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Abstract. This paper presents a novel data set of regional climate model simulations over Europe that significantly improves 

our ability to detect changes in weather extremes under low and moderate levels of global warming. The data set provides a 

unique and physically consistent data set, as it is derived from a large ensemble of regional climate model simulations. These 

simulations were driven by two global climate models from the international HAPPI consortium. The set consists of 100 x 10-

year simulations and 25 x 10-year simulations, respectively. These large ensembles allow for regional climate change and 10 

weather extremes to be investigated with an improved signal-to-noise ratio compared to previous climate simulations. The 

changes in four climate indices for temperature targets of 1.5°C and 2.0°C global warming are quantified: number of days per 

year with daily mean near-surface apparent temperature of >28°C (ATG28); the yearly maximum 5-day sum of precipitation 

(RX5day); the daily precipitation intensity of the 50-yr return period (RI50yr); and the annual Consecutive Dry Days (CDD). 

This work shows that even for a small signal in projected global mean temperature, changes of extreme temperature and 15 

precipitation indices can be robustly estimated. For temperature related indices changes in percentiles can also be estimated 

with high confidence. Such data can form the basis for tailor-made climate information that can aid adaptive measures at a 

policy-relevant scales, indicating potential impacts at low levels of global warming at steps of 0.5°C. 

1 Introduction 

Identifying regional climate change impacts differ for different global mean temperature targets is increasingly relevant to both 20 

the private sector, as investors demand financial disclosure associated with climate change risks and opportunities (Goldstein, 

et al., 2018), as well as the public sector, as national climate action policies are developed. This is especially true after the 

adoption of the Paris Agreement of the United Nations, which aims to keep global climate warming well below 2.0°C compared 

to pre-industrial times (UNFCCC, 2015). Temperature targets, however, are not directly related to the representative 

concentration pathways (Van Vuuren et al., 2011) used in the current generation global climate simulations (CMIP5, Taylor 25 

et al., 2012). Therefore, new techniques are being developed to extract information on the possible implications of further 

global warming. Recent studies using CMIP5 data have shown that climate change indices can be extracted for different 

warming levels, by identifying specific time periods when a certain global mean temperature (GMT) warming is reached in a 

general circulation model (GCM) (Schleussner et al., 2016; Vautard et al., 2014; Jacob et al., 2018). These studies typically 
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use the 5 to 15 ensemble members available in CMIP5 for their global and regional studies. Mitchell et al. (2016) argue 30 

however that a different experiment design is needed to better address the policy-relevant temperature targets with climate 

simulations, because the relatively small CMIP5 ensemble does not provide the necessary size to quantify changes in weather 

extremes at low levels of warming. Indeed, the high natural variability in models requires the creation of large ensemble 

datasets (Deser et al., 2013). Following the recommendations of Mitchell et al. (2016), the HAPPI consortium (“Half a degree 

Additional warming, Prognosis and Projected Impacts”) designed targeted experiments created for the purpose of extracting 35 

the required information on distinct warming levels using 10 state-of-the-art GCMs (Mitchell et al., 2017). The HAPPI 

experiments include a large number of ensemble members, typically 50 to 100 members per GCM, using AMIP-style 

integrations (Gates et al., 1992), which significantly improves the signal-to-noise ratios. A better signal-to-noise ratio is 

essential for differentiating between impacts from 1.5°C and 2.0°C global warming, especially for changes in weather 

extremes. 40 

To bridge the gap between GCM model output and regional climate impact assessments, which require a much higher 

resolution than GCMs (Giorgi and Jones, 2009), the Regional Climate Model (RCM) REMO (Jacob et al., 2012) is used to 

dynamically downscale simulations from two GCMs from the HAPPI consortium. Dynamical downscaling with RCMs is one 

option to bridge the gap between GCM model output and regional climate impact assessments which provides physically 

consistent high-resolution climate information (Jacob et al., 2014; Giorgi and Gutowski, 2015; Gutowski et al., 2016). Some 45 

other recent studies are also successfully pursued the creation of large ensemble datasets on the basis regional climate models, 

of up to 50 members, to study amongst others rainfall extremes (Leduc et al., 2019). Here, we develop two regional climate 

datasets of 25 and 100 members. To demonstrate the potential of this data set for regional climate impact studies, under 1.5°C 

and 2.0°C global warming, changes in four climate indices for weather extremes are quantified. 

