
Specifying Key-properties to Improve the Recognition
Skills of Neural Networks

Jahić Benjamin1, Guelfi Nicolas2, Ries Benoît3
University of Luxembourg
2, avenue de l’Université
L-4365, Esch-sur-Alzette

(+352) 46 66 44 6030
1benjamin.jahic@uni.lu, 2nicolas.guelfi@uni.lu, 3benoit.ries@uni.lu

ABSTRACT
Software engineers are increasingly asked to build datasets for
engineering neural network-based software systems. These
datasets are used to train neural networks to recognise data.
Traditionally, data scientists build datasets consisting of random
collected or generated data. Their approaches are often costly,
inefficient and time-consuming. Software engineers rely on
these traditional approaches that do not support precise data
selection criteria based on customer’s requirements. We
introduced a software engineering method for dataset
augmentation to improve neural networks by satisfying the
customer’s requirements. In this paper, we introduce the notion
of key-properties to describe the neural network’s recognition
skills. Key-properties are used all along the engineering process
for developing the neural network in cooperation with the
customer. We propose a rigorous process for augmenting
datasets based on the analysis and specification of the key-
properties. We conducted an experimentation on a case study on
the recognition of the state of a digital meter counter. We
demonstrate an informal specification of the neural network’s
key-properties and a successful improvement of a neural
network’s recognition of the meter counter state.

CCS Concepts
• Software and its engineering➝ Software creation and
management➝Software development process management
➝ Software development methods➝ Rapid application
development.

Keywords
Software engineering; methods; neural networks; specification;
key-properties; dataset augmentation.

1. INTRODUCTION
Deep Learning [1] focuses on approaches for engineering
computer programs that simulate the behaviour of a simplified
human brain. These programs, called neural networks, are in
high demand in various domains such as autonomous vehicles,
commercial, finance, etc. Large datasets are required to train
these neural networks to recognise some data (e.g. recognising
pedestrian, meter counter states, prices…). Data scientists are
building these datasets by following traditional engineering
approaches, which are mostly hand-crafted and empirical in
order to collect, classify and split the data to obtain different
types of datasets (e.g. training, testing and development dataset).

Due to the growing demand of neural networks in various
domains, software engineers and data scientists face major

challenges to build these datasets for engineering improved
neural networks. Software engineers rely on traditional dataset
engineering approaches, because there exists no software
engineering methodology that supports dataset engineering
based on customer’s requirements. Traditional dataset
engineering approaches do not support precise data selection
criteria based on customer’s requirements. Additionally, data
scientists are often not trained to use software engineering
methods. However, as it is important to engineer a neural
network that satisfies the customer’s needs, thus, there is a need
for a software engineering methodology to support the efficient
creation of a dataset to engineer a neural network based on the
customer’s requirements.

In [2], we introduced a first version of a software engineering
methodology for dataset engineering based on customer’s
requirements. We presented a rigorous process for iteratively
augmenting datasets with generated synthetic data to improve
neural networks. We presented the relevant activities and
techniques to support the efficient creation of datasets based on
customer’s requirement. At each process iteration, the results of
the neural network’s tests, called test monitoring data, are
analysed to extract an informal list of potential dataset
improvements. In general, these improvements are presented to
a customer for being validated or they serve to specify the
dataset augmentation for improving a neural network to satisfy
the customer’s requirements. However, analysing the test
monitoring data and listing the dataset improvements is a very
challenging task. We categorised the test data depending on the
correctness of the classification (e.g. data labels) or the
recognition (e.g. predicted data labels). The data categories are
used to extract relevant information for listing some dataset
improvement. The process was very simplistic and does not
guide the engineer to produce effective dataset improvement for
satisfying the customer’s need. These dataset improvements are
often very technical, not-well structured, time-consuming and
complicated without precise data selection criteria. It becomes
even more challenging to discuss these improvements with a
customer without precise structure and adapted technical
terminologies.

In this paper, we extend our iterative rigorous process to
contribute to the issue of imprecise and complicated
specification of dataset improvements. We introduce a rigorous
process to support the engineers for analysing the test
monitoring data. We introduce the notion of neural network’s
key-properties (KP) to describe its recognition skills and its
improvements. The key-properties serve to define a list of neural
network’s strengths and weaknesses for a customer validation

process. Finally, they are used to specify a dataset augmentation
[3] to improve the neural network.

In Section 2, we present briefly the related work. Section 3
presents our software engineering method formalized as a
business process. Section 4 presents an experimentation of our
approach conducted on our academic meter counter recognition
case study. In Section 5, we highlight and discuss some
important aspects of our process and propose some potential
future work.

2. RELATED WORK
In this section, we present some recent studies related to our
work. We focus on related works around software engineering
methodological issues, and when possible on the particular
phase of requirements engineering. We do not focus on the
numerous machine learning works on the optimisation of the
design of neural networks.

Laroca et al. [4], Nodari et al. [5] and Vanetti et al. [6] present
different deep learning-based software systems for recognizing
the state of a meter counters. Laroca et al. introduce a new
dataset, called UFPR-AMR, of real-world images of meter
counters for training and testing their neural networks. In their
paper, they claim that it is difficult to recognize meter counter
states of noisy (dirty, dark, bright) images. They use several
techniques to generate randomly additional images by adjusting
the brightness, adding noise, rotating images or segmenting
images. The generated synthetic images are added to the initial
datasets for training their new neural network architectures.
Thus, they were able to improve the recognition of the meter
counter states. We agree that the dataset augmentation can
improve the recognition skills of a neural network. However,
they do not follow a software engineering method to develop
their neural networks based on requirements. We propose the
usage of a software engineering method to engineering
improved neural networks that satisfy the requirements of some
customer. Our software engineering method includes precise
data selection for augmenting dataset based on customer’s
requirements. The augmented dataset is used to retrain and
improve the neural network to satisfy the customer’s
requirements.

Vogelsang and Borg [7]; Kostova et al. [8] present some
advances on requirements engineering for machine learning-
based software systems (e.g. deep learning-based systems). They
claim that more research must be investigated to understand the
need of requirements engineering for machine learning. In [7],
they claim that requirements engineering must evolve in the
machine learning domain. They interviewed several data
scientist to answer questions about their background (e.g.
domain, involved projects…), their concrete usage of
requirements in their projects and their requirements engineering
approaches. Based on the answers, they summarise the
characteristics for different requirements engineering activities
(e.g. specification, analysis, verification, validation…) in the
machine learning engineering approaches. They claim that data
scientists usually improve their machine learning-based systems
by analysing technical concepts (e.g. accuracy, loss…). These
concepts are often not understood by customers, who should
validate the system. They claim that there is a need for
requirements engineering methods to map these machine
learning concepts to the customer’s requirements. We agree that
there is a need for methods to support the engineering of
machine-learning based systems, such as neural network, based

on customer’s requirements. We think that software engineers
require methods and tools to facilitate the development of
machine learning system that satisfy the customer’s
requirements.

