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Standard lore holds that magnetic forces are incapable of doing mechanical work. More precisely,
the claim is that whenever it appears that a magnetic force is doing work, the work is actually being
done by another force, with the magnetic force serving only as an indirect mediator. On the other
hand, the most familiar instances of magnetic forces acting in everyday life—bar magnets lifting
other bar magnets—appear to present manifest evidence of magnetic forces doing work. These sorts
of counterexamples are often dismissed as arising from quantum effects that lie outside the classical
regime. In this paper, however, we show that quantum theory is not needed to account for these
phenomena, and that classical electromagnetism admits a model of elementary magnetic dipoles on
which magnetic forces can indeed do work. In order to develop this model, we revisit the foundational
principles of the classical theory of electromagnetism, showcase the importance of constraints from
relativity, examine the structure of the multipole expansion, and study the connection between the
Lorentz force law and conservation of energy and momentum.

I. INTRODUCTION

The question as to whether magnetic forces can do
mechanical work presents a marvelous opportunity for
exploring basic definitions in analytical mechanics and
the fundamental structure of classical electromagnetism.
In this paper, which builds off of [1], we show that clas-
sically extending Maxwell’s theory of electromagnetism
to include elementary dipoles—meaning dipole moments
that are permanent and intrinsic—allows magnetic forces
to do work.

We start by carefully reviewing the relevant ingredients
of classical mechanics, including the precise definition of
mechanical work as well as the Lagrangian formulation
and its generalizations. We then turn to a detailed study
of electric and magnetic multipole moments in special
relativity. Next, extending the work of [2-4], we couple
the electromagnetic field to a classical relativistic particle
with intrinsic spin and elementary electric and magnetic
dipole moments, derive the particle’s equations of motion
as well as the overall system’s energy-momentum tensor
and its angular-momentum flux tensor, and show both
from the equations of motion and from local conservation
of energy and momentum that magnetic forces can do
work on the particle if its elementary magnetic dipole
moment is nonzero. We also provide a new, classical
argument for why a particle’s elementary dipole moments
must be collinear with its spin axis.

A. Mechanical Preliminaries

Recall that the net force F on a mechanical object
is equal to the instantaneous rate at which the object’s
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momentum p changes with time ¢:

dp
F=—. 1
o (1)
Let m be the object’s inertial mass, let X be its posi-
tion vector, and let v = dX/dt be its velocity. In the
Newtonian case, the object’s momentum is related to its
velocity according to

p =mv [Newtonian], (2)

meaning that under the assumption that m is constant,
(1) becomes Newton’s second law,

F = ma, (3)

with a = dv/dt the object’s acceleration.
The object’s kinetic energy is

[Newtonian]. (4)

A simple calculation then shows that the rate of change
in the kinetic energy of an object of constant mass m is
given by the dot product of the object’s velocity v and
the force F:

dar _  dp _

ar _ Y _dX
dt —  dt

F=—"F (5)

B. The Definition of Mechanical Work

By definition, we say that a given force does mechanical
work on a classical object if the object moves through
space and the vector representing the force has a nonzero
component along the object’s path.

More precisely, the work W done by the force on the
object is the dot product of the force vector F and the
object’s incremental displacement vector dX, integrated
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over the total displacement from the object’s initial loca-
tion A to its final location B:

B
Wz/AdX~F. (6)

Assuming for simplicity that F is the only force doing
work on the object and integrating the relation (5) over
the time duration of the object’s trajectory, we can use
the fundamental theorem of calculus to obtain the work-
energy theorem,

W = AT, (7)

which establishes that the work W done by the force F
on the object translates into an overall change AT in the
object’s kinetic energy T

As a different question, one may ask whether a given
force F acting on an object arises from some other source
of energy, and, if so, what that energy is and where it
comes from. The simplest example is provided by a con-
servative force, which is a force on an object that is a
function F(X) only of the object’s instantaneous posi-
tion X and with the additional property that any work
(6) done by the force only ever depends on the endpoints
A and B of whatever arbitrary path the object takes.

Forces that do work need not be conservative, as dissi-
pative forces like friction make clear. On the other hand,
conservative forces need not do work, such as a conser-
vative force that acts centripetally on an object and is
therefore always perpendicular to the object’s motion,
meaning that it has an always-vanishing dot product
dX - F(X) = 0 with the object’s incremental displace-
ments dX.

Given a conservative force F(X), if we replace the up-
per limit of integration in the definition (6) of W with
a variable position X, then the result is a well-defined
function of X that, together with an overall minus sign,
defines the object’s potential energy V(X) due to that
force,

V(X) = — / xR, (8)

where we neglect the lower limit of integration because it
merely determines an irrelevant additive constant. Tak-
ing the gradient of both sides of this definition (8) of
V(X), we see that we can express a conservative force
as the negative gradient of its corresponding potential
energy:

F(X) = - VV(X). 9)

Once again assuming for simplicity that F(X) is the
only force acting on the object, and combining the in-
tegral definition (6) of the work done together with the
relationship (9) between the force and its potential en-
ergy, we see that the work W done by the force on the
object is equal to the overall change AV in the object’s
potential energy:

W= —AV. (10)

It follows from the work-energy theorem (7), W = AT,
that the sum of the change AT in the object’s kinetic en-
ergy and the change AV in the object’s potential energy
is zero:

AT+ AV =A(T+V)=0. (11)

We therefore conclude that there exists an associated
conserved total energy E:

E =T+ V = constant. (12)

Indeed, taking the time derivative of E and using (5) to
calculate dT'/dt together with the chain rule to calculate
dV/dt, we have

dE _dT  av
dt — dt = dt
dX
—v.-F+ =
v +dt \VA%4
=v-F+v-(-F)=0. (13)

C. The Maxwell Equations and the Lorentz Force
Law

We next review the fundamentals of the classical the-
ory of electromagnetism, taking the opportunity to es-
tablish the various conventions that we will be using in
this paper [5].

Working in SI units, we let €y and pg respectively de-
note the permittivity of free space and the permeability
of free space. We use E = (E,, E,, E,) for the electric
field, B = (By, By, B,) for the magnetic field, p for the
volume density of electric charge, and J = (Jg, Jy, J.) for
the current density or charge flux density, meaning the
rate of charge flow per unit time per unit cross-sectional
area. We can then write down the four Maxwell equa-
tions in their standard form:

p

v-E="2, (14)
€0
V-B=0, (15)
0B
- 1
VXE 5 (16)
OE
VxB = pod + eopro—- (17)

ot

We will respectively call these the electric Gauss equa-
tion, the magnetic Gauss equation, the Faraday equation,
and the Ampere equation. The first and fourth equations
contain the source functions p and J and are called the in-
homogeneous Maxwell equations, whereas the second and
third equations do not involve source functions and are
called the homogeneous Maxwell equations. Note that
€0, Mo, and the speed of light ¢ are related by

1
VEolo

=c. (18)



The Maxwell equations tell us how charged sources
generate electric and magnetic fields. The fields, in turn,
cause changes to the motion of those charged sources. To
provide a precise formulation of this latter statement, one
traditionally supplements the Maxwell equations with an
additional axiom called the Lorentz force law, whose text-
book form expresses the force F on a particle of charge ¢
and velocity v due to an external electric field Eqy and
an external magnetic field Beyt as

F= quxt + qv X Bext7 (19)

where the electric and magnetic forces on the particle are
therefore given individually by

Fel = qux‘m (20)
Fras = qv X Bext. (21)

Note that the particle’s velocity v is assumed to be con-
stant here to avoid complications involving radiation and
backreactive self-forces.

D. Models of Magnetic Dipoles

We will eventually show that magnetic forces can do
work on certain kinds of magnetic dipoles. First, how-
ever, we should take a moment to explain why this claim
might be in doubt.

According to the usual Ampere model, classical mag-
netic dipoles are composite entities consisting of charged
particles—that is, electric monopoles—moving around in
current loops. For such a composite magnetic dipole, the
textbook Lorentz force law (19) makes clear that mag-
netic forces cannot do work. The simple reason is that
the magnetic force Fy,a on each electric monopole in a
given current loop is proportional to the cross product
v X Bext of the particle’s velocity v = dX/dt and the
external magnetic field Beyt, so the magnetic force Fipag
is always perpendicular to the particle’s incremental dis-
placements dX. By its definition (6), W = [dX - F,
work is equal to the dot product of force and incremen-
tal displacement, integrated over the full displacement.
Because dX - Fryag = 0, the work done by the magnetic
force in this context always vanishes [6].

Notice also that the magnetic force Fiag = qv X Bext
on electric monopoles is explicitly velocity-dependent,
and so cannot represent a conventionally conservative
force. By contrast, the electric force Fe(X) = ¢Eext (X)
due to a time-independent electric field Eqy (X) depends
only on the electric monopole’s position X, and the static
version of the Faraday equation (16), V x E = 0, ensures
that the electric force Fg) is expressible in terms of a po-
tential energy V as F = —VV in keeping with (9), so
the static electric force on an electric monopole is con-
servative.

One could, in principle, evade the preceding conclu-
sions about magnetic forces by considering composite
magnetic dipoles according to the Gilbert model, in

which the magnetic dipoles instead consist of pairs of fun-
damental magnetic monopoles. However, employing the
Gilbert model would require generalizing Maxwell’s the-
ory of electromagnetism to include magnetic monopoles,
as well as generalizing the Lorentz force law accordingly
to describe forces acting on them.

On the other hand, experiments indicate that many
kinds of particles, including electrons, possess perma-
nent, elementary magnetic dipole moments that do not
seem to arise from underlying classical loops of current
or as pairs of magnetic monopoles. At a truly fundamen-
tal level, these elementary magnetic dipole moments are
quantum-mechanical in nature, but, then, so is electric
charge, and we obviously still include electric charges as
basic sources in Maxwell’s classical theory of electromag-
netism.

It is therefore worth studying how we might similarly
include elementary dipoles as basic sources in a classical
extension of Maxwell’s theory of electromagnetism, as
well as determine from first principles how they should
interact with electric and magnetic fields—without as-
suming the textbook Lorentz force law (19) as one of our
starting ingredients. Such an investigation could then be
expected to shed light on the specific issues of magnetic
forces and work done on elementary dipoles.

Ultimately, we will show that if we are given an exter-
nal electric field Eqy and an external magnetic field By,
then the following generalization of the Lorentz force
law describes the corresponding electromagnetic force F
that acts on a particle with charge ¢, elementary elec-
tric dipole moment 7, and elementary magnetic dipole
moment pu traveling at a constant velocity v that is slow
compared with the speed of light c:

F = quXt + qv X Bext + v(ﬂ- : Eext) + V(H . Bext)- (22)

This formula once again implies that magnetic forces
on electric monopoles are proportional to v x Bey and
are therefore incapable of doing work on them. On the
other hand, this argument does not hold for the term
V(p - Bext) describing the magnetic force on an elemen-
tary magnetic dipole, thereby allowing magnetic forces to
do work in that case. We will confirm this last statement
explicitly by deriving the force law (22) in detail, first
from the equations of motion for a particle with elemen-
tary electric and magnetic dipole moments coupled to the
electromagnetic field, and then again from fundamental
principles of local energy and momentum conservation.

E. The Lorentz-Covariant Formulation of
Electromagnetism

In order to establish the claimed expression (22) for the
appropriate generalization of the Lorentz force law with-
out assuming a composite model for dipoles, we will need
to develop a formulation of elementary dipoles within the
classical theory of electromagnetism. More broadly, we
will see that the Lorentz force law, rather than being a



separate postulate of the theory, emerges naturally from
constraints provided by relativity as well as by local con-
servation of energy and momentum.

For these purposes, we will need to review the Lorentz-
covariant formulation of classical electromagnetism, once
again taking the opportunity to establish our nota-
tional conventions [7]. Working always in Cartesian
coordinates, we will use Latin indices 4,7, k,[,... that
each run through the three values x,y,z for three-
dimensional vectors and tensors, and we will use Greek
indices p, v, p, 0, ... that each run through the four values
t, x,y, z for four-dimensional Lorentz vectors and Lorentz
tensors. We have four-dimensional spacetime coordinates

ot = (2t 2%, 2Y, ) = (ct,x,y, 2)"
= (ct,x)" (23)
and four-dimensional spacetime derivatives
0
/J.E Dk (ataamayaa )

10 0 0 0
cataxayaz

(129,

and we will follow the standard Einstein summation con-
vention in which we implicitly sum all repeated upper-
lower index pairs over their full range of values. We will
employ the “mostly positive” Minkowski metric,

-10 0 0
0 41 0 0

= W =

T =T"=10 0 +1 0 |’ (25)
0 0 0 +1

nv

which means that if we raise or lower a Lorentz index on
a Lorentz four-vector v* (or, more generally, on a Lorentz
tensor T"""",,...) according to

Uy = UWUV7
o= e, } (26)

then raising or lowering a t index entails a change in
overall sign, whereas raising or lowering an x, y, or z
index has no effect:

U = Uy,
xT
VY= vy,
27
e (27)
Y
v' = w,.

As in [1], we introduce a set of matrices [0,,,]* called
the Lorentz generators,

—i(sgny,@ +in,gdy, (28)

which have the commutation relations

[Uuu]aﬁ =

— Opo Oy
inypo-uo + inuagupv (29)

[Opvs Opo] = 0pv0po

= MppOve = MuoOuvp —

form a basis for all antisymmetric Lorentz tensors with
two indices,

AP = — AP = A [0,), (30)
and satisfy the key identities
1 v . v
iTr[o“ Opo] = i[ope ]! (31)
and
1
§Tr[a’“’A] =AM, (32)

We can express any Lorentz-transformation matrix Aj,¢
that differs infinitesimally from the identity as

Ning = 1= 56" a,,,. (33)

where df*” = —df"" is an antisymmetric array of small
parameters given by

0 dns dn, dn, -
—dn, O df, —db,
—dny, —df, 0 do,
—dn, df, —df, O

o = (34)

and describes a passive boost in the direction of the three-
vector dn = (d0¥*,dO%,d0**) with magnitude |dn| to-
gether with a passive rotation around the direction of
the three-vector d = (d#¥#, d6**,dO*Y) by an angle |d0)|.