In Section 2, we present the REMO regional climate model, experiment setup and simulations performed. In Section 3, four 50 

relevant climate indices for extreme weather which can be derived from the HAPPI data set are presented, and lastly, 

conclusions are derived in Section 4. 

2 Methods 

2.1 Model simulations 

To create a data set for regional climate impact studies for Europe under 1.5°C and 2.0°C global warming the regional climate 55 

model REMO was dynamically downscaled using the HAPPI GCM simulations. All the HAPPI GCM simulations use sea-

surface temperatures (SST) for respective periods, known as AMIP-style (Gates et al., 1992), representing the following three 

periods: A current decade (2006-2015) with observed SSTs, and two projected periods with 1.5°C and 2.0°C warmer (global 

mean surface temperature) than pre-industrial (1861-1880) conditions. For the two warmer periods, CMIP5 mean SST anomaly 

patterns for the respective global warming are added to the observed SST pattern used for the current decade. Lastly, 60 
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greenhouse gas forcing is constructed from RCP2.6 and RCP4.5 emission scenarios, respectively. A comprehensive description 

of the HAPPI experiment design is given in Mitchell et al. (2017). 

The RCM REMO is a hydrostatic limited-area model of the atmosphere that has been extensively used and tested in climate 

change studies over Europe (Jacob et al., 2012; Teichmann et al., 2013; Kotlarski et al., 2014). The simulation domain follows 

the CORDEX specification for the standard European domain with 0.44° horizontal resolution. To exclude the sponge zone, 65 

where the REMO simulations are relaxed towards the GCM solutions, from the core domain defined by CORDEX the entire 

domain has 121x129 grid boxes. In the vertical 27 levels are used without any nudging except for the boundaries. Boundary 

conditions are taken from the HAPPI Tier1 experiments (Mitchell et al., 2017), which are carried out with ECHAM6 (Stevens 

et al., 2013) (100 members per period) and NorESM (Bentsen et al., 2013) (25 members per period) that provide 6-hourly 3-

dimensional data for downscaling. In REMO the same green-house-gas forcings as for the GCMs were used. The SST was 70 

taken directly from the GCM output matching the GCM land-sea mask, which provides more consistent boundary conditions 

for the downscaling. 

For each GCM member only one REMO simulation was carried out, as inter-member variability of an RCM ensemble over 

Europe on these time scales is small compared to the internal variability of a GCM (Sieck et al., 2016). Each simulation covers 

a period of ten years, and as such, initial conditions for the lower boundary need to be in balance with the RCMs internal 75 

climate in order to avoid artificial drifts in the modelled results. To achieve this, for each driving GCM, the first year of a 

random GCM member was simulated five times with REMO using initial conditions from the end of the previous run, creating 

one initial soil temperature state for every ensemble member in one period. This was performed for each of the three time 

periods. Tests showed that this minimizes drifts in the deep soil climatology compared to initial conditions taken directly from 

the GCM (not shown). 80 

We are aware of the incorrect Sea-Ice concentrations used in ECHAM6. Due to the interpolation procedure for the Sea-Ice 

extent, it could happen that Sea-Ice was artificially created where no ice conditions were present in the original data-set, e.g., 

in summer in the Baltic Sea. ECHAM6 has a mechanism that as soon as there is a fraction of sea-ice greater than zero, the SST 

is limited to a maximum of 272.5K. This leads to artificial temperature jumps in the SST between adjacent grid boxes as soon 

as erroneous sea-ice appeared in one of the grid boxes. This error was inherited by the first set of REMO simulations and was 85 

corrected by using the originally provided SST fields from the HAPPI project for the current set. After testing different 

temperature and/or sea-ice fraction thresholds the authors decided to keep the original Sea-Ice maps, because in the cases 

where artificial sea-ice was created the fraction was usually well below 1% only in rare cases reaching up to 4% (not shown). 

