
Research Article
Learn toMakeDecisionwith Small Data for AutonomousDriving:
Deep Gaussian Process and Feedback Control

Wenqi Fang, Shitian Zhang, Hui Huang, Shaobo Dang, Zhejun Huang, Wenfei Li,
Zheng Wang, Tianfu Sun, and Huiyun Li

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SIAT Branch,
Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China

Correspondence should be addressed to Huiyun Li; hy.li@siat.ac.cn

Received 17 February 2020; Revised 21 June 2020; Accepted 20 July 2020; Published 28 August 2020

Academic Editor: Yuchuan Du

Copyright © 2020 Wenqi Fang et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Autonomous driving is a popular and promising field in artificial intelligence. Rapid decision of the next action according to the
latest few actions and status, such as acceleration, brake, and steering angle, is a major concern for autonomous driving.)ere are
some learningmethods, such as reinforcement learning which automatically learns the decision. However, it usually requires large
volume of samples. In this paper, to reduce the sample size, we exploit the deep Gaussian process, where a regression model is
trained on small sample datasets and captures the most significant features correctly. Besides, to realize the real-time and close-
loop control, we combine the feedback control into the process. Experimental results on the Torcs simulation engine illustrate
smooth driving on virtual road which can be achieved. Compared with the amount of training data in deep reinforcement
learning, our method uses only 0.34% of its size and obtains similar simulation results. It may be useful for real road tests in
the future.

1. Introduction

Autonomous driving is one of the most promising field of
artificial intelligence [1, 2]. To realize safety driving on the
real road, ego-vehicles need to recognize and track the
objects with its perceptual equipment [3], as well as act
properly according to the current road conditions with
decision-making modules.)e decision-making module is
the most important part for self-driving, yet the most
challenging part to achieve.)e core mission mainly in-
cludes obstacle avoidance, trajectory planning, and action
prediction [4, 5].)e decision-making model is built with
rule-based [6] or statistical method [7], which are two
popular schemes. Rule-based method can implement
functionality quickly, but they are confined by the incom-
plete sets of state and the inability of capturing uncertainty.
)ese shortcomings are overcome by a combination with
statistical methods. In addition, with the advent of simu-
lation engines such as Torcs [8] and Carla [9], various
methods based on reinforcement learning [10] are proposed

in the decision-making research and satisfactory perfor-
mances are achieved. In the typical models of reinforcement
learning, the agent begins, without prior knowledge about
the world in advance, only with knowledge of which actions
are possible, and it is expected to learn the skill solely by
interacting with the environment and receiving rewards
after taking actions. With this shortcoming, it requires
absurdly huge amounts of time and datasets to learn to do
specific tasks, such as board game [11] or self-driving [10].
However, due to insufficient diversity, real-world datasets
are often unsatisfactory. And setting up a dataset with
precise labels from the real world is labor-intensive and
time-consuming, especially in large-scale complex trans-
portation systems [12], not to mention building a dataset
with specific features that meets our needs. To address this
problem, building diversity of the virtual datasets is a
practical way to improve the performance of the trained
models in the case of insufficient training data [12, 13]. And
in our paper, we propose another feasible way to solve
decision-making problem in autonomous driving, which

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 8495264, 11 pages
https://doi.org/10.1155/2020/8495264

mailto:hy.li@siat.ac.cn
https://orcid.org/0000-0003-0157-1393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8495264

directly utilizes small datasets without the aid of visual
samples.

In recent years, Gaussian process (GP) has become one
of prevailing regression techniques [14]. To be precise, a
GP is a distribution over functions such that any finite set
of function values have a joint Gaussian distribution.)e
predicted mean function and covariance function are used
for regression and uncertainty estimation, respectively.
)e strength of GP regression lies in avoiding overfitting
while still being able to find functions complex enough to
describe any observed behavior, even in unstructured or
noisy data. GP is commonly used in the situation when
observations are expensive or rare to produce and
methods such as deep neural network performs poorly.
And it has been applied among a wide range from en-
gineering [15], optimization [16], robotics [17], and
physics [18] to biology [19]. Nevertheless, the sort of
phenomena that can be easily expressed by using GP
directly are limited. For example, in a sparse data scenario,
the constructed probability distribution is often far away
from the true posterior distribution. Recognizing this
problem, many interesting research activities have been
carried out, which attempt to represent new properties via
the hierarchical cascading of Gaussians. Inspired by the
widespread success of deep neural network architectures,
Damianou and Lawrence proposed a method that a GP
was directly composed with another GP; furthermore, the
idea was implemented recursively, leading to the so-called
deep Gaussian process (deep GP) [20]. A deep GP consists
of a cascade of hidden layers of latent variables where each
node acts as output for the layer above and as input for the
layer below. GPs govern the mappings between the layers
with their own kernel.)erefore, deep GP retains valuable
properties of GP, such as well-calibrated predictive un-
certainty estimation and nonparametric modeling power.
In addition, it employs a hierarchical structure of GP
mappings which makes it more flexible, has a greater
capacity to generalize, and provides better predictive
performance.)is model is fascinating because it can
potentially discover layers of increasingly abstract data
representations, while handling and propagating uncer-
tainty in the hierarchy at the same time [21].

Undoubtedly, according to the nature of Bayesian sta-
tistics, the deep GP model makes prediction based on sta-
tistical average. However, we cannot ensure that the
statistical average results are reasonable with such small
training data because of model uncertainty. And it turns out
that it is not enough to solve decision-making problem in
our setting according to our calculation. So, we introduce the
feedback control method to compensate this shortcoming.

