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ABSTRACT 
Software engineers are increasingly asked to build datasets for 
engineering neural network-based software systems. These 
datasets are used to train neural networks to recognise data. 
Traditionally, data scientists build datasets consisting of random 
collected or generated data. Their approaches are often costly, 
inefficient and time-consuming. Software engineers rely on 
these traditional approaches that do not support precise data 
selection criteria based on customer’s requirements. We 
introduced a software engineering method for dataset 
augmentation to improve neural networks by satisfying the 
customer’s requirements. In this paper, we introduce the notion 
of key-properties to describe the neural network’s recognition 
skills. Key-properties are used all along the engineering process 
for developing the neural network in cooperation with the 
customer. We propose a rigorous process for augmenting 
datasets based on the analysis and specification of the key-
properties. We conducted an experimentation on a case study on 
the recognition of the state of a digital meter counter. We 
demonstrate an informal specification of the neural network’s 
key-properties and a successful improvement of a neural 
network’s recognition of the meter counter state. 

CCS Concepts 
• Software and its engineering➝ Software creation and 
management➝Software development process management
➝  Software development methods➝ Rapid application 
development.  

Keywords 
Software engineering; methods; neural networks; specification; 
key-properties; dataset augmentation. 

1. INTRODUCTION 
Deep Learning [1] focuses on approaches for engineering 
computer programs that simulate the behaviour of a simplified 
human brain. These programs, called neural networks, are in 
high demand in various domains such as autonomous vehicles, 
commercial, finance, etc. Large datasets are required to train 
these neural networks to recognise some data (e.g. recognising 
pedestrian, meter counter states, prices…). Data scientists are 
building these datasets by following traditional engineering 
approaches, which are mostly hand-crafted and empirical in 
order to collect, classify and split the data to obtain different 
types of datasets (e.g. training, testing and development dataset). 

Due to the growing demand of neural networks in various 
domains, software engineers and data scientists face major 

challenges to build these datasets for engineering improved 
neural networks. Software engineers rely on traditional dataset 
engineering approaches, because there exists no software 
engineering methodology that supports dataset engineering 
based on customer’s requirements. Traditional dataset 
engineering approaches do not support precise data selection 
criteria based on customer’s requirements. Additionally, data 
scientists are often not trained to use software engineering 
methods. However, as it is important to engineer a neural 
network that satisfies the customer’s needs, thus, there is a need 
for a software engineering methodology to support the efficient 
creation of a dataset to engineer a neural network based on the 
customer’s requirements. 

In [2], we introduced a first version of a software engineering 
methodology for dataset engineering based on customer’s 
requirements. We presented a rigorous process for iteratively 
augmenting datasets with generated synthetic data to improve 
neural networks. We presented the relevant activities and 
techniques to support the efficient creation of datasets based on 
customer’s requirement. At each process iteration, the results of 
the neural network’s tests, called test monitoring data, are 
analysed to extract an informal list of potential dataset 
improvements. In general, these improvements are presented to 
a customer for being validated or they serve to specify the 
dataset augmentation for improving a neural network to satisfy 
the customer’s requirements. However, analysing the test 
monitoring data and listing the dataset improvements is a very 
challenging task. We categorised the test data depending on the 
correctness of the classification (e.g. data labels) or the 
recognition (e.g. predicted data labels). The data categories are 
used to extract relevant information for listing some dataset 
improvement. The process was very simplistic and does not 
guide the engineer to produce effective dataset improvement for 
satisfying the customer’s need. These dataset improvements are 
often very technical, not-well structured, time-consuming and 
complicated without precise data selection criteria. It becomes 
even more challenging to discuss these improvements with a 
customer without precise structure and adapted technical 
terminologies.  

In this paper, we extend our iterative rigorous process to 
contribute to the issue of imprecise and complicated 
specification of dataset improvements. We introduce a rigorous 
process to support the engineers for analysing the test 
monitoring data. We introduce the notion of neural network’s 
key-properties (KP) to describe its recognition skills and its 
improvements. The key-properties serve to define a list of neural 
network’s strengths and weaknesses for a customer validation 



process. Finally, they are used to specify a dataset augmentation 
[3] to improve the neural network. 

In Section 2, we present briefly the related work. Section 3 
presents our software engineering method formalized as a 
business process. Section 4 presents an experimentation of our 
approach conducted on our academic meter counter recognition 
case study. In Section 5, we highlight and discuss some 
important aspects of our process and propose some potential 
future work. 

2. RELATED WORK 
In this section, we present some recent studies related to our 
work. We focus on related works around software engineering 
methodological issues, and when possible on the particular 
phase of requirements engineering. We do not focus on the 
numerous machine learning works on the optimisation of the 
design of neural networks. 

Laroca et al. [4], Nodari et al. [5] and Vanetti et al. [6] present 
different deep learning-based software systems for recognizing 
the state of a meter counters. Laroca et al. introduce a new 
dataset, called UFPR-AMR, of real-world images of meter 
counters for training and testing their neural networks. In their 
paper, they claim that it is difficult to recognize meter counter 
states of noisy (dirty, dark, bright) images. They use several 
techniques to generate randomly additional images by adjusting 
the brightness, adding noise, rotating images or segmenting 
images. The generated synthetic images are added to the initial 
datasets for training their new neural network architectures. 
Thus, they were able to improve the recognition of the meter 
counter states. We agree that the dataset augmentation can 
improve the recognition skills of a neural network. However, 
they do not follow a software engineering method to develop 
their neural networks based on requirements. We propose the 
usage of a software engineering method to engineering 
improved neural networks that satisfy the requirements of some 
customer. Our software engineering method includes precise 
data selection for augmenting dataset based on customer’s 
requirements. The augmented dataset is used to retrain and 
improve the neural network to satisfy the customer’s 
requirements. 