Amershi et al. [9] present a workflow for engineering their
machine learning-based software systems used at Microsoft.
Their workflow consists of several stages such as data-oriented
(e.g. data collection, cleaning and labelling), and stages for
engineering machine-learning based software systems (e.g.
training, evaluation, deployment…). They claim that the work of
a machine learning engineer mostly consists in improving the
machine learning model’s architecture (e.g. neural network) by
adjusting their parameters (e.g. number of layers, number of
neurons, activation function…). They build their dataset by
following traditional dataset engineering approaches, such as
random data gathering, random data generation and removal of
inaccurate data (noisy data). Our process presented in this paper
differs in the sense that it is developed to support software
engineers to select and generate precisely the data needed for
training and testing a neural network that satisfies the
customer’s requirements.

Hesenius et al. [10] present a software engineering process for
engineering machine learning-based software, called EDDA.
EDDA consists of six phase that are connected to the phases of
the software engineering lifecycle [11]. They define the actors
(e.g. software engineer, data scientist, domain expert and data
domain expert) responsible for executing the tasks of their
engineering phases (e.g. data exploration, model requirements,
model development…). The data exploration phase is an
iterative process for analyzing existing data to define the goals
of the application. Afterwards, they define the requirements and
develop the machine learning model. During the development,
they follow an iterative process of feature engineering [12] from
the data, updating the machine learning model, and evaluating
the model. Our process presented in this paper differs in the
sense that we are focusing exclusively on deep learning-based
systems. In deep learning-based systems, the layers of the neural
network are describing the features of the data [13]. The features
are not designed by humans and they are learnt from data. Thus,
we iteratively improve the recognition skills of a neural network
by augmenting our datasets based on the customer’s needs. We
argue that neural networks can efficiently improve by improving
the datasets.

3. SOFTWARE ENGINEERING METHOD
We previously introduced a software engineering method [1]
formalized as a business process using the BPMN 2.0 [14]
modelling language. The main purpose of the initial process is to
support engineers for the efficient development of neural
network-based software systems. We consider designing
appropriate datasets to train and test neural network based on
customer’s requirements. Thus, the trained neural network
should recognise the data based on the needs expressed by a
customer. The initial process consists of three different types of
activities and three different types of data objects, listed below.

• Activity types
o dataset engineering activities
o neural network software engineering

activities
o neural network execution activities.

• Data objects types
o Datasets

o Neural Networks
o Neural Networks Data

Concretely, the initial process is designed as a cyclic flow graph
consisting of 9 main activities and 10 data objects. To give you a
concrete overview of our initial process, we summarise our
process using these groups of activities:

1. Engineering datasets and a neural network
2. Analysing the trained neural network
3. Defining a dataset augmentation
4. Generating synthetic data
5. Reengineering the dataset with the synthetic data
6. Return to 1 and reengineer the neural network

When engineering a neural network with respect to our process,
we usually have to test the trained neural network at some step.
Neural networks are tested on a set of testing data. The dataset
should consist of precisely selected data in order to verify the
neural network’s recognition skills. The results of the neural
network’s tests, called test monitoring data, need to be analysed
to understand the neural network’s recognition skills. In the
current process, the way to perform this analysis remains unclear
and quite complicated, we gather some test data information by
decomposing it into the following four categories:

1. Correctly Recognised data (CR)
2. Incorrectly Recognised data (IR)
3. Correctly Classified data (CC)
4. Incorrectly Classified data (IC)

Engineers are free to specify the recognition skills in their own
way. This leads often to confusions and issues, when presenting
the neural network to the customer. It may also lead to
incomplete and inconsistent specification. Since the
specification is used to define a dataset augmentation, we might
need to iterate many times through the process to obtain the
customer’s validation. Moreover, these specifications are often
written at a technical level. Customers often lack in technical
knowledge, which makes it hard to discuss the recognition skills
with them.

In this section, we present a new version of this software
engineering method for augmenting datasets based on the
specification of the neural network’s key-properties. Our goal is
to improve the process of analysing the test monitoring data to
obtain clear customer’s feedback and improve the specification
of the dataset augmentation. Therefore, we present our new
process consisting of some modified and refined activities. We
focus mainly on the customer’s requirements and analysis of the
test monitoring data. We introduce the key-properties to
describe the recognition skills of the neural network.

We present a new subprocess for analysing the test monitoring
data to specify the neural network’s recognition skills. We use
the specification to improve the customer’s validation process
and the dataset augmentation specification. We designed the
new process using the BPMN 2.0 modelling language. Our new
process still consists of 9 main activities. We modified two
activities, the analysis of the test monitoring data and the dataset
augmentation specification. We refined the activity for analysing
the test monitoring data by defining a precise sub-process
consisting of 4 activities. We introduce an additional data object,
called the key-properties specification.

In the upcoming section, we present in detail the modified
activities. Figure 1 shows an overview of the modified activities
of the business process introduced in this paper. The neural
network execution activities are represented in green and the
dataset engineering activities are represented in blue.

Figure 1. Business process for specifying the neural

network's key-properties.

3.1 Data Input
In this section, we present the new process’ data input. The
process’ Data input consists of a collection of classified data and
a list of requirements to describe the customer’s needs.

The collection of classified data remains unchanged except for a
recommendation on the dataset construction that we would like
to put emphasis on. The classified data is needed for training and
testing the neural network. A classified data is any artefact that
has been labelled with some relevant information (e.g.
description of the content, integer…). The classified data serves
to engineer some raw datasets for training and testing a target
neural network. They may be collected or obtained from the
customer. However, we recommend discussing with the
customer to obtain a set of classified test data. This set should be
used later in this process to test the targeted neural network. The
data should be selected carefully in order to cover the most
important test cases needed for validation of the neural network.

