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We address a long-standing debate over whether classical magnetic forces can do work, ultimately
answering the question in the affirmative. In detail, we couple a classical particle with intrinsic spin
and elementary dipole moments to the electromagnetic field, derive the appropriate generalization
of the Lorentz force law, show that the particle’s dipole moments must be collinear with its spin
axis, and argue that the magnetic field does mechanical work on the particle’s elementary magnetic
dipole moment. As consistency checks, we calculate the overall system’s energy-momentum and
angular momentum, and show that their local conservation equations lead to the same force law
and therefore the same conclusions about magnetic forces and work. We also compute the system’s
Belinfante-Rosenfeld energy-momentum tensor.

I. INTRODUCTION

Textbook treatments and research articles on classi-
cal electromagnetism, such as [1, 2], often suggest that
magnetic fields cannot do mechanical work. On the other
hand, everyday examples of bar magnets lifting other bar
magnets would seem to suggest otherwise. In this paper,
we show that there exists a classical way to understand
how magnetic fields can indeed do work.[3]

We start in Section II with a review of the kinematics of
classical relativistic point particles with intrinsic spin and
permanent, elementary dipole moments. In Section III,
we couple a particle of this kind to the electromagnetic
field and derive its dynamics, showing, in particular, that
magnetic forces can classically do work on the particle via
its elementary magnetic dipole moment. We also show as
a matter of self-consistency that the particle’s elementary
dipole moments must be collinear with the particle’s in-
trinsic spin. In Section IV, we derive expressions for the
overall system’s energy-momentum and angular momen-
tum, and show that their associated conservation laws
lead to the same equations of motion as before, thereby
providing further confirmation that magnetic fields can
do work on a particle with elementary dipole moments.
We conclude with one more new result by calculating the
system’s Belinfante-Rosenfeld energy-momentum tensor.

II. THE KINEMATICS OF A RELATIVISTIC
ELEMENTARY DIPOLE

To start, we will need a relativistic description of the
kinematics of a classical particle with intrinsic spin.

∗ barandes@physics.harvard.edu

A. The Phase Space for a Relativistic Massive
Particle with Spin

Following [4–6], we model the particle’s kinematics us-
ing spacetime coordinates Xµ = (c T,X)µ, energy E,
four-momentum pµ = (E/c,p)µ, positive inertial mass
m > 0, and antisymmetric spin tensor Sµν by identi-
fying the particle’s phase space as a transitive or “irre-
ducible” group action (or homogeneous space) of the or-
thochronous Poincaré group. The states in this phase
space take the form (X, p, S) and are each obtained
from the reference state (0, (mc,0), S0) by an appropriate
Poincaré transformation (a,Λ) ∈ R4 n O(1, 3) according
to

(X, p, S) = (a,Λ(mc,0),ΛS0ΛT). (1)

Here the coordinates Xµ = aµ and the variable Lorentz-
transformation matrix Λµν are treated as the particle’s
fundamental phase-space variables, with the condition
that ΛTηΛ = η = diag(−1,+1,+1,+1).

B. Charge and Elementary Dipole Moments

We can couple the particle to the electromagnetic field
by assigning the particle an electric-monopole charge q
and an antisymmetric elementary dipole tensor mµν , so
that the particle is an elementary dipole.

We note that elementary dipoles of this kind are nei-
ther of the Ampère model, which consist of loops of mov-
ing electric monopoles, nor of the Gilbert model, which
consist of pairs of hypothetical magnetic monopoles. In
particular, the elementary dipoles that we examine here
represent a classical extension of Maxwell’s original the-
ory of electromagnetism, as Maxwell’s theory includes
dipoles only of the Ampère type.[7]

We let uµ ≡ dXµ/dλ denote the particle’s four-velocity
and γ ≡ u0/c denote the particle’s associated Lorentz
factor, where uµ is not generically normalized to u2 =
−c2 unless the worldline parameter λ is taken to be the
particle’s proper time τ . The particle’s four-velocity then
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takes the form

uµ = (γc, γv)µ. (2)

The particle has four-dimensional electric-monopole cur-
rent density

jνe (x, t) = (ρe(x, t)c, Je(x, t))ν = quν
1

γ
δ3(x−X) (3)

and elementary-dipole density

Mµν = mµν 1

γ
δ3(x−X), (4)

with overall current density

jν(x, t) = jνe (x, t) + ∂µM
µν(x, t), (5)

where (1/γ)δ3(x−X) is the Lorentz-invariant form of the
three-dimensional Dirac delta function.

