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ABSTRACT Collective perception is a new paradigm to extend the limited horizon of individual vehicles.
Incorporating with the recent vehicle-2-x (V2X) technology, connected and autonomous vehicles (CAVs)
can periodically share their sensory information, given that traffic management authorities and other road
participants can benefit from these information enormously. Apart from the benefits, employing collective
perception could result in a certain level of transmission redundancy, because the same object might
fall in the visible region of multiple CAVs, hence wasting the already scarce network resources. In this
paper, we analytically study the data redundancy issue in highway scenarios, showing that the redundant
transmissions could result in heavy loads on the network under medium to dense traffic. We then propose a
probabilistic data selection scheme to suppress redundant transmissions. The scheme allowsCAVs adaptively
adjust the transmission probability of each tracked objects based on the position, vehicular density and road
geometry information. Simulation results confirm that our approach can reduce at most 60% communication
overhead in the meanwhile maintain the system reliability at desired levels.

INDEX TERMS Collective perception, connected and autonomous vehicles, V2X communications, data
redundancy.

I. INTRODUCTION
Autonomous driving and advanced driving assistant systems
(ADAS) in development rely on onboard sensors to build
a local dynamic map of a vehicle’s road environment [1].
However, these sensors naturally are only capable of detect-
ing light-of-sight (LOS) road objects, therefore providing
limited perception coverage especially in dense traffic, where
the sensors’ field of view (FoV) might suffer from heavy
blockage effects resulting from other vehicles on the road [2].

With the introduction of vehicle-2-x (V2X) communica-
tions, the limited horizon of vehicles could be extended
by V2X based collective perceptions (i.e. crowd sens-
ing in other literatures) [3]. The term V2X incorpo-
rates multiple types of wireless technologies enabling
V2I (vehicle-to-infrastructure), V2V (vehicle-to-vehicle),
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V2P (vehicle-to-pedestrian) and V2D (vehicle-to-device)
communications [4]. In such a system, connected and
autonomous vehicles (CAVs) collect real time information of
the environment, and share it with other vehicles on the road.

Specifically speaking, V2X based collective perceptions
could be further classified into V2I andV2V based. In the for-
mer case, vehicles periodically upload their sensory informa-
tion to a remote traffic management centre (TMC) using V2I
communications. On the other hand, V2V based collective
perceptions allow vehicles directly exchange their sensory
information by periodic broadcasting, enabling more timely
usage of essential data [5]. In order to reduce communica-
tion overhead, CAVs only transmit the descriptions of their
tracked objects instead of raw sensory data [6], [7].

A large body of works emerged in recent years show
that V2X based collective perceptions have the potential to
improve traffic safety and efficiency by supporting a rich
set of vehicular applications, e.g., congestion avoidance, path
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FIGURE 1. The data redundancy issue in V2X based collective perception.

planning and safety applications. However, a source of inef-
ficiency of this new paradigm comes from the fact that the
same object could be detected and tracked by several CAVs
on the road, resulting in redundant data transmissions over
the network. As illustrated in Fig. 1, the vehicle with black
border can be tracked by three CAVs (e.g. CAV1, CAV2 and
CAV3), and each CAV share the sensory information of their
tracked objects with others by V2X communications. Since
the sharing frequency for collective perception messages
should be at least 5 to 10 Hz so that the vehicle velocity vector
does not change too much between updates [3], without any
coordinations, three observations for the same object will
be frequently transmitted over the network. The increased
load on the network could lead to increased transmission
delay, which ultimately hurts the usability of collective per-
ception messages. Thus, data redundancy mitigation is nec-
essary to improve the efficiency and reliability of collective
perceptions.

Eliminating data redundancy in the meanwhile maintain-
ing the system reliability is a challenging task. Because a
wide class of applications supported by V2X based collec-
tive perceptions are safety related, the sensory information
from the network should provide high perception coverage
over the road environment. An intuitive solution to the data
redundancy issue in V2V based collective perception is to
implement an overhearing mechanism. That is, a CAV should
compare its tracked objects with the sensory information
received from the network, and only broadcast these who
have not been shared for a given interval. However, this
method is unreliable because the packet reception rate in
vehicular environment suffers from adverse multipath fading
channels and collisions due to hidden terminals [8], [9],
particularly when the density of vehicles is high and
the communication traffic is relatively heavy. In addition,
the data association among sensory information from multi-
ple sources is still an open problem, especially when the raw
sensory data is not available because of the limited wireless
resources in V2X networks. Thematching procedure involves
complicated computations and time-consuming filtering due
to different angles of observations and the inaccuracy of
localisation equipments [10]–[12].

Indeed, the data redundancy issue has also been studied in
the context of mobile ad hoc networks (MANETs) [13]–[15],
these approaches do not map well to V2X based collective
perceptions as they focus on multi-hop message dissemina-
tion in intermittently connected networks. It is also noticeable

that a few recent works have been established to remove
data redundancy in floating car data (FCD) collections and
disseminations [16]–[18]. Their approaches create clusters
of vehicles having common features and apply in-network
aggregations to reduce communication overhead. Neverthe-
less, the applications supported by V2X based collective
perception are safety related. Clustering based approaches do
not fit because data aggregations will hurt the granularity of
perception messages.

In this paper, we restrict our study in highway scenarios to
address the data redundancy issue in V2X based collective
perceptions. We first propose an analytic model of collec-
tive perceptions that takes road geometry, CAV penetration
rate and vehicular density into consideration. Our analysis
shows that even though highway scenarios do not suffer from
blockage effects resulting from buildings, the blockages from
other vehicles still have significant impacts on sensors’ field
of view, and it is insufficient to overcome this problem by
increasing the sensing range. On the other hand, employ-
ing collective perception can greatly improve the perception
coverage of vehicles even in the early stage of the market,
however, with the price of heavy transmission redundancy;
the expected number of redundant data transmissions could
be as high as around 6.5 folds.

In order to relieve the data redundancy issue, we then
propose a probabilistic data selection scheme that is suitable
for both V2I and V2V based collective perceptions. The
scheme does not require any coordinations between CAVs
and allows them distributively determine the transmission
probability of their tracked objects based the observed envi-
ronments. The main challenge of designing such a scheme
is to effectively reduce communication overhead in the
meanwhile maintain the system reliability at the required
level.

Our contributions could be summarised as follows:
• We build an analytic model to study the data redundancy
issue and validate it through extensive simulations. The
proposed model provides understanding of the benefits
and limits of V2X based collective perceptions, as well
as yield insights in how the application requirements
could be possibly satisfied. To the best of our knowledge,
this is the first attempt to analytically study the perfor-
mance of V2X based collective perceptions in different
traffic scenarios.

• We propose a novel data selection scheme, called
p-consistence, which can balance the tradeoff between
communication overhead and system reliability. The
proposed scheme allows CAVs to adaptively change the
transmission probability of their tracked objects based
on the local vehicular density, CAV penetration rate and
road geometry.

• We compare the performance of p-consistence against
state-of-the-art using real maps and microscopic simula-
tions. The results confirm that our algorithm reduces at
most 60% communication overhead, while maintaining
the system reliability at the required level.
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The rest of the paper is organised as follows.
In Section II and III, we discuss the related work and details
the system model of V2X based collective perception.
We then propose a comprehensive analytic model to study
the data redundancy issue in Section IV, followed by the
proposed redundancy control approach in SectionV.Our ana-
lytic model and proposed scheme are validated and evaluated
in Section VI by extensive simulations. Finally, we conclude
our work in Section VII.

