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Bayesian personalism models learning from experience as the up-
dating of an agent’s credence function on the information the
agent acquires. The standard updating rules are hamstrung for
zero probability events. The maneuvers that have been proposed
to handle this problem are examined and found wanting: they
offer only temporary relief but no satisfying and stable long term
resolution. They do suggest a strategy for avoiding the problem
altogether, but the price to be paid is a very crabbed account of
learning from experience. I outline what Bayesians would need to
do in order to come to grips with the problem rather than seeking
to avoid it. Furthermore, I emphasize that an adequate treatment
of the issues must work not only for classical probability but also
for quantum probability as well, the latter of which is rarely dis-
cussed in the philosophical literature in the same breath with the
updating problem. Since it is not obvious how the maneuvers
applied to updating classical probability can be made to work for
updating quantum probability a rethinking of the problem may
be required. At the same time I indicate that in some special
cases quantum probability theory has a self-contained solution to
the problem of updating on zero probability events requiring no
additional technical devices or rationality constraints.

1 Introduction

It is well known that Bayesianism has a problem with modeling belief revi-
sion when an agent is faced with zero probability events. Alleged solutions
are gestured at but are rarely critically examined. While it is a bit of an ex-
aggeration to say that the attempted solutions fail utterly, I will argue that
the technical machinery thrown at the problem fails to deliver anything ap-
proaching a satisfying account of how Bayesian belief revision is supposed to
take place in the problem cases. Additionally, while the technical machinery
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is well developed for classical probability there is, to my knowledge, no dis-
cussion of how the machinery can be made to work for quantum probability,
which is a serious lacuna since, presumably, the event structure of our world
is quantum rather than classical.
I begin by outlining the accepted updating rules for classical and for

quantum probability. These rules are stymied in the case of zero probability
events. I then turn to a critical examination of the most widely cited rescue
efforts and conclude that none of them pass muster. From this discussion
emerges a strategy for avoiding the problem altogether, but implementing it
comes at the expense of a very crabbed account of learning from experience.
A worthy Bayesianism would confront rather than seek to avoid the problem,
and this involves facing up to aspects of belief revision which Bayesians have
tended to ignore. I outline what needs to be done and offer some options
but (wisely? cowardly?) decline to recommend one. Throughout I flag what
needs to be done in order to properly pose the issues when credences are
assigned in the non-commutative event structure encountered in quantum
mechanics (QM).

2 Simple Bayesianism for classical probabil-
ity

Here I adopt the spirit of Bayesianism personalism: Rational agents have
credences in the form of degrees of belief that conform to the axioms of prob-
ability with some suitable form of additivity to be discussed; these agents
have learning experiences, and in reaction they update their credence func-
tions.1 The simple form of Bayesianism assumes that what is learned can be
encapsulated in the form of a proposition that is learned with certainty. Of
course, this is an idealization, and a realistic modeling of a learning experi-
ence will have to allow for uncertain learning. Various updating rules have
been proposed for uncertain learning, such as Jeffrey conditionalization (see
Jeffrey 1965). I will eventually take up Jeffrey conditionalization in Section
8, but initially I will focus on the simple, idealized case since there are already
complications aplenty. In the present section I set the issues in the context
of classical probability; in the following sections I sketch how the issues at
hand play out in the context of quantum probability.

1For an overview of the many varieties of Bayesianism see Weisberg (2011).
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2.1 Classical probability

A classical probability space is a triple (Ω,Σ, pr) where Ω is the sample space
and Σ, the set of measurable sets (i.e. the subsets of Σ to which probability
is assigned), is an algebra of subsets of Ω that contains Ω and is closed
under complementation and finite unions and intersections. The probability
measure pr is a map Σ→ [0, 1] satisfying at a minimum

(Ci) pr(Ω) = 1

(Cii) pr(E1 ∪E2) = pr(E1) + pr(E2) for all E1, E2 ∈ Σ such that
E1 ∩ E2 = ∅.

The additivity axiom can be strengthened to

(Cii′) pr(∪a∈IEa) =
∑

a∈I
pr(Ea) for all Ea ∈ Σ such that

Ea ∩ Ea′ = ∅ when a 6= a′.

When the index set I is denumerable (Cii′) is the requirement of countable
additivity, and when I can be any cardinality it is the requirement of com-
plete additivity.2 When Σ is the power set P (Ω) of Ω (no non-measurable
sets) countable additivity implies complete additivity unless the cardinality
of Ω is as big as the least measurable cardinal, a situation rarely encountered
in practice (see Appendix).

2.2 Bayes updating

Interpret pr as the credence function of a Bayesian agent. Suppose that the
agent learns for certain that F ∈ Σ is true where pr(F ) 6= 0. How should her
post-learning credence function pr′ be related to her pre-learning credence
function pr? A standard answer is that pr′ is derived from pr by Bayes

conditionalizing on F , i.e. pr′(•) = pr(•/F ) :=
pr(• ∩ F )

pr(F )
.

One possible justification for this updating rule (hereafter, Bayes updat-
ing) relies on

2Obviously Σ must have the appropriate closure properties for these requirements to
make sense.
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Prop 1. Let (Ω,Σ, pr) be a classical probability space, and let
F ∈ Σ be such that pr(F ) 6= 0. Then there is a unique functional
prF (•) on Σ such that (a) prF (•) is a probability measure on Σ,
and (b) for all E ∈ Σ such that E ⊆ F , prF (E) = pr(E)/pr(F ).3

If properties (a) and (b) of Prop. 1 capture desirable features of updating
when F is learned with certainty then Bayes updating is uniquely singled out
since prF (•) is just pr(•/F ). It remains to give a convincing justification for
affi rming the antecedent.
The most widely discussed justification for Bayes updating is the Lewis-

Teller diachronic Dutch book argument.4 A bookie employs a two-stage suite
of bets using the agent’s personal probability pr as the fair betting quotient.

Stage 1. The bookie sells the agent an unconditional bet on F
with betting quotient pr(F ) and stakes SF .5 At the same time the
bookie buys from the agent a bet on E conditional on F using the
betting quotient pr(E/F ) = pr(E ∩ F )/pr(F ) and stakes SE/F .
(‘Conditional on F’means that if F is found to be false, the bet
is called off.) The truth value of F is then ascertained and the
result is announced to both the agent and the bookie. If F is
found to be false the bookie collects on the unconditional bet,
calls off the conditional bet and closes shop. If F is found to be
true the bookie proceeds to the next stage.

Stage 2. The bookie sells the agent an unconditional bet on E
with stakes SE and betting quotient given by the agent’s prob-
ability pr′ of E updated on the knowledge that F is true. The
truth of E is ascertained and the remaining bets are settled.

If the agent’s updated pr′ is not equal to the conditional probability pr(E/F )
then the stakes of the three bets can be chosen so that, come what may,
the agent loses money; conversely, if pr′(E) = pr(E/F ) then the agent is
protected from diachronic Dutch book.

3For a proof see Cassenelli and Zanghi (1983).
4See Teller (1976). For an overview of Dutch book argumentation see Vineberg (2016).
5This bet is a contract whereby the agent agrees to pay the bookie pr(F ) · SF in order

to collect SF from the bookie if F is true and nothing is F is false.
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This style of justification has been subjected to a number of criticisms. In
particular, it has been claimed that diachronic Dutch book provides merely
pragmatic grounds for adopting Bayes updating and does not show that
an agent who departs from Bayes updating will necessarily have irrational
credences (see Christensen 1991). More disturbingly, Gallow (2019) shows
that Bayes updating is itself diachronically Dutch bookable in a scenario
where an agent can acquire certainty about one of a pair of events F1, F2 ∈ Σ
that do not form a partition but overlap in a certain way.6

While I share qualms about the attempted justifications of Bayes updat-
ing I set them aside in the present context. Here my concern is not with
justifying Bayes updating but rather with its impotence when faced with
zero probability events.

3 Simple Bayesianism for quantum probabil-
ity

I begin by emphasizing that what is at issue here is not what its proponents
dub quantum Bayesianism (or QBism), the view that all quantum probabil-
ities are to be given a personalist interpretation.7 Even if, contrary to the
QBians, the probability calculated from QM for, say, the decay of a hydrogen
atom represents an objective chance, there is still the matter of how quantum
physicists make inferences about the behavior of quantum systems. I assume
for present purposes that these inferences are to be treated in the framework
of Bayesian personalism, suitably adjusted to take account of the differences
between classical and quantum event spaces.