We add a list of requirements to the data input. The
requirements are needed to define the initial customer’s needs.
This step is mandatory for being able to engineer a neural
network that satisfies its requirements. Following software
engineering best practices in requirements engineering, an
engineer meets a customer to discuss the requirements of the

Customer
Validation

Failed

Customer
Validation
Passed

E. Test the
Target NN

G. Specify Synthetic
Dataset Augmentation

test
monitoring

data

Activities A - D

Activities H-I

F.Analyse
Test Monitoring Data

F.1. Identify New
Key-Properties

F.2. Specify Key-Properties

targetNN's
key

properties

F.3. Analyse TargetNN's
Key-Properties

key
properties

report

F.5. Specify Improved
Key-Properties

Customer
Validation Failed

Customer Validation Passed

Key-Properties
Specification

targeted neural network before executing our process. Based on
the discussion, the engineer defines a list of initial requirements
to be taken as input in our process.

3.2 Raw Datasets and targetNN Engineering
In this section, we present the dataset and neural network
engineering initial activities of our process:

1. Engineering raw datasets consists in the creation of
the equivalence classes and the required datasets. The
equivalence classes are defined based on the classes
used for classifying the input data. The datasets are
called training, testing and development datasets. They
are composed of a selection of input data. Usually,
these datasets do not share any common data.

2. Engineering the targetNN consists in designing and
implementing a neural network architecture (e.g.
convolutional neural network). It includes choosing
the appropriate layers, activation functions, loss
function, …

3. Train the targetNN consists in training the
implemented targetNN using the training and the
development datasets. During the training, the neural
network processes the training images and adjusts the
weights on the neurons. This activity is executed
multiple times until the accuracy and loss start to
converge.

4. Analysing the training monitoring data focuses on the
analysis of the results of the neural networks’ training.
The training monitoring data consists of the values of
the accuracy and the loss during the training, the
overall accuracy and loss after the training. The
accuracy describes the amount of correctly recognised
data. The loss is a measure to describe the precision of
the recognised data. Usually, we analyse if the neural
network is tending to over- or underfit [15].

5. Test the targetNN consists in verifying the targetNN.
The neural network processes the images of the testing
dataset. We verify the recognition skills of the neural
network. We generate several diagrams, images grids
and statistics to build the test monitoring data. The
output of this activity is the test monitoring data.

3.3 Analyse the Test Monitoring Data
In this activity, we focus on analysing the test monitoring data.
This activity has been modified and integrated in our new
process. We present a new subprocess for analysing the test
monitoring data, specifying the neural network’s key-properties
and validating the target neural network. The subprocess
consists of four activities. We present in detail the activities of
our process here.

3.3.1 Identify new key-properties
This activity’s data input is the test monitoring data. During this
activity, the engineer analyses the test monitoring to extract and
specify the relevant information about the neural network’s
recognition skills. These recognition skills are described with
the neural network’s key-properties. In this activity, the engineer
focuses on the identification of the key-properties by analysing
the test monitoring data. As the instances of test monitoring data
may vary depending on the executed neural network’s tests, the
engineers verify if the list of identified key-properties must be
updated at each process iteration.

First, the engineer categorises the test monitoring data into two
main categories, called the quantitative and qualitative data [16].
The engineer analyses the test monitoring data and determines in
which category the data belongs to:

• Quantitative data is a subset of the test monitoring
data used for identifying numerical key-properties.

• Qualitative data is a subset of the test monitoring
data used for identifying key-properties represented in
any textual or Boolean format.

In a second step, the engineer should analyse the categorised test
monitoring data to identify the new key-property. The resulting
key-properties are grouped into two main categories, the
quantitative and qualitative properties. The engineer may
subdivide the properties into further smaller subcategories to
improve their structure. Table 1 shows an overview of our
proposed key-properties categorisation.

• Quantitative properties are usually described as a
numerical value. (e.g. dataset size, accuracy, loss,
number of recognised data)

• Qualitative properties are usually represented as a
textual or boolean expression.

We suggest categorising the key-properties into sub-categories
to improve the structure. The two sub-categories for the
quantitative properties are continuous and discrete.

• Continuous properties have their value belonging to
a non-countable set. (e.g. accuracy, loss…)

• Discrete properties have their value belonging to a
countable set such as dataset size, categorisations,
number of correctly and incorrectly classified data...

We apply the same idea for the quantitative properties. We
suggest categorising the qualitative key-properties in the
categories of nominal, ordinal or logical properties.

• Nominal properties are characterized as textual
representations. These properties are usually only
named in textual format. (e.g. data description, image
content, …)

• Ordinal properties are characterized as textual
representation with a certain order. These properties
are usually defined as a name, which is part of an
ordered set. (e.g. categorical evaluation of data
classification…)

• Logical properties are characterized typically as a
boolean expression. These properties usually can only
be true or false (e.g. correctness of data
classification…)

Finally, the categorised key-property types are the activity’s data
output used in the next activity.

Table 1. Property categorisation
Key-properties categorisation

Quantitative (QT) Qualitative (QL)
Continuous
(C)

Discrete
(D)

Nominal
(N)

Ordinal
(O)

Logical
(B)

3.3.2 Specify key-properties
This activity’s data input is the categorised key-property types.
The engineer uses the key-property types to specify a list of key-
properties of the trained neural network. At each iteration of the
process, the engineer has to perform the following tasks:

1. Select a key-property type.
2. Select the most appropriate test monitoring data to

define the key-property.
3. Analyse the selected test monitoring data with respect

to the key-property type.
4. Specify the key-properties in different tables with

respect to the categorisation of the key-property types.
5. Return to 1. and continue until all key-property types

are covered.
The key-properties should be written in a similar format as the
initial requirements in order to facilitate the verification of the
satisfaction of the customer’s requirements.

Finally, the key-property specification should be updated at each
iteration of the process based on the identified key-property
types. This allows us to track the evolution of the key-properties
and to justify the satisfaction of the customer’s requirements.

3.3.3 Analyse targetNN’s key-properties
The engineer analyses the key-properties specified in the
previous activity to define a list of strengths and weaknesses of
the neural network. The strengths of the neural network should
reflect and motivate the satisfaction of some customer’s
requirements. The weaknesses should show and validate the
unsatisfied customer’s requirements. Moreover, the engineer
should propose some improvements in order to satisfy these
requirements. The list of strengths, weaknesses and
improvements should be less technical and written using a
‘customer-friendly’ vocabulary.

When the list of strengths, weaknesses and improvements is
defined, it is then presented to the customer. The customer
should reflect on the current version of the neural network. The
engineer and the customer should discuss the strengths,
weaknesses and improvements in order to clarify or propose
some requirements. The goal is that the customer obtains an
overview of his ordered product and participates to the evolution
of the requirements. The customer may criticise some strengths,
weaknesses or improvements. He should have the possibility to
propose additional requirements, strengths, weaknesses or
improvements. These proposals should be considered by the
engineer during the further software construction.