II. BACKGROUND AND RELATED WORKS
Sharing sensory information between network nodes has
been an active topic of research in the field of wireless sen-
sor networks (WSNs). For example, several nodes equipped
with different types of sensors can exchange their sensory
information to provide surveillance of large areas [19]. Due
to the specific requirements and relatively static network
topology, these approaches do not map well to vehicular
applications. Instead of focusing on low energy consump-
tion, the collective perception in road environments usu-
ally requires accurate position information and high update
frequencies [7].

The work presented in [20] is the first attempt to exchange
sensor information between vehicles, in which the CarSpeak
is implemented enabling autonomous vehicles to share their
3D-point clouds. In this work, the raw sensory data is encoded
by an octree scheme, and vehicles actively propagate their
regional requests over the networks. Other vehicles can
response the received requests to provide additional field of
view that is invisible to the requestors. Similarly, the authors
in [21] propose a multimodal cooperative perception system
providing see-through views to drivers by sharing vision-
based data between vehicles. The experiment results show
that such a system can improve the reaction time in many
scenarios such as forward collision warning and overtaking/
lane-changing.

Since exchanging raw sensor data would consume enor-
mous network resources, especially in dense traffic. The
authors in [6] propose to realise collective perception by
asking vehicles periodically broadcast the descriptions of
their tracked objects only. They later introduce a newmessage
format called environmental perception message (EPM) in
the context of European Telecommunications Standards Insti-
tute (ETSI) intelligent transport system (ITS) G5 communi-
cation [7]. However, the simulation results show that apart
from the benefits, leveraging collective perception still can
overload the network in dense traffic due to the coexistence
of other vehicular applications.

Another challenge of realising collective perception in
vehicular networks is the data association from different
sources, as these data usually comes with high temporal
and spatial errors [22]. This aspect, therefore, receives many
attentions from the community. For example, the authors
in [10] propose a high-level fusion architecture where the
V2X interface is treated as a virtual sensor. The objects per-
ceived from the network is then fused with the local sensory

information using the popular iterative closest point (ICP)
algorithm. In [11], the authors address the problem of
collaborative object tracking based on the Gaussian mixture
probability hypothesis density (GM-PHD) filter. The recent
work in [12] proposes a track-based association algorithm
using an interacting multiple model estimator with a sequen-
tial multiple hypothesis test (IMM-SMHT). The experimental
results show the proposed algorithm outperforms the tradi-
tional point matching algorithm in term of accuracy.

In summary, most of the existing works focus on prototyp-
ing the collective perception systems or addressing the issue
of distributed sensory fusion. There still lacks understand-
ing of the data redundancy issues in V2X based collective
perceptions.

III. SYSTEM MODEL
Consider a highway scenario where vehicles on the road
consist of a set of CAVs and the rest of them are plain
vehicles (PVs). The CAVs are equipped with various sensors
for localisations and environment perceptions, and wireless
devices enabling V2X communications. Each CAV performs
data fusion on the raw sensory data, and then generates a
standardised track list for every detected road participants and
peripherals that of potential interest to the vehicular applica-
tions. As suggested in [6], the detailed descriptions of each
sensed object, including position, velocity and acceleration
vectors, are then periodically encoded into an environmental
perception message (EPM), and transmitted over the V2X
network. According to the ETSI standards, we also assume
that CAVs periodically broadcasts their travelling status in
small beacon messages called cooperative awareness mes-
sages (CAMs) [23]. The transmission frequency for EPMs
and CAMs should be at least 5 to 10 Hz to meet the safety
requirements in vehicular environments [3].

FIGURE 2. Network structure of V2I and V2V based collective perceptions.

Fig. 2 shows the typical network structure of V2X
based collective perceptions. The base stations (e.g. RSUs
or eNodeB) can provide network access for vehicles, allowing
them to communicate with remote servers in the cloud by
the V2I interface. On the other hand, the V2V interface
enables vehicles to communicate with their one-hop neigh-
bours directly. Based on the network structure, we consider
the following two collective perception schemes:
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1) V2I Based Collective Perception: CAVs on the road
periodically upload the list of tracked objects to the remote
TMC through V2I communications.
2) V2V Based Collective Perception: CAVs on the road

periodically exchange the list of tracked objects with their
proximity vehicles through single hop V2V broadcasting.

Since a wide range of applications supported by V2X
collective perceptions are safety related, both V2I and V2V
based collective perceptions require a certain level of system
reliability. Ideally speaking, if an object is tracked by some
CAVs on the road, at least one of them should share the object
over the network. Therefore, we define the following metric
to measure the system reliability of V2X based collective
perceptions.
Definition 1: The share ratio is the fraction of objects

tracked by all CAVs on the road that are transmitted over the
network.

By definition, the share ratio is 100% in naïve approach
such that CAVs simply encapsulate all tracked objects into
EPMs.Our target is then to design a fully distributed approach
that can effective suppress redundant data transmissions
while maintain the share ratio at required levels.

IV. MODELLING V2X BASED COLLECTIVE PERCEPTION
We model the road as a wrapped strip WS of width h to
remove border effects. A vehicle (CAV or PV) on the road
is modelled as a simple rectangle vi = (ci, li,wi), where ci
is the geometric centre of the rectangle, li and wi denote its
length and width, respectively. For simplicity, we do not take
the height of vehicles into consideration as most of existing
CAVs install the sensors around their bodies for reducing air
drags during travelling. Because the transmission interval for
EPM takes a very short time (fraction of a second), the vehicle
mobility is negligible and does not need to be taken into con-
sideration in our model. The key notations and assumptions
in our analyses are summarised as follows.
• Let 8 = {ci} be the set containing the centres of all
vehicles on the road. We assume that8 form a homoge-
neous Poisson point process (P.P.P.) inWS with density
λ, where λ denote the spatial density (in vehs/m2) of
vehicles. Note that the studies in [24] and [25] show that
the inter-arrival time of vehicles in free-flow highway
scenarios could be approximated by exponential distri-
bution, which only implies that their locations along the
road is a P.P.P. Therefore, this assumption would cause
certain errors in our model because vehicles tend to drive
within lanes. Through simulations, we show that the
errors are acceptable.

• Denote α as the CAV penetration rate, and let λc = αλ
be the spatial density of CAVs on the road. It is easy
to see that the centres of all CAVs is a partition of
8, therefore is also a homogeneous P.P.P. in WS with
density λc.

• The lengths li and widths wi of vehicles are indepen-
dent and identically distributed (i.i.d.) according to some
probability density functions fL(l) and fW (w). Note that

the assumption about independence allows the overlap-
ping of vehicles, but the error due to overlap is negligible
especially in sparse vehicular density.

• Unlike complex urban scenarios, a line-topology high-
way scenario usually does not suffer from blockage
effects resulting from buildings. In this regard, instead of
modelling the maximum sensing region as a circle origi-
nated at the centre of the tagged vehicle, we assume it is
a rectangleS that covers the road segment of length 2×s.
This assumption is unrealistic but provides tractability in
the analysis. Through simulations, we show that it only
incurs minor errors.

TABLE 1. Notation summary.