All other settings would have removed too much sea-ice in other seasons or led to unrealistic gradients of sea-ice fraction. 

With the tile approach of REMO the effect of the artificial sea-ice is hardly detectable even in the averaged near-surface 90 

variables. 
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2.2 Climate indices 

To demonstrate how adaptation-relevant information can be derived from the HAPPI data set for two different temperature 

targets, four climate indices used in climate impact studies are presented. The extremes are selected based on recommend 

indices developed by the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) 95 

(Karl et al., 1999; Frich et al., 2002) and other indicators. The selected climate indices are: 

• Number of days per year with a daily mean near-surface apparent temperature of more than 28°C (ATG28); 

• Annual maximum 5-day sum of precipitation (RX5day); 

• Relative change in daily precipitation intensity at the 50-yr return period (RI50yr); 

• Consecutive Dry Days (CDD) as a measure of meteorological drought. 100 

All four climate indices are calculated from the daily mean precipitation, temperature, and/or dew-point temperature output of 

the model; for each year and ensemble member. The ECHAM6 driven ensembles yield 1000 data points for each grid box and 

simulation period, and NorESM has 250 data points, respectively. 

The ATG28 index is used as an indicator for heat stress, which is relevant for impacts on human health (Davis et al., 2016). 

The apparent temperature is computed using the same formulation as in Davis et al. (2016): 105 

𝐴𝑇 = −2.653 + 0.994𝑇 + 0.0153𝑇/0,         (1) 

with AT being the apparent temperature, T the daily mean near-surface temperature, and Td the daily mean near-surface 

dewpoint temperature. Similar formulations exist in the literature showing very similar results (see Anderson et al., 2013 for a 

review). The threshold of 28°C is based on the definition of Zhao et al. (2015) who set this limit as the lower boundary for 

human heat stress. 110 

The index for the annual sum maximum of the five-day precipitation sum (RX5day) is used to characterise heavy precipitation 

events, which can be relevant for flood generation in river basins. The RX5day represents a noisy, i.e., highly spatially and 

temporally variable parameter. A large ensemble would allow for a better assessment of the signal-to-noise in extreme 

precipitation. 

A change in extreme precipitation directly influences local communities, through design standards chosen in order for 115 

structures to withstand a flood with a specified return period. As such, a Gumbel Type I extreme value distribution is fitted to 

the annual maxima of daily rainfall amounts. Using this distribution, an estimate is made of the intensity of rainfall events 

associated with a given exceedance probability. For each ensemble, the daily rainfall intensity for the 50-year return is 

computed, hereafter called RI50yr. Such information is useful for infrastructure design and maintenance. For example, road 

authorities in Europe typically use between 1 and 10-year return periods for assessing effects of rainwater falling on major 120 

roads (highways), and between 100 and 100 years for rainfall beside the road and waters crossing the road (Bless et al., 2018). 
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Lastly, the Consecutive Dry Days (CDD), is calculated for each of the PRUDENCE regions (Christensen et al., 2007). These 

regions are illustrated in Figure 1. The CDD is the maximum number of consecutive days with daily precipitation amount of 

less than 1 mm over a region (Karl et al., 1999; Peterson et al., 2001). 

 125 

 
Figure 1. The PRUDENCE regions. 