Finally, the customer should validate the targetNN based on the
presented information. Based on the customer’s decision, we
may stop the process or continue to improve the targetNN.

3.3.4 Specify improved key-properties
This activity is only run if the customer did not validate the
targetNN. In this activity, the engineer analyses the discussion
with the customer. The engineer should reflect on the improved
key-properties from the customer’s needs. These improved
properties should be satisfied by the targetNN after a second
process iteration. The specification of the improved key-
properties serves to obtain a better overview of the desired
targetNN. Thus, the engineer has a clear picture of the targetNN.

Finally, the output of this activity is the specification of the
improved key-properties.

3.4 Specify Synthetic Dataset Augmentation
This activity’s data input is the specification of the key-
properties. In our initial definition of the process, we focused on
analysing the correctly/incorrectly classified and recognised
classes. Based on this analysis, we defined some dataset
modifications to improve our neural network.

In the updated process presented in this paper, we define our
dataset augmentation based on the specification of key-
properties. The key-property specification might cover the
analysis of the correctly/incorrectly classified and recognised
classes. Thus, the engineer would also be able to follow the
previous version of our process. However, the specification of
the key-properties allows us to have a larger understanding of
the neural network’s recognition skills. Thus, this large
understanding allows us to improve our dataset augmentation by
considering the key-properties instead of only the
correctly/incorrectly classified and recognised data.

The engineer analyses the specification of the key-properties and
verifies if the current datasets are compatible with the
specification. The detected issues of the datasets must be solved
by specifying a dataset augmentation. The engineer analyses the
key-property specification and the suggested improvements.
Based on the analysis, the engineer specifies some dataset
modifications and improvements. These dataset modifications
and improvements are specified to obtain the dataset
augmentation specification. The engineer might define
operations such as:

• Generate additional data to strengthen the neural
network’s recognition skills

• Remove some unrecognizable data from the dataset

• Generate data to have more data variations (e.g. flip,
rotate…)

• ….
Finally, the dataset augmentation specification is created. The
dataset augmentation consists of a list of properties and tasks
concerning the new datasets, e.g. “Generate 4 random images
with shifted digits per equivalence class to strengthen the
targetNN’s recognition precision”.

3.5 Synthesizer and Augmented Dataset
Engineering
In this section, we present the remaining process activities
before iterating the process. This part of the process focuses on
engineering a data synthesiser and generating the synthetic data.

The first activity focuses on the engineering of a synthesizer.
Based on the dataset augmentation, the engineer has to find the
best synthesizer type for generating the required synthetic data.
In our initial definition of the process, we suggested only the
usage of a synthesizer neural network (synthesizerNN). In the
updated process presented in this paper, we suggest these two
different options:

• Synthesizer refers to a classical program. The
program consists of functions that are able to
manipulate data. (e.g. image filters, cropping,
rotating…)

• SynthesizerNN refers to a neural network-based
program for automatic data generation. The
synthesizerNN may be, for instance, a generative
adversarial network [17].

The second activity focuses on generating an augmented dataset.
This activity remains unchanged as in [1]. The engineer starts
with the synthetic data generation by executing the synthesizer.
He monitors the synthesizer execution. Once the synthesizer has
generated the synthetic data, the engineer evaluates the data
manually or using some similarity function. The similarity
function is used to compare the generated synthetic data with the
original data and to sort out the synthetic data that differ to much
from the original data. The engineer may define a tolerance
threshold for the similarity of the synthetic and original data.

The accepted synthetic data is added to the different dataset with
respect to the dataset augmentation specification.

4. EXPERIMENTATION
In this section, we present an experimentation conducted on the
approach introduced in this paper. We describe an academic
case study on the recognition of a meter counter state to
experiment our approach. In this experiment, we instantiate our
process to engineer a dataset and a neural network (NN), which
recognizes the state of a two-digit mechanical meter counter,
based on customer’s requirements.

Before executing the process, we define a set of initial
customer’s requirements to be satisfied by the dataset and the
neural network. Table 2, below, describes these functional
requirements (FR):

Table 2. Customer's functional requirements
ID Description

FR1 A digital digit shall be represented with 7 segments.

FR2 The meter counter state shall be represented as digital
two-digit numbers from 00 to 99.

FR3 The incrementation of a meter counter shall be
represented as shifts of the incremented digit(-s) from
top to down.

FR4 Images shall be sharp, dark, bright or dusty images.

FR5 The image size shall be fixed to 310x330 pixels.

FR6 The NN’s output shall be two integers values.

FR7 NN shall recognise the state of a two-digit meter
counter by outputting the corresponding integer
value.

Secondly, we define these non-functional requirements (NFR),
as described in Table 3, below:

Table 3. Customer's non-functional requirements
ID Description

NFR1 NN shall recognise >99% of training data.

NFR2 NN shall recognise >97% of development data.

NFR3 NN shall recognise >95% of testing data.

NFR4 NN’s loss shall be less than 0.02.

Given the customer’s requirements, we execute our process’
activities to engineer the requested dataset and a neural network.
In this experiment, we focus on the process' activity F (Act-F)
which is our main contributions and summarize the other
activities.

4.1 Raw Datasets and targetNN Engineering
The process’ Data Input is a set of classified reference and test
images provided by the customer and having these
characteristics:

• 10 reference images, imgref Î [0, 255]310´165, classified
into 10 equivalence classes, ecref = {0,...,9}. The
images represent a digital digit in [0...9]

• 172 testing images, imgtest Î [0, 255]310´165, classified
into 100 equivalence classes eccounter = {ecref, ecref}.
These images consist of a random selection of meter
counter states with digital numbers in [00..99]. The
images show sharp, dark, bright or dirty digits.
Moreover, some images represent shifted digits to
model the change to the next greater integer value.

The first process’ activity focuses on engineering the raw
datasets. Given the Data Input, we concatenate all possible
combinations of two reference images to obtain the
representative classified images of meter counter states. The
concatenated images show all representative and sharp digital
numbers in [00..99]. Figure 2 and 3 show the reference images
and some random samples of generated images.

Figure 2. Reference images.

Figure 3. Random samples generated meter counter images.

Given the raw classified images dsraw and the classified test
images, we performed the four tasks described in the approach
to create our equivalence classes and datasets:

• The equivalence classes are defined as eccounter = {ecref,
ecref}.

• The training dataset, dstrain ÎR([0, 255]310´165
´eccounter), consists of 645 random images from dsraw.