Based on the analysis above, in this paper, we propose a
decision-making framework combining deep GP and
feedback control method.)e deep GP model makes action
prediction possible, and feedback control method assists
action uncertainty error correction. When the state is fed
into the framework, the action will be obtained immediately.
It is kind of an end-to-end learning method [22].)is
method is trained with small data in Torcs and tested in
Torcs. According to our calculation, in terms of time

consumption and data volume, ourmethod is superior to the
deep reinforcement learning trained by deterministic policy
gradient (DPG) method [23].

2. Related Work

2.1.DeepReinforcement Learning. As mentioned above, self-
driving vehicle is a decision-making system that processes
information from various sources, such as cameras, radars,
LiDARs, GPS units, and inertial sensors.)is information is
used by the vehicle’s system to make driving decisions.)e
architecture can be implemented either as a sequential
perception-planing-action pipeline, or as an end-to-end
system. Recent works are mainly focused on deep rein-
forcement learning paradigm to achieve self-driving.
Existing reinforcement learning algorithms mainly compose
of value-based and policy-based methods. Vanilla
Q-learning is the first proposed method and then becomes
one of the popular value-based methods. Karavolos applies
vanilla Q-learning algorithm to simulator Torcs and eval-
uates the effectiveness of using heuristic during the explo-
ration [24]. Recently, lots of variants of Q-learning
algorithm, such as DQN [25], Double DQN, and Dueling
DQN [26], have been successfully applied to a variety of
games and outperform humans since the resurgence of deep
neural networks.

Different from value-based methods, policy-based
methods learn the policy directly. In other words, policy-
based methods output action given the current state. Silver
et al. [27] propose a DPG algorithm to handle continuous
action spaces efficiently without losing adequate exploration.
By combining idea from DQN and actor-critic, Lillicrap
et al. [23] then propose a deep DPG (DDPG) model-free
approach and achieve end-to-end policy learning. In 2016, a
new technique, which combines policy gradient and off-
policy Q-learning (PGQL), is proposed and achieves per-
formance exceeding that of both asynchronous advantage
actor-critic and Q-learning on the full suite of Atari games
[28]. All these policy-gradient methods can naturally handle
the continuous action spaces. Despite validity and practi-
cability of reinforcement learning, the training time costs too
much and the volume of training data is its soft spot if we
cannot get enough data.

2.2. Feedback Control Method. In addition, traditional
control methods also play an important role for solving self-
driving problem.)e automatic control is almost the last
part in the sequence of the autonomous vehicle, and one of
the most critical tasks since it is responsible for its move-
ment.)e well-known controller mainly includes PID
(proportional integral derivative) controller and MPC
(model predictive control) controller [29]. A PID controller
is a practical part used in industrial control applications to
regulate pressure, speed, temperature, and other core var-
iables [30].)e PID controller uses a control loop feedback
mechanism to control process variables, and it is the most
accurate and stable controller. It is so named because its
output is the summation of three terms (proportional,

2 Journal of Advanced Transportation

integral, and derivative term). Each of these terms depends
on the error value between the input and the output.

Differently, theMPC controller relies on dynamicmodels of
the process, the most common being the linear empirical
models obtained through system identification.)e main ad-
vantage of MPC is that it can optimize the current time step,
while also taking future time steps into account.)is is achieved
by optimizing a finite time-horizon, but only implementing the
current time slot and then optimizing again, repeatedly.

2.3. Gaussian Process. GP is a Bayesian nonparametric
machine learning framework for regression, classification,
and unsupervised learning [14]. A GP is a collection of
random variables f, any finite combination of which satisfies
a multivariate normal distribution. Suppose that a set of
noisy observed outputs y ≜ yn􏼈 􏼉

N

n�1: yn � f(xn) + ε (ϵ is an
independent identically distributed (i.i.d) Gaussian noise
with variance]2) are available for training inputs set
x ≜ xn􏼈 􏼉

N

n�1.)en, the latent set f ≜ f(xn)􏼈 􏼉
N

n�1 is assumed
to be a Gaussian prior p(f)≜ N(f | 0,Kxx), where Kxx is a
covariance matrix with components k(xn, xn′

) for
n, n′ � 1, . . . , N. Since the data likelihood can be written as
p(y | f) ≜ N(y | f ,]2I), the GP predictive distribution of
the latent outputs f ∗ ≜ f(x ∗)􏼈 􏼉 with any test inputs x ∗ can
be computed in a closed form by integrating
p(f ∗ | y) ≜ 􏽒 p(f ∗ | f)p(f | y)df , where p(f | y) is the pos-
terior distribution. Due to the inversion of the covariance
matrix, the training GP model needs O(N3) operations,
which prevents it from scaling well to massive datasets. To
improve its scalability, the sparse GP (SGP) models exploit a
set u ≜ um􏼈 􏼉

M
m�1 of inducing output variables for some small

set z ≜ zm􏼈 􏼉
M

m�1 of inducing inputs (i.e., M≪N).)en, the
joint probability of y, f , and u is as follows:

p(y, f , u) � p(y | f)p(f | u)p(u), (1)

where p(f | u) � N(f|KxzK− 1
xx u,KxzK− 1

zz Kzx) (i.e., Kxz � KT
xz),

p(u) � N(u|0,Kzz), and u is treated as a column vector here.
Kxz and Kzz represent covariance matrices with components
k(xn, zm) for n � 1, . . . , N and m � 1, . . . , M and k(zm, zm′