Vogelsang and Borg [7]; Kostova et al. [8] present some 
advances on requirements engineering for machine learning-
based software systems (e.g. deep learning-based systems). They 
claim that more research must be investigated to understand the 
need of requirements engineering for machine learning. In [7], 
they claim that requirements engineering must evolve in the 
machine learning domain. They interviewed several data 
scientist to answer questions about their background (e.g. 
domain, involved projects…), their concrete usage of 
requirements in their projects and their requirements engineering 
approaches. Based on the answers, they summarise the 
characteristics for different requirements engineering activities 
(e.g. specification, analysis, verification, validation…) in the 
machine learning engineering approaches. They claim that data 
scientists usually improve their machine learning-based systems 
by analysing technical concepts (e.g. accuracy, loss…). These 
concepts are often not understood by customers, who should 
validate the system. They claim that there is a need for 
requirements engineering methods to map these machine 
learning concepts to the customer’s requirements. We agree that 
there is a need for methods to support the engineering of 
machine-learning based systems, such as neural network, based 

on customer’s requirements. We think that software engineers 
require methods and tools to facilitate the development of 
machine learning system that satisfy the customer’s 
requirements. 

Amershi et al. [9] present a workflow for engineering their 
machine learning-based software systems used at Microsoft. 
Their workflow consists of several stages such as data-oriented 
(e.g. data collection, cleaning and labelling), and stages for 
engineering machine-learning based software systems (e.g. 
training, evaluation, deployment…). They claim that the work of 
a machine learning engineer mostly consists in improving the 
machine learning model’s architecture (e.g. neural network) by 
adjusting their parameters (e.g. number of layers, number of 
neurons, activation function…). They build their dataset by 
following traditional dataset engineering approaches, such as 
random data gathering, random data generation and removal of 
inaccurate data (noisy data). Our process presented in this paper 
differs in the sense that it is developed to support software 
engineers to select and generate precisely the data needed for 
training and testing a neural network that satisfies the 
customer’s requirements.  

Hesenius et al. [10] present a software engineering process for 
engineering machine learning-based software, called EDDA. 
EDDA consists of six phase that are connected to the phases of 
the software engineering lifecycle [11]. They define the actors 
(e.g. software engineer, data scientist, domain expert and data 
domain expert) responsible for executing the tasks of their 
engineering phases (e.g. data exploration, model requirements, 
model development…). The data exploration phase is an 
iterative process for analyzing existing data to define the goals 
of the application. Afterwards, they define the requirements and 
develop the machine learning model. During the development, 
they follow an iterative process of feature engineering [12] from 
the data, updating the machine learning model, and evaluating 
the model. Our process presented in this paper differs in the 
sense that we are focusing exclusively on deep learning-based 
systems. In deep learning-based systems, the layers of the neural 
network are describing the features of the data [13]. The features 
are not designed by humans and they are learnt from data. Thus, 
we iteratively improve the recognition skills of a neural network 
by augmenting our datasets based on the customer’s needs. We 
argue that neural networks can efficiently improve by improving 
the datasets. 

3. SOFTWARE ENGINEERING METHOD 
We previously introduced a software engineering method [1] 
formalized as a business process using the BPMN 2.0 [14] 
modelling language. The main purpose of the initial process is to 
support engineers for the efficient development of neural 
network-based software systems. We consider designing 
appropriate datasets to train and test neural network based on 
customer’s requirements. Thus, the trained neural network 
should recognise the data based on the needs expressed by a 
customer. The initial process consists of three different types of 
activities and three different types of data objects, listed below. 

• Activity types 
o dataset engineering activities 
o neural network software engineering 

activities 
o neural network execution activities. 

• Data objects types 
o Datasets 



o Neural Networks 
o Neural Networks Data 

Concretely, the initial process is designed as a cyclic flow graph 
consisting of 9 main activities and 10 data objects. To give you a 
concrete overview of our initial process, we summarise our 
process using these groups of activities: 

1. Engineering datasets and a neural network 
2. Analysing the trained neural network 
3. Defining a dataset augmentation 
4. Generating synthetic data 
5. Reengineering the dataset with the synthetic data 
6. Return to 1 and reengineer the neural network 

When engineering a neural network with respect to our process, 
we usually have to test the trained neural network at some step. 
Neural networks are tested on a set of testing data. The dataset 
should consist of precisely selected data in order to verify the 
neural network’s recognition skills. The results of the neural 
network’s tests, called test monitoring data, need to be analysed 
to understand the neural network’s recognition skills. In the 
current process, the way to perform this analysis remains unclear 
and quite complicated, we gather some test data information by 
decomposing it into the following four categories:  

1. Correctly Recognised data (CR) 
2. Incorrectly Recognised data (IR) 
3. Correctly Classified data (CC) 
4. Incorrectly Classified data (IC) 

Engineers are free to specify the recognition skills in their own 
way. This leads often to confusions and issues, when presenting 
the neural network to the customer. It may also lead to 
incomplete and inconsistent specification. Since the 
specification is used to define a dataset augmentation, we might 
need to iterate many times through the process to obtain the 
customer’s validation. Moreover, these specifications are often 
written at a technical level. Customers often lack in technical 
knowledge, which makes it hard to discuss the recognition skills 
with them. 

In this section, we present a new version of this software 
engineering method for augmenting datasets based on the 
specification of the neural network’s key-properties. Our goal is 
to improve the process of analysing the test monitoring data to 
obtain clear customer’s feedback and improve the specification 
of the dataset augmentation. Therefore, we present our new 
process consisting of some modified and refined activities. We 
focus mainly on the customer’s requirements and analysis of the 
test monitoring data. We introduce the key-properties to 
describe the recognition skills of the neural network. 

We present a new subprocess for analysing the test monitoring 
data to specify the neural network’s recognition skills. We use 
the specification to improve the customer’s validation process 
and the dataset augmentation specification. We designed the 
new process using the BPMN 2.0 modelling language. Our new 
process still consists of 9 main activities. We modified two 
activities, the analysis of the test monitoring data and the dataset 
augmentation specification. We refined the activity for analysing 
the test monitoring data by defining a precise sub-process 
consisting of 4 activities. We introduce an additional data object, 
called the key-properties specification. 