It follows immediately from (3) that the parti-
cle’s electric-monopole density ρe = jte/c, its electric-
monopole current density Je = (jxe , j

y
e , j

z
e ), and its three-

velocity v ≡ dX/dt satisfy the basic relationship

Je = ρev. (6)

We emphasize that no such relationship holds for the par-
ticle’s elementary dipole moments, which, again, are not
assumed to arise from any underlying motion of electric
monopoles.

As in [2], by introducing suitable four-vectors πµ and
µµ and antisymmetric tensors

πµν ≡ 1

mc
(pµπν − pνπµ), (7)

µµν ≡ 1

mc
εµνρσpρµσ, (8)

we can write the particle’s elementary dipole tensor in
terms of an electric part πµν and a magnetic part µµν as

mµν = πµν + µµν , (9)

or, equivalently, as

mµν ≡

 0 cπx cπy cπz
−cπx 0 −µz µy
−cπy µz 0 −µx
−cπz −µy µx 0


µν

. (10)

Here εµνρσ is the four-dimensional Levi-Civita symbol
(with εtxyz ≡ +1), and πν(λ) and µµ(λ) are related to
their reference values πµ0 ≡ (0,π0)µ and µµ0 ≡ (0,µ0)µ

and the particle’s variable Lorentz-transformation matrix
Λµν(λ) according to

πµ(λ) ≡ Λµν(λ)πν0 , (11)

µµ(λ) ≡ Λµν(λ)µν0 . (12)

III. THE DYNAMICS OF A RELATIVISTIC
ELEMENTARY DIPOLE

Next, we turn to a discussion of the particle’s dynam-
ics.

A. The Action Functional for a Relativistic
Massive Particle with Spin

In the absence of external interactions, as shown in [4–
6], we can encode the dynamics of a particle with intrinsic
spin in terms of the manifestly covariant action functional

Sparticle[X,Λ] =

∫
dλ

1

2
Jµν θ̇

µν

=

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
, (13)

where λ is a smooth and monotonic but otherwise ar-
bitrary parameter along the particle’s worldline, Jµν =
Lµν +Sµν is the particle’s total angular-momentum ten-
sor, Lµν ≡ Xµpν−Xνpµ is its orbital angular-momentum
tensor, θµν is an antisymmetric tensor of boost and angu-
lar degrees of freedom, and we ignore irrelevant bound-
ary terms. Consistency of the particle’s dynamics with
the required invariance of the quantities p2 ≡ −m2c2

and s2 ≡ (1/2)SµνS
µν requires the auxiliary phase-space

condition

pµS
µν = 0. (14)

B. The Particle’s Equations of Motion

Our next step will be to couple the particle to the elec-
tromagnetic field and obtain the particle’s equations of
motion, from which we will be able to infer the appropri-
ate generalization of the Lorentz force law.

Given the charge and elementary dipole moments out-
lined above, the overall action functional for the elemen-
tary dipole and the electromagnetic field is given by

S[X,Λ, A] ≡ Sparticle[X,Λ] + Sfield[A] + Sint[X,Λ, A]

=

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
(Sparticle)

+

∫
dt

∫
d3x

(
− 1

4µ0
FµνFµν

)
(Sfield)

+

∫
dt

∫
d3x jνAν (Sint),

(15)

where Fµν ≡ ∂µAν − ∂νAµ is the usual Faraday tensor,
jν = jνe +∂µM

µν is the particle’s overall current density,
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and the interaction term in the final line ensures that ex-
tremizing the action functional with respect to the elec-
tromagnetic gauge field Aµ yields the Maxwell equations
in their usual form. The first line in this action func-
tional (Sparticle) is fixed by group theory, the second line
(Sfield) defines the vacuum in the pure Maxwell theory,
and the third line (Sint) provides the canonical coupling
between the particle and the electromagnetic field in a
manner consistent with the Maxwell equations and the
particle’s features as laid out in the previous section.

