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Though the immune system is generally defined as a system of defense, it is increasingly 
recognized that the immune system also plays a crucial role in tissue repair and its poten-
tial dysregulations. In this review, we explore how distinct immune cell types are involved 
in tissue repair and how they interact in a process that is tightly regulated both spatially 
and temporally. We insist on the concept of immune cell plasticity which, in recent years, 
has proved fundamental for the success/understanding of the repair process. Overall, 
the perspective presented here suggests that the immune system plays a central role in 
the physiological robustness of the organism, and that cell plasticity contributes to the 
realization of this robustness.

Keywords: repair, plasticity, robustness, fibrosis, macrophages, neutrophils, innate lymphoid cells, 
transdifferentiation

“The medical and naturalist philosophers have been vividly struck by this tendency of the 
organized individual to reestablish its form, to repair its mutilations, to heal its wounds, and 
in this way to prove its unity, its morphological individuality (1).”

inTRODUCTiOn

All organisms possess the crucial property of robustness, which is a system’s capability to maintain 
its functions and performances despite perturbations (2–4). Robustness includes the capacities for 
each organism to build, defend, and repair itself (1, 5). The immune system, by constantly surveying 
the body and responding to strong anomalies, plays a key role in robustness (6, 7). In this review, 
we analyze how the immune system regulates tissue repair and show that one major way by which 
the immune system contributes to robustness is through immune cell plasticity. Notably, innate 
immune cells are particularly important in tissue repair, which suggests that the role of immunity in 
maintaining repair-oriented robustness has been conserved through evolution.

Tissue repair can be defined as the process that restores (at least partially) tissue organization 
after an insult (8, 9). The insult consists in damages by physical or chemical aggression, infectious 
agents, or “internal” stresses (10, 11). Tissue repair may be divided into three partly overlapping 
stages (8, 12). The first stage, inflammation (0–48 h after injury), immediately follows tissue dam-
ages and triggers the activation of the components of the coagulation cascade, the immune system, 
and inflammatory pathways. The second stage, new tissue formation (2–10  days after injury), is 
characterized by the proliferation and migration of many cell types and angiogenesis (i.e., formation 
of new blood vessels), and the progressive restoration of tissue function. Finally, during the third 
stage, remodeling (starts 2–3 weeks after injury and can last several months), many activated cells  
(e.g., endothelial cells, macrophages, and myofibroblasts) die by apoptosis or leave the site of injury, 
and tissues are re-epithelized.
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FigURe 1 | The roles of immune cells (colored) during the three phases of tissue repair: inflammation (red), new tissue formation (green), and 
remodeling (purple). Tissue repair is driven by interactions between immune cells and other cell types such as fibroblasts (not colored), as well the temporary 
plasticity of immune cells, e.g., macrophage switch from an inflammatory phenotype (red) to a tissue repair phenotype (green) to a resolving phenotype (purple).
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The perturbation of one or several of these three stages leads 
to dysregulated repair and can have important pathological con-
sequences (13). Several different disorders can be described as the 
result of abnormal repair. Fibrosis, for instance, is often seen as 
the consequence of “over-repair” or “over-healing” (8, 13), with 
excessive accumulation of extracellular matrix (ECM) and failure 
to restore tissue function and architecture (14), as observed in 
idiopathic pulmonary fibrosis, heart failure, and several autoim-
mune diseases such as systemic sclerosis (15). In contrast, ulcers 
can be viewed as the consequence of “under-healing” (16). 
Cancerous tumors can also be seen as products of an abnormal 
repair process, or “wounds that do not heal” (17, 18).

