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Abstract. Direct cell reprogramming makes it feasible to reprogram
abundant somatic cells into desired cells. It has great potential for re-
generative medicine and tissue engineering. In this work, we study the
control of biological networks, modelled as Boolean networks, to identify
control paths driving the dynamics of the network from a source attrac-
tor (undesired cells) to the target attractor (desired cells). Instead of
achieving the control in one step, we develop attractor-based sequential
temporary and permanent control methods (AST and ASP) to iden-
tify a sequence of interventions that can alter the dynamics in a stepwise
manner. To improve their feasibility, both AST and ASP only use biolog-
ically observable attractors as intermediates. They can find the shortest
sequential control paths and guarantee 100% reachability of the target at-
tractor. We apply the two methods to several real-life biological networks
and compare their performance with the attractor-based sequential in-
stantaneous control (ASI). The results demonstrate that AST and ASP
have the ability to identify a richer set of control paths with fewer per-
turbations than ASI, which will greatly facilitate practical applications.

Keywords: Boolean networks · cell reprogramming · attractors · node
perturbations · sequential control.

1 Introduction

Direct cell reprogramming, also called transdifferentiation, has provided a great
opportunity for treating the most devastating diseases that are caused by a
deficiency or defect of certain cells. It allows us to harness abundant somatic
cells and transform them into desired cells to restore the structure and functions
of damaged organs. However, the identification of efficacious intervention targets
hinders the practical application of direct cell reprogramming.

Conventional experimental approaches are usually prohibited due to the high
complexity of biological systems and the high cost of biological experiments [28].
Mathematical modelling of biological systems paves the way to study mecha-
nisms of biological processes and identify therapeutic targets with formal rea-
soning and tools. Among various modelling frameworks, Boolean network (BN)
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has a distinct advantage [6, 7]. It provides a qualitative description of biologi-
cal systems and thus evades the parametrisation problem, which often occurs
in quantitative modelling, such as networks of ordinary differential equations
(ODEs). In BNs, molecular species (genes, transcription factors, etc.) are as-
signed binary-valued nodes, being either ‘0’ or ‘1’. The value of ‘0’ describes the
absence or inactive state of a species, whereas ‘1’ represents the presence or active
state. Activation/inhibition regulations between species are encoded as Boolean
functions, which determine the evolution of the nodes. The dynamics of a BN
evolves in discrete time under one of the updating schemes, such as synchronous
or asynchronous updating schemes. The asynchronous updating scheme is con-
sidered more realistic than the synchronous one, since it non-deterministically
updates one node at each time step and therefore can capture different biologi-
cal processes at different time scales [19]. The long-run behaviour of the network
dynamics is described as attractors, to one of which the network eventually set-
tles down. Attractors are used to characterise cellular phenotypes or functional
cellular states [5], such as proliferation, differentiation or apoptosis etc. In the
context of BNs, direct cell reprogramming is equivalent to a source-target con-
trol problem: identifying a set of nodes, the perturbation of which can drive the
network dynamics from a source attractor to the desired attractor.

The non-determinism of the asynchronous dynamics of BNs contributes to
a better depiction of biological systems. As a result, it makes the control prob-
lem more challenging and renders the control methods designed for synchronous
BNs inapplicable [8, 31, 20]. Another major obstacle to the control of BNs is the
infamous state explosion problem — the state space is exponential in the size of
the network. It prohibits the scalability and minimality of the control methods
for asynchronous BNs [30, 10]. The limitations of the existing methods motivate
us to work on efficient and efficacious methods for the minimal source-target
control of asynchronous BNs. There are different strategies to solve the control
problem. Based on the control steps, we have one-step control and sequential
control. One-step control applies all the perturbations simultaneously for one
time, while sequential control identifies a sequence of perturbations that are
applied at different time steps. In particular, we are interested in the sequen-
tial control that only adopts attractors as intermediates, called attractor-based
sequential control. Rapid development of gene editing techniques enables us to
silence or overexpress the expression of genes for different periods of time, thus,
we have instantaneous, temporary and permanent perturbations. Instantaneous
perturbations are applied instantaneously; temporary perturbations are applied
for sufficient time steps and then released; permanent perturbations are applied
for all the following steps. So far, we have developed methods for the minimal
one-step instantaneous, temporary and permanent control (OI, OT and OP) [21,
22, 26] and the attractor-based sequential instantaneous control (ASI) [11]. In
this work, we focus on the attractor-based sequential temporary and permanent
control (AST and ASP).

