604, 800 + 1, 814, 400 + 3, 628, 800 + 3, 628, 800 = 9, 864, 090

XSets. However 8, 877, 690 of these XSets contain the (NOp :) instruc-

tion somewhere in their sequences, de�ning redundant combination.

This �nding that large cardinality often result in redundant combina-

tion is consistent with redundancy in evolutionary computation which

also �nds that large genomes contain redundancy. In addition, we note

that the (NOp:) instruction potentially a�ects timing / synchroniza-

tion of interaction operations, so may a�ect outcomes. Of the remain-

ing 986, 400 XSets, 13, 692 are purely stigmergic while 1, 950 are purely

message passing XSets. These XSets are not reconsidered in this cate-

gory again. Although 970, 758 XSets remain in the search space thereof,

most of these XSets are still invalid in that they may contain instruc-

tions that cancel the e�ects of one another, or invalid collections such

as trying to evaporate pheromones when the rest of the instructions in

the XSet are message passing. However we observe that penalizing such

collections before assessment may compromise population diversity.

We make three observations regarding the generation of the initial popula-

tion:

◦ Although long evolution limits require more machine time to evolve

better XSets, the quality of the �nal genetic population thereof heavily



CHAPTER 4. CREATION AND EVALUATION OF XSETS 172

relies on this evolution limit parameter. It is a better choice to consider

quality at the expense of more time in simulation.

◦ A mechanism is required in which to select useful combination when

we pick the initial population of XSets. Two ways are possible: (a) we

can increase the GA population size so that as many possible combina-

tion are included in the initial population as possible. However, large

GA population sizes slow down the ranking and evaluation of XSets

in each genetic generation. The system would take too long to evolve

better generations of XSets. (b) We may also consider to discard the

(NOp :) instruction when we determine the partial permutations of

primitive behaviours in each category. That would reduce the number

of possible permutations and increase the quality of the initial popula-

tion thereof. This would reduce the search spaces in the stigmergic and

message passing categories to 1950 and 320 XSets respectively. Thus,

most useful combination of XSets would be considered in the initial

population.

◦ The use of partial permutations (combination without repetition) when

we create the initial population enhances diversity. It prevents popu-

lating the initial population with XSets that are similar or close to each

other in con�guration. We observe that the quality of subsequent gen-

erations of XSets relies on the diversity we emphasize on in the initial

population.

4.5.3.2 Con�guration of best performer XSets in each category

Understanding the composition and properties of the best performer XSets

is the critical outcome sought. The results we discuss in this section are

achieved when arbitrary choices of parameters were made as shown in table

4.1.
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AntType stigXSet msgXSet hybXSet

Highest cardinality supported 6 6 6
Internal states 4 4 4
Agent memory (in no. of blocks) 4 8 8
Environment size 100× 100 100× 100 100× 100
Environment dimensions 2D 2D 2D
Environment name pathFind pathFind pathFind
Scoring time (in iterations) 10,000 10,000 10,000
control level intervals (in iterations) 1,000 1,000 1,000
Agent density 5,000 5,000 5,000
Max. No. of pheromone 5 2 5
GA population size 500 500 500
Selection method Tournament Tournament Tournament
Selection pressure 5 5 5
Elite gene rate 5% 5% 5%
Cross over rate 80% 80% 80%
Mutation rate 15% 15% 15%
Evolution limit (iterations) 10,000,000 10,000,000 10,000,000

Table 4.1: Parameter settings

Top on the list of the observations we make is that good performer XSets

occur when cardinality ranges between 3 and 5. In this context, a good

performer XSet is one that demonstrates evidence of emergent properties

although it may not be the best XSet in the category. Those XSets whose

cardinality are below 3 are completely insu�cient controllers, particularly for

the path �nding problem we investigate.

Another key observation is that the stigmergic and message passing XSets

widely out-class hybrid XSets. This observation suggests that good swarms

are specialist with respect to the interaction techniques that are used by

the ant agents in these swarms. This observation is in line with biological

views of worker ants and reproductive queen ants that are specialists in their

colonies (Tsutsui and Suarez, 2003).
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We observe that hybrid XSets that demonstrate some evidence of emergent

properties occur when cardinality is relatively high. However the ant agents

in this category remain more of generalist ant agents (Imai, 1966) that would

not solve particular tasks. Worse still, most of such XSets comprise of unnec-

essary instructions that are not useful to the ant agents, such as supporting

di�usion in almost message passing XSets, or normalizing vectors in almost

stigmergic XSets. In our views, XSets that include unnecessary primitive

behaviours in their composition are against our dictum of keeping the ant

agents simple and naive.

We remind the reader that this work has been referred to as a preliminary

study of XSets as an approach for de�ning an ant agents language (see section

1.1 for this reference). We also remind the reader that there is potential to

carry out similar studies on other ant agent metaphors and extend the set

of primitive behaviours for ant agents, thus increasing the search spaces in

which, hopefully, hybXSets may be useful. As a result, the results we report

next ignore hybrid XSets, thus going with the idea of specialist swarms.

After an evolution limit of 10, 000, 000 iterations, the best performer stigXSet

for the path �nding problem was identi�ed. Key in the con�guration of this

XSet (see Figure 4.10 for the con�guration of this XSet) is that:

◦ ant agents in this category must be able to drop speci�c levels of

pheromone in speci�c quantities - (Drp : pi, q). In particular, they

must drop the levels of �home pheromone� (whose ID is 2) when they

are in the seek mode (seek mode is the internal state an ant agent as-

sume when it is travelling from the starting point towards the target.

See Figure 3.4), essentially marking trails that are useful to ant agents

that are travelling towards the starting point. In the return mode

(when an ant agent is travelling from the target to the starting point),

the same ant agents must drop the levels of �food pheromone� (whose
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ID is 3). Pheromone 3 marks trails with directional cues towards the

target. When ant agents in this category arrive on the target or at the

starting point, they do nothing but �ip back to the opposite internal

state, after which they commence the reverse trip all over again. Note

that the amount of pheromone an ant agent drops at a time is a �oat

parameter greater than 0. We observe that quantities below 1 slow

down the swarm's convergence time. On the other hand, quantities

above 1 saturate the environment too soon in simulation.

stigSet[4,4,4]: <(Drp : 2, 1), (MvH : 3, 3, 2, 0.5, 0.5,−1), (MvP : x, y, 0), (StS : 1, 0, 0)

| (NOp : ), (NOp : ), (NOp : ), (StS : 2, 0, 0) | (Drp : 3, 1), (MvH :

2, 2, 3, 0.5, 0.5,−1), (MvP : x, y, 0), (StS : 3, 1, 0) | (NOp :) , (NOp :) , (NOp :

) , (StS : 0, 1, 0)>

Figure 4.10: Best performer XSet in the stigXSet category

◦ these ant agents require a mechanism for achieving informed orienta-

tion based on the relative attractiveness of locations around - (MvH :

τi, τi, ηi, wτ , wτ , wη). In the seek mode, stigmergic ant agents are at-

tracted to the levels of pheromones 3, which mark trails towards the

target. The same ant agents would penalize movements towards loca-

tions with high levels of pheromones 2 which mark trails with direc-

tional cues towards the starting point. In the return mode (when an

ant agent is travelling from the target to the starting point), stigmer-

gic ant agents are attracted to the levels of pheromone 2, while at the

same time penalizing movements towards locations with high levels of

pheromone 3. As a result, ant agents keep travelling between the start-

ing point and the target for the entire scoring time. We observe that

a �fty �fty weighting of the e�ects of attractive and repulsive levels

of pheromone (wτ = 0.5, wτ = 0.5, wη = −1) achieves more realistic

orientation outcomes.
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◦ the best performer XSet in this category also contains a primitive be-

haviour with which ant agents make probabilistic movement choices.

The direction the ant agents follows is selected during orientation, im-

plying order in the arrangement of the primitive behaviours (with the

primitive behaviour for orientation coming �rst before the primitive

behaviour for ant agent movement) - (MvP : xi, yi, zi).

◦ All ant agents in this category must be able to detect targets in their

vicinity, also implying order between that ability to detect targets and

agent movement. After completing all other low level tasks, an ant

agent must be able to switch between di�erent internal states when it

becomes necessary - (StS : m,n, q).

◦ We observe that dissipation controls are not causal actions in this cate-

gory. Rather, they enhance the quality of the paths that arise. However

that alone compromises the simplicity sought in the system we propose.

◦ In summary, the smallest stigmergic XSet which out-perform the rest

in allowing path �nding behaviour to occur has a cardinality of 4. Ant

agents in this category require four internal s to solve the path �nding

task (seek mode, on target mode, return mode, and on starting point).

However an ant agent can only be in one of these four internal states

at a time in simulation. A minimum of four memory blocks can su�-

ciently hold all the state information these ant agents require. There

is no requirement for speci�c order between the instructions to drop

the levels of pheromone and the one for orientation. However these

instructions must both occur before agent movement.

Figure 4.11 shows the con�guration of the best performer XSet that is found

in the msgXSet category after the same evolution limit of 10, 000, 000.
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msgSet[5,4,8]:<(MsP : 0, 0, 1), (PtV : 0, 0), (Nrm : 0, 0, 0), (MvP : x, y, 0), (StS :

1, 0, 0) | (NOp : ), (NOp :), (NOp :), (NOp :), (StS : 2, 0, 0) | (MsP : 2, 2, 3), (PtV :

1, 1), (Nrm : 2, 2, 2), (MvP : x, y, 0), (StS : 3, 1, 0) | (NOp :), (NOp :), (NOp :), (NOp :

), (StS : 0, 1, 0)>

Figure 4.11: Best performer XSet in the msgXSet category

A notable di�erence between this XSet and the stigmergic counterpart is that

the message passing XSet comprises of �ve primitive behaviours in each of

the four internal states supported. In addition, message passing ant agents

require more memory to hold more message blocks in which geometric vectors

are held and processed. Precisely, a message passing ant agent's key activities

in each internal state are summarized as follows:

◦ ant agents in this category must exchange or share speci�c geometric

vectors in every step, where each vector is weighted by some con�dence

weight in that vector - (MsP : a, a, b). In the seek mode, message

passing ant agents must share �target vectors� (whose components are

stored in memory block 0, and the weights are stored in memory block

1, hence (MsP : 0, 0, 1)). Ant agents that are in the return mode must

share �home vectors�. These are stored in memory block 2, and the

corresponding weights are recorded in memory block 3.

◦ message passing ant agents must be able to detect target indicators in

each step, whose speci�city is determined by the ant agent's current

internal state at the time. If detected, these target indicators must be

converted to vectors information - (PtV : a, b) which message passing

ant agents can interpret. In this case, target indicators have an ID of 0

and starting point indicators are labelled as 1. When in the seek mode,

ant agents seek to detect target indicators and, if possible, convert these

to target vectors which point directly towards the target.
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Table 4.2: Performances of best performer XSets

Figure 4.12: IOM in best performer XSets
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In the return mode (when an ant agent is travelling from the food

source to the starting point), message passing ant agents seek to de-

tect starting point indicators and convert these to home vectors which

directly point towards the starting point.

◦ these ant agents must be able to normalize resultant vectors - (Nrm :

x, y, z) in order to standardize ant agent movement steps.

◦ biased movement steps arise in which message passing ant agents follow

the normalized vectors - (MvP : x, y, z) that arose during message

passing - (MsP : a, a, b) or the target vector that arose during the

detection of target indicators - (PtV : a, b). In the seek mode, ant

agents in this category follow the vectors that are held in memory

component 0, while in the return mode, they follow vectors that are

held in memory component 2.

◦ similarly, these ant agents must be able to switch between di�erent

internal states when it becomes necessary - (StS : m,n, q).

◦ In summary, the smallest message passing XSet has a cardinality of 5.

Ant agents in this category similarly require four internal states to solve

the path �nding task (seek mode, on target mode, return mode, and

on starting point). A minimum of eight memory blocks can su�ciently

hold the vectors, weights, and state details that are required for ant

agents to complete their tasks. Order is also a requirement between

orientation, normalization and then movement.

4.5.3.3 Indices of merits of best performer XSets

Table 4.2 reports the average indices of merits that are achieved at each of the

ten control levels when best performer XSets in the stigXSet and msgXSet

categories are used for solving the path �nding problem. XSets in the hybrid
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category are completely out-classed. Worse still, promising XSets in the

hybrid category have high cardinality which compromise agent simplicity.

The reliability of the results we report (meaning the average indices of merits

per control level) is based on the values being computed over ten replications

of the same experiment. We also track the standard deviation measures in

order to identify any abnormal dispersions. In addition, all the measures of

emergence we use for calculating the indices of merits have direct links to

previous works in the literature, hence reliable.

The procedure through which we repeat the simulation, record, and accu-

mulate results before we determine the overall indices of merits has been

discussed in details in section 4.5.2. The meanings of these average indices of

merits are further elaborated in Figure 4.12 which shows the bigger picture

or trend changes over time. We make the following observations regarding

these results:

◦ successful identi�cation of particular XSets which best describe lan-

guages for programming ant agents towards particular emergent be-

haviour (path �nding behaviour) in the stigmergic and message passing

categories is a milestone in this thesis. This �nding is evidence that

there exist particular XSets in the search spaces we study, which best de-

scribe languages for programming ant agents towards desired emergent

behaviour.

◦ the quality of the indices of merits we achieve from using a particu-

lar XSet relies on the composition of the XSet, the sequences of the

primitive behaviours involved, the number of internal states that are

supported at the time, cardinality, as well as the number of memory

blocks an ant agent can hold at a time. Best and smallest (in cardi-

nality) performer XSets in the stigmergic category consist of at most

four primitive behaviour in each internal state (see Figure 4.10). Ant
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agents in this category require four internal states to solve the path

�nding problem. The same ant agents successfully solved the path

�nding problem using four memory blocks. In the stigXSets, the in-

struction for agent movement strictly follows after agent orientation

and pheromone update. On the other hand, best performer XSets in

the message passing category consist of at most �ve primitive behaviour

in each ant agent internal state (see Figure 4.11). Ant agents in this

category similarly require four internal states to solve the path �nd-

ing problem. They successfully solved the path �nding problem using

eight memory blocks. Similarly, the instruction for agent movement

strictly follows after agent orientation, target detection, and vector

normalization. This observation is in line with the analogy of genes

and chromosomes we presented earlier on, where describing the order

in which genes (primitive behaviours) are con�gured in chromosomes

(XSets) are important �ndings in medicine and genetics (Singh et al.,

2012).

◦ Best performer XSets in the stigmergic category allow swarms of ant

agents to improve in performances early in simulation time until a

threshold turning point is reached, after which the model depletes.

This is because the levels of pheromones that are deposited onto the

environment would reach a point when they saturate the environment.

The paths thereof would get wider and wider with time in simulation,

thus reverting ant agents into random wandering. This is a side ef-

fect which can be recti�ed by allowing pheromone dissipation controls.

However, as we mentioned already, pheromone dissipation properties

are merely enhancers, and not causes of emergent behaviour. On the

contrary, the best performer XSets in the message passing category

can propel swarms of ant agents towards deterministic paths. This is

because, once vector �elds are established which point towards the tar-

gets with high vector weights, ant agents often travel shorter distances
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between the two points (starting point and food sources).

◦ Stigmergic swarms have less tendencies to follow the paths that emerge.

This is because path choices remain probabilistic regardless of how well

the ant agents are performing. As a result, chances that the same ant

agents derail o� the paths are highly common. However, although

this sounds like a �aw, it is in fact a fault tolerance property in the

event of the emergent path being detoured for one reason or another.

On the contrary, message passing path choices are determined by the

knowledge held in neighbouring ant agents. If the swarm is performing

well, it is therefore likely that ant agents would perform better as well,

thus learning from one another. As a result, the swarm can converge

on desired vector �elds. In general, message passing ant agents achieve

better quality paths than the stigmergic counterparts.

4.5.3.4 Visual evidences of the performances of best XSets

Figure 4.13 visualizes the spread of ant agents that never found the target

throughout the simulation period of 10000 iterations when each best XSet

was used. Ant agents are indicated by the small red spots. Most of the ant

agents we visualize are isolated from the rest of the swarm that converged

on the shortest path. We indicate the direction of motion of these ant agents

or clusters of ant agents in order to further clarify the visual e�ects of each

category of XSets.

The screenshots also show the density of hits on the targets by those ant

agents that converged on the emergent paths. Precisely the yellow spots

indicate the spots at which ant agents perceived target indicator and �ipped

from the search to the return internal state.

We make the following observations from these visualized performances:
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(a) Stigmergic swarms (b) Message passing swarms

Figure 4.13: Density of ant agents that remain isolated

◦ Isolated ant agents in the stigmergic category are often trapped in

sub-optimal solutions. They are often trapped in circular movements

because a local maxima arose. A local maxima occurs when some lo-

cations contain relatively higher levels of attractive pheromone than

their neighbours. As a result, ant agents that visit those locations

would consider travelling back to the same locations in every next step

because the location is far much more attractive. This �aw is recti�ed

when other ant agents create paths which pass by these local maxima

(creating a gradient which repairs the local maxima). However these

are rare cases in this category for two reasons. First, local maximas

arise when ant agents are centrally deployed at the same location, and

are all allowed to drop the same levels of pheromones on that location

before commencing the search trips. Ant agents that would visit the

location where ant agents were deployed would be trapped. We have
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resolved this �aw by deploying the ant agents at random locations on

the environment (thus avoiding the creation of local maximas). How-

ever our ant agents can still co-exist. The few cases of isolated ant

agents we see in Figure 4.13(a) may be a result of coincidental dis-

tribution of ant agents at the same location during deployment. In

this particular simulation, only 6 out of 5000 ant agents remained iso-

lated in the stigmergic category (which amounts to 99.88% success

rate). The second reason why it is rare to observe isolated ant agents

in the stigmergic category is because the path selection policies that

are followed emphasize on ant agents repelling away from the levels of

pheromones they themselves dropped in favour of locations with those

levels of pheromone that were dropped by ant agents in the opposite

internal state. It is therefore common that ant agents would penal-

ize movements towards the locations they once visited. In this way,

the stigmergic model demonstrate better robustness, adaptability, and

fault tolerance.

◦ The message passing model creates emergent clusters in which common

vector �elds are followed. Ant agents that hit the target can in�uence

other ant agents in the same cluster to exhibit a following behaviour

towards the same targets. Eventually deterministic paths arise between

the target and the starting point (only for those ant agents that are in

the successful clusters). However clusters of lost ant agents also arise.

These would create common but sub-optimal vector �elds in which ant

agents keep searching for the targets without success. However the

con�dence factors in the vectors the ant agents follow in such clusters

would drop to lowest levels. In the event of ant agents in such clusters

merging with more successful clusters, they would abandon the vectors

they follow in favour of the vectors being followed in successful clusters

because they have less con�dence in their own performances. However

if they never get to meet with more successful clusters, isolated ant
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agents in this category may remain following falsely agreed vectors for

the entire scoring time. In this case, we observe six clusters of 29, 16, 7,

38, 15, and 19 isolated ant agents. This gives a success rate of 97.52%,

which is still attractive (obtained by subtracting isolated ant agents

from agent density, divide the answer by agent density, and convert

the result to a percentage). Most isolated message passing ant agents

travel in the same linear direction in the same internal state.

◦ The two observations we made above suggest that failures of ant agents

at individual levels do not a�ect the completion of swarm level goals.

This is a known advantage and property of successful swarm intelligence

systems. Thus, the XSets we identi�ed show known properties in swarm

intelligence systems.

◦ Stigmergic ant agents demonstrate better and cooperation (evident

from the number of ant agents that remain isolated). We attribute

this observation to the mechanism in which information is held in each

model. Stigmergic ant agents, in particular, create shared memories

on the environment, thus allowing isolated ant agents to indirectly in-

teract with the rest of the swarm and self-organize. Message passing

ant agents would require one-on-one interactions in order to achieve

informed path choices. As a result, isolated ant agents in the message

passing category would remain lost until they coincidentally merge with

clusters of highly con�dent ant agents and drop their own views and

directional tips for the better.