Though the immune system is generally defined as a system of 
defense, selected through evolution for its capacity to insure host 
protection (19–23), it is now clear that the immune system plays 
also an essential role in tissue repair (9, 24–26). The involvement 
of the immune system in repair had long been suspected (27–30), 
but it is only recently that a precise cellular and molecular char-
acterization of this process has been possible. In this review, we 
describe the impact of the immune system on repair and dysregu-
lated repair and emphasize the key role played by immune cell 
plasticity in repair (Figure 1) (31). The word “plasticity” is used 
with different and often confusing meanings. Here, we understand 
cell plasticity in two different and important senses. The first sense 
is intra-lineage cell plasticity, that is, changes in cell function and 
phenotype within a given cell lineage—for example, type 1 mac-
rophages (M1s) turning into type 2 macrophages (M2s). This is 

what is sometimes called “functional plasticity” (32). The second 
sense is trans-lineage cell plasticity, that is, the switch from one 
lineage to another—e.g., from macrophages to fibroblasts (33). 
This can also be called plasticity by “transdifferentiation” (34) or 
by “reprogramming”—a phenomenon now known to occur in 
some non-immune cells (35). We show here how these two types 
of cell plasticity are involved in tissue repair—with a particular 
insistence on the first type, which is now amply demonstrated. 
Because the most numerous and crucial immune cells involved 
in tissue repair are macrophages and neutrophils, we start our 
review with a description of their roles and plastic capacities.

PLASTiCiTY OF neUTROPHiLS AnD 
MACROPHAgeS in RePAiR

Neutrophils are part of the first line of defense against infection 
and are massively recruited on damage sites (36). The defense 
function is mainly mediated by phagocytosis, intracellular 
degradation, releasing of granules, and formation of neutro-
phil extracellular traps (NETs) after sensing dangerous stress. 
However, accumulating data show that neutrophils have a variety 
of important biological functions far beyond cytotoxicity against 
pathogens. Their adaptable life span, longer than previously 
thought (more than 5 days) (37), allows neutrophils to participate 
actively in the three repair stages (38).

Far from being “one-shot” weapons, long-living neutrophils 
are remarkably plastic. Indeed, neutrophils can differentially 
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switch phenotypes, display distinct subpopulations under 
different microenvironments, and produce a large variety of 
cytokines and chemokines (39). Plasticity of neutrophils has 
been evoked recently following the controversial debate on their 
pro- or antitumor role, leading to the conclusion that they can be 
both, depending on the subsets under consideration. In repair, 
neutrophils can be pro- or anti-resolution of the inflammatory 
stage. The resolution of tissue formation depends on neutrophils 
for their ability to (i) produce several pro-resolving mediators  
(as lipoxins) (40), (ii) form NETs and aggregated NETs, according 
to a cell-density dependent sensing mechanism, which dismantles 
the pro-inflammatory gradient by degrading the inflammatory 
cytokines and chemokines (41), and (iii) store and release the 
pro-resolving protein annexin A1 (42–44).

In addition to this intra-lineage plasticity, repair-associated 
neutrophils are capable of trans-lineage plasticity (i.e., plasticity 
by transdifferentiation) (45, 46). Challenging the classic view of 
neutrophils as terminally differentiated leukocytes fully com-
mitted to phagocytosis, new evidence shows that neutrophils 
can acquire phenotypic and functional properties typically 
associated with professional antigen-presenting cells (APCs) 
(47, 48)—e.g., MHC II expression and co-stimulatory molecules  
(49). Such neutrophil trans-lineage plasticity is driven in part by 
the microenvironment composition. For example, in an inflam-
matory and pro-type 2 environment of a lesion, neutrophils could 
transdifferentiate into APCs (46). Transformation of neutrophils 
into APCs has also been studied in rheumatoid arthritis, where it 
could drive sustained inflammation, thereby preventing normal 
repair (50). Trans-lineage plasticity could also link innate and 
adaptive immunity and constitute a pivotal crossroad polarizing 
the response toward abnormal repair, e.g., fibrosis.

Recent research has also highlighted the plasticity of mono-
cytes and macrophages. During the early inflammatory phase 
(stage 1), monocytes are attracted by neutrophils to the wound 
site, where they represent a predominant source of pro-inflam-
matory mediators and exert a phagocytic role as M1 (51). Early 
depletion of macrophages in mice leads to decreased inflamma-
tory responses (52).