Due to the intrinsic diversity and complexity of biological systems, no single
control method can perfectly suit all cases. Thus, it is of great importance to
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explore more strategies to provide a number of cautiously selected candidates for
later clinical validations. AST and ASP integrate promising factors: attractor-
based sequential control and temporary/permanent control. Attractor-based se-
quential control is more practical than the general sequential control [12], where
any state can play the role of intermediate states. Moreover, temporary and
permanent controls have proved their potential in reducing the number of per-
turbations [26]. In this work, we continue to develop efficient methods to solve
the AST and ASP control problems. We apply our methods for AST and ASP
to several biological networks to show their ability in finding new control paths
with fewer perturbations compared to our previous methods [21, 22, 26, 11]. We
believe our new methods can provide a better understanding of the mechanism-
of-action of interventions and improve the efficiency of translating identified
reprogramming paths into practical applications.

2 Preliminaries

In this section, we give preliminary notions of Boolean networks.

2.1 Boolean networks

A Boolean network (BN) describes elements of a dynamical system with binary-
valued nodes and interactions between elements with Boolean functions. It is
formally defined as:

Definition 1 (Boolean networks). A Boolean network is a tuple G = (X,F )
where X = {x1, x2, . . . , xn}, such that xi, i ∈ {1, 2, . . . , n} is a Boolean variable
and F = {f1, f2, . . . , fn} is a set of Boolean functions over X.

For the rest of the exposition, we assume that an arbitrary but fixed network
G = (X,F ) of n variables is given to us. For all occurrences of xi and fi,
we assume xi and fi are elements of X and F , respectively. A state s of G
is an element in {0, 1}n. Let S be the set of states of G. For any state s =
(s[1], s[2], . . . , s[n]), and for every i ∈ {1, 2, . . . , n}, the value of s[i], represents
the value that the variable xi takes when the network is in state s. For some
i ∈ {1, 2, . . . , n}, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) denotes the
value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ is denoted as hd(s, s′).

Definition 2 (Control). A control C is a tuple (0, 1), where 0, 1 ⊆ {1, 2, . . . , n}
and 0 and 1 are mutually disjoint (possibly empty) sets of indices of nodes of a
Boolean network G. The size of the control C is defined as |C| = |0|+ |1|. Given
a state s ∈ S, the application of C to s is defined as a state s′ = C(s) (s′ ∈ S),
such that s′[i] = 0 = 1− s[i] if i ∈ 0, and s′[i] = 1 = 1− s[i] if i ∈ 1.

Definition 3 (Boolean networks under control). Let C = (0, 1) be a con-
trol and G = (X,F ) be a Boolean network. The Boolean network G under
control C, denoted as G|C , is defined as a tuple G|C = (X̂, F̂ ), where X̂ =
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{x̂1, x̂2, . . . , x̂n} and F̂ = {f̂1, f̂2, . . . , f̂n}, such that for all i ∈ {1, 2, . . . , n}:
(1) x̂i = 0 if i ∈ 0, x̂i = 1 if i ∈ 1, and x̂i = xi otherwise;

(2) f̂i = 0 if i ∈ 0, f̂i = 1 if i ∈ 1, and f̂i = fi otherwise.

The state space of G|C , denoted S|C , is derived by fixing the values of the
variables in the set C to their respective values and is defined as S|C = {s ∈
S | s[i] = 1 if i ∈ 1 and s[j] = 0 if j ∈ 0}. Note that S|C ⊆ S. For any subset S′

of S we let S′|C = S′ ∩ S|C .

2.2 Dynamics of Boolean networks

In this section, we define several notions that can be interpreted on both G and
G|C . We use the generic notion G = (X,F ) to represent either G = (X,F ) or
G|C = (X̂, F̂ ). A Boolean network G = (X,F ) evolves in discrete time steps
from an initial state s0. Its state changes in every time step according to the
update functions F and the update scheme. Different updating schemes lead
to different dynamics of the network [14, 32]. In this work, we are interested
primarily in the asynchronous updating scheme – at each time step, one node is
randomly selected to update its value based on its Boolean function. We define
asynchronous dynamics formally as follows:

Definition 4 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of G. The asynchronous evolution of G is a function
ξ : N → ℘(S) such that ξ(0) = {s0} and for every j ≥ 0, if s ∈ ξ(j) then
s′ ∈ ξ(j + 1) is a possible next state of s iff either hd(s, s′) = 1 and there exists
an i such that s′[i] = fi(s) = 1− s[i] or hd(s, s′) = 0 and there exists an i such
that s′[i] = fi(s) = s[i].

It is worth noting that the asynchronous dynamics is non-deterministic and
thus it can capture biological processes happening at different classes of time
scales. Henceforth, when we talk about the dynamics of G, we shall mean the
asynchronous dynamics as defined above. The dynamics of a Boolean network
can be described as a transition system (TS).

Definition 5 (Transition system of Boolean networks). The transition
system of a Boolean network G, denoted as TS, is a tuple (S,E), where the
vertices are the set of states S and for any two states s and s′ there is a directed
edge from s to s′, denoted s→ s′ iff s′ is a possible next state of s according to
the asynchronous evolution function ξ of G.