Table 1 lists notations for the proposed analytical model.
Based on the above models, we define the following metrics:
Definition 2: The effective field of view (eFoV)9 of a CAV

is the set of locations in S that have LOS links with the centre
of the vehicle.
Definition 3: The coverage probability Pc of a point in

WS is defined as the probability that the location falls in the
effective field of view of at least one CAV on the road.

According to the above definitions, 9 reflects the impacts
of blockage effect on the visible region of an individual
vehicles. Since many applications supported by V2V based
collective perceptions are safety-related, it is desired that the
sensory information from the network can provide high per-
ception coverage over the road environment. The coverage
probability Pc is therefore a key metric reflecting the system
reliability of V2V based collective perceptions. Now, let 0
be a random variable denoting the number of CAVs whose
eFoV covers a given location on the road. We are interested
in deriving the probability distribution of 0.

A. LOS PROBABILITY
We start our analysis from the LOS probability between a pair
of locations in the WS . Define V(l,w) = {vi : li ∈ (l, l +
dl),wi ∈ (w,w+dw)} such that V(l,w) contains the vehicles
whose lengths and widths fall in the small intervals (l, l+dl)
and (w,w+dw), respectively. Let8(l,w) be the point process
that is formed by centres of vehicles in V(l,w).
Lemma 1: 8(l,w) is a P.P.P. with density of λl,w =

λfL(l)dlfW (w)dw. If (li,wi) 6= (lj,wj), then 8(li,wi) and
8(lj,wj) are independent P.P.P..
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Proof: It is easy to see that 8(l,w) is a partition of
the point process 8. Since 8 is a P.P.P., and li, wi are i.i.d.
distributed, according to the independent thinning theorem,
8(l,w) is also a P.P.P. of density λl,w = λfL(l)dlfW (w)dw.
If (li,wi) 6= (lj,wj),8(li,wi) and8(lj,wj) are disjoint sets of
points, therefore are independent P.P.P.. �

Extending the works in [26], we have the following
Theorem.
Theorem 1: Choose a random location inWS as the origin

of the coordinate system, and let � be the random variable
denoting the number of vehicles that block the LOS from the
origin (0, 0) to another location (x, y) inWS .� is a poisson
variable with mean λ(E[w]|x| + E[l]|y| + E[w]E[l]).

FIGURE 3. A vehicle blocks the line OP if and only if its centre falls in the
dashed polygon.

Proof: Consider the scenario as shown in Fig. 3,
in which the grey boxes represent the limiting positions such
that a vehicle with length l and w will not block the line OP
joining two points (0, 0) and (x, y). Suppose that a vehicle
v = (c, l,w) blocks the line OP, it is easy to see that the
centre of the vehicle must fall in the dashed polygon formed
by connecting the centres of these grey boxes. Let A(l,w)
denote the area of the dashed polygon, by simple geometry,
we have:

A(l,w) =
√
w2 + l2|OP|(

|y|
|OP|

l
√
w2 + l2

+
|x|
|OP|

w
√
w2 + l2

)+ wl

= w|x| + l|y| + wl (1)

Let�(l,w) be the random variable denoting the number of
vehicles in V(l,w) blocking OP. By the Lemma 1, �(l,w)
equals to the number of points in 8(l,w) that fall in the
dashed polygon in Fig. 3. Consequently, �(l,w) is a Poisson
variable with mean λ(l,w)A(l,w).

Note that 8(li,wi) and 8(lj,wj) are independent P.P.P. if
(li,wi) 6= (lj,wj). By the superpositions law of independent
Poisson random variables, the expected number of vehicles
that blocks OP is the sum of the expectation of each random
variable, then:

E[�] =
∑
l,w

E[�(l,w)]

=

∫
l

∫
w
λ(w|x| + l|y| + wl)fL(l)fW (w)dldw

= λ(E[w]|x| + E[l]|y| + E[w]E[l]) (2)

�

FIGURE 4. The variable z is introduced to denote the distance between
the tagged location and the upper edge of the road.

The LOS between O and P exists in the case of � = 0.
Because � follows the Poisson distribution, we have the
following Corollary:
Corollary 1: The LOS probability Pl from a location (x, y)

inWS to the origin of the coordinate system is:

e−λ(E[w]|x|+E[l]|y|+E[w]E[l]) (3)

The above analysis matches the intuition that the longer
the distance between two locations is, the more vehicles are
likely to block the LOS link. In order to simplify our notation,
in the following sections, we use w̄ and l̄ to denote E[w] and
E[l], respectively.

B. THE BLOCKAGE EFFECTS
Next, we study the impact of blockages from other vehicles
on the LOS obstruction. The expected size of the eFoV
of a tagged CAV can be calculated by using the following
theorem:
Theorem 2: Let z be the distance of the tagged CAV from

the upper edge of the road, and denote 9(z) as the size of the
eFoV. Then E[9(z)] equals to:

2e−λl̄w̄

λ2w̄l̄
(e−λsw̄ − 1)(e−λl̄z + e−λl̄(h−z) − 2) (4)

Proof: As shown in Fig. 4, let the centre of the tagged
CAV be the origin of the coordinate frame and denote z as the
distance from the CAV to the upper edge of the road. Now
divide the stripWS into a lattice of small cubes of area1c =
1x1y. Assume that a cube at the location (x, y) ∈ S is visible
if there exists a LOS link between the centre of the CAV (0, 0)
and (x, y), then E[9(z)] can be calculated as the following:

E[9(z)] =
∑
S
Pl(c)1c

=

z∑
z−h

s∑
−s

e−λ(w̄|x|+l̄|y|+w̄l̄)1x1y (5)

As 1c→ 0, we have:

E[9(z)] = 2{
∫ z

0

∫ s

0
e−λ(w̄x+l̄y+w̄l̄)dxdy

+

∫ h−z

0

∫ s

0
e−λ(w̄x+l̄y+w̄l̄)dxdy}
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=
2

λ2w̄l̄
{e−λl̄w̄(e−λsw̄ − 1)(e−λl̄z − 1)

+ e−λl̄w̄(e−λsw̄ − 1)(e−λl̄(h−z) − 1)}

=
2e−λl̄w̄

λ2w̄l̄
(e−λsw̄ − 1)(e−λl̄z + e−λl̄(h−z) − 2) (6)

�
We are also interested in the expected size of the eFoV for

a random CAV on the road, which can be calculated by the
following Corollary:
Corollary 2: The expected size of the eFoV for a random

CAV on the road is:

−
4e−λl̄w̄

λ3 l̄2w̄h
(e−λsw̄ − 1)(λhl̄ + e−λhl̄ − 1) (7)

Proof: Since the centres of vehicles form a homogenous
P.P.P., the location distribution of CAVs in term of z is uni-
form. The expected size of the eFoV for a randomCAV on the
road then could be derived by simply integrating Equation (6)
in term of z from 0 to h, and is omitted. �

Note that for mathematical tractability, our derivation
implies that the LOS probabilities between any pair of points
are independent. Indeed, this assumption does not always
hold as the same vehicle could block lines within a specific
region; hence the LOS probabilities between these endpoints
are correlated. However, simulations show that ignoring this
correlation only causes a minor loss in accuracy.

Due to the fact that limλ→0(e−λsw̄−1)(e−λl̄z+ e−λl̄(h−z)−
2) = λ2 l̄w̄sh, equation (6) approaches to the maximum
sensing range 2sh at λ = 0. Theorem 2 and Corollary 2 show
that the eFoV of a CAV drops quickly with the increase of
vehicular density. In other words, CAVs, even in simple high-
way scenario, could also suffer from heavy LOS blockages
from other vehicles on the road.