3.1 Quantum probability

Quantum probability is the study of quantum probability measures on the
projection lattice P(N) of a von Neumann algebraN acting on a Hilbert space
H (see Hamhalter 2003). A projection E is an “observable,”i.e. a self-adjoint
operator, and it is idempotent, i.e. E2 = E. P(N) is equipped with a natural
partial order, viz. for E,F ∈ P(N), F ≤ F iff range(E) ⊆ range(F ). P(N)

6F1 and F2 overlap if F1 ∩ F2 6= ∅.
7For a readable introduction to QBism see von Baeyer (2016). For a critical assessment

see Earman (2019a).
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is closed under meet ∧ (the least upper bound) and join ∨ (greatest lower
bound). Complementation in P(N) is understood as orthocomplementation,
i.e. Ec := E⊥ = I − E. The elements of P(N) are variously referred to as
events, propositions, or Yes-No questions. It is assumed that it is in principle
possible to settle these questions by appropriate measurements.
A quantum probability measure on P(N) is a map Pr : P(N) → [0, 1]

satisfying the quantum analogs of the classical probability axioms

(Qi) Pr(I) = 1 (I the identity projection)

(Qii) Pr(E1 ∨ E2) = Pr(E1) + Pr(E2) whenever E1, E2 ∈ P(N)
are mutually orthogonal.8

As with classical probability the additivity property (Qii) can be strength-
ened to countable and complete additivity.

Here I concentrate on the case of ordinary nonrelativistic QM where
N = B(H), the von Neumann algebra of all bounded operators acting on
H. When H is separable any family of mutually orthogonal projections
is countable and, thus, complete additivity reduces to countable additivity,
which in turn reduces to finite additivity when dim(H) is finite. A separable
H suffi ces for most applications of QM, but it is easy to imagine cases where
a non-separable H is required (see Section 4 below). However, unless dim(H)
is as large as the least measurable cardinal countable additivity on P(B(H))
implies complete additivity (see Appendix). To keep matters as simple as
possible I focus for the most part on the case of a separable H.

3.2 From quantum states to quantum probabilities and
back

A quantum state ω is a complex valued, normed, positive linear functional on
B(H). Any such ω induces a quantum probability measure on P(B(H)), viz.
Prω(E) := ω(E), E ∈ P(B(H)), satisfies the properties (Qi) and (Qii) of the
preceding section. If one takes the point of view that quantum states codify
objective, observer independent features of quantum systems then, contra
the QBians, the probabilities they induce are objective. But to repeat, this
is a dispute that need not detain us.

8E1 and E2 are mutually orthogonal iffE1E2 = E2E1 = O (the null projection). When
E1 and E2 are mutually orthogonal E1 ∨ E2 = E1 + E2.
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A special class of states will occupy our attention here. Normal states
are those that admit a density operator representation or, equivalently, are
completely additive over families of mutually orthogonal projections.9 Such
states are the only states used in standard texts on QM, the implicit assump-
tion being that only these states are physically realizable. A strong but not
conclusive case can be made for this assumption (see Ruetsche 2011). It will
be taken on board in the present discussion. A normal (respectively, non-
normal) state induces a completely additive (respectively, merely finitely or
merely countably additive) probability on P(B(H)).
Gleason’s theorem provides an almost general converse:

Gleason: Let Pr be a quantum probability on P(B(H)) where
dim(H) > 2 and H is separable. Then Pr has a unique extension
to a state on B(H) which is normal (respectively, non-normal) if
Pr is countably additive (respectively, merely finitely additive).10

Later work showed that whenH is non-separable a completely additive prob-
ability on P(B(H)) has a unique extension to a normal state.
Gleason’s theorem provides the crucial link in defining quantum updat-

ing.11 But before turning to this matter a word needs to be said about how
to read quantum probability statements.

3.3 Reading quantum probabilities

The formal similarity between the axioms of classical and quantum probabil-
ity gives no hint at the deep differences that arise from the differences in the
classical and quantum event spaces. To cite one example, when dim(H) > 2
there are no dispersion free probability measures on P(B(H)). By contrast

9See Kadison and Ringrose (1991), Vol. 2, Theorem 7.1.12. The density operator
representation allows expectation values to be calculated via the trace prescription, viz.
ω(A) = Tr(%ωA), A ∈ B(H), where %ω is the density operator corresponding to the
normal state ω.
10When dim(H) = 2 there are probability measures on P(B(H)) that do not extend to

a state on B(H). A detailed treatment of Gleason’s theorem and its generalizations can
be found in Hamhalter (2003).
11Gleason’s theorem also provides the QBians with the means to claim that quantum

states are merely representational devices used to keep track of quantum probability mea-
sures which, of course, they give a personalist reading.
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if N is an abelian von Neumann algebra there are dispersion free probability
measures galore on P(N); indeed, every pure state on an abelian N induces a
dispersion free measure. The absence of dispersion free measures on P(B(H))
implies that there are no truth value assignments to P(B(H)) satisfying
minimal natural requirements.12 Since the elements of P(B(H)) cannot be
assumed to have simultaneous truth values, ‘Pr(E) = p’, for E ∈ P(B(H)),
cannot be read as ‘The probability that E is true equals p’. The alternative
reading adopted here is ‘The probability that a Yes-No measurement of E
will return a Yes answer equals p’, where there is no presumption that prior
to the measurement E has a definite but unknown truth value.

3.4 Lüders updating

Suppose that a quantum Bayesian agent with an initial credence function Pr
does a Yes-No experiment on F ∈ P(B(H)), where Pr(F ) 6= 0, and obtains
a Yes answer. How should she update her credences in light of this new
knowledge? One natural answer is that she should update by the closest
quantum analog of Bayes conditionalization. Using ‘//’ to stand for the
sought-after quantum conditionalization, the requirement would be

(†) If Pr is a quantum probability on P(B(H)) and F ∈ P(B(H))
is such that Pr(F ) 6= 0 then quantum conditionalization Pr(•//F )
on F is a quantum probability on P(B(H)), and Pr(E//F ) agrees

with classical conditionalization Pr(E/F ) :=
Pr(EF )

Pr(F )
for all E ∈

P(B(H)) such that EF = FE, i.e. Pr(E//F ) = Pr(E/F ).

12A truth value assignment is a map V : P(B(H)) → {True, False}. The following
constraints are suffi cient to generate the no-go result.

(α) V (I) = True

(β) For any mutually orthogonal E1, E2 ∈ P(B(H)), if V (E1) = True then
V (E2) = False

(γ) For any mutually orthogonal E1, E2 ∈ P(B(H)), V (E1 ∨ E2) = True if
either V (E1) = True or V (E2) = True, and V (E1 ∨ E2) = False if both
V (E1) = False and V (E2) = False.

If such an assignment existed then Pr : P(B(H)) → {1, 0}, where Pr(E) = 1 if V (E) =
True and Pr(E) = 0 if V (E) = False, would define a dispersion free probability.
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If E ≤ F then EF = FE = E. So by (†) when E ≤ F and Pr(F ) 6= 0

Pr(E//F ) = Pr(E/F ) :=
Pr(EF )

Pr(F )
=

Pr(E)

Pr(F )
.