After an integration by parts, we can write the inter-
action term in the final line as

Sint[X,Λ, A] =

∫
dt

∫
d3x

(
jνeAν −

1

2
MµνFµν

)
. (16)

Collecting together all the terms that involve the parti-
cle’s degrees of freedom, we obtain

Sparticle+int[X,Λ, A] =

∫
dλ

(
pµẊ

µ +
1

2
Tr[SΛ̇Λ−1]

)
+

∫
dt

∫
d3x jνeAν +

∫
dt

∫
d3x

(
− 1

2

)
MµνFµν ,

(17)

which we can further reduce to the form

Sparticle+int[X,Λ, A] =

∫
dλLparticle+int, (18)

for a manifestly covariant Lagrangian defined by

Lparticle+int ≡ pµẊµ +
1

2
Tr[SΛ̇Λ−1]

+ qẊνAν −
1

2c

√
−Ẋ2mµνFµν . (19)

It follows from a straightforward calculation that the par-
ticle’s equations of motion, expressed in terms of the par-
ticle’s proper time τ , are then

dp

dτ

µ

= −quνF νµ −
1

2
mρσ∂µFρσ −

1

2c2
d

dτ
(uµmρσFρσ)

= −quνF νµ −
1

2
mρσ(ηµν + uµuν)∂νFρσ

− 1

2c2
d

dτ
(uµmρσ)Fρσ, (20)

as obtained in [6, 8, 9], and

dSµν

dτ
= −(uµpν − uνpµ)− (mµρF νρ −mνρFµρ), (21)

which generalizes the results of [6, 8, 10].

C. The Non-Relativistic Limit with
Time-Independent External Fields

In the non-relativistic limit and ignoring self-field ef-
fects—so that we can replace the overall electric and mag-
netic field with the external fields Eext and Bext—the

equations of motion (20)–(21) reduce to

dE

dt
≈ v · (qEext +∇(π ·Eext + µ ·Bext)), (22)

dp

dt
≈ q(Eext + v ×Bext) +∇(π ·Eext + µ ·Bext),

(23)

dJ

dt
≈ X× dp

dt
+ π ×Eext + µ×Bext, (24)

where the particle’s four-momentum in this limit is

pµ = (E/c,p)µ ≈ (mc2 + (1/2)mv2,p)µ, (25)

and the particle’s overall angular-momentum pseudovec-
tor J is made up of orbital and spin contributions accord-
ing to

J ≡ L + S = (Lyz, Lzx, Lxy) + (Syz, Szx, Sxy). (26)

The dynamical equation (23) tells us that the electro-
magnetic force on the particle is

F = qEext + qv×Bext +∇(π ·Eext) +∇(µ ·Bext). (27)

We observe that the usual Lorentz force law, qEext +
qv × Bext, is enhanced in the presence of the particle’s
elementary dipole moments by the appearance of two ad-
ditional dipole terms, ∇(π ·Eext) +∇(µ ·Bext), in which
the magnetic field appears on an equal footing with the
electric field. Accordingly, the magnetic field contributes
to the work done by the external electromagnetic field,
W ≡

∫
dX · F:

W =

∫ B

A

dt (qv ·Eext) + ∆(π ·Eext) + ∆(µ ·Bext). (28)

Moreover the rate at which work is done is in agreement
with the dynamical equation (22).

We have reached the key conclusion of this pa-
per—namely, that magnetic forces can do work on clas-
sical particles with elementary dipole moments.[11] We
next turn to a detailed treatment of self-consistency con-
ditions on the particle’s dynamics, as well as obtain the
necessary formulas for determining the particle’s four-
velocity uµ in the presence of a nonzero electromagnetic
field. Later on, we will analyze electromagnetic forces
and work done on the particle from the standpoint of
local conservation laws.