In the upcoming section, we present in detail the modified 
activities. Figure 1 shows an overview of the modified activities 
of the business process introduced in this paper. The neural 
network execution activities are represented in green and the 
dataset engineering activities are represented in blue. 

 
Figure 1. Business process for specifying the neural 

network's key-properties. 

3.1 Data Input 
In this section, we present the new process’ data input. The 
process’ Data input consists of a collection of classified data and 
a list of requirements to describe the customer’s needs. 

The collection of classified data remains unchanged except for a 
recommendation on the dataset construction that we would like 
to put emphasis on. The classified data is needed for training and 
testing the neural network. A classified data is any artefact that 
has been labelled with some relevant information (e.g. 
description of the content, integer…). The classified data serves 
to engineer some raw datasets for training and testing a target 
neural network. They may be collected or obtained from the 
customer. However, we recommend discussing with the 
customer to obtain a set of classified test data. This set should be 
used later in this process to test the targeted neural network. The 
data should be selected carefully in order to cover the most 
important test cases needed for validation of the neural network. 

We add a list of requirements to the data input. The 
requirements are needed to define the initial customer’s needs. 
This step is mandatory for being able to engineer a neural 
network that satisfies its requirements. Following software 
engineering best practices in requirements engineering, an 
engineer meets a customer to discuss the requirements of the 
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targeted neural network before executing our process. Based on 
the discussion, the engineer defines a list of initial requirements 
to be taken as input in our process. 

3.2 Raw Datasets and targetNN Engineering 
In this section, we present the dataset and neural network 
engineering initial activities of our process: 

1. Engineering raw datasets consists in the creation of 
the equivalence classes and the required datasets. The 
equivalence classes are defined based on the classes 
used for classifying the input data. The datasets are 
called training, testing and development datasets. They 
are composed of a selection of input data. Usually, 
these datasets do not share any common data. 

2. Engineering the targetNN consists in designing and 
implementing a neural network architecture (e.g. 
convolutional neural network). It includes choosing 
the appropriate layers, activation functions, loss 
function, …  

3. Train the targetNN consists in training the 
implemented targetNN using the training and the 
development datasets. During the training, the neural 
network processes the training images and adjusts the 
weights on the neurons. This activity is executed 
multiple times until the accuracy and loss start to 
converge. 

4. Analysing the training monitoring data focuses on the 
analysis of the results of the neural networks’ training. 
The training monitoring data consists of the values of 
the accuracy and the loss during the training, the 
overall accuracy and loss after the training.  The 
accuracy describes the amount of correctly recognised 
data. The loss is a measure to describe the precision of 
the recognised data. Usually, we analyse if the neural 
network is tending to over- or underfit [15]. 

5. Test the targetNN consists in verifying the targetNN. 
The neural network processes the images of the testing 
dataset. We verify the recognition skills of the neural 
network. We generate several diagrams, images grids 
and statistics to build the test monitoring data. The 
output of this activity is the test monitoring data. 

3.3 Analyse the Test Monitoring Data 
In this activity, we focus on analysing the test monitoring data. 
This activity has been modified and integrated in our new 
process. We present a new subprocess for analysing the test 
monitoring data, specifying the neural network’s key-properties 
and validating the target neural network. The subprocess 
consists of four activities. We present in detail the activities of 
our process here. 

3.3.1 Identify new key-properties 
This activity’s data input is the test monitoring data. During this 
activity, the engineer analyses the test monitoring to extract and 
specify the relevant information about the neural network’s 
recognition skills. These recognition skills are described with 
the neural network’s key-properties. In this activity, the engineer 
focuses on the identification of the key-properties by analysing 
the test monitoring data. As the instances of test monitoring data 
may vary depending on the executed neural network’s tests, the 
engineers verify if the list of identified key-properties must be 
updated at each process iteration.  

First, the engineer categorises the test monitoring data into two 
main categories, called the quantitative and qualitative data [16]. 
The engineer analyses the test monitoring data and determines in 
which category the data belongs to:  

• Quantitative data is a subset of the test monitoring 
data used for identifying numerical key-properties. 

• Qualitative data is a subset of the test monitoring 
data used for identifying key-properties represented in 
any textual or Boolean format. 

In a second step, the engineer should analyse the categorised test 
monitoring data to identify the new key-property. The resulting 
key-properties are grouped into two main categories, the 
quantitative and qualitative properties. The engineer may 
subdivide the properties into further smaller subcategories to 
improve their structure. Table 1 shows an overview of our 
proposed key-properties categorisation. 

• Quantitative properties are usually described as a 
numerical value. (e.g. dataset size, accuracy, loss, 
number of recognised data) 

• Qualitative properties are usually represented as a 
textual or boolean expression. 

We suggest categorising the key-properties into sub-categories 
to improve the structure. The two sub-categories for the 
quantitative properties are continuous and discrete. 

• Continuous properties have their value belonging to 
a non-countable set. (e.g. accuracy, loss…)  

• Discrete properties have their value belonging to a 
countable set such as dataset size, categorisations, 
number of correctly and incorrectly classified data...  

We apply the same idea for the quantitative properties. We 
suggest categorising the qualitative key-properties in the 
categories of nominal, ordinal or logical properties. 

• Nominal properties are characterized as textual 
representations. These properties are usually only 
named in textual format. (e.g. data description, image 
content, …) 

• Ordinal properties are characterized as textual 
representation with a certain order. These properties 
are usually defined as a name, which is part of an 
ordered set. (e.g. categorical evaluation of data 
classification…) 

• Logical properties are characterized typically as a 
boolean expression. These properties usually can only 
be true or false (e.g. correctness of data 
classification…) 

Finally, the categorised key-property types are the activity’s data 
output used in the next activity. 