A path σ from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′. Thus, σ = s0 → s1 → . . . → sk, where s0 = s and
sk = s′. A path from a state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. For a state s ∈ S, reach(s) denotes the set of states S′ such that there
is a path from s to any s′ ∈ S′ in TS and can be defined as the fixpoint of the
successor operation which is often denoted as post∗. Thus, reach(s) = post∗(s).

The long-run behaviour of the dynamics of a Boolean network is characterised
as attractors, defined as follows.
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Fig. 1: (a) The transition system of the BN of Example 1; and (b) the control paths of
Example 2 from attractor A1 to attractor A3. Paths indicated with blue (red) arrows
are control paths with instantaneous (temporary/permanent) perturbations.

Definition 6 (Attractor). An attractor A of TS is a minimal non-empty sub-
set of states of S such that for every s ∈ A, reach(s) = A.

Any state which is not part of an attractor is a transient state. An attractor
A of TS is said to be reachable from a state s if reach(s) ∩A 6= ∅. The network
starting at any initial state s0 ∈ S will eventually end up in one of the attractors
of TS and remain there forever unless perturbed. Thus, attractors are used to
hypothesise cellular phenotypes or cell fates. We can easily observe that any
attractor of TS is a bottom strongly connected component of TS .

Let A be the set of attractors of TS . For an attractor A ∈ A, we define the
weak basin and the strong basin of A to imply the commitment of states to A in
Definition 7. Intuitively, the weak basin of A, basWTS (A), includes all the states s
from which there exists at least one path to A. It is possible that there also exist
paths from s to other attractor A′ (A′ 6= A) of TS , while the notion of strong
basin does not allow this. The strong basin of A, basSTS (A), consists of all the
states from which there only exist paths to A.

Definition 7 (Weak basin and strong basin). The weak basin of A is defined
as basWTS (A) = {s ∈ S | reach(s)∩A 6= ∅}; and the strong basin of A is defined as
basSTS (A) = {s ∈ S | reach(s)∩A 6= ∅ and reach(s)∩A′ = ∅ for A′ ∈ A, A′ 6= A}.

Example 1. Consider a network G = (X,F ), where X = {x1, x2, x3}, F =
{f1, f2, f3}, and f1 = x2, f2 = x1 and f3 = x2 ∧ x3. Its transition system
TS is given in Fig. 1a. This network has three attractors that are marked with
dark grey nodes, including A1 = {000}, A2 = {110}, and A3 = {111}. The
strong basin of each attractor is marked as the light grey region. The weak basin
of A1 includes all the states except for states 110 and 111. The weak basin of A2

and A3 are basWTS (A2) = {010, 100, 101, 110} and basWTS (A3) = {011, 101, 111}.

3 Sequential Temporary and Permanent Control

3.1 The control problem

As discussed in the introduction, direct cell reprogramming harnesses abundant
somatic cells and reprograms them into desired cells. However, a major obstacle
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to the application of this novel technique lies in the identification of effective tar-
gets, the intervention of which can lead to desired changes. We aim to solve this
problem by identifying key molecules based on BNs that model gene regulatory
networks, such that the control of these molecules can drive the dynamics of a
given network from a source attractor to the desired target attractor. We call it
source-target control of BNs.

Thanks to the rapid advances in gene editing techniques, the control can
be applied for different periods of time. Thus, we have instantaneous control,
temporary control and permanent control. Let As and At denote the source and
target attractors, respectively.

Definition 8 (Instantaneous, temporary and permanent controls).
(1) An instantaneous control is a control C = (0, 1), such that by applying C to
a state s ∈ As instantaneously, the network always reaches the target attractor
At.
(2) A temporary control is a control C = (0, 1), such that there exists a t0 ≥ 0, for
all t ≥ t0, the network always reaches the target attractor At on the application
of C to a state s ∈ As for t steps.
(3) A permanent control is a control C = (0, 1), such that the network always
reaches the target attractor At on the permanent application of C to a state
s ∈ As.

Temporary control applies perturbations for sufficient time and then is re-
leased, while permanent control maintains the perturbations for all the follow-
ing time steps. Benefited from the extended intervention effects, temporary and
permanent controls can potentially reduce the number of perturbations, which
makes experiments easier to carry out and less costly [26].

The source-target control can also be achieved in one step or in multiple
steps, called one-step control and sequential control, respectively. As illustrated
in Fig. 2a, one-step control simultaneously applies all the required perturbations
for one time (red arrow) to drive the network from a source state (blue node) to a
state (yellow node), from which the network will converge to the target attractor
in finite time steps (dashed line). In Fig. 2b, sequential control utilises other
states as intermediates and identifies a sequence of perturbations, the application
of which guides the network towards the target attractor in a stepwise manner.
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Considering difficulties in conducting clinical experiments, we are interested in
attractor-based sequential control, where only biologically observable attractors
can act as intermediates.