The electric field E = (E,, E,, E,) and magnetic field
B = (B,, By, B;) transform as three-vectors under ro-
tations, but they mix together in a complicated man-
ner under Lorentz boosts. We can correctly capture this
transformation behavior by packaging the electric and
magnetic fields into an antisymmetric, Lorentz-covariant
tensor F* called the Faraday tensor, that is defined by

0 E./c EyJc E.Je\Y
—E,Je 0 B. -B,| _ ..
“Eje -B, 0 B, |~ F" (9
-E,/c By —B, 0

FHY =

Introducing the totally antisymmetric, four-index Levi-
Civita symbol,

+1 for prpo an even permutation of txyz,
€uvpe = § —1 for pvpo an odd permutation of txyz,
0 otherwise

= —ehVPo] (36)
the dual Faraday tensor F’W is defined according to

0 B, B, B,

- 1 -B 0 E./c —E,/c
= _ [ — x z y
FMV - QEHVPG'F — _By —EZ/C 0 Ez/c
-B. E,/c —Egfc 0 /,
__h, (37)



We collect the charge density p and the current density
(or charge flux density) J into the Lorentz-covariant cur-
rent density defined by

g = (pe, Jo, Jy, ), 38
Yy

meaning that

for =1t
THE=h (39)

flux density of charge for p=x,y, 2.

» {density of charge

j =
The Maxwell equations (14)—(17) are then expressible
in Lorentz-covariant form as the pair of tensor equations

0 F"" = —poy”, (40)
D FM =0, (41)

the first of which encompasses the inhomogeneous
Maxwell equations (14) and (17), and the second of which
encompasses the homogeneous Maxwell equations (15)
and (16). In addition, the second Lorentz-covariant equa-
tion (41) is equivalent to the electromagnetic Bianchi
identity:

OMFP 4+ 9P M 4 9 FPH = (). (42)

Taking the spacetime divergence of the inhomogeneous
Maxwell equation (40) yields the equation of local current
conservation,

8" =0, (43)

which, in three-vector notation, becomes the continuity
equation for electric charge,

Ip
ETi v-J. (44)
This continuity equation also follows from taking the di-
vergence of the Ampere equation (17), using the vector-
calculus identity V - (V x B) = 0, and then invoking the
electric Gauss equation (14).

Meanwhile, by the Helmholtz theorem from vector cal-
culus, the homogeneous Maxwell equation (41), 9, F" =
0, implies the existence of a four-vector field A, called
the electromagnetic gauge potential, in terms of which
we can express the Faraday tensor F),, as the following
antisymmetric pair of spacetime derivatives:

F = 0,A, — 0,A,. (45)

We give conventional names to the components of the
gauge potential A, according to

A, = (~0/c,A),. (46)

where ® is called the scalar potential and A is called the
vector potential. A comparison between (45) and the
definition (35) of the Faraday tensor F),, then yields the

following relationships between the potentials ® and A
and the electromagnetic fields E and B:

OA
E=-Vo- ", (47)

B=VxA. (48)

The Faraday tensor F),, is unchanged under gauge
transformations, meaning any redefinition of the gauge
potential A, by the addition of the total spacetime
derivative of an arbitrary scalar function f:

Ay Ay +0,f. (49)

Translating this gauge transformation into three-vector
language, the electromagnetic fields E and B are corre-
spondingly invariant under the combined transformation

of
Py o (50)
A— A+ VS, (51)

where the minus sign in the first of these two formulas
comes from the minus sign in the definition (46) relating
A; and ®.

Because the electromagnetic fields E and B are un-
modified by simultaneously carrying out (50) and (51),
gauge transformations have no physical significance for
observable quantities. Gauge transformations therefore
express a redundancy in the description of electromag-
netism when we formulate the theory in terms of poten-
tials.

II. THE LAGRANGIAN FORMULATION AND
ITS GENERALIZATIONS

In order to talk fundamentally about momentum, en-
ergy, force, and work for systems that go beyond classical
particles, such as the electromagnetic field and our model
for elementary dipoles, we will find it necessary to employ
the Lagrangian formulation of classical dynamics, which
we will review here [8].

A. The Lagrangian Formulation for a Classical
System

Consider a general classical system with degrees of free-
dom ¢, and rates of change ¢, with an action functional
Slg] given as the integral of the system’s Lagrangian
L(q,q,t) from an arbitrary initial time ¢4 to an arbitrary
final time tp:

tp
Slgl= | dtL. (52)
ta
To say that this action functional encodes the system’s

dynamics is to say that if we extremize S[qg| over all can-
didate trajectories that share the same initial and final



conditions,

65[ql =0,
with g (ta) and g, (tp) held fixed for all o, (53)

then the resulting Euler-Lagrange equations

oL d (0L
— — —|=— =0 (54)
0qa dt \ Oda
fully capture the system’s equations of motion.
We define the system’s canonical momenta p,, in terms

of the system’s Lagrangian L as the partial derivative of
L with respect to the corresponding rate of change ¢,:

oL
Po = e (55)
Assuming that we can solve these definitions for the rates
of change ¢, as functions of the canonical coordinates
g~ and canonical momenta p,, the system’s Hamiltonian
H(q,p,t), which roughly describes the system’s energy,
is then defined as a function of the variables ¢, p, and

t as the Legendre transformation
oL
H= - .a - L7
2 03,
= Zpa(ja —L. (56)

Employing the chain rule together with the Euler-
Lagrange equations, it follows from a straightforward cal-
culation that the time derivative of the Hamiltonian (56)
is given by

dH 9L
da —  at’

with the important implication that if the system’s La-
grangian has no explicit dependence on the time ¢, mean-
ing no dependence on t except arising through the degrees
of freedom ¢, (t) for a given candidate trajectory, then the
Hamiltonian is constant in time, dH/dt = 0.

The Euler-Lagrange equations (54) are equivalent to
the canonical equations of motion:

(57)

P
a_%v
- (58)
Pa = 940

The canonical equations of motion therefore provide an
alternative way to encode the system’s dynamics, known
as the Hamiltonian formulation.

B. A Pair of Interacting Systems

We will now study a simple example that will turn out
to be highly relevant to our work ahead.

In this example, which we will call the zy system, we
consider a pair of subsystems, the first of which has a
single degree of freedom x and the second of which has
a single degree of freedom y. We define the dynamics of
the overall zy system by choosing an action functional

Slz,y] = /dtL (59)
with a Lagrangian defined by

= %m:ﬁ + %M@'ﬁ —ay® — by + ciy,  (60)
where m, M, a, b, and ¢ are constants and where, as
usual, dots denote time derivatives. The constants m
and M play the role of inertial masses, and a, b, and ¢
can be interpreted as coupling constants.

The Euler-Lagrange equations (54) for  and y respec-
tively then yield the equations of motion

mi = —by — cy, (61)
My = —2ay — bx + ci. (62)

The physical interpretation of these coupled differential
equations is that the right-hand sides describe interaction
forces between the two systems. Notice that the force
terms involving the constants a and b are conservative
in the sense that they can be derived from a potential
energy

V(z,y) = ay® + by (63)
according to (9):
ov
F,=—— = —by, 4
e y (64)
ov
F,=—— = —2ay — bx. 65
Y 8y ( )

On the other hand, the force terms involving the constant
¢ depend on the rates of change & and ¥, and so are
manifestly not conservative.

The zy system’s canonical momenta are, from (55),
given by

oL .
Py = % mz + cy, (66)
oL
= — = My. 67

Solving these equations to obtain & and ¢ in terms of the
canonical variables z, y, p,, and p,, we obtain
Pz — CY

b= (68)

Py
Y= M
Then a short calculation of the zy system’s Hamiltonian
(56) yields the result

(69)

H=p,x+pyy—L

(px 7Cy)2 p121 2
= 4 = bxy. 70
o + Wi + ay” + bxy (70)



One can verify that the canonical equations of motion
(58) derived from this Hamiltonian give back the orig-
inal equations of motion (61)-(62). Moreover, because
the Lagrangian (60) has no explicit time dependence,
OL/ot = 0, our formula (57) guarantees that H is con-
stant in time,
dH
pra 0, (71)
as one can check explicitly.
Substituting the formulas (68) for & and (69) for ¢ into
the Hamiltonian (70), we can rewrite the Hamiltonian of
the xy system as

1 1
imi‘Q + §My2 + ay® + bry.

The first two terms look like Newtonian kinetic energies
(4) for the z and y systems individually,

T, = 5mi’, (72)
1
T, = S My, (73)

and we recognize the final two terms as making up the
potential energy defined in (63):

V(z,y) = ay® + bxy.

It is therefore natural to interpret H as the total energy
E of the overall xy system,

E=H=T,+T,+V(x,y)
1

1
= §m$2 + §My2 + ay? + bay, (74)

where, from (71), this energy is conserved:

dE
prl 0. (75)

Observe that we are always free to modify the defini-
tion (74) of the total energy E by adding on terms with
vanishing time derivative, d(---)/dt = 0, as such terms
do not alter the conservation equation (75). Notice also
that the velocity-dependent interaction term czy in the
Lagrangian (60) does not appear in the system’s con-
served energy.

Crucially, neither the = system nor the y system has a
separately conserved energy on its own. Furthermore, al-
though we can derive each of the two equations of motion
(61) and (62) individually as the canonical equations of
motion (58) for the two individual Hamiltonians defined
by

2
— C
P2
H, =L 2 —ca
v =507 + ay” + bxy — ciy, (77)

the overall xy system’s Hamiltonian (70) is not equal to
the sum of the two individual Hamiltonians H, and H,,
due to a double-counting of the interaction term bxy as
well as the appearance of the velocity-dependent interac-
tion term —czy:

H+H,+H,. (78)

It is therefore up to us to decide whether to interpret
the interaction terms ay? and bxy as belonging to one of
the two individual systems or the other. If, for example,
we choose to regard the y system as a “force field” act-
ing on the x system, then it would be natural to regard
the interaction terms as part of the energy of the y sys-
tem, and we would correspondingly define non-conserved
energies for the two systems individually as

1

E, = imiQ, (79)
1

E, = iMyz + ay® + bay. (80)

In this case, the conserved total energy (74) of the overall
xy system is the sum of these two energies:

E=E,+E,. (81)

Notice that in splitting up F in this way, we have effec-
tively taken the energy FE, of the z system to be solely
its kinetic energy T}, = (1/2)md2. Additionally, the con-
servation law (75) for the total energy E immediately
implies that the time derivative of either E, or E, yields
the opposite of the rate at which the other system’s en-
ergy is changing:

dE,  dE,

. — dt

(82)

Observe that the left-hand side is given explicitly by

dE,
dt

= mid = (force)(speed),

so it precisely represents the rate at which work is being
done on the x system.

Looking back at the velocity-dependent interaction
term czy, notice that we can use the product rule in
reverse (that is, “integration by parts” without an in-
tegration) to replace it with —czy, up to a total time
derivative:

cty = —cxy + %(cxy) (83)
By the fundamental theorem of calculus, a total time
derivative in a Lagrangian leads to terms in the action
functional (52), S = [dtL, that depend only on the
fixed initial and final conditions and that are therefore
constants that do not affect the variational condition (53)
or the Euler-Lagrange equations (54). Indeed, one can



verify explicitly that the alternative Lagrangian defined
by

1 1
L= §m3'32 + §M1)2 —ay® —bry —cxy,  (84)
which differs from our original Lagrangian (60) by only
the total time derivative of cxy,

d
L=L+ a(caﬁy), (85)
leads to precisely the same equations of motion (61) and
(62) for the zy system as before. The new Lagrangian L’
yields respective canonical momenta

oL’ .
P, = Fr mi, (86)
oL
péz—y:M@)*cx, (87)
and Hamiltonian
, vy (ot cr)? )
H' = o + o + ay® + by, (88)

which formally disagree with the canonical momenta (66)
and (67) and with the Hamiltonian (70) derived from our
original Lagrangian L. However, if we write the Hamil-
tonians H and H’ in terms of & and ¢, then we see that
they actually describe precisely the same conserved total
energy (74) for the zy system,

1 1
E = §mj:2 + §My2 + ay® + bay,
thereby confirming that it does not physically matter
whether we use L or L’ as the zy system’s Lagrangian.
In essence, by switching from L to L', we have merely
carried out a canonical transformation of the form

/

xr X X
/ J—
Pz N p€ _ | Pz —cy 7 (89)
Y y/ Y
Py by Py — CT

but we obviously have not changed the underlying
physics.

C. The Lagrangian Formulation for a Relativistic
Massive Particle with Spin

As reviewed in [1], one can reformulate the Lagrangian
description of a generic classical system in a manifestly
covariant language by introducing an arbitrary smooth,
strictly monotonic parametrization ¢ — ¢(\) in place of
the time ¢, in which case one arrives at the following
alternative formula for the system’s Lagrangian:

Slg. ] = / AN2(q,0,4,1). (90)

Here dots now denote derivatives with respect to the pa-
rameter A and we have introduced a manifestly covariant
Lagrangian according to

L(q,4,t,t) =t L(q,q/t,t). (91)

This formalism puts the system’s degrees of freedom ¢,
and the time ¢ on a similar footing, with the system’s
Hamiltonian H now expressible as the “canonical mo-
mentum” conjugate to —t.

We are now ready to turn to the Lagrangian formula-
tion for a relativistic particle with spin. We will need to
be careful to distinguish between the coordinates z* of
arbitrary points in spacetime—such as in the arguments
of field variables—and the specific coordinates X* of our
particle’s location in spacetime. We will therefore con-
tinue to use capital letters for the particle’s spacetime
coordinates,

XHA) = (TN, X(N)", (92)

where A is a smooth, strictly monotonic parameter for
the particle’s four-dimensional worldline.

We will assume that the particle has a positive mass
m > 0, a future-directed four-momentum p* whose tem-
poral component p’! > 0 encodes the particle’s rela-
tivistic kinetic energy E and whose spatial components
P = (Pz,Py,p-) encode the particle’s relativistic three-
momentum,

P’ = (E/c,p)", (93)
and an intrinsic spin that is encoded in an antisymmetric
spin tensor S*¥ = —S¥* whose independent components

define a pair of three-vectors

S = (87,577, 5™), (94)
S = (5", 8", 8%). (95)

The particle’s Pauli-Lubanski pseudovector is then given
by

WH = _ L euwor S 96

= 25 Pvopo- ( )

As explained in detail in [1], a massive particle with

positive energy E = p'c > 0 is a classical system whose

phase space provides an irreducible representation (or,

more precisely, a transitive group action or homogeneous

space) of the Poincaré group characterized by the fixed
scalar quantities

p? = pupt = —m?2c?, (97)
W?=Ww, W+ =w?, (98)
1 1 N
5S2 = 58w S = s2=8%-82% (99)

as well as the fixed pseudoscalar quantity

1 .
S Erpo S ST = #=8-8.