Table 1. Property categorisation 
Key-properties categorisation 

Quantitative (QT) Qualitative (QL) 
Continuous 
(C) 

Discrete 
(D) 

Nominal 
(N) 

Ordinal 
(O) 

Logical 
(B) 



3.3.2 Specify key-properties 
This activity’s data input is the categorised key-property types. 
The engineer uses the key-property types to specify a list of key-
properties of the trained neural network. At each iteration of the 
process, the engineer has to perform the following tasks: 

1. Select a key-property type. 
2. Select the most appropriate test monitoring data to 

define the key-property. 
3. Analyse the selected test monitoring data with respect 

to the key-property type. 
4. Specify the key-properties in different tables with 

respect to the categorisation of the key-property types. 
5. Return to 1. and continue until all key-property types 

are covered. 
The key-properties should be written in a similar format as the 
initial requirements in order to facilitate the verification of the 
satisfaction of the customer’s requirements. 

Finally, the key-property specification should be updated at each 
iteration of the process based on the identified key-property 
types. This allows us to track the evolution of the key-properties 
and to justify the satisfaction of the customer’s requirements. 

3.3.3 Analyse targetNN’s key-properties 
The engineer analyses the key-properties specified in the 
previous activity to define a list of strengths and weaknesses of 
the neural network.  The strengths of the neural network should 
reflect and motivate the satisfaction of some customer’s 
requirements. The weaknesses should show and validate the 
unsatisfied customer’s requirements. Moreover, the engineer 
should propose some improvements in order to satisfy these 
requirements. The list of strengths, weaknesses and 
improvements should be less technical and written using a 
‘customer-friendly’ vocabulary. 

When the list of strengths, weaknesses and improvements is 
defined, it is then presented to the customer. The customer 
should reflect on the current version of the neural network. The 
engineer and the customer should discuss the strengths, 
weaknesses and improvements in order to clarify or propose 
some requirements. The goal is that the customer obtains an 
overview of his ordered product and participates to the evolution 
of the requirements. The customer may criticise some strengths, 
weaknesses or improvements. He should have the possibility to 
propose additional requirements, strengths, weaknesses or 
improvements. These proposals should be considered by the 
engineer during the further software construction. 

Finally, the customer should validate the targetNN based on the 
presented information. Based on the customer’s decision, we 
may stop the process or continue to improve the targetNN. 

3.3.4 Specify improved key-properties 
This activity is only run if the customer did not validate the 
targetNN. In this activity, the engineer analyses the discussion 
with the customer. The engineer should reflect on the improved 
key-properties from the customer’s needs. These improved 
properties should be satisfied by the targetNN after a second 
process iteration. The specification of the improved key-
properties serves to obtain a better overview of the desired 
targetNN. Thus, the engineer has a clear picture of the targetNN. 

Finally, the output of this activity is the specification of the 
improved key-properties. 

3.4 Specify Synthetic Dataset Augmentation 
This activity’s data input is the specification of the key-
properties. In our initial definition of the process, we focused on 
analysing the correctly/incorrectly classified and recognised 
classes. Based on this analysis, we defined some dataset 
modifications to improve our neural network. 

In the updated process presented in this paper, we define our 
dataset augmentation based on the specification of key-
properties. The key-property specification might cover the 
analysis of the correctly/incorrectly classified and recognised 
classes. Thus, the engineer would also be able to follow the 
previous version of our process. However, the specification of 
the key-properties allows us to have a larger understanding of 
the neural network’s recognition skills. Thus, this large 
understanding allows us to improve our dataset augmentation by 
considering the key-properties instead of only the 
correctly/incorrectly classified and recognised data. 

The engineer analyses the specification of the key-properties and 
verifies if the current datasets are compatible with the 
specification. The detected issues of the datasets must be solved 
by specifying a dataset augmentation. The engineer analyses the 
key-property specification and the suggested improvements. 
Based on the analysis, the engineer specifies some dataset 
modifications and improvements. These dataset modifications 
and improvements are specified to obtain the dataset 
augmentation specification. The engineer might define 
operations such as:  

• Generate additional data to strengthen the neural 
network’s recognition skills 

• Remove some unrecognizable data from the dataset 

• Generate data to have more data variations (e.g. flip, 
rotate…) 

• …. 
Finally, the dataset augmentation specification is created. The 
dataset augmentation consists of a list of properties and tasks 
concerning the new datasets, e.g. “Generate 4 random images 
with shifted digits per equivalence class to strengthen the 
targetNN’s recognition precision”. 

3.5 Synthesizer and Augmented Dataset 
Engineering 
In this section, we present the remaining process activities 
before iterating the process. This part of the process focuses on 
engineering a data synthesiser and generating the synthetic data. 

The first activity focuses on the engineering of a synthesizer. 
Based on the dataset augmentation, the engineer has to find the 
best synthesizer type for generating the required synthetic data. 
In our initial definition of the process, we suggested only the 
usage of a synthesizer neural network (synthesizerNN). In the 
updated process presented in this paper, we suggest these two 
different options: 

• Synthesizer refers to a classical program. The 
program consists of functions that are able to 
manipulate data. (e.g. image filters, cropping, 
rotating…) 



• SynthesizerNN refers to a neural network-based 
program for automatic data generation. The 
synthesizerNN may be, for instance, a generative 
adversarial network [17]. 

The second activity focuses on generating an augmented dataset. 
This activity remains unchanged as in [1]. The engineer starts 
with the synthetic data generation by executing the synthesizer. 
He monitors the synthesizer execution. Once the synthesizer has 
generated the synthetic data, the engineer evaluates the data 
manually or using some similarity function. The similarity 
function is used to compare the generated synthetic data with the 
original data and to sort out the synthetic data that differ to much 
from the original data. The engineer may define a tolerance 
threshold for the similarity of the synthetic and original data. 

The accepted synthetic data is added to the different dataset with 
respect to the dataset augmentation specification. 

4. EXPERIMENTATION 
In this section, we present an experimentation conducted on the 
approach introduced in this paper. We describe an academic 
case study on the recognition of a meter counter state to 
experiment our approach. In this experiment, we instantiate our 
process to engineer a dataset and a neural network (NN), which 
recognizes the state of a two-digit mechanical meter counter, 
based on customer’s requirements.  

Before executing the process, we define a set of initial 
customer’s requirements to be satisfied by the dataset and the 
neural network. Table 2, below, describes these functional 
requirements (FR): 

Table 2. Customer's functional requirements 
ID Description 

FR1 A digital digit shall be represented with 7 segments. 