Given a source attractor As and a target attractor At of TS , the one-step
control is formally defined as:

Definition 9 (One-step control). Compute a control CAs→At , such that the
application of CAs→At

to a state s ∈ As can drive the network towards At.

When the control CAs→At is the instantaneous, temporary or permanent
control, we call it one-step instantaneous, temporary or permanent control (OI,
OT or OP), respectively. To minimise the experimental costs, we are interested in
the minimal solution Cmin

As→At
, which is the minimal such subset of {1, 2, . . . , n}.

Let A be the attractors of TS . The attractor-based sequential control is defined
as follows:

Definition 10 (Attractor-based sequential control). Find a sequence of
attractors of TS, i.e. {A1, A2, . . . , Am}, where A1 = As, Am = At, Ai 6= Aj for
any i, j ∈ [1,m] and 2 ≤ m ≤ |A|, such that after the application of a sequence
of minimal one-step controls {Cmin

A1→A2
, Cmin

A2→A3
, . . . , Cmin

Am−1→Am
}, the network

always eventually reaches Am, i.e. At. We call it an attractor-based sequential
control path, denoted as

ρ : A1

Cmin
A1→A2−−−−−→ A2

Cmin
A2→A3−−−−−→ A3

...−→ . . .
Cmin

Am−1→Am−−−−−−−−→ Am

(|Cmin
A1→A2

|+ |Cmin
A2→A3

|+ . . .+ |Cmin
Am−1→Am

|) is the total number of perturbations.

Similarly, when the control CAs→At
is the instantaneous, temporary or perma-

nent control, we call it attractor-based sequential instantaneous, temporary or
permanent control (ASI, AST or ASP), respectively.

We have developed efficient methods to tackle the minimal OI, OT and OP
control [21, 22, 26], as well as ASI control [11, 12]. Considering the advantages of
sequential control and temporary and permanent perturbations, in this paper,
we shall develop methods to solve the AST and ASP control problems based
on the methods for the minimal OT and OP control. Since the problems of
the minimal OT and OP control are at least PSPACE-hard [26], the AST and
ASP control are also computational difficult. We will demonstrate that based on
efficient computation of the minimal OT and OP control, our methods for the
AST and ASP control can also achieve a significant level of efficiency.

3.2 Attractor-based sequential temporary control

Algorithm 1 describes a procedure Comp Seq Temp to compute AST control
paths within k perturbations. This algorithm is based on our previously proposed
methods, including the computation of weak basin and strong basin [22, 21],
denoted Comp Weak Basin and Comp Strong Basin, and the computation
of the minimal OT control [26], denoted Comp Temp Control. Particularly,
the procedure Comp Temp Control is based on Theorem 1.
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Algorithm 1 Attractor-based sequential control of BNs

1: procedure Comp Seq Temp(F, k,As, At,A)
2: Initialise a list I := ∅ to store possible intermediate attractors.
3: WBAt :=Comp Weak Basin(F,At) // weak basin of the target
4: SBAt :=Comp Strong Basin(F,At) // strong basin of the target
5: Initialise a dictionary to store paths L := {LA1 , LA2 , . . . , LAm}, Ai ∈ A, Ai 6=
At.

6: for A ∈ (A \At) do //find attractors that have shorter paths to At

7: CA→At :=Comp Temp Control(A,WBAt ,SBAt)
8: if (A = As and |CA→At | ≤ k) or (A 6= As and |CA→At | ≤ k − 1) then
9: // CAs→A needs at least one perturbation

10: ∆A→At .add(At)
11: ρA→At .add(CA→At)
12: Add the path (∆A→At , ρA→At) to LA

13: Add A to I as a candidate intermediate if A 6= As.

14: while I 6= ∅ do
15: Initialise a new list I ′ := ∅
16: for A′

t ∈ I do // new target
17: WBA′t

:=Comp Weak basin(F,A′
t)

18: SBA′t
:=Comp Strong basin(F,A′

t)

19: for A′
s ∈ (A \ (A′

t ∪At)) do // new source
20: CA′s→A′t

:=Comp Temp Control(A′
s,WBA′t

,SBA′t
)

21: for (∆A′t→At
, ρA′t→At

) ∈ LA′t
do

22: if A′
s /∈ ∆A′t→At

then
23: h: the total number of perturbations required by ρA′t→At

.
24: h = h+ |CA′s→A′t

|
25: if (A′

s = As and h ≤ k) or (A′
s 6= As and h ≤ k − 1) then

26: ρA′s→At := ρA′t→At
; ∆A′s→At := ∆A′t→At

27: Insert CA′s→A′t
to the beginning of ρA′s→At .