• The development dataset, dsdev ÎR([0, 255]310´165
´eccounter), contains the 40 remaining images from
dsraw.

• The testing dataset, dstest Î R([0, 255]310´165´eccounter),
contains all classified test images.

In the next process' activity, we focus on engineering a target
neural network (targetNN). Laroca et al. [5] present a
convolutional neural network (CNN) architecture for the
recognition of a real-world meter counter state. Our CNN
architecture and targetNN implementation in this
experimentation is inspired from them. We implemented our
CNN in Python [18] using the Keras [19] and Tensorflow
libraries [20].

Our targetNN has 9 layers: 4 convolutional layers, 2 max-
pooling layers, 2 fully connected layers with a random dropout
of 30% and 1 output layer with randomly initialized weights.
We use the activation function "Relu" except in the output layer,
where we use the activation function "Sigmoid". The output
layer has 20 neurons and outputs a probability distribution over
2 x 10 possible equivalence classes. The probability distribution
describes the likelihood that a digit at the tens’ and ones’
position is recognized as an equivalence class. We selected the
“binary cross-entropy” [21] function as our loss function.

The next process’s activities focus on the targetNN training and
the analysis of the training monitoring data. We trained our
targetNN 1 for +/-4 hours and 25 epochs. We observed the
targetNN’s accuracy evolution on the training and development
dataset. We decided to adjust the targetNN’s parameters to
reduce signs of over- and underfitting [22] based on our
observations. Figure 4 shows the accuracy and loss evolution on
the training and development dataset. After the training, we
analysed our training monitoring data consisting of an accuracy
and a loss value for the training and development dataset. Our
targetNN reached the following accuracies and losses:

• dstrain: accuracy 100% and loss 0.002707.
• dsdev: accuracy 99.37% and loss 0.024017.

From the analysis of these accuracies and loss values, we can
conclude that it is unlikely that the targetNN is overfitting. Thus,
we can stop the training, then accept and freeze the targetNN’s
architecture.

1 The targetNN training has been performed on a machine

having the following specs: 2,4Ghz - 32GB RAM;

Figure 4. Accuracy and loss diagram for dstrain and dsdev.

4.2 Test the targetNN
In this activity, we test our targetNN with the test images of
dstest. As described in the previous section, our targetNN takes
as input every test image and outputs a probability distribution
over 2x10 equivalence classes. We decide to classify the left and
right digits of the image separately in the equivalence classes
with highest probability of the first 10 resp. last 10 equivalence
classes.

Thanks to our selection criteria, we are able to compare the
targetNN’s recognized equivalence classes with the expected
equivalence classes. It allowed us to generate these test
monitoring data computed from the testing dataset using the
bokeh library [23]:

• dstest: accuracy 99.56% and loss 0.028118
• 3 confusion matrices for measuring quantitatively the

correctly and incorrectly recognized images (CR and
ICR images)

• 2 grids of correctly, resp. incorrectly, recognized
images

Figure 5 shows some sample images of correctly and incorrectly
recognized images.

Figure 5. Random samples of correctly and incorrectly

recognised images.

4.3 Analyse the Test Monitoring Data
In this activity, we present our analysis of the test monitoring
data and the specification of the key-properties of our targetNN.
Our first activity focuses on the identification of the new key-
properties.

4.3.1 Identify new key-properties
The activity’s Data input is the test monitoring data resulting
from the previous activity. We classify the test monitoring data
into the following two main categories, quantitative and
qualitative data:

• Quantitative data
o Accuracies
o Losses
o Confusion Matrices

• Qualitative data
o Grids of CR and ICR recognised images
o Accuracy and Loss evolution diagram

We use the categorised test monitoring data to identify a set of
properties to be specified for our dataset and trained neural
network. In this experiment, we list the most important
properties to illustrate our approach. Table 4 shows a list of
identified quantitative key-property types.

Table 4. List of quantitative key-property types
Category Subcategory Property
Quantitative Discrete Number of CR/IR images
Quantitative Discrete Number of CR/IR images per

equivalence class
Quantitative Discrete Size of datasets
Quantitative Continuous Ratio of CR/IR images
Quantitative Continuous Ratio of CR/IR images per

equivalence class
Quantitative Continuous Ratio of CR/IR images per

equivalence class
Quantitative Continuous Neural network’s recognition

precision
Table 5 shows a list of identified qualitative key-property types.
We use these key-property types to specify the key-property
instances of our datasets and targetNN.

Table 5. List of qualitative property types
Category Subcategory Property
Qualitative Logical Data and classification

correctness
Qualitative Logical Correctness of the classification

and recognition
Qualitative Nominal Data consistency
Qualitative Nominal Groups of incorrectly recognised

images
Qualitative Ordinal Recognition weaknesses and

strengths
Qualitative Ordinal Threshold for belonging to an

equivalence class

4.3.2 Specify key-properties
In this activity, we focus on the specification of the identified
key-properties with respect to the list of identified key-
properties. We determine the key-properties based on our
observations on the test monitoring data. The key-properties of
our targetNN and our datasets are specified in natural language.

Table 6 shows a list of specified quantitative key-properties. We
mainly focus on specifying the amount of correctly and
incorrectly recognised (resp. classified) data. Additionally, we
specify statistics on the datasets and the targetNN’s recognition
precision.

Table 6. Quantitative key-properties at iteration 1
ID Subcategory Description
KPv1,1 Continuous NN recognises 99.97% of the

training data
KPv1,2 Continuous NN recognises 99.25% of the

development data
KPv1,3 Continuous NN recognises 99.50% of the testing

data
KPv1,4 Discrete NN recognises the left digit on 8

images incorrectly.
KPv1,5 Discrete NN recognises the right digit on 3

images incorrectly.
KPv1,6 Continuous NN has an average loss of 0.02624
KPv1,7 Discrete 320 (all) images have been correctly

classified.
KPv1,8 Discrete The test dataset size is 320

Table 7 shows a list of specified qualitative key-properties. We
focus on the specification of the following properties:

• Correctness of the recognised equivalence classes
• Tested equivalence classes
• TargetNN’s recognition weaknesses and strengths

Table 7. Qualitative key-properties at iteration 1
ID Subcategory Description
KPv1,9 Logical NN recognises the left digit in

ectens={1,3,6,7} correctly.
KPv1,10 Logical NN recognises the left digit in

econes={0,2,4,5,8,9} incorrectly.
KPv1,11 Logical NN recognises the right digit in

ectens={1,2,3,4,5,7,8,9} correctly.
KPv1,12 Logical NN recognises the right digit in

econes={0,6} incorrectly.
KPv1,13 Nominal NN’s recognition of ecclass = {30}

has not been tested.
KPv1,14 Ordinal The equivalence class to which an

image will be declared to belong to
is the one for which the recognition
probability is the highest.