 

2.3 Changes in climate indices 

The differences between the historical and temperature target 1.5°C and 2.0°C simulations for each of the climate indices are 130 

computed as follows: In case of ATG28, differences of the 5th, 50th, and 95th percentiles were computed by subtracting the 

ensemble mean of the current decade from the projected periods. Only areas with more than 20 non-zero data points in the 

reference period were included in the analysis of ATG28 in order to allow for confidence interval calculations for the shown 

percentiles using order statistics. Statistical significance is determined when the calculated percentile in the warming period is 

outside the percentile confidence range of the current period. As ATG28 is temperature-based, changes over the ocean surfaces 135 

are masked out, because they are to a large extent determined by the prescribed SST changes. 
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Differences for RX5day are computed by subtracting the ensemble mean of the current decade from the projected periods, 

similar to the ATG28, however the statistical significance for RX5day was calculated using a Mann-Whitney-U-test and only 

results are shown with a significance at the 95% level. 

The differences in RI50yr are computed as the relative change in daily precipitation intensity of the 50-yr return period between 140 

the 1.5°C and 2.0°C simulations compared to the historical simulations, for the NOResm and ECHAM6-driven REMO 

simulations, respectively. 

Similar to the ATG28 analysis, the differences in the distribution of CDD are calculated with a Mann-Whitney U-Test with a 

significance at the 95% level, determining whether samples from the two periods are drawn from a population with the same 

distribution. 145 

3. Results 

3.1 Apparent temperature 

Figures 2 and 3 show the changes in ATG28 for the NorESM and ECHAM6 driven ensembles, respectively. In general, the 

changes are strongest close to warm ocean areas, especially around the Mediterranean. But also the central and eastern parts 

of Europe show increases in ATG28, consistent with the increase in mean temperature. The distinct difference between the 150 

two warming levels should be noticed. In the 1.5° C period the increase in ATG28 is mostly moderate with up to 9 days 

whereas changes in the 2.0°C period are reaching 18 days and more in the median around the Mediterranean. This result is 

consistent between the ECHAM6 and NorESM driven ensembles. Also the changes across the percentiles are consistent, i.e., 

there is no change in the shape of the distribution of ATG28. It should be noted that the spatial resolution of the simulations 

allows to show the lower level of warming in mountainous areas compared to coastal areas, e.g., over Italy. This is especially 155 

important in areas with complex topography such as the Mediterranean, which is usually only poorly resolved in GCM 

simulations. 
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Figure 2. Differences in ATG28 between the current and the 1.5°C period (top row) respectively the 2.0°C period (bottom row) for 160 
the NorESM driven REMO simulations in number-of-days. Shown are the Differences in the 5th percentile (left column), median 
(middle column) and 95th percentile (right column). Differences over Ocean areas are masked out in grey, because they are closely 
related to the prescribed SST changes. 
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 165 
Figure 3. Same as Figure 2 but for the ECHAM6 driven REMO simulations. 

 

3.2 Five-day precipitation sum 

Figure 4 shows the relative differences of RX5day for the four REMO ensemble experiments. In general, there is an increase 

in RX5day over the European part of the domain with stronger signals in the 2.0°C compared to the 1.5°C period. It can also 170 

be seen that the patterns in the ECHAM6 driven simulations are more coherent with larger areas showing a significant change. 

This is related to the difference in ensemble size and underlines the necessity for a large ensemble to achieve proper signal-to-

noise ratios when looking at the difference in regional changes under small GMT increases in highly variable quantities such 

as precipitation extremes. Tests with a randomly picked 25-member ensemble from the ECHAM6 driven simulations showed 

a similar noisy pattern as the NorESM driven runs (not shown). 175 

Apart from effects at the boundaries, the strongest signal in the interior of the simulation domain appears over the Baltic Sea, 

with an increase of up to 15% in RX5day under a 2.0°C increase in GMT. This result is consistent between both ensembles. 

A similar increase can be seen over the Adriatic Sea, but is not so pronounced in the ECHAM6 driven ensemble. This might 

be related to feedbacks from the unrealistic SSTs, because the GCMs usually do not resolve these small basins. In these 

locations the SST is interpolated from the nearest SST value of the GCM, which might not be adequate for the region. 180 
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Figure 4. Relative difference of RX5day (in percent) between current and the 1.5°C period (left column) respectively the 2.0°C period 185 
(right column) for the NorESM with 25 members (top row) and ECHAM6 with 100 members (bottom row) driven REMO 
simulations. 