)

for m, m′ � 1, . . . , M, respectively.)e SGP predictive belief
can also be computed in a closed form by marginalizing u
out: p(f ∗ | y) ≜ 􏽒

​
p(f ∗ | u)p(u | y)du.)e unifying view of

the SGP model can be referred to in [31, 32].
Inference for the GP model is analytically possible when

the likelihood is Gaussian. For the non-Gaussian likelihoods,
approximation approach should work. Titsias [33] proposed
a seminal variational inference (VI) framework that ap-
proximates the joint posterior distribution p(f ,u | y) with a
variational posterior q(f , u)≜ p(f | u)q(u) by minimizing
the Kullback–Leibler (KL) distance between them:
KL[q(f , u)|p(f ,u | y)]. And this procedure is equivalent to
maximizing evidence lower bound (ELBO) of the log-
marginal likelihood [32, 34]:

ELBO � Εp(f | u)q(u)[log(p(y | f))] − KL[q(u)|p(u)]. (2)

A common choice in VI is the Gaussian variational
posterior q(u) � N(u |m, S), which results in a Gaussian
marginal q(f) � N(u | μ, 􏽐), where μ � KxzK− 1

zzm and
􏽐 � Kxx + KxzK− 1

zz (S − Kzz)K− 1
zz Kzx. A gradient-based algo-

rithm can be employed to maximize the ELBO with respect
to the inducing point and hyperparameters in the chosen
kernel function. Several common used kernel functions can
be found in Table 1 and discussed in [35].

3. Materials and Methods

3.1. Problem Statement. To mathematically formulate the
autonomous driving task, we refer to the basic theory of deep
reinforcement learning. Let S, A, and R be the state space,
action space, and the reward function. In the standard rein-
forcement learning setting, an agent interacts with the envi-
ronment at discrete time steps. At each time step t, the agent
observes the state st ∈ S and takes an actionat ∈ A, according
to its policy π, which maps a state to a deterministic action or a
probability distribution over the actions (at � π(st)).)en, it
receives an immediate reward r(st, at) ∈ R from the envi-
ronment.)e goal of a reinforcement learning task is to learn
an optimal policy π ∗ bymaximizing the expected accumulated
reward from the beginning. In the DDPG setup, it adopts deep
neural network to approximate deterministic policy and action
value function. However, training the deep neural network
costs too much time and needs a lot of data.

In our setting, we treat the deep GP modelM as the policy.
To get the optimal deep GP model, the N training data
X ≜ st􏼈 􏼉

N

t�1,Y≜ at􏼈 􏼉
N

t�1􏽮 􏽯 collected from interaction between
well-trained neural network and Torcs engine, which consists of
state set regarding sensor’s states and action set from the
controller in Torcs, are used to train the modelM. Each state st

and action at, as well as st and at, are represented by several
variables presented in Tables 2 and 3, respectively. And the
reward function we defined is as follows:

r st, at(􏼁 � vx ∗ cos(ψ)∗ (1 − sin|ψ|)∗ 1 − d2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (3)

)e reward function can be constructed more effectively by
including other related variables [36]. Although the reward
function does not contain the variables of action at explicitly,
each state st+1 is observed at time step t + 1 after taking the
action at time step t. It influences the result of reward value
indirectly.

To get the best policy, the evidence lower bound, denoted
as ELBOM, for the deep GPmodelM, which is more complex
than standard GP should also be maximized using training
data, X and Y. According to the Bayesian theory, it means to
get the statistical mean of action at mapping from state st,
denoted as ΕM[at | st,X,Y]. After optimization, the modelM
will be settled, denoted as 􏽥M, which yields at � 􏽥M(st). As
you can imagine, though the trained deep GP can fit the
training data well, it does not guarantee the optimal reward
value in the testing period. With that being considered, we
introduce the feedback control method F to refine the output
of the deep GP model, i.e., 􏽥at � F(at, st,X). In this method,
we consider data ψref and d2ref , which represent collection of
ψ and d2 in each state st, in the training data X. To achieve
better reward, it is designed to optimize action at according

Journal of Advanced Transportation 3

to the difference between state st and the training state st.
Our solution presents in the following expression:

DeepGPmodel 􏽥M: max
ELBOM

ΕM at st

􏼌􏼌􏼌􏼌 ,X,Y􏽨 􏽩, (4)

Feedback ControlmodelF: optimize
st− st| |

F at, st,X(􏼁.
(5)

All the details will be presented in the next section. To
compare our method with deep reinforcement learning, we
performed an autonomous driving simulation of the lane
keeping task in the Torcs engine.

3.2. Proposed Solution. In this section, the details of our
autonomous driving decision-making methods for lane
keeping task is given.)e whole framework is presented in
Figure 1. After training, we can get a fairly good deep GP
model 􏽥M to fit the training data.)e trained deep GPmodel is
used to predict the action at according to the state feedback st

from Torcs in each step. For validation, all the predicted
actions are further refined by feedback control method F for
feasibility and safety concerns.)en, the final actions 􏽥at are
then sent to Torcs to demonstrate visually the performance on
running a successful lap.)e overall algorithm flow is shown
in Algorithm 1. In the following content, we will discuss core
methods in our framework in detail.