4.6 Conclusion of the chapter

This chapter addressed four aspects of this thesis. First, we described the

generation of XSets. In doing so, we �rst described the structure of an XSet.
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Then we explained how sets of primitive behaviours are manipulated in order

to create the initial genetic population of XSets with which the search spaces

for optimum XSets are evolved. In these explanations, we indicated how the

XSets that arise are represented in the genetic population, as well as how ant

agents use these XSets to perform the tasks sought.

Thereafter, the chapter described the setup of evaluation environments on

which the performances of XSets are assessed. In doing so, we emphasized on

describing the key design parameters, as well as those other variables that are

stored in environment tuples (e.g. swarm information and target indicators).

The third aspect this chapter addressed is the quanti�cation of emergent be-

haviour and determination of the indices of merits of XSets. We presented

�ve measures of emergence which indicate the extent to which emergent be-

haviour is manifest as a result of using a particular XSet. First, we described

speed of emergence which assesses the time it takes ant agents to converge.

Then we considered the quality of emergence which establishes the frequency

with which ant agents successfully arrive at their intended targets within a

set time frame. Average delivery rates expressed these frequencies of arrivals

as a percentage of ant agent density. We also considered average end-to-

end delays which evaluates the time it takes ant agents to travel between the

starting point and the target. Lastly, we built the �fth measures of emergence

on Shannon's measurement theories.

Some measures of emergence are applied on samples of ant agents. We illus-

trated how representative sample sizes are determined, and showed through

an example how the �nal sample size is calculated.

As a case study, the chapter administered an experiment in which we eval-

uated various XSets for properties with which to resolve the path �nding

problem. The main aim of the experiment was to search for best performer

XSets for this purpose. The search relied on genetic programming processes
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where better and better XSets were evolved over time until the best perform-

ers were identi�ed.

Two XSets were singled out as relatively best performers, one in the stigmer-

gic, and another in the message passing categories. A number of observations

arise from these �ndings. We particularly highlight the following:

◦ There exist particular XSets with the best properties for allowing path

�nding behaviour in swarms of ant-like devices. These XSets are shown

in Figures 4.10 and 4.11.

◦ The order in which primitive behaviours are arranged in XSets has a

bearing on the quality and usefulness of the XSets thereof. Thus, order

is a parameter of emergence.

◦ Although relatively high cardinality XSets may competitively achieve

good performances, these XSets often consist of redundant instructions

which defeats our goal to design simple and naive ant agents.

◦ prominent XSets serve best when particular time limits are set. Pre-

cisely, stigmergic swarms deplete with time in simulation because the

levels of pheromone that are continuously dropped on the environment

would reach a point when they saturate the same environment and re-

vert ant agents back to random wandering. On the contrary, message

passing swarms gain in performances with time in simulation. They

may even achieve deterministic agent movements when target vector

�elds develop with time.

The value of this chapter is further emphasized by a number of contributions

it makes to the board of knowledge, as well as to the thesis. In particular:

◦ identi�cation of best XSets for the path �nding problem is a big mile-

stone towards investigations related to the creation of other forms of

emergent behaviours using the XSet method.
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◦ The design principles with which we create partial permutations and

the initial genetic population of XSets are innovative. Besides creating

diverse genetic populations, these principles may inspire the design of

similar XSets for industrially compatible forms of emergent behaviour.

◦ The measures of emergence we proposed, as well as the procedures

through which each measure of emergence is determined are innovative.

These measures of emergence provide a unique way of evaluating the

performances of swarms of agents, as well as assessing the usefulness of

speci�c XSets. As a result, this may inspire the development of formal

agent evaluation standards in the future.

◦ Most researchers in the �eld ignore the importance of sampling and ex-

tracting representative samples. This chapter presented an innovative

technique for extracting samples of ant agents for tracking when it is

necessary. This is potentially a useful hint in future experiments where

sampling is apparent.

◦ The formula we proposed for calculating the indices of merits of XSets

is unique. This formula is of our own making. That alone may inspire

the development of XSets assessment standards in the �eld as well.

In the next chapter, we emphasize on investigating the relationships between

the measures of emergence we reported in this chapter.



Chapter 5

Relationships Between Measures

5.1 Introduction

Chapter 3 identi�ed collections of candidate primitive behaviours which char-

acterize the low level activities of stigmergic and message passing ant agents.

The primitive behaviours we identi�ed were stated as lemmas because we

neither veri�ed nor validated their in�uences to emergent behaviour (see

lemmas 1 to 10 in section 3.2.4 and in section 3.2.5). However our assump-

tion in Chapter 3 and Chapter 4 remained that these ant agent activities are

problem independent.

Mechanisms in which the primitive behaviours we identi�ed are grouped

together into XSets and stored into collections (populations) of XSets were

investigated in Chapter 4. The collections of XSets that emanate from partial

permutations on the set of primitive behaviours U (see section 4.2.1) were

evaluated for abilities to allow deliberate formation of a particular class of

emergent behaviour (as proof of concept) - the path �nding behaviour. These

evaluations were based on �ve measures of emergence that are all inspired

by related works in the literature (see section 4.4).

189
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A mechanism was de�ned in which measures of emergence are put together

in order to determine the index of merit of each XSet in the search space, an

index which indicates the extent to which emergent behaviour is manifest as

a result of using a particular XSet. In the end, Chapter 4 singled out the best

performer XSets in each category (those that yield relatively best indices of

merit for the path �nding problem).

Figure 5.1 positions the research problem of this chapter in the context of

this thesis. Understanding the relationships that exist between the measures

of emergence that arise when a particular XSet is used as an ant agent lan-

guage for engineering predictable emergent behaviour is the critical goal of

this chapter. Besides validating the XSets we study, tests that are conducted

in this chapter verify di�erent primitive behaviours as useful constructs for

programming ant agent behaviours. Such knowledge of the relationships that

exist between measures of emergence may potentially allow us to deliberately

engineer other forms of emergent architectures with practical bene�ts to hu-

man life.

5.1.1 Problem statement

The desire to establish the relationships that exist between the measures

of emergence that arise when particular XSets are used for resolving the

path �nding problem (as a case study) drives the research we present in this

chapter. We particularly address the following question:

◦ What relationships exist between the sets of measures of emergence

that arise when swarms of ant agents use particular XSets to resolve the

path �nding problem? In responding to this question, we particularly

establish the correlation coe�cients that arise between pairs of sets of

measures of emergence that are recorded at di�erent control levels.
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Figure 5.1: Positioning the research task of chapter 5 in the thesis

We de�ned control levels as intervals in simulation or stages in simula-

tion when we extract swarm performances (see section 4.5.2). Besides

establishing correlations, we also compare the means and variances that

arise in the indices of merits that are yield in these sets of measures of

emergence.

Our null hypothesis in correlation measures is that there are no relationships

between the sets of measures of emergence that arise. In a layman's language,

we are saying that the measures of emergence we see are merely a random

phenomena with no basis in the XSets we use.

We also hypothesize that the variances we see in the sets of measures of

emergence are similar (no di�erence between variances), and that the mean

performances are also similar. The motivation for these choices of null hy-

potheses stems from known propositions in statistics that one can only falsify
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statements but cannot not prove them (Lohr, 2010). Thus, a logically con-

sistent statement is one which tests for evidence to refute the claim we make.

If we get to see some evidence of relationships, some evidence of di�erences

in variances, or di�erences between means in the sets of measures of emer-

gence, that alone would falsify the null hypothesis is favour of the alternative

hypothesis.

Note that the problem we address in this chapter is not to compare the

results that are achieved from di�erent ant system metaphors (stigmergic

versus message passing, or other traditional models). Rather, we compare

the trends we observe in the measures of emergence that are recorded at

di�erent control levels when we use the categories of ant agents we study.

5.1.2 Overview of the chapter

The following is a breakdown of the sections of this chapter, all of which

are collectively aimed at providing a solution to the research question of this

chapter (see section 5.1.1). Section 5.2 describes the procedure we follow in

order to determine correlation coe�cients between di�erent sets of measures

of emergence, as well as the procedure we follow in order to determine the

signi�cance of the results thereof. The same section also highlights the key

statistics we want to �nd and interpret when we compare variances and mean

performances in two independent sets of measures of emergence.

The biggest part of this chapter presents the results we achieve regarding

the relationships that arise (section 5.3). Conclusions close the chapter in

section 5.4, along with highlights of the main contributions of this chapter

to the board of knowledge and the thesis.
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5.2 Determining relationships between measures

The key input to this chapter are the XSets we reported in Chapter 4 as rel-

atively best control dictionaries for deliberate path �nding behaviour. How-

ever are the best performer XSets valid toolboxes? Are the measures of

emergence that are reported at di�erent control levels related in any way to

indicate that these XSets are in�uencing coherent behaviour over time?

In this thesis, the validity of an XSet is determined by the degree of relation-

ships we observe between sets of measures of emergence that are achieved as

a result of using the XSets. These measures of emergence are extracted at

di�erent control levels of the same simulation.

Three groups of variables are key in the experiment we administer in this

chapter. The main dependent variables (those key variables which we mea-

sure) are the average measures of emergence that are reported at di�erent

control levels. Figure 5.2 shows that these measures of emergence are ac-

cumulated over ten replications before an average measure of emergence is

calculated at each control level. Thus, every value in each cell of the table

that is presented in Figure 5.2 is a sum of ten scaled measures of emergence

at that control level (see section 4.4.7 regarding how measures of emergence

are scaled. The formulas for scaling di�erent measures of emergence are also

indicated in the table in Figure 5.2).

However the results which we statistically analyze and compare, are the

averages of the measures of emergence that are reported at control levels

over the ten replications. We also indicated that, from observation, ten

replications (which is way above the norm of a minimum of three replications

that are generally recommended for most science experiments) are su�ciently

many to reveal the trends we investigate. Although other non-parametric

measures can be used to get these centrally placed measures of emergence
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Title: To investigate the relationships between measures of emergence that arise at di�erent control level
when a particular XSet is used for path �nding purposes.

Hypothesis: the sets of measures of emergence that arise at di�erent control levels have no relationships

Dependent variable : average measures of emergence at di�erent control levels

Independent variables : control levels, time in simulation (maximum of 10000 iterations).

Controlled variables: agent density (5000 ), environment size (100 × 100), position of starting point

(�xed), centre of target (centre of environment) , XSets (best performers).

Procedure - Generator functions are invoked which de�ne path �nding environments. Ant agents are
distributedly deployed and allowed to score performances. Results are recorded in intervals of
1000 iterations for ten replications. Average measures of emergence are calculated and reported
at each interval. The algorithm below summarizes this procedure.

foreach best performer XSet

foreach swarm of 5000 ant agents
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until 10 replication

end swarm

Find average measure at each control level by dividing sum by 10

Figure 5.2: Experiment design
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(such as mode and median), averages have the advantage of considering all

the scores that are achieved in the ten replications - thus giving a better

indication of the central tendencies thereof.

More over, although it is possible to extract results from more control levels

(both in between the control levels we propose or after the cut-o� simulation

period), these are continuous stochastic processes in which one can only take

a representative sample of the result. In line with this thought, and from

observation, ten control levels in 10000 iterations are su�ciently many to

reveal the trends we investigate.

Time in simulation is the key independent variable in this experiment (the

variable we manipulate and monitor), and is measured in iterations. We

explained in chapter 4 that an iteration is equivalent to an ant agent step.

Precisely, we monitor the performances of swarm at speci�c control levels

or time intervals in simulation. The rest of the variables we require in this

chapter are controlled (those variables that are kept constant).

Of the key controlled variables are agent density and environment size. We

explained how users can change these two variables at run-time. For illustra-

tion purposes, we continue to deploy swarms of ant agents in colonies of 5000

on 100×100 grid environments (merely to prove the concepts we investigate).

The positions of targets and starting points are kept at �xed locations through-

out the experiment. This is done in order to ensure fair outcomes when we

compare the results. Please note that investigations aimed at assessing the

e�ects of agent density or environment complexity to path �nding are out-

side the scope of this chapter. In the next three sections, we discuss the

statistics we propose for establishing relationships between sets of measures

of emergence.
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5.2.1 Correlation coe�cients

As part of our investigations for relationships between sets of measures of

emergence that arise when speci�c XSets are used, we elaborate on how we

calculate sample correlation coe�cients (r) and map these to the population

correlation coe�cients (ρ). Correlation coe�cients indicate the strength and

direction of linear association between two data sets, in this case sets of

measures of emergence. They indicate the proportion of common variation

between two data sets (Trochim, 2006.; David, 2008).

Although di�erent correlation coe�cients exist in the literature (Francis,

1990), we particularly consider Pearson's correlation coe�cient because of

its emphasizes on quantifying the strength of association between two data

sets (David, 2008). Detailed discussions regarding the application, merits,

and demerits of using other forms of correlation coe�cients is outside the

scope of this work.

Equation (5.1) shows how we calculate Pearson's sample correlation coe�-

cient (r) between two sets of measures of emergence (this formula is taken

from Francis (1990)). In this formula, x and y are sets of di�erent measures

of emergence that are compared at the time. Each data set, in this case,

consists of ten scores (where each score is an average of ten replicated per-

formances at each control level). The sample correlation coe�cient r that

arises inclusively lies in the range [−1; 1] (Trochim, 2006. ; David, 2008).

The signi�cance of the sample correlation coe�cient we get, r, is recom-

mended at a 99% level of con�dence because the sample size we use is sta-

tistically too small (n = 10 measures of emergence in each data set, where

each measure represents the average performances of ant agents at each con-

trol level). In this case, the signi�cance level we get is α = 0.01. Thus,

this signi�cance level is also known as the alpha value (Lohr, 2010.; Francis,

1990).
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∑
y)2) (5.1)

Variable Meaning of variable in equation (5.1)

n number of scores that are recorded for each measure of emergence

x set of scores corresponding to the �rst measure of emergence

y set of scores corresponding to the second measure of emergence

r Pearson's sample correlation coe�cient

Two-tailed correlation tests are recommended in this case because we do

not know, in advance, the sign of the correlation coe�cients we will get.

Statistical tables in Francis (1990) show that a critical correlation value of

0.765 arises when such a sample size of 10 is used along with an alpha value

of 0.01. This is the minimum sample correlation coe�cient we can expect

between two sets of measures of emergence in order to conclude that the

association implied in the population correlation coe�cient ρ is not by chance

(Miles, 2008). We are saying that, if the absolute value of r is above 0.765, we

have su�cient evidence to reject the null hypothesis which states that: there

are no signi�cant relationships between two sets of measures of emergence

(H0 : ρ = 0) in favour of the alternative hypothesis (H1 : ρ 6= 0). Note

that in this notation, ρ refers to the population correlation coe�cient while

r denotes the sample correlation coe�cient.

5.2.2 Variances

More investigations regarding the relationships that may exist between pairs

of sets of measures of emergence are required in order to validate the XSets

we propose, as well as to verify the individual primitive behaviours that
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form the XSets. In particular, are the measures of emergence we see in each

category of comparable origins?

An F-test is suitable for assessing the signi�cance of the similarities we ob-

serve between the variances that arise in two di�erent sets of measures of

emergence (Jayaraman, 1999). For example, is the variation we see in the

speed of emergence over time signi�cantly di�erent from the variation we see

in the quality of emergence? The null hypothesis which drives the F - tests we

conduct is that the variances we observe in two di�erent sets of measures of

emergence are similar (H0 : σ2
1 = σ2

2). In this case, the alternative hypothesis

is that the two data sets are not similar (H1 : σ2
1 6= σ2

2).

5.2.3 Means

Relationships between pairs of sets of measures of emergence are further

assessed using T - tests (Jayaraman, 1999). This statistic compares the

central tendencies that are observed between two independent data sets. Note

that T - tests are built on F - test results, assuming equal or unequal variances

upfront, depending on the outcomes observed in F-tests. The null hypothesis

which motivates the T - tests is that the mean performances we observe in

two sets of measures of emergence are identical (H0: µ1 = µ2). Thus, the

alternative hypothesis proposes unequal means (H1: µ1 6= µ2).

5.3 Results

Table 5.1 reports the weighted average measures of emergence that are achieved

at the 10 control levels we sample when the best performer XSet in the stig-

mergic category was used for resolving the path �nding task (see section

4.5.1
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1000 0.7108 0.0451 0.0902 0.9603 0.1033

2000 0.7868 0.0978 0.1956 0.9737 0.2333

3000 0.8703 0.2143 0.4286 0.9809 0.4433

4000 0.9145 0.3442 0.6884 0.9873 0.6300

5000 0.9219 0.3536 0.7072 0.9910 0.7367

6000 0.9063 0.3695 0.7390 0.9887 0.7033

7000 0.8857 0.3704 0.7408 0.9817 0.6433

8000 0.8808 0.3708 0.7416 0.9794 0.5867

9000 0.8791 0.3719 0.7438 0.9767 0.4967

10000 0.8789 0.3732 0.7464 0.9633 0.4367

Table 5.1: Weighted stigmergic measures of emergence

Figure 5.3: Trends in weighted measures of emergence: stigmergic XSet



CHAPTER 5. RELATIONSHIPS BETWEEN MEASURES 200

S
p
ee
d
:

1
−
s
i T

Q
u
a
li
ty

:
q
i T

D
el
iv
er
y
:
d
i

D
el
ay
s
:

1
−
a
i
T

In
fo
rm

a
ti
o
n
:
I
i 3

1000 0.6327 0.0213 0.0426 0.2320 0.0700

2000 0.7047 0.0353 0.0706 0.4240 0.2333

3000 0.8703 0.0677 0.1354 0.5990 0.4433

4000 0.9145 0.1534 0.3068 0.6610 0.6300

5000 0.9389 0.2734 0.5468 0.7340 0.7367

6000 0.9688 0.3599 0.7198 0.8040 0.7767

7000 0.9789 0.4133 0.8266 0.8570 0.8433

8000 0.9811 0.4418 0.8836 0.8740 0.9340

9000 0.9838 0.4756 0.9512 0.8770 0.9633

10000 0.9879 0.4809 0.9618 0.8930 0.9933

Table 5.2: Weighted message passing measures of emergence

Figure 5.4: Trends in weighted measures of emergence: message passing XSet
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for details regarding the formulation of the path �nding problem). Figure

5.3 graphically interprets the trends that arise.

Likewise, Table 5.2 reports the weighted average measures of emergence that

are recorded at each of the 10 control levels we sample when the best per-

former XSet in the message passing category is used for the same purpose

under similar simulation conditions. Figure 5.4 graphically interprets the

trends thereof.

Note that these readings are presented as weighted average measures of emer-

gence for comparison purposes. We make the following observations from

these results:

◦ Generally, measures of emergence that are sampled from the stigmer-

gic category improve with time in simulation until a turning point is

reached, after which the model depletes. This observation is consistent

with the one we made in Chapter 4 when we analyzed merit trends

(see section 4.5.3.3 for a similar observation). We observe that these

turning points commonly occur when the simulation environment gets

saturated with the levels of pheromones ant agents drop in every step.

Environment saturation reverts ant agents into the random wandering

mode. A partial remedy to this �aw would be to consider dissipation

e�ects (see section 6.3.5 for this aspect of the thesis).

◦ The best achievement of every stigmergic ant agent is with respect to

the average number of steps an ant agent walks between the starting

point and the target (see Figure 5.3). We attribute these achievements

to the mechanism in which ant agents in this category are propelled

from one location to another. These ant agents favour movements away

from locations which contain high levels of the pheromones they are

dropping at the time. Thus, stigmergic ant agents try to avoid heading

backwards. Although probabilistic path choices often derail ant agents
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o� the emergent paths, speed of emergence is generally good (the time

it takes ant agents to converge).