Type 1 macrophages drive the early inflammatory responses 
that lead to tissue destruction, whereas M2s (or “alternatively 
activated reparative macrophages”) exert a central role in wound 
healing. Both types are needed for proper wound healing (53). 
The second stage of the repair process—new tissue formation—is 
dominated by M2s (26, 54, 55). These cells promote tissue repair 
by producing pro-reparative cytokines or generating a pro-type 
2 microenvironment. They also present a complex heterogeneity 
(56). Beyond a strict M1/M2 dichotomy, a wide range of mac-
rophage subtypes exists (57–59), and several of them are involved 
in repair (34). Efficient tissue repair requires inflammatory mac-
rophages, tissue repair macrophages, and resolving macrophages 
(producers of resolvins, IL10, and TGF-b) (26, 34, 60).

During the remodeling phase, most macrophages undergo 
apoptosis or leave the wound (8). At this stage, the wound con-
sists mostly of an acellular matrix where the collagen type III is 
substituted by collagen type I, thanks to the secretion of matrix 
metalloproteinases, notably by tissue repair macrophages. Even 
if current evidence is limited, macrophages might participate 

actively in tissue remodeling by transdifferentiation, notably into 
endothelial cells (61–64).

All this raises the question of whether the crucial and distinct 
roles played by macrophages and neutrophils in tissue repair are 
better explained by cell migration or by cell plasticity (65). Do 
subtypes of macrophages and neutrophils (M1s and M2s; pro-
inflammatory and pro-resolving neutrophils) reach the tissue 
separately, in successive waves, or are they the product of a plastic 
switch from one subtype to the other? Further research is needed 
to answer this question.

PLASTiCiTY OF OTHeR iMMUne CeLLS 
in RePAiR

Though neutrophils and macrophages constitute the most 
numerous immune cells involved in tissue repair, this process 
also includes other immune cells—particularly γδ T cells, innate 
lymphoid cells (ILCs), and regulatory T cells (Tregs).

Resident T cells are present in human epidermis with both αβ 
and γδ subtypes. There is a lot of evidence for the involvement of 
γδ T cells in repair processes in mice (66). The situation is far less 
clear in humans. Nevertheless, some studies showed in culture 
models the promotion of wound healing by γδ T cells, through 
the production of the insulin-like growth factor 1 (67). Plasticity 
of γδ T cells has been only evoked in the context of cancer, where 
γδ T cells display either pro- or antitumor activity depending on 
the cytokine environment (68, 69). Further investigations are 
needed to demonstrate if this functional plasticity of γδ T cells is 
also involved in tissue repair.

Innate lymphoid cells are a recently discovered family of 
immune cells that includes three subsets: ILC1, ILC2, and ILC3 
(70–72). These cells are found preferentially on epithelial barrier 
surfaces such as skin, lungs, and gut, where they protect against 
infection and maintain the integrity of the barriers (73, 74). 
ILCs are tissue-resident sentinels enriched at mucosal surfaces 
and have a complex crosstalk with the microenvironment. They 
are highly involved in tissue repair through their sentinel posi-
tion and the cytokines they produce (75, 76). ILC2-secreted 
amphiregulin, a protein shown to orchestrate tissue repair (75), 
promotes wound healing by acting directly on fibroblasts, leading 
to ECM deposit. Key transcription factors determine the pathway 
of differentiation of progenitors toward an ILC1, ILC2, or ILC3 
subset. ILC responses to different stimuli allow intra-lineage 
plasticity between the different subsets (77, 78). This plasticity 
between different ILC subtypes might allow for rapid innate 
immune responsiveness in repair (79, 80).

Regulatory T cells exert multiple functions (81) and could play 
a critical role in tissue repair (82). Recently, several populations 
of tissue-resident Tregs were identified, including special Tregs in 
visceral adipose tissue, muscle Tregs, and skin-resident memory 
Tregs (83, 84). In repair, Tregs could modulate the effector 
response and contribute to the redundant effect of the previously 
described cells by creating a dynamic microenvironment. Tissue-
resident Tregs are able to rapidly respond to tissue damage, 
inducing tolerance and repair to prevent loss of tissue function. 
Tregs share these features with ILC2s and anti-inflammatory 
macrophages.
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FigURe 2 | Relative importance of inflammation, new tissue 
formation, and remodeling in three different situations. In normal 
wound healing, inflammation (1, in red), new tissue formation (2, in green), 
and remodeling (3, in purple) are at a basal level. In ulcers, inflammation and 
new tissue formation are at higher levels, whereas remodeling is lower than 
the basal level. In fibrosis, inflammation, new tissue formation, and 
remodeling are all higher than their basal levels.
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Thus, many elements are redundant in tissue repair. This 
redundancy likely illustrates the critical role played by immune-
associated repair in the survival and robustness of the organism.