D. Implications of Self-Consistency

Taking a derivative of the phase-space condition pµS
µν

from (14) yields the self-consistency requirement

dpµ
dτ

Sµν + pµ
dSµν

dτ
= 0,
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which entails that the particle’s four-momentum pµ and
its four-velocity uµ = dXµ/dτ (now normalized to u2 =
−c2) are related by

pµ = meffu
µ + bµ. (29)

Here meff, which plays the role of an effective mass, is
defined by

meff ≡ −
m2c2

p · u
, (30)

and the four-vector bµ, which is orthogonal to the parti-
cle’s four-momentum, b · p = 0, is given by

bµ ≡ 1

p · u

(
dpν
dτ

Sνµ − pν(mνρFµρ −mµρF νρ)

)
. (31)

As in [6], we regard (29) as an implicit formula for the
particle’s four-velocity uµ. This formula ensures, in par-
ticular, that the particle’s four-momentum pµ has con-
stant norm-squared p2 = −m2c2.

For vanishing field, Fµν = 0, the relationship (29) re-
duces to the familiar equation pµ = muµ, as expected.
On the other hand, when the electromagnetic field is
nonzero, Fµν 6= 0, (29) has the form

pµ = muµ + (terms of order 1/c2). (32)

This relation ensures that there is no ambiguity over
whether we should identify the particle’s energy E as ptc
or utmc2 for the purposes of quantifying the work done
by the field on the particle in the non-relativistic regime.

Invoking the spin tensor’s equation of motion (21), to-
gether with the phase-space condition (14), pµS

µν = 0,
and the constancy of the particle’s spin-squared scalar
s2 ≡ (1/2)SµνS

µν , we find

d

dτ
(s2) =

d

dτ

(
1

2
SµνS

µν

)
= (Sρµm

µσ − Sσµmµρ)Fρσ = 0, (33)

which yields the condition

Sρµm
µσ = Sσµm

µρ. (34)

In the particle’s reference state, this equality produces
the relations

π0 × S0 = 0,

µ0 × S0 = 0,

}
(35)

which dictate that the particle’s elementary electric and
magnetic dipole moments must be collinear with the par-
ticle’s spin pseudovector S0:

π0 =
1

c
ΞS0,

µ0 = ΓS0.

 (36)

Here Ξ is a pseudoscalar and Γ is the particle’s scalar gy-
romagnetic ratio. We can understand these relationships
physically as telling us that if the particle’s elementary-
dipole vectors were not collinear with the particle’s spin
axis, then torques exerted on the particle by the electro-
magnetic field would cause the particle’s overall spin to
speed up or slow down, in violation of the constancy of
s2.

IV. CONSERVATION LAWS

For completeness, we verify that the equations of mo-
tion (20)–(21) also follow from local conservation of
energy-momentum and angular momentum. To begin,
we recall the relevant version of Noether’s theorem, which
states that if a system’s dynamics has a continuous sym-
metry,

qα 7→ q′α = qα + δεqα,

δεqα =
∑
b

gqα,bεb, (37)

where the quantities εb parameterize the symmetry and
the quantities gqα,b characterize its precise form, then we
have the following conservation law:

Qb ≡
∑
α

∂L

∂q̇α
gqα,b − fb,

dQ

dt
= 0. (38)

Here Qb are a set of conserved quantities, L is the sys-
tem’s Lagrangian, qα are its degrees of freedom, and the
functions fb are related to the change in the Lagrangian
according to

L 7→ L+ δεL,

δεL =
d

dt

(∑
b

fbεb

)
=
∑
b

dfb
dt
εb. (39)

A. Local Conservation of Energy-Momentum

In order to employ Noether’s theorem to obtain the
overall system’s energy-momentum tensor, we examine
the behavior of the system under a translation in space-
time by an infinitesimal four-vector εµ. The particle’s
phase-space variables transform as

Xµ(λ) 7→ X ′µ(λ) ≡ Xµ(λ) + εµ,

Λµν(λ) 7→ Λ′µν(λ) ≡ Λµν(λ),

}
(40)

and the electromagnetic gauge potential transforms as

Aµ(x) 7→ A′µ(x) ≡ Aµ(x− ε)
= Aµ(x)− ∂νAµ(x)εν . (41)
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By an application of Noether’s theorem to the parti-
cle’s manifestly covariant Lagrangian L ≡ Lparticle+int

defined by (18) and the Lagrangian density L for the
overall system defined in terms of the action functional
S[X,Λ, A] ≡