◦ Poor qualities of emergence (tendencies of ant agents to follow the

emergent paths and the frequencies of arrivals of ant agents on targets)

are observed early in simulation time in the stigmergic category because

this model requires ant agents to have time to build shared memories

through which they can interact.

◦ Similarly, measures of emergence that are sampled from the message

passing category improve with time in simulation in a Sigmoid-like

pattern (s - shaped curves). As such, ant agents in this category are

generally poor in performances in the early stages of the simulation.

They would improve with time, and then maintain their achievements

when they converge on deterministic paths.

◦ Both models demonstrate relatively high uncertainty measures when

ant agents make path choices. However information levels increase

slowly with time. We notice that the average amount of information

around an ant agent in each step is highly dependent on how popular

the ant agent's current location is to the swarm.

◦ Time in simulation is an important parameter of emergence in both

categories. Su�cient time time allows ant agents in the message passing

category to su�ciently build vector �elds which create deterministic

paths towards targets. In these vector �elds,vector propagation occurs

through which searching ant agents get directional cues sooner. On

the contrary, lots of time in simulation is detrimental to the stigmergic

model when environments get saturated.

The rest of the sections that follow in this chapter establish the relationships

that exist between the measures of emergence that are reported in these two

tables, if any.
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5.3.1 Tests for normality

It is hard to tell the general situation regarding the distribution of data by

looking at it from the tables (for example, we cannot see from an eye scan

whether the data that is presented in Tables 5.1 and 5.2 follow a normal

distribution or not). Although descriptive statistics may give a picture of

the central tendencies in these data sets, they often fail to detect, or they

often ignore the e�ects of tail cases (Francis, 1990).

Kolmogorov-Smirnov tests for normality compare samples of data with the

standard normal distribution and establish whether these sample distribu-

tions di�er from theoretical expectations (Lohr, 2010). Precisely, these tests

compare sample data with the prediction of a Gaussian distribution, thus

determining the �goodness of �t� of the data sets to a normal distribution

(Lohr, 2010). As a result, Kolmogorov-Smirnov tests report two critical out-

comes; the d statistic and the p value, where: for all x − axis values of the
distribution curve, d is the maximum or biggest vertical di�erence (along the

y− axis) between the predicted Gaussian distribution curve and the sample

distribution curve (Lohr, 2010). Then, p is the calculated probability that

the d statistic is larger in the population than is observed in the sample. If

p > 0.05, the sample distribution passes the test for normality (Lohr, 2010).

Although other normality tests are possible (such as the Shapiro - Wilk test,

or Q-Q plots), the Kolmogorov-Smirnov test for normality has a number of

advantages that are in favour of the way our data is sampled and reported

in this chapter. First, it is not sensitive to identical data values in the

sample data sets or any ties (as in the case of Shapiro-Wilk test). We can

not guarantee di�erent data values in the scores we report in this work. In

addition, transformation of data values, scaling them, or weighting the values,

does not change the d statistic (Lohr, 2010). We are saying that actual data

analysis is equivalent to rank analysis. Our data values are scaled to lie
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Category of results K-S d p-value Remark

Stigmergic speed of emergence 0.34142 p<0.2 Pass

Message passing speed of emergence 0.26103 p>0.2 Pass

Stigmergic quality of emergence 0.36351 P<0.15 Pass

Message passing quality of emergence 0.17993 p>0.2 Pass

Stigmergic average delivery rates 0.36351 p<0.15 Pass

Message passing average delivery rates 0.17993 p>0.2 Pass

Stigmergic average end-to-end delay 0.14280 p>0.2 Pass

Message passing average end-to-end delays 0.18775 p>0.2 Pass

Stigmergic Shannon's information values 0.17625 p>0.2 Pass

Message passing Shannon's information values 0.19243 p>0.2 Pass

Table 5.3: Kolmogorov-Smirnov tests for normality

within the range [0; 1] for comparison purposes, hence suited for Kolmogorov-

Smirnov tests for normality. In these views, this approach is fairly robust

(Lohr).

Table 5.3 reports Kolmogorov-Smirnov tests for normality on the measures

of emergence that are reported in Table 5.1 and Table 5.2. We make the

following three observations from the outcomes of these tests:

◦ All measures of emergence passed the Kolmogorov-Smirnov tests for

normality because their observed p values are all greater than 0.05

(Lohr, 2010). This allows us to state that no signi�cant departure

from normality is noted in the data sets we reported. Most important

in this work is that normality is a requirement for justifying the use

of inferential statistics such as F - Tests and T -Tests when we deter-

mines whether there are statistically signi�cant di�erences between the

means and variances that are observed in pairs of sets of measures of

emergence.

◦ We stated earlier on that the d value indicates the maximum vertical

di�erences between the sample distribution and the predicted Gaussian
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normal distribution. We observe that generally, the message passing

data sets are closer to perfect normality because their d values are

relatively smaller than the d values that are reported in the stigmergic

category. However there are higher chances that these d values would be

larger in message passing population because the p values are relatively

larger.

◦ We also stated earlier on that one of the key advantages of Kolmogorov-

Smirnov tests is that transformation of data values, scaling data, or

weighting data in any way, does not change the d statistic. We observe

a similar d value between the qualities of emergence and the average

delivery rates in both categories. This outcome connotes that the two

measures of emergence are, in fact, the same measure of emergence that

is expressed in two di�erent ways.

In the next three sections, we compare the variations we observe in pairs of

sets of measures of emergence that are taken from the same category. Then

we establish the similarities between the means, as well as the correlation co-

e�cients thereof. The �ndings that arise from these statistics can be mapped

to population statistics because the data sets we use are normally distributed.

5.3.2 Correlation coe�cients

We indicated in section 5.2.1 that correlation coe�cients determine the strength

and direction of linear association between pairs of sets of measures of emer-

gence. In other words, it indicates the proportion of common variation be-

tween two data sets (Trochim, 2006.; David, 2008).

We report sample correlation coe�cients (r) that arise between pairs of sets

of measures of emergence in each category. We stated that two-tailed corre-

lation tests are recommended because we have no clue of the direction of
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Speed Quality Delivery Delays

Quality r = 0.9093

p=0.000

Delivery r = 0.9093 r = 1.000

p=0.000 p=�

Delays r = 0.7655 r = 0.5349 r = 0.5349

p=0.010 p=0.111 p=0.111

Information r = 0.9421 r = 0.8785 r = 0.8785 r = 0.8501

p=0.000 p=0.001 p=0.001 p=0.002

Table 5.4: Correlations between stigmergic measures of emergence

Speed Quality Delivery Delays

Quality r = 0.8582

p=0.001

Delivery r = 0.8582 r = 1.000

p=0.001 p=�

Delays r = 0.9020 r = 0.9230 r = 0.9230

p=0.000 p=0.000 p=0.000

Information r = 0.9628 r = 0.9527 r = 0.9527 r = 0.9877

p=0.000 p=0.000 p=0.000 p=0.000

Table 5.5: Correlations between message passing measures of emergence

correlation that will arise. An alpha value of 0.01 and N = 10 give a crit-

ical correlation value of 0.765. This critical value is the minimum sample

correlation coe�cient we expect between two sets of measures of emergence

in order to conclude that the association we see in the samples re�ect the

association in the population. Remember, our null hypothesis states that

there are no signi�cant relationships between pairs of sets of measures of

emergence (H0 : ρ = 0).

Table 5.4 reports the correlation coe�cients that are yield between pairs of

sets of stigmergic measures of emergence. In each case, we show the sample
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correlation coe�cient r, as well as the probability p (a probability that this

sample correlation coe�cient is di�erent in the population).

Table 5.5 then reports the sample correlation coe�cients that are obtained

between sets of message passing measures of emergence. Similarly, we show

the sample correlation coe�cient r, as well as p. We make the following

observations from these two tables:

◦ all sample correlation coe�cients in the message passing category are

above the critical correlation value of 0.765. In addition, the p values

we report in this category connote that there are very rare chances that

the population correlation coe�cients are di�erent from these sample

correlation coe�cients (r ≈ ρ or say, r ≡ ρ). This piece of information

provides su�cient statistical evidence with which to reject the null

hypothesis (H0 : ρ = 0) in favour of the alternative hypothesis.

◦ sample correlation coe�cients in the stigmergic category are weak when

average end-to-end delays are considered against quality measures. Sim-

ilarly, the p values that are yield in these analyses are relatively highest

(suggesting higher chances of achieving di�erent population correlation

coe�cients in the same categories). We conclude that stigmergic ant

agents' throughput has a weak association with the average number of

step ant agents walk in simulation.

◦ what stands out in these two tables is that correlation values between

the quality of emergence and any other set of measures of emergence

are the same as the correlation values that are achieved when the av-

erage delivery rates are considered. Similarly, the p-values thereof are

the same. This piece of information is consistent with the outcome we

observed when we conducted the Kolmogorov-Smirnov tests for normal-

ity of these data sets. This outcome connotes that the two measures of
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emergence are, in fact, the same measure of emergence that is expressed

in two di�erent ways.

◦ Shannon's information values are signi�cantly correlated with all the

other measures of emergence in both categories. This implies that if

speed of emergence is good, we can infer ant agents walking shorter

distances between the starting point and the target. We can also con-

ceive that better quality of emergence and throughput arise, suggesting

the presence of su�ciently reliable information around ant agents when

they path �nd.

◦ Perfect linear relationships are observed between qualities of emergence

and the average delivery rates, con�rming our previous observation that

these two measures of emergence are the same.

◦ On a general note, most sample correlation coe�cients are commonly

above the critical correlation value in both categories. Thus, infer-

ence and regression analysis are possible. This is a critical observation

which suggests that the relationships we see between sets of measures

of emergence in both categories have a very small probability that they

occur by chance. As such, we have su�cient evidence to reject the null

hypothesis at the 1% level of signi�cance.

Signi�cant sample correlation coe�cients between sets of measures of emer-

gence suggest that the proportion of common variation between these data

sets is high. One data set may infer the other, indicating that these data sets

are of similar origins. This outcome is consistent with the �nding that these

sets of measures of emergence follow a normal distribution.
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5.3.3 Analysis of variances

The results we report in this section further discuss the extent to which the

sets of measures of emergence that are recorded in each category are related

to one another with regards to the variances we see with time in simulation.

Speed and Quality

F 0.269

P value (one tail) 0.032

F Critical value 0.1871

Speed and Delays

F 49.23

P value (one tail) 0.000

F Critical value 5.3511

Speed and Delivery

F 0.067

P value (one tail) 0.0002

F Critical value 0.1871

Quality and Delivery

F 0.25

P value (one tail) 0.026

F Critical value 0.1871

Speed and Information

F 0.101

P value (one tail) 0.001

F Critical value 0.1871

Quality and Delays

F 151.23

P value (one tail) 0.000

F Critical value 5.3511

Quality and Information

F 0.377

P value (one tail) 0.081

F Critical value 0.1871

Delivery and Delays

F 604.91

P value (one tail) 0.000

F Critical value 5.3511

Delivery and Information

F 1.509

P value (one tail) 0.274

F Critical value 5.3511

Delays and Information

F 0.002

P value (one tail) 0.000

F Critical value 0.1831

Table 5.6: Analysis of variances in the stigmergic category

We indicated earlier on that F - tests are suitable for comparing variations in

two data sets that are normally distributed. The null hypothesis that drives
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F-ratio P-value Levene df P-value

variance for F-tests F(1,df) Levene Levene

speed vs quality 3.7162 0.063708 5.54332 18 0.030107

speed vs delivery 14.8647 0.000436 14.36323 18 0.001341

speed vs delays 40.6942 0.000006 7.38563 18 0.014112

speed vs information 9.8540 0.002204 7.97414 18 0.011246

quality vs delivery 4.0000 0.051003 5.31970 18 0.033192

quality vs delays 151.2265 0.000000 22.50613 18 0.000162

quality vs information 2.6517 0.162477 1.70570 18 0.207989

delivery vs delays 604.9058 0.000000 24.56048 18 0.000102

delivery vs information 1.5085 0.549994 0.75868 18 0.395211

delays vs information 401.0017 0.000000 16.17396 18 0.000800

Table 5.7: Variance comparisons in the stigmergic category

these tests is that the variances are similar (H0 : σ2
1 = σ2

2) - where σ represents

standard deviation, and henceσ2 represents variance.

The key outcome sought in F - tests are three values namely the F - value,

the critical F - value, and the P - value (Jayaraman, 1999). If the F -

value we obtain is greater than the critical F - value at a chosen level of

signi�cance, it is implied that we have su�cient statistical evidence to reject

the null hypothesis (H0 : σ2
1 = σ2

2) in favour of the alternative hypothesis

(H1 : σ2
1 6= σ2

2) (Jayaraman, 1999). However, if the F - value we obtain

is less than the critical F - value, we have no evidence to reject the null

hypothesis. Thus we would rather proceed to believe that the variances we

see between the two sets of measures of emergence are similar.

The P - value is an alternative decision tool regarding the relationships be-

tween the variances we see in the two data sets. If the P -value is less than
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the signi�cance level (which is in this case 0.01), it is implied that we have

su�cient statistical evidence to reject the null hypothesis.

Speed and Quality

F 0.456

P value (one tail) 0.129

F Critical value 0.1871

Speed and Delays

F 0.326

P value (one tail) 0.055

F Critical value 0.1871

Speed and Delivery

F 0.114

P value (one tail) 0.002

F Critical value 0.1871

Quality and Delivery

F 0.25

P value (one tail) 0.026

F Critical value 0.1871

Speed and Information

F 0.159

P value (one tail) 0.006

F Critical value 0.1871

Quality and Delays

F 0.715

P value (one tail) 0.313

F Critical value 0.1871

Quality and Information

F 0.348

P value (one tail) 0.066

F Critical value 0.1871

Delivery and Delays

F 2.861

P value (one tail) 0.067

F Critical value 5.3511

Delivery and Information

F 1.392

P value (one tail) 0.315

F Critical value 5.3511

Delays and Information

F 0.486

P value (one tail) 0.149

F Critical value 0.1871

Table 5.8: Analysis of variances in the message passing category

Table 5.6 reports the F - test results that arise between the sets of measures

of emergence that are achieved in the stigmergic category when ant agents

are tasked to path �nd. Table 5.8 reports the F - test results that arise

between the sets of measures of emergence that are achieved in the message

passing category when ant agents are deployed to resolve the same path
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�nding problem. We further summarize these statistics in Tables 5.7 and 5.9

respectively.

F-ratio P-value Levene df P-value

variance for F-tests F(1,df) Levene Levene

speed vs quality 2.216140 0.251526 3.83640 18 0.065830

speed vs delivery 8.864560 0.003293 17.91674 18 0.000500

speed vs delays 3.098219 0.107397 2.80214 18 0.111426

speed vs information 6.370493 0.010977 7.28478 18 0.014682

quality vs delivery 4.000000 0.051003 8.94419 18 0.007843

quality vs delays 1.398025 0.625729 0.05510 18 0.817064

quality vs information 2.874590 0.131596 2.44271 18 0.135482

delivery vs delays 2.861179 0.133244 5.81984 18 0.026735

delivery vs information 1.391503 0.630538 0.93081 18 0.347436

delays vs information 2.056179 0.297890 1.47845 18 0.239723

Table 5.9: Variance comparisons in the stigmergic category

We make the following observations from these outcomes:

◦ In four stigmergic cases, we observe F - values that are lower than the

critical F - value: comparison between speed of emergence and average

delivery rate, speed of emergence and information value, average deliv-

ery rate and information value, as well as between average end-to-end

delays and information. We therefore have no evidence to reject the

null hypothesis in these sets and rather proceed to believe, at a 1%

levels of signi�cance, that the variances we see between these pairs of

sets of measures of emergence are similar.

◦ Six stigmergic cases achieved F - values that are greater than the cor-

responding critical F - value at a 1% level of signi�cance or their P
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values are less than or equal to the alpha value. We therefore have suf-

�cient statistical evidence to reject the null hypothesis (H0 : σ2
1 = σ2

2)

in favour of the alternative hypothesis (H1 : σ2
1 6= σ2

2).

◦ Two message passing cases achieved p-values that are less that the

signi�cance level (α = 0.01) that is between speed of emergence and

average delivery rate, as well as between speed of emergence and infor-

mation value. These outcomes provide reasonable evidence to reject the

null hypothesis (H0 : σ2
1 = σ2

2) in favour of the alternative hypothesis

(H1 : σ2
1 6= σ2

2).

◦ We fail to reject the null hypothesis in eight message passing cases,

implying that the variations we observe in eight of the pairs of sets of

measures of emergence in this category are not by chance.

◦ From a general point of view, most similarities in variations do not oc-

cur by chance. This observation suggests su�cient statistical evidence

for failing to reject the null hypothesis (H0 : σ2
1 = σ2

2). We are saying

that the variations we see in the sets of measures of emergence in the

message passing category show evidence of common origins. This out-

come is consistent with the correlation analyses we presented earlier

on.

5.3.4 Comparisons between means

The last tests we conduct are aimed at comparing the central tendencies

in pairs of sets of measures of emergence that are recorded in each category.

We indicated earlier on that T - tests are suitable for this purpose (comparing

means). The null hypothesis which drives the T - tests we conduct is that

there are no signi�cant di�erences between the mean measures of emergence

we observe (H0: µ1 = µ2).
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Speed and Quality

P (T <=t) one-tail 0.0000

t Critical one-tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Speed and Delays

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Speed and Delivery

P (T <=t) one-tail 0.0015

t Critical one-one tail 2.552

P (T <=t) two-tail 0.003

t Critical two-tail 2.878

Quality and Delivery

P (T <=t) one-tail 0.0021

t Critical one-one tail 2.552

P (T <=t) two-tail 0.004

t Critical two-tail 2.878

Speed and Information

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.000

t Critical two-tail 2.878

Quality and Delays

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Quality and Information

P (T <=t) one-tail 0.0064

t Critical one-one tail 2.552

P (T <=t) two-tail 0.013

t Critical two-tail 2878

Delivery and Delays

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Delivery and Information

P (T <=t) one-tail 0.221

t Critical one-one tail 2.552

P (T <=t) two-tail 0.441

t Critical two-tail 2.878

Delays and Information

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Table 5.10: Analysis of means in the stigmergic category

Two important pieces of information are important when we interpret T -

tests, namely the P - value and the signi�cance level. The P - value indicates

the strength of evidence in support of the null hypothesis. If the observed P
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Mean Mean T-value df P-value N1 N2 Std dev std dev

Group1 Group2 for T- tests Group1 Group2

speed vs quality 0.8635 0.2911 12.7672 18 0.000000 10 10 0.06529 0.12586

speed vs delivery 0.8635 0.5822 3.4214 18 0.003044 10 10 0.06529 0.25172

speed vs delays 0.8635 0.9783 -5.4929 18 0.000032 10 10 0.06529 0.01023

speed vs information 0.8635 0.5013 5.3247 18 0.000046 10 10 0.06529 0.20495

quality vs delivery 0.2911 0.5822 -3.2708 18 0.004247 10 10 0.12586 0.25172

quality vs delays 0.2911 0.9783 -17.2102 18 0.000000 10 10 0.12586 0.01023

quality vs information 0.2911 0.5013 -2.7645 18 0.012772 10 10 0.12586 0.20495

delivery vs delays 0.5822 0.9783 -4.9726 18 0.000099 10 10 0.25172 0.01023

delivery vs information 0.5822 0.5013 0.7875 18 0.441260 10 10 0.25172 0.20495

delays vs information 0.9783 0.5013 7.3504 18 0.000001 10 10 0.01023 0.20495

Table 5.11: Comparisons between means in the stigmergic category

-value is less than or equal to the signi�cance level, it is inferred that we have

su�cient statistical evidence to reject the null hypothesis (H0: µ1 = µ2)

in favour of the alternative hypothesis (H1: µ1 6= µ2). In this case, any

conclusions to accept or reject the null hypothesis is made at a 1% level of

signi�cance because the sample size we use is statistically small (10 measures

of emergence in each set).