CeLLULAR PLASTiCiTY in wOUnD 
RePAiR: A PROMiSing AvenUe FOR 
FUTURe eXPeRiMenTAL ReSeARCH

Immune cells participate in the generation of a peculiar microen-
vironment, leading to a balance shift between the pro-inflamma-
tory and pro-reparative sides of tissue repair. In cystic fibrosis, for 
example, abnormal intra-lineage neutrophil plasticity has been 
implicated in the unbalance of airways microenvironment, lead-
ing to chronic inflammation and inability for other cells such as 
macrophages to switch to resolving stages (85). Hence, manipula-
tion of this process constitutes an innovative therapeutic approach 
for pathological conditions involving dysregulated repair. Here, 
we explore different examples of therapeutic modulations of 
intra-lineage plasticity, for both macrophages and neutrophils.

Targeting Functional Plasticity  
during Tissue injury
In certain conditions, accelerating tissue repair could be decisive, 
particularly for certain wounds (such as large or life-threatening 
wounds) and for certain patients (such as elderly or fragile 
patients). Remarkably, patients treated by immunosuppressive 
therapy experience a delayed wound healing, which shows that the 
inflammatory stage is important to induce repair. The complexity 
of tissue repair is due to the number of involved partners but also 
to the precise timing and imbrication of the phases. Therefore, 
isolating new targets, even of great importance, will not be suf-
ficient if the whole balance and timing are not considered.

Numerous mediators involved in the phenotype conversion 
of macrophages have been described, but so far their therapeutic 
potential remains uncertain in humans (86). For example, in vitro 
studies showed that GM-CSF could switch inflammatory mono-
cytes to a reparative phenotype, leading to the idea that GM-CSF 
could exert beneficial effects on intestinal inflammation and 
wound healing associated with Crohn’s disease (87). Intra-lineage 
plasticity of macrophages could also be modulated through the 
VEGF-C/VEGFR3 pathway, leading to hybrid macrophages 
favorable to resolution (88).

Reparative neutrophils could also be modulated to accelerate 
the process of wound healing (39). In cardiac infarction, a tempo-
ral switch from inflammatory to resolving neutrophils has been 
detected (89). Programming neutrophils to the N2 subtype by a 
PPARγ agonist rosiglitazone could be used to obtain a beneficial 
role of anti-inflammatory N2 neutrophils, as shown in stroke (90).

Targeting Functional Plasticity during 
Chronic injury (or in Chronic wounds)
A chronic wound could be seen as resulting from a dysregulated 
repair process, with an increase of pro-inflammatory environment 
at the expense of the pro-resolving one (Figure 2). Modulating 
cell plasticity toward a more resolving phenotype appears an 
attractive strategy in that line.

Mechanical debridement of a chronic wound consists in 
the removal of dead tissues to improve the healing potential of 
the remaining healthy tissue. This removal leads to tissue re-
colonization by immune cells, suggesting that they are important 
in the repair process. Maggot therapy could empirically modulate 
immune cell plasticity in addition to its mechanical role. Some 
data indicate that maggot secretions decrease the elastase release 
and the H2O2 production of activated neutrophils without 
affecting their phagocytic activity (91). Moreover, maggot secre-
tions inhibit the production of pro-inflammatory cytokines by 
monocytes, skewing their phenotype from a pro-inflammatory 
to a pro-angiogenic type (92).