The constancy of the quantities (97)—(100) is a funda-
mental feature of the particle’s phase space whether or
not interactions are present, and leads to several self-
consistency conditions, the most important of which is
that the contraction of the particle’s four-momentum
with its spin tensor must vanish [9]:

puSH = 0. (101)

As shown in [1], we can use the following manifestly
covariant action functional of the form (90) for the case
in which the particle is free from interactions:

Sparticle[X» A] = /d)\ jparticle
. 1 .
- / d\ (;;HX# + 2Tr[SAA‘1]>

) 1 .
— / A <p,p(H + 25,“,9“”)

The degrees of freedom in this description are the
particle’s spacetime coordinates X*(A) and a variable
Lorentz-transformation matrix A*,(\). The particle’s
four-momentum p#(\) and its spin tensor S*¥(\) are
given respectively in terms of fixed reference values pl
and Sf" [10] according to

(102)

P'(N) = A (N)pg,s (103)
SH(A) =AM, (N)SE7(AT)," (V)
- _%maﬂ”A(A)SOA—l(A)]. (104)

Note that neither p#(A) nor S#(\) depends on the par-
ticle’s spacetime degrees of freedom X#*()\) before the
equations of motion are imposed. Here, again, [U#V}O‘ﬂ

are the Lorentz generators (28), and we can use (33) to
express the derivative of A(\) with respect to the world-

line parameter A in terms of the rates of change 6" in
the corresponding boost and angular parameters as

A = —%Q“V(A)UWA()\). (105)

As in [1], we take the reference value of the particle’s
four-momentum to be

phy = (me, 0)* = medl', (106)

in which case the particle’s four-momentum (103) is given
for general states by

p*(A) = me A¥, (V). (107)

The self-consistency condition (101) then tells us that the
reference value S{ of the particle’s spin tensor satisfies

meSE =0, (108)
and therefore has the general form
0 0 0 0 \"
S = 0 0 So- —Soy (109)

0 _SO,z 0 SO,x
0 Soy —S0 O

D. The Limit of Vanishing Spin

We now specialize momentarily to the case of a free
particle without spin, S#* = 0. In principle, we can then
solve the condition p? = —m?2c? from (97) for p' = E/c
to obtain the mass-shell relation

E? = p*c® + m?ch. (110)
Setting our parameter A = t to be the physical time
coordinate and switching back to the traditional, non-
covariant Lagrangian formulation, we end up with the
Hamiltonian

p2c? +m2ct. (111)
The canonical equations of motion (58) derived from this
Hamiltonian then imply that the components of the par-
ticle’s three-velocity,

dX
V== (Vg, Uy, V), (112)
are given by
dx® OH
;= - 113
v dt ap* (113)

which yields the following relationship between the par-
ticle’s three-velocity v, its three-momentum p, and its
energy I

voPE___PE (114)
Solving for p in terms of v gives the formula
p =ymv, (115)
where the Lorentz factor v is defined by
- (116)

7 V1=v2/2

Using v, we can also express the particle’s relativistic
energy E as
E = ymc?, (117)

and so we find that the four-momentum (93) takes the
form

p* = (E/e,p)* = (yme,ymv)* = mut. (118)
Here u* is the particle’s normalized four-velocity,
axH
ut = (ye,yv)H = ’YWa (119)

where by “normalized,” we mean that u* satisfies the
normalization condition

u? = uyut = —c2 (120)
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It then follows from a straightforward calculation that
the particle’s action functional (102) reduces to the non-

covariant form
ax#
/dtpuﬁ = fmCQ/dt/fy
= —ch/dt V1=v2/c2

By another calculation, one can also show that in the
non-relativistic limit, v? < ¢, (121) reduces to the ac-
tion functional of a Newtonian particle with Lagrangian
(1/2)mv?—mc?, describing a particle with kinetic energy
(1/2)mv? and “intrinsic potential energy” mc?.

By definition, the squared proper-time interval dr2
is the infinitesimal squared arc length of the particle’s

worldline, up to a factor of —c?, so

Sparticlc [X] =

(121)

—ctdr? = 1, dX"dX"
= N (cdT, dX)*(cdT, dX)"”
= —2dT? + dX?
= —c2dt*(1 —v?/c?).

We therefore obtain the familiar time-dilation formula

dt
dr = —,

. (122)

so we can write the particle’s normalized four-velocity
(119) as

dXH
H —
u dr’

(123)

and we can compactly express the formula (121) for
the particle’s action functional as the particle’s Lorentz-
invariant, integrated proper time [ dr, up to a propor-

tionality factor of —mc?:

Sparticle[X] = _mc2 /dT (124)

It is important to note that if a particle with intrinsic
spin S* # 0 and elementary dipole moments is inter-
acting with a nonvanishing electromagnetic field, then
the particle’s four-momentum will not necessarily take
the familiar form (118), p* = mu*, that holds for a free
particle, as we will show explicitly later.

E. The Dynamics of a Relativistic Massive Particle
with Spin

Once again allowing the particle to have a nonzero spin
tensor, S*¥ # 0, we can vary the particle’s action func-
tional (102),

Sparticle[Xa A] = /d)\ <pHX“ + ;TT[SAA_1]>,

to obtain the particle’s equations of motion, in accor-
dance with the extremization condition (53).

Extremizing the particle’s action functional with re-
spect to its spacetime coordinates X* yields

p* =0. (125)

This equation of motion implies that the particle’s en-
ergy and momentum are constant in time, as would be
expected for an isolated particle that is not subject to
any forces.

On the other hand, as shown in [1], extremizing the
particle’s action functional (102) with respect to the vari-
able Lorentz-transformation matrix A*,(\) yields

JW = [ 4 S = 0, (126)
where JH*” = —J"# is the particle’s antisymmetric total
angular-momentum tensor,

JH = L 4 SH (127)
and L*¥ = —L"" is the particle’s antisymmetric orbital
angular-momentum tensor,

LW = XHp” — XVpt. (128)

The equation of motion (126) tells us that the particle’s
total angular-momentum tensor is conserved, as would
be expected in the absence of external torques.

Using (118), which tell us that the four-momentum of
a massive free particle is related to its four-velocity ac-
cording to p* = mu* o< X*, it follows that the particle’s
orbital angular-momentum tensor L*¥ is constant by it-
self,

L =0, (129)

so the particle’s spin tensor is likewise separately con-
served,

SHY = (), (130)

F. The Lagrangian Formulation of Classical Field
Theories and Electromagnetism

The Lagrangian formulation naturally accommodates
the case of a classical field theory with local field degrees
of freedom ¢, (x) and an action functional S[p] defined
in terms of a Lagrangian density L(y, 09, z) as

S[p] = /dt/d%a

where d3z denotes the usual three-dimensional volume
element,

(131)

dr = drdydz. (132)



The extremization condition (53) on the action functional
Slp] yields a field-theoretic generalization of the Euler-
Lagrange equations (54) given by:

oL oL
-0 =0.
dpa : (a(au@a))

We now turn to the specific case of electromagnetism.
If we temporarily assume the absence of electromagnetic
sources, meaning that we take the four-dimensional cur-
rent density (38) to be zero,

(133)

= (pe, 3y =0, (134)

then we can encode the Maxwell equations (14)—(17) in
a Lagrangian formulation using the Lorentz-invariant,
translation-invariant, gauge-invariant Lagrangian den-
sity

1
= ——FME, 1
Lela e W (135)

with a corresponding action functional defined by

Steld[A] = / dt / d*x Leld

= /dt/d% ( ZLL)F“"Fm,), (136)

where F,, = 0,A, — 0, A, from (45) and where we re-
gard the gauge potential A, as constituting the Maxwell
theory’s underlying degrees of freedom. Indeed, the field-
theoretic Euler-Lagrange equations (133) yield

3£ﬁe1d _9 aﬁﬁeld
0A, *\0(0,A,)

1
08“<MOFW) =0,

which immediately gives us the inhomogeneous Maxwell
equation (40) with vanishing current density j* = 0:

0, F" = 0.

The homogeneous Maxwell equation (41), on the other
hand, follows immediately from the relation Fj,, =
OuA, — 0 A,:

9, " — 0.

III. ELEMENTARY MULTIPOLES

A. The Multipole Expansion of the Current
Density

For our first step toward modeling electromagnetic
multipoles—meaning not just electric monopoles, but
also electric and magnetic dipoles, electric and mag-
netic quadrupoles, and higher multipoles—we express the

11

Lorentz-covariant current density j* from (38) as a series
expansion of local terms with increasingly many space-
time derivatives 0,,, where the requirements of Lorentz
covariance dictate the schematic structure

GY = () A O )+ 0,0, ( )P e (137)
As we will see, the series (137) represents a multipole
expansion

V=0 et ig (138)

where each term j¢, jj, ji has a specific physical inter-
pretation.

e The four-vector jY represents the overall contri-
bution to 7 from charged sources whose spatial
densities involve no derivatives. We will show that
j¥ describes the distribution of electric monopoles
throughout physical space.

e The four-vector jj represents the net contribution
from all charged sources whose spatial densities in-
volve a single spacetime divergence. Lorentz co-
variance implies that j4 is expressible in terms of a
tensor field M*" according to

Jjq = OuM*H”. (139)

We will show later that jj represents the spatial

distribution of electric and magnetic dipoles, so we

will call M#* the dipole-density tensor.

e Similarly, the four-vector j; is given in terms of a
pair of spacetime divergences of a tensor field N#*”,

Jq = 0u0,N"?Y, (140)

and represents the spatial distribution of electric
and magnetic quadrupoles.

e Subsequent terms in the series (138) represent still-
higher multipoles and involve incrementally more
spacetime divergences.

We can now write the schematic multipole expansion
(137) in the more concrete form

3" =3¢ +iatiq+ -

= Y+ 0 M 4 8,0,N . (141)

To ensure individual local conservation laws for each
category of elementary multipole, we take the tensors

M#HY NHOV . to obey the antisymmetry conditions
MW = —M"F (142)
NHPY = —NVPH = _NHVP, (143)

and so on. It then follows immediately from the symme-
try 0,0, = 0,0, of mixed partial derivatives that the cur-
rent density for each kind of multipole separately obeys
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its own local conservation equation, so that

0,30 =0, (144)
dvja =0, (145)
Ovjq =0, (146)

and so forth.

Note that the local conservation law (145) for the
dipole current density jj is not related to the fact that
the elementary dipole moments of our particles are per-
manent. Nor does one need to invoke quantum mechanics
and quantization of angular momentum to explain their
permanence, either. In our model, the intrinsic spin and
the associated elementary dipole moments of a classical
particle are invariant features of the particle in the sense
sense that the rest mass of the particle is permanent. As
detailed in [1], the invariance of a classical particle’s rest
mass and the invariance of its intrinsic spin follow from
group-theoretic considerations in constructing the parti-
cle’s phase space (or, in the analogous quantum case, the
particle’s Hilbert space). That is, the particle’s phase
space simply lacks the degrees of freedom that would be
necessary to allow the rest mass or the intrinsic spin of
the particle to be able to change.

Notice that we can recast the multipole expansion
(141) as

J =G+ (MM £ 0N ) (14T)
Introducing the multipole-density tensor,
Q" = M" + 0,N"PY + ..., (148)
which is antisymmetric on its two indices,
Q= -Q, (149)

we can therefore write the multipole expansion for j¥
more compactly as

J¥ =jd +0,Q"". (150)

B. The Auxiliary Faraday Tensor

Correspondingly, we define the antisymmetric auxil-
iary Faraday tensor H** = —H"# to absorb all source
contributions from dipoles and higher multipoles:

1
HW = —Fr 4 Qv
Ko

1
= —FM 4 MM 4 9,NH 4 ... .

m (151)

We can then re-cast the inhomogeneous Maxwell equa-
tion (40), 0, F"" = —poj”, in the alternative form

O H" = -3¢, (152)

where again jJ represents contributions to the current
density that arise solely from electric monopoles,

j& = (pec,Je)”. (153)

The auxiliary Faraday tensor H*” can be expressed
in terms of the electric displacement field D =
(H* /c, HY /c, H'* /c) and the auxiliary magnetic field
H = (HY?, H*®, H*Y) according to

0 cD, c¢D, cD, ad
w_ [-eD, 0 H. -H,
H"=1_p, ~H. 0o H, (154)
—eD. H, —H, 0

These definitions permit us to write the auxiliary version
(152) of the inhomogeneous Maxwell equation in three-
vector form as the pair of equations

V-D=p., (155)

oD

VxH=1J, + ET

These two equations can be used in place of the three-

vector inhomogeneous Maxwell equations (14) (the elec-
tric Gauss equation) and (17) (the Ampere equation).

The formulation of electromagnetism in terms of this
pair of alternative three-vector equations is particularly
suited to the study of “macroscopic” electromagnetic
fields in charged matter. In that case, the overall cur-
rent density j¥ is regarded as a coarse-grained spatial
average over appropriately large regions of the physical
material in question, with the result that electromagnetic
multipoles arise, in part, emergently from the averaging
process. Indeed, in textbooks, the equations (155) and
(156) are conventionally derived from this sort of averag-
ing.

In this paper, by contrast, we have obtained these
equations by expanding our fundamental charged sources
as a series (137) in spacetime derivatives and imposing
Lorentz covariance. In this way, we are expressly allowing
for the possibility of elementary electromagnetic multi-
poles.

(156)

C. The Lorentz-Invariant Pointlike Volume Density

If we wish, we can regard our elementary electric
monopoles as providing a classical model of electrons and
other elementary particles, and our elementary magnetic
dipoles as providing a classical model of their magnetic
dipole moments. In order to study the behavior of point-
like electric monopoles and elementary multipoles in de-
tail, we will need to review the formalism of Dirac delta
functions in three and four dimensions.