Table 5.10 reports the T - test results that arise when we compare central

tendencies in the sets of measures of emergence that are recorded in the

stigmergic category. These statistics are further interpreted in table 5.11.

Table 5.12 reports the T - test results that arise when we compare central

tendencies in the message passing category. Similarly, these results are elab-

orated in table 5.13.
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Speed and Quality

P (T <=t) one-tail 0.0000

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0000

t Critical two-tail 2.878

Speed and Delays

P (T <=t) one-tail 0.0115

t Critical one-one tail 2.552

P (T <=t) two-tail 0.023

t Critical two-tail 2.878

Speed and Delivery

P (T <=t) one-tail 0.0058

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0116

t Critical two-tail 2.878

Quality and Delivery

P (T <=t) one-tail 0.0274

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0548

t Critical two-tail 2.878

Speed and Information

P (T <=t) one-tail 0.0222

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0444

t Critical two-tail 2.878

Quality and Delays

P (T <=t) one-tail 0.0001

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0002

t Critical two-tail 2.878

Quality and Information

P (T <=t) one-tail 0.0018

t Critical one-one tail 2.552

P (T <=t) two-tail 0.0036

t Critical two-tail 2878

Delivery and Delays

P (T <=t) one-tail 0.1437

t Critical one-one tail 2.552

P (T <=t) two-tail 0.2874

t Critical two-tail 2.878

Delivery and Information

P (T <=t) one-tail 0.229

t Critical one-one tail 2.552

P (T <=t) two-tail 0.458

t Critical two-tail 2.878

Delays and Information

P (T <=t) one-tail 0.395

t Critical one-one tail 2.552

P (T <=t) two-tail 0.790

t Critical two-tail 2.878

Table 5.12: Analysis of means in the message passing category

We make the following observations from these results:

◦ Eight out of the ten pairs of sets of measures of emergence in the

stigmergic category are in favour of the null hypothesis. We are saying
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Mean Mean T-value df P-value N1 N2 Std dev std dev

Group1 Group2 for T- tests Group1 Group2

speed vs quality 0.89516 0.272226 8.72211 18 0.000000 10 10 0.12593 0.18747

speed vs delivery 0.89516 0.54452 2.80345 18 0.011749 10 10 0.12593 0.37494

speed vs delays 0.89516 0.69550 2.47665 18 0.023416 10 10 0.12593 0.22166

speed vs information 0.89516 0.66239 2.15303 18 0.045126 10 10 0.12593 0.31785

quality vs delivery 0.27226 0.54452 -2.05386 18 0.054808 10 10 0.18747 0.37494

quality vs delays 0.27226 0.69550 -4.61033 18 0.000217 10 10 0.18747 0.22166

quality vs information 0.27226 0.66239 -3.34325 18 0.003619 10 10 0.18747 0.31785

delivery vs delays 0.54452 0.69550 -1.09616 18 0.287458 10 10 0.37494 0.22166

delivery vs information 0.54452 0.66239 -0.75832 18 0.458075 10 10 0.37494 0.31785

delays vs information 0.69550 0.66239 0.27020 18 0.790080 10 10 0.22166 0.31785

Table 5.13: Comparisons of means: message passing category

that besides observing strong correlations between the sets of measures

of emergence in this category, as well as observing similar variations

in these sets, the central tendencies in the same sets of measures of

emergence are generally identical. These properties are su�cient to

validate the stigmergic XSet as an appropriate dictionaries for achieving

path �nding behaviour in swarms of an-like devices.

◦ Seven out of ten possible pairs of sets of measures of emergence in the

message passing category are in favour of the null hypothesis. We

are similarly saying that the central tendencies we see in the mes-

sage passing category are identical. Message passing sets of measures

of emergence that are signi�cantly correlated, sets which demonstrate

similar variations and consistent central tendencies have common ori-

gins. These properties equally validate the message passing XSet as

an appropriate control toolbox for achieving path �nding behaviour in

swarms of ant-like devices.
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5.4 Conclusion of the chapter

The chapter mainly discussed the relationships that exist between di�erent

sets of measures of emergence that arise from using particular XSets for re-

solving the path �nding problem. Three statistical tests are described in

details namely correlation analyses, comparisons between means, and anal-

yses of variances. These statistics mainly relied on data that was sampled

over ten control levels. The following three results are outstanding in this

chapter:

1. Signi�cantly strong correlation coe�cients are noted between the sets of

measures of emergence that are recorded in both categories. These re-

sults justi�ed the rejection of the null hypothesis (Ho : ρ = 0) in favour

of the alternative hypothesis. Thus, there is a very small probability

that the relationships we observe between di�erent sets of measures of

emergence when particular XSets are used for resolving the path �nd-

ing problem occur by chance. Strong correlation coe�cients between

di�erent sets of measures of emergence connote similar origins of these

sets of measures, thus suggesting validity of the XSets that are used to

generate these measures of emergence.

2. Variations in the sets of measures of emergence that are recorded in

both categories showed similar trends in both categories. Similarly,

su�cient evidence was noted with which we justi�ed these similari-

ties. This outcome indicate that there are very slim chances that the

variances we see in di�erent sets of measures of emergence occur by

chance.

3. T - tests consolidated the general outcome we saw by demonstrating

similarities between the mean performances that arise in the same sets

of measures of emergence. Su�cient evidence was presented in this
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respect, also indicating that there are slim chances that the similarities

we observe between these mean performances occur by chance.

The value of this chapter is further emphasized by the following contributions:

1. To the best of our knowledge, correlation analyses, comparisons be-

tween means, as well as analyses of variances are innovative and novel

approaches for validating ant agent XSets. Similar validation tools can

be used in other agent control architectures in the �eld.

2. The validation processes we present in this chapter can be followed

when we want to compare di�erent agent models with regards to the

quality of the outcome they achieve.

In the next chapter, we extend the application of the path �nding XSets to the

multiple target problem, primarily investigating the e�ects of manipulating

some of the variables we stated as controlled variables in this chapter.



Chapter 6

Multiple Targets Location

6.1 Introduction

Ten discrete candidate primitive behaviours of foraging ant-like agents were

proposed in Chapter 3. Inspired by related works in the literature, each of

these candidate primitive behaviours was described and designed in algo-

rithmic form in order to depict the implementation issues of the primitive

behaviour in computational terms.

Chapter 4 went on to present mechanisms in which these discrete primitive

behaviours are put together into useful collections which, in this work, are

called XSets. Collections of XSets are proposed which de�ne genetic popu-

lations and search spaces for best performer XSets for particular purposes.

Thus, the concepts of XSets, notation, and the structure of XSets, mecha-

nisms in which XSets are created and evaluated, motivation for using the

XSets method, techniques for creating diverse initial genetic populations of

XSets, representation and storage of XSets in genetic populations, mecha-

nisms in which ant agents use XSets, as well as mechanisms in which new

220
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genetic populations of XSets are evolved over time were discussed in details

in Chapter 4.

To augment the discussions thereof, Chapter 4 went on to design and admin-

ister an experiment in which we generated the initial genetic population of

XSets in the stigmergic, message passing, and hybrid categories with the goal

of identifying the XSets in these genetic populations with abilities to allow

swarms of ant-like agents to deliberately engineer desired emergent behaviour

- particularly addressing a case study scenario of path �nding swarms. Mech-

anisms were put in place with which to quantify the extent to which emergent

behaviour is manifest (path �nding) as a result of using each particular XSet

in the genetic population at the time. These evaluations (association of in-

dices of merits to each XSet in the genetic population) formed the basis for

selecting parent XSets for crossover operation, mutation, or promotion .

XSets in di�erent generations were successfully ranked using indices of mer-

its and parents XSets were successfully chosen whenever they were required.

At the end of the genetic evolution limit, particular XSets were identi�ed

which best describe languages for allowing swarms of ant agents to deliber-

ately engineer predictable emergent behaviour. The composition of of these

best performer XSets were explicitly stated, as well as reports regarding the

performances of swarms of ant agents that used these XSets.

Identi�cation of particular XSets as best performer XSets motivated the work

that is presented in Chapter 5. Precisely, the goal of Chapter 5 has been to

statistically verify the relationships that exist between the sets of measures of

emergence that were reported when these best path �nding XSets were used.

It seeks to evaluate and test sets of measures of emergence for normality,

validity, and reliability.

We demonstrated that all sets of measures of emergence that were reported
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Figure 6.1: The concept of multiple targets

from the experiment that was administered in Chapter 4 passed tests for nor-

mality (see section 5.3.1). The same sets of measures of emergence demon-

strated clear correlation between pairs of sets of measures of emergence that

were extracted from the same category (see section 5.3.2). These measures

also demonstrated similar variations (see section 5.3.3) and common mean

performances over time (5.3.4). Collectively, Chapter 5 validated and justi-

�ed the results thereof.

The purpose and motivation for the work that is presented in this Chapter

(Chapter 6) emanates from the validations that are presented in Chapter 5.

Having passed normality tests, we seek to investigate the properties of the

same best path �nding XSets for abilities to solve emergent problems beyond

path �nding. Precisely, can ant agents under the control of these best path

�nding XSets achieve other forms of emergent behaviour? Our hope is that,
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if these XSets can be adapted to deliberately cause other forms of emergent

assemblies, then these XSets can potentially form the basis and building

blocks of ant agent languages for deliberate engineering of other emergent

object assemblies in the future.

We particularly assess the abilities of best path �nding XSets for allowing

another case study scenario of emergent behaviour, particularly multiple tar-

gets location. In this context, multiple targets are collections of adjacent

cells of the environment in which target indicators are set. It refers to more

than one cell of the environment containing target indicators, cells where

ant agents would acknowledge successful target search and �ip from the seek

mode to the return mode (see Figure 3.4 for a detailed illustration of the con-

cept of ant agent internal states). Therefore, in these cases, some of the �elds

of the tuples that hold information at these cells are designed to record the

concentration of target indicators. Figure 6.1 illustrates an arbitrary setup

and example of our contextual view of the arrangement of multiple targets.

In Chapter 4, we also administer experiments which investigate the e�ects of

di�erent variables that were controlled in previous experiment (variables that

were kept constant). First, we assess the e�ects of varying agent densities to

the indices of merits of best performer XSets. We also assess the in�uences

brought about by including or excluding each primitive behaviour in these

XSets. Likewise, an experiment is administered which evaluated the e�ects of

altering the sequences in which primitive behaviour are arranged in these best

controller XSets. The last experiment assesses the extent to which pheromone

dissipation controls enhance emergent behaviour in the stigmergic category.

6.1.1 Problem statement

The question which drives the research and the experiments we administer in

this chapter is the desire to investigate the extent to which best path �nding
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XSets can allow multiple targets location as another example of a di�erent

form of deliberate emergent behaviour. We can break this question into two

tasks as follows:

1. Evaluation of best path �nding XSets for allowing multiple targets lo-

cation - In resolving this task, we administer an experiment in which

we evaluate the indices of merits of best path �nding XSets for allow-

ing multiple targets location. Nine di�erent multiple targets setups

are proposed. As a result, swarms of ant agents of each category are

deployed in these evaluation environments and their performances are

reported. These performances are recorded for future comparisons with

related path �nding performances. In addition, evidence of successful

multiple targets location are similarly gathered using tests for normal-

ity, correlation analyses, analyses of variances, comparison between the

means, as well as using visual screenshots of the successes or failures

of the swarms. Our motivation for selecting the particular design of

multiple targets setups is described in details in section 6.3.

2. What aspects of best path �nding XSets in�uence general emergent be-

haviour? - This question requires us to investigate the e�ects of dif-

ferent controlled variables of the previous experiment. Precisely, it re-

quires us to administer the four experiments referred to in the previous

section.

Responses to these two tasks, presentation of the results yield from the �ve

experiments, as well as the analyses thereof may potentially open up new

research avenues in the �eld.



CHAPTER 6. MULTIPLE TARGETS LOCATION 225

6.1.2 Overview of the chapter

The rest of the sections of this chapter proceed as follows: First, we describe

the multiple targets location problem within the context of this thesis (see

section 6.2 for this aspect of the study). Then we motivate for the evaluation

environments which we use for testing swarms of ant agents' abilities to allow

multiple targets location (in section 6.3 for this aspect of the thesis).

The bulk of the work that is present in this chapter relates to the design

of the �ve experiments we propose, along with the results which report the

indices of merits of best path �nding XSets for multiple targets location (see

section 6.4 for this aspect of the chapter). We close this chapter in section 6.5,

highlighting the observations and its contributions to the thesis and board

of knowledge.

6.2 The multiple targets location problem

The motivation for the multiple targets location problem is to challenge path

�nding swarms of ant agents to solve a new class of emergent problems. This

problem involves deploying swarms of ant agents in speci�c evaluation envi-

ronments where groups of adjacent cells (locations) are marked with target

indicators as a region of goals. Each of these adjacent cells (locations) de�ne

a region at which ant agents can acknowledge successful target search by

�ipping to the return internal state (see Figure 3.4 for a detailed illustration

of the concept of ant agent internal states). In our context, ant agents ac-

knowledge successful target search by leaving yellow marks on these regions

of cells that contain target indicators before they commence return trips (see

Figure 4.13 for this aspect of the work).

Ant agents are similarly deployed in the default seek mode (see Figure 3.4 for

a detailed illustration of the concept of ant agent internal states). Likewise,



CHAPTER 6. MULTIPLE TARGETS LOCATION 226

initial placement of ant agents into the environment is random (distributed)

in order to avoid the emergence of undesired local maximas in which clusters

of ant agents may get trapped on sub-optimal solutions.

We indicated in the previous experiment (see section 4.5.2 for this aspect of

the thesis) that the placement of the starting point and that of the centre

of the region that is occupied by multiple targets are hard-coded at �xed

positions on the environment in order to achieve fair experimental outcomes

when we compare the performances of swarms of ant agents that used di�er-

ent XSets (see section 4.3.3 for this aspect of the study). We also indicated

that variation of the position of the starting point and that of the centre of

the region that is occupied by multiple targets is not a subject of study in

this work since environment complexity is not an agent level parameter of

emergence.

In this chapter (meaning Chapter 6), the goal of the swarms of ant agents

that are deployed under the control of each best path �nding XSet is to locate

these multiple targets, and score performances in this regard. Upon hitting

the regions of multiple targets, ant agents would �ip to the return internal

state (see Figure 3.4 for a detailed illustration of the concept of ant agent

internal states) and commence return trips towards the starting point. On

arriving at the starting point, the same ant agents would �ip back to the

search internal state and commence the search trips all over again. Ideally,

these up and down movements between the starting point and the region of

multiple targets are repeated for as many times as possible within the set

time frame.

The design of the ant agents is not changed regarding memory (see sec-

tion 3.2.4.1), internal states (see section 3.2.4.2), and any other abilities (see

section 3.2.5). These ant agents are neither aware of the locations of the

multiple targets, nor are they aware of the global outcome that would arise

as the emergent behaviour of the swarm. They neither have any clue of the
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direction towards the multiple targets, nor knowledge of the direction to-

wards the starting point. Each ant agent continues to use local information

to decide on any actions thereof.

6.3 De�nition of environments

The choices of the design and setups of multiple targets on the evaluation

environments is motivated by various works in the literature. We cite a

number of examples of similar scenarios where multiple targets have been

layed down in triangular setups, rectangular setups, or many other multiple

targets setups. Thus, the aim of this section is to justify that this is not

the �rst time laying out multiple targets in the form of geometric shapes has

been considered. For example, self-assembling shapes that are based on circle

growth principles have been proposed for locating cross-like multiple targets

(Nagpal et al., 2002) (see Figure 6.2(a) for the setup of cross-like multiple

targets).

Similarly, sca�olding DNA origami has successfully been used to locate and

mark triangular, rectangular, and even star shaped multiple targets setups

(Rothemund, 2006). More polygonal multiple targets have also been reported

in the work of Werfel (2002). We refer the reader to the following sources for

more examples of works in which multiple targets are laid out in geometric

shapes: Kaewkamnerdpong et al. (2007), Seevinck and Edmonds (2008),

Mason (2002), Burke and Kendall (1999), Parrish et al. (2001), Couzin and

Franks (2002), Butera (2002), Eyiyurekli et al. (2013), Bai et al. (2008),

Kondac (2003), and Nagpal (2006).

Inspired by these many examples of multiple targets setups, we propose nine

arbitrary case study scenarios in which multiple targets are arranged in the
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(a) Cross-like multiple targets setup (b) Four-way cross setup

(c) Triangular multiple targets setup (d) Rectangular multiple targets setup

(e) Pentagonal multiple targets setup (f) Hexagonal multiple targets setup

(g) Heptagonal multiple targets setup (h) Octagonal multiple targets setup

Figure 6.2: Multiple targets setups
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form of cross structures, four-way cross structures, triangles, rectangles,

polygonal structures, as well as circular shapes. These nine case study sce-

narios are selected as merely proofs of concept. From observations, these are

a su�ciently large sample of examples from which the properties sought in

the XSets we study can be revealed.

Figure 6.2 shows the arrangements of multiple targets in eight of the evalu-

ation environments we propose. The blue dots we see in these screen shots

indicate the cells which contain target indicators (where ant agents would

leave yellow spots when they detect target indicators). Note that the number

of targets that are involved in each design decision are calculated di�erently

depending on the shapes that arise when the continuous regions of targets

are marked. That numbers depends on the radius of the region of targets, R,

the number of sides of the shape, n, the length of each side, s, as well as the

width of the edges of the regions of targets, w. We mathematically deduce the

number of targets on each polygonal region to be 1
2
nsw. However the number

of targets arranged in a cross shaped pattern are (length+width of environ-

ment), while that of the targets arranged in a four-way cross shaped pattern

are (2 × (length + width) − 4). In circular regions, there are π(w2 − 2Rw)

targets.

6.4 Experiments and Results

The main hypothesis which drives the research and experiments we admin-

ister in this section is that there are no signi�cant relationships between the

sets of measures of emergence that are achieved when best XSets are used

for path �nding purposes, and the sets of measures of emergence which arise

when the same XSets are used for multiple targets location (H0 : ρ = 0),

where ρ is the population correlation value. This hypothesis suggests that
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the sets of measures of emergence we see in these two case study scenarios

connote path �nding XSets as problem speci�c.

In the event of H0 being tested and falsi�ed, we further hypothesize that

there are neither signi�cant di�erences between the variations we see in the

same data sets (H0 : σ2
1 = σ2

2), nor are there signi�cant di�erences between

the mean performances thereof (H0 : µ1 = µ2). The motivation for these

choices of null hypotheses stems from known propositions in statistics that

one can only falsify statements but cannot prove them - hence the negativity

we impose in the formulation of hypotheses (Lohr, 2010).

To test this hypothesis, we assess the relationships that exist between sets

of measures of emergence that are achieved when the best performer XSets

are used for path �nding behaviour, with the sets of measures of emergents

that arise when the same best XSets are used for multiple targets location.

Precisely, we investigate the correlation coe�cients between the data sets

that arise in these two scenarios. We also assess similarities in variances and

means. Like in the previous experiments, the validity of the results we report

rely on replicated simulations of the same experiments for a number of times

in order to report centrally placed performances.