28: Insert A′
t to the beginning of ∆A′s→At .

29: Add the extended path (∆A′s→At , ρA′t→At
) to LA′s .

30: Add A′
s to I ′ as a candidate intermediate if A′

s 6= As.

31: I := I ′

32: Return LAs

33: procedure Perm Control Validation(CA′s→A′t
, A′

t,∆A′t→At
, ρA′t→At

)
34: A1 := ∆A′t→At

[0] // the first intermediate A1 in ∆A′t→At

35: CA′t→A1
:= ρA′t→At

[0] // the first control set CA′t→A1
in ρA′t→At

36: ∆′ := ∆A′t→At
.pop(), ρ′ := ρA′t→At

.pop() //delete the first element

37: C′′ := CA′s→A′t
\ CA′t→A1

38: isValid := True
39: if A′

t|C′′ = A1|C′′ and ∆′ 6= ∅ then
40: isValid :=Perm Control Validation(C′′, A′

t,∆
′, ρ′)

41: else if A′
t|C′′ 6= A′|C′′ then

42: isValid := False
return isValid
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Theorem 1. A control C = (0, 1) is a minimal temporary control from s to At

iff (1) basSTS (At) ∩ S|C 6= ∅ and C(s) ∈ basSTS |C (basSTS (At) ∩ S|C) and (2) C is
a minimal such subset of {1, 2, . . . , n}.

The procedure for the computation of AST control, Comp Seq Temp, takes
as inputs the Boolean functions F , a threshold k of the number of perturbations,
a source attractor As, a target attractor At, and the set of attractors A of TS .
It contains two parts.

The first part includes lines 2-13. For each attractor A (A ∈ A and A 6= At),
we generate a dictionary LA to save all the valid sequential control paths from
A to At (line 5). We compute the minimal OT control set from A to At, denoted
CA→At . CA→At is considered valid and saved to LA (line 8) if (1) A is the source
attractor As and the number of perturbations |CA→At

| is not greater than k; or
(2) A is not As and |CA→At

| is less or equal to (k − 1). If A is an intermediate
attractor (A 6= As), CAs→A requires at least one perturbation. Therefore, the
size of CA→At should not exceed (k − 1). A is saved to I as an intermediate
attractor if A 6= As and |CA→At | ≤ k − 1.

The second part includes lines 14-31. We extend the control paths computed
in the previous part by iteratively taking every intermediate attractors A′t ∈ I
as a new target and computing the minimal temporary control from an attractor
A′s (A′s ∈ (A \ (A′t ∪ At))) to A′t. Specifically, for each new target attractor A′t,
we compute the minimal temporary control set CA′s→A′t

from A′s to A′t (line 20).
Then, for every sequential path from A′t to At, for instance (∆A′t→At

, ρA′t→At
),

we verify whether A′s can be appended to the beginning of ∆A′t→At
to form a

new path from A′s to A′t based on the following two conditions: (1) A′s is not an
intermediate attractor in the path A′t → . . . → At (line 22); and (2) the total
number of perturbations of the new path ∆A′s→At should not exceed k (or k−1)
if A′s = As (or A′s 6= As) (line 25). If both conditions are satisfied, we save the
new path to LA′s

(line 29) and add A′s to I ′ as a new candidate intermediate if
A′s 6= As (line 30). After going through all the intermediate attractors in I (lines
16−30), we update the set of intermediate attractors I and repeat steps at lines
14-31 until I is an empty set.

3.3 Attractor-based sequential permanent control

In this section, we develop an algorithm to solve the ASP control problem. We
have developed an algorithm to compute the minimal OP control [26], denoted
as Comp Perm Control, based on Theorem 2.

Theorem 2. A control C = (0, 1) is a minimal permanent control from s to At

iff (1) C(s) ∈ basSTS |C (At) and (2) C is a minimal such subset of {1, 2, . . . , n}.

The procedure for ASP control explores in the same way as the proce-
dure for AST control, Comp Seq Temp in Algorithm 1, to construct sequen-
tial paths, but it is more involved. It can be achieved by modifying procedure
Comp Seq Temp as follows. First, at lines 7 and 20, we simply replace the
procedure Comp Temp Control with the procedure Comp Perm Control.
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Second, when extending the sequential paths (lines 14− 31), besides the condi-
tions at line 26, we add the procedure Perm Control Validation in Algo-
rithm 1 to verify whether the control CA′s→A′t

can be inserted to the beginning
of the path from A′t to At. Because for each control step of AST, the temporary
perturbations are released at one time point to retrieve the original transition
system and let the network evolve spontaneously to the the intermediate/target
attractor. But ASP adopts permanent control that will be maintained for all the
following time steps. Therefore, when extending a permanent control C to the be-
ginning of a sequential path, it has to be verified whether the application of C will
affect the reachability of the following control steps. To avoid duplication, here
we only give the explanations of the procedure Perm Control Validation.
The purpose of this procedure is to verify whether the control CA′s→A′t