∫
dt
∫
d3xL from (15), one finds that the

overall system’s conserved four-momentum is expressible
as

Pν =
∂L

∂Ẋρ
gXρ,ν +

∫
d3x (−nµ)

∂L
∂(c∂µAρ)

gAρ,ν − fν

= pν + qAν +
1

2c2
uνm

στFστ

+
1

c

∫
d3x (−nµ)

(
Hµρ∂νAρ − δµν

(
1

4µ0
F ρσFρσ

))
=

1

c

∫
d3x (−nµ)Tµcan,ν , (42)

where nµ ≡ (−1,0)µ is a unit timelike vector orthogonal
to the three-dimensional spatial hypersurface of integra-
tion. In this expression, the overall system’s canonical
energy-momentum tensor is given by

Tµνcan = Tµνcan,particle + Tµνcan,field, (43)

with the contributions from the particle and the field
given respectively by[12]

Tµνcan,particle ≡ u
µpν

1

γ
δ3(x−X) (44)

and

Tµνcan,field ≡ H
µρF νρ − ηµν

1

4µ0
F 2

+
1

2c2
uµuνmρσFρσ

1

γ
δ3(x−X)

+ ∂ρ(H
µρAν). (45)

Here Hµν is the auxiliary Faraday tensor:

Hµν ≡ 1

µ0
Fµν +Mµν

=
1

µ0
Fµν +mµν 1

γ
δ3(x−X). (46)

The last term in (45) is a total spacetime divergence with
vanishing divergence ∂µ∂ρ(H

µρAν) = 0 on its µ index,
and its temporal component ∂ρ(H

tρAν) has vanishing in-
tegral over three-dimensional space under the assumption
that the fields go to zero sufficiently rapidly at spatial in-
finity. We emphasize that in our approach, all the terms
in the overall system’s canonical energy-momentum ten-
sor follow from the systematic application of Noether’s
theorem to the relevant action functionals.

We can integrate the local conservation law ∂µT
µν
can = 0

over three-dimensional space to compute the time deriva-

tive of the particle’s four-momentum pν :

dpν

dt
=

1

c

d

dt

∫
d3xT tνcan,particle

= −1

c

d

dt

∫
d3xT tνcan,field

=

∫
d3x

(
− ∂µ

(
HµρF νρ − ηµν

1

4µ0
F 2

))
− 1

2c2
d

dt
(uνmρσFρσ)

= −quµFµν +mρµ∂
µF νρ − 1

2c2
d

dτ
(uνmρσFρσ).

After invoking the electromagnetic Bianchi identity
∂µF νρ + ∂ρFµν + ∂νF ρµ = 0, we obtain the equation
of motion (20).

Our formulas above for the overall system’s canonical
energy-momentum tensor are new results. By replicating
the particle’s equation of motion (20), they provide fur-
ther support for the key claim of this paper—that mag-
netic forces can classically do work on particles with ele-
mentary dipole moments.

B. Local Conservation of Angular Momentum

Next, we use Noether’s theorem to examine the overall
system’s angular momentum and its local conservation.
Under an infinitesimal Lorentz transformation

Λinf = 1 +
i

2
ερσσρσ, (47)

the particle’s phase-space variables transform as

Xµ(λ) 7→ X ′µ(λ) ≡ (ΛinfX(λ))µ

= Xµ(λ) +
i

2
ερσ[σρσ]µνX

ν(λ),

Λµν(λ) 7→ Λ′µν(λ) ≡ (ΛinfΛ(λ))µν

= Λµν(λ) +
i

2
ερσ[σρσ]µλΛλν(λ).