Note that our concern in this work is not to compare the outcomes of swarms

with regard to the quality of the product or throughput as emphasized on

in traditional ant based models. Rather, we are concerned with the reverse

aspect of ant simulations, investigating the sources of emergency. We want

to demonstrate that there exist explicit collections of primitive behaviours

(that are used at ant agent individual levels) which describe a language for

programming ant-like devices towards deliberate and predictable emergent

behaviour. The �ndings sought are the identi�cation of explicit XSets and

their composition (not the performances of swarms of ant agents as in the

traditional cases). These investigations are at preliminary stages (de�ning

baseline studies upon which more researches on the XSets methodology would
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arise) such that any evidence of an understanding of the origins of emergency

is su�cient (hence the reason why this work is not compared to traditional

techniques and outcomes).

6.4.1 Experiment 1: Multiple Targets Location

The two key questions we respond to in this experiment are as follows: (a)

are path �nding XSets problem speci�c? (b) Can path �nding XSets allow

multiple targets location? In answering these two questions, our goal is to

further understand the properties of path �nding XSets, properties which

give rise to deliberate and predictable emergent behaviour. We assess these

properties on a di�erent problem domain which involves multiple targets

location. To the best of our knowledge, this is the �rst time explicit XSets

have been investigated for these properties on such a problem task. The

procedure we follow in order to answer the questions posed in this section is

summarized in the experiment design that is presented in Figure 6.3 in the

next section.

6.4.1.1 Experiment Design

The purpose of this experiment is to compare the sets of indices of merit

that are reported in Table 4.2 with the sets of indices of merit that arise

when best path �nding XSets are used for multiple targets location. Our

hypothesis is that there are insigni�cant relationships between these data

sets (H0 : ρ = 0). The motivation for this choice of null hypothesis has been

explained to stem from known propositions in statistics that one can only

falsify claims but cannot not prove them (Lohr, 2010).

Three classes of variables arise in this experiment. The main dependent

variable (the variable we measure in the experiment) are the indices of merit
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Title: To compare indices of merits that are achieved during path �nding, to those that are achieved
when the same best XSets are tested for allowing multiple targets location.

Hypothesis: there are no relationships between the sets of indices of merits that are observed during
path �nding and those that arise when the same XSets are tested for allowing multiple targets
location.

Dependent variable : average indices of merits that are achieved at the control levels we consider.

Independent variables : time in simulation, targets setups, control levels, number of replications.

Controlled variables: agent density (5000), environment size (100 × 100), position of starting point
(�xed), centre of the region of targets (centre of environment), XSets (best path �nding perform-
ers), dissipation rates (0%), radius of region of targets (�xed), sequence of primitive behaviours
in XSets (�xed), number of perceivable levels of pheromone (max. of 5), number of perceivable
vectors (max. of 4), internal states(search, return, on target, on starting point).

Procedure - Generator functions are invoked which load the parameters of the selected evaluation
environment. The region of targets is initialized with target indicators. Starting point is set.
An XSet is selected between the stigXSet and msgXSet. Swarms of ant agents are deployed at
random locations on the environment. Performances are scored and reported at speci�c control
levels. Average indices of merits are computed over ten replications. These average indices of
merits are the basis for statistical comparisons sought . The algorithm below summarizes this
procedure.

foreach multiple targets setup

initialize environment parameters

foreach category of XSets

repeat

deploy a swarm of 5000 ant agents

score performances as follows:
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until 10 replications

next category

next multiple targets setup

end experiment

Figure 6.3: The design of experiment 1
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of XSets when ant agents are tasked to locate multiple targets. These indices

of merit are required for comparisons with the results reported in Chapter 4 in

Table 4.2. We also require these sets of indices of merit for statistical analyses

including correlation tests, analyses of variations, as well as comparisons

between means for validation purposes.

Time in simulation remains the key independent variable of the experiment

(the variable we manipulate and monitor). We indicated that time is mea-

sured in iterations (see Figure 6.3 for the period that is allowed for this

variable). In this experiment, we also manipulate and monitor multiple tar-

gets setups (see Figure 6.2 for these setups), control levels (see Figure 6.3

for the control levels we monitor), and the number of replications that are

administered on each experiment in order to achieve centrally placed indices

of merit at di�erent control levels.

A number of controlled variables are also required. On top of the list is the

agent density (which remains set at a default level of 5000 ant agents in order

to achieve comparable results to the results reported in Chapter 4 in Table

4.2). We also keep the environment size controlled (which remains set as a

100 × 100 grid). The position at which the starting point is set, as well as

the centre of multiple targets remain controlled as well.

Another controlled variable of this experiment is the con�guration of the

XSets we use. We repeatedly use the best path �nding XSets for all the

tests we administer with the goal of verifying their application on di�erent

problem domains. Pheromone dissipation e�ects in the stigmergic category

are also kept constant (at 0%), the same way as agent density and the se-

quence of primitive behaviours in the XSets. However the e�ects of most of

these controlled variables are investigated in upcoming experiments in this

Chapter.

Upon running this experiment, we �rst invoke environment generator func-

tions which incorporate target indicators in speci�c cells of the environment.
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The same generator functions handle the placement of the starting point.

Best path �nding XSets are inputs to this experiment, which control the

actions of ant agents over time. Precisely, swarms of 5000 ant agents are

deployed in selected evaluation environments in order to score performances

for allowing speci�c multiple targets location. Similarly and in line with the

setup of the experiment administered in Chapter 4 Section 4.5.2, the scor-

ing time is limited to an arbitrary period of 10000 iterations, and measures

of emergence are extracted in every 1000th iteration. We indicated earlier

on that this is a su�ciently long simulation period to reveal the properties

sought in the XSets we study.

We also repeat the same experiment for ten replicated simulations in order

to report indices of merit that are averaged over ten trials. In each case,

standard deviations are tracked which justify the reliability of the outcomes

we report. These averaged indices of merit that are reported at di�erent

control levels are the results we statistically compare with the results reported

in Chapter 4 in Table 4.2.

6.4.1.2 Results from experiment 1

Figure 6.4(a) plots the average indices of merit that are achieved when the

best stigmergic XSet was used for allowing multiple targets location on var-

ious evaluation environments. Similarly, Figure 6.4(b) plots the average in-

dices of merit that are achieved when the best message passing XSet was

used for the same purposes.

Of interest in these results are the general trends that arise in the changes

we observe in the average indices of merit over time. An overlapped high

level trend curve shows that best performer XSets in the stigmergic category

allow swarms of ant agents to improve in performances early in simulation

time until a threshold turning point is reached, after which the model starts
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(a) Stigmergic XSets (b) Message passing XSets

Figure 6.4: Average indices of merits

to degrade. We indicated the reason for this trend in section 4.5.3.3 as related

to the levels of pheromones that are dropped onto the environment reaching

a point when they saturate the environments.

On the contrary, best performer XSets in the message passing category con-

sistently show upward trends, which indicates that the XSet successfully

propels swarms of ant agents towards deterministic paths. We explained

the reason for these upward trends to be associated with the emergence of

deterministic vector �elds (see section 4.5.3.3 for similar observations).

Correlation analyses in our context, quantify the strength of association

between two data sets (Francis, 1990). Our null hypothesis in these analyses

is that there are no relationships between the sets of indices of merit that are

reported in this experiment and the sets of indices of merit that are reported

in Chapter 4 in Table 4.2.



CHAPTER 6. MULTIPLE TARGETS LOCATION 236

C
ro
ss

F
o
u
r
w
ay

cr
o
ss

T
ri
a
n
g
le

R
ec
ta
n
g
le

P
en
ta
g
o
n

H
ex
a
g
o
n

H
ep
ta
g
o
n

O
ct
a
g
o
n

C
ir
cl
e

StigPath �nding 0.033 0.175 0.177 0.169 0.118 0.128 0.188 0.264 0.242

MsgPath �nding 0.972 0.969 0.961 0.957 0.960 0.965 0.963 0.970 0.975

Table 6.1: Correlation coe�cients

We similarly choose an alpha value of α = 0.01 because the samples we use of

10 outcomes (taken from the 10 control levels) are statistically small. Two-

tailed correlation tests are recommended because we do not know the signs

of the correlation coe�cients we will get. Francis (1990) gives the critical

correlation value of 0.765 when N = 10 and α = 0.01. This is the minimum

correlation coe�cient we can expect in order to conclude that the correlation

coe�cients we get are not by chance.

Table 6.1 reports the correlation coe�cients we get when we compare the in-

dices of merit reported in Table 4.2 and the indices of merit that are achieved

when best XSets in each category are used for multiple targets location. For

example, the value of 0.033 which is reported in the second row and the

second column of Table 6.1 indicates the correlation coe�cient which arises

between sets of indices of merit that are report in Table 4.2 under the stig-

mergic category, and the sets of indices of merits that arise when swarms of

stigmergic ant agents are deployed in an environment where multiple targets

are arranged in the form of cross structures (see Figure 6.2 for the setup of

environments in which targets are set in a cross shaped pattern).

The correlation coe�cients we observe in the stigmergic category are all

below the critical correlation value of 0.765. This observation implies that,

in this case, we fail to reject the null hypothesis that there are no signi�cant

relationships between the indices of merit that arise when stigmergic XSets
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are used for path �nding purpose and the indices of merit we observe when

the same XSets are used for multiple targets location. This outcome suggests

that any relationships we may see between these data sets are merely by

chance, connoting stigmergic XSets as problem speci�c or rather, specialist

XSets.

We can explain the outcome in the previous paragraph to be associated

with the way in which shared memories arise in this category. Precisely,

placement of speci�c levels of pheromones on the environment when swarms

of ant agents path �nd promotes the emergence and development of narrow

but highly attractive paths between the starting point and the target. On the

contrary, wider and weaker paths arise when multiple targets are considered

because ant agents have more path options towards evenly accessing the

multiple targets within the set time limits. We conclude that the indices

of merit of stigmergic XSets are sensitive to the number of the multiple

targets, as well as sensitive to the radius of the region where multiple targets

are placed. In this case, few and closely packed multiple targets allow the

emergence of narrower and stronger paths that would share relationships

with the outcomes of path �nding XSets in Table 4.2.

However although the �ndings that are reported in these observations con-

note weak relationships between path �nding outcomes and the performances

that are achieved during multiple targets location in the stigmergic category,

we cannot make any conclusive remarks regarding these relationships since

this is only one statistical outcome which is not su�cient evidence in to

accept or refute the overall hypothesis.

The correlation coe�cients we observe in the message passing category are all

above the critical correlation value. Statistically, we have su�cient evidence

to reject the null hypothesis in favour of the alternative hypothesis (signi�cant

relationships are observed between pairs of sets of indices of merit in the

message passing category).
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Four-way cross 0.967

Triangle 0.963 0.915

Rectangle 0.968 0.998 0.927

Pentagon 0.976 0.939 0.996 0.948

Hexagon 0.952 0.925 0.985 0.933 0.989

Heptagon 0.937 0.901 0.979 0.911 0.979 0.990

Octagon 0.874 0.832 0.946 0.839 0.936 0.962 0.968

Circles 0.875 0.838 0.947 0.845 0.938 0.963 0.968 0.998

Table 6.2: Correlations: multiple to multiple targets (stigmergic)

We can explain the outcomes we see in the previous paragraph as follows:

The ability of message passing ant agents to hold directional information in

their memories allows ant agents to globally develop vector �elds which they

can follow and rely on unconditionally regardless of the number of targets

that are set on the environment. The strength of a path an ant agent follows

is held in the ant agent's memory. The ant agent's knowledge is problem

independent. Overall, message passing XSets are insensitive to the number of

the multiple targets set, as well as insensitive to the radius of the region where

multiple targets are placed. The �ndings we present from the message passing

category provide su�cient statistical evidence to reject the null hypothesis in

favour of the alternative hypothesis. These �ndings connote slim chances that

the relationships we see in these data sets occur by chance. Thus, message

passing XSets are viewed as problem independent. However we do not make

conclusive remarks, as yet, because this is just one statistical outcome which

requires further investigations before we con�rm the observations we make.
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Four-way cross 0.999

Triangle 0.999 0.999

Rectangle 0.999 0.999 0.999

Pentagon 0.996 0.995 0.998 0.998

Hexagon 0.996 0.995 0.996 0.997 0.999

Heptagon 0.999 0.999 0.999 0.999 0.998 0.998

Octagon 0.999 0.999 0.999 0.999 0.996 0.996 0.999

Circles 0.999 0.999 0.997 0.998 0.995 0.995 0.998 0.999

Table 6.3: Correlations: multiple to multiple target (message passing)

Table 6.2 and Table 6.3 present correlation coe�cients that arise between the

indices of merit that are reported when we compare the outcomes of the best

stigmergic XSet when it was used for multiple targets location. For example,

the value of 0.999 which is reported in Table 6.3 in the second row and second

column is the correlation coe�cient that arises between the sets of indices

of merit that are recorded when message passing swarms are deployed in

environments where multiple targets are arranged in the form of crosses, and

the sets of indices of merits that are recorded when message passing swarms

are deployed in environments where multiple targets are arranged in the form

of four-way crosses (see Figure 6.2 for these target setups).

In both cases, signi�cantly strong correlation coe�cients are observed be-

tween the sets of indices of merit in each category when best XSets are used

for multiple targets location. In this case, the null hypothesis is penalized in

favour of the alternative hypothesis (signi�cant relationships exist between

di�erent sets of indices of merit that arise when ant agents work towards mul-

tiple targets location). This is the case in the stigmergic category because
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the setups of multiple targets are similar with regards to numbers and dis-

tribution. This outcome contradicts with our previous observation regarding

stigmergic XSets being problem speci�c. Rather, it suggests that stigmergic

XSets are sensitive to the number and spread of multiple targets but not

problem speci�c. As a result, we also hold on to any conclusive remarks

regarding the validity of the relationships we observe until we establish the

outcomes of other statistical analyses.

Analysis of variances in our context, compare the variations in sets of

indices of merit that are recorded in di�erent data sets. They tell us how sig-

ni�cantly di�erent the sets of indices of merit in two data sets are dispersed.

Sets of indices of merit whose variances are signi�cantly di�erent imply that

the XSets thereof are problem speci�c. They imply that the indices of merit

we compare are not of similar origins. Therefore the null hypothesis we pro-

pose in these tests states that there are no signi�cant di�erences between

the variances we observe in sets of indices of merit that are achieved under

di�erent problem domains. The motivation for this hypothesis similarly arise

from known statistical propositions of being able to falsify rather than prove

claims (Lohr, 2010).

Similarly, an alpha value of α = 0.01 is used because the samples we use

are statistically small (taken from the 10 control levels). We indicated in

Chapter 5 that F - tests are suitable for these comparisons.

Table 6.4 presents the F - test outcomes that are yield between the sets of

indices of merit that arise when swarms of ant agents path �nd using the best

performer XSets and the indices of merit that are observed when multiple

targets are considered using the same XSets. The critical F - value in the

stigmergic category that is read from statistical tables is 0.1659. This is the

largest F - value we require in order to accept the null hypothesis. On the

other hand, the critical F - value in the message passing category is observed
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Stigmergic 0.292 0.194 0.668 0.207 0.525 0.558 0.583 0.884 0.884

Message passing 1.321 1.397 1.325 1.292 1.416 1.467 1.363 1.589 1.379

Table 6.4: F - tests : single vs multiple targets
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Four-way cross 0.64

Triangle 2.28 3.56

Rectangle 0.68 1.05 0.29

Pentagon 1.79 2.80 0.78 2.66

Hexagon 1.90 2.97 0.83 2.82 1.06

Heptagon 1.99 3.11 0.87 2.95 1.11 1.04

Octagon 3.02 4.70 1.32 4.46 1.67 1.58 1.51

Circles 3.02 4.71 1.32 4.47 1.68 1.57 1.52 1.00

Table 6.5: F-tests : multiple to multiple targets (stigmergic)
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Four-way cross 1.06

Triangle 1.06 1.00

Rectangle 1.04 0.97 0.97

Pentagon 1.15 1.08 1.08 1.11

Hexagon 1.15 1.08 1.08 1.11 1.00

Heptagon 1.08 1.01 1.01 1.04 0.94 0.94

Octagon 1.21 1.14 1.13 1.17 1.05 1.05 1.12

Circles 1.02 0.96 0.96 0.98 0.89 0.88 0.95 0.84

Table 6.6: F-tests : multiple to multiple targets (message passing)
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to be 6.0289, indicating the largest F - value we require in order to accept

the null hypothesis in this category.

Generally, stigmergic F - values are bigger than the critical F - value. This

implies that the variances we observe in the sets of indices of merit thereof

are signi�cantly di�erent from those we see when multiple targets are consid-

ered. This outcome is consistent with the outcome reported in the correlation

analyses on the same data sets. Thus, we also lack evidence to accept the

alternative hypothesis and rather continue to believe that there are no rela-

tionships between the indices of merit that are reported when ant agents path

�nd, and when multiple targets are considered using stigmergic XSets. We

noted earlier on that this outcome is related to the sensitivity of stigmergic

XSets to the number of multiple targets, as well as the radius of the region

on which multiple targets are set.

On the contrary, the F - test results we observe in the message passing

category are all smaller than the corresponding critical F - value. This implies

that the variances we observe in the sets of indices of merit thereof are similar

to one another when path �nding or locating multiple targets. These results

are also consistent with the outcome reported in correlation analyses. We

justi�ed this outcome as arising from the insensitivity of message passing

XSets to the number of multiple targets, and the radius of the region on

which multiple targets are set. Similarly, we lack su�cient evidence to reject

the hypothesis that message passing XSets are, in fact, problem independent.

Table 6.5 and Table 6.6 show the F-test results that are yield when we com-

pare pairs of sets of indices of merit that are taken from the same category

when multiple targets are considered. We note that triangular setup of mul-

tiple targets yield signi�cantly di�erent indices of merit to the rest in the

stigmergic category. This is explained by the depletive nature of complex

environments to the stigmergic model.
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Message passing XSets achieve equally bad variations when circular multiple

targets are considered. We explain this outcome to arise from the geometry

of circular regions of targets which di�ers from the geometries of the rest of

the targets con�gurations we consider. The results we see in the F - tests

connote problem independence in these XSets. However, the same results

re-iterate sensitivity to the con�guration of the multiple targets regions.

Mean compares the central tendency between two data sets. In this case,

it establishes the degrees of similarities between two sets of indices of merit.

Our null hypothesis is that the mean indices of merit of path �nding XSets

are similar to the mean indices of merit that are yield when multiple targets

are considered. We indicated in Chapter 5 that T - tests are suitable for

comparisons between means. Two tailed T - tests are recommended because

the possible alternative hypotheses are not directional (Lohr, 2010).

The P - values we achieve in T - tests indicate the strength of evidence

in support of the null hypothesis. If the P - value we get is greater than

the signi�cance level (which in this case is α = 0.01), then we do not have

su�cient evidence to reject the null hypothesis. Comparisons between means

requires us to assume similar or di�erent variances upfront. Our stigmergic

F - test results reported signi�cantly di�erent variations, thus allowing us

to conduct all the T - tests in this category assuming di�erent variances.

Message passing F - tests reported similar variations in the indices of merit

thereof, thus allowing us to conduct T-tests assuming similar variances.