Consider a product of three delta functions describing
an abstract volume density sharply localized at a spatial
point x’ = (2/,y/, 2'):

Bx—x)=dx—2)oy—y)d(z—72). (157)



The defining feature of this three-dimensional delta func-
tion is that its integral [ d3z (---) = [dxdydz(---) over
any spatial volume V containing the point x’ = (2’ ¢/, 2’)
yields the number 1, whereas its integral over any spatial
volume not containing the point x’ yields 0:

8 53 (x—x') = 4 1
/Vd:v§(x ) {O

We can extend this construction to four-dimensional
spacetime. An isolated event with coordinates z'* =
(ct',a',y', 2)* in spacetime corresponds to a product of
four delta functions,

if ¥V contains x’
’ 158
if V does not contain x’. (158)

oz — ')

=d(ct—cto(zr—a")o(y—y)d(z—2"), (159)
with the defining feature that its integral [diz (--+) =
Jedtdxdydz(---) over any four-dimensional region M
of spacetime yields the number 1 or 0 depending on
whether that region contains the spacetime point labeled
by x'#:

/ d*z 6t (z — o)
M

{(1)

Under an arbitrary Lorentz transformation z# +—
A# z¥ | the four-dimensional integration measure d*x =
cdtdx dy dz incurs a trivial Jacobian factor of |det A| =
1, and is therefore invariant. The defining condition
(160) then implies that the four-dimensional delta func-
tion 6*(z — 2') is likewise invariant under Lorentz trans-
formations.

Generalizing from an isolated spacetime event to the
worldline trajectory of a particle, we replace x'* =
(ct’',a',y',2’)* with appropriate coordinate functions
X)) = (TN, XA\, Y(X),Z(M\)* of a smooth,
strictly monotonic parameter A\. Our Lorentz-invariant
four-dimensional delta function (159) becomes

if M contains z'*,
| o (160)
if M does not contain z'*.

oz — X)

=d(ct—cT)é(x—X)o(y—-Y)o(z— Z). (161)
Infinitesimal durations of the particle’s Lorentz-invariant
proper time 7 are related to corresponding intervals of the
coordinate time ¢ according to the usual formula (122) for
time dilation,

dt
dr = —
Y

3

where again ~y is the particle’s Lorentz factor defined as
in (116) according to
1

"= Aove
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The integral of the product of the Lorentz-invariant
quantity dt/y and the Lorentz-invariant delta function
§*(x — X (\)) over the particle’s four-dimensional world-
line is manifestly Lorentz invariant:

/%54(95—)().

Evaluating this worldline integral explicitly yields a

Lorentz-invariant version of the three-dimensional delta
function 6(x — X(\)):

1
“HBx-X
5 ( )

= 16(:13—)() dy—Y)o(z—2).

- (162)

Because the special combination of 1/ and 63(x —X(\))
appearing in this formula maintains its form under
Lorentz transformations, it represents the appropriate
Lorentz-invariant generalization of a pointlike volume
density. We can also understand the Lorentz invariance
of (162) from the fact that under coordinate changes,
§3(x — X())) transforms like the inverse of a three-
dimensional volume element d>z, and because d>z experi-
ences Lorentz contractions by 1/7, the three-dimensional
delta function 63 (x — X (\)) grows by a factor of +, which
is then compensated by the 1/~ appearing in (162).

Notice that in the limiting case X(\) = x’ and v — 0
in which the particle is at rest, we have 1/y — 1. In
this limit, (162) therefore reduces to the static three-
dimensional delta function §%(x — x’) that we originally
introduced in (157).

D. Electric Monopoles

We now have the tools necessary to model various
pointlike sources more precisely. To start, we consider
a pointlike electric monopole of charge g at rest at a lo-
cation x’ = (2,9, 2’). The electric monopole has charge
density

pe(x) = q6%(x —X) (163)
and vanishing current density
J.(x) = 0. (164)

An elementary calculation using the Maxwell equations
(14)-(17) shows that the resulting electric field for all
x # x’ is directed outward from the point x’, with an
inverse-square dependence on the distance |x — x’| from
x’, whereas the magnetic field vanishes:

1 q
P ex_x', (165)

 4mey |x —x

B = 0. (166)
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Here e,y is a unit vector pointing in the direction from
the source point x’ to the field point x:

x —x

(167)

€x—x' = m

We can therefore conclude that this source distribution
describes an electric monopole at rest at x’, as claimed.

The electric monopole has Lorentz-covariant current
density

jey :( eC’Je)l/
= (¢0*(x —x')¢,0)"

=q(c,0)" 5*(x — x'). (168)

v

Identifying v’ = (¢,0)" as the electric monopole’s nor-

malized (uZy = —c?) four-velocity (119) in its own
rest frame, and recalling our formula (162) for the
Lorentz-invariant generalization of a three-dimensional
delta function, we can immediately write down the
Lorentz-covariant current density of a pointlike electric
monopole of charge ¢ moving along a trajectory X(t) =
(X(0), Y (£), Z(1)):

. 0) = qu 25 (x = X). (169)

Notice that ¢ is a Lorentz scalar, u” is a Lorentz four-
vector, and the combination of 1/ together with the
three-dimensional delta function §2(x — X(t)) is Lorentz
invariant, so (169) is indeed a Lorentz four-vector, as
required.

Using the formula (119) for the electric monopole’s
normalized four-velocity when it is in motion at a three-
velocity v = (vg, vy, v5),

aXxv

TR (170)

u’ = (ye, )" =7

where the derivative of X" is taken with respect to the
coordinate time ¢, we see that the factors of v in (169)
cancel out and thus our formula for the current density
becomes

32 (x,t) = (qc0*(x — X), qv 63(x — X))
axv
dt

=q 5 (x — X), (171)

meaning that the charge density and current density are
given respectively by

pe(x,t) = q6°(x — X),
Jo(x,t) = qv 63 (x — X).

(172)
(173)

In particular, these two functions are related according
to

Je = pev. (174)

E. The Dipole-Density Tensor

In contrast with the case of electric monopoles, we will
see that the formula (174) does not hold for elementary
dipoles and higher multipoles, a fact that will turn out
to have important implications for magnetic forces and
mechanical work.

We will be particularly interested in studying elemen-
tary dipoles. To begin, we give names to the various com-
ponents of the dipole-density tensor M*" appearing in
our expression (139), ji = 9, M*", for the dipole-current
density. Remembering from (142) that the dipole-density
tensor is antisymmetric on its two indices, M*¥ = —M"*,
we name its components according to

ng

0 cPy cPy cP,
—cP, 0 -—-M. M,
—cP, M, 0 —-M,
—cP, —-M, M, 0

M = (175)

Here P = (M' /¢, M /c, M'?/c) defines a three-vector
field called the polarization, which we will see de-
scribes the volume density of electric dipoles, and M =
(MY#, M** M®Y) defines a three-vector field called the
magnetization, which describes the volume density of
magnetic dipoles. (The component combinations that
define P and M transform as three-vectors under rota-
tions, but transform as parts of the full antisymmetric
tensor M*” under Lorentz boosts.) In terms of the elec-
tric displacement field D and the auxiliary magnetic field
H introduced in (154), we have

D=¢E+P (176)
H-= iB - M. (177)
Ho

Defining a charge density pq and three-vector current
density Jq = (Ja,2, Jd,y, Ja,~) from the components of the
Lorentz-covariant dipole-current density j4 according to

](lil = (PdC, Jd)uv (178)

it follows from a straightforward calculation starting with
(139), j§ = 0,M*", that pg and J4 are related to the
polarization P and magnetization M according to the
pair of equations

Pd = -V P, (179)
P
szaa—tJerM. (180)

Notice that these two formulas imply that pq and Jgq
automatically satisfy the continuity equation
dpa

—=-V-J

ot d;
as was ultimately ensured by the local conservation equa-
tion (145). Observe also that pg and J4 are not related
by a formula analogous to the equation (174), Jo = pev,
that held for the case of electric monopoles.

(181)



F. Composite Dipoles

We can provide an intuitive explanation for why the
formulas (179) for pq and (180) for J4 indeed describe
dipoles, as claimed. For this purpose, we momentarily
put aside the case of elementary dipoles and consider
instead a composite electric dipole consisting more fun-
damentally of a pair of electric monopoles with respective
charges ¢ > 0 and —q < 0 located respectively at posi-
tions x = d > 0 and x = 0 on the x axis. The charge
density is then

p(,y,2) = (+q) 6(z — d) 5(y) 0(2) + (=q) 6(x) 6(y) 6(2).

Letting d = (d,0,0) denote the spatial displacement vec-
tor extending from the negative electric monopole to the
positive electric monopole, we define the system’s electric
dipole moment by

7 = qd. (182)

Taking the limit d — 0 with 7 = ¢d held fixed at finite
magnitude and direction, we can write our expression for
the charge density as

p(z,y,2) = qd (=" (2)) d(y) 6(2)
= —qd-V((x)d(y)(2))

= -V (78(x)), (183)

which replicates (179), pg = —V - P, for a polarization P
defined as the pointlike density 7 63(x) corresponding to
the dipole moment 7 = ¢d of the pair of electric point
charges.

Under Lorentz boosts, the polarization transforms as
part of the antisymmetric Lorentz tensor M), in (175),
whose form then dictates the formula (180) for the cur-
rent density Jq, which we can alternatively understand
by analogy with composite electric dipoles consisting of
time-dependent pairs of electric monopoles and composite
magnetic dipoles consisting of circulating loops of electric
current.

G. Elementary Dipoles

We can also study the case of a pointlike elementary
dipole at rest at x’ = (2/,y,2’). We define the parti-
cle’s elementary electric dipole moment 7 and elementary
magnetic dipole moment g in terms of the polarization
P and magnetization M in the delta-function limit as

P(x) = w6 (x — x'), (184)
M(x) = pu6*(x — x'). (185)

From (179), pqg = —V - P, the corresponding charge den-
sity is precisely as in (183) from the composite case,

= -V (w8 (x—-%x))
= —7-V&(x—x),

pa(x)
(186)
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and from (180), the current density Jq is

Ja(x) = V x (n6°(x - X))

= —px V& (x —x). (187)
Another elementary calculation using the Maxwell equa-
tions (14)—(17) shows that the resulting electric field and
magnetic field for all x # x’ have the standard inverse-
cube dependence characteristic of dipoles,

1 3(m-ex—x)ex—x —

™
E(x) = - — B (x—-%
() drey |x —x'|3 3eo (x =x),
(188)
Ho 3(N ) exfx’)exfx’ — K 2”0/"’ 3 /
B(x)= — 07 (x —
(x) A |x — x'|3 + 3 (x=x),
(189)

where the unit vector ex_xs, defined in (167), is di-
rected from the source point x’ toward the field point x,
and where the delta-function contact terms ensure agree-
ment with the homogeneous Maxwell equations (15) and
(16). We conclude that this source distribution indeed
describes an elementary dipole at rest at x’.

IV. CLASSICAL ELECTROMAGNETISM WITH
ELEMENTARY DIPOLES

Now that we have introduced sources into classical
electromagnetism—mnamely, electric monopoles, elemen-
tary dipoles, and higher multipoles—we will need to de-
termine the resulting dynamics. We will start by char-
acterizing the electromagnetic properties of elementary
dipoles before moving on to the Lagrangian formulation
of the theory.

A. Dynamical Elementary Dipoles

Recall from its definition (148) that the multipole-
density tensor Q*¥ = —Q"* is given in terms of the ten-
sors MH*¥ NFPY .. respectively describing the densities
of dipoles, quadrupoles, and higher multipoles by

QMW = MM + §,NH 4 ...

For a pointlike charged particle with position X, recall
that the electric-monopole current density j2 is given in
terms of the Lorentz four-vector qu” and the Lorentz-
invariant, three-dimensional delta function (162) accord-
ing to (169),

JE(x,t) = qu”153(x - X).
Y

Similarly, the density tensors MH*¥ NHPY . for
such a particle are given in terms of Lorentz ten-
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sors mM* n#P¥ ... and the Lorentz-invariant, three-
dimensional delta function according to

MW = m“”la?’(x - X), (190)
gl

1.
NHPY = piPr —§3(x — X)), (191)
v
and so forth, meaning that the particle’s overall
multipole-density tensor would be
1
Q" = —(m" + 00, + - - )03 (x — X). (192)
Y

To simplify our work ahead, we will assume that the
particle does not have elementary quadrupole and higher
multipole moments [11]. In that case, Q*” reduces to the
dipole-density tensor (190),

1
QMW = MM =mM =83 (x — X), (193)
Y
where we will call the antisymmetric tensor m*¥ = —m"*
the particle’s elementary dipole tensor.

Mimicking our formula (175) relating the dipole-
density tensor M, to the polarization P and magnetiza-
tion M, we define the particle’s elementary electric-dipole
moment as 7w = (m?®/c,m'/c,m'*/c) and its elemen-
tary magnetic-dipole moment as g = (m¥*, m** m*),
so that these three-vectors are related to the particle’s
elementary dipole tensor m*” according to

nv
0 CTy CTy CT,

mt = —CTy 0 —Hz  Hy
T ey ope 00 —pg
—CT, —[by g 0

(194)

In the particle’s reference state, for which its four-
momentum p§ is (106) and its spin tensor S§"” is (109),
we can introduce a pair of purely spacelike four-vectors
defined by

ﬂ-g = (Oa 71-0)#7

1o = (0, o).

(195)
(196)

As in [12], we can then write the particle’s elementary
dipole tensor in general as

M = T 4 (197)
with
T = i(p“w” —p’rH) (198)
me ’
1
W= 2 wpoy, 199
I e ppn (199)

where 77 () and p#(\) are related to their reference val-
ues 75 and pg and to the particle’s variable Lorentz-
transformation matrix A¥,(\) according to
(M7,
W) = AR, ().

(200)
(201)

B. The Maxwell Action Functional with Sources

If our particle carries an electric-monopole charge ¢
in addition to its elementary dipole tensor m*", then
coupling the particle to the electromagnetic field leads
immediately to the following generalization of the parti-
cle’s action functional (102) and the Maxwell action func-
tional (136), and thereby provides a classical extension
of Maxwell’s original theory of electromagnetism:

S[X> A7 A] = Sparticle [X7 A} + Sﬁeld [A] + Sint [X7 A7 A]

= /d)\ (p#X“ + ;Tr[SAA1]> (Sparticle)

1
—|—/dt/d31‘<— %F#VFHV> (Sﬁeld)
+/dt/d3xj”A,, (Sint)-

Here we have included an important new contribution
Sint[X, A, A] that describes interactions between the par-
ticle and the electromagnetic field:

Sint[ X, A, A] = /dt/dsxj”A,,.

(202)

(203)

The terms in the action functional (202) that contain
a dependence on the field degrees of freedom A, have the
standard form (131), S = [dt [ d®xz L, for a Lagrangian
density £ given by

L = Lged + Lint
1
= pWF
4,“40 % (Eﬁeld)
(Eint)~

+J" A,
Using this Lagrangian density, the field-theoretic Euler-
Lagrange equations (133) yield

oL, (oL
04, "\ 09(0,A,)

1
j”au(F*“’) —0,

(204)

Ho

thereby giving us the inhomogeneous Maxwell equation
(40),

O™ = —puog".