Then appeal can be made to the quantum analog of Prop. 1:

Prop. 2. Let Pr be a countably additive quantum probability
measure on P(B(H)) for separable H with dim(H) > 2, and let
F ∈ P(B(H)) be such that Pr(F ) 6= 0. Then there is a unique
functional Pr(•//F ) on P(B(H)) such that (a) Pr(•//F ) is a
quantum probability, and (b) for all E ∈ P(B(H)) such that

E ≤ F , Pr(E//F ) =
Pr(E)

Pr(F )
(Bub (1977))

Castinelli and Zanghi (1983) show that Prop. 2 can be generalized to cover
arbitrary von Neumann algebras. In addition, there is no problem in extend-
ing Prop. 2 to cover a non-separable H when the countable additivity of Pr
is strengthened to complete additivity.
What is this unique functional Pr(•//F ), known in the literature as

Lüders conditionalization? When Gleason’s theorem applies and there is a

unique extension of Pr to a normal state ω onB(H), Pr(•//F ) =
ω(F • F )

ω(F )
=

ω(F • F )

Pr(F )
. When E,F ∈ P(B(H)) commute, FEF = EF = FE =

E ∧ F ∈ P(B(H)) and, thus, Lüders conditionalization can be expressed as

Pr(E//F ) =
Pr(EF )

Pr(F )
, which agrees with classical conditionalization. Note

that when E and F do not commute the numerator ω(FEF ) in the expres-
sion for Pr(E//F ) cannot be written as Pr(FEF ) since FEF /∈ P(B(H))
and, hence, its probability is not defined.
When dim(H) = 2 all states are normal, but Gleason’s theorem does

not apply since there are quantum probability measures on P(B(H)) that
do not extend to any state on B(H). Whether or not there is a plausible
conditionalization rule for such measures is an interesting issue that will not
be tackled here.
Lüders updating can also be motivated by adapting the Lewis-Teller di-

achronic Dutch book construction to quantum probabilities if bets on ele-
ments of P(B(H)) are settled by making the appropriate Yes-No measure-
ments and if Pr(E//F ) is used to set the agent’s Stage 1 fair betting quotient
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for a bet onE conditional on F , the understanding being that the bet is called
off if a Yes-No measurement of F returns a No answer. And the construction
shows that the stakes for the Stage 1 and 2 bets can be chosen so that the
agent is Dutch booked if and only if her probability of E, updated on the
knowledge that a Yes-No measurement of F yielded a Yes answer, fails to
equal Pr(E//F ) (see Earman (2019b)).
Needless to say, the qualms about the diachronic Dutch book argument

for classical probability carry over to quantum probability. But for present
purposes I am going to conduct the discussion below on the presumption that
updating on non-zero probability events for classical and quantum probabili-
ties follow respectively Bayes and Lüders updating. The issue is then is how
to proceed when zero-probability events are encountered.

4 Regularity and strict coherence

The problem for both Bayes updating for classical probability and Lüders up-
dating for quantum probability arises from the fact that classical conditional-
ization pr(•/F ) and Lüders conditionalization Pr(•//F ) are both undefined
when the the initial probabilities pr(F ) and Pr(F ) of the conditioning event
are zero. The problem cannot be ignored since agents can and do learn facts
to which they initially assign zero credence.

The plight of the would-be Bayesian agent. ‘I want to be a good Bayesian.
Towards this end I have a classical (respectively, quantum) credence func-
tion that satisfies the axioms of classical probability (respectively, quantum
probability). It assigns zero credence to the event F . But I just verified by
direct observation (or by experiment, or by reliable testimony) that F has
occurred. How should I revise my credences if I am to continue as a good
Bayesian? I cannot use Bayes updating (respectively, Lüders updating) since
it is undefined. Please help– I want to be good, but I don’t know what a
good Bayesian is supposed to do in the face of this challenge.’

I will discuss various forms of tough love advice suggested in the literature,
beginning with the requirement of regularity/strict coherence

Tough love (version 1). ‘I commend you for the fact that your initial cre-
dences conform to the axioms of probability. Your credences are coherent,
meaning that they are immune from being Dutch booked when they are used
to set fair betting quotients. However, I have to tell you that you got off on
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the wrong foot– you did not start with a credence function that fully con-
forms to the requirements of rationality of belief. That is because your initial
credences, though coherent, are not strictly coherent : if they are used to set
fair betting quotients then there is a family of bets each of which you find
fair or favorable but collectively have the feature that in no possible case do
you have a positive gain and in some possible case you suffer a loss. To be
strictly coherent your credences not only have to conform to the axioms of
probability as discussed above but they must be regular; that is, in the case
of classical probability a credence of zero is assigned only to the null event
and in the case of quantum probability only to the null projection. A num-
ber authorities have promoted regularity as a rationality requirement (see
Kemeny 1955, Shimony 1955, Lewis 1980, Skyrms 1980, Jackson 1987, Jef-
frey 1992). So my advice to you is to start over and adopt a regular/strictly
coherent credence function. Good luck!’

Tough love is sometimes required. But in this case there are various
reasons to be leery of embracing it. In this section I will mention the most
pressing one. Others will emerge in the discussion below. Start with the
truism that ought implies can. But the relevant ‘can’here may be missing.
In particular, the injunction of regularity/strict coherence cannot be satisfied
if there are more than a countable number of mutually exclusive alternatives
to which probability is assigned. (The proof is well known, but to save
readers from having to look it up I sketch it in the Appendix.) In the case
of a classical probability space this means that the set Σ of measurable sets
contains more than a countable number of mutually disjoint sets; in the
case of a quantum probability it means that the projection lattice P(B(H))
contains more than a countable number of mutually orthogonal projections,
which is the case iffH is non-separable.
An example from classical probability where the ‘can’is missing is given

by an infinitely sharp dart thrown at dart board isomorphic to a unit interval
of the real line; or if the idealization of an infinitely sharp dart is rejected,
count as a “hit” the coincidence of some chosen geometrical point on the
tip of the dart with a geometrical point on the dart board. There are a
power of continuum c mutually exclusive outcomes of a toss of the dart, so
if a probability is to be assigned to each outcome, Σ must have at least c
mutually disjoint sets. An example from quantum probability is given by
an infinite spin chain consisting of a countably infinite number of spin sites,
each of which may be in a state of spin up or spin down. A Hilbert space of
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dimension 2ℵ0 , which is equal to c if the continuum hypothesis is correct, is
needed. Consequently, there are c mutually orthogonal projections. In both
cases a real-valued probability measure can give non-zero probability to only
a countable subset of the alternatives.
Rather than give up on regularity its advocates sometimes propose to

change one of the basic rules of the game.

5 Regularity redux: infinitesimal probabili-
ties

Tough love (version 2). ‘The previous advice I gave you was both too tough
and not tough enough. It was too tough because I asked you to do what
in some cases is impossible. But it was not tough enough because I left the
impression that it was ok for you proceed using standard probability theory
in which probabilities are real-valued. In order to achieve regularity without
running afoul of ought-implies-can you should, if necessary, adopt a version
of probability theory that fattens the range of the probability function (to
use Brian Skyrms’expression).
‘The most discussed version of this strategy is to allow probabilities to

take hyperreal values; with this fattening, more than a countable number
of mutually exclusive events can be assigned non-zero probabilities because
they can be assigned infinitesimal values, such a value being greater than
zero but less than 1/N for any positive integer N . The work of logicians and
mathematicians have made talk of the infinitesimal respectable by providing
rigorous accounts of non-Archimedean extensions of the real numbers R.
For example, Abraham Robinson showed that there are non-Archimedean
elementary extensions of the reals that preserve all the properties of the reals
that can be stated in a first-order language. Using this work Bernstein and
Wattenberg (1969) showed how to treat the dart board example so as to
avoid the ought-implies-can objection. In their construction the probability
assigned to (the singleton set of) any real number in the unit interval of
R is a fixed infinitesimal, and any non-empty set of Lebesgue measure zero
gets positive infinitesimal measure. Further, their measure of any Lebesgue
measurable set differs from standard Lebesgue measure by an infinitesimal.
This is a model for you to emulate.’

Here the tough love sermonette must be interrupted to deal with the worry
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that while hyperreals may overcome specific cases of the ought-implies-can
objection, they will not provide a general resolution. Pruss (2013) showed
that no matter what non-Archimedean extension R∗ of the real numbers R is
chosen there is an event space Ω and an algebra of subsets Σ such that there
is no regular probability measure from Σ into R∗– intuitively, fattening the
domain of the probability measure can outrun the ability of the chosen R∗-
fattening of the range to deliver regularity.13 Hofweber (2014) counters, in
effect, that one size need not fit all; that is, the choice of the non-Archimedean
extension R∗ to fatten the range of the probability function need not be made
once and for all but may be tailored to fit the domain. Given this flexibility,
achieving regularity is always achievable by a hyperreal fattening of the range:

Prop. 3 (Hofweber 2014, Hofweber and Schindler 2016). For
any sample space Ω and any algebra Σ of subsets of Ω there is a
hyperreal field R∗ of at most size 2|Ω| and a regular probability
measure from Σ into R∗.