Table 6.7 reports the T - tests results we achieve when we compare the indices

of merit that arise when swarms of ant agents path �nd and when multiple

targets are considered. Thereafter, Table 6.8 and Table 6.9 respectively re-

port the T - tests results that are achieved between the indices of merit of

XSets when only multiple targets are looked at.
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Stigmergic 0.299 0.255 0.768 0.345 0.594 0.575 0.484 0.596 0.824

Message passing 0.888 0.827 0.804 0.873 0.826 0.824 0.880 0.810 0.924

Table 6.7: T - tests: single vs multiple targets
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Four-way cross 0.817

Triangle 0.371 0.312

Rectangle 0.984 0.845 0.426

Pentagon 0.528 0.430 0.767 0.567

Hexagon 0.537 0.437 0.745 0.576 0.982

Heptagon 0.620 0.499 0.624 0..651 0.861 0.876

Octagon 0.469 0.385 0.785 0.519 0.953 0.931 0.796

Circles 0.317 0.273 0.913 0.378 0.682 0.658 0.536 0.685

Table 6.8: Stigmergic T-tests

C
ro
ss

4
w
ay

cr
o
ss

T
ri
a
n
g
le

R
ec
ta
n
g
le

P
en
ta
g
o
n

H
ex
a
g
o
n

H
ep
ta
g
o
n

O
ct
a
g
o
n

Four-way cross 0.926

Triangle 0.897 0.971

Rectangle 0.982 0.943 0.915

Pentagon 0.927 0.998 0.969 0.944

Hexagon 0.923 0.999 0.971 0.941 0.997

Heptagon 0.991 0.933 0.904 0.991 0.933 0.931

Octagon 0.907 0.983 0.986 0.925 0.981 0.984 0.914

Circles 0.955 0.880 0.852 0.937 0.879 0.877 0.946 0.861

Table 6.9: Message passing T-tests
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All the P - values we observe from using the two categories of XSets are bigger

than the signi�cance level of α = 0.01. However although stigmergic indices

of merit are generally above the signi�cance level, they are still relatively

close to the rejection zone. Indices of merit that are reported in the message

passing category are signi�cantly larger than the signi�cance level. These

results indicate lack of evidence to reject the null hypothesis in both cases,

implying that the mean performances we observe in the indices of merit in

both categories are similar.

6.4.1.3 Observations

We point out the most outstanding observations that arise from the results

hereto. At the top of the list is the observation that the message passing

XSets are more problem independent than the stigmergic counterparts. Pre-

cisely, stigmergic XSets show signs of sensitivity to the number of multiple

targets while message passing XSets are generally insensitive to this aspect.

Similarly, stigmergic XSets are sensitive to the spread or radius of the region

covered by multiple targets while the message passing counterparts are not.

We expand this observation as follows:

◦ Although relationships are weak between the sets of indices of merit

that are observed when stigmergic XSets are used, visual evidences

of successful targets search show fairness in the distribution of hits

on multiple targets setups (see the visual outcomes that are shown

in Figures 6.5 to 6.13 as proof of arrivals of ant agents on multiple

targets). In these screenshots, ant agents that are isolated are marked

in red. The spots at which successful ant agents hit the targets are

marked by the yellow spots.

◦ Relatively more message passing ant agents are marked as isolated than

the stigmergic counterparts (see Figures 6.5 to 6.13). This observation
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is consistent with what we saw in Chapter 4 in Figure 4.13. We ex-

plained that this outcome is related to the way in which swarm infor-

mation is held in the system. The stigmergic model uses cell tuples as

containers of both attractive and repulsive levels of pheromone. Repul-

sive levels in particular, propel ant agents away from their current po-

sitions, thereby enhancing navigational abilities. This way, ant agents

are rarely trapped on sub-optimal solutions. This property on its own,

increases stigmergic ant agents' chances of converging. On the other

hand, message passing ant agents may degrade in con�dence when they

are isolated, until the are trapped in false direction vectors which they

would continue to follow unconditionally. As such the stigmergic model

is more fault tolerant and robust than the message passing model.

◦ Stigmergic XSets generally gain in �tness levels with time in simulation

until some turning point is reached (see Figure 6.4 regarding these

�tness trends). Key in this observation is that the scoring time we

allow swarms in simulation has a bearing on the indices of merit and the

general quality of emergence thereof. Precisely, less time in simulation

is detrimental because insu�cient levels of pheromone are built on the

environment in order to guide ant agents towards the targets sought.

On the contrary, more time in simulation depletes the paths that arise

when excess levels of pheromone saturate the environment. Thus, users

may be required to set appropriate simulation time limits upfront. Such

time limits are however a function of agent density, environment size,

target size, dissipation factors, as well as the distances between the

targets and the starting point. More experiments which investigate the

e�ects of each of these factors to the indices of merit of XSets in this

category are motivated from this observation.

◦ Message passing XSets equally gain in �tness levels with time in simula-

tion (see Figure 6.4). Time in simulation remains the key independent



CHAPTER 6. MULTIPLE TARGETS LOCATION 247

variable which determines how high the indices of merit go. Low in-

dices of merit are observed early in simulation time because ant agents

have not built con�dence in the geometric vectors they follow. How-

ever message passing ant agents can even create deterministic paths if

they are allowed enough time in simulation. Similarly the time message

passing ant agents spend in simulation has a bearing on the indices of

merit of the XSet thereof. The same time is also a function of agent

density, environment size, target size, as well as the distances between

the targets and starting points.

(a) Stigmergic cross (b) Message passing cross

Figure 6.5: Creating cross structures
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(a) Stigmergic four-way cross (b) Message passing four-way cross

Figure 6.6: Creating four-way crosses

(a) Stigmergic triangle (b) Message passing triangle

Figure 6.7: Creating triangles
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(a) Stigmergic rectangle (b) Message passing rectangle

Figure 6.8: Creating rectangles

(a) Stigmergic pentagon (b) Message passing pentagon

Figure 6.9: Creating pentagons
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(a) Stigmergic hexagon (b) Message passing hexagon

Figure 6.10: Creating hexagons

(a) Stigmergic heptagon (b) Message passing heptagon

Figure 6.11: Creating heptagons



CHAPTER 6. MULTIPLE TARGETS LOCATION 251

(a) Stigmergic octagon (b) Message passing octagon

Figure 6.12: Creating octagons

(a) Stigmergic circle (b) Message passing circle

Figure 6.13: Creating circular structures
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6.4.2 Experiment 2: E�ects of agent density

This experiment is motivated by two of the observations we made in the �rst

experiment. These observations are re-phrased as follows:

1. Threshold scoring times are required upfront in order to avoid stigmer-

gic swarms from depleting late in simulation. These threshold time

limits are functions of agent density, environment size, target size, dis-

sipation factors, as well as the distances between the targets and the

starting points. What is the e�ect of agent density to the indices of

merit of XSets?

2. The time message passing ant agents require to converge on particular

vector �elds is a function of agent density, environment size, target

size, as well as the distances between the targets and starting points.

Similarly, to what extent does agent density in�uence the indices of

merit we observe in message passing XSets.

The question that arises from these two observations relates to connotation

that di�erent indices of merit, as well as di�erent statistical conclusions, may

arise as a result of variations in agent density. Our hypothesis is that ant

agent density has no e�ect on the trends in the indices of merit we observe

in each case. However this is a bold claim which requires us to practically

evaluate the e�ects of both lower and higher agent densities than the default

agent density that has been used so far.

6.4.2.1 Experiment Design

Previous experiments used a controlled agent density of 5000 ant agents. The

indices of merit we reported so far, using this agent density, serve as
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Title Investigating the e�ects of agent density to the indices of merits of XSets.

Hypothesis agent density has no e�ect on the indices of merit of XSets

Dependent variable : indices of merit that arise when agent density is changed between 500 and
10000.

Independent variables : agent densities (500, 1000, 1500, 2000, ........until 10000), Time in simulation
(max. of 10000 iterations), number of replications (max. of ten), targets con�guration.

Controlled variables: These are the variables that are kept constant: environment size ((100×100 grid),
position of the starting point (�xed), Centre of targets - centre of the environment, composition
of XSets (as used in the �rst experiment), sequences of primitive behaviours in XSet (as in �rst
experiment), dissipation controls (ignored), radius of multiple targets (equal in all polygons),
number of pheromones supported (maximum of 5), number of vectors supported (four).

Procedure - Generator functions are invoked which de�ne the evaluation environments we want. Ant
agents are deployed in particular agent densities, using path �nding XSets. Indices of merit are
assessed, reported and compared to the performances of 5000 ant agents in each category.

foreach selected environment

for-density in [500,1000, 1500,.....10000]

repeat

Control level 1
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until 10 replications

Find gap with 5000 ant agents at each control level

next density

next environment

Figure 6.14: Template of the design of experiment 2

benchmark upon which we assess the e�ects of reducing or increasing agent

densities. The key dependent variable we measure in this experiment are
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similarly the indices of merit that arise between the benchmark indices of

merit and the indices of merit we achieve when agent density is varied.

Three independent variables are key in this experiment namely: time in

simulation, con�guration of targets, and agent density. In this case, we select

arbitrary agent densities both below and above 5000. Precisely, we consider

swarms of ant agents in colonies of 500× i, where i is an integer in the range

[1, 20]. From the observations we made on repeated tests, 500 to 10000 ant

agents in a swarm are a su�ciently wide range of agent densities to reveal

the e�ects we seek.

Ten replications of the same experiment are administered when a particular

agent density is used over the simulation limit of 10000 iterations. As a case

study, these ant agents are tasked to locate multiple targets, as well as path

�nd in di�erent agent densities. We similarly extract the indices of merits at

every 1000th iteration.

Figure 6.14 describes the rest of the variables of this experiment in details,

as well as the procedure we follow in completing this experiment.

6.4.2.2 Results

Figure 6.15 plots the indices of merit when the benchmark agent density

(5000 ant agents) is used. The same Figure reports the performances of

these swarms over 10000 iterations. In Figure 6.15(a), we report the indices

of merit of the stigmergic XSets, while Figure 6.15(b) shows the performance

trends followed by message passing XSets over the same simulation limit.

In Figures 6.16(a) and 6.16(b), we respectively report the indices of merit of

XSets in the stigmergic and message passing category when 500 ant agents

are deployed for similar purposes (path �nding).
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Figures 6.17, 6.18, and 6.19 then plot the �tness trends that arise when

3000, 7000, and 10000 ant agents are deployed in each category for the same

purposes as well. We have chosen to show the performances of 500, 3000,

5000, 7000, and 10000 ant agents merely as proof of concept. The indices of

merit that arise when we use other agent densities show similar growth or

drop with changes in agent density.

6.4.2.3 Observations

We make the following observations regarding the results reported in Figure

6.15 to Figure 6.19:

◦ Stigmergic indices of merit that arise when low agent densities are

used are poor. This is because few ant agents cannot build useful

shared memories with convergence properties. As a result, large gaps

are observed between these indices of merit and the benchmark indices

of merit. Raising agent density improves the indices of merit because

shared memories arise faster.

◦ Stigmergic indices of merit that are achieved late in simulation time

produce equally large �tness gaps in favour of the benchmark swarms.

We note that these gaps are even bigger as we raise agent density. This

is because,on one hand, low agent densities fail to in�uence the creation

of useful guides to the swarms. On the other hand, large agent densities

result in saturated environments which deplete the paths that emerged

earlier. These views con�rm that agent density bear in�uences to the

indices of merit of stigmergic XSets. However, determining appropri-

ate agent densities for every given scenario is a mathematical problem

which requires one to consider the size of the environment and the

distance between the targets and the starting point.
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(a) 5000 stigmergic ant agents (b) 5000 message passing ant agents

Figure 6.15: Performances of benchmark swarms

(a) 500 stigmergic ant agents (b) 500 message passing ant agents

Figure 6.16: Performances of 500 ant agents in swarms
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(a) 3000 stigmergic ant agents (b) 3000 message passing ant agents

Figure 6.17: Performances of 3000 ant agents in swarms

(a) 7000 stigmergic ant agents (b) 7000 message passing ant agents

Figure 6.18: Performances of 7000 ant agents in swarms
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(a) 10000 stigmergic ant agents (b) 10000 message passing ant agents

Figure 6.19: Performances of 10000 ant agents in swarms

◦ The changes we observe in stigmergic indices of merit over time indicate

that a turning point always arises regardless of the agent density used.

The gradient of the trend curves we overlap on the �tness trends are

steeper and steeper after the turning point (see Figures 6.16(a), 6.17(a),

6.4(a) ,6.18(a), and Figure 6.19(a) ). This implies that high agent

density causes stigmergic swarms to converge faster, while on the other

hand the indices of merit thereof would deplete sooner in simulation.

This again con�rms the in�uences of agent density to the �tness levels

of stigmergic XSets.

◦ Message passing ant agents require time to build con�dence in the

vectors they follow. Low agent density delays this process because ant

agents are far apart to usefully share directional cues. We observe

large �tness gaps in early control levels when low agent densities are

used because ant agents are still gathering directional information with
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Cross formation Fourway cross formation

Figure 6.20: Propagation of vector �elds in swarms of 5000 ant agents

which to build reliable vector �elds. High agent density reduces the

time it takes swarms to converge on speci�c vector �elds (see Figures

6.16(b), 6.17(b), 6.4(b) ,6.18(b), and Figure 6.19(b)). Thus, the power

of message passing ant agents is concluded to be in numbers. With

su�ciently high agent densities and more time in simulation, message

passing ant agents can even follow deterministic paths. Figures 6.20

and 6.21 show the emergence of deterministic vector �elds when high

agent density swarms are used. In these screenshots, message passing

ant agents are allowed to orientate and point in the direction they would

move.

The results here reported refute the null hypothesis (agent density has no

in�uence on the �tness levels of XSets) in favour of the alternative hypoth-

esis. In stigmergic swarms, low agent density prevents the creation of useful

shared memories. On the other hand, high agent density saturates the en-

vironments early in simulation. In the message passing category, low agent

density prevents one-on-one communication between ant agents. However

high agent density enhances the emergency of deterministic paths.
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Rectangle formation Plotting a point

Figure 6.21: Propagation of vector �elds (5000 ant agents)

In both cases, we see the need to prescribe threshold agent densities. This

quantity is a function of the size of environment, scoring time, as well as the

distance between the starting point and the targets. We conclude that agent

density is a key parameter of emergence to consider when using similar ant

XSets.

6.4.3 Experiment 3: E�ects of primitive behaviours

The in�uences of discrete primitive behaviours to the indices of merit of

XSets are the key subject of study in this experiment. Similar identi�cation

of useful behaviours in gene-pairs have been proposed in the work of Poon

and Maher (1996) - where an algorithm for calculating the contributions of

a pair of behaviour genes to the �tness of phenotypes is proposed. We try

to respond to the question which says: what are the in�uences of discrete

primitive behaviours that are included in the composition of XSets to the

indices of merit thereof?
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Precisely, this experiment investigates the ingredients of emergent behaviour

in each best path �nding XSet. Our null hypothesis in this investigation

is that discrete primitive behaviours do not possess direct or individual in-

�uences to the indices of merit of XSets. We measure this hypothesis by

evaluating the gaps between the indices of merits of benchmark XSets and

those of variant XSets. Benchmark XSets are the original best performer

XSets that are reported and presented in Figures 4.10 and 4.11. On the

other hand, variant XSets are those XSets in which a particular primitive

behaviour is intentionally omitted from the benchmark XSet. The procedure

through which we assess the e�ects of each discrete action are summarized

in the next sub-section.

6.4.3.1 Experiment Design

The key dependent variable of this experiment are the indices of merit of

variant XSets. These are assessed at each control level in order to determine

the overall average index of merit of each variant XSet. This overall average

index of merit of the variant XSet is compared with the index of merit of the

benchmark XSet of the same category.

Three outcomes are possible. A positive gap between the benchmark XSet's

index of merit and the variant XSet's index of merit indicates that the absence

of the particular primitive behaviour that was omitted in the benchmark

XSet has degraded the performances thereof. This implies that the omitted

primitive behaviour has positive e�ects to the overall performances of the

benchmark XSet.

On the other hand, a negative gap between the benchmark XSet's index of

merit and the variant XSet's index of merit indicates that the absence of the

particular primitive behaviour that was omitted in the benchmark XSet, in

fact, enhanced the performances thereof. This implies that the omitted
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Title Investigating the e�ects of discrete primitive behaviours to the indices of merit of XSets.

Hypothesis discrete primitive behaviours do not possess direct in�uences to the indices of merit of XSets

Dependent variable : indices of merit of variant XSets.

Independent variables : con�guration of XSets, time in simulation, replications, target setups, control
levels.

Controlled variables: environment size ((100×100 grid), position of the starting point (�xed), Centre of
targets - centre of the environment, agent density (5000), composition of XSets (as used in the �rst
experiment), sequences of primitive behaviours in XSet (as in �rst experiment), dissipation controls
(ignored), radius of multiple targets (equal in all polygons), number of pheromones supported
(maximum of 5), number of vectors supported (four).

Procedure - A particular benchmark XSet is chosen (XSet []). Its primitive behaviours are accessed and
omitted one by one. Generator functions are invoked which de�ne the evaluation environments
we want. A variant XSet is used to coordinate a swarm of 5000 ant agents over ten replicated
simulations and the average indices of merit are computed. Gaps between these indices of merit
and the benchmark indices of merit are determined where a positive gap indicates positive e�ects
of the omitted primitive behaviour to the overall index of merit of the benchmark XSet. A negative
gap indicates that the primitive behaviour even degrades the index of merit of the XSet.

foreach XSet []

count = 0 : bIOM←IOM of benchmark XSet

varXSet = XSet [] - XSet [count]

foreach environment

repeat

Control level 1
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until 10 replications

index of merit =
P10
k=1

xk
10

10

gap = bIOM - index of merit)
if(gap > 0)

XSet [count] enhances IOM

else if (gap<0)

XSet [count] degrades IOM

else

XSet [count] has no effect

next environment

count ++

next XSet

Figure 6.22: Template of the design of experiment 3
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primitive behaviour has negative e�ects to the overall performances of the

benchmark XSet. There are cases when a primitive behaviour may be found

not to have any e�ects to the performances of the benchmark XSet.

The main independent variables of this experiment are the con�guration of

XSets that are used in each cycle. Time in simulation, number of replications,

multiple targets setups, as well as the control levels at which we extract

results remain other key independent variables that we monitor.

The procedure that is presented in Figure 6.22 indicates that benchmark

XSets are represented as arrays of primitive behaviour. As such, variant

XSets arise when we omit a primitive behaviour at a particular index in this

array. The variant XSets that arise are evaluated for abilities to deliberately

cause path �nding as well as multiple target location.

6.4.3.2 Results

Figure 6.23 shows the performance gaps that arise between the performances

of benchmark XSets and variant XSets in the stigmergic category over time.

In Figure 6.23(a), we show the trends in indices of merit that arise when

the benchmark XSet is used for path �nding and multiple targets location.

Figure 6.23(b) then shows the trends that arise when the functionality to

drop pheromone, orientate, or changing from one internal state to another

are omitted. In all cases, the discrete ability of ant agents to move is indis-

pensable.

Generally, dropping any of the other three primitive behaviours degrade the

performances of the benchmark XSet. Precisely, when ant agents fail to drop

speci�c levels of pheromone, shared memories are not built. This has the

negative e�ect of keeping ant agents in the random wandering mode. Simi-

larly, ant agents that lack abilities to orientate would continue to wander at

random even though the levels of pheromone are building on the environment.



CHAPTER 6. MULTIPLE TARGETS LOCATION 264

(a) benchmark stigmergic XSets (b) Variant stigmergic XSets

Figure 6.23: Fitness levels of stigmergic XSets

(a) benchmark message passing XSets (b) Variant message passing XSets

Figure 6.24: Fitness levels of message passing XSets
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In fact, these levels of pheromone are useless to the ant agents. The ability

to �ip between internal states is also critical. This is because although ant

agents may build trails with clues towards the starting point, they will never

get to use these trails since they will remain in the search internal state.

Similarly, trails towards the targets would never arise since none of the ant

agents in the swarm would never �ip to the return mode when they can drop

the levels of pheromone with cues toward the targets. Thus, omitting any of

these three primitive behaviours has the same e�ect of reverting the swarms

to the random wandering mode.

Figure 6.24 shows the performances gaps that arise between the performances

of benchmark XSets and variant XSets in the message passing category. In

Figure 6.24(a), we show the �tness trends that arise when the benchmark

XSet in this category is used for path �nding and multiple targets location

as well. Figure 6.24(b) depicts the trends that arise when the ability to

share message, orientate, detect targets, or �ipping between internal states

are omitted from the benchmark XSet. Similarly, ant agent abilities to move

is indispensable.