As was true for the free electromagnetic field, the homo-
geneous Maxwell equation (41) is already encoded into
the formula F),, = 0,4, — 0, A, from (45):

D FH = 0.

The interaction term j“A, appearing in the action
functional (202) may not look gauge invariant, but under
a gauge transformation (49),

A, — A, +0,f,



the interaction term changes according to
3" Ay = §Y Ay + 57 (00 ).

Using the product rule in reverse (again, “integration by
parts” without an integration), to move the spacetime
derivative from f to j* at the cost of a minus sign, we
end up with

YA, — (0,5°)f + (tota.l spacetime) .

divergence

The second term vanishes by local current conservation
(43), 9,7V = 0, when the system’s equations of motion
are imposed, and the total spacetime divergence disap-
pears from the action functional by the four-dimensional
divergence theorem, under the assumption that our fields
go to zero sufficiently rapidly at infinity. The action func-
tional (202) is therefore effectively unchanged by gauge
transformations, as required.

Before we can discuss the equations of motion for the
particle, or the total energy and momentum of the overall
system consisting of the particle together with the elec-
tromagnetic field, we will need to begin by recalling the
multipole expansion (138):

S A R
= U+ OuMM + 9,0, NH +

Dropping quadrupole and higher multipole moments,
in line with our assumptions about the particle, this
expansion truncates to just its electric-monopole and
elementary-dipole terms:

J¥ = jd + 0, M". (205)

Substituting this expression into the interaction term
jv A, yields

YA, = jE Ay + (0, M)A,

so the overall system’s action functional (202) becomes

S[X7 A, A] = Sparticle [Xa A] + Sﬁeld [A} + Sint [X7 A7 A]
. 1 .
= /d)\ (pHX“ + 2’I\I‘[SAA_1]> (Sparticle)
+/dt/d3m <— 1 F‘“’FW> (Sfela)
—+/d{/&% YAy + (0,M")A,) (Sine).
(206)

Recalling the Lagrangian (60) for our zy system con-
sisting of a pair of systems with degrees of freedom x and

Y,

N

1
L mi? + §My2 — ay® — bay + ciy,
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we have an analogy in which the x system plays the role
of our relativistic particle and the y system plays the role
of the electromagnetic field, with the following detailed
correspondences:

%miz — pﬂX“ + 1'l’r[SA/'\A*l],
%MQQQ—ayQ — /d3 < FME, >,
—bry = /d?’x (JrA,),
cty = /dsx (OuMM)A,.

(207)
We will find it useful to refer back to this analogy on
several more occasions in our work ahead.

At the cost of a minus sign and an irrelevant addi-
tive total spacetime divergence, we are free to use the
product rule in reverse to rewrite the final interaction
term (0,M")A, in the integrand of the action func-
tional (206) as

(aﬂMMV)AU — —MW@HAV) + (total spacetime) )

divergence
Taking advantage of the antisymmetry of the dipole-
density tensor M*", we can write the first term as

v 1 1%

—-M"(0,A,) = —§M“ (OuAy — 0,AL).
Remembering again the formula (45) relating the Fara-
day tensor F),, to the gauge potential A,, we have

Lo Lo
—§M (GHA,, - BL,A#) - _§M F,ulw
We can therefore write the overall system’s action func-

tional (202) in the alternative but physically equivalent
form

S[X; A, A] = Sparticle [X7 A] + Sﬁeld [A] + Sint [X7 Au A]
= /d)\ <puX” + 2TT[SAA1]) (Sparticlc)
+/dt/d3:z: <— 1F””FW) (Sfela)

/dt/d3 ( YA, —fM“”F ) (Sint)-

(208)

This last step of using the product rule in reverse to
replace (0, M")A, with —(1/2)M*"F,,,, is analogous to
our use of the product rule in reverse in (83) to replace
cty with —cxy for the xy system. As was true in that ex-
ample, this manipulation has no physical consequences,
but we will find that our calculations ahead will be easier
if we use (208) rather than (206) as our system’s action
functional, as the former ends up requiring fewer compu-
tations that explicitly involve delta functions.
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C. The Action Functional for a Charged Particle
with an Elementary Dipole Moment

Gathering together all the terms in the action func-
tional (208) that involve the particle’s degrees of freedom
XH(A) = (cT'(N), X(A\)* and A, (N), we obtain

. 1 .
Sparticle+int [X7 A7 A] = /d)\ (pHX’L + 2TI‘[SAA1}>

+/dt/d3xjeA +/dt/d3 ( )M“”F

(209)

Before we can compute the system’s Euler-Lagrangian
equations We will need to replace the integrals
Jdt [dPz over time and space with appropriate in-
tegrals [ d)\ ) over the particle’s worldline parameter
A, and we Wlll need to make the particle’s worldline de-
grees of freedom X#(\) and A*,(A\) more manifest.

Under the assumption that our particle has charge ¢,
the electric-monopole current density is (169),

z:dX“%% X (1))
/dT X" (T —T) 8% (x — X(T))
_ q/d/\ dﬂ(AA) dXV;t )5t — 7(0) 8% (x — X(T(V)))

xXv(T
= [axa™ T - 7)) 0 - x(TON),
which we can write more succinctly as

V= /d)\ gXV8(t — T)8%(x — X),

where, as usual, dots denote derivatives with respect to
the particle’s worldline parameter A. We can therefore
express the first interaction term in the particle’s action
functional (209) as

/dt/dgl‘je

- /d/\ qX"A,. (210)

Similarly, we can write the dipole-density tensor MH*"
in terms of the particle’s elementary dipole tensor m#"
and the Lorentz-invariant three-dimensional delta func-
tion (162) as in (190),

1
MM = mh Z§3(x — X)
Y

/dACLT wlse
Y

= 7)6%(x — X).

(211)

Combining the factor of dT/d\ with the reciprocal

Lorentz factor 1/~ to obtain

2
dr1_dr [i (XN,
Ay dx

() - (&)

:L/_Xz’
c

the second interaction term becomes

Jufes(-3Jes.
[ (=)
Putting everything together, we see that the particle’s

action functional is of the manifestly covariant form de-
scribed in [1],

X2m F,,. (212)

SparticleJrint [Xa A) A] = /d>\ gparticleJrinty (213)

for a manifestly covariant Lagrangian defined by

gparticlc+int = pyXM + iTT[SAAil]

) 1 y
+qX A, = V=X, (214)
&

D. The Dynamics of the Canonical Momentum of
an Elementary Dipole

Now we are ready to calculate the particle’s canonical
momenta and its equations of motion. As we proceed, we
will need to keep in mind that 4, = A4, (X (\)) and F,, =
F,.,(X()X)) depend on the particle’s spacetime degrees
of freedom X*()), as well as remember from (107) that
p*(A) = me A", (\) does not depend on X*(\) before the
equations of motion have been imposed.

Following the manifestly covariant formalism presented
in [1], the covariant canonical four-momentum conjugate
to X*()) is given by

8v%particle—o—int

Pcan,u = aX”
1 X
=pu+qA+ - ——=m""F), (215)
2c¢\/_x2

Using the chain rule to write d/d\ = X8, as needed,
the covariant Euler-Lagrange equation for X*#(\),

0Lparticlering _ d (Mptwt> —0,  (216)

OX+ CdA X1



yields the following equation of motion for the particle’s
four-momentum p*:

. 1 y
P = —gX F = oV = X2mP O
1 d Xh
2cdA\ \/_x2

This equation simplifies if we choose our worldline pa-
rameter A to be the particle’s proper time 7, in which
case

mp”FpU) (217)

V=X2 s \/—(dX/dr)? = c.

The particle’s normalized four-velocity (119) then takes
the form (123),

(218)

dxn
Todr

ut

and so the equation of motion (217) becomes

dp” v 1 o 1 o
E = —qu,,F o §mp aquo— — @E(u“mp Fpo’)
1
= —qu, F""* — §m””(n“” + uu")0, Fpo
1 d i
— @E(u”mp )Fpoa (219)

as obtained in [3, 4, 13].

E. The Non-Relativistic Limit with
Time-Independent External Fields

We now examine the equation of motion (219) in the
non-relativistic limit, in which the particle’s proper time
7 reduces to the coordinate time t and the particle’s
four-velocity u” reduces to a four-vector consisting of the
speed of light ¢ and the particle’s three-dimensional ve-
locity v:

Q

T,
1%

u” = (e, v)". (220)
We will assume that the particle’s velocity v changes
slowly enough that we can neglect radiative effects. We
will accordingly drop contributions to the electromag-
netic fields from the particle itself, so that E +— Eq, and
B — Beyt, where we will also assume that these external
fields are time-independent (but not necessarily uniform
in space) in the given inertial reference frame [14]. Mak-
ing use of the tensor-contraction identity

JE) - =2((---)B) - p,

where (- --) represents numerical quantities or derivative
operators and where the particle’s elementary dipole mo-
ments 7 and p are defined in terms of m”? according to

M) Epy = =2(-+- (221)
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(194), the equation of motion (219) then reduces to the
pair of three-dimensional equations

dE

% ~ V- (quxt + V(ﬂ' . Eext =+ I Bext))7 (222)
dp

E ~ Q(Eext + v X Bext) + V(ﬂ' “Eext + 11 Bext);

(223)

where E is the particle’s kinetic energy and p is its three-
dimensional momentum, with

P = (Bfe,p)* ~ (mc + (1/2)mv%,p)’.  (224)
Note that although the final term in the four-dimensional
equation of motion (219) for dp”/dr includes an explicit
factor of 1/c2, it is not a purely relativistic correction,

and is necessary for getting the correct relativistic for-
mula for dE/dt above.

F. The Generalized Lorentz Force Law for
Elementary Dipoles

From the second of these two dynamical equations,
(223), we can identify the electromagnetic force on the
particle as

F = quxt 'H]V X Bext +V(7T'Eext) +V(H'Bext)7 (225)

which agrees with our claimed generalization (22) of the
Lorentz force law.

Notice that the magnetic field participates in the dipole
terms V(7 - Eext) + V(- Bext) of this force law on an
equal footing with the electric field. Furthermore, if the
particle moves at a constant velocity v through incre-
mental spatial displacements dX = vdt over infinitesimal
time intervals dt, then the work (6) done by the electro-
magnetic field on the particle as it travels from an initial
location A to a final location B is

B B
W:/ dX-F:/ dtv-F
A A

B
= / dtv - (quxt +qv X Bext)
A

B
+/ dtv - (V(m - Bext) + V(i - Bext))
A

B
- / 4t (qV - Boxt) + Al - Eoxt) + At - Boxs),
A
(226)

where A denotes a total change over the particle’s full
displacement from A to B. We see right away that mag-
netic forces do not do work on electric monopoles, but
are entirely capable of doing work on elementary mag-
netic dipoles.
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Moreover, the rate at which electromagnetic forces do
work on the particle is

aw  d [t d [t
A X.F=— .F
dt dt/d dt/dtv

=V: (quxt + V(ﬂ' “Eext + - Bext))7 (227)
where we have dropped the gv x Beyt term because its
dot product with v vanishes. The formula (227) precisely
agrees with our non-relativistic equation of motion (222)
for the rate dE/dt at which the particle’s kinetic energy
is changing, so the work being done on the particle by
the electromagnetic field is translating directly into the
particle’s kinetic energy.

Under our assumption that the external fields are all
constant in time in the given inertial reference frame,
the formula (47) relating the electric field to the scalar
potential ® and the vector potential A implies that the
electric field is determined by the gradient of the scalar
potential according to

Eext - _V(I)ext' (228)
The electromagnetic force (225) on the particle is there-
fore conservative in the sense of (9),

F=-VV,

where the potential energy V in the present case is given
by
V = q®Pext — 7 Eext — p - Bext. (229)

The work (226) done by the electromagnetic field on the
particle then simplifies to

W = —-AV,
in accordance with the general relationship (10) between

the work W done on a mechanical object and the object’s
corresponding potential energy V.

G. The Dynamics of the Intrinsic Spin

Next, we will use the particle’s action functional (213)
to calculate the equation of motion for the particle’s spin
tensor S#”(\). Varying the action functional with respect
to the variable Lorentz-transformation matrix A*,(X), we
obtain

5Sparticle+int = /d/\ <5p“X,L + iTI'[(S(SAAil)]

1 -
- 2\/_x25mHVFMy>.
C

(230)

As in [1], the first two terms yield

. 1 . .
5pNX,u = 7(_pra + Xopp)(;gpa’

2
1 AA—D)] = 1 i po
gTr[d(SAA )] = QSpgd)\éﬂ ,

where 0077 is an array of small boost and rotation pa-
rameters corresponding to the infinitesimal variation in
A*_(X\). Meanwhile, using the commutation relations
(29) satisfied by the Lorentz generators, together with
[15]

1
om* = —ZTr[m(or’“’op‘7 — 701605
1
= 5(_mlfpnlw _ m‘“’n”p + m”"n“p 4 mupnvo)(;gpm

(231)

the third term in the varied action functional (230) gives

1 .
— 5,V X20m! E,
C

1 ¥ o o
= —X2 (M ET, — mT )50,

5 (232)

Putting everything together and setting the overall
variation (230) in the particle’s action functional to zero
in accordance with the usual extremization condition
(53), we obtain

5Sparticlc+int

_ / s ( (XPpT — Xy — §P

1 n
- _XQ(mWFJH _ mJ“FpH)>59po =0,
where we have dropped the total derivative
d(SP760,5)/d\ from the middle term. We there-

fore find the following equation of motion for the
particle’s spin tensor S#¥:
SH = —(XHp¥ — XVpH)

RNV

—X2(mMPEY, —mYPER ). (233)

c

Once again, we simplify this equation by choosing the
worldline parameter A to be the particle’s proper time,
so that from (218), we have

X2 ¢,
and from (123), we have
XH s ut
The equation of motion for S*” then becomes

dsmrv
dr

= —(up” P — (IPFY, — P FY,), (234)



which generalizes the results of [2—4].
The particle’s orbital angular-momentum tensor is de-
fined as in (128) by

L = X/Lpu o X”p“,

with L = (L¥#, L*®, L*Y) = X x p the particle’s orbital

angular-momentum pseudovector. Using
dL*v dp” dp*

— utp¥ — ulpt e xRk v 2P
dr “p wpt dr dr’

(235)

it follows from a straightforward calculation that if we
ignore self-field effects, then the non-relativistic limit of
the spin tensor’s equation of motion (234) is
d(L+8S) dp
—— 2~ X x — X Eex X Bext,
dt dt + ext 1 1 ext
which describes a net torque on the particle given by the
sum of orbital and dipole contributions.