Another approach is to figure out the exact cause of the chronic 
pro-inflammatory stimulation and develop a therapeutic strat-
egy specific to this cause. In some cases, the pro-inflammatory 
stimulation is associated with bacterial biofilms (93–95). Biofilms 
in acute surgical and chronic wounds appear to cause a delay in 
healing (95). In this composite state, bacteria are resistant against 
antibiotic treatment and immune responses, leading to impaired 
eradication of opportunistic pathogens. Biofilm-embedded bac-
teria release virulence factors dictated by quorum-sensing that in 
turn promote inflammatory mediators such as IL-1β, contribut-
ing to delayed wound re-epithelialization and healing (96, 97). 
Hence, dealing with biofilms has become a major challenge in 
chronic wound healing. Quorum-sensing blockers could be an 
innovative approach to treat non-healing wounds, even though 
clinical trials are needed to prove their relevance (98).

Targeting Plasticity in Over-Repair  
and Fibrotic Processes
Keloid and hypertrophic scars are pathologic fibroproliferative 
disorders characterized by an excess of collagen deposition in 
genetically predisposed patients. In hypertrophic scars, inflam-
matory genes are expressed at a lower level and for a longer time, 
with a delayed but prolonged infiltration of M2 macrophages (99). 
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Hypertrophic scar development is dependent on macrophages as 
their depletion during the subacute phase allows normal scarring 
in mice (100). Thus, limiting M2 activation in keloid could be a 
way to circumvent the hypertrophic scar.

Diffuse cutaneous systemic sclerosis (dcSSc) is a form of over-
repair. SSc results from the interaction of three processes: innate 
and adaptive immune abnormalities, vasculopathy, and fibroblast 
dysfunction leading to excessive collagen and matrix components 
accumulation (101). Fibrotic skin is characterized by an immune 
cell infiltrate of various nature (15, 102–104). These cells fol-
low a chemokine gradient, such as CCL2, partly explaining the 
recruitment of macrophages and the M2 polarization in SSc skin  
(105, 106). Limiting M2 activation and even activating M1 could 
be an interesting lead for dcSSc at the proper stage. The window 
of opportunity is critical, and studies showing the evolution of 
cell plasticity during SSc evolution are lacking to establish reli able 
therapy based on cell plasticity. Nevertheless one can assume that 
the number of pro-inflammatory innate cells is limited to a first 
phase, and then a pro-reparative profile of cells is predominant, 
giving a place for anti-resolving cell drugs. At the last stage, the 
absence of infiltrating cells could prevent the efficiency of immu-
nological approaches.

COnCLUSiOn

Immunologists have tended to see the immune system as a system 
of defense. Yet the immune system is crucial for several “house-
keeping” processes, most prominently repair (7). In some cases, 
it would even seem artificial to distinguish between “repair” and 
“defense,” because a typical repair response (e.g., type 2) is used 
to “wall off ” particular pathogens such as helminthes (107). By 
constantly surveying the body and responding to anomalies and 
through its pleiotropic roles in defense, development, and repair, 
the immune system is pivotal for the robustness of the organism 
(6). A system is “robust” when it is able to maintain its functions 
and performances despite perturbations (2–4). Robustness does 
not mean an absence of change: quite the contrary, it is through 
constant internal modifications that an organism can maintain 

its functions. We should therefore not be surprised by the main 
conclusion of the present review, which is that immune cell 
plasticity [and cell plasticity more generally (65, 108)] is essential 
to ensure the robustness of the organism as far as tissue repair 
is concerned.

Though still in its infancy, the idea of therapeutically manipu-
lating immune cell plasticity in repair seems extremely promis-
ing. We have examined several examples where the manipulation 
of immune cell plasticity is already a reality, and we can only 
look forward to future investigations. Recently, an increasing 
number of tissue repair specialists have become interested in 
how non-mammal model organisms repair and/or regenerate 
(9). Crucially, the immune system plays a key role in repair and 
regeneration across species, and regeneration is often associated 
with an immunosuppressive state (109–111). Successful regen-
eration also presupposes cell plasticity, both intra-lineage and 
trans-lineage (112, 113). It is exciting to speculate that immune 
cell plasticity could play an important role in regeneration and 
that one day clinicians could manipulate this immune plasticity to 
skew the balance between damaging and reparative effects toward 
the desirable state for any given patient.
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