(48)

The second of these two transformation laws is equiva-
lent to the following transformation rule for the particle’s
Lorentz parameters θµν(λ):

θµν(λ) 7→ θ′µν(λ) ≡ θµν(λ) + εµν . (49)

Meanwhile, the gauge field Aµ(x) transforms as

Aµ(x) 7→ A′µ(x) ≡ (A(Λ−1
infx)Λ−1

inf )µ

≡ Aλ((1− (i/2)ερσσρσ)x)(δλµ − (i/2)ερσ[σρσ]λµ)

= Aµ(x)− ∂νAµ(x)(i/2)ερσ[σρσ]νλx
λ

−Aλ(x)(i/2)ερσ[σρσ]λµ. (50)
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Noether’s theorem (38) then yields the system’s overall
angular-momentum tensor, up to an overall minus sign:

− Jνρ =
∂L

∂Ẋα
gXα,νρ +

1

2

∂L

∂θ̇αβ
gθαβ ,νρ

+

∫
d3x (−nµ)

∂L
∂(c∂µAα)

gAα,νρ − fνρ

= −
(
pα + qAα −

1

2
(−uα/c2)mσλFσλ

)
(Xνδ

α
ρ −Xρδ

α
ν )

− Sνρ

− 1

c

∫
d3x (−nµ)

(
Hµα − δµσ

(
1

4µ0
F 2

))
× ∂σAα(xνδ

σ
ρ − xρδσν )

− 1

c

∫
d3x (−nµ)(Hµ

νAρ −Hµ
ρAν)

= −
∫
d3x (−nµ)J µcan,νρ. (51)

Here we have identified the system’s canonical angular-
momentum flux tensor as

J µνρcan = Lµνρ + Sµνρ, (52)

with orbital contribution

Lµνρ ≡ xν 1

c
Tµρcan − xρ

1

c
Tµνcan (53)

and spin contribution

Sµνρ =
1

c
uµSνρ

1

γ
δ3(x−X)+

1

c
(HµνAρ−HµρAν). (54)

We naturally read off the spin flux tensors for the particle
and the field respectively as

Sµνρparticle =
1

c
uµSνρ

1

γ
δ3(x−X), (55)

Sµνρfield =
1

c
(HµνAρ −HµρAν). (56)

Integrating the local conservation law ∂µJ µνρcan = 0 over
three-dimensional space and taking advantage of the local
conservation ∂µT

µρ
can = 0 of the overall canonical energy-

momentum tensor Tµρcan, we can compute the time deriva-

tive of the particle’s spin tensor as follows:

dSνρ

dt
=

d

dt

∫
d3xStνρparticle

= − d

dt

∫
d3x

1

c
(xνT tρcan − xρT tνcan +HtνAρ −HtρAν)

= −
∫
d3x ∂µ(xνTµρcan − xρTµνcan +HµνAρ −HµρAν)

= − 1

γ
(uνpρ − uρpν)− 1

γ
(mνσF ρσ −mρσF νσ).

We therefore see that local conservation of angular mo-
mentum yields the equation of motion (21).
C. The Belinfante-Rosenfeld Energy-Momentum

Tensor

The overall system’s canonical energy-momentum ten-
sor (43) is not symmetric on its two indices, a feature that
is required of the energy-momentum tensor that locally
sources the gravitational field in general relativity. To
conclude this paper, we follow the standard Belinfante-
Rosenfeld construction[13] to construct a properly sym-
metric energy-momentum tensor, which will likewise rep-
resent a new result.

We start by introducing a new tensor

Bµρν ≡ c

2
(Sµνρ + Sνµρ + Sρµν)

= −HµρAν +
1

2
(uµSνρ + uνSµρ + uρSµν)

1

γ
δ3(x−X).

(57)

We then obtain a symmetric, locally conserved energy-
momentum tensor Tµν for the overall system from the
relation Tµν = Tµνcan + ∂ρBµρν :[14]

Tµν =
1

2
(uµpν + uνpµ)

1

γ
δ3(x−X)

+
1

2
HµρF νρ +

1

2
HνρFµρ − ηµν

1

4µ0
F ρσFρσ

+
1

2c2
uµuνmρσFρσ

1

γ
δ3(x−X)

+
1

2
∂ρ(Sµνρparticle + Sνµρparticle). (58)

In the free-field limit, this energy-momentum tensor re-
duces to the standard gauge-invariant Maxwell energy-
momentum tensor, as expected:

Tµν =
1

µ0
FµρF νρ − ηµν

1

4µ0
F ρσFρσ. (59)
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