FR2 The meter counter state shall be represented as digital 
two-digit numbers from 00 to 99. 

FR3 The incrementation of a meter counter shall be 
represented as shifts of the incremented digit(-s) from 
top to down. 

FR4 Images shall be sharp, dark, bright or dusty images. 

FR5 The image size shall be fixed to 310x330 pixels. 

FR6 The NN’s output shall be two integers values. 

FR7 NN shall recognise the state of a two-digit meter 
counter by outputting the corresponding integer 
value. 

Secondly, we define these non-functional requirements (NFR), 
as described in Table 3, below: 

Table 3. Customer's non-functional requirements 
ID Description 

NFR1 NN shall recognise >99% of training data. 

NFR2 NN shall recognise >97% of development data. 

NFR3 NN shall recognise >95% of testing data. 

NFR4 NN’s loss shall be less than 0.02. 

Given the customer’s requirements, we execute our process’ 
activities to engineer the requested dataset and a neural network. 
In this experiment, we focus on the process' activity F (Act-F) 
which is our main contributions and summarize the other 
activities. 

4.1 Raw Datasets and targetNN Engineering 
The process’ Data Input is a set of classified reference and test 
images provided by the customer and having these 
characteristics: 

• 10 reference images, imgref Î [0, 255]310´165, classified 
into 10 equivalence classes, ecref = {0,...,9}. The 
images represent a digital digit in [0...9] 

• 172 testing images, imgtest Î [0, 255]310´165, classified 
into 100 equivalence classes eccounter = {ecref, ecref}. 
These images consist of a random selection of meter 
counter states with digital numbers in [00..99]. The 
images show sharp, dark, bright or dirty digits. 
Moreover, some images represent shifted digits to 
model the change to the next greater integer value. 

The first process’ activity focuses on engineering the raw 
datasets. Given the Data Input, we concatenate all possible 
combinations of two reference images to obtain the 
representative classified images of meter counter states. The 
concatenated images show all representative and sharp digital 
numbers in [00..99]. Figure 2 and 3 show the reference images 
and some random samples of generated images. 

 
Figure 2. Reference images. 

 

 
Figure 3. Random samples generated meter counter images. 



Given the raw classified images dsraw and the classified test 
images, we performed the four tasks described in the approach 
to create our equivalence classes and datasets: 

• The equivalence classes are defined as eccounter = {ecref, 
ecref}. 

• The training dataset, dstrain ÎR([0, 255]310´165 
´eccounter), consists of 645 random images from dsraw. 

• The development dataset, dsdev ÎR([0, 255]310´165 
´eccounter), contains the 40 remaining images from 
dsraw. 

• The testing dataset, dstest Î R([0, 255]310´165´eccounter), 
contains all classified test images. 

In the next process' activity, we focus on engineering a target 
neural network (targetNN). Laroca et al. [5] present a 
convolutional neural network (CNN) architecture for the 
recognition of a real-world meter counter state. Our CNN 
architecture and targetNN implementation in this 
experimentation is inspired from them. We implemented our 
CNN in Python [18] using the Keras [19] and Tensorflow 
libraries [20]. 

Our targetNN has 9 layers: 4 convolutional layers, 2 max-
pooling layers, 2 fully connected layers with a random dropout 
of 30% and 1 output layer with randomly initialized weights. 
We use the activation function "Relu" except in the output layer, 
where we use the activation function "Sigmoid". The output 
layer has 20 neurons and outputs a probability distribution over 
2 x 10 possible equivalence classes. The probability distribution 
describes the likelihood that a digit at the tens’ and ones’ 
position is recognized as an equivalence class. We selected the 
“binary cross-entropy” [21] function as our loss function. 

The next process’s activities focus on the targetNN training and 
the analysis of the training monitoring data. We trained our 
targetNN 1  for +/-4 hours and 25 epochs. We observed the 
targetNN’s accuracy evolution on the training and development 
dataset. We decided to adjust the targetNN’s parameters to 
reduce signs of over- and underfitting [22] based on our 
observations. Figure 4 shows the accuracy and loss evolution on 
the training and development dataset. After the training, we 
analysed our training monitoring data consisting of an accuracy 
and a loss value for the training and development dataset. Our 
targetNN reached the following accuracies and losses: 

• dstrain: accuracy 100% and loss 0.002707. 
• dsdev: accuracy 99.37% and loss 0.024017. 

From the analysis of these accuracies and loss values, we can 
conclude that it is unlikely that the targetNN is overfitting. Thus, 
we can stop the training, then accept and freeze the targetNN’s 
architecture. 

 
1  The targetNN training has been performed on a machine 

having the following specs: 2,4Ghz - 32GB RAM;  

 
Figure 4. Accuracy and loss diagram for dstrain and dsdev. 

4.2 Test the targetNN 
In this activity, we test our targetNN with the test images of 
dstest. As described in the previous section, our targetNN takes 
as input every test image and outputs a probability distribution 
over 2x10 equivalence classes. We decide to classify the left and 
right digits of the image separately in the equivalence classes 
with highest probability of the first 10 resp. last 10 equivalence 
classes. 

Thanks to our selection criteria, we are able to compare the 
targetNN’s recognized equivalence classes with the expected 
equivalence classes. It allowed us to generate these test 
monitoring data computed from the testing dataset using the 
bokeh library [23]: 

• dstest: accuracy 99.56% and loss 0.028118 
• 3 confusion matrices for measuring quantitatively the 

correctly and incorrectly recognized images (CR and 
ICR images) 

• 2 grids of correctly, resp. incorrectly, recognized 
images 

Figure 5 shows some sample images of correctly and incorrectly 
recognized images. 

 
Figure 5. Random samples of correctly and incorrectly 

recognised images. 

4.3 Analyse the Test Monitoring Data 
In this activity, we present our analysis of the test monitoring 
data and the specification of the key-properties of our targetNN. 
Our first activity focuses on the identification of the new key-
properties. 