C. DATA REDUNDANCY ANALYSIS
Now armed with the LOS probability and eFoVs of CAVs on
the road, we are ready to investigate the data redundancy issue
in V2X based collective perceptions. Toward this end, we first
analyse the eFoV overlaps among CAVs on the road, deriving
the coverage probability, Pc, as defined in Definition 3.
Theorem 3: Let z be the distance between a tagged location

to the upper edge of the road, then the coverage probability,
Pc(z), of the tagged location is:

1− e−λcE[9(z)] (8)

Proof: Following the same setting on deriving
Theorem 2, and let the tagged location be the origin of the
coordinate frame. Assume that each small cube c can only
contain one vehicle’s centre. Since the centres of CAVs also
form a P.P.P., the probability that a CAV’s centre fall in a cube
at (x, y) is therefore λc1c+ o(1c). Then the probability that
the tagged location falls in the eFoV region of a CAV at c is
simply λcpl(c)1c.

The LOS condition implies that if A is visible to B, then B
is also visible to A. Because we assume CAVs have identical

FIGURE 5. The required penetration rate α to achieve different target
coverage probability Ctarget .

perception range, S can also be interpreted as maximum
region in which a CAV’s eFoV covers the tagged location.
Therefore, the probability that none of CAVs can see this
location is:

pn(z) =
∏
S
{1− λcPl(c)1c} (9)

As 1c→ 0:

pn(z) = lim
1c→0

∏
S
{1− λcPl(c)1c}

= lim
1c→0

exp{
∑
S
log[1− λcPl(c)1c]}

= lim
1c→0

exp{−
∑
S
[λcPl(c)1c]}

= exp{−λc

∫ s

−s

∫ h

0
e−λ(w̄|x|+l̄|y|+w̄l̄)dxdy} (10)

Replacing the exponent of equation (10) with (6), we have:

Pc(z) = 1− e−λcE[9(z)] (11)

�
The coverage probability Pc is a key metric to evaluate the

reliability of V2V based collective perceptions. Incorporating
with α = λc

λ
, the required penetration rate to achieve a desired

coverage probability, Ctarget , could be calculated by taking
the logarithm on both sides of equation (8):

α = −log(1− Ctarget )/λ ∗ E[9(z)] (12)

Note that, α solved by the above equation could be larger
than 1 for vary small λ, which indicates that the Ctarget
can never be achieved even if all vehicles on the road are
CAVs. Fig. 5 plots the numeric results of equation 12 for
Ctarget = 90/95%, s = 100m, z = h/2, and h = 15m
representing typical width of 4 lanes roads. It can be seen
from the figure that the curves decrease with the increase
of λ and then slightly increase when the traffic becomes
dense due to heavy blockage effects. For Ctarget = 95%,
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α stays at around 25% to 30% starting from the density of
0.005 vehs/m2.
According to Equation (11), the coverage probability Pc

of a location in WS is exponential. Therefore, we have the
following immediate Corollary:
Corollary 3: Let 0(z) denote the number of CAVs whose

eFoVs cover a tagged location at z, then 0(z) is a Poisson
random variable with mean λcE[9(z)].

Corollary 3 provides a mean to analyse data redundancy
issue by leveraging collective perception. That is, assume
that a CAV can detect and track an object (e.g. vehicles,
pedestrians or obstacles) if its centre falls in the eFoV. Then
for an object at z, the expected number of CAVs that transmit
this object is simply λcE[9(z)].

Observing that Equation 6 also depends on z, we have:
Lemma 2: 0(z) satisfies:

λcE[9(0)] ≤ 0(z) ≤ λcE[9(
h
2
)] (13)

Proof: We begin by observing that E[9(z)] is linear in
e−λl̄z + e−λl̄(h−z) − 2, hence the maximum and minimum
values of E[9(z)] can be determined by taking the partial
derivative with respect to the variable z:

∂(e−λl̄z + e−λl̄(h−z) − 2)
∂z

= λl̄(e−λl̄(h−z) − e−λl̄z) (14)

It is easy to see that the following inequalities hold:
λl̄(e−λl̄(h−z) − e−λl̄z) < 0 if 0 ≤ z <

h
2

λl̄(e−λl̄(h−z) − e−λl̄z) = 0 if z =
h
2

λl̄(e−λl̄(h−z) − e−λl̄z) > 0 if
h
2
< z ≤ h

(15)

Therefore, Equation (6) monotonically increases in the
interval [0, h2 ), and decreases in the interval ( h2 , h]. We then
have the following inequality:

E[9(0)] ≤ E[9(z)] ≤ E[9(
h
2
)] (16)

�
Lemma 2 shows that for any object on the road,

the expected number of redundant transmissions is lower
bounded by λcE[9(0)] and upper bounded by λcE[9( h2 )].
Fig. 6 shows the heat map of 0(z) as a function of z and λ.
The results confirm that object located at the centre of the
road has more chance to be detected by those who located at
the edge of the road. The transmission redundancy could be
as high as 6.5 for α = 50%.

V. REDUNDANCY CONTROL
As shown in the previous section, V2X based collective
perceptions could result in heavy data redundancy. In this
section, we propose a fully distributed redundancy control
scheme to suppress redundant transmission for V2I and V2V
based collective perceptions.

FIGURE 6. The heat map of 0(z) as a function of z and λ. The numeric
results are obtained by setting s = 100, h = 20, w = 2 and l = 4.5.

A. THE ALGORITHM OVERVIEW
A simple and effective way to suppress data redundancy is
to let CAVs transmit their sensory information probabilisti-
cally. That is, for each object obi in the track list, the CAV
selects the object with a probability pi, which is computed
using a predefined probability assignment function fp(obi).
Only the selected objects are encapsulated into the EPM and
transmitted over the network at each transmission interval.
The pseudo-code of the data selection algorithm is illustrated
in Algorithm 1.

Algorithm 1 The Data Selection Algorithm
Data: TrackList
Result: Determine the set of tracked objects for

transmission
for obi in TrackList do

Compute a transmission probability pi according
to fp(obi)
Encapsulate the sensory information of obi into the
EPM with probability pi

end
Transmit the EPM via the chosen interface.
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With a properly defined probability assignment function,
the main advantage of the probabilistic approach is that CAVs
can solely determine their transmission policy without any
coordinations. However, the main challenge is how to effec-
tively reduce redundancy in the meanwhile still guarantee
the share ratio of the collective perception. Assigning an
overly high transmission probability will result in excessive
redundant transmissions for the same object. On the other
hand, if the probability is too small, some tracked objects
might not be shared in the network. The key idea of our
redundancy control scheme is to give a higher transmission
probability to objects having lower probability being detected
by other CAVs on the road.

B. P-CONSISTENCE ASSIGNMENT SCHEME
In order to meet the required share ratio in both V2I and V2V
based collective perception, we propose the p-consistence
assignment scheme as the following:
Definition 4: In p-consistence assignment scheme, CAVs

assign the same probability to the same object in their track
list.