With this flexible approach to fattening the range of the probability func-
tion the way is open to formulate a conjecture that would make tough love
version 2 more palatable and more helpful. Towards this end note that if the
hyperreal number r∗ ∈ R∗ is finite (i.e. there is a standard real r > 0 such
that −r < r∗ < r) then there is a unique standard real st(r∗) closest to r∗

(i.e. st(r∗) = inf{r ∈ R : r∗ ≤ r}) such that |st(r∗)− r∗| is an infinitesimal.
This st(r∗) is referred to as the standard part of r∗. Let (Ω,Σ, pr) be a stan-
dard classical probability space. Call the probability space (Ω,Σ′, pr∗) where
pr∗ takes values in the hyperreal field R∗ a regular hyperreal extension of
(Ω,Σ, pr) iff Σ′ ⊇ Σ and for all E ∈ Σ, pr∗(E) 6= 0 and st(pr∗(E)) = pr(E).
(The Bernstein and Wattenberg 1969 extension of Lebesgue measure is an
example.)

Conjecture 1. For any standard probability space (Ω,Σ, pr) there
is a regular hyperreal extension (Ω,Σ′, pr∗).

A version of Conjecture 1 for finitely additive probabilities is demonstrated
by Hofweber and Schindler (2016), but it remains to be proven, or refuted,
for countably or completely additive pr.

13Pruss’argument uses the axiom of choice and finite additivity.
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[Aside: How to understand the concepts of countable and complete ad-
ditivity for probability measures taking values in the hyperreals remains to
be specified. The standard reals have the least upper bound property: a
bounded non-decreasing sequence of reals has a least upper bound. So if
pr is a real valued probability and {Ea} ∈ Σ is a family of mutually dis-
joint events an infinite sum

∑
a pr(Ea) can be understood as the least upper

bound on finite partial sums. But the least upper bound property fails for
the hyperreals. There are various proposals for how to understand conver-
gence for a sequence of hyperreals, but as far as I am aware there is no
general agreement on which proposal is correct or even on what correctness
here means apart from consistency and fruitfulness. However, how to under-
stand countable and complete additivity for hyperreal valued probabilities is
an issue that need not detain us. The point is that Conjecture 1 remains
to be proved for countably and completely additive real valued pr, and the
additivity properties of a hyperreal valued pr∗ need not concern us here. If
(Ω,Σ′, pr∗) is a hyperreal extension of (Ω,Σ, pr) then, by definition, the stan-
dard part st(pr∗(•)) of pr∗(•) satisfies the same form of additivity as pr(•) on
the latter’s domain Σ though not necessarily on the former’s domain Σ′ ⊇ Σ.
This is illustrated by the Bernstein and Wattenberg (1969) non-standard
measure µ∗ that extends Lebesgue measure µ on [0, 1] ⊂ R to all subsets of
[0, 1]. The standard part st(µ∗(•)) of µ∗ agrees with standard Lebesgue mea-
sure on all Lebesgue measurable sets and, thus, is countably additive over
these sets. But, if the continuum hypothesis is correct, st(µ∗(•)) cannot be
countably additive on the power set of the unit interval since then it would
also be completely additive (see Appendix), producing a contradiction since
st(µ∗({r})) = 0 for all r ∈ [0, 1], but if st(µ∗(•)) is completely additive on
all subsets of [0, 1] then st(µ∗(∪r∈[0,1]{r})) = st(µ∗([0, 1])) = 1.]

After this interruption the tough love sermonette can now continue.

Tough love (version 2.1). ‘Abandoning your standard probability measure pr
in favor of a regular hyperreal valued measure pr∗ need not be as wrenching
as you might have imagined. If Conjecture 1 is true you can almost retain all
of your pr degrees of belief by choosing a regular hyperreal extension pr∗; for
|pr∗(E)−pr(E)| is an infinitesimal for all E ∈ Σ and, thus, only infinitesimal
adjustments in your real valued credences are needed to achieve regularity.
Of course, if there is a hyperreal valued extension of pr there will be many.
I cannot tell you which one to choose.’

For tough love version 2.1 to be viable it must be extended to quantum
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probabilities. This would require developing a non-standard measure theory
for quantum probabilities wherein quantum probabilities are allowed to take
on hyperreal values; developing a notion of quantum states as linear func-
tionals on B(H) that take values in the hypercomplex numbers and that in-
duce hyperreal valued probabilities on P(B(H)); and proving a Gleason type
theorem, showing that a hyperreal valued quantum measure satisfying ap-
propriate additivity conditions (whatever this would mean) can be uniquely
extended to a normal hypercomplex valued quantum state (whatever normal-
ity here would mean). Additionally, a quantum analog of Conjecture 1 would
need to be formulated and proved. This is terra incognita and potentially a
fruitful area for research, but it is not a project that can be pursued here.
So I return to non-standard measure theory for classical probability. But I
emphasize that until this research program has borne fruit the idea that the
problem at issue can be avoided by the device of hyperreal probabilities is in
danger of foundering in the quantum domain.

6 Why regularity (strict coherence) is not a
good regulatory ideal

6.1 Weak motivation

Although regularity/strict coherence– achieved, if necessary, with the help
of infinitesimal probabilities– has been widely promoted as a rationality con-
straint on credences, the rationales offered are weak in comparison with the
rationales for simple coherence. Consider, for example Dutch book argu-
ment for simple coherence, which can be given either a pragmatic or a non-
pragmatic spin. On the pragmatic reading the Dutch book argument pro-
vides a strong nudge towards conforming your credences to the dictates of
probability by showing that a failure to conform means that a clever bookie
can clean out your bank account if you use your credence function as a fair
betting quotient, while the converse Dutch book argument shows that con-
formity confers immunity to such sure ruin. By contrast, if coherence holds
the failure of regularity (or strict coherence) means only that you are indif-
ferent to or find favorable a family of bets, the net result of which is that in
no case do you have a gain while in some case you have a loss. The surety
of a loss in some case is due to the fact you are willing to buy a bet on a
measurable event E 6= ∅ where you have no gain if E is true but you lose the
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stakes of the bet if E is false. But this should not be be too worrisome for
you since you think that the probability of losing the stakes is zero.
On the non-pragmatic reading of Dutch book what the argument for sim-

ple coherence (supposedly) reveals is that a that failure to conform your
credences to the dictates of probability results in a structural incoherence in
your degrees of belief and preferences: you are indifferent to or find favorable
each of a family of bets but at the same time prefer not betting on the family.
By contrast, the failure to obey regularity/strict coherence reveals no compa-
rable structural incoherence in your degrees of belief and preferences. Note
also that non-Dutch book rationales for simple coherence, such as scoring
rule arguments, do not serve as rationales for strict coherence.

6.2 Cases where regularity for credence functions is
neither desirable nor maintainable

As already noted, for most applications of ordinary QM a separable Hilbert
space H suffi ces, and for such cases any family of mutually orthogonal ele-
ments of P(B(H)) is countable. Hence, real valued probability measures on
P(B(H)) can be regular, and there is no need to resort to infinitessimal prob-
abilities or the like. However, every normal pure state ψ induces on P(B(H))
a real valued probability measure Prψ that is non-regular. So if, contrary to
the QBians, normal pure states induce objective chances, then these chances
are non-regular. And if rational credence should strive to match objective
chance, then regularity is not a desirable regulatory ideal for credence.
In some instances Lüders updating automatically makes rational cre-

dence match objective chance. Specifically, suppose that H is separable and
dim(H) > 2, and let Pr be a countably additive and regular credence function
on P(B(H)). Lüders updating Pr on what is called the support projection
Sψ of a normal pure state ψ gives the following result, purely as a theorem
of quantum probability: If Pr(Sψ) 6= 0 then Pr(•//Sψ) = ψ(•) (see Section
10 below). The updated credence function matches the non-regular chance
function ψ(•) , and in this instance the non-regularity is arguably a desir-
able feature rather than something to avoided or smoothed over by filling
in zero probabilities with infinitesimal. Furthermore, the fleeting nature of
regularity in this instance is quite a general phenomenon.
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6.3 The ephemeral nature of regularity