3.2.1. Deep GP Model 􏽥M. As for this multidimension input
and output problem, we use the deep GP method to fit the
training data in consideration of its advantage over a

standard GP [20]. A multilayer GP model is a hierarchical
composition of GP. Considering a deep GPwith a depth of L,
each GP layer is associated with a set Fl− 1of inputs and a set
Fl of outputs for l � 1, . . . , F0 � X and FL+1 � Y. An ex-
ample of deep GP is as follows:

Y � f1: L + ϵ � fL fL− 1 . . . f2 f1(X)(􏼁 . . .(􏼁(􏼁 + ε, (6)

where f l ∼ GP(0, Kl
Fl− 1Fl− 1

) for each layer. Each layer has
different kernels. For deep GP, each layer is governed by GP;
however, the overall prior f1: L is no longer a GP which
makes it intractable to train a deep GP model. For rea-
sonability, we can introduce the Gaussian noise in each layer.
In this case, we can get the following recursive definition:

Fl � f l Fl− 1(􏼁 + εl. (7)

A graphical model for deep Gaussian process with one
hidden node is illustrated in Figure 2.

Let F≜ Fl􏼈 􏼉
L
l�1; for supervised learning case, the dis-

tribution of a deep GP model with L hidden layers can be
written as follows:

p(Y,F) � p Y FL

􏼌􏼌􏼌􏼌􏼐 􏼑 􏽙

L

l�2
p Fl Fl− 1

􏼌􏼌􏼌􏼌􏼐 􏼑p F1 |X(􏼁. (8)

As for the conditional probabilities, they can be ex-
panded as follows:

p Fl|Fl− 1(􏼁 � 􏽚 p Fl f l

􏼌􏼌􏼌􏼌􏼐 􏼑p f l Fl− 1
􏼌􏼌􏼌􏼌􏼐 􏼑df l. (9)

)e nonlinearities introduced by the GP covariance
functions make the Bayesian treatment of this model

Table 1:)e mathematical expression of some kernel functions.

Name Expression
RBF σ2exp[− ((x − x′)2/2l2)]

StdPeriodic θ exp[− (1/2) 􏽐
d
i�1 ((sin(π/Ti)(xi − x′i))/li)

2]

RatQuad σ2[1 + t(x − tx′)2/2)]− α􏼐

White αδ(x − x′)

MLP (2σ2/π)arcsin((σ2wxTtx′n + qσ2b)/(
�������������
σ2wxTx′ + σ2b + 1

􏽱 �������������
σ2wxTx′ + σ2b + 1

􏽱
))

Matern52 σ2(1 + t
�
5

√
n |xt − nx′|q + h(5/3) x− tx′)2)exp(−

�
5

√
t x− tx′ |)|(

Table 2:)e information of state st.

Name Range Detail description
ψ [− 1, 1] Angle between the car direction and track axis direction
d1 [0, 1] Distance between the car and the track edge in front of the car
d2 [− ∞,∞] Shift from the center line
v [− ∞,∞] Car speed in x, y, and z direction
ω [− ∞,∞])e speed of four wheels
g [0,∞] Gear speed

Table 3:)e information of state at.

Name Command Range Detail description
ξ Steering [− 1, 1] − 1 and 1 mean full right and full left, respectively
ϕ Acceleration [0, 1] Virtual gas pedal (0 means no gas, 1 means full gas)
φ Brake [0, 1] Virtual brake pedal (0 means no brake, 1 means full brake)

4 Journal of Advanced Transportation

challenging. Inspired by the core idea of the SGP model, it
is practical to introduce the inducing inputs and corre-
sponding inducing output variables for GP layers, denoted
by the respective sets Z≜ Zl􏼈 􏼉

L
l�1 and U≜ Ul􏼈 􏼉

L+1
l�2 . Now,

similar to equation (9), we could write that

p Fl

􏼌􏼌􏼌􏼌Ul, Fl− 1􏼐 􏼑 � 􏽚 p Fl

􏼌􏼌􏼌􏼌 f l􏼐 􏼑p f l

􏼌􏼌􏼌􏼌Ul, Fl− 1􏼐 􏼑df l. (10)

In this way, we can obtain the logarithm of the aug-
mented joint distribution:

logp(Y,F |U) � logp F1
􏼌􏼌􏼌􏼌X􏼐 􏼑 + 􏽘

L+1

l�2
logp Fl

􏼌􏼌􏼌􏼌Ul, Fl− 1􏼐 􏼑,

≥ logp F1 |X(􏼁 + 􏽘
L+1

l�2
Ll,

(11)

where p(F1 |X) � N(F1 | 0,K1
xx +]21) and Ll is the lower

bound for logp(Fl |Ul,Fl− 1):

Deep GP model M Feedback control method FCurrent
state

Current
action

Current
refined
action

Torcs

st at at

Generate vehicle sta
te Vehicle takes action

at = M (st) at = F (at, st, X)~~
~

~

Figure 1:)e framework of our solution: in each time step, the Torcs engine generates the vehicle state st.)e trained deep GP model 􏽥M
maps the state st into action at. After that, the action at is refined by feedback control method F, i.e., 􏽥at � F(at, st,X). Finally, the visual
vehicle takes action 􏽥at.)ese procedures cycle until the vehicle finishes the single lap.