4.3.1 Identify new key-properties 
The activity’s Data input is the test monitoring data resulting 
from the previous activity. We classify the test monitoring data 
into the following two main categories, quantitative and 
qualitative data: 

• Quantitative data 
o Accuracies 
o Losses 
o Confusion Matrices 

• Qualitative data 
o Grids of CR and ICR recognised images 
o Accuracy and Loss evolution diagram 

We use the categorised test monitoring data to identify a set of 
properties to be specified for our dataset and trained neural 
network. In this experiment, we list the most important 
properties to illustrate our approach. Table 4 shows a list of 
identified quantitative key-property types. 

Table 4. List of quantitative key-property types 
Category Subcategory Property 
Quantitative Discrete Number of CR/IR images 
Quantitative Discrete Number of CR/IR images per 

equivalence class 
Quantitative Discrete Size of datasets 
Quantitative Continuous Ratio of CR/IR images 
Quantitative Continuous Ratio of CR/IR images per 

equivalence class 
Quantitative Continuous Ratio of CR/IR images per 

equivalence class 
Quantitative Continuous Neural network’s recognition 

precision 
Table 5 shows a list of identified qualitative key-property types. 
We use these key-property types to specify the key-property 
instances of our datasets and targetNN. 

Table 5. List of qualitative property types 
Category Subcategory Property 
Qualitative Logical Data and classification 

correctness 
Qualitative Logical Correctness of the classification 

and recognition 
Qualitative Nominal Data consistency 
Qualitative Nominal Groups of incorrectly recognised 

images 
Qualitative Ordinal Recognition weaknesses and 

strengths 
Qualitative Ordinal Threshold for belonging to an 

equivalence class 

 

4.3.2 Specify key-properties 
In this activity, we focus on the specification of the identified 
key-properties with respect to the list of identified key-
properties. We determine the key-properties based on our 
observations on the test monitoring data. The key-properties of 
our targetNN and our datasets are specified in natural language.  

Table 6 shows a list of specified quantitative key-properties. We 
mainly focus on specifying the amount of correctly and 
incorrectly recognised (resp. classified) data. Additionally, we 
specify statistics on the datasets and the targetNN’s recognition 
precision. 

Table 6. Quantitative key-properties at iteration 1 
ID Subcategory Description 
KPv1,1 Continuous NN recognises 99.97% of the 

training data 
KPv1,2 Continuous NN recognises 99.25% of the 

development data 
KPv1,3 Continuous NN recognises 99.50% of the testing 

data 
KPv1,4 Discrete NN recognises the left digit on 8 

images incorrectly. 
KPv1,5 Discrete NN recognises the right digit on 3 

images incorrectly. 
KPv1,6 Continuous NN has an average loss of 0.02624 
KPv1,7 Discrete 320 (all) images have been correctly 

classified. 
KPv1,8 Discrete The test dataset size is 320 
 
Table 7 shows a list of specified qualitative key-properties. We 
focus on the specification of the following properties: 

• Correctness of the recognised equivalence classes 
• Tested equivalence classes 
• TargetNN’s recognition weaknesses and strengths 

Table 7. Qualitative key-properties at iteration 1 
ID Subcategory Description 
KPv1,9 Logical NN recognises the left digit in 

ectens={1,3,6,7} correctly. 
KPv1,10 Logical NN recognises the left digit in 

econes={0,2,4,5,8,9} incorrectly. 
KPv1,11 Logical NN recognises the right digit in 

ectens={1,2,3,4,5,7,8,9} correctly. 
KPv1,12 Logical NN recognises the right digit in 

econes={0,6} incorrectly. 
KPv1,13 Nominal NN’s recognition of ecclass = {30} 

has not been tested. 
KPv1,14 Ordinal The equivalence class to which an 

image will be declared to belong to 
is the one for which the recognition 
probability is the highest. 

KPv1,15 Nominal NN recognises the sate of a meter 
counter at a 60% certitude, if both 
digits are shifted. 

KPv1,16 Nominal NN does not always recognise 
images of shifted digits on sharp and 
dirty images. 

KPv1,17 Ordinal NN recognises the right digit on an 
image very well. 

 



Thanks to our specification of the key-properties of the dataset 
and the targetNN, we are able to obtain an overview of the 
targetNN’s recognition skills. This allows us to perform the next 
activity of our software engineering process.  

4.3.3 Analysing targetNN’s key-properties 
In this activity, we focus on the analysis of our specified key-
properties. We present a list of strengths and weaknesses of our 
targetNN and our datasets that could be presented to some 
customer 2 . Additionally, we suggest some solutions to 
potentially improve our targetNN. Table 8 shows a list of 
weaknesses of our targetNN and proposed solutions.  

Table 8. Detected weaknesses at iteration 1 
Weakness Proposed solution 
Low number of test cases, 
since we have 2 images per 
equivalence class in average. 

Augment the testing dataset 
with sufficient variations and 
at least 5 images per 
equivalence class 

Recognition problems, if the 
digit at the ones place is a 0 
or 9. 

Augment the training dataset 
with images that contain a 9 
or a 0 at the ones place. 

Recognition precision (loss 
value not satisfied). 

Augment the training dataset 

Neural network’s recognition 
policy (When do we consider 
that the neural network has 
recognised some data?) 

The equivalence class to 
which an image will be 
declared to belong to is these 
ones for which the 
recognition probability is 
higher than 0.9. 

 
Table 9 shows a list of strengths of our targetNN. 

Table 9. Detected strengths at iteration 1 
Strengths Descriptions 
Overall recognition 
correctness  

The targetNN recognised correctly 
recognise more than 99% of the 
training, development and testing 
data. 

targetNN’s reliability The targetNN is not showing signs 
of over- and underfitting.  

targetNN’s recognition 
precision 

The targetNN’s recognition 
precision can be improved to 
satisfy the initial requirement 

Dataset augmentation 
simplicity 

The dataset design allows us to 
generate efficiently synthetic data 
to augment the dataset 

The results and the suggested improvements have to be 
presented to the customer for validating the neural network. The 
weaknesses and strengths are discussed with the customer to 
obtain a first feedback. A customer might suggest some 
weaknesses to be solved. A customer could claim that the 
recognition problems of our targetNN may lead to some severe 
financial problems in his institution. Let’s suppose that it is 

 
2 This is an academic case study, as such, no real customer was 

part of the experimentation. Thus, all mentions to a customer 
are assumptions to perform an interesting case study for the 
illustration of our approach. 

mandatory for him to recognise the state of the meter counter at 
a precision of +/- 2. Table 10 summarises some possible 
customers weakness proposals. 