(236)

H. Self-Consistency Conditions

Now that we have obtained the particle’s equations of
motion, we will need to ensure that they are compatible
with the fundamental structure of the particle’s phase
space—specifically, that they are consistent with the con-
stancy of the invariant quantities m?, w?, s2, and 32 de-
fined (97)-(100), as well as with the condition p,S** = 0
from (101).

We will start by examining the condition p,5*” = 0.
Taking its derivative with respect to the proper time 7,
we find
asm

dp,,
P gpo =0
dr + Py dr ’

which yields an equation of the form

P = megut + b (237)
Here the coefficient function meg(A) is defined by
2.2
Mg = — 2 (238)
pou

and we naturally identify it as the particle’s effective in-
ertial mass. The four-vector b*(A), which represents the
discrepancy between p*(\) and meg(N)ut (), is defined
by

1 (dp,
= _ - [ ZZ gV _ VP o P IV
b p-u(dTS pu(m"PF: —m Fp)). (239)

Following [4], we regard (237) as an implicit formula for
the particle’s four-velocity u*.

Combining the condition p, S** = 0 with the definition
(239) of b, we see that b* has vanishing Lorentz dot
product with the particle’s four-momentum p*:

b-p=0. (240)
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Contracting both sides of (237) with p, then yields (97),

p? = —m?2c?, thereby ensuring that p? is constant, as
required:
d o
— =0. 241
<) (241)

If the electromagnetic field is zero, F),, = 0, then it
follows from a straightforward calculation that b* = 0
and meg = m, so the particle’s four-momentum p* is
parallel to its four-velocity and with m playing the role
of the proportionality constant:

P! =mut  (F,, =0). (242)

On the other hand, for nonzero electromagnetic field,
F,, # 0, the terms in the definition (239) of b* go like
1/¢?, so the discrepancy four-vector b* is a relativistic
correction. It follows that meg— m is likewise a relativis-
tic correction of order 1/c?, so

p* = mu* + (terms of order 1/c?). (243)

One key implication of these results is that when dis-
cussing work done by electromagnetic forces on the parti-
cle in the non-relativistic limit, as in (222)—(223), there is
no ambiguity over whether we should identify E = p’c or
utmc? as the particle’s “true” relativistic kinetic energy.
Indeed, in the non-relativistic limit, they agree:

E =p'c~u'me® =~ mc® + %mvz. (244)

Next, we study the invariant spin-squared scalar s
defined in (99). Invoking the spin tensor’s equation of
motion (234) together with the condition (101), p,S* =
0, we have

d, d (1 " dSsHv
i = 5| 5°Puv V) =2 w7
dr (%) dr (25” s > 5 dr

= (7, m" — 5%, mH) Fy.

2

(245)

The scalar quantity s2 is therefore constant along the par-
ticle’s worldline for generic states of the electromagnetic
field only if the quantity in parentheses above vanishes,
meaning that

(246)

Pt — G e
5P, mH7 =57 mhP.

This equality implies that in the particle’s reference state,
the reference values (195)—(196) of the particle’s three-
dimensional elementary electric and magnetic dipole mo-
ments must both have vanishing cross products with the
reference value Sy of the particle’s spin three-vector:

ﬂ'()XSo:O, }

24
Mo X So =0. ( 7)

Hence, at the level of the particle’s underlying kinemat-
ics, the particle’s elementary electric and magnetic dipole
moments must be collinear with its spin three-vector:

1
~-=s
o= =R (248)

Mo = FSO
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Here = is a pseudoscalar constant and IT' is a scalar con-
stant, the latter of which is called the particle’s gyromag-
netic ratio, and the factor of 1/c appearing in the formula
for 7w compensates for the factors of ¢ appearing in (194).

The conditions (248) make physical sense, because if
the particle had elementary dipole moments that were
not parallel or antiparallel to the particle’s spin axis, then
electromagnetic torques acting on the particle’s elemen-
tary dipole moments would be capable of “speeding up”
or “slowing down” the particle’s total spin, thereby con-
travening the invariance of s? [16].

Finally, one can readily show that

w? = m??s?,

2 =0.

(249)
(250)

Hence, w? and 52 are likewise constant, as required:

L) =0, (251)
éé(gQ)::o. (252)

V. CONSERVATION LAWS AND THEIR
IMPLICATIONS

To provide a crucial set of consistency checks on our
results so far, we now proceed to replicate them from the
perspective of local conservation laws. We will begin by
discussing Noether’s theorem, which we will use to con-
struct tensors that encode conserved notions of energy,
momentum, and angular momentum. After calculating
these tensors for the electromagnetic field coupled to a
relativistic charged particle with elementary electric and
magnetic dipole moments, we will show explicitly that
the exchange of relevant conserved quantities precisely
accounts for the generalized Lorentz force law and the
work done by the field on the particle.

A. Conservation Laws and Noether’s Theorem

In its various versions, Noether’s theorem establishes
a correspondence between the symmetries of a physical
system’s dynamics and the quantities that are conserved
when the system evolves according to its equations of
motion. We will present and prove one version of the
theorem whose details will end up being particularly rel-
evant to our elementary-dipole model.

To begin, we consider a continuous symmetry of our
system’s dynamics, meaning a transformation g, — ¢,
of the system’s degrees of freedom that can be performed
by an arbitrarily small amount and that leaves the sys-
tem’s Euler-Lagrange equations (54) unchanged. More
precisely, a continuous symmetry has the following in-
gredients.

e The transformation rule can be expressed in in-
finitesimal form as

o q; =qa+ 66Q(X7

Sco =Y Ggu b€bs (253)
b

where the coefficients g4, » depend on the degrees of
freedom and where the parameters ¢, are constants
that are assumed to be small but are otherwise ar-
bitrary.

e The system’s Lagrangian L does not depend explic-

itly on the parameters ¢y,
oL

— =0 254

96, (254)

meaning that any possible dependence of L on the
parameters €, arises solely through the degrees of
freedom ¢,

e The Lagrangian is invariant under the given trans-
formation rule, up to a possible total time deriva-
tive:

L L+6.L,
d dfp
S L=— =3 2,
(S ) =3 e

The functions f; here are zero in the simplest cases.

(255)

The condition (255) ensures that the system’s action
functional S = [ dt L changes by at most boundary terms
that give no contribution when we apply the extremiza-
tion condition (53) to obtain the system’s Euler-Lagrange
equations.

It is important to keep in mind that in order for the
transformation (253) to qualify as a symmetry of the dy-
namics, the condition (255) on the Lagrangian must hold
before applying the system’s equations of motion. Note
also that identifying the correct functions f; is a crucial
step, as we will see when we use Noether’s theorem to de-
rive both the conserved energy-momentum and the con-
served angular momentum for the electromagnetic field
coupled to an elementary dipole.

To prove the theorem and derive an explicit formula for
the associated conserved quantities, we begin by applying
the chain rule to the variation d.L of the Lagrangian
appearing on the left-hand side of (255):

dfy
66-[/ — ; Eﬁb
oL oL . .
= za: Tqa(ﬂq@ + Za: @64]&

8—L6— %6—0
baebb bdtb '



Invoking the transformation formula (253) together with
the requirement (254) that the Lagrangian has no explicit
dependence on the transformation parameters €, we have

oL oL . dfs
2 (Z st ggtusn= o) =0
Using the product rule in reverse on the second term, we

obtain
d 8L>
9q.,bEb

oL
;Z<8q dt 9
+Zdt<28q 9qa b fb>€b=0.

If we now consider a trajectory g¢.(t) that satisfies the
system’s Euler-Lagrangian equations (54), then the first
term above vanishes and we are left with

4 (oL
. dt B 10

This equation must hold for arbitrary values of the pa-
rameters €, so we conclude that the quantity ), defined
as the terms in parentheses for each value of b is individ-
ually conserved.

We have thereby proved Noether’s theorem, and ob-
tained an explicit formula for the conserved quantities
Q) corresponding to the given continuous symmetry:

aQ
Za gqa, fb; E _O

Two important examples merit discussion.

- fb> €p = 0.

(256)

e If the Lagrangian L(q, ¢,t) of the system is invari-
ant under constant translations along the coordi-

nates,
o = oy = G + €a; (257)
so that
0co = €a = D Gaa8hr  Gaur8 = Oaps (258)
B
with
5.L =0, (259)

then the functions in (255) vanish, fsz = 0, and the
conserved quantities (256) are just the canonical
momenta (55):

Qp = Z EPN gqmﬁ

— ps. (260)
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e On the other hand, consider the time translation
t — t' = t+e¢ in which we shift ¢ by a small constant
€. We require that the values ¢/, (t') of the system’s
transformed degrees of freedom at the new time
t' =t + € agree with their original values ¢, (t) at
the time t, so that

qa(t) = 4o (t) = qa(t). (261)

Equivalently, the values ¢/, (t) of the system’s trans-
formed degrees of freedom at the original time ¢
agree with their values ¢, (t — €) at the earlier time
t—e,

Ga(t) = ¢4, () = ga(t — ©). (262)

Then, by the chain rule, the system’s degrees of
freedom ¢, and the Lagrangian L both transform
by total time derivatives:

65‘104 = —(a¢, 9490, = —Qas (263)
dL

0L = —— 264

s (264)

If the Lagrangian L(q,q) has no explicit depen-
dence on the time ¢, meaning no dependence on
t outside of the degrees of freedom ¢, and their
rates of change ¢, then

oL _ oL

de — ot
so all the conditions of Noether’s theorem are sat-
isfied with f = —L, and the associated conserved

quantity is just the system’s Hamiltonian (56), up
to an overall minus sign:

|
M

Q aq gqa

:—H.

f==> Pala+L
(265)

Noether’s theorem (256) generalizes naturally to the
manifestly covariant Lagrangian framework described in
[1], with the time ¢ replaced by a more general smooth,
strictly monotonic parameter A and with the Lagrangian
L replaced by the manifestly covariant Lagrangian % =
(dt/dN\)L, as in (91).

B. Energy-Momentum Tensors for Classical Field
Theories

Noether’s theorem (256) is a powerful tool for study-
ing the possible conservation laws for various classical
systems, including classical field theories.

Given a classical field theory with local field degrees of
freedom ¢, (x) and an action functional (131),

:/dt/d?’mﬁ(gp,@@,x),
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we will start by considering the infinitesimal transforma-
tion x# — x'* = x* + €# in which we translate the space-
time coordinates z* by a small constant four-vector e*.
We will then require that the transformed values ¢/, (z')
of the field degrees of freedom at the new spacetime point
' =zt 4 et are equal to their values ¢, () at the orig-
inal spacetime point x*:

Pa(a’) = pa(@). (266)
Replacing 2'# with z# and replacing x* with z# —¢*, and
using the chain rule, we obtain the following infinitesimal
transformation rule for the field degrees of freedom:

Pa () = @y () = palr — )

= Pa(®) = Oupa(x)e”. (267)

That is, the infinitesimal changes in the field degrees of
freedom are given by

(268)

depa = — nPa e, Joo,n = _8M‘Pa-

If the Lagrangian density L£(y,d¢) has no explicit
dependence on the spacetime coordinates x*, meaning
no dependence on x* apart from any dependence aris-
ing through ¢, and 0,9, then all the conditions of
Noether’s theorem will be satisfied if we can determine
the corresponding functions f,, appearing in (255). As-
suming that the fields go to zero sufficiently rapidly at
spatial infinity so that we can neglect boundary terms,
we have from the chain rule that

0L = /de(fﬁ'ﬂEe”) = */dgfﬂatﬁﬁt

14 3 .
= cdt/dmﬁe

_dfll«u
~ A

for

fu= f/d% %5;5. (269)

From Noether’s theorem (256), we therefore obtain the
following collection of conserved quantities:

[ = (Z spranson) -5
! / P ( - Z (xgtidam 4 555) (270)

Introducing a unit timelike four-vector n, = (-1,0),
that is orthogonal to the three-dimensional spatial hyper-
surface of integration, we can write the conserved quan-
tities (270) more covariantly as

Qv = %/d?’x (—nu) ( - zaj a(;‘;a)aywa + 555).
(271)

Qv

The conservation law d@,/dt = 0 then corresponds to
the vanishing of the difference between three-dimensional
integrations (271) on two adjacent spatial hypersurfaces
separated by an infinitesimal amount of time dt. Hence,
by the four-dimensional divergence theorem, and under
the assumption that the fields go to zero sufficiently
rapidly at spatial infinity, the equation d@,/dt = 0 im-
plies that the quantity in parentheses in (271) has van-
ishing spacetime divergence:

oL
- — /J/ =
au( E@ : SO+ o c) 0.

Raising the v index using the Minkowski metric ten-
sor, we define the quantity in parentheses as the system’s
canonical energy-momentum tensor:

(272)

oL
T = — ——0"pa + L. 273
Za: 3(5;L<Pa) ( )
This tensor satisfies the local conservation law
9Tl = 0 (274)

and naturally generalizes the Hamiltonian (265) to a lo-
cal, Lorentz-covariant density of energy and momentum.
Notice that Noether’s theorem does not determine T#%
uniquely, because we are free to add terms to the def-
inition (273) that have vanishing spacetime divergence
without affecting the local energy-momentum conserva-

tion law (274):
TH = THY 4 (. )Y,

can a,U«( o )MV =0. (275)

That is, this redefined energy-momentum tensor T*” con-
tinues to satisfy the equation

9, T" = 0. (276)

The addition of terms as in (275) may be necessary to
ensure that the energy-momentum tensors TH" for cer-
tain field theories have particular properties, like gauge
invariance. However, even when such a redefinition
(275) provides a better description of a system’s underly-
ing physics, the canonical energy-momentum tensor 74"
may still be more convenient for certain calculations, as
we will see in our work ahead.

The first index p on T"” determines whether we are
referring to a volume density or to a flux density, the
latter representing a rate of flow per unit time per unit
cross-sectional area, so we will refer to p as the flux index
of T*”. The second index v tells us whether the physical
quantity in question is energy or momentum, so we will
refer to v as the four-momentum index of 7#¥. In analogy
with (39) for the charge-current density j*, we therefore
have the schematic formula

T _ {density of (momentum)” for p =t,

flux density of (momentum)” for p = z,y, 2.