can be
added to the beginning of ρA′t→At

to form a new path ρA′s→At
The verification

is carried out recursively. Let us assume ∆A′t→At
= {A1, A2, . . . , At}. The first

intermediate attractor is A1 and the control from A′t to A1 is CA′t→A1
. Since

CA′s→A′t
and CA′t→A1

may require to perturb the same node in the opposite way,
we compute (CA′s→A′t

\ CA′t→A1
) and denote it as C ′′. If the projections of A′t

and A1 to C ′′ are the same, A1 is preserved under the permanent control C ′′

and we proceed to the remaining control steps (lines 39-40); otherwise, CA′s→A′t
is not a valid control (lines 41-42).

Example 2. To continue with Example 1, we compute the control paths from
A1 to A3. As shown in Fig. 1b, the control path indicated with blue arrows,

A1
{x1,x2}−−−−−→ A2

{x3}−−−→ A3, is the shortest ASI control, which requires three per-
turbations. AST and ASP have the same results indicated with red arrows in

Fig. 1b: A1
{x2}−−−→
{x1}

A2
{x3}−−−→ A3, which require two perturbations in total.

4 Evaluation

In this section, we evaluate the performance of AST and ASP on several real-life
biological networks. To demonstrate their efficacy, we compare their performance
with ASI [11]. The minimal number of perturbations required by OI, OT and OP
is set as the threshold k of the number of perturbations for ASI, AST and ASP,
respectively. In this way, the results will demonstrate whether AST and ASP
can find sequential paths with fewer perturbations than ASI. All the methods
are implemented as an extension of our software tool ASSA-PBN [14–16]. All
the experiments are performed on a high-performance computing (HPC) plat-
form, which contains CPUs of Intel Xeon Gold 6132 @2.6 GHz. We describe
and discuss the results of the myeloid differentiation network [9] and the Th
cell differentiation network [17] in detail (Sections 4.1 and 4.2), and we give an
overview of the results of the other networks (Section 4.3).

4.1 The myeloid differentiation network

The myeloid differentiation network is constructed to model the differentiation
process of common myeloid progenitors (CMPs) into four types of mature blood
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Fig. 3: Sequential control of the myeloid differentiation network.

cells [9]. With our attractor detection method [13], we identify six single-state
attractors of the network, five of which are non-zero attractors (not all the nodes
have a value of ‘0’). It has been validated that expressions of four attractors
correspond to microarray expression profiles of megakaryocytes, erythrocytes,
granulocytes and monocytes [9]. The fifth attractor with the activation of PU1,
cJun and EgrNab might be caused by pathological alterations [9] and the sixth
attractor is an all-zero attractor, where all the nodes have a value of ‘0’.

We take the conversion from megakaryocytes to monocytes as an example to
show the performance of the methods. Note that the sixth attractor does not
have a biological interpretation and mature erythrocytes in mammals do not
have cell nucleus, therefore we do not consider these two attractors as inter-
mediate attractors. Under this condition, the three methods (ASI, AST, ASP)
identify both one-step and sequential paths as illustrated in Fig. 3. In particular,
the results of AST and ASP are identical. We can see that the minimal OI con-
trol requires the activation of EgrNab, C/EBPα, PU1, cJun and the inhibition
of GATA1 (Fig. 3a); while OT or OP can achieve the goal by either (1) the
activation of EgrNab, C/EBPα and PU1; or (2) the activation of EgrNab and
C/EBPα, together with the inhibition of GATA1 (Fig. 3b). All the sequential
paths need two steps, where the fifth attractor is adopted as an intermediate
attractor. For the first step, ASI activates PU1 and inhibits GATA1, while AST
or ASP only needs to activate PU1. When the network converges to the fifth
attractor, all the three methods require to activate C/EBPα. After that, the net-
work will evolve spontaneously to the target attractor monocytes. Fig. 3 shows
that AST and ASP are able to identify a path with only two perturbations, while
ASI requires at least three perturbations.

The efficacy of the identified sequential temporary/permanent path is con-
firmed by the predictions in [9]. According to the expression profiles, both PU1
and C/EBPα are not expressed in MegE lineage (megakaryocytes and erythro-
cytes), while they are expressed in GM lineage (monocytes and granulocytes).
In this network, no regulator can activate C/EBPα and PU1 is primarily acti-
vated by C/EBPα. Therefore, C/EBPα has to be altered externally to repro-
gram MegE lineage to GM lineage. However, more perturbations are necessary
to accurately reach the monocytes lineage. Sustained activation of PU1 and the
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Fig. 4: Sequential control of the Th cell differentiation network.

absence of C/EBPα guide the network to the fifth attractor, the expression of
which differs with monocytes only in C/EBPα [9].