KPv1,15 Nominal NN recognises the sate of a meter
counter at a 60% certitude, if both
digits are shifted.

KPv1,16 Nominal NN does not always recognise
images of shifted digits on sharp and
dirty images.

KPv1,17 Ordinal NN recognises the right digit on an
image very well.

Thanks to our specification of the key-properties of the dataset
and the targetNN, we are able to obtain an overview of the
targetNN’s recognition skills. This allows us to perform the next
activity of our software engineering process.

4.3.3 Analysing targetNN’s key-properties
In this activity, we focus on the analysis of our specified key-
properties. We present a list of strengths and weaknesses of our
targetNN and our datasets that could be presented to some
customer 2 . Additionally, we suggest some solutions to
potentially improve our targetNN. Table 8 shows a list of
weaknesses of our targetNN and proposed solutions.

Table 8. Detected weaknesses at iteration 1
Weakness Proposed solution
Low number of test cases,
since we have 2 images per
equivalence class in average.

Augment the testing dataset
with sufficient variations and
at least 5 images per
equivalence class

Recognition problems, if the
digit at the ones place is a 0
or 9.

Augment the training dataset
with images that contain a 9
or a 0 at the ones place.

Recognition precision (loss
value not satisfied).

Augment the training dataset

Neural network’s recognition
policy (When do we consider
that the neural network has
recognised some data?)

The equivalence class to
which an image will be
declared to belong to is these
ones for which the
recognition probability is
higher than 0.9.

Table 9 shows a list of strengths of our targetNN.

Table 9. Detected strengths at iteration 1
Strengths Descriptions
Overall recognition
correctness

The targetNN recognised correctly
recognise more than 99% of the
training, development and testing
data.

targetNN’s reliability The targetNN is not showing signs
of over- and underfitting.

targetNN’s recognition
precision

The targetNN’s recognition
precision can be improved to
satisfy the initial requirement

Dataset augmentation
simplicity

The dataset design allows us to
generate efficiently synthetic data
to augment the dataset

The results and the suggested improvements have to be
presented to the customer for validating the neural network. The
weaknesses and strengths are discussed with the customer to
obtain a first feedback. A customer might suggest some
weaknesses to be solved. A customer could claim that the
recognition problems of our targetNN may lead to some severe
financial problems in his institution. Let’s suppose that it is

2 This is an academic case study, as such, no real customer was

part of the experimentation. Thus, all mentions to a customer
are assumptions to perform an interesting case study for the
illustration of our approach.

mandatory for him to recognise the state of the meter counter at
a precision of +/- 2. Table 10 summarises some possible
customers weakness proposals.

Table 10. Customer's weakness proposals at iteration 1
Weakness Proposed Solution
High differences in between
the classification and
recognition

Recognise the state of the
meter counter at a precision
of +/- 2.

As a result of the discussion, let’s suppose that the targetNN has
not been validated by the customer. Thus, we decide to improve
the targetNN in a second process iteration to satisfy the
customer’s requirements.

4.3.4 Specify improved key-properties
In this activity, we focus on the specification of the improved
key-properties based on the results of our discussion with the
customer. Thus, we specify a new set of improved key-
properties to be satisfied by the neural network.

Table 11. Specification of improved key-properties
ID KP Description
KPv1,imp,1 KPv1,14 The acceptance threshold that an image

belongs to an equivalence class should
be fixed to 0.9.

KPv1,imp,2 KPv1,8 The testing dataset size should be at least
1000. There should be at least 5 images
per equivalence class.

KPv1,imp,3 KPv1,18 The right digit of an image can be
recognised with a tolerance of +/- 2.

Table 11 shows a list of specified improved key-properties
resulting from the discussion with the customer. The improved
key-properties must be satisfied after the second process
iteration. We can move forward to the next activity of our
process.

4.4 Specify Synthetic Dataset Augmentation
In this activity, we focus on the specification of the synthetic
dataset augmentation. We consider the discussed improved key-
properties to specify our dataset augmentation. Table 12 shows a
list of data generation operations to augment our datasets.

Table 12. Dataset augmentation specification
ID Description
DSaug,1 Generate 5 random images per equivalence class to

be added to the testing dataset.
DSaug,2 Generate 100 random images with a 9 or 0 at the

ones place.
DSaug,3 Generate 2 random images per equivalence class to

be added to the training and development dataset to
strengthen the targetNN’s recognition.

DSaug,4 Generate 4 random images with shifted digits per
equivalence class to strengthen the targetNN’s
recognition precision.

We use the dataset specification augmentation in the next
activity of our software engineering process.

4.5 Synthesizer and Augmented Dataset
Engineering
In this activity, we focus on engineering a synthesizer to
augment our datasets. We do not design a synthesizer neural
network as originally described in Jahic-et-al’s paper [1]. We
implemented in Python a set of functions to generate data based
on the dataset augmentation specification. We used different
libraries (e.g numpy [24], skimage [25] and bokeh [23]) to
support efficient data management and the generation of our
synthetic image.

Thanks to the reference images, we are able to generate some
sharp images of a meter counter. Additionally, we add different
types of noise to the sharp images in order to simulate dirty
images using the skimage library. They selected randomly some
images and changed their brightness, which allowed us to
generate additional data to be added to the dataset. The
generated data is used to augment the dataset with additional
images to satisfy the dataset augmentation specification.

Finally, we collect and sort all the generated data based on our
dataset augmentation specification. The generated data is added
to the corresponding datasets. Thus, we obtain new augmented
training, development and testing datasets. These datasets are
then used to run our process a second time and to improve the
neural networks recognition.

4.6 Summary of 2nd Process Iteration
In this section, we summarise our activities of the 2nd process
iteration. As in the previous process iteration, we retrain our
targetNN on the same number of epochs. The resulting training
monitoring data has been analysed in detail to detect some signs
of over- or underfitting. We did not detect any sign of over- or
underfitting after the second training. Afterwards, we execute
our new targetNN (targetNNv2) to recognise the images of the
test dataset. The resulting test monitoring data are analysed in
activity “Analyse test monitoring data” of our process.

In activity “Identify new key-properties”, we first start by
identifying the key-properties. We categorise our test monitoring
data into our previously defined categories. Based on our
observations of our key-properties, we do not identify new types
of key-properties. We accept the previously defined activity to
move to the next process’ activity, activity “specify key-
properties”. We focus on the specification of the key-properties
of our targetNNv2 and datasetv2. Table 13 and 14 show our new
list of key-properties of our targetNN and our datasets.