(277)
More concretely, the individual components of T#” have
the following physical interpretations.



e The three-dimensional scalar
u="T" (278)

represents the volume density of the field’s mass-
energy.

e The three-dimensional vector
S = c(T*, TV", T*) (279)

represents the flux density of the field’s energy,
meaning the rate of energy flow per unit time per
unit cross-sectional area.

e The three-dimensional vector

1
g= 7(Ttm7 Ttya th) (280)
c
represents the field’s momentum density.
e The three-dimensional tensor
Tij = _Tija (281)

called the field’s stress tensor, represents the
field’s momentum flux densities, with the (i,7)
component representing the flux density of the
jth component of momentum in the ¢th direc-
tion. The diagonal components Ty, Tyy, T, en-
code the pressures in each of the three Carte-
sian directions, and the off-diagonal components
Teys Trz, Tyz, Tyz, Tey, Ty encode shearing effects.

If we introduce terms into the action functional (131)
that describe interactions between the field and source
systems, such as mechanical particles, then these source
systems will generically exchange energy and momentum
with the field in the form of work and forces. Because
these flows of energy and momentum imply that the field
can gain or lose energy and momentum, they appear
as violations of the local conservation equation (276),
0,T"" = 0, that would have otherwise held for the field
alone.

Specifically, any energy entering or leaving the field
corresponds to violations of the v = ¢ component of (276)
that describe the rate at which work is done by the field
on sources. Any momentum entering or leaving the field
corresponds to violations of the v = z,y, z components
of (276) that describe forces due to the field on sources.

We can capture all these violations in terms of a new
four-vector f* that is related to the spacetime divergence
of the field’s energy-momentum tensor T#" according to
the local four-force law

fY=—9,T. (282)
Letting Ow/0t denote the power density on sources,
meaning the rate at which the field does work on sources
per unit volume, and letting f = (f5, fy, f.) denote the
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field’s force density on sources, the preceding analysis

implies that
1 0w v
f’/E <Catafa:7fyafz) ) (283)
and so we naturally refer to f* as the field’s four-force
density. (Four-forces are also called Minkowski forces.)
Given a knowledge of a field’s energy-momentum ten-
sor, the local four-force equation (282) provides a very
general way to derive force laws on source particles. In
particular, we will see in the example of the electromag-
netic field that (282) will end up yielding the Lorentz
force law in the more general form (22) that includes
forces on elementary dipoles.

C. Angular-Momentum Flux Tensors for Classical
Field Theories

We can also use Noether’s theorem to determine the
local conservation law corresponding to Lorentz invari-
ance. Under Lorentz transformations, the spacetime co-
ordinates x* transform as

ot 2 = AP b (284)

We require that the new values ¢/ (z') of the field de-
grees of freedom at z'# are related to their values ¢, (z)
according to a general rule of the form

o) = 9o (a) = (F(A)p)a(z),

where F'(A) captures the possibility that the field index
« has a nontrivial behavior under Lorentz transforma-
tions. Equivalently, replacing ' = (Axz)* with z* and
replacing x# with (A~1z)#, we have

o) = (F(A)g)a(A™ ).

Specializing now to an infinitesimal Lorentz transfor-
mation (33), chosen to be an active transformation by
replacing —dO*” — +e”, we have

(285)

(286)

Ainf =1+ %EHVU,U,IM (287)

and the field degrees of freedom transform as

Pu(e) = (F(1L+ (/2 0))a(z = (/2" 7,0)
= pal(®) = upl@) 5 70ty 2" + 5 (Dpop)a(2)er”,
(288)

where the final term represents the infinitesimal changes
in the fields at fixed x:

1(A,)(,c,o)a(zv)ep(’ = (F(1+(i/2)e" op)@)al(x) — @al).

2
(289)
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Dropping factors of 1/2 to avoid double-counting inde-
pendent variables, we can therefore identify

Iparpo = —0upilope]", 7" + (Apep)a- (290)

If the field theory’s Lagrangian density is Lorentz in-
variant, then all we have left to do is determine the func-
tions f,, appearing in (255). We find

5L = / Az (9,L) < - %ew [apc,wyx'/)

_ 1dfps (50
2 dt ’

with
1
—/dgx E(Sfjﬁi[apg]“yx". (291)

Thus, according to Noether’s theorem (256), we end
up with the following conserved quantities:

Qv — %/d%(fw)
e
+ C/dgx(—nu)<za:a(3fwa)

U()OOL+6 ‘C> [UVP] )\1‘)‘

)(Aupso)a,

(292)

where, again, n, = (—1,0), is a unit timelike four-vector
that is orthogonal to the three-dimensional spatial hy-
persurface of integration. Raising the v and p indices,
and recalling the definition (273) of the field’s canonical
energy-momentum tensor T#” together with the formula
(28) for the Lorentz generators [0,,]%;, we can write

these conserved quantities as

Q7 =~ [ &z (-n)ae. (203)
where
Tt = L0 4 M = —Jhe(294)
and
LHvP = Tc’fjfr’1 mp%Té;”n = —LHPY] (295)
SHP = —— Z 8 o) A””(p)a = -§Hv (296)
uPa

are all antisymmetric on their final two indices, and
where J/%P is locally conserved:
Tlar” = (297)

The tensor LFP generalizes the mechanical definition
L = X x p of orbital angular momentum for particles,

whereas the tensor S*”* represents intrinsic spin angu-
lar momentum in the field itself, so J4# is called the
canonical total angular-momentum flux tensor.

The local conservation laws (274) for TAY and (297)
for JHYP together imply that the spacetime divergence
of the field’s spin flux tensor S*” characterizes the lack
of symmetry in the two indices of the field’s canonical

energy-momentum tensor T :

TYP — TP = —9,8"".

can can

(298)

As reviewed in [17], we can use this relation to con-
struct a symmetric energy-momentum tensor and sim-
plify the formula (294) for the canonical total angular-
momentum flux tensor. We start by defining the
Belinfante-Rosenfeld tensor,

BV = g(SW” + SV 4 SPHY), (299)
which is antisymmetric on its first two indices,
BHPY = —BPRY (300)

is asymmetric on its first and last indices according to

BHPY = BYPE 4 cSPRY (301)
and has the property that its spacetime divergence
0,B"P¥ on its second index is automatically locally con-

served,

0u(0,B7") =0 (302)
The redefined energy-momentum tensor
T =ThY + 0,BM (303)

then continues to satisfy the local conservation equation
(274),

0, IT" =0,
is symmetric on its two indices,
THY =T"H, (304)

and, assuming that the fields go to zero sufficiently
rapidly at spatial infinity, 7% has the same integrated
value over all of three-dimensional space as TV

/ dPrT = / P T,

Moreover, the new total angular-momentum flux tensor
defined by

(305)

1 1
JHeP = gV 2R P 2RV (306)
c c

differs from the canonical total angular-momentum flux

tensor JHYP by a term that is antisymmetric on its final



two indices and has vanishing spacetime divergence, so
JHP is still locally conserved:

8, T = 0. (307)

The tensor J#? also has the same integrated value over
all of three-dimensional space as JXYP, so we are free
to use JH"P instead of JHP to describe the field’s total
angular momentum.

If we include terms in the field’s action functional (131)
that describe interactions with source systems, then the
spacetime divergence 0, J""* characterizes the degree to
which the angular momentum of the field is locally con-
served, and satisfies the equation

—c0, TP =a" fP — 2" ¥, (308)
where ¥ = —0,T"" is the four-force density from (282).
The terms z¥ f# — x” f¥, which generalize the mechanical
definition 7 = X x F of torque, describe the density of
torques exerted by the field on the source system. If
this torque density vanishes, then we get back the local
conservation law (307),

T =0,

thereby implying that the field’s angular momentum is
locally conserved.

As an aside, notice the formal resemblance between the
decomposition (303) of the redefined energy-momentum
tensor,

T =TH +0,BM",
and the first two terms of the series expansion (141) for
the current density 5%,

3= 0 O

We see that the spacetime-divergence term in T#" repre-
senting the intrinsic spin of the classical field is analogous
to the spacetime-divergence term in j” representing the
contribution from electric and magnetic dipoles.

Observe also that if we use the energy-momentum
tensor (303), which is symmetric on its two indices,
THY = T"H then

(th, Tyt, th) — (th, Tty, th)7

so we have the following simple relationship between the
field’s energy flux density (279) and the field’s momen-
tum density (280):

S = gc?. (309)
If we consider spatially compact distributions of the field
propagating at an overall velocity v, then integrating this
formula over three-dimensional space yields a relation-
ship between the total field energy E and the total field
momentum p,

vE = pc?,
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or, equivalently,

which we first saw in our formula (114) for relativistic
particles.

D. Local Conservation of Energy and Momentum
for the Free Electromagnetic Field

For the electromagnetic field in the absence of charges
and currents, meaning that j* = (pe, J)* = 0, the action
functional is (136),

Stela[A] = / dt / d*x Leeld

1
= [dt | Pz - —F"F, ).
/ / g ( 4po g )

Thus, the definition (273) of the electromagnetic field’s
canonical energy-momentum tensor yields

OLgela
Tuy = _ aVA ,ul/E o
can a(a,uAp) 4 + n field
1 1
= —FHFPOYA, — " —FP°F . 310
1o p— T A0 p ( )

As a consequence of the invariance of the dynamics under
constant translations in time and space, Noether’s the-
orem guarantees that this canonical energy-momentum
tensor satisfies the local conservation law (274),

9, TH = 0. (311)

However, T#” is not invariant under gauge transfor-
mations (49), due to the explicit appearance of the gauge

potential A, in its first term,

L pregra,,

” (312)

Notice that we could remedy this issue by adding on a
new term
1
T!Y, = ——F"9,AY,

m (313)

which would have the effect of converting the non-gauge-
invariant term (312) into the manifestly gauge-invariant
combination

L puo(ora, — 9,47 = L propy

314
Ho Ho ( )

Invoking the inhomogeneous Maxwell equation (40) in
the absence of sources, 0,F"” = 0, we can write Tl
alternatively as a total spacetime divergence:

1
T =9, ( - MOF“”A”). (315)
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It follows immediately from the antisymmetry of the in-
dices pu and p on F*P that this proposed new term has
vanishing spacetime divergence,

B, TH, = aﬂap< - 1F””A”> -0,  (316)

Ho

so adding it to the canonical energy-momentum tensor
TH would have no effect on the local conservation equa-
tion (311). Furthermore, if we integrate the energy-
momentum volume density T4, over three-dimensional
space, then because F'** = 0, we end up with the integral
of a total three-dimensional divergence that vanishes un-
der the assumption that our fields go to zero sufficiently

rapidly at spatial infinity:

1
/ Br T, = / d3x a,,( F‘M”)
Ho

:/d3xV~(~--):O.

Hence, adding T}, to T does not alter the field’s over-
all energy and momentum.

The sum THY + T}, gives us the physical (and gauge-
invariant) electromagnetic energy-momentum tensor:

THY — Thv

1
can 7FMP8PAU
Ho
L o v wo L ppo
— —F F o —']7 TF Fpa"

317
Ho Ho (817)

By construction, in the absence of charged sources, this
energy-momentum continues to satisfy the local conser-
vation law (274),

0,T"" =0, (318)
and its individual components describe the density and

flux of electromagnetic energy and momentum through-
out three-dimensional space.

e The electromagnetic energy density is

1 1
u=T"= - <€0E2 + B2>. (319)
2 Ho
e The electromagnetic energy flux density is
1
S = (T, TY",T*") = —E x B, (320)
Ho
which is also known as the Poynting vector.
e The electromagnetic momentum density is
1 tx t tz
g=—(T",TY T%) = ¢cE x B. (321)
c

e The electromagnetic momentum flux density is
given by the Maxwell stress tensor,

T=—|Tve Tww TV
Tzz sz TZZ

1 1 1
= ¢EE+ —BB —1- <60E2 + B2>, (322)
Ho 2 Ho

where I is the identity tensor.

E. Local Conservation of Energy and Momentum
for the Electromagnetic Field Coupled to an
Elementary Dipole

When we couple the electromagnetic field to a charged
particle with elementary dipole moments, the energy and
momentum of the field become mixed together with those
of the particle. As a result, in order to study local conser-
vation of energy and momentum for the overall system,
we will need to look again at the full action functional
(208), which we can use (210) and (212) to write as

S[X,A,A] = /dt/d%z
= /d)\ (pl,X” + ;msAA—lo

1
3 _ nZ
+/dt/dx( 4M0F FW)
—l—/d)\qX”Al,

1 0
-5 / ANV —=X2mMF,,.  (323)

Our plan will be to use the symmetry of the dynam-
ics under constant translations in spacetime together
with Noether’s theorem (256) to determine the canon-
ical energy-momentum tensor for the overall system.

To begin, we consider infinitesimal translations for
which the particle’s degrees of freedom X*#(\) and A*, ()
transform according to

XN o XH(N) = XF() 4 e, } (324)

AP, (N) = A*,(0) = AP (N,

where €” is a four-vector consisting of small, constant
components. In order for this transformation to be a
symmetry of the action functional, we will need the gauge
field A, (x) to transform in such a way that its new value
Al (') at the new spacetime point 2/ = x# + ¢/ is equal
to its original value A, () at the original spacetime point
zh:

Al (2") = Au(z). (325)



Replacing 2'# = z# + e* with z# and replacing x* with
x# — et we obtain the following infinitesimal transforma-
tion rule for the gauge field:

Au(x) = Al () = Au(z —€)
=A,(x) — 0,A,(x)e". (326)
We therefore identify
OXH =€t =0he” = gxn, =0, (327)
0A, =—-0,A,€" = ga,» = —0, A, (328)

We can write the system’s action functional (323) as
SIX, A Al = /dtL,

with a standard, non-covariant Lagrangian

dxv 1 dA
L=p, + -Tr|S—A""
TR [ dt ]
+/d3ﬂc (— 1F‘“’FW>
Ho
dxv
= A,
T

1 v
— g V(X F.

Before we can employ Noether’s theorem, it will be cru-
cial to determine the correct functions f, that appear on
the right-hand side of (255),

df, o
T dt e

Only the second line in (329) gives a nonzero contribu-
tion, and we find

1
L= | &z =8 —FF°F,,
f / Te V(4M0 ? >
:/dgzl(—n )L iF"UF
c 12 Vae% 4”0 pPo |

where, as before, n, = (—1,0), is a unit timelike four-
vector.