Table 10. Customer's weakness proposals at iteration 1 
Weakness Proposed Solution 
High differences in between 
the classification and 
recognition 

Recognise the state of the 
meter counter at a precision 
of +/- 2. 

 
As a result of the discussion, let’s suppose that the targetNN has 
not been validated by the customer. Thus, we decide to improve 
the targetNN in a second process iteration to satisfy the 
customer’s requirements. 

4.3.4 Specify improved key-properties 
In this activity, we focus on the specification of the improved 
key-properties based on the results of our discussion with the 
customer. Thus, we specify a new set of improved key-
properties to be satisfied by the neural network. 

Table 11. Specification of improved key-properties 
ID KP Description 
KPv1,imp,1 KPv1,14 The acceptance threshold that an image 

belongs to an equivalence class should 
be fixed to 0.9. 

KPv1,imp,2 KPv1,8 The testing dataset size should be at least 
1000. There should be at least 5 images 
per equivalence class. 

KPv1,imp,3 KPv1,18 The right digit of an image can be 
recognised with a tolerance of +/- 2.   

 

Table 11 shows a list of specified improved key-properties 
resulting from the discussion with the customer. The improved 
key-properties must be satisfied after the second process 
iteration. We can move forward to the next activity of our 
process. 

4.4 Specify Synthetic Dataset Augmentation 
In this activity, we focus on the specification of the synthetic 
dataset augmentation. We consider the discussed improved key-
properties to specify our dataset augmentation. Table 12 shows a 
list of data generation operations to augment our datasets. 

Table 12. Dataset augmentation specification 
ID Description 
DSaug,1 Generate 5 random images per equivalence class to 

be added to the testing dataset. 
DSaug,2 Generate 100 random images with a 9 or 0 at the 

ones place. 
DSaug,3 Generate 2 random images per equivalence class to 

be added to the training and development dataset to 
strengthen the targetNN’s recognition. 

DSaug,4 Generate 4 random images with shifted digits per 
equivalence class to strengthen the targetNN’s 
recognition precision. 

 



We use the dataset specification augmentation in the next 
activity of our software engineering process. 

4.5 Synthesizer and Augmented Dataset 
Engineering 
In this activity, we focus on engineering a synthesizer to 
augment our datasets. We do not design a synthesizer neural 
network as originally described in Jahic-et-al’s paper [1]. We 
implemented in Python a set of functions to generate data based 
on the dataset augmentation specification. We used different 
libraries (e.g numpy [24], skimage [25] and bokeh [23]) to 
support efficient data management and the generation of our 
synthetic image.  

Thanks to the reference images, we are able to generate some 
sharp images of a meter counter. Additionally, we add different 
types of noise to the sharp images in order to simulate dirty 
images using the skimage library. They selected randomly some 
images and changed their brightness, which allowed us to 
generate additional data to be added to the dataset. The 
generated data is used to augment the dataset with additional 
images to satisfy the dataset augmentation specification. 

Finally, we collect and sort all the generated data based on our 
dataset augmentation specification. The generated data is added 
to the corresponding datasets. Thus, we obtain new augmented 
training, development and testing datasets. These datasets are 
then used to run our process a second time and to improve the 
neural networks recognition.  

4.6 Summary of 2nd Process Iteration 
In this section, we summarise our activities of the 2nd process 
iteration. As in the previous process iteration, we retrain our 
targetNN on the same number of epochs.  The resulting training 
monitoring data has been analysed in detail to detect some signs 
of over- or underfitting. We did not detect any sign of over- or 
underfitting after the second training. Afterwards, we execute 
our new targetNN (targetNNv2) to recognise the images of the 
test dataset. The resulting test monitoring data are analysed in 
activity “Analyse test monitoring data” of our process.  

In activity “Identify new key-properties”, we first start by 
identifying the key-properties. We categorise our test monitoring 
data into our previously defined categories. Based on our 
observations of our key-properties, we do not identify new types 
of key-properties. We accept the previously defined activity to 
move to the next process’ activity, activity “specify key-
properties”. We focus on the specification of the key-properties 
of our targetNNv2 and datasetv2. Table 13 and 14 show our new 
list of key-properties of our targetNN and our datasets.  

Table 13. Quantitative key-properties at iteration 2 
ID Description 
KPv2,1 NN recognises 100% of the training data 
KPv2,2 NN recognises 100% of the development data 
KPv2,3 NN recognises 99.59% of the testing data 
KPv2,4 NN recognises the left digit on 5 images 

incorrectly. 
KPv2,5 NN recognises the right digit on 2 images 

incorrectly. 
KPv2,6 NN has an average loss of 0.014919 

KPv2,7 600 (all) images have been correctly classified. 
KPv2,8 The test dataset size is 600 
KPv2,9 NN does not recognise 7 noisy images with dark or 

bright backgrounds 
KPv2,10 NN does not recognise 3 noisy images with dark 

background and dark digits 
KPv2,11 NN does not recognise 2 noisy images with bright 

background and bright digits 
KPv2,11 NN does not recognise 2 noisy images with bright 

background and dark digits 
 

Table 14. Qualitative key-properties at iteration 2 
ID Description 
KPv2,9 NN recognises the left digit in ectens={0,1,3,4,5,7} 

correctly. 
KPv2,10 NN recognises the left digit in econes={2,6,8,9} 

incorrectly. 
KPv2,11 NN recognises the right digit in 

ectens={0,1,3,4,5,6,7,8} correctly. 
KPv2,12 NN recognises the right digit in econes={2,9} 

incorrectly. 
KPv2,13 All equivalence classes have been tested. 
KPv2,14 The equivalence class to which an image will be 

declared to belong to is the one for which the 
recognition probability is higher than 0.9. 