Likewise, dropping any of the other four primitive behaviours deplete the

message passing model. Precisely, ant agents that do not share messages

are operationally isolated. They keep wandering aimlessly, at the same time

degrading in con�dence in every step. Failure to orientate equally de�ne

random wandering swarms. Message passing ant agents require some mecha-

nism for detecting target indicators and convert these to vector information,

vectors that would point towards the targets. Omission of this ability implies

that ant agents would continue in the search internal state, the same way

they would behave if the XSet they use excludes the ability to �ip between

internal states.

An outstanding outcome is noted in the message passing category. Ant

agents' abilities to normalize vectors do not deplete the model completely. In
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fact, normalizing vectors merely enhances swarm performances but does not

cause emergent behaviour. Visual observation of the swarms in which this

primitive behaviour is omitted shows ant agents whose movement steps and

speed vary. This observation suggests that the magnitude of the resultant

vector has a bearing on the speed of ant agents as well as the size of ant

agent steps.

6.4.3.3 Observations

We make the following observations regarding the results we report in this

experiment:

◦ Generally, ant agents whose variant XSets omit abilities to update

swarm information (dropping levels of pheromone in the case of stigmer-

gic ant agents, or explicitly sharing information in the case of message

passing ant agents), orientate, or change internal states, de�ne random

wandering swarms whose performances are completely out-classed by

the performances of benchmark XSets. This is because there would not

be any cooperation in the swarms and un-informed movements would

arise when ant agents do not orientate.

◦ A trivial observation is that ant agent movements are critical for the

problem domains we propose. Besides being an inherent characteristic

of foraging ant agents in simulation and ants in nature, movement is a

key ingredient for any form emergent formation. As a result, this work

needed not to assess the e�ects of omitting this primitive behaviour.

◦ We note that there are primitive behaviours in XSets that work well

in collaboration. Thus, omitting one primitive behaviour would fail

the XSet even when the functionality of the other primitive behaviour

is not avoided. For example, although orientation is critical in the
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stigmergic category, the ability of ant agents to drop speci�c levels of

pheromones onto the environment gives a meaning to agent orienta-

tion. Rearranging the primitive behaviours that are left in the variant

XSets may hopefully replace the missing functionality, and this is the

motivation for the next experiment.

Overall, the �ndings of this experiment provide su�cient evidence with which

to reject the null hypothesis which states that discrete primitive behaviours

do not possess direct or individual in�uences to the indices of merit of XSets.

6.4.4 Experiment 4: E�ects of order in XSets

The motivation for conducting this experiment arises from the remark we

made in the previous experiment regarding possibilities of rearranging prim-

itive behaviours in variant XSets in order to replace missing functionality.

Does the order in which primitive behaviours are arranged in XSets in�uence

the indices of merit thereof? This is the question that drives the investiga-

tions we conduct in this experiment.

Our hypothesis is that order has no e�ect to the indices of merit of XSets.

We explained the motivation for stating hypotheses in this way as inspired by

known statistical propositions that one can only falsify statements but cannot

prove them (Lohr, 2010). This hypothesis can be measured by comparing

the indices of merit of benchmark XSets to the indices of merit of variant

XSets. In this case, a variant XSet is a partial permutation of the benchmark

XSet. Partial permutations are combination of primitive behaviours with no

repetitions (see section 4.2.2 for details regarding partial permutations). We

are saying that a variant XSet in this case is the same benchmark XSet (in

terms of composition) with primitive behaviours that are re-arranged.
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6.4.4.1 Experiment Design

Figure 6.25 summarizes the procedure we follow in order to complete this

experiment. In this, the key dependent variable we measure are similarly the

indices of merit of variant XSets which we compare with the indices of merit

of benchmark XSets in each category. Variant XSets are assessed for abilities

to coordinate swarms of ant agents towards path �nding as well as towards

multiple targets location.

The main independent variable (the variable we manipulate) is the sequence

of primitive behaviours in XSets, along with the time ant agents take in

simulation. Targets setups are also a key independent variable. The rest of

the variables of this experiment are controlled.

To run the experiment, each benchmark XSet is �rst used to generate variant

XSets. We indicated that the stigmergic benchmark XSet has four primitive

behaviours in each internal state, while the message passing counterpart has

�ve. Mathematically we will have twenty four possible partial permutations

in each internal state of the stigmergic XSets. One hundred and twenty

variations are possible in each internal state of the message passing category.

However we ignore the primitive behaviour for vector normalization in the

message passing category since we found out that this functionality is not

critical (see section 6.4.3.2 for this observation), leaving us with twenty four

permutations in each internal state as well.

This experiment takes each variant XSet as an input with which to coordinate

swarms of ant agents towards desired emergent behaviour. The performances

of each variant XSet are compared with those of the benchmark XSet in the

same category. That gap we see between the performances of the variant and

benchmark XSets tells the e�ects of each sequence of primitive behaviours.
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Title Investigating the e�ects of the order in which primitive behaviours are arranged in XSets.

Hypothesis the order in which primitive behaviours are arranged in XSets has no e�ects to the indices
of merit of the XSets.

Dependent variable : indices of merit of variant XSets

Independent variables : order of primitive behaviours in XSets, time in simulation, targets setups,
control levels, replications.

Controlled variables: environment size ((100×100 grid), position of the starting point (�xed), Centre of
targets - centre of the environment, agent density (5000), composition of XSets (as used in the �rst
experiment), sequences of primitive behaviours in XSet (as in �rst experiment), dissipation controls
(ignored), radius of multiple targets (equal in all polygons), number of pheromones supported
(maximum of 5), number of vectors supported (four).

Procedure - The algorithm below summarizes the procedure we follow to complete this experiment.

foreach XSet []

bIOM←IOM of benchmark XSet

varXSet [] = all partial permutations of XSet []

foreach varXSet []

foreach environment

repeat
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until 10 replications

index of merit =
P10
k=1

xk
10

10

gap = bIOM - index of merit)
if(gap > 0)

varXSet enhances IOM

else if (gap<0)

varXSet degrades IOM

else

varXSet has no effect

next environment

count ++

next varXSet []

next XSet []

Figure 6.25: Template of the design of experiment 4
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6.4.4.2 Results

We summarize the indices of merit that arise from the various combination

and variant XSets as follows:

◦ Variant XSets in the stigmergic category show no requirement for par-

ticular order of events between the functionality to drop speci�c levels

of pheromone, orientate, and �ip between di�erent internal states. All

variant XSets where the order of these three primitive behaviours is

ignored achieve similar results trends. However, stigmergic ant agents'

ability to drop pheromone, as well as the ability to orientate, must

occur before agent movement. This is a requirement which when not

satis�ed, the stigmergic model depletes. In fact, ant agent movements

before orientation de�ne random wandering swarms. Similarly, move-

ments before dropping speci�c levels of pheromone implies that the

actions of the ant agent at the time are not in�uenced by the levels

of pheromone an ant agent drops at the time. In fact, ant agents can

travel back to the locations they previously visited since there would

not be any sign that the location is repulsive at the moment, resulting

in the emergence of sub-optimal solutions. We therefore conclude that

the order of events in the stigmergic category has a bearing on the

indices of merit of the XSets thereof.

◦ Likewise, ant agent movements in the message passing category must

occur after successful sharing of vectors, ant agent orientation, and

detection of any target indicators around. Placing any of these func-

tionality after ant agent movement de�nes otherwise random wander-

ing swarms as well. However in this case, orientation must occur after

sharing of vectors, otherwise it would not be informed by the views of

neighbouring ant agents at the moment. We therefore also conclude
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that the order of events in the message passing category has a bearing

on the indices of merit of the XSets thereof.

◦ What stands out in this experiment is that ant agent movement is

strictly conditional. Ant agents must only make movement steps after

successful orientation. As a result , there is insu�cient evidence to

support the null hypothesis which states that order has no e�ect to the

indices of merit of XSets.

The next experiment investigates the e�ects of pheromone dissipation to the

indices of merit in the stigmergic category. Note that the message pass-

ing model is ignored in this next experiment because it does not support

pheromone mediated communication.

6.4.5 Experiment 5: E�ects of pheromone dissipation

The last experiment we administer assesses the e�ects of pheromone dissipa-

tion to the indices of merit of the stigmergic XSet. The question we answer

in this respect is: does pheromone dissipation in�uence the indices of merit

we see in stigmergic XSets?

We hypothesize that pheromone dissipation has no e�ects on the indices

of merit we achieve in stigmergic XSets. This hypothesis is measured by

comparing the indices of merit of the benchmark XSet (where pheromone

dissipation controls are not supported) with the indices of merit of the same

benchmark XSet when pheromone dissipation controls are supported at dif-

ferent dissipation rates.
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Title Investigating the e�ects of pheromone dissipation to the indices of merit of stigmergic XSets.

Hypothesis pheromone dissipation has no e�ect on the indices of merit of stigmergic XSets.

Dependent variable : indices of merit of the stigmergic XSet when pheromone dissipation is sup-
ported.Independent variables : dissipation rates (1% , 3%, 5%, 7%, 9%), time in simulation,
targets setups, control levels, replications.

Controlled variables: environment size ((100×100 grid), position of the starting point (�xed), Centre of
targets - centre of the environment, agent density (5000), composition of XSets (as used in the �rst
experiment), sequences of primitive behaviours in XSet (as in �rst experiment), dissipation controls
(ignored), radius of multiple targets (equal in all polygons), number of pheromones supported
(maximum of 5), number of vectors supported (four).

Procedure - The algorithm below summarizes the procedure we follow to complete this experiment.

foreach dissipation rate

foreach environment

repeat
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until 10 replications

index of merit =
P10
k=1

xk
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gap = bIOM - index of merit)
if(gap > 0)

varXSet enhances IOM

else if (gap<0)

varXSet degrades IOM

else

varXSet has no effect

next environment

next dissipation rate

Figure 6.26: Template of the design of experiment 5
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6.4.5.1 Experiment Design

Figure 6.26 summarizes the procedure we follow in order to complete this

experiment. The key dependent variable we measure are similarly the in-

dices of merit that are achieved when the best performer stigmergic XSets

is extended to support pheromone dissipation. We de�ned pheromone dis-

sipation in section 3.2.5.9 as pheromone updates through evaporation and

di�usion. We also de�ne pheromone evaporation as a process whereby a cer-

tain percentage of the levels of pheromone that are held on each location

of the environment is lost without ant agents or user intervention. On the

other hand, pheromone di�usion was de�ned in section 3.2.5.10 as a process

whereby a certain percentage of the levels of pheromone that are held on one

location of the environment spills over to other locations without ant agents

or user intervention.

The main independent variable of this experiment are the dissipation rates

we support. Time in simulation, control levels, and targets setups are also

important independent variables of this experiment. We assess the e�ects

of pheromone dissipation using arbitrary dissipation rates in order to prove

the concept. In particular, we compare the indices of merit that arise when

the following dissipation rates are considered : 0% (the benchmark case),

1%, 3%, 5%, 7%, and 9%. From observation, these dissipation rates are a

su�cient sample to reveal the e�ects sought. The rest of the variables of this

experiment are controlled as indicated in the template presented in Figure

6.26.

6.4.5.2 Results

Besides the benchmark test, �ve other tests arise in which swarms of ant

agents are deployed to path �nd or locate multiple targets when pheromone
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dissipation controls are considered at �ve di�erent rates. The performance

gaps between the benchmark indices of merit and what we observe when

di�erent dissipation rates are considered provide the results of interest in

this experiment.

Figure 6.27 compares the variation we see in the indices of merit when 5000

ant agents are deployed and allowed to score performances over 10000 iter-

ations. Precisely, Figure 6.27(a) re�ects the general trends that arise in the

indices of merit when one dissipation factor is considered at di�erent dissipa-

tion rates (evaporation only or di�usion only). Then, Figure 6.27(b) indicates

the trends that arise in the indices of merit when both dissipation factors are

simultaneously considered (pheromone evaporation and di�usion).

We make the following observations regarding the outcomes of these evalua-

tions:

◦ Scenarios in which one dissipation factor is considered deplete the stig-

mergic model as we increase the dissipation rates. In particular, con-

sideration of pheromone evaporation on its own destroys the paths

that arise. It creates paths with broken links in between, paths that

would promote the emergence of local maximas. Higher dissipation

rates simply worsens these e�ects. On the other hand, consideration

of pheromone di�usion alone would unconditionally widen the paths

thereof, thereby promoting environment saturation. Similarly, higher

dissipation rates would merely speed up these e�ects. In the latter

case, ant agents would eventually revert back to the random wandering

mode.

◦ When appropriate dissipation rates are used, simultaneous considera-

tion of pheromone evaporation and di�usion upgrades the indices of

merit thereof. However lower dissipation rates achieve better outcomes

because evaporation would, in fact, eliminate suboptimal paths o� the
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(a) E�ects of single dissipation (b) E�ects of both evaporation and di�usion

Figure 6.27: E�ects of dissipation to �tness levels
environment while on the other hand di�usion smooths those paths

that are strong and well trodden. We observe that the choice of which

dissipation rate to use at a time is a function of agent density, the

amount of pheromone each ant agent is allowed to drop at a time, as

well as the size of the environment we use. High dissipation rates are

detrimental to this model because evaporation would wipe out all the

levels of pheromone that are on the environment before they are use-

ful to the swarms (Dorigo et al., 1999). On the other hand, di�usion

would quickly spread these levels of pheromone all over the environ-

ment, thereby rubbing o� any paths and saturating the environment.

◦ We also observe that evaporation and di�usion augment each other in

support of the creation of narrower, smoother and stronger paths be-

tween the starting point and the targets. When evaporation eliminates

sub-optimal paths, di�usion smooths the remaining trails. We conclude

that generally, although pheromone dissipation does not directly cause
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emergent behaviour, it enhances the quality of the emergent products

that arise when appropriate dissipation rates reconsidered. We there-

fore lack of su�cient evidence to support our hypothesis which states

that pheromone dissipation controls have no e�ects.

6.5 Conclusion of the chapter

This chapter �rstly gave a brief overview of the problems that are addressed

in the previous chapters with the goal of placing the purpose of this chapter

in the thesis. Precisely, we stated our motivation for investigating best path

�nding XSets for abilities to solve emergent problems beyond path �nding,

and proposed a case study scenario of multiple targets location.

The chapter went on to de�ne the multiple targets location problem as well

as the evaluation environments on which we evaluate ant agents' abilities to

locate multiple targets.

The biggest chunk of the chapter presented experiments, experiment designs,

results, and the observations thereof. The �rst experiment compared the

indices of merit of path �nding XSets to the indices of merit that arise when

multiple targets are considered. Generally:

◦ we found out that there is no evidence to reject the null hypothesis

that there are no signi�cant relationships between the indices of merit

that arise when stigmergic XSets are used for path �nding purpose and

the indices of merit that are yield when the same XSets are used for

multiple targets location. Thus, the relationships we see between these

data sets are merely by chance because these XSets are, rather, problem

speci�c. On the contrary, there is su�cient evidence to refute the
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null hypothesis in the message passing category, suggesting signi�cant

relationships between the two data sets. Thus, the relationships we see

between these data sets are not by chance because these XSets are, in

fact, problem independent.

◦ we also found out that stigmergic XSets are sensitive to the number of

the multiple targets that are presented at the time, as well as sensitive

to the radius of the region that is covered by these multiple targets,

while message passing XSets are not.

◦ Stigmergic F-tests implied signi�cantly di�erent variations between the

results yield during path �nding and those reported when multiple

targets are considered, while message passing outcomes are opposite.

Thus, while there is insu�cient evidence to refute the null hypothe-

sis in the stigmergic category, message passing F-test supported the

alternative hypothesis.

◦ All P - tests indicated lack of evidence to reject the null hypothesis,

implying that the mean performances we observe in the indices of merit

in both categories follow similar trends.

The second experiment evaluate the e�ects of agent density to the indices of

merits we observe in XSets. No apparent evidence arose with which we could

support the null hypothesis in this regard. Rather, we concluded that agent

density has a bearing on the indices of merit that arise in di�erent scenarios.

In the third experiment, we investigated the in�uences of the discrete primi-

tive behaviours that are included in the composition of XSets to the indices

of merit thereof. Similarly, su�cient evidence was available with which to

support the alternative hypothesis that the discrete primitive behaviours that

are included in XSets are critical.
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The fourth experiment assessed the e�ects of the order in which primitive

behaviours are arranged in XSets to the indices of merit thereof. Likewise,

agent movement was noted to conditionally occur after agent orientation and

information update in both cases. Thus, su�cient evidence to refute the null

hypothesis was presented in both cases.

The �fth and last experiment investigated the e�ects of pheromone dissipa-

tion to the indices of merit of stigmergic XSets. Consideration of evaporation

or di�usion in isolation depleted the stigmergic model. In addition, high dis-

sipation rates are detrimental to the model. However positive e�ects are ob-

served when these two dissipation factors are simultaneously considered. We

therefore gathered su�cient evidence to support the belief that pheromone

dissipation has a bearing on the indices of merit we observe in stigmergic

XSets.

The value of this chapter is further emphasized by �ve contributions it makes

to the thesis and the body of knowledge. These contributions are as follows:

◦ The discovery we made regarding stigmergic XSets being useful for a

wider range of problem domains when the radii of the targets regions are

smaller motivates further investigations and more practical applications

of these XSets approach. We therefore create new research directions

in the �eld.

◦ The invention of the message passing model and the discovery that this

model is insensitive to multiple targets setups may potentially inspire

the development of more commercial emergent object assemblers in the

future. This invention also creates new knowledge in the �eld.

◦ Experiments 2 to 5 investigated the e�ects of some of the parameters

one should consider when designing ant based systems. In particular,

the discovery that agent density is a function of the size of the envi-

ronment, distance between the starting point and targets, as well as a
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function of the amount of pheromone each ant agent releases in each

step (in the case of stigmergic ant agents) is a mathematical challenge in

future works. This observation presents a research question in which a

mathematical model is sought which determines the appropriate agent

densities thereto.

◦ The discovery we made that particular primitive behaviours are in-

dispensable in particular XSets, and that some primitive behaviours

occur in particular sequences, brings us closer and closer to solving

the general ant agent control problem. This is useful information to-

wards prescribing particular XSets as languages for programming ant

agents in swarms to allow deliberate engineering of desired emergent

behaviour.

◦ The de�nition of the evaluation environments on which swarms of ant

agents are assessed for di�erent abilities, and how emergent properties

are incorporated into the simulation system are innovative. Similar

architectures can be adopted in related researches in the future.



Chapter 7

Conclusion

This chapter summarizes the research we conducted in this thesis. First,

section 7.1 provides an overview of the chapters we presented. Then, section

7.2 gives a summary of the key observations we make. The contributions of

the thesis to the broader board of knowledge are presented in section 7.4. We

wrap up this chapter and the thesis in section 7.5, highlighting the potential

future directions of this work.

7.1 Summary of chapters

The key focus of the thesis has been the identi�cation of XSets of primitive

behaviours which characterize a language for programming swarms of ant-like

devices towards predictable emergent behaviour. To arrive at the conclusions

we make, the following chapters addressed various sub problems as follows:

◦ the problem statement, the background to the research problem, the

motivation for addressing the same research problem, our strategy, as

280
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well as the envisioned contributions of this work to the board of knowl-

edge, were presented in the �rst chapter of the thesis.