Putting everything together, and recalling our expres-
sion (214) for the particle’s manifestly covariant La-
grangian £ = ZLparticletint together with our formula
(323) for the overall system’s Lagrangian density L,
Noether’s theorem (256) then tells us that the conserved
canonical four-momentum of the overall system is

(329)

o0.L =

(330)

0 oL
PI/ ~ P v d3 - — v — Ju
A et e w
=pu+qA, + %umeTFaT
/ d*z <H“"6 A, — 5" <1F”"Fp(,)>
410

= [ #enits,,. (331)
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where we have identified the overall system’s canonical
energy-momentum tensor as

Y = ut'p” 53(x X)

can

1

+ HMPOY A, + jHAY — — P F,,
4M0

1 1
+ —uru’mPF,, —5%(x — X). (332)
Y

2¢2
Here we have invoked the definition (151) of the auxiliary
Faraday tensor H"”, specialized to the case Q"* = MH*¥
in which quadrupole moments and higher multipole mo-
ments are absent,

HM — iF;w + MM
Ho

1
= —FH 4

1
"= (x — X),
Mo Y

(333)

and j# is the particle’s electric-monopole current density
(169),

1
Jl = qui =5 (x — X).
Y

The terms H*?0" A, + j#A” in the canonical energy-
momentum tensor (332) do not look gauge invari-
ant. However, we can use the auxiliary inhomogeneous
Maxwell equation (152) to write the interaction term
JEAY as

JEAY = —H"0,A” + 0,(H' A”), (334)
so when the equations of motion hold, the canonical
energy-momentum tensor (332) is equivalent to

T = utp” 53 (x —X)
Y

+ HHPFVp —

+ 0,(H*PA”). (335)
The last term in (335) is a total spacetime divergence,
and taking its spacetime divergence on its p index yields
Zero:

0,0, (H" AY) = 0

Moreover, the integral of its ¥ = t component over three-
dimensional space gives a boundary term that vanishes if
we assume that our fields go to zero sufficiently rapidly
at spatial infinity:

/deap(HWA”) = /d3xV~(~--) =0.

We can therefore ignore this term in our calculations
ahead.
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Notice the crucial role played here by the interaction
term j#AY, which gave us the correction —H#"?9,A”
that we needed to yield a gauge-invariant combination
H®PF" in the canonical energy-momentum tensor (335).
Despite the fact that it arises from the interaction term
jHAY, it is natural to regard the correction —H*?0,A" as
part of the electromagnetic field’s internal energy, even
when dipoles are absent and H*? reduces to (1/pug)F**.

We can divide up T#” into the canonical energy-

can
momentum tensor for the particle alone,

nv

;L
can,particle — =u

3(x
W(; (x — X), (336)

and the canonical energy-momentum tensor for the field,

1 2
Tcl;l;,ﬁeld = H“pFUp - UW%F

1
+ ﬁu"u mpUFp

+ 0,(H*PAY),

1o x
0,75 ( )
(337)

which we can equivalently write as

1
Tl et = HYFY, =" 2 (H" + M”)F,

can, fiel p
N 1 <77W N uluY )M""F
+0,(H" AY) (338)
We have
Rz A———s (330)

as expected, and [18]

1
d3 T _ d3 HthV oty 7F2
/ T can,field / T ( P n 4,“/0

1 v g
+ 2aU mP7Fp,. (340)
In close analogy with the construction (82) from the
example of our xy system, we can integrate the local con-

servation law (274), 0, T4 = 0, over three-dimensional

space to compute the time derivative of the particle’s
four-momentum p*:

' _1d
dt — cdt

_77/653‘1‘ Cdl’lﬁeld

1
= [z | - HWFY — gV _—_ 2
S G )

1 d i
cht( P Fo).

By a straightforward calculation, we have
1
-0, H*F" — ”"F2>
M( p 1 dpig
M*9,F",,

Pz T

can,particle

= —jo  FP —

and so, using dt/dr =« from (122), we obtain

dp” 1 d
= —qu F" 4 m,, 0M F"P —
i L 22 dr

—(u"mP?F,,).

Invoking the electromagnetic Bianchi identity (42),
OHFYP + QP FHY + 9V FPH = 0,

we can write the second term as

1
mp O F7P = —§mp(,6”Fp".

Relabeling indices, we find

dpH 1 1
I 1

14 g d log
ik u, FYH — impgﬁ“Fp - — (u*mPoF,,),

2¢2 dr
which precisely replicates the particle’s equation of mo-
tion (219).

F. Local Conservation of Angular Momentum

Observe that the overall system’s canonical energy-
momentum tensor (335) is not symmetric on its two in-
dices, THY # Th¥, reflecting the fact that it does not
encode the system’s intrinsic spin. To analyze local con-
servation of angular momentum for the overall system
comprehensively, we return once again to the full action

functional (323):

S[X, A, A] = /d/\ <pVXV + ;Tr[SAAlo

/dt/d3 (—FWF )
+/d)\qX”Ay
= 2i / AV —-X2m"E,,
C

Our next goal will be to invoke the symmetry of this
action functional under Lorentz transformations along
with Noether’s theorem to compute the system’s canon-
ical angular-momentum tensor.
We start by noting that under an active (—df?? —
+¢P?) infinitesimal Lorentz transformation (33),
)
Ainf =1+ §€p0000a (341)
the particle’s degrees of freedom X#(\) and A, (\) trans-
form according to

XH(A) = X)) = (A X (A)*
= XH*(\)+ %EpU[JpJ]HuXU()‘)>
, (342)
A" (A) = A, (N) = (AieAN)H,

i o
= AMU(A) + 56’) [UPU]HAAAV()‘)’



where €7 is an antisymmetric tensor consisting of small
constants. Note that the lower Lorentz index on A, ()\)
does not participate in the second transformation rule,
which fundamentally arises from the composition prop-
erty A’ = AjngA()). Observe also that we can rephrase
this second transformation rule as the statement that the
underlying antisymmetric array 6 (\) of boost and an-
gular parameters transforms as

0" () = 0/M7 (N) = 01 (N) + €. (343)

Meanwhile, the gauge field A, (z) transforms as

Au(@) = AL () = (A(AL2) A

= A\((1 = (1/2)€” 0,0)2)(8) = (i/2)e” [0,0]",)
Au(x) = 0y A (2)(i/2)€” [0,6]" 2

— Ax(z)(i/2)e?” [O'po-])\ﬂ. (344)
We can therefore identify
OXH zéep"[apg]"VX”
= gxupo = [0p0]", X", (345)
v v 1 v v g
oMY = et = 5(5550 —6hoy )€’
> Gow o = 31OY — 10T, (346)
§A, = —0,A,(i/2)e [0 ,p5)" 2™ — Au(i/2)€ [0ps]” ),
= gAu,pa = —61/14H'L.[O')Oo-]y/\ﬂjA — Aui[dpg]yu.
(347)

Finally, the functions f,, that appear on the right-hand
side of (255),

1 fpo €Po

0L = ,
2 dt

are given by

1,/ 1 o
fpa :/dg.’l}' c(slt,<4’uOF2>'L[O'pg] )\.’L')\

1 1
:/dSLE c(nlt)(Sﬁ(%FQ)i[Upg]u/\x)‘, (348)

where, as usual, n, = (—1,0),.

We then have from Noether’s theorem (256) that the
conserved angular-momentum tensor of the overall sys-
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tem is, up to an overall minus sign, given by

0L 1 0%

_JV = — a -
P xadX e T o pgas
oL

3 J— e — —
+/d x( n#)a(cauAOt)gA(wVP pr

1
= —(Pa + qAa — 5(—ua/c2)m”AFgA)(Xy5g — X,62)

— Sy,
_1 3 (— po _ Sp i 2
c/d x( nu)(H 6U<4N0F

X Dy A (2,65 — 2,67

GooB vp

— 1/d?’gc (—nu)(H", A, — H* A,)
C

= _/d3x (_nH)Jc%n,upﬂ (349)

where the overall system’s canonical angular-momentum
flux tensor is

give = Lavren _ porim)
C
1 1, 1
b SutSTP I (x — X) 4 —(HM AP — HIAY),
c ~ c
(350)

Here TH*

u¥ is the canonical energy-momentum tensor
(332):

can

1
TH = utp” =5 (x — X)
Y
1
+ HMPOV A, + jHAY — gV —FFP7F,,
4po

1 1
o Voo PO 0753 _ .
+ 52U U m F, 5 (x —X)

Observe that the canonical angular-momentum flux
tensor (350) has precisely the form (294),

wvp _ puvp wvp
JEYP = LHVP 4 SHVP,

with £#¥P representing the contribution (295) from or-
bital angular momentum,
vp — v 1 1 v
LHVP = gV —THA — P —TH" .
c c
and with S#*P representing the contribution (296) from

the intrinsic spin of both the particle and the electromag-
netic field,

s = Lurgeo LX)+ L (a0 ). (35)
c Y c

Specifically, the first term in (351) describes the particle’s
intrinsic spin,
1 1
= —u"S"P =53 (x — X),
¢ ¥

SHp

particle

(352)
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and the second term arises from the field’s spin,

1
Shiia = - (H"A? — H'" AY). (353)

Integrating the local conservation law (297), 0, JX4F =
0, over three-dimensional space and taking advantage
of the local conservation (274) of the overall canonical
energy-momentum tensor T#? . we can compute the time

derivative of the particle’s spin tensor as follows:

s d

3 tv
dt % d ‘TSpafticle
d 3 1 vt tv tv t v
=~ | P @ T, 2Tl + HY A — H A”)
C

=- / d*x 0, («" TH, — P T, + HM AP — H' AY)

1 1
= ——(u"p” —ufp”) — —(M"FP_ —mP°F")).
0

Using dt/dr = ~ from (122) and relabeling indices, we
therefore find

dsH
dr

= —(utp” —u"p") — (m“pF”p — m”pF“p),

which precisely agrees with the particle’s equation of mo-
tion (234) for SH*.

Now that we have calculated the system’s canonical
angular-momentum flux tensor J/Y? and identified the
spin flux tensor S#¥*, as given by (351), we can construct
a symmetric, gauge-invariant energy-momentum tensor
(303), TH =TI +0,B""", from the system’s Belinfante-
Rosenfeld tensor (299),

BHPY = g(S#VP + SVHP 4 SPHV)

= —HMAY 4 %(u”Sl’p T ursre ) L (x - X).
v
(354)

We obtain [19]

1 1
T = §(u”p” +u’pt) =83 (x — X)
Y
+ lHupFV + EHVPFM _ anLFpoF
2 D p 4110 po

1 1
o Voo PO - 63
+ 7262 u”umm f'p — (X — X)

1
+ 5 0p(Shchite + Sythia) (355)

particle particle

In the free-field limit, this energy-momentum tensor re-
duces to (317), as expected:

1 1
TH = —FUPRY g PR,
Ho 40

VI. CONCLUSION

In this paper, we have employed the Lagrangian formu-
lation of classical physics to show that a massive particle
with four-momentum p*, spin tensor S*¥, electric charge
q, and elementary dipole tensor m*” in an external elec-
tromagnetic field F},,, obeys the relativistic equations of
motion (219) and (234):

dpll« v 1 o 1 d o

- = —qu, F"* — §mp 0'Fy — 5¢2 dr (u'mP7F,,),
astv v v v v

e :—(u'up — U p”)—(mﬂpr—mpF‘up).

To verify that these equations of motion are compati-
ble with local conservation of energy, momentum, and
angular momentum, we have effectively divided up the
locally conserved, canonical energy-momentum tensor
ThY, = Tl varsicle T Tian.fieta Of the overall system by
defining the canonical energy-momentum tensor for the

particle to be (336),

L
Tézlll/‘aparticle = UHPV;(S (X - X)a

and the canonical energy-momentum tensor for the elec-

tromagnetic field to be (337),

1 2
Tcl;l;l,ﬁeld =H"F", — ”#V%F

1 1.
FuVmPo FLe =83 (x — X
+ 52U U mE, 5 (x )

+ 0, (HM AY).

The local conservation equation 9,1/ = 0 then trans-
lates into the relativistic equation of motion (219) for the
particle’s four-momentum, and the local conservation law
0, JkYP = 0 satisfied by the overall system’s canonical

angular-momentum flux tensor J£¥P as defined in (350)
yields the equation of motion (234) for the particle’s spin
tensor.

In the non-relativistic limit, the equation of motion

(219) generalizes the Lorentz force law to (225),
F= chxt +qv X cht + V(Tl' . Ecxt) + V(H : cht)»
and gives the power law (227),

dW
W =Vv: (quxt + V(ﬂ- ' Eext) + V(N : Bext))

=v-F.

These formulas are consistent with the fact that magnetic
forces cannot do work on electric monopoles, but also
make clear that magnetic forces are fully capable of doing
work on elementary magnetic dipoles, in accordance with
the basic definition (6) of what it means for a force to do
mechanical work on an object in moving the object from a



location A to another location B, as we showed explicitly
in (226):

B
WE/ dX - F
A

B
— [ 4X B + Al Bu) + Al B,
A

As an interesting aside, these results provide a loop-
hole in the Bohr-van Leeuwen theorem [20], which Niels
Bohr first proved in his 1911 doctoral thesis [21] and
which was later independently proved by Hendrika Jo-
hanna van Leeuwen in her own doctoral thesis in 1919
[22]. The Bohr-van Leeuwen theorem asserts on the ba-
sis of the original Lorentz force law (that is, without con-
tributions from elementary dipoles) that a non-rotating
system of particles, when treated classically, always has a
vanishing average magnetization in thermal equilibrium.
A key implication of the Bohr-van Leeuwen theorem is
that phenomena like diamagnetism cannot arise without
quantum mechanics. Our results in this paper provide a
theoretical exception to this corollary.
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Returning to our equations describing forces and work
done on a classical particle with elementary dipole mo-
ments, it is important to note that we do not require
any external, ad hoc sources of energy and momentum
to ensure the validity of these equations. The energy and
momentum that flow into the particle are fully accounted
for in the energy and momentum that arise from the
overall classical action functional describing the coupling
of the particle to the electromagnetic field, regardless of
whether, at the level of interpretation, we attribute all
that energy and momentum to the electromagnetic field
alone or to the interactions between the electromagnetic
field and the particle.

Magnetic forces can do work. In this paper, we have
shown how.
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