Table 13. Quantitative key-properties at iteration 2
ID Description
KPv2,1 NN recognises 100% of the training data
KPv2,2 NN recognises 100% of the development data
KPv2,3 NN recognises 99.59% of the testing data
KPv2,4 NN recognises the left digit on 5 images

incorrectly.
KPv2,5 NN recognises the right digit on 2 images

incorrectly.
KPv2,6 NN has an average loss of 0.014919

KPv2,7 600 (all) images have been correctly classified.
KPv2,8 The test dataset size is 600
KPv2,9 NN does not recognise 7 noisy images with dark or

bright backgrounds
KPv2,10 NN does not recognise 3 noisy images with dark

background and dark digits
KPv2,11 NN does not recognise 2 noisy images with bright

background and bright digits
KPv2,11 NN does not recognise 2 noisy images with bright

background and dark digits

Table 14. Qualitative key-properties at iteration 2
ID Description
KPv2,9 NN recognises the left digit in ectens={0,1,3,4,5,7}

correctly.
KPv2,10 NN recognises the left digit in econes={2,6,8,9}

incorrectly.
KPv2,11 NN recognises the right digit in

ectens={0,1,3,4,5,6,7,8} correctly.
KPv2,12 NN recognises the right digit in econes={2,9}

incorrectly.
KPv2,13 All equivalence classes have been tested.
KPv2,14 The equivalence class to which an image will be

declared to belong to is the one for which the
recognition probability is higher than 0.9.

KPv21,15 NN recognises the sate of a meter counter at more
than 90% certitude, if both digits are shifted.

KPv2,16 NN does not always recognise images of shifted
digits on sharp and dirty images

KPv2,17 NN recognises the left and right digit on an image
very well.

In the next process’ activity “analyse targetNN’s key-
properties”, we focus on the analysis of the key-properties.
Again, we defined a list of strengths and weaknesses of our
targetNN. Table 15 and Table 16 show a set of detected
weaknesses and strengths of our targetNN.

Table 15. Detected weaknesses at iteration 2
Weakness Proposed solution
High number of unrecognised
very dirty images

Augment the datasets with
very dirty images.

Table 16. Detected strengths at iteration 2

Strengths Descriptions
Overall recognition
correctness

The targetNN recognised correctly
more than 99% of the training,
development and testing data.

Specific recognition
correctness

The targetNN recognised very
well all kinds of images as
described in the requirements.

targetNN’s reliability The targetNN is not showing signs

of over- and underfitting.
targetNN’s recognition
precision

The targetNN’s recognition
precision satisfies the initial
requirement.

These weaknesses and strengths have been discussed with our
customer. Let’s suppose that he claims that the very dirty images
are even difficult for humans to be recognised. This led the
customer to add a functionality request for the neural network
which is to detect dirty meter counters in order to either clean
them or replace them. Thus, we should specify a new
equivalence class, called ‘dirty images’, in the next activity. We
then reclassify some very dirty images into the new equivalence.
A 3rd process iteration could be lunched to train the neural
network to satisfy the remaining improved key-properties.

As a result of our discussion, let’s suppose that the customer
validates our targetNN. Thus, the targetNN can be deployed on
the customer’s desired platform.

5. DISCUSSION
In this section, we present two main points of discussion. We
present the current problems and limitations. We propose some
improvements and briefly describe the related work.

A first point to discuss is that in our process, we do not define
precisely the notion of customer’s satisfaction. In the process
presented in this paper, a customer is only able to express his
satisfaction using a binary decision. Thus, he can validate a key-
property with a yes/no-answer or propose some alternative key-
properties to be satisfied. In case of a negative feedback of
customers, the engineer must reengineer the datasets and the
neural network until the key-properties are validated by the
customer. However, this process is time-consuming, and it is
very difficult to validate the requirements. Moreover, it is
difficult to keep track of the changed requirements during the
evolution of the datasets and the neural network. Guelfi [26]
presents a formal framework for dependability and resilience
from a software engineering perspective, called DREF. He
introduces the notion of satisfiability as a measure for evaluating
a property (e.g. requirements…) of an entity (e.g. programs,
neural networks…). The satisfiability is expressed as a real
number of a user-defined grading scale. Moreover, he introduces
the notion of tolerance threshold to describe precisely the
strictness of the customer’s satisfiability. He visualises the
satisfiability for the evolution of each entity in time. We suggest
as possible improvement to integrate the DREF framework into
our process to precisely describe the satisfiability of the
customer’s key-properties. Thus, the engineer could focus on
engineering a neural network for the most important key-
properties as per the customer’s satisfiability. Additionally, we
would be able to visualize the evolution of the satisfiability of
the key-properties. Thus, we could use these diagrams to discuss
the neural network’s development progress and key-property
improvements with the customer.

A second point to discuss is that in our process, we specify our
key-properties informally using tables and natural language.
Moreover, the process presented in this paper involves a lot of
manual steps to specify the neural network’s key-properties.
Since the key-properties are currently specified in natural
language, the specification could lead to misunderstandings.
Thus, the engineer requires support to precisely specify the
neural network’s key-properties. Most papers talking about
specifications present domain-specific languages [27-30] for the

construction or the execution of neural networks. Mostly, they
present domain-specific languages for the specification of an
architecture of a neural network facilitate the implementation.
We argue that the usage of domain-specific languages to specify
the neural network’s key-properties would improve our process.
The domain-specific language would ease the identification and
specification of the key-properties. Useful features, such as
specification templates, auto-completion, syntax highlighting,
would support the engineer to specify precisely the key-
properties. Additionally, a translation program that interprets the
specification of the key-properties and generates a dataset
augmentation specification would facilitate the design of a
synthesizer.

6. CONCLUSION
In this paper, we have presented an updated version of a
software engineering process for improving neural networks
using dataset augmentation based on customer’s requirements.
We introduced the notion of key-properties for specifying the
neural network’s key-properties. We presented a subprocess for
specifying, improving and validating the neural network’s key-
properties. The process has been formalized using the BPMN
2.0 modelling language. We have presented a concrete
experimentation of our software engineering process. We
conducted our experimentation on an academic case study on
the recognition of a meter counter state. The experimental
results show that our approach is promising, because we
improved our neural network’s recognition skills by augmenting
our datasets based on the specification of the neural network’s
key-properties.