◦ Chapter 2 investigated four aspects of this thesis. First, we looked

at the various agent control models that have been described in the

past, mainly focusing on agent interaction and orientation techniques,

as well as how each agent successfully moves from one location of the

environment to another. We got inspiration from these reviews re-

garding which controls to consider for our ant agents. Secondly, the

chapter investigated the common parameters of emergence that have

been proposed in most agent control systems. Parameters of emer-

gence are factors which in�uence swarm performance. Reviews in this

respect motivated our choices of the variables we investigated in chap-

ter 6. The third aspect we investigated in Chapter 2 are the measures

of emergence that are used to quantify emergent behaviour in most

agent systems. Five measures of emergence were derived from these

reviews which we recommended for determining the indices of merit of

XSets. The last aspect we investigated in the literature review relates

to the forms of target con�guration that are common in multiple targets

scenarios. The con�guration of regions at which we de�ned multiple

targets was motivated by these reviews.

◦ the primary goal of Chapter 3 has been the identi�cation and charac-

terization of the discrete ant agent primitive behaviours one by one, as

well as the provision of semantics with which each primitive behaviour

is interpreted in computational terms. In identifying the particular

primitive behaviours, we assumed a case study scenario of swarms of

ant agents in which path �nding and path following behaviour was

sought. As a result ten discrete primitive behaviours were identi�ed

as possible building blocks of ant agent behaviours over time. These

primitive behaviours are the building blocks of the XSets that are pro-
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posed in this thesis (see Chapter 3 for the mnemonics and semantics of

these ten primitive behaviours).

◦ the purpose of Chapter 4 has been threefold. First, it developed a

strategy for putting primitive behaviours together into XSets that can

allow particular emergent behaviour to occur. Genetic programming

processes were proposed as a search strategy for su�cient XSets for

path �nding purposes. Then, a strategy for assessing the validity of

the XSets that arose was described. The indices of merit which we use

to rate XSets are determined using �ve measures of emergence that

are presented in this chapter. Chapter 4 also presented an experiment

which investigated the indices of merit of the XSets that built particu-

lar genetic populations and identi�ed the best performer path �nding

XSets in each category. These are the same XSets we veri�ed and

validated throughout the rest of the chapters of this thesis.

◦ The concerns of Chapter 5 have been to establish the relationships that

exist between the sets of measures of emergence that arose when best

performer XSets were used for path �nding purposes. Kolmogorov-

Smirnov tests for normality, Correlation analyses, F-Tests and analy-

ses of variances, as well as T -Tests and comparisons between means,

revealed the validity of the best performer XSets as appropriate dictio-

naries for allowing deliberate engineering of path �nding behaviour.

◦ Chapter 6 was developed with the goal of evaluating possibilities of

applying the best performer XSets to di�erent problem domains, par-

ticularly multiple targets location. Five experiments which evaluated

the e�ects of di�erent variables to the indices of merits of these XSets

were administered. Generally, the results we presented show that the

stigmergic XSets are sensitive to the radius of the region covered by the

targets. On the contrary, the message passing counterparts are insen-

sitive to this requirement. The same results also demonstrated some
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in�uences arising from the agent density used, the size of the environ-

ment, the size of the target, dissipation factors, the distance between

targets and the starting point, as well as the sequence in which primitive

behaviours are arranged in the XSets. However, the visual screenshots

of the performances of swarms of ant agents that used these XSets

show successful and evenly distributed arrivals of ant agents on targets

in both categories.

7.2 Observations

The general problem that was addressed in this thesis is the identi�cation of

XSets that can allow deliberate engineering of speci�c emergent behaviour.

These investigations were restricted to resolving �ve sub-problems which we

responded to as follows:

1. Identi�cation of ant agent primitive behaviours (what are the

low level activities of ant agents that can be used to describe the do-

main of primitive behaviours that allow particular emergent behaviour

to occur? ) Chapter 3 responded to this question. It identi�ed ten

discrete ant agent primitive behaviours for this purpose. In particu-

lar, stigmergic ant agents must orientate - (MvH), and drop speci�c

levels of pheromone in each step - (Drp). These levels of pheromone

can evaporate -(Evp) or di�use - (Dfs) at particular dissipation rates.

Message passing ant agents must share direction vectors and orientate

- (MsP ). The resultant direction vectors can be optionally normalized

- (Nrm). However these ant agents must possess abilities to detect

target indicators -(PtV ) and convert these to vector information where

possible. All ant agents must make informed movements - (MvP ), and

�ip between di�erent internal states when it becomes necessary - (StS).
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However there are times when ant agents are required to do nothing

-(NOp).

2. Creating XSets of primitive behaviours (how do we create valid

XSets of primitive behaviours from discrete ant agent activities which

can summarize collections of ant agents actions over time? ). Chapter 4

addressed this question. The primitive behaviours that were identi�ed

in Chapter 3 served as inputs to the genetic programming system we

proposed. A novel mechanism for generating the initial genetic popula-

tion of XSet was proposed and the parameters of the evolution process

were explained. New XSets were evolved in three di�erent ways in or-

der to ensure diversity in new genetic population of XSets as we moved

down the generations. In particular, 5% of the XSets were regarded

as elite. These were randomly selected from the old generation and

promoted to the new generation. The other 80% of the XSets in the

new genetic population were created using genetic crossover between

parent XSets. These parent XSets were selected from the old genetic

population using speci�c selection algorithms (tournament or roulette

wheel selection). The remaining 15% of the XSets were created us-

ing mutation operation (see chapter 4 regarding how di�erent XSets

are created). The genetic population thereof served as the repository

from which we searched for best performer XSets for the path �nding

problem in each generation.

3. Evaluation of XSets of primitive behaviours (how do we quantify

the extent to which emergent behaviour is manifest as a result of using

a particular XSet for path �nding purposes? ). Chapter 4 addressed

this sub-problem as well. Five measures emergence were proposed,

and the procedures through which we assess each of these measures of

emergence were presented. In particular, the speed of emergence was

assessed as the time it takes ant agents to converge as a result of using
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a speci�c XSet. Then, quality of emergence established the frequencies

with which ant agents successfully arrived at their targets within a

set time frame. These qualities of emergence were then expressed as

percentages of the population of ant agents that were deployed, thereby

de�ning average delivery rates and the throughput of the swarms within

a set time limit. Average end-to-end delays considered the time it

takes individual ant agents to travel between the starting point and

the targets or vice verse. A strategy for determining sample sizes was

presented. Sampling was required when we picked ant agents to track

average end-to-end delays. The last measure of emergence we assessed

is built on Shannon's measurement theory which evaluated the degrees

of uncertainty that are associated with an ant agent's path selection

decisions. Sampling was also required in this regard. The measures

of emergence we achieved in each case were weighted and put together

in order to determine the indices of merits of the XSets thereof (see

chapter 4 regarding how measures of emergence and �tness levels are

determined).

4. Relationships between measures of emergence: Chapter 5 ad-

dressed this sub - problem. It �rst tested the sets of results we re-

ported for normality before evaluating the correlation coe�cients that

exist between these sets of measures of emergence. It also analyzed the

variances we saw in these sets of measures of emergence and justi�ed

any similarities in the �tness trends thereof. This chapter consolidated

the relationships we saw between the sets of measures of emergence by

comparing the means performances in these sets of measures of emer-

gence. Generally, slim chances were observed that the measures of

emergence we observed occurred by chance. Most of the sets of mea-

sures of emergence thereof revealed statistics which demonstrated proof

of common origins, thus validating the XSets from which the measures

of emergence were taken.
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5. Application of path �nding XSets to multiple targets location

: Chapter 6 addressed this sub-problem. Five experiments were con-

ducted in this chapter which assessed the application of best performer

XSets to the multiple targets location problem. Most importantly, the

�rst experiment established that the XSets we proposed are generally

problem independent when targets are appropriately set. However al-

though multiple targets location was achieved in most cases, the stig-

mergic XSet demonstrated sensitivity to the size of the targets. Other

factors were also investigated which in�uence the indices of merit of

these XSets for multiple targets location. In particular, agent density

was noted to in�uence the indices of merit of XSets in both categories.

Similarly, most individual primitive behaviours that are included in

these XSets are indispensable. The XSets are often arranged in speci�c

sequences, where agent movement controls come last in each sequence.

Pheromone dissipation factors, as well as vector normalization, were

noted as enhancing factors rather than causal primitive behaviours.

The following observations are drawn from the results we presented in all the

chapters of this thesis:

◦ stigmergic ant agents do not require any direct language of communi-

cation. They can only sense pheromone information which is placed on

the environments by the same ant agents as they forage. There is no

speci�c agent-held information that is directly exchanged between ant

agents. On the other hand, message passing ant agents carry direction

vectors around, communicating these direction vectors with immedi-

ate neighbours one-on-one. We observe an advantage of stigmergic ant

agents over the message passing counterparts in preserving con�den-

tiality. This is a paramount feature which we can exploit when security

systems are required (an observation that arises from the literature re-

view that is presented in chapter 2).
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◦ like any other stochastic processes, probabilistic path selection policies

which characterize stigmergic ant agent orientation (roulette wheel se-

lection) have a detrimental e�ect. This is because there are chances

that ant agents can derail from good paths. On the contrary, message

passing swarms create vector �elds with deterministic hints towards

desired targets. Once the vector �eld is in place, ant agent follow these

vector �elds all the way to the targets. A disadvantage is noted in

the stigmergic model in that stochastic movements may have a nega-

tive feedback e�ect on the performance of the swarm. This is also the

reason why we observe better indices of merits in the message passing

model than we see in the stigmergic category.

◦ message passing ant agents are always in a competition with one an-

other. Every ant agent works towards recognizing the knowledge of its

neighbours, while at the same time keeping record of its own beliefs

and con�dence in the direction vectors it is following. As a result, the

resultant vectors that are yield in each step are a compromise between

the collective knowledge of the neighbours and the ant agent's own

perceptions. In reaching this consensus, relatively less con�dent ant

agents often gain, while highly con�dent ant agents degrade in con�-

dence. We note a disadvantage of the message passing model in that

agent autonomy is grossly compromised. Worse still, the information

held in less con�dent ant agents may even be eroded o� with time in

simulation. There is therefore a danger that possibly valuable historic

information that may be held in less con�dent agents can be lost.

◦ although pheromone dissipation in the stigmergic category is noted as

merely an enhancing factor to swarm performance, it is an important

factor to consider when we study stigmergic ant agent swarms. This is

because it improves swarm convergence, it aids mass recruitment, and

hence ensures the emergence of quality paths. However appropriate



CHAPTER 7. CONCLUSION 288

dissipation rates must be known upfront. A mathematical model is

required which determines appropriate dissipation rates as a function

of agent density, size of the environment, and the distance between the

starting point and the targets.

◦ although agent density is a key parameter of emergence in both cat-

egories, we are faced with the challenge to present a mathematical

model for determining appropriate agent densities in particular scenar-

ios. Both stigmergic and message passing swarms degrade in perfor-

mance when insu�cient agent densities are used. In stigmergic swarms

in particular, shared memories would not build. On the other hand,

communication gaps arise in the message passing category. Stigmergic

swarms would similarly degrade when too many ant agents are used

because the excess levels of pheromone thereof would saturate the en-

vironment. A threshold agent density is therefore required in both

categories. Again a mathematical model is required which determines

appropriate agent densities as a function of the size of the environment,

the distance between the starting point and the targets, as well as a

function of the dissipation properties in place.

7.3 Comparisons with existing models

The XSets approach introduced an original and novel ant agent design paradigm

which allows deliberate engineering of speci�c ant agent based emergent be-

haviour. We make the following observations regarding its comparisons with

similar agent languages and representations for swarm coordination in the

literature:

◦ Non interactive agent languages or agent control representations have

mainly relied on mathematical and physics laws. Precisely, these in-
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teractions are often based on equations (Montes De Oca et al., 2005),

calculus (Sarfati, 2001), matrices (Harris, 2007), virtual forces (Spears

et al., 2004a, 2004b, 2005.; Balch and Arkin, 1999.; Azzag et al., 2007.;

Beckers et al., 1989.; Bayazit et al., 2002.; Lua et al., 2005.; Parrish

et al., 2002), geometry (Tro�mova et al., 1998.; Ngo et al., 2005), or

speci�cally vector geometry (Ngo et al., 2005.; Nasipuri and Li, 2002.;

Wu et al., 2005). In most cases, agents possess large memory capacities

to recall events (Wehmer et al., 2006.; Cordon et al., 2002.; Mullen et

al., 2009). The XSets approach we propose di�ers in that it emphasizes

on the design of simple ant agents whose interaction languages require

basic agent memory, a feature which promotes the bene�ts of simplic-

ity, robustness, parallelism, decentralization, automated optimization

of solutions, and capacity to handle dynamic situations (Werfel et al.,

2006).

◦ Representation of stigmergic concepts for designing software architec-

tures to allow acting of agents in order to yield suitable control be-

haviours is not a new research area (Valckenaers et al., 2001). What

stands out in most stigmergic representations is emphasis on the en-

vironment as a key parameter of emergence on which to accumulate

information about ongoing activities of the agent society (Negulescu et

al., 2006.; Haasdijk et al., 2013.; Seevinck and Edmonds, 2008.; Mason,

2002.; Bredeche et al., 2012). Our stigmergic XSets equally emphasize

on the environment as a key component and holder of the key param-

eters of the system.

◦ Common interactive agent languages or control representations are

modelled on the behaviours of living organisms such as cells (Xi et

al., 2005), birds (Reynolds, 1999), DNA sequences (Reif, 2002), bees

(Reynolds, 1987), or ants (Chibaya and Bangay, 2007). Some of these

models allow the exchange of information between agents one-on-one.



CHAPTER 7. CONCLUSION 290

In such cases, messages are often shared in the form of memory blocks

(Nasipuri and Li, 2002), paths histories (Rajbhupinder et al., 2010.;

Trianni and Dorigo, 2005.; Rodriguez et al., 2007), or coordinates of

key points (Montes De Oca et al., 2005). However these characteris-

tics require the agents to possess large memory capacities. The XSets

approach we propose emphasizes on the design of simple and naive ant

agents whose low level actions require basic agent memory.

◦ Attempts to create agent languages with full syntax, vocabulary, and

semantics have been presented (Nagpal et al., 2002). Most of the out-

comes in the literature are based on the growing point (Butera, 2002)

and origami shape theories (Nagpal et al., 2003). However the domain

of problems that can be addressed when these theories are proposed is

limited because agent independence is compromised. The design of the

XSets we proposed has the resolution of a wider task domain in mind.

The results we presented in the earlier chapters of this work connote

XSets that are problem independent.

◦ Computational techniques for evolving representations of agent design

as genes are not new either (Poon and Maher, 1996). Mechanisms for

building behaviour and structure search spaces through repeated in-

sertion of evolved elements into the pool of building blocks have been

proposed (Poon and Maher, 1996). In these, genetic cycles are admin-

istered in which basic genes are combined to form o�spring genotypes

that are re-introduced in the pool to develop design solutions for the

next generation. The mechanisms in which we develop and evolve best

performer XSets are similar. However our work di�ers in that we only

emphasize of the evolution of ant agent behaviour search spaces.

◦ The desire to determine sets of low-level components that can reliably

generate desired systems has been ongoing (Polack and Stepney, 2005.;

Stepney et al., 2007). Our design of XSets extends these desires. This
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work went a step further and combined the sets of low-level components

with meta information which spelt out how and when the low-level

components thereof are used.

We emphasize that this work forms a baseline upon which more studies and

experiments are required. The outcomes of those extra tests would help in

polishing up the methodology before rigorous comparisons with traditional

approaches are recommended.

7.4 Contributions

The main distinguishing feature of this thesis is that speci�city we emphasize

on with regard to the composition of XSets which allow particular emergent

behaviour to occur. A number of contributions emanate, both from an aca-

demic, practical, and general point of views. From an academic point of

view, we make the following contributions:

◦ Successful identi�cation of the primitive behaviours which characterize

ant agents' behaviours at individual levels, which give rise to particu-

lar forms of emergent behaviour at swarm levels, is a big milestone in

the study of ant systems. Knowledge of what each ant agent does as

an individual allows us to deliberately engineer predictable swarm out-

comes. We therefore create relevant knowledge in the �eld, particularly

to the bene�t of future researches and studies in the area.

◦ We presented a mechanism in which primitive behaviours are put to-

gether into XSets which characterize su�cient dictionaries for control-

ling swarms of ant agents. This mechanism is an inspiration to the

development of useful emergent based object assemblers in the future.
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◦ A number of the algorithms we proposed in this work are innovative.

In particular, ant agent interaction and orientation techniques which

we presented in Chapter 3 are novel mathematical models in the ant

agent metaphor. A special mention goes to the determination of the

attractiveness of a location around a stigmergic ant agent, as well as the

determination of a resultant vector in the message passing model. We

therefore create relevant content with which the ant agent programming

problem is further addressed.

◦ The degree of emergence that arises in ant agent systems has often

gone unnoticed. We proposed �ve innovative measures of emergence

with which we determine the extent to which emergent behaviour is

manifest as a result of using a particular XSet. The properties of most

of these measures of emergence make them suitable for verifying other

forms of emergent con�gurations. New research opportunities arise in

which these measures are further validated.

◦ Validation of XSets of primitive behaviours using correlation analyses,

comparisons between the mean �tness levels, as well as analyses of

variances, is creative. To the best of our knowledge, this is the �rst time

these analyses are applied to the ant programming problem. Similar

comparisons can be used to verify other agent models as well. We

therefore create relevant knowledge in the �eld.

On the practical side, we present the following contributions:

◦ The ability to explicitly specify ant agents' primitive behaviours at in-

dividual levels, and combine these into XSets of primitive behaviours

that are useful at swarm levels, has direct relevancy to many �elds in

science. Swarms of simulated ant-like devices such as nanites, amor-

phous devices, or MEMS devices, can be deployed in speci�c simulation
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environments using similar XSets in order to create commercially at-

tractive outcomes. The results of this work will thus likely promote

industrial and commercial application of ant system metaphors.

◦ Our emphasis on speci�city, both in terms of the XSets of primitive

behaviours that are required by di�erent ant agent swarms, as well

as speci�city in the form of emergent behaviour sought, changes the

way we see, and think of the consequences of upcoming sciences such

as nanotechnology. Generally, nanotechnology is feared that, one day,

nanites may aggregate into unpredictable emergent formations that are

disastrous to nature and life. This work provides inspiring XSets which

can be tailored to guarantee predictable nanite outcomes.

From a general point of view, we make the following contributions:

◦ Although the thesis does not solve the very general agent program-

ming problem, it provides a working baseline upon which further inves-

tigations in the �eld may arise. Therefore, this work provides a solid

foundation for investigations aimed at identifying general agent control

primitive behaviours and a language thereof.

◦ Many ant systems that exist in the literature do not explicitly present

the white-box side of how agent activities are implemented. As a result,

the domain of ant based solutions that are available in the literature

is currently limited, especially for commercial recommendations. Our

emphasis on speci�city, and explicit description of the routines that

characterize ant agent behaviours at individual levels may inspire the

development of a wider range of ant based solutions.
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7.5 Future work

There are a number of immediate directions of possible researches that em-

anate from this research. Four of these are outstanding, namely:

◦ it will be desirable to investigate and evaluate XSets of primitive be-

haviours of swarms of ant agents that make use of other interaction

mechanisms such as leader following, or ant agents with abilities to re-

call previous experiences. The union of these XSets with the XSets we

proposed in this work would create more diverse genetic populations in

which a wider range of problems can be solved. That union may also

support the evolution of more useful hybrid XSets.

◦ although speci�city is of great value in this work, it will be desirable

to investigate possibilities of prescribing XSets for producing �exible

emergent behaviour.

◦ e�ort must be made to create and evaluate XSets that can be used to

coordinate ant agents in 3D environments. We believe that 3D solutions

have more practical applications on the market today.

◦ e�ort must be made to build practical mathematical models with which

we can calculate threshold agent densities, as well as appropriate dissi-

pation rates upfront. Such mathematical models would surely serve as

inputs to many future researches in the �eld.
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