4.2 The Th Cell differentiation network

The T-helper (Th) cell differentiation network is a comprehensive model inte-
grating regulatory network and signalling pathways that regulate Th cell dif-
ferentiation [17]. This network consists of 12 single-state attractors under one
initial condition and the attractors can be classified into different Th subtypes
based on the expression of four master regulators [17].

Let Th17 and a Th1 subtype (Th1 Foxp3+ RORrt+) be the source and
target attractors, respectively. For the purpose of illustration, we limit the num-
ber of control paths by only adopting Th1 and Treg as intermediate attractors.
In addition, we set the node ‘proliferation’ as a non-perturbed node, since it
denotes a cell fate and thus cannot be perturbed in reality. Fig. 4 describes
the control paths identified by the three methods. The thickness of arrows im-
plies the number of control sets and the equations #p = m above each ar-
row denotes the number of perturbations required by each step. All the meth-
ods identify sequential paths passing through Th1 and/or Treg. Fig. 4a only
shows the shortest ASI path with five perturbations, while AST and ASP pro-
vide multiple paths with only two or three perturbations (Fig. 4b and Fig. 4c),
demonstrating the advantages of AST and ASP in reducing the number of per-
turbations. Among the sequential paths of AST and ASP, only the AST path,

Th17
IL27R−−−−→ Treg

TBET−−−−→ the Th1 subtype, perturbs two nodes, all the other
paths using either temporary or permanent perturbations need to perturb at
least three nodes. This shows that AST has the potential to further reduce the
number of perturbations compared to ASP. Moreover, in terms of the number
of solutions, it is obvious that the arrows in Fig. 4b are thicker than those in
Fig. 4c, which indicates that AST provides more solutions than ASP.
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4.3 Other biological networks

Besides the myeloid and Th cell differentiation networks, we also apply the three
control methods to several other biological networks [4, 24, 18, 2, 23, 1, 3]. Here is
a brief introduction of the networks.

– The cardiac gene regulatory network integrates key regulatory factors that
play key roles in early cardiac development and FHF/SHF determination [4].

– The ERBB receptor-regulated G1/S transition network is built to identify
efficacious targets for treating trastuzumab resistant breast cancer [24].

– The network of PC12 cell differentiation is built to capture the complex
interplay of molecular factors in the decision of PC12 cell differentiation [18].

– The network of hematopoietic cell specification is constructed to capture the
lymphoid and myeloid cell development [2].

– The network of bladder tumour is constructed to study mutually exclusivity
and co-occurrence in genetic alterations [23].

– The pharmacodynamic model of bortezomib responses integrates major sur-
vival and apoptotic pathways in U266 cells to connect bortezomib exposure
to multiple myeloma cellular proliferation [1].

– The network of a CD4+ immune effector T cell is constructed to capture
cellular dynamics and molecular signalling under both immunocompromised
and healthy settings [3].

Columns 2-4 of Table 1 summarise the number of nodes, edges and attractors
contained in each network. For each network, we choose a pair of source and
target attractors and compute control paths with ASI, AST and ASP.

Efficacy. For each pair of source and target attractors, all the control paths
with at most k perturbation are computed. For the purpose of comparison,
in Table 1, columns 5-7 only summarise the minimal number of perturbations
needed by each control method and columns 8-10 summarise the number of
corresponding control paths. The results show that by extending the period of
control time, AST and ASP have the ability to compute more control paths
with fewer perturbations than ASI. This brings significant benefits for practical
applications. First, fewer perturbations can reduce the experimental costs and
make the experiments easier to conduct. Second, a richer set of control paths
provides biologists more options to tackle diverse biological systems.

To further compare AST and ASP, AST is more appealing than ASP. As
discussed in the previous subsection, the control of Th cell differentiation network
(T-diff in Table 1) shows that AST has the potential to identify smaller control
sets than ASP. For the other cases listed in Table 1, although AST requires the
same number of perturbations as ASP, AST identifies more solutions than ASP.
Apart from that, AST has an intrinsic advantage compared to ASP – temporary
control will eventually be released and therefore can eliminate risks of unforeseen
consequences, which may be caused by the permanent shift of the dynamics.