By this way, assume that an object falls in the eFoV of
n CAVs. If they all transmit the object with a probability p,
the expected number of transmissions then could be reduced
to n×p, and the probability that none of them share the object
is simply (1 − p)n. Unfortunately, CAVs on the road cannot
easily get n without any coordinations. The transmission
probability could be estimated by incorporating Theorem 3,
leading to the following Proposition:
Proposition 1: Assume that a tagged CAV has detected an

object whose distance to the upper edge of the road is z, and
let λ′c be the local density estimation of other CAVs on the
road (e.g. not including the tagged CAV). In p-consistence
assignment scheme, the probability that the object is not
transmitted over the network is: (1− p)e−λ

′
cpE[9(z)].

Proof: Following the same setting in deriving
Theorem 3, assume that each small cube c can only contain
one vehicle’s centre point. By the definition of p-consistence
scheme, the probability of a CAV at c will detect and broad-
cast the object is pλ′cplos(c)1c. Using the same technique
in deriving Theorem 3, the probability that none of CAVs
(exclude the tagged CAV) will share the object is e−λ

′
cpE[9(z)].

Because the tagged CAV also share the object with probabil-
ity p, then the probability that the object will not be shared by
any CAV is simply (1 − p)e−λ

′
cpE[9(z)], which completes the

proof. �
Given the above proposition, we then propose a threshold

based probability assignment function. Let θ denoting the
desired share ratio in V2X based collective perception. The
selection probability pz for a tracked object at z could be
computed by taking the numeric inverse of the following
equation:

(1− pz)e−λ
′
cpzE[9(z)]

= 1− θ (17)

Fig. 7 plots the numeric results of pz for θ = 0.95/0.99,
h = 20 meters and z = 10. It can be seen that the data

FIGURE 7. The numeric results of pz for θ = 0.95/0.99, h = 20, z = 10,
s = 100, w = 2 and l = 4.5.

selection probability adaptively changes according to the
CAV penetration rate and vehicular densities, and the curves
reach to their minimum at around λ = 0.006 vehs/m2.
In general, sparse traffic and low penetration rate lead to
higher selection probability in order to meet the sharing ratio
requirement, on the other hand, the curves increase for dense
traffic and higher penetration rate to compensate the heavy
blockage effects.

By definition, θ could be arbitrarily close to 1. However,
the tradeoff between reliability and redundancy in our pro-
posed schemes needs to be carefully considered. As shown
in Fig. 7, the selection probability increases at most 40%
from θ = 0.95 to θ = 0.99, which implies that the abil-
ity of suppressing redundant transmissions will be greatly
compromised in order to further improve just 4% share
ratio. Considered that the update frequency of EPMs is
relatively high (e.g. 5-10 Hz), the temporal missing of a
small number of sensed objects could be dealt with the
object trackingmodules, which can predict the future position
of road objects when their sensing information is unavail-
able for short time. In this paper, we take θ = 0.95 to
balance the tradeoff between data redundancy and system
reliability.
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C. LOCAL DENSITY ESTIMATION
The proposed scheme relies on two local observations,
λ′c and λ, to determine the transmission probability of each
tracked object. These two values can be locally estimated
based on the information in received CAMs, which contain
the travelling status, such as velocities and locations, that
are of importance to prevent traffic accidents. Since traffic
density estimation using network information has been an
active research topic in the community [27], in this section,
we present possible solutions in the literature that are suitable
for the considered highway scenarios.

The CAV density λ′c can be estimated by counting the
number of unique CAMs received within a density estimation
interval (i.e., 1s). The simulation results in [28] confirm
that this simple CAM counting approach maintains a good
accuracy; the estimation errors are lower than 10% even in
dense traffic (e.g., 2700 CAVs per hour) with the most fre-
quent CAM broadcasting (e.g., 10Hz). The overall vehicular
density λ, in the meanwhile, can be estimated by applying
well-established models for the relationship between traffic
density and speed on the kinematic information collected
from CAMs. For example, the Drew and Pipes-Munjal model
shows that the average velocity v is related to the density k by
the following equation:

v = vf (1− (
k
Kj

)n) (18)

where vf is the free-flow road speed, Kj is the jam density in
vehicles per meter and n is the model parameter.
Each CAV then could calculate the average travelling

speed using the received CAMs within an estimation interval
and feed it to the Drew and Pipes-Munjal formula to estimate
the local vehicular density. The authors in [29] report that
this approach can achieve a high level of accuracy with low
CAV penetration rate: by receiving CAMs from around 30%
neighbouring vehicles, the accuracy is higher than 90% from
sparse to dense traffic. Note that our scheme is not limited
to the above method, other vehicular network based density
estimation approaches can also be applied when the environ-
ment changes. Interesting readers could refer to [27] for more
details.

D. DISCUSSIONS
By definition, CAVs in p-consistence scheme have the same
opportunity to be the transmitter of a road object, therefore are
naturally suitable for V2I based collective perceptions. Due
to the broadcast nature of V2V communications, it is more
reasonable to assign higher broadcast priority to CAVs that is
farther away from the tracked object to provide larger broad-
cast coverage, as suggested in many geo-casting protocol in
VANETs [30].

For example, the irresponsible forwarding (IF) proposed
in [14] relegates the responsibility of forwarding a geo-
casting message to the downstream vehicles in order to
achieve higher forward progress. In the context of V2V based
collective perceptions, a modified version of IF could be

implemented by assigning a probability to a tracked object
based on the probability of having other CAVs that is farther
way who also detect the object. If the chance of finding
another CAV is high, then the selection probability should be
set to a small value, and vice versa. By Theorem 3 the proba-
bility assignment function could be defined as the following:

e−λ
′
cE[9k (z)] (19)

where k is the distance between the tagged CAV and the
object, and

E[9k (z)] =
∫ h

0

∫ k

s
e−λ(w̄|x|+l̄|y|+w̄l̄)dxdy (20)

However, we argue that this consideration is not necessary
in the context of V2V based collective perception. According
to our analytic model, CAVs could experience heavy block-
age effects due to other vehicles as obstructions, the eFoV is
therefore much smaller than the V2V communication range,
especially for dense traffic. In Section VI, we compare the
p-consistence with a modified IF, showing that ignoring the
broadcast coverage factor only has negligible impacts on
the performance of V2V based collective perceptions.

VI. EVALUATIONS
In the previous sections, we analytically investigate the
data redundancy issues of V2X based collective perceptions
by simplifying the physical environment for mathematical
tractability. Based on our model, we then proposed a redun-
dancy control approach that is suitable for both V2V and
V2I based collective perceptions. In this section, we present
the simulation results to evaluate our proposed model and
algorithm, as well as gain insights into a range of other
parameters not captured by the models.

A. SIMULATION SETUP
The simulations are conducted using three interconnected
tools, OpenStreetMap, SUMO andMatlab. OpenStreetMap is
used for obtaining real-world maps. This map is imported to
SUMO [31] to generate realistic vehicle traces using micro-
scopic vehicular mobility models. The traces are then sent
to the Matlab-based simulator via the TraCI interface. In the
analytical models, we assume that the maximum sensing
region is a rectangle for mathematic tractability. In our sim-
ulations, this aspect is modelled as a circle originated at the
centre of the CAV of radius s = 100/150 m. We also assume
that a CAV can detect an object if its eFoV covers the centre
of the object.