 

3.3 Daily rainfall intensity, 50-year return period 

To account for the spatial differences in 50-year return period across Europe, the relative change (in percent) in daily rainfall 190 

intensity are presented in Figure 5. In the both the NorESM and ECHAM6 driven ensembles, a greater increase in the rainfall 

intensity is found in the 2.0°C simulations compared to 1.5°C. ECHAM6 driven simulations clearly show increases in the 24-

hour rainfall intensity of the 50-yr return period, of up to 20% over continental Europe. The estimated changes in rainfall 

intensity in the NorESM driven simulations appear to be more extreme but these simulations are also more noisy as they are 

based on fewer ensemble members. 195 
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Figure 5. Relative difference of RI50yr (in percent) between current and the 1.5°C period (left column) respectively the 2.0°C period 
(right column) for the NorESM with 25 members (top row) and ECHAM6 with 100 members (bottom row) driven REMO 
simulations in %. 200 
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3.4 Consecutive dry days 

In this section, the changes in the Consecutive Dry Days (CDD) distributions of each Prudence regions of the two ensembles 

are compared. For each ensemble, the p-values of each region is presented in Table 1. Both the distributions 1.5°C and 2.0°C 

are compared to the historical CDD distribution, respectively. Where the p-value is greater or equal to a significance level, 205 

alpha, of 0.05 or smaller, the null hypothesis is rejected indicating the distributions differ. Bold numbers in Table 1 indicate 

that the distributions differ according to the test, whereas the non-bold numbers indicate that there is no statistical difference 

between the distributions. 

 
Table 1. Mann-Whitney U-Test p-values for distributions of Consecutive Dry Days (CDD) for the ECHAM6 and NorESM driven 210 
ensembles for different PRUDENCE regions (for locations see Figure 1). 

PRUDENCE 

Region: 

ECHAM6 NorESM 

Hist vs 1.5°C Hist vs 2.0°C Hist vs 1.5°C Hist vs 2.0°C 

1. (BI) 0.270 0.035 0.024 0,053 

2. (IP) 0.036 0.000 0.000 0.000 

3. (FR) 0.391 0.230 0.015 0.002 

4. (ME) 0.077 0.015 0.363 0.212 

5. (SC) 0.238 0.356 0.046 0.081 

6. (AL) 0.333 0.105 0.378 0.355 

7. (MD) 0.069 0.036 0.348 0.021 

8. (EA) 0.325 0.465 0.419 0.385 

 

We begin by looking at three regions where the Mann-Whitney U-Test provided consistent results across the ensembles. In 

region 2, the Iberian Peninsula, the CDD distributions in both the 1.5°C vs. 2.0°C simulations differ statistically compared to 

the historical simulations. The substantial shift towards longer periods of dry days over this region can be seen in Figure 6. In 215 

contrast, regions 6 and 8, the Alps and Eastern European region, have CDD distributions which are statistically 

indistinguishable in the simulations under additional global warming compared to the historical simulation (Table 1). One can 

deduce that region 2, will suffer from more frequent and longer drought periods than experienced before compared to regions 

6 and 8. Interestingly, for region 7, the Mediterranean, the CDD distributions of the ECHAM6 and NorESM ensembles of 

1.5°C do not differ statistically from the historical period, yet both ensembles show a statistically different distribution at 220 

2.0°C. Thus, one can conclude for region 7, according to these simulations, a global target of 1.5°C vs. 2.0°C increase in GMT 

will have an impact, motivating adaption and mitigation practices. In region 3, France, the results of the two ensembles differ. 