(1) collect data from interaction between Well-Trained Network and Torcs engine
(2) set elements for deep GP: layer number, kernel, inducing points, etc.
(3) train a deep GP model and save
(4) aunch Torcs
(5) for i � 1,N do
(6) reset Torcs
(7) get the initial state
(8) for j � 1,M do
(9) predict action with state using deep GP model 􏽥M
(10) amend action by feedback control method F

(11) get the next state
(12) if unsuccessful loop trip then
(13) break
(14) end if
(15) if successful loop trip then
(16) save the experience data
(17) break
(18) end if
(19) end for
(20) end for
(21) shut down Torcs

ALGORITHM 1: Overall algorithm flow.

X YF1
f1 ~ gp f2 ~ gp

Figure 2: A deep Gaussian process with one hidden node.

Journal of Advanced Transportation 5

Ll � logp Fl al

􏼌􏼌􏼌􏼌 ,]2l I􏼐 􏼑 −
1
2]2l

tr 􏽥Kl(􏼁 (12)

where al � Kl
Fl− 1Zl− 1

(Kl
Zl− 1Zl− 1

)− 1Ul and 􏽥Kl � Kl
Fl− 1Fl− 1

−

Kl
Fl− 1Zl− 1

(Kl
Zl− 1Zl− 1

)− 1Kl
Zl− 1Fl− 1

[21]. And we can see that the
latent variable f l are integrated out within each layer. Our
aim is to approximate the logarithm of the marginal
likelihood:

logp(Y) � log􏽚 p(Y,F |U) 􏽙
L+1

l�2
p Ul(􏼁dUdF, (13)

where p(Ul) � N(Ul | 0,Kl
Zl− 1Zl− 1

). To get the bound ELBOM

for marginal likelihood, with Jensen’s inequality, we can get
that

ELBOM � 􏽚Qp(Y,F |U)
􏽑

L
l�2 Ul(􏼁

Q dUdF,
(14)

where Q � q(F,U) is the introduced approximate varia-
tional distribution.

Generally, the ELBOM can be more simplified by mean
field approximation Q � 􏽑

L
l�1 q(Ul+1)q(F) (i.e., q(Ul+1) �

N(ml+1, Sl+1), q(F) � N(μl,Σl) in each layer), and the final
form of ELBOM can be tractable because of these conjugate
distributions, when the covariance functions selected in each
layer are feasibly convoluted with the Gaussian density
[20, 21]. A gradient-based algorithm, such as L-BFGS-B
algorithm [37], can be employed to maximize the variational
lower bound ELBOM with respect to the model parameters
(i.e., kernel hyperparameter θl and noise variance]l in each
layer) and variational parameters are introduced:

model parameters : θl,]l􏼈 􏼉
L+1
l�1 , (15)

variational parameters : Zl,ml+1, Sl+1, μl,Σl􏼈 􏼉
L

l�1. (16)

)e trained deep GP model 􏽥M can fit the training data
well. In recent years, other several approximation methods
are put forward to train deep GP such as importance-
weighted variational inference [38], stochastic gradient
Hamiltonian Monte Carlo [39], and approximate expecta-
tion propagation [40].

3.2.2. Feedback Control Model F. After training the deep GP
model, all the parameters in the model 􏽥M are settled. We try
this model in Torcs and find that it can only finish a little
more than half loop trip on the CG road. After analysing the
failed experience and the input data, we find the essential
cause is that the data from DDPG well-trained network only
contain the state cases st with small ψ and d2, which are close
to the center line of the lane. With the input state st with
highly deviated ψ or d2 value, the trained deep GP 􏽥M may
generate action at with improper ξ, ϕ, or φ value. And it
indirectly affects the value of the reward function. We as-
sume that if the values of ψ and d2 stay in a reasonable range,
the successful loop trip can be achieved regardless of the
values of other state variables. With that being thought, we
design an extra feedback control method F, for reward

optimization, to amend action at predicted by the deep GP
model.

In this method, we refer to the idea of the PID con-
troller method. For simplicity, unlike the PID controller,
we only add proportional changing errors, but it is com-
posed of two different positive items, to the predicted steer
value ξ in the action at. In addition, instead of using in-
tegral error terms, we take the past state into consideration
by adding the error between the current state and a ref-
erence state in the past. Firstly, several critical values
cn, ηn(n � 1, 2, 3, 4) need to be set in our method.)e
reason for doing this is that the feedback control is only
needed for those improper feedback state variables, ψ and
d2. Secondly, the error λn is calculated by the difference
between jth or − (j − N)th number of variable, when j is
smaller or larger than N, ψref and d2ref in st, and current
feedback state variable, ψ and d2. Finally, the parameters
bn, cn of the linear error term need to be regulated to achieve
loop trip.)e detailed algorithm flow is presented in
Algorithm 2.

As we can see, there are many adjustable parameters in
our feedback control method. Actually, it turns out that all
the parameters can be easily determined:

(i) According to our experience, cn and ηncan be set
immediately after analysing the domain of ψref and
d2ref . Because the logical judgment in F should only
be needed when the vehicle deviates too much from
the center line or the steering angle is too large.

(ii) And the value of b3,4 and c3,4 can be set the same as
b1,2 and c1,2. Consequently, only four parameters in
the feedback control method are left to be con-
sidered seriously.