Efficiency. The last three columns of Table 1 give the computation time of ASI,
AST and ASP. Although AST and ASP take longer time than ASI, they are still
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network |V | |E| |A| #perturbations # paths time (seconds)
ASI ASTASP ASI ASTASP ASI AST ASP

myeloid 11 30 6 3 2 2 1 1 1 0.006 0.034 0.038
cardiac 15 39 6 3 2 2 1 3 2 0.018 0.658 0.653
ERBB 20 52 3 8 3 3 2 3 3 0.007 0.249 0.319
PC12 33 62 7 8 2 2 3 50 30 0.050 1.188 1.462
HSC 33 88 5 12 2 2 2 12 6 0.406 12.217 8.879
bladder 35 116 4 5 2 2 2 2 2 0.139 0.709 0.676
bortezomib 67 135 5 3 2 2 1 4 2 1.900 105.184 119.138
T-diff 68 175 12 5 2 3 4 1 14 9.713 95.211 71.044
CD4+ 188 380 6 3 2 2 3 48 6 256.492 539.868 1304.490

Table 1: Sequential control of several biological networks.

quite efficient and are capable of handling large-scale and comprehensive net-
works. In general, the computational time of the methods depends on the size of
the network, the threshold of the number of perturbations k and the number of
existing solutions within the threshold. By increasing the threshold k, our meth-
ods can identify more candidate solutions at the cost of longer computational
time. Currently, due to the lack of large and well-behaved networks, we are not
yet able to find out the precise limit of our methods on the size of networks.

5 Discussion

We have demonstrated the potential strengths of AST and ASP, however, they
are not warranted to be the best methods for all kinds of biological systems.
Indeed, there is no control method that can perfectly solve all the control prob-
lems due to the intrinsic diversity and complexity of biological systems. Given
a specific task, it is thus recommended to compute all the control paths with
available control methods. Various sets of identified therapeutic targets serve as
candidates, such that biologists can choose appropriate targets, the modulation
of which will not disrupt physiological functions of biological systems.

Although the dynamics of asynchronous BNs are non-deterministic, our meth-
ods guarantee to find the shortest control paths with 100% reachability in silico.
Experimental validation is necessary to verify their therapeutic efficacy in vivo.
It is worth noticing that the consistency of the efficacy in silico and in vivo
highly relies on the quality of the constructed BNs. The identified perturbations
can effectively modulate the dynamics as expected, provided that the adopted
network well captures the structural and dynamical properties of the real-life
biological system. However, mathematical modelling of vastly complex biologi-
cal systems is already a challenging task by itself in systems biology. We have
spotted some flaws of the constructed networks in the literature during analysis,
summarised as follows.

First, simulation is often used to evaluate the stable behaviour of dynamics
in most of the works. However, simulation can hardly cover the entire transition
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system of a BN, which is exponential in the size of the network. As a consequence,
the information on attractors is usually incomplete, especially for networks of
medium or large sizes. This problem can be solved by using our attractor detec-
tion method [13, 29] to identify all the exact attractors of a network.

Second, we noticed that the attractors of some large networks are purely
induced by input nodes. For instance, given a network with 2 input nodes (nodes
without upstream regulators), it has 22 attractors. Each attractor corresponds
to one combination of the input nodes (00, 01, 10, 11). For such networks, the
input nodes, that have different values in the source and target attractors, are
the key nodes for modulating the dynamics. Such kind of networks may capture
some activation or inhibition regulations, but they fail to depict the intrinsic
mechanisms of biological processes.

Third, in some networks, cell phenotypes or cell fates, such as apoptosis,
proliferation, and differentiation, are represented as marker nodes. Benefited
from this, attractors can be classified based on the expressions of those nodes. A
problem that often occurs is that there does not exist any control sets without
perturbing these marker nodes, however, these nodes can not be perturbed in
reality. Again, we hypothesise that these constructed networks do not reflect the
intrinsic properties of biological systems.

Our methods [13, 29, 22, 26, 11] can provide accurate information of the net-
works, such as the number and size of the attractors and potential sets of con-
trol nodes. Such information related to the network dynamics should be taken
into account when inferring the networks by updating the Boolean functions or
adding/deleting regulators.

6 Conclusion and Future Work

In this work, we have developed the AST and ASP control methods to identify
sequential control paths for modulating the dynamics of biological systems. To
make it practical, only biologically observable attractors are served as interme-
diates. We compared the performance of the two methods with ASI on a variety
of biological networks. The results show that our new methods have apparent
advantages in reducing the number of perturbations and enriching the diversity
of solutions. Among the three sequential control methods (ASI, AST and ASP),
AST is more preferable because it requires the fewest number of perturbations
and it adopts temporary perturbations which will eventually be released and
thus can evade unforeseen consequences that might be caused by permanent
perturbations.

Until now, we have developed source-target control methods to alter the
dynamics of BNs in different ways. Currently, we are working on a target control
method to identify a subset of nodes, the intervention of which can transform any
somatic cells to the desired cell. We also plan to study the control of probabilistic
Boolean networks [25, 27] based on our control methods for BNs. We believe
our works can provide deep insights into regulatory mechanisms of biological
processes and facilitate direct cell reprogramming.
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