Since our work focuses on investigating the data redun-
dancy issue due to eFoV overlaps and propose a data selection
scheme to reduce generated network traffic, the Matlab pro-
gram accurately simulate the blockage effects resulting from
other vehicles on the road using the computational geometry
toolbox, on the other hand, the V2V communications are sim-
plified as the disk model. Ignoring the details of the network
layer might compromise our results as network loads could
affect the accuracy of real time traffic density estimations,
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however, it is not overly optimistic either. In our simula-
tions, we carefully choose the parameters according to [28]
and [29], such that the estimation errors are lower than 10%
from sparse to dense traffic by using the methods as outline in
Section V-C. In addition, CAMs should be transmitted over
a dedicated control channel (e.g., G5-CCH) with the highest
priority (e.g., AC0 in 802.11p) to avoid competing resources
with other applications [32], the network traffic generated by
the collective perceptions has small impacts on the accuracy
of density estimations by shifting the transmissions of EPM
to a service channel in heterogeneous multi-radio vehicular
networks [33].

FIGURE 8. The map used for the performance evaluation and comparison.

The considered scenarios are two urban roads, Xueyuan
avenue and Orchid road, in Shenzhen, P.R.China, as high-
lighted blue in Figure 8. The Xueyuan avenue is a 4 lanes
bidirectional urban highway and the Orchid road has 2 lanes
in both directions. For each scenario, vehicles with three
different dimensions, 1.8 × 4.4 m2, 1.95 × 4.8 m2 and
2.4 × 10 m2, are inserted at the road segments with the
percentages of 30%, 60% and 10%, respectively. There-
fore the average vehicle dimension is 1.95 × 5.2 m2. The
vehicles’ mobility is defined by the default carFollowing-
Krauss model. Three CAV penetration rates are evaluated,
10%, 30% and 50%, and the traffic density varies from 0 to
75 vehs/lane/km, corresponding to around 0 to 0.02 vehs/m2.
The simulation parameters are summarised in Table 2.

TABLE 2. Simulation parameters.

Following the work in [7], we let each CAV maintains
a perceived object container (POC) storing tracked objects
(e.g. other vehicles in our case) at every time step. The EPM

then can be generated by applying the proposed p-consistence
with θ = 95%. For comparison purpose we use the naïve
and fixed-p scheme as base lines. The former one refers to
the case where CAVs simply transmit all tracked objects over
the network, while the fixed-p allows CAVs transmit their
tracked objects with a pre-defined probability (e.g. 60% for
Orchid road and 50% for Xueyuan avenue). We also imple-
ment a modified IF formulated in Section V-D to compare
with the p-consistence in V2V based collective perceptions.
In addition to the primary metric share ratio, as defined
in Section III, we collect the following statistics from our
simulations:
• Payload size: the payload size is defined as the number
of tracked objects that are encapsulated into the EPM,
which measures the network overhead of V2I and V2V
based collective perceptions.

• Number of detections: for each vehicle on the road,
we count the average number of CAVs who detect the
tagged vehicle over its simulation time.

• Transmission probability: it is defined as the transmis-
sion probability assigned to a tracked objects.

• V2V awareness: the V2V awareness of a CAV is defined
as the number of objects shared by CAVswithin the V2V
communication range. By definition, the naive policy
achieves the maximum V2V awareness.

• Forwarder distance: for a given object, the forwarder
distance is defined as the distance to a CAVwho transmit
the sensory information of the object via V2V interface.

FIGURE 9. The analytic and simulation results of eFoV.

B. MODEL VALIDATIONS
For all scenarios, Fig. 9 shows the eFoV results obtained as
a function of vehicular density, where the analytic results
are obtained using Theorem 2. For the simulation results,
we consider two maximum perception ranges of s = 100m
and s = 150m. We observe that our analytic model shows a
good fit with the simulation results but the matches for the
intervals of λ = [0, 0.001] are slightly worse. This is because
we assume the maximum perception region S is a rectangle
rather than a circle.

We also observe that CAVs suffer from heavy blockage
effects due to other vehicles on the road. The results show
that the eFoV drops quickly with the increase of vehicular
density λ. The expected size of the visible region halves
at around 0.0047 vehs/m2, corresponding to just around
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17.6 vehs/lane/km. Note that this level of vehicular density
is very common for urban highway scenario. For exam-
ple, the authors in [34] show that the traffic volume on all
road types in Sydney urban region would be higher than
800 vehs/hour from 6 AM to 12 PM, which translates to a
traffic flow of around 13.3 vehs/km if the average vehicle
speed is 60 km/hour . Similarly, the real traffic data presented
in [35] shows that the average traffic flow of the backbone
road networks in Beijing is higher than 20 vehs/km for more
than 16 hours per day.

The results also suggest that simply increasing the sen-
sor perception range s only provide limited benefits, and it
is insufficient to extend the eFoV of individual CAVs for
most of the traffic situations: for all cases, starting from
0.01 vehs/km2, the eFoVs of the two settings, s = 100m
and s = 150m, are almost the same due to other vehicles
as obstructions.

FIGURE 10. The average number of detections for the same object for
s = 100 m.

Next we validate our redundancy analysis. Fig. 10 plots the
average number of detections over the vehicle population for
s = 100m and α = 30%/50% (i.e., the results for s = 150m
are not reported due to the space constraints). As shown in
the figures, the simulation results are bounded by Lemma 2.
Unlike the eFoV results as presented in Fig. 9, the number of
detections for the same vehicle increase almost logarithmic
fast from sparse to medium densities, the curves reach to their
maximum at around λ = 0.009 vehs/m2. For dense traffic,
even though the eFoVs of individual CAVs drop quickly,
redundant detections only decreases slowly because there are
more CAVs on the road.

C. PERFORMANCE OF P-CONSISTENCE
For all scenarios, Fig. 11 compares the average payload sizes
obtained as a function of the vehicular densities for naive,
fixed-p and p-consistence schemes. We observe that both
fixed-p and our proposed scheme can significantly reduce
the payload size, the p-consistence with θ = 95% scheme

FIGURE 11. V2I duplicates comparison.

can reduce at most around 60% communication overhead
for medium to dense traffic. The results also show that the
p-consistence performs slightly worse than fixed-p for Orchid
road with α = 30%, but it overwhelm fixed-p for the rest of
scenarios.

FIGURE 12. Share ratio comparison between fixed probability assignment
scheme and p-consistence scheme.

From Fig. 11, one might conclude that our proposed
scheme does not show significant improvements over the
simple fixed-p scheme. However, the main advantage of the
p-consistence scheme is that CAVs can adaptively change
the transmission probability to maintain the overall share
ratio at a required level. Fig. 12 compares the share ratio of
p-consistence and fixed-p scheme for all scenarios, it can be
seen that the performance of fixed-p highly depends on the
traffic parameters; the share ratio generally increase with the
increase of vehicular density. For Orchid road with α = 30%,
p = 60% is overly low as the share ratio can never reach
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to 85%, on the other hand, p = 50% will be overly hight
for Xueyuan avenue with α = 50%, especially under dense
traffic. In contrast, the share ratio of p-consistence scheme
stabilises at the desired threshold θ for all scenario. The
results confirm the success of our proposed p-consistence
scheme as it can maintain the reliability of V2V based col-
lective perception at all time.

FIGURE 13. Transmission probability histogram of p-consistence for
θ = 95% and λ = 0.011 vehs/m2.