(iii) Besides, there are two logical judgment statements
after iteration number check in our method.)is
actually corresponds to the case that the visual
vehicle is in the left or right side of the center line.
We should consider these two situations separately.
Moreover, the reason why we use the absolute value
of the error λn is that the sign of the steer angle ξ
should be always in the correct direction, with its
value larger (left side of center line) or smaller (right
side of center line) than predicted values by deep GP
model 􏽥M.

(iv) In other words, the absolute value of output action
from model 􏽥M is not large enough to drag the
vehicle back into the safe road in some extreme
dangerous situations. From this perspective, the
sign of rest four parameters to be determined will be
obvious.

Unlike usual optimization routine, the optimization of
the reward value in each step is not carried out by a gradient-
based algorithm. Actually, for lane keeping task, if the ve-
hicle can complete the lap successfully, the obtained reward
value may be not the best, but it must be one of the local
optimal values. After enough trial and error, we can get the
relatively optimal parameters introduced in F. In this way,
after the parameters in method F are determined, the vehicle

6 Journal of Advanced Transportation

can immediately respond to the Torcs engine through the
refined action 􏽥at.

4. Results and Discussion

In this section, we conduct extensive simulations to valid our
method and compare it with reinforcement learning ap-
proach that are typically used in a similar setting. We start
with experiment setup about data preparation, then show
how well our model fits the training data, and finally provide
comparison by examining the performance of lane keeping
in a simulation environment.

4.1. Experiment Setup. DDPG is a variant of deterministic
policy gradient algorithm [23], which adopts deep neural
network to approximate deterministic policy and action
value function. It is an off-policy algorithm, utilizing the
experience replay technique introduced in DQN [25] to
break the correlation of the samples and keep samples i.i.d.
In addition, the learning method of Q function is similar to
that in DQN as well. In our case, we train a deep neural
network by DDPG to achieve successful loop trip. It takes
about 16 hours and 4000 episodes to achieve a high per-
formance deep neural network. And tens of thousands of
data will be updated in the centralized experience replay
buffer during training period.

We collect the training data by DDPG well-trained
network on the CG road in software Torcs. 338 records
(N � 338) are collected during the loop trip simulation. It

contains state set and action set of the visual vehicle.)e
detail of state st and action at are already shown in Tables 2
and 3, respectively. To train deep GP network, the state set X
is the input and the action set Y is the output. And the raw
data are fed into deep GP network without any additional
data processing before training.

4.2. Experimental Results. In our case, we use the GPy [41],
which is an open framework developed by Sheffield machine
learning group, to conduct simulation.We use two layers GP
to fit the training data.)e kernels we used per layer are as
follows:

[StdPeriodic∗RatQuad + RBF + White,MLP∗Matern52

+ RBF + White].
(17)

All the function expressions corresponding to these
function names can be found in Table 1 or the GPy docu-
ment web page. And their corresponding automatic rele-
vance determination (ARD) [35] version can be easily
extended.)e number of inducing points we used in each
layer is 200. After optimization, the output action values are
shown in Figures 3–5. In these figures, the true data and
predicted mean value legends mean the true training data
action values and the predicted values after finishing training
deep GP, respectively.)e green zone, with its margin
depicted by the green dashed line, in the figures, represents
the 95% credible interval of the predicted value.)e x-axis

Input: action at each time step at: ξ, ϕ,φ􏼈 􏼉

two variables of state st: ψ, d2􏼈 􏼉

training state set X: ψref , d2ref􏼈 􏼉

Output: refined action 􏽥at: 􏽥ξ, tϕn, qφ􏽮 􏽯

(1) at � ξ, ϕ,φ􏼈 􏼉

(2) if j<N then
(3) if ψ > c1 or d2 < η1 then
(4) λ1 � b1|ψ − ψref[j]| + c1| d2 − d2ref[j]|

(5) 􏽥ξ � |ξ| + λ1
(6) end if
(7) if ψ < c2 or d2 > η2 then
(8) λ2 � b2|ψ − ψref[j]| + c2| d2 − d2ref[j]|

(9) 􏽥ξ � λ2 − |ξ|
(10) end if
(11) else
(12) if ψ > c3 or d2 < η3 then
(13) λ3 � b3|ψ − ψref[− (j − N)]| + c3| d2 − d2ref[− (j − N)]|

(14) 􏽥ξ � |ξ| + λ3
(15) end if
(16) if ψ < c4 or d2 > η4 then
(17) λ4 � b4|ψ − ψref[− (j − N)]| + c4| d4 − d2ref[− (j − N)]|

(18) 􏽥ξ � λ4 − |ξ|
(19) end if
(20) end if
(21) 􏽥at � 􏽥ξ, tϕn, qφ􏽮 􏽯

ALGORITHM 2: Feedback control method F.

Journal of Advanced Transportation 7

variable Times represents the time steps of self-driving. We
can see that the model 􏽥M can capture the most main features
of the train data except for few strong vibration zones.

Recall that we stated at the beginning that the deep GP
mode 􏽥M is not enough to solve lane keeping task in our
setting. And we compare the cumulative reward value be-
tween the deep GP method with and without combining the
feedback control method. In Figure 6, it demonstrates that
the deep GP model can only finish about half loop trip on
CG road, but after combining the feedback control method,
the accumulated reward value increases to about 2.7 times
more as using the deep GP model only. It proves the ef-
fectiveness of the feedback control method. In Section 2.2,
we already explained the main reasons why the lane keeping
task cannot be completed using the deep GP model only. In

addition, although the deep GP model can capture the
uncertainty very well, it does not have the ability to correct
the wrong predicted actions. In such a rapidly interactive
environment, these unreasonable actions are so fatal that the
vehicle is much more likely to rush out of the track.