Regularity was put forward in order to avoid the problem at issue. But the
avoidance doesn’t last long. I will illustrate for classical real valued proba-
bilities. Suppose that our would-be good Bayesian agent adopts an initial
credence function pr that is regular. Consider what happens when this agent
learns with certainty that F ∈ Σ is true. Except in the trivial case where
Σ = {Ω, ∅} we may assume that F 6= Ω and that our agent’s initial credence
function pr is such that pr(F ) < 1 (otherwise he hasn’t learned anything of
which he wasn’t probabilistically certain to begin with). Since our agent’s
initial credence function is regular, pr(F ) > 0 and, thus, upon learning that

F is true he updates by Bayes conditionalization to pr′(•) :=
pr(• ∩ F )

pr(F )
. Our

agent’s updated credence function is non-regular– it assigns zero probability
to any E ∈ Σ disjoint from F . Regularity is an utterly ephemeral property
for real valued probability, and it is no different when the range of the prob-
ability function is fattened to include hyperreals. Nor is regularity any less
ephemeral for quantum probabilities under Lüders updating.
The ephemeral nature of regularity calls into question its status. If an

agent’s initial credence function counts as rational and she Bayes (or Lüders)
updates then her updated credence function should count as rational; but, if
so, regularity cannot be a rationality requirement tout court since it can be
lost in updating. Perhaps regularity can be maintained as a rationality con-
straint on initial credences, and thereafter retained as necessary companion of
Bayes (or Lüders) updating. Leaving aside the question-begging nature of the
retention, there is the problem that the retention requires re-regularization
of the agent’s credence function after each updating, and our would-be good
Bayesian will want to know which re-regularized credence function she ought
to choose and why. She is still waiting for an answer.
A way to escape this diffi culty is to ensure that an agent’s learning experi-

ences are always uncertain, shifting her degrees of belief in non-null elements
of Σ (or P(B(H))) from one non-extreme value to another but never to 0
or 1. How to model such learning will be discussed below in Sections 8 and
9, but before going there let us consider another tactic for coping with zero
probability events.
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7 Popper functions/full conditional probabil-
ity

Tough love (version 3). ‘The source of your problems is your simple-minded
form of Bayesianism which takes unconditional probability as the basic prob-
ability concept. You should follow the lead of Karl Popper and take condi-
tional probability as the fundamental concept. Philosophers usually discuss
this development in terms of what have come to be called Popper functions
(see Popper (1961), Appendices iv and v). I will recommend a special case
of Popper functions that mathematicians call full conditional probabilities.
The conditional probability pr(• o ◦) of a classical full conditional probability
space (Ω,Σ x Σ0, pr(• o ◦)) is a map from Σ x Σ0 to [0, 1] where Σ0 consists
of the non-null elements of Σ. It is required to satisfy

(a) pr(• oG) is a probability measure on Σ for all G ∈ Σ0

(b) pr(G oG) = 1 for all G ∈ Σ0

(c) pr(E oG) = pr(E o F )pr(F oG) for E ⊆ F ⊆ G ⊆ Ω and F 6= ∅.14

(A Popper function has domain Σ x Σ̃0 where Σ̃0 is a subset of Σ0 that
must satisfy some finicky closure properties. When Σ̃0 is a proper subset of
Σ0 Popper functions are not well suited to help with the updating problem
since that application requires that any member of Σ0 can be plugged into
the right hand slot of pr(• o ◦).) My advice to you is to model learning from
experience using full conditional probabilities. Details to follow.’

Here the tough love advice is interrupted to provide more background.
If pr(•) is an unconditional probability measure of a standard (real-valued)
probability space (Ω,Σ, pr(•)) say that the full conditional probability pr(• o
◦) in (Ω,Σ, pr(• o ◦)) extends pr(•) just in case pr(E) = pr(E o Ω) for all
E ∈ Σ. Note that if pr(• o ◦) extends pr(•) and pr(F ) 6= 0 then pr(E/F ) :=
pr(E ∩ F )

pr(F )
= pr(E o F ) for all E ∈ Σ. One can conjecture:

Conjecture 2. For any standard classical probability space (Ω,Σ, pr)
there is a full conditional extension (Ω,Σ, pr(• o ◦)).

14In the presence of (a) and (b) condition (c) is equivalent to

pr(E∩F oG) = pr(F oG)pr(E oF ∩G) for E,F ∈ Σ , G 6= ∅, and F ∩G 6= ∅.
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Versions of Conjecture 2 were proven by Krauss (1968) and Dubins (1975)
for finitely additive probabilities, but as far as I am aware Conjecture 2
remains to be proved for countably and completely additive probabilities.
Since extensions, when they exist, are not unique the correspondence between
an unconditional probability and full conditional extensions is one-many.
There is also a close relation between full conditional probabilities and

regular hyperreal probabilities. If pr∗ is a regular hyperreal valued probability
on Σ then pr(E o F ) := st(pr∗(E/F )), E ∈ Σ and F ∈ Σ0, defines a full-
conditional probability on Σ x Σ0. Thus, a proof of Conjecture 1 would also
give a proof of Conjecture 2. There are also results showing how to go in
the other direction, from full conditional probabilities to regular hyperreal
valued probability measures (see McGee 1994 and Halpern 2009). This two-
way traffi c has led to the claim that the two approaches amount to the same
thing, but Halpern (2009) cautions that such a claim needs to be carefully
qualified.15

A parallel development for quantum probability would begin by defining
a full conditional quantum probability Pr(• o ◦) as a map from P(B(H))
x P(B(H))0 to [0, 1], where P(B(H))0 consists of all non-null projections.
Pr(• o ◦) is required to satisfy the analogs of (a)-(c):

(a′) Pr(• oG) is a probability measure on P(B(H)) for all

G ∈ P(B(H))0

(b′) Pr(G oG) = 1 for all G ∈ P(B(H))0

(c′) Pr(E o G) = Pr(E o F ) Pr(F o G) for E ≤ F ≤ G ≤ I and
F 6= O.

In analogy with classical probability say that the full conditional quantum
probability Pr(• o ◦) extends the unconditional Pr(•) just in case Pr(• o I) =
Pr(•). It would need to be proved that if Pr(•o◦) extends Pr(•) and Pr(F ) 6=
0, F ∈ P(B(H)), then Pr(• o F ) = Pr(•//F ). Also required is a notion of
conditional quantum state on B(H)) x B(H)0 that induces on P(B(H)) x
P(B(H))0 a full conditional quantum probability. And in addition a Gleason
type theorem relating full conditional quantum probabilities to conditional

15Actually, the alleged equivalence of the two approaches is usually discussed in the
literature in terms of Popper functions rather than full conditional probabilities, which I
think is a mistake.
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quantum states would need to be proved. How to provide these ingredients
is far from obvious, so let us concentrate on classical probabilities. But I
emphasize that until these ingredients are supplied the idea that the problem
of updating on zero probability events can be handled by the device of full
conditional probabilities is in danger of foundering in the quantum domain.

Let us now return to the tough love lesson for classical probabilities.

Tough love (version 3, continued). ‘Instead of starting with an initial uncon-
ditional probability pr(•) start with a full conditional pr(•o◦); the associated
unconditional probability can be defined as pr(•) := pr(•oΩ). Or if you insist
on starting with an unconditional pr(•) extend it to a full conditional pr(•o◦)
(which you can always do if Conjecture 2 is correct). In either case if your
unconditional pr(•) is irregular and pr(F ) = 0 you cannot Bayes update on
F by plugging F into the right hand slot of the Bayes conditioning pr(•/◦)
of pr(•). But not to worry. You can plug any F ∈ Σ0 into the right hand
slot of the full conditional pr(• o ◦) and then take pr′(•) := pr(• o F ) to be
the F -updating of your unconditional probability.’