The ECHAM6 simulations suggest there is no difference in CDD distributions between the warmer climate compared to the 

historical period; whereas the NorESM simulations find the warmer climate has a distinctly different CDD distribution 
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compared to the historical period. For Regions 1, 4, and 5 the Mann-Whitney U-test yields differing results between the 225 

ensembles and therefore results are not displayed in Figure 6. 

 

 
Figure 6. Duration of drought events in three PRUDENCE regions (2=Iberian Peninsula, 3=France, 7=Mediterranean) under 1.5° 
and 2.0° global warming. For significance see Table 1. 230 

4. Discussion and conclusions 

A unique climate data set has been presented that enables the quantification of differences between a 1.5°C and 2.0°C warmer 

world compared to pre-industrial times on a regional level. This data set can support climate change impact studies on the 

regional scale with physically consistent data, which is often not possible to achieve with other methods than dynamical 

downscaling. The use of a large ensemble (10 x 100 years) compared to alternative data sets for analysing changes under 235 

different temperature targets is especially beneficial to assess changes in highly variable meteorological parameters, such as 

extreme temperature and precipitation. 
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Here the 100 members driven by ECHAM6 provides information of statistically significant changes over relatively large and 

spatially homogeneous areas. In comparison, the 25-member ensemble driven by NorESM shows a much noisier spatial pattern 

which lowers confidence in the projected changes. 240 

The significant differences in apparent temperature ATG28 under different global mean warming level show that a 0.5°C 

larger global mean warming can have considerable consequences for human health. This is especially true around the 

Mediterranean, where changes towards more hot and humid conditions along the coasts can have negative impacts on the 

population and may increase mortality due to heat stress. The tourism sector may also be negatively affected by hotter and 

more humid conditions. Robust estimates of percentiles and changes in percentiles can be derived from the large ensemble. 245 

The changes across the analysed percentiles are consistent, i.e., there is no change in the shape of the distribution of ATG28. 

The yearly maximum 5-day sum of precipitation RX5day shows a general increase over Europe which is more pronounced 

under higher global mean warming. More coherent spatial pattern with larger areas showing significant changes result from 

the larger ensemble driven by ECHAM6 (100 members) compared to the smaller ensemble driven by NorESM (25 members) 

and also compared to a smaller sub-ensemble driven by ECHAM6, which underlines the need for big ensemble size to reliably 250 

detect changes in highly variable quantities such precipitation extremes.  

With regard to the relative change in the daily rainfall intensity at the 50-year return period, a greater increase in rainfall 

intensity was found in the 2.0°C warmer world. Given these changes, information can be derived for local communities, which 

must consider changes in rainfall intensity when designing hydraulic and water resource infrastructures, as well as 

transportation infrastructure, including highways and bridges. Cost considerations associated with increasing rain intensity 255 

demands can be computed for up-coming design projects to ensure investments remain beneficial. The HAPPI data set can be 

used to calculate other return periods, catering to the demands of individual sectors. 

Robust high and low percentile changes for precipitation are still difficult to distil on a grid box level from the data because of 

the high variability of precipitation extremes, but methods such as spatial aggregation might help to achieve robust signals on 

larger spatial scale. 260 

The changes to Consecutive Dry Day distributions show that Spain will have drought conditions unlike what they have 

experienced in the historical period, even at a 1.5°C increase in GMT. For Italy, droughts associated with the 1.5°C simulations 

are historically similar, yet droughts associated with 2.0°C would be statistically unlike what has been experienced in the pre-

industrial period, thus demonstrating the consequences of exceeding the 1.5°C GMT target of the Paris agreement. 

The current data set was created using the only two GCMs available at the time for downscaling, one with a reduced number 265 

of ensemble members. As more GCM ensembles become available for downscaling in the future, it will allow for new studies 

which can provide more robust estimates of inter-model variability/uncertainty. Nevertheless, there is currently a unique data 

set targeted to the Paris agreement goals available for further analysis. Future plans include the creation of a similar regional 

data set for Africa. A comparison with alternative methods for extracting the warming level is lacking and should be done in 

future studies. 270 
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