4.3. Experimental Comparison. In Section 4.2, we show how
our model fit the training data and the necessity of the
feedback control method in our case. And now, we compare
their performance with the DDPGmethod. Compared to the
DDPG method, the other two methods take more steps to
achieve loop trip and the total rewards are a little less than
DDPG. So, their ascending curves of accumulated rewards in
each step have more flat slopes than the DDPG method.
Table 4 lists several properties, such as Total Rewards,
Training Time, and Training Data, of the three methods. In
spite of advantages in iteration times and total rewards, the
DDPG well-trained network, which is used to get training
data, costs about 16 hours to train, and it only takes about
1.5 hours to train the deep GP model. It is also much less
than the well-trained network with the AMDDPG method
according to the result in the paper [36]. In DDPG and
AMDDPG methods, they need to interact with the envi-
ronment in each episode to update the new training data,
and this procedure will be repeated for multiple times for
exploration and exploitation.)us, these data-hungry ap-
proaches need tens of thousands of data, but the training
data we used only contains about 340 items, which is far
more less than what is required. All the simulations are
conducted on the CG track in Torcs (the overview map in
upright corner in Figure 1). Other complex tracks, shown in
Figure 7, can be found in Torcs engine or generated by an
online tool named TrackGen [42].

With these benefits, we believe that the proposed
framework is a promising way to make decisions in simu-
lation environments and actual road conditions. However,
there are many technical problems to tackle to achieve the

–1.0

–0.5

0.0

0.5

1.0

St
ee

r v
al

ue

50 100 150 200 250 300 3500
Times

True data
Predicted mean function
95% predicted credible interval

Figure 3: Steer value vs. times.

50 100 150 200 250 300 3500
Times

True data
Predicted mean function
95% predicted credible interval

–0.25

0.00

0.25

0.50

0.75

1.00

1.25

Br
ak

e v
al

ue

Figure 5: Brake value vs. times.

50 100 150 200 250 300 3500
Times

True data
Predicted mean function
95% predicted credible interval

–0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ac
ce

le
ra

tio
n

va
lu

e

Figure 4: Acceleration value vs. times.

8 Journal of Advanced Transportation

real road test. Admittedly, the shortcomings of the proposed
method should also be acknowledged. In this paper, we only
test the methods for lane keeping task on a relative simple
road. On a complex road or executing a complex task, it is
obvious that more data should be fed into the deep GP
model and the feedback control method also needs to be
dedicatedly designed and validated. For example, doing

simulation on Curuzu track in Figure 7, we can imagine that
more training data will be recorded by a well-performed
reinforcement learning model. And for this road with many
irregular turns, the feedback control method must be tested
with extensive trial and error. To check the effectiveness of
the proposed framework in real road tests similar to sim-
ulation setting, we can record the training data with the aid

Table 4: Comparison of three methods.

Methods Times Total rewards Training time (h) Training data Pass CG
DDPG 338 28148.09 16 105 Yes
Deep GP 170 9917.06 1.5 338 No
Deep GP+Feedback 380 26555.32 1.5 338 Yes

170

Deep GP only
Deep GP + feedback

0

5000

10000

15000

20000

25000

30000

Cu
m

ul
at

iv
e r

ew
ar

d

50 100 150 200 250 300 3500
Times

Figure 6: Cumulative reward in each step by deep GP with or without combining feedback control.

Figure 7: Ten tracks generated by TrackGen.

Journal of Advanced Transportation 9

of perceptual equipment by manual driving. After training
the deep GP model off-line, we can test its validity in both
autonomous driving and manual driving modes. In addi-
tion, the parameters in the feedback control method should
also be regulated to complete the self-driving task. For more
complex tasks, such as car-following or overtaking, since the
feedback control method in our framework do not take the
motional characteristics of the vehicle into consideration, we
plan to combine our framework with other motion control
methods, such as pure pursuit [43] or Stanley [44], in the
future work.

5. Conclusions

In conclusion, we presented an end-to-end learning method
which combines the deep GP and feedback control method
to solve decision-making problem of lane keeping task in
self-driving simulation.)e proposed method achieved al-
most the same performance with only 0.34% of the training
data, compared with deep reinforcement learning, and the
time consumption of the training is only 10%. We believe
this method is a promising one when dealing with complex
self-driving tasks with small training data.

Data Availability

)e raw data are available online in my github repository
(https://github.com/Fangwq/Traning-data-for-decision-
making-research).

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)e authors would like to thank Junta Wu’s, who is the
author of AMDDPG, help for training the DDPG network,
supplying the data, and providing many helpful clarifica-
tions and suggestions.)is work was supported by Shenzhen
Engineering Laboratory on Autonomous Vehicles, NSFC
(61672512 and 61702493) and Shenzhen Basic Research
Program (JCYJ20170818164527303 and
JCYJ20180507182619669), Science and Technology Devel-
opment Fun, Macao S.A.R. (FDCT) (No.0015/2019/AKP),
and CAS Key Laboratory of Human-Machine Intelligence-
Synergy Systems, Shenzhen Institutes of Advanced Tech-
nology.)e work was also funded by Shenzhen Institute of
Artificial Intelligence and Robotics for Society.