Now what? The suggested F -updating has produced a measure pr′(•)
that is not regular, so the agent cannot Bayes update pr′(•) if he subsequently
learns an F ′ ∈ Σ, F ′ 6= ∅, such that pr′(F ′) = 0. Nor can he find the help he
needs in the conditional probability pr′(•o◦) := pr(•o◦∩F ) since this is not a
full conditional probability. Being full conditional is as ephemeral a property
of conditional probabilities as regularity is for unconditional probabilities.
Of course, the agent can seek the help of another full conditional prob-

ability pr′′(• o ◦), and if Conjecture 2 is correct he can limit his choice to a
full conditional extension of pr′(•) = pr(• o F ). And the agent has to seek
similar help anew with each new thing he learns. What is objectionable here
is not the Sisyphean nature of the labors to which the tough love advice
version 3 commits the would-be good Bayesian but rather the conceit that
the resort to full conditional probabilities offers any real help on how to be
a good Bayesian. The advice, ‘Choose some full conditional probability’, is
empty advice since it is tantamount to the advice to choose one among pos-
sible belief revision strategies for dealing with zero probability events. Even
if Conjecture 2 is true in great generality and the choice of full conditional
probability is limited to an extension of the latest non-regular unconditional
probability, the choice is far from unique. Which extension to choose and
why is what the would-be good Bayesian wants to know. He is still waiting
for an answer.
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Time again to try a new tactic.

8 Uncertain learning

Suppose an agent’s initial credences are codified in a classical probability
space (Ω,Σ, pr). She has a learning experience and announces that as a
result she has new degrees of belief prnew(Fa),

∑
a prnew(Fa) = 1, for the

elements of a partition {Fa} of Σ. These new credences can be extended
to a new probability measure on Σ by means of Jeffrey conditionalization
if her conditional credences are rigid over the partition in the sense that
prnew(E/Fa) = pr(E/Fa) for all elements Fa of the partition and all E ∈ Σ.
The extension rule is given by:

prnew(E) :=
∑

a pr(E/Fa)prnew(Fa) for all E ∈ Σ. (JC)

If there is an F ∈ {Fa} such that prnew(F ) = 1 then (JC) reduces to standard
Bayes conditioning: prnew(E) = pr(E/F ) for all E ∈ Σ.
The diachronic Dutch book argument for updating by Bayes condition-

alization for certain learning has been extended to updating by (JC) for
uncertain learning (see Armendt 1980 and Skyrms 1987). But the qualms
about the diachronic Dutch book justification for Bayes updating apply here
as well (see Gallow 2019).
A non-Dutch book justification can be obtained from the following gen-

eralization of Prop. 2:

Prop. 4. Let (Ω,Σ, pr) be a classical probability space, and let
{Fa}, Fa ∈ Σ, be a partition such that pr(Fa) 6= 0 for all Fa. Then
there is a unique functional pr{Fa}(•) on Σ such that (a) pr{Fa}(•)
is a probability measure on Σ, and (b) for all E ∈ Σ such that

E ⊆ Fb for some Fb ∈ {Fa}, pr{Fa}(E) =
pr(E)

pr(Fb)
pr{Fa}(Fb).

The unique functional is given by (JC). Thus, if clauses (a) and (b) of Prop.
4 capture a desirable feature of updating under uncertain learning over a
partition then updating by Jeffrey conditionalization is uniquely singled out.
How, if at all, does Jeffrey conditionalization help with our main prob-

lem? The short answer is that by itself it doesn’t help. As a result of a
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learning experience an agent may assign a positive credence prnew(Fa∗) > 0
to some element Fa∗ of the relevant partition, even though prior to the learn-
ing experience she assigned pr(Fa∗) = 0. But if pr(Fa∗) = 0 (JC) cannot be
used to extend the newly acquired credences to a new probability measure
on Σ since the term pr(E/Fa∗) in the sum on the rhs of (JC) is undefined.
If this term is simply dropped from the sum then an inconsistency results
since, by hypothesis, prnew(Fa∗) > 0 whereas (JC) sans the term in question
gives prnew(Fa∗) = 0.
Although Jeffrey conditionalization cannot provide a positive solution to

our problems it can contribute to negative one. If the agent’s learning is truly
uncertain in the sense that 0 < prnew(Fa) < 1 for all elements of the partition
{Fa} then (JC) does not make regularity a fleeting property as does ordinary
Bayes conditioning; indeed, for uncertain learning (JC) preserves regularity
in that if the initial pr(•) is regular then so is prnew(•). Using this feature
and some mixing and matching produces some new tough love advice.

Tough love (version 4). ‘Using hyperreal valued probabilities if necessary,
adjust your initial credences so that they are regular. Thereafter confine your
learning experiences to partitions {Fa} and to inquiry methods that ensure
your experience will produce truly uncertain learning over the partition, i.e.
0 < prnew(Fa) < 1 for all elements of the partition, e.g. make optically
unaided eyeball observations by dim, flickering candle light. And after each
such learning experience update by (JC). If you follow this advice you will
never have to struggle with how to update on zero probability events or
wonder how an event with an initially zero credence can earn a positive
credence.’

Following this tough love ‘solves’our problem by not allowing it to arise in
the first instance and then ensuring that it does not arise at a later stage by
not allowing the agent’s veil of ignorance to be entirely lifted on any propo-
sition. Perhaps a problem avoided is a problem solved. But in this instance
the instruments of avoidance are questionable. Enough has already been said
about the dubious status of regularity as a rationality requirement. As for un-
certain learning, allowing for it is a virtue but requiring it seems self-serving.
The alternative is to claim that no artificial means are needed to produce
truly uncertain learning and that, in fact, all learning from experience is truly
uncertain– even under the most optimal conditions of observation one can
never be entirely certain that any element of any relevant partition is true.
Such a claim requires argument.
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One might guess that the proper quantum analog of (JC) would be ob-
tained by replacing Bayes conditionalized factors in (JC) by Lüders condi-
tionalized factors, producing

Prnew(E) =
∑

a Pr(E//Fa) Prnew(Fa) for all E ∈ P(B(H)) (QJC)

where {Fa} ⊂ P(B(H)) is now a family of mutually orthogonal projections
such that

∑
a Fa = I, the quantum analog of a partition in classical proba-

bility. As with (JC) there is a proviso to the effect that Pr(Fa) > 0 for all
elements of the partition. However, (QJC) does not pass an obvious con-
sistency condition; namely, if Prnew(Fa) = Pr(Fa) for all Fa of the partition
then it should be the case that Prnew(E) = Pr(E). To see what the consis-
tency condition requires assume that dim(H) > 2, that H is separable, and
that Pr is countably additive (or alternatively that H is non-separable and
Pr is completely additive). By Gleason’s theorem Pr extends uniquely to a
normal state ω. Since

∑
a Fa = I we have

Pr(E) = ω((
∑

a Fa)E(
∑
b

Fb)) =
∑

a ω(FaEFa) +
∑
b6=c

ω(FbEFc)

Using the proviso that Pr(Fa) = ω(Fa) > 0 for all elements of the partition
and the definition of ‘//’,

ω(FaEFa) =
ω(FaEFa)

ω(Fa)
ω(Fa) = Pr(E//Fa) Pr(Fa).

Collecting these results gives

Pr(E) =
∑

a Pr(E//Fa) Pr(Fa) +
∑
b 6=c

ω(FbEFc).16

The extra ω-term on the rhs represents interference effects, one of the char-
acteristic features of QM resulting from the non-classical (= non-abelian)
event structure.
To achieve consistency modify (QJC) to

Prnew(E) =
∑

a Pr(E//Fa) Prnew(Fa) (QJC+)
+
∑
b6=c

ω(FbEFc) for all E ∈ P(B(H))

where the proviso that Pr(Fa) > 0 for all elements of the partition is under-
stood to be in effect. In addition to requiring rigidity of the Lüders condi-
tional probabilities, (QJC+) also requires rigidity of the interference term,

16Note that in general ω(FbEFc) cannot be written as Pr(FbEFc) since if E and the F’s
do not commute (FbEFc) /∈ P(B(H)) and FbEFc is not assigned a probability.
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i.e.
∑
b6=c

ωnew(FbEFc) =
∑
b 6=c

ω(FbEFc) where ωnew is the normal state extend-

ing Prnew. The latter requirement limits the applicability of the quantum
version of (JC) since, for example, Jeffrey updating from a Pr for which the
interference term vanishes will not in general result in a Prnew for which the
ωnew-term vanishes.
It remains to be shown that the diachronic Dutch book argument for (JC)

can be adapted to (QJC+) and/or that the quantum analog of Prop. 4 can
be shown to hold for (QJC+). Even if the details do work out (QJC+) can
be employed as part of a strategy for avoiding updating on zero-probability
quantum events when H is non-separable only if the as yet non-existent
apparatus for hyperreal valued quantum probabilities is developed.