Fig. 13 compliments the picture by showing the trans-
mission probability histogram of p-consistence for Xueyuan
avenue of λ = 0.011 vehs/m2. Since the probability assign-
ment function is designed based on our redundancy model,
unlike the simple fixed-p scheme, the selection probability
of a tracked object is calculated by the local estimations of
the environments. For sparse local vehicular density and low
CAV penetration rate, CAVs transmit the tracked objects with
higher probability to prevent unexpected losses of sensory
information. If there are more CAVs around, the transmis-
sion probability reduces accordingly to suppress unnecessary
transmissions. Therefore, even though p-consistence achieves
higher share ratio in Xueyuan avenue with α = 30%, but the
average payload size is still lower than that of fixed-p.

D. P-CONSISTENCE IN V2V BASED
COLLECTIVE PERCEPTIONS
As mentioned in Section V-D, the proposed p-consistence
scheme, at the first glance, might not be suitable for V2V
based collective perceptions as it does not give higher broad-
cast priority to CAVs that are farther away from the tracked
objects. In this section, we investigate the performance of
p-consistence in V2V based collective perceptions.

By definition, the best case V2V awareness is achieve in
naive approach as CAVs simply encapsulate all objects in
their tracked list. Fig. 14 compares the V2V awareness for
naive, IF and p-consistence for α = 30%. It is clear to see that
even though IF takes the broadcast coverage into considera-
tion, the benefits are negligible as both IF and p-consistence
achieve around 92% V2V awareness when compared with
the naive policy. However, the payload size results presented
in Fig. 15 shows that p-consistence is more efficient than IF
in term of communication overhead. The payload size of IF
is around 30% larger than that of p-consistence, but it only
achieves similar performance in V2V awareness.

FIGURE 14. The V2V awareness for α = 30%.

FIGURE 15. The payload size comparison between IF and p-consistence
for α = 30%.

TABLE 3. The downstream maximum forwarder distance in meters
comparisons between IF and p-consistence.

Table 3 compares the maximum forwarder distance at
downstream for IF and p-consistence. It can be seen that IF
can only provide slightly higher broadcast coverage toward
downstream traffic. This is because the eFoVs decrease
quickly due to the blockage effects of other vehicles on the
road, the CAVs who detect the same road object, therefore,
tend to stay close with each other. Even the broadcast priority
is intentional assigned to CAVs that are farther away from the
object, the difference is still insignificant considered that the
V2V communication range is much larger.

VII. CONCLUSION
In this paper, we address the data redundancy issue in V2X
based collective perceptions by proposing a lightweight,
fully distributed redundancy control approach. In this regard,
we first analytically study the eFoV and coverage probability
of CAVs in different traffic scenarios, showing that employ-
ing V2X based collective perceptions could result in heavy
communication overhead due to redundant transmissions of
sensory data. Based on our model, we propose p-consistence
to suppress unnecessary data transmissions taking the vehic-
ular density, CAV penetration rate and road geometry into
consideration. The simulation results show that p-consistence
can significantly reduce the communication overhead in the

13416 VOLUME 8, 2020



H. Huang et al.: Data Redundancy Mitigation in V2X-Based Collective Perceptions

meanwhile maintain the share ratio at desired level for both
V2V and V2I based collective perceptions.

ACKNOWLEDGMENT
(Hui Huang, Cuiping Shao, and Tianfu Sun contributed
equally to this work.)

REFERENCES
[1] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,

J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and S. Thrun, ‘‘Towards fully
autonomous driving: Systems and algorithms,’’ in Proc. IEEE Intell. Vehi-
cles Symp. (IV), Jun. 2011.

[2] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and
A. Kovacs, ‘‘Enhancements of V2X communication in support of coopera-
tive autonomous driving,’’ IEEECommun.Mag., vol. 53, no. 12, pp. 64–70,
Dec. 2015.

[3] Technical Specification Group Services and System Aspects: Study on
Enhancement of 3GPP Support for 5GV2X Services, document TR 22.886,
3GPP, 2017.

[4] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, ‘‘Vehicle-to-
everything (v2x) services supported by LTE-based systems and 5G,’’ IEEE
Commun. Standards Mag., vol. 1, no. 2, pp. 70–76, 2017.

[5] K. Bian, G. Zhang, and L. Song, ‘‘Toward secure crowd sensing in
vehicle-to-everything networks,’’ IEEE Netw., vol. 32, no. 2, pp. 126–131,
Mar. 2018.

[6] H.-J. Gunther, O. Trauer, and L. Wolf, ‘‘The potential of collective per-
ception in vehicular ad-hoc networks,’’ in Proc. 14th Int. Conf. Telecom-
mun. (ITST), Dec. 2015.

[7] H.-J. Gunther, B. Mennenga, O. Trauer, R. Riebl, and L. Wolf, ‘‘Realizing
collective perception in a vehicle,’’ in Proc. IEEE Veh. Netw. Conf. (VNC),
Dec. 2016.

[8] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, ‘‘On the performance
of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected
vehicles,’’ IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10419–10432,
Nov. 2017.

[9] B. Toghi, M. Saifuddin, H. N. Mahjoub, M. O. Mughal, Y. P. Fallah,
J. Rao, and S. Das, ‘‘Multiple access in cellular V2X: Performance analysis
in highly congested vehicular networks,’’ in Proc. IEEE Veh. Netw. Conf.
(VNC), Dec. 2018.

[10] A. Rauch, S. Maier, F. Klanner, and K. Dietmayer, ‘‘Inter-vehicle object
association for cooperative perception systems,’’ in Proc. 16th Int. IEEE
Conf. Intell. Transp. Syst. (ITSC), Oct. 2013.

[11] M. Vasic and A. Martinoli, ‘‘A collaborative sensor fusion algorithm
for multi-object tracking using a gaussian mixture probability hypothesis
density filter,’’ in Proc. IEEE 18th Int. Conf. Intell. Transp. Syst. (ITSC),
Sep. 2015.

[12] T. Yuan, K. Krishnan, Q. Chen, J. Breu, T. B. Roth, B. Duraisamy, C.Weiss,
M.Maile, and A. Gern, ‘‘Object matching for inter-vehicle communication
systems—An IMM-based track association approach with sequential mul-
tiple hypothesis test,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12,
pp. 3501–3512, Dec. 2017.

[13] S. Busanelli, G. Ferrari, and S. Panichpapiboon, ‘‘Efficient broadcasting in
IEEE 802.11 networks through irresponsible forwarding,’’ in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Nov. 2009.

[14] S. Panichpapiboon and L. Cheng, ‘‘Irresponsible forwarding under real
intervehicle spacing distributions,’’ IEEE Trans. Veh. Technol., vol. 62,
no. 5, pp. 2264–2272, Jun. 2013.

[15] X. Zhang, G. Mao, X. Tao, and Q. Cui, ‘‘Uncoordinated cooperative
forwarding in vehicular networks with random transmission range,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015.

[16] W. Drira, K. Ahn, H. Rakha, and F. Filali, ‘‘Development and testing of
a 3G/LTE adaptive data collection system in vehicular networks,’’ IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 240–249, Jan. 2016.

[17] I. Turcanu, C. Sommer, A. Baiocchi, and F. Dressler, ‘‘Pick the right guy:
CQI-based LTE forwarder selection inVANETs,’’ inProc. IEEEVeh. Netw.
Conf. (VNC), Dec. 2016, pp. 1–8.