For future work, we will work on a formal definition of a
domain-specific language for data scientists. The domain-
specific language should support the specification of the neural
network’s key-properties. We will use model-driven engineering
[31] methods for generating a dataset augmentation specification
interpreted from the specification of the neural network’s key-
properties.

Another future work would be the integration of DREF
framework [26] into our process. We could propose a process
for specifying the resilience of neural network-based systems
based on customer’s requirements. Thus, the data scientist could
specify precisely the satisfiability and the customer’s acceptance
tolerance for each requirement. The process would improve the
key-properties specification and as a result also the dataset
augmentation for engineering a neural network that satisfies the
customer’s requirements.

7. REFERENCES
[1] Goodfellow, I., Bengio, and Y., Courville, A., 2016. Deep

Learning. MIT Press.
[2] Jahic, B., Guelfi, and N., Ries, B., 2019. Software

Engineering for Dataset Augmentation using Generative
Adversarial Networks. In 10th International Conference on
Software Engineering and Service Sciences. 59-66.
DOI=https://doi.org/10.1109/ICSESS47205.2019.9040806

[3] Wong, S. C., Gatt, A., Stamatescu, V., and McDonnell, M.
D., 2016. Understanding data augmentation for
classification: when to warp?. In 2016 international
conference on digital image computing: techniques and
applications, 1-6. DOI=https://doi.org/
10.1109/DICTA.2016.7797091

[4] Nodari, A., and Gallo, I., 2011. A Multi-Neural Network
Approach to Image Detection and Segmentation of Gas
Meter Counter. In International conference on Machine
Vision Applications. 239-242.

[5] Laroca, R., Barroso, V., Diniz, M. A., Gonçalves, G. R.,
Schwartz, and W. R., Menotti, D., 2019. Convolutional
neural networks for automatic meter reading. Journal of
Electronic Imaging, 28(1), 013023. DOI=
https://doi.org/10.1117/1.JEI.28.1.013023

[6] Vanetti, M., Gallo, I., and Nodari, A., 2013. GAS meter
reading from real world images using a multi-net
system. Pattern Recognition Letters, 34(5). 519-526. DOI=
https://doi.org/10.1016/j.patrec.2012.11.014

[7] Vogelsang, and A., Borg, M. 2019. Requirements
Engineering for Machine Learning: Perspectives from Data
Scientists. In 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW). 245-251.

[8] Kostova, B., Gurses, S., and Wegmann, A. 2020. On the
Interplay between Requirements, Engineering, and
Artificial Intelligence. In 25th International Working
Conference on Requirements Engineering: Foundation for
Software Quality - Workshops.

[9] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H.,
Kamar, E., Nagappan, N., Besmira, N., and Zimmermann,
T. 2019. Software engineering for machine learning: A case
study. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in
Practice. 291-300.

[10] Hesenius, M., Schwenzfeier, N., Meyer, O., Koop, W., and
Gruhn, V., 2019. Towards a software engineering process
for developing data-driven applications. In 2019
IEEE/ACM 7th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering
(RAISE), 35-41.

[11] Sommerville, I. 2016. Software Engineering. Harlow:
Pearson Education Limited.

[12] Zheng, A., and Casari, A. 2018. Feature engineering for
machine learning: principles and techniques for data
scientists. O'Reilly Media, Inc..

[13] LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep
learning. nature, 521(7553). 436-444.

[14] Object Management Group, 2011. Business Process
Modeling Notation (BPMN) v2.0. Full Specification
Formal/2011-01-03.

[15] Hawkins, D. M., 2004. The problem of overfitting. Journal
of chemical information and computer sciences, 44(1), 1-
12.

[16] Driscoll, P., Lecky, F., and Crosby, M., 2000. An
introduction to everyday statistics—1. Emergency Medicine
Journal, 17(3). 205-211.

[17] Mirza, Mehdi, and Simon Osindero., 2014. "Conditional
generative adversarial nets." arXiv preprint
arXiv:1411.1784.

[18] Summerfield, M. 2010. Programming in Python 3: a
complete introduction to the Python language. Addison-
Wesley Professional.

[19] Gulli, A., and Pal, S. 2017. Deep learning with Keras.
Packt Publishing Ltd.

[20] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.,
2016. Tensorflow: A system for large-scale machine
learning. In 12th Symposium on Operating Systems Design
and Implementation 16 (2016). 265–283

[21] De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. 2005. A tutorial on the cross-entropy method. Annals
of operations research 134, 1 (2005). 19–67.

[22] Jabbar, H., and Khan, R. Z. 2015. Methods to avoid over-
fitting and under- fitting in supervised machine learning
(comparative study). Computer Science, Communication
and Instrumentation Devices (2015). 163–172.

[23] Jilly, K. 2018. Hands-On Data Visualization with Bokeh:
Interactive Web Plotting for Python Using Bokeh. Packt
Publishing Ltd, 2018.

[24] Oliphant, T. E., 2006. A guide to NumPy (Vol. 1, p. 85).
USA: Trelgol Publishing.

[25] Van der Walt et al, S., Schönberger, J. L., Nunez-Iglesias,
J., Boulogne, F., Warner, J. D., Yager, N., Gouillart E, Yu,
T. and the scikit-image contributors., 2014. scikit-image:
image processing in Python. PeerJ, 2, e453.
DOI=https://doi.org/10.7717/peerj.453

[26] Guelfi, N., 2011. A formal framework for dependability
and resilience from a software engineering
perspective. Open Computer Science, 1(3). 294-328.

[27] Sankaran, A., Aralikatte, R., Mani, S., Khare, S., Panwar,
N., and Gantayat, N., 2017. DARVIZ: deep abstract
representation, visualization, and verification of deep
learning models. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: New Ideas and
Emerging Technologies Results Track. 47-50.

[28] Tamilselvam, S. G., Panwar, N., Khare, S., Aralikatte, R.,
Sankaran, A., and Mani, S., 2019. A visual programming
paradigm for abstract deep learning model development.
In Proceedings of the 10th Indian Conference on Human-
Computer Interaction. 1-11.

[29] Zhao, T., and Huang, X. 2018. Design and implementation
of DeepDSL: A DSL for deep learning. Computer
Languages, Systems & Structures, 54. 39-70.

[30] Elango, V., Rubin, N., Ravishankar, M., Sandanagobalane,
H., and Grover, V. 2018. Diesel: DSL for linear algebra
and neural net computations on GPUs. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. 42-51.

[31] Kent, S. 2002. Model driven engineering. In International
Conference on Integrated Formal Methods. Springer,
Berlin, Heidelberg. 286-298.