9 Joining Popper with Jeffrey

Let (Ω,Σ, pr(•)) and (Ω,Σ x Σ0, pr(• o ◦)) be standard classical and full
conditional classical probability spaces respectively with pr(•) = pr(•oΩ). An
agent with initial unconditional probability pr(•) has a learning experience
over partition {Fa}, Fa ∈ Σ0, resulting in new probabilities prnew(Fa) for the
elements of a partition. Joining Jeffrey and Popper in unholy matrimony,
our agent updates pr(•) by Jeffrey-Popper conditionalization by using

prnew(E) :=
∑

a pr(E o Fa)prnew(Fa) for all E ∈ Σ. (JPC)

(JPC) satisfies the obvious consistency condition that when prnew(Fa) =
pr(Fa) for all elements of the partition then prnew(E) = pr(E) for all E ∈ Σ.17

In light of the discussion of the preceding section the quantum analog of
(JPC) would have to make allowances for interference effects. But since the
apparatus of full conditional probabilities for quantum probability theory
remains to be developed I concentrate on classical probability.
If pr(Fa) 6= 0 for all elements of the partition then (JPC) reduces to (JC).

And if, further, there is some element of the partition whose new probability
is 1 then (JPC) reduces to Bayes conditionalization. The advantage of (JPC)

17Terms in the sum
∑
a
pr(E oFa)pr(Fa) for which pr(Fa) = 0 do not contribute and can

be dropped. For the remaining terms
∑
a
pr(E o Fa)pr(Fa) =

∑
a
pr(E/Fa)pr(Fa)

=
∑
a
pr(E ∩ Fa) = pr(E), where the last inequality follows from the principle of total

probability.
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lies in the case where there is some element Fa of the partition for which
pr(Fa) = 0. For in this case (JC) is stymied whereas (JPC) is well-defined
and suffi ces to produce the updated prnew(•). It seems then that, unlike
(JC), (JPC) can both allow for uncertain learning and can contribute to a
positive solution to our problem.
While this unholy Jeffrey-Popper marriage has some advantages it faces

the by now familiar problems at the next iteration. Suppose that the agent
has a second learning experience over the partition {Ga} resulting in new-new
credences prnew−new(Ga) for the elements of the partition. If Conjecture 2 is
correct there is a full conditional prnew(•o◦) such that prnew(•) = prnew(•oΩ).
She can then update to

prnew−new(E) =
∑

a prnew(E oGa)prnew−new(Ga) for all E ∈ Σ.

The diffi culty is that if there is one full conditional prnew(• o ◦) such that
prnew(•) = prnew(• oΩ) then there are many, except of course when prnew(•)
is regular and (JPC) reduces to (JC). Which of these prnew(• o ◦) should be
used to (JPC) update and why? The formalism recapitulates our problem
but doesn’t help to resolve it.
One could go on to detail troubles in arranging a quantum version of

the Jeffrey-Popper marriage, but enough misery is enough. After all of the
disappointments it is time for a success story. QM provides one, but it is a
story in which regularity is trashed.

10 Going local

In this section I turn away from attempts to avoid the problem of belief
revision in the face of zero probability events by chasing regularity, using
Popper functions/full conditional probabilities, or the like. And rather than
pursue a global solution I will illustrate how belief revision in the face of
zero probability events may work on the local, problem specific level. Since
the example comes from QM a few more technical notions from quantum
probability are needed as background.
First some definitions. A projection Fφ ∈ P(B(H)) is a filter for a state

φ on B(H) just in case for any normal state ω such that ω(Sφ) 6= 0
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ω(SφESφ)

ω(Sφ)
= φ(E) for all E ∈ P(B(H)).

Among the normal states on B(H) are the vector states. That ψ is a vector
state means that there is a vector |ψ〉 ∈ H such that ψ(A) = 〈ψ|A|ψ〉 for
all A ∈ B(H).18 For a normal state the support projection is the smallest
projection to which the state assigns probability 1. For a vector state ψ the
support projection Sψ is the projection onto the ray spanned by |ψ〉. Armed
with these definitions it is not hard to establish that the support projection
for a vector state is a filter for that state (see Ruetsche and Earman 2011).19

Now consider Oscar whose initial credence function Pr on P(B(H)) is
non-regular because it assigns zero credence to the support projection Sψ
of a vector state ψ. Suppose that Oscar makes a measurement of Sψ which
returns a Yes answer and that he is convinced that this answer is correct. How
is Oscar to revise his prior credences in the light of the information that Sψ
is true? He cannot Lüders update since for him Pr(•//Sψ) is undefined. But
suppose he wants his new credence function Prnew to assign a probability of 1
to Sψ and he also wants Prnew to be countably additive when H is separable
(and completely additive when H is non-separable). These two requirements
uniquely fix Oscar’s new credences over P(B(H)). By Gleason’s theorem
any Prnew satisfying the additivity constraint extends uniquely to a normal
state ω on B(H). So if Prnew(Sψ) = 1 then ω(Sψ) = 1. Using the Cauchy-
Schwartz inequality it is easy to see that this implies that ω(SψESψ) = ω(E)

for all E ∈ P(B(H)). So Prnew(E) = ω(E) =
ω(SψESψ)

ω(Sψ)
, and by the filter

property of Sψ the last expression is equal to ψ(E). Note that the uniquely
determined Prnew is not regular. Regularity for real valued Prnew is possible
when H is separable since there are only a countable number of mutually
orthogonal projections, but updating to a regular real valued Prnew is not an
option in the present scenario.
This unique determination of a new credence function can be generalized

to cover cases of uncertain learning over some types of partitions of P(B(H)).

18Vector states are pure, i.e. cannot be expressed as a non-trivial convex linear combi-
nation of distinct states. And for B(H)– but not for other von Neumann algebras– the
vector states are identical with the normal pure states.
19It follows that if ψ is a normal pure state (= vector state) on B(H) and Sψ is the

support projection for ψ then Pr(E//Sψ) = ψ(E) for all E ∈ P(B(H)) provided that
Pr(Sψ) 6= 0. This can be regarded as a version of David Lewis’Principal Principle; see
Earman (2020).

26



Let {|ψa〉} ∈ H be an ON basis for H. Suppose that Oscar’s learning experi-
ence leads him to adapt new credences Prnew(Sψa) on the partition {Sψa} of
P(B(H)) given by the support projections Sψa for the vector states ψa cor-
responding to the |ψa〉. And suppose that Oscar wants to extend Prnew from
the partition {Sψa} to a completely additive Prnew on all of P(B(H)). There
is a unique answer to his desire. By Gleason’s theorem there is for any such
extension a unique normal state ω on B(H) such that Prnew(E) = ω(E) for
all E ∈ P(B(H)). Since

∑
a Sψa = I, E = E

∑
a Sψa for all E ∈ P(B(H)),

and ω(E) = ω(E(
∑

a Sψa)) =
∑

a ω(ESψa). But for any a either ESψa = 0 or
else ESψa 6= 0, and in the latter case ESψa = Sψa since the Sψa are minimal
projections. Thus, ω(E) =

∑
a′ ω(Sψa′ ) where the sum is now over all Sψa′

such that ESψa′ 6= 0. The upshot is that Prnew is uniquely determined by its
values on {Sψa}. Note that unless Prnew(Sψa) > 0 for all Sψa in the parti-
tion the new credence function Prnew is not regular. Again, while regularity
for real valued Prnew is possible when H is separable, updating to a regular
real valued Prnew is not an option in the present scenario for agents whose
agnoticism does not extend to all the elements of the partition {Sψa}.
Admittedly the cases treated here are special. But the study of problem-

specific cases such as these may give clues to how a learning experience that
results in new credences for a sub-family of propositions can serve to uniquely
fix or otherwise constrain credences for the entire family.