[18] K. Abboud and W. Zhuang, ‘‘Stochastic modeling of single-hop cluster
stability in vehicular ad hoc networks,’’ IEEE Trans. Veh. Technol., vol. 65,
no. 1, pp. 226–240, Jan. 2016.

[19] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, ‘‘Energy
conservation in wireless sensor networks: A survey,’’ Ad Hoc Netw., vol. 7,
no. 3, pp. 537–568, May 2009.

[20] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus, ‘‘Carspeak:
A content-centric network for autonomous driving,’’ in Proc. ACM SIG-
COMM, Aug. 2012.

[21] S.-W. Kim, B. Qin, Z. J. Chong, X. Shen, W. Liu, M. H. Ang, E. Frazzoli,
and D. Rus, ‘‘Multivehicle cooperative driving using cooperative percep-
tion: Design and experimental validation,’’ IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 663–680, Apr. 2015.

[22] A. Rauch, F. Klanner, R. Rasshofer, and K. Dietmayer, ‘‘Car2X-based
perception in a high-level fusion architecture for cooperative perception
systems,’’ in Proc. IEEE Intell. Vehicles Symp., Jun. 2012.

[23] Intelligent Transport Systems (ITS), Framework for Public Mobile Net-
works in Cooperative ITS (C-ITS), ETSI Technical Committee Intelligent
Transport System, Standard 102 962 (2012), Sophia Antipolis, France,
2012.

[24] M. Gramaglia, P. Serrano, J. A. Hernandez, M. Calderon, and
C. J. Bernardos, ‘‘New insights from the analysis of free flow vehicular
traffic in highways,’’ in Proc. IEEE Int. Symp. World Wireless, Mobile
Multimedia Netw., Jun. 2011.

[25] G. S. Thakur, P. Hui, and A. Helmy, ‘‘Modeling and characterization of
vehicular density at scale,’’ in Proc. IEEE INFOCOM, Apr. 2013.

[26] T. Bai, R. Vaze, and R. W. Heath, ‘‘Analysis of blockage effects on
urban cellular networks,’’ IEEE Trans. Wireless Commun., vol. 13, no. 9,
pp. 5070–5083, Sep. 2014.

[27] J. Wang, Y. Huang, Z. Feng, C. Jiang, H. Zhang, and V. C. M. Leung,
‘‘Reliable traffic density estimation in vehicular network,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 7, pp. 6424–6437, Jul. 2018.

[28] S. Bastani, L. Libman, and S. T. Waller, ‘‘Impact of beaconing policies on
traffic density estimation accuracy in traffic information systems,’’ in Proc.
IEEE Int. Symp. World Wireless, Mobile Multimedia Netw., Jun. 2014.

[29] L. Libman, S. Bastani, and S. T. Waller, ‘‘Real-time traffic monitoring
using wireless beacons with the cell transmission model,’’ in Proc. 17th
Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2014.

[30] S. Panichpapiboon and W. Pattara-Atikom, ‘‘A review of information
dissemination protocols for vehicular ad hoc networks,’’ IEEE Commun.
Surveys Tutr., vol. 14, no. 3, pp. 784–798, 3rd Quart., 2012.

[31] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, ‘‘Recent devel-
opment and applications of SUMO-Simulation of Urban MObility,’’ Int.
J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, 2012.

[32] Intelligent Transport Systems (ITS); Access Layer Specification for Intel-
ligent Transport Systems Operating in the 5 GHz Frequency Band, Stan-
dard 302 663 (v1.2.1), ETSI, Sophia Antipolis, France, 2012.

[33] W. Huang, L. Ding, D. Meng, J.-N. Hwang, Y. Xu, and W. Zhang, ‘‘QoE-
based resource allocation for heterogeneous multi-radio communication in
software-defined vehicle networks,’’ IEEE Access, vol. 6, pp. 3387–3399,
2018.

[34] N. Orthongthed, B. Wang, and J. Legaspi, ‘‘Estimating cost expansion
factors in the Sydney urban and NSW rural road networks for economic
evaluation of road projects,’’ in Proc. Australas. Transp. Res. Forum
(ATRF), 2013.

[35] B. Jing, L. Wu, H. Mao, S. Gong, J. He, C. Zou, G. Song, X. Li, and
Z.Wu, ‘‘Development of a vehicle emission inventory with high temporal–
spatial resolution based on NRT traffic data and its impact on air pollution
in Beijing—Part 1: Development and evaluation of vehicle emission inven-
tory,’’ Atmos. Chem. Phys., vol. 16, no. 5, pp. 3161–3170, 2016.

HUI HUANG received the M.Sc. degree in com-
puting science from the University of Glasgow,
U.K., in 2013, and the Ph.D. degree from the Uni-
versity of New South Wales, Australia, in 2018.
He is currently a Research Associate with the
Shenzhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences. His research interests
include V2X communications, autonomous driv-
ing, and intelligent transportation systems.

VOLUME 8, 2020 13417



H. Huang et al.: Data Redundancy Mitigation in V2X-Based Collective Perceptions

HUIYUN LI (Member, IEEE) received the M.Eng.
degree in electronic engineering from Nanyang
Technological University, in 2001, and the Ph.D.
degree from the University of Cambridge, U.K.,
in 2006. She is currently a Professor with the Shen-
zhen Institutes of Advanced Technology, Chinese
Academy of Sciences, and The Chinese Univer-
sity of Hong Kong. Her research interests include
automotive electronics, autonomous driving, V2X,
and so on.

CUIPING SHAO received the B.S. degree from
the Xi’an University of Technology, China,
in 2009, the M.S. degree from the Xi’an Micro-
electronics Technology Research Institute, China,
in 2012, and the Ph.D. degree from the Uni-
versity of Chinese Academy of Sciences, China,
in 2019. She is currently an Engineer with the
Shenzhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences. Her research interests
include integrated circuit reliability design and
testing, and AI hardware implementation.

TIANFU SUN (Member, IEEE)was born in China.
He received the B.Eng. degree in mechanical engi-
neering and the M.Sc. degree in civil engineering
from the Dalian University of Technology, Dalian,
China, in 2009 and 2012, respectively, and the
Ph.D. degree in electrical and electronic engineer-
ing from The University of Sheffield, Sheffield,
U.K., in 2016. From 2016 to 2017, he was with
the Department of Electronic and Electrical Engi-
neering, The University of Sheffield, U.K., where

he was a Postdoctoral Research Fellow. He is currently working as an Asso-
ciate Professor of electric drives with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, China. His current
research interests include connected and automated vehicles, power electron-
ics, and the motor drives.

WENQI FANG received the B.S. degree in applied
physics from the Zhejiang University of Tech-
nology, China, in 2012, and the Ph.D. degree in
theoretical physics with the Institute of Physics,
Chinese Academy of Sciences. He is currently a
ResearchAssociate with the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sci-
ences. During the Ph.D., his research focuses on
quantum information and quantum computing. His
research interests include optimization method,

data analysis with Bayesian methodology, Gaussian process, and so on.

SHAOBO DANG received the Ph.D. degree from
the University of New South Wales, in 2018 and
the Graduate degree from the Northwestern Poly-
technical University, in 2014. He is currently a
Postdoctoral Researcher with the Shenzhen Insti-
tution of Advanced Technology (SIAT), Chinese
Academy of Science (CAS). His research interests
include data mining, machine learning, and tech-
nologies in autonomous vehicle.

13418 VOLUME 8, 2020