KPv21,15 NN recognises the sate of a meter counter at more 
than 90% certitude, if both digits are shifted. 

KPv2,16 NN does not always recognise images of shifted 
digits on sharp and dirty images 

KPv2,17 NN recognises the left and right digit on an image 
very well. 

 
In the next process’ activity “analyse targetNN’s key-
properties”, we focus on the analysis of the key-properties. 
Again, we defined a list of strengths and weaknesses of our 
targetNN. Table 15 and Table 16 show a set of detected 
weaknesses and strengths of our targetNN.  

Table 15. Detected weaknesses at iteration 2 
Weakness Proposed solution 
High number of unrecognised 
very dirty images 

Augment the datasets with 
very dirty images. 

 
Table 16. Detected strengths at iteration 2 

Strengths Descriptions 
Overall recognition 
correctness  

The targetNN recognised correctly 
more than 99% of the training, 
development and testing data. 

Specific recognition 
correctness 

The targetNN recognised very 
well all kinds of images as 
described in the requirements. 

targetNN’s reliability The targetNN is not showing signs 



of over- and underfitting.  
targetNN’s recognition 
precision 

The targetNN’s recognition 
precision satisfies the initial 
requirement. 

These weaknesses and strengths have been discussed with our 
customer. Let’s suppose that he claims that the very dirty images 
are even difficult for humans to be recognised. This led the 
customer to add a functionality request for the neural network 
which is to detect dirty meter counters in order to either clean 
them or replace them. Thus, we should specify a new 
equivalence class, called ‘dirty images’, in the next activity. We 
then reclassify some very dirty images into the new equivalence. 
A 3rd process iteration could be lunched to train the neural 
network to satisfy the remaining improved key-properties. 

As a result of our discussion, let’s suppose that the customer 
validates our targetNN. Thus, the targetNN can be deployed on 
the customer’s desired platform. 

5. DISCUSSION 
In this section, we present two main points of discussion. We 
present the current problems and limitations. We propose some 
improvements and briefly describe the related work. 

A first point to discuss is that in our process, we do not define 
precisely the notion of customer’s satisfaction. In the process 
presented in this paper, a customer is only able to express his 
satisfaction using a binary decision. Thus, he can validate a key-
property with a yes/no-answer or propose some alternative key-
properties to be satisfied. In case of a negative feedback of 
customers, the engineer must reengineer the datasets and the 
neural network until the key-properties are validated by the 
customer. However, this process is time-consuming, and it is 
very difficult to validate the requirements. Moreover, it is 
difficult to keep track of the changed requirements during the 
evolution of the datasets and the neural network. Guelfi [26] 
presents a formal framework for dependability and resilience 
from a software engineering perspective, called DREF. He 
introduces the notion of satisfiability as a measure for evaluating 
a property (e.g. requirements…) of an entity (e.g. programs, 
neural networks…). The satisfiability is expressed as a real 
number of a user-defined grading scale. Moreover, he introduces 
the notion of tolerance threshold to describe precisely the 
strictness of the customer’s satisfiability. He visualises the 
satisfiability for the evolution of each entity in time. We suggest 
as possible improvement to integrate the DREF framework into 
our process to precisely describe the satisfiability of the 
customer’s key-properties. Thus, the engineer could focus on 
engineering a neural network for the most important key-
properties as per the customer’s satisfiability. Additionally, we 
would be able to visualize the evolution of the satisfiability of 
the key-properties. Thus, we could use these diagrams to discuss 
the neural network’s development progress and key-property 
improvements with the customer. 

A second point to discuss is that in our process, we specify our 
key-properties informally using tables and natural language. 
Moreover, the process presented in this paper involves a lot of 
manual steps to specify the neural network’s key-properties. 
Since the key-properties are currently specified in natural 
language, the specification could lead to misunderstandings. 
Thus, the engineer requires support to precisely specify the 
neural network’s key-properties. Most papers talking about 
specifications present domain-specific languages [27-30] for the 

construction or the execution of neural networks. Mostly, they 
present domain-specific languages for the specification of an 
architecture of a neural network facilitate the implementation. 
We argue that the usage of domain-specific languages to specify 
the neural network’s key-properties would improve our process. 
The domain-specific language would ease the identification and 
specification of the key-properties. Useful features, such as 
specification templates, auto-completion, syntax highlighting, 
would support the engineer to specify precisely the key-
properties. Additionally, a translation program that interprets the 
specification of the key-properties and generates a dataset 
augmentation specification would facilitate the design of a 
synthesizer. 

6. CONCLUSION 
In this paper, we have presented an updated version of a 
software engineering process for improving neural networks 
using dataset augmentation based on customer’s requirements. 
We introduced the notion of key-properties for specifying the 
neural network’s key-properties. We presented a subprocess for 
specifying, improving and validating the neural network’s key-
properties. The process has been formalized using the BPMN 
2.0 modelling language. We have presented a concrete 
experimentation of our software engineering process. We 
conducted our experimentation on an academic case study on 
the recognition of a meter counter state. The experimental 
results show that our approach is promising, because we 
improved our neural network’s recognition skills by augmenting 
our datasets based on the specification of the neural network’s 
key-properties. 

For future work, we will work on a formal definition of a 
domain-specific language for data scientists. The domain-
specific language should support the specification of the neural 
network’s key-properties. We will use model-driven engineering 
[31] methods for generating a dataset augmentation specification 
interpreted from the specification of the neural network’s key-
properties. 

Another future work would be the integration of DREF 
framework [26] into our process. We could propose a process 
for specifying the resilience of neural network-based systems 
based on customer’s requirements. Thus, the data scientist could 
specify precisely the satisfiability and the customer’s acceptance 
tolerance for each requirement. The process would improve the 
key-properties specification and as a result also the dataset 
augmentation for engineering a neural network that satisfies the 
customer’s requirements. 
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