11 Epilog

The literature on the problem of updating on zero-probability events focuses
mainly on devices for dodging the problem. None of these devices offers
a satisfactory stable resolution over repeated updatings. Furthermore, the
literature is devoted almost exclusively to classical probability, and there is
no serious attempt show how the devices developed for classical probability
can be deployed for quantum probabilities.
I suggest that it is high time to confront the problem rather than trying

to dodge it. Stick to real valued probability measures, and forget about in-
finitesimal probabilities, Popper functions/full conditional probabilities, and
other nostrums which only postpone the problem. Come to terms with the
fact that for real valued probability functions non-regularity must be counte-
nanced: when the domain of the function is suffi ciently ‘fat’regularity may
not be possible, and even when the domain is ‘slim’enough for regularity
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to be possible recognize that regularity is not always a desirable regulatory
ideal nor is it sustainable across learning experiences without using artificial
contortions.
In the context of classical probability the problem to be solved is this:

Suppose an agent’s initial credences are represented by a standard classical
probability space (Ω,Σ, pr(•)) where pr(•) is not regular. The agent has
a learning experience resulting in new credences prnew(Fa) for the elements
Fa ∈ Σ̂ of a proper subset Σ̂ of Σ, where pr(Fa∗) = 0 for one or more of
the Fa’s whereas prnew(Fa∗) > 0. The challenge: (1) supply an extension of
the prnew for Σ̂ to a probability measure on all of Σ, and either (2) prove
the extension is unique or, failing (2), (3) justify the chosen extension as
providing the rational way to revise the initial pr-credences for Σ in light
of the newly acquired credences prnew for Σ̂. For quantum probabilities the
challenge is analogous with P(B(H)) in place of Σ and a proper subset of
P(B(H)) in place of Σ̂.
In the preceding section it was seen that there are cases in QM where

either gaining probabilistic certainty (Prnew(F ) = 1) for a judiciously cho-
sen element F ∈ P(B(H)) or simply shifting to new uncertainties (0 ≤
Prnew(Fa) ≤ 1) for a judiciously chosen partition {Fa} ∈ P(B(H)) suffi ces
to fix a unique extension regardless of the initial Pr. While interesting and
instructive such cases are hardly typical. More typical are cases where the
newly acquired credences by themselves do not suffi ce to fix a unique exten-
sion. What then are Bayesians to do?
One response would be to identify and justify additional rationality con-

straints, e.g. minimal change principles, to constrain the possible extensions.
Another would be to eschew a unified response in favor of tailoring solu-
tions to fit context-dependent goals of inquiry. More radically, Bayesisian
personalists can have the courage of their (non-) convictions. What I mean
to indicate here is the attitude that to the extent that the newly acquired
credences, together with the initial credences and uncontroversial rational-
ity principles, fail to constrain extensions then each Bayesian agent is free to
choose her own way of revising her initial probability measure in light of her
newly acquired credences, just as she was free to choose her initial credences.
In line with this sentiment, some commentators who reject the diachronic
Dutch book justifications for Bayes and for Jeffrey conditionalization are led
to the conclusion that, even when zero probability events are not at issue,
updating in light of a learning experience is up to the individual agent un-
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less the agent’s newly acquired credences fix a unique extension. While such
libertarianism about updating is the logical outcome of a thoroughgoing per-
sonalist interpretation of probability it would seem to undermine any hope
that an island of objectivity might rise from the sea of subjective opinion
in the form of merger of opinion among the members of the community of
fellow Bayesian agents as a result of repeated updatings on accumulated ev-
idence. While thoroughgoing personalists may not take such loss of hope as
a criticism, it will be disappointing to those who want to use Bayesianism to
explain and defend the objectivity of science.20

I do not presume to tell Bayesians which of these responses– or some
other entirely different response– to pursue. But I insist that an honest
and worthy Bayesianism should confront the challenge of updating on zero
probability events rather than trying to avoid it and, further, I insist that a
worthy Bayesianism confront the challenge for quantum probabilities as well
as classical probabilities. This is not a tale of the emperor’s new clothes; but
it is a tale where the Emperor Bayes is rather scantily clad, and the fan dance
of infinitesimal probabilities, Popper functions, and other nostrums does not
succeed in hiding the scantiness.

20The degree-of-belief interpretation of probability is exactly what is called for in the
context of personal decision making under uncertainty. But unless the personal proba-
bilities of Bayesian agents bear some systematic relation to truth, Bayesianism cannot
underwrite the objectivity of scientific inference. The most widely discussed response to
this challenge is to appeal to results about convergence to the truth in the form of con-
vergence to probability 1 under repeated updating on accumulating evidence. Obviously,
however, updating by Bayes/Lüders conditionalization will not produce such convergence
if the true hypothesis has zero prior probability. A rule for updating on zero probabil-
ity events would potentially allow the truth to emerge– but not if the “rule” is freelance
libertarianism.
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Appendix

Let (Ω,Σ, pr) be a standard classical probability space. That pr is finitely
(respectively, countably, completely) additive means that for any finite (re-
spectively, countable, uncountable) collection of pairwise disjoint Ea ∈ Σ,
pr(∪aEa) =

∑
a pr(Ea). When the sum

∑
a pr(Ea) is over an uncountable

index set I it is understood as limF

∑
a pr(Ea) where the F are finite sub-

sets of I, and limF

∑
a pr(Ea) = L means that for any ε > 0 there is a finite

F0 ⊂ I such that for any finite F with I ⊃ F ⊃ F0, |
∑

a pr(Ea)− L| < ε.
Let {Ea} ∈ Σ be a family of pairwise disjoint sets. Then at most a

countable number of the Ea get positive probability. To see this define Sn =:

{Ea :
1

n+ 1
≤ pr(Ea) ≤

1

n
}, n = 1, 2, 3, ... . By finite additivity each of

the Sn has only a finite number of members. The union ∪∞n=1Sn contains all
the elements of the family that have positive probability. But the countable
union of finite sets is countable.
Let κ be the least measurable cardinal. This means that it is the least

cardinal such that there is a set Ω, where |Ω| = κ, and a probability space
(pr,Ω, P (Ω)), where P (Ω) is the power set of Ω, such that pr({x}) = 0
for every x ∈ Ω. Measurable cardinals are gigantic– they lie beyond the
hierarchy of infinities ℵ0,ℵ1,ℵ2, ... that Cantor bequeathed us.

Lemma: If α < κ then every countably additive measure on P (Ω),
|Ω| = α, is completely additive.

The proof of the Lemma is by reductio. Suppose that pr is a countably
additive measure on P (Ω), where the set Ω has cardinality α < κ, and that
pr fails to be completely additive. Then there is an uncountable collection of
pairwise disjoint Ea ∈ P (Ω) of cardinality less than or equal to α such that

(†) pr(∪aEa) 6=
∑

a pr(Ea).

Case (a) pr(Ea) = 0 for all the Ea, which implies by (†) that pr(∪aEa) =

r > 0. Consider the set Ω̃ whose elements are the Ea. Define a measure p̃r

on P (Ω̃) by p̃r(Y ) :=
pr(∪a∈YEa)

r
. This is a countably additive measure,

contradicting the assumption that κ is the least measurable cardinal since
|Ω̃| ≤ α and p̃r({Ea}) = 0 for all Ea ∈ Ω̃ .
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Case (b) pr(Ea) > 0 for some Ea. There can be only a countable number
ofEa with positive measure. Using the fact that pr is countably additive these
Ea can be removed so that without loss of generality this case is reduced
to Case (a). (In more detail: Denote the elements Ea that have non-zero
measure by En, n ∈ N, and define T := ∪nEn. By countable additivity
pr(T ) =

∑
n pr(En) = s > 0, and, by (†), s < 1. Define a new countably

additive measure on P (Ω) by p̂r(•) :=
pr(• ∩ T )

1− s . This measure falls under

Case (a).)

An immediate consequence of the Lemma is that Lebesgue measure on
[0, 1] ⊂ R cannot be extended to a countably additive measure on P ([0, 1]) if
the cardinality of the continuum is less than the least measurable cardinal.
Somewhat less obvious is an implication for quantum probability:

Cor. Let Pr be a countably additive quantum probability measure
on P(B(H)). Unless dim(H) is as great as the least measurable
cardinal Pr is completely additive.

The idea of the proof is simple. Choose a basis B for H. The subsets of B
are in one-one correspondence with the closed subspaces of H which in turn
are in one-one correspondence elements of P(B(H)). Thus, corresponding to
a quantum probability Pr on P(B(H)) there is a classical probability space
(B,P (B), pr) where P (B) is the power set of B and where pr(b), b ∈ P (B),
is equal to Pr(Eb) where Eb ∈ P(B(H)) is the projection corresponding to
b. The Lemma can now be applied. For details see Drish (1979) and Eilers
and Horst (1975).
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