References

[1] L. Li, J. Song, F.-Y. Wang,W. Niehsen, and N.-N. Zheng, “IVS
05: new developments and research trends for intelligent
vehicles,” IEEE Intelligent Systems, vol. 20, no. 4, pp. 10–14,
2005.

[2] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence
applications in the development of autonomous vehicles: a
survey,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2,
pp. 315–329, 2020.

[3] Z. Li, L. Li, and Y. Zhang, “IVS 09: future research in vehicle
vision systems,” IEEE Intelligent Systems, vol. 24, no. 6,
pp. 62–65, 2009.

[4] B. Paden, M. Cáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-
driving urban vehicles,” IEEE Transactions on Intelligent
Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[5] L. Chen, X. Hu, W. Tian, H. Wang, D. Cao, and F.-Y. Wang,
“Parallel planning: a new motion planning framework for
autonomous driving,” IEEE/CAA Journal of Automatica
Sinica, vol. 6, no. 1, pp. 236–246, 2018.

[6] J. Ziegler, P. Bender, M. Schreiber et al., “Making bertha drive-
an autonomous journey on a historic route,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

[7] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“Mpdm: multipolicy decision-making in dynamic, uncertain
en- vironments for autonomous driving,” in Proceeding of
2015 IEEE International Conference on Robotics and Auto-
mation (ICRA), pp. 1670–1677, IEEE, Seattle, WA, USA, May
2015.

[8] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated car
racing championship: competition software manual,” 2013,
https://arxiv.org/abs/1304.1672.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, and
Carla, “An open urban driving simulator,” 2017, https://arxiv.
org/abs/1711.03938.

[10] A. Kendall, J. Hawke, D. Janz et al., “Learning to drive in a
day,” in Proceeding of 2019 International Conference on Ro-
botics and Automation (ICRA), pp. 8248–8254, IEEE, Mon-
treal, QC, Canada, May 2019.

[11] S. R. Granter, A. H. Beck, and D. J. Papke, “Alphago, deep
learning, and the future of the human microscopist,” Archives
of Pathology & Laboratory Medicine, vol. 141, no. 5,
pp. 619–621, 2017.

[12] Y. Tian, X. Li, K. Wang, and F.-Y.Wang, “Training and testing
object detectors with virtual images,” IEEE/CAA Journal of
Automatica Sinica, vol. 5, no. 2, pp. 539–546, 2018.

[13] H. Han, M. Zhou, and Y. Zhang, “Can virtual samples solve
small sample size problem of kissme in pedestrian re-iden-
tification of smart transportation?” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–11, 2019.

[14] C. K. Williams and C. E. Rasmussen, Gaussian processes for
machine learning, MIT press Cambridge, Cambridge, MA,
USA, 2006.

[15] S.)ewes, M. Lange-Hegermann, C. Reuber, and R. Beck,
Advanced Gaussian Process Modeling Techniques, Design of
Experiments (DoE) in Engine Development, Expert Verlag,
Renningen, Germany, 2015.

[16] M. A. Osborne, R. Garnett, and S. J. Roberts, “Gaussian
processes for global optimization,” in Proceeding of 3rd in-
ternational conference on learning and intelligent optimiza-
tion, pp. 176–190, LION 3, Rome, Italy, January 2011.

[17] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian
processes for data-efficient learning in robotics and control,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 37, no. 2, pp. 408–423, 2013.

[18] R. Garnett, S. Ho, and J. Schneider, “Finding galaxies in the
shadows of quasars with Gaussian processes,” in Proceeding of
International Conference on Machine Learning,
pp. 1025–1033, Carnegie, Mellon University, Pittsburgh,
Pennsylvania, University,July 2105.

[19] J. Futoma, Gaussian Process-Based Models for Clinical Time
Series in Healthcare, Duke University, Durham, NC, USA,
2018.

10 Journal of Advanced Transportation

https://arxiv.org/abs/1304.1672
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1711.03938

[20] A. Damianou and N. Lawrence, “Deep Gaussian Processes,”
in Proceeding of Artificial Intelligence and Statistics,
pp. 207–215, Universityof Sheffield, Sheffield, England, UK,
May 2013.

[21] A. Damianou, Deep Gaussian Processes and Variational
Propa- Gation of Uncertainty, University of Sheffield, Shef-
field, England, UK, 2015.

[22] M. Bojarski, D. Del Testa, D. Dworakowski et al., End to end
learning for self-driving cars, 2016. https://arxiv.org/abs/1604.
07316.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., Continuous control
with deep rein- forcement learning, 2015, https://arxiv.org/abs/
1509.02971.

[24] D. Karavolos, Q-learning with Heuristic Exploration in Sim-
ulated Car Racing, University of Amsterdam, Amsterdam,
Netherlands, 2013.

[25] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[26] M. Sewak, “Deep q network (dqn), double dqn, and dueling
dqn,” in Proceeding of Deep Reinforcement Learning,
pp. 95–108, Springer,Berlin, Germany, July 2019.

[27] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in
Proceedings of the 31st International Conference on Interna-
tional Conference on Machine Learning, DeepMind Tech-
nologies, London, UK, June 2014.

[28] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih,
“Combining policy gradient and Q-learning,” 2016, https://
arxiv.org/abs/1611.01626.

[29] F. M. Salem, M. I. Mosaad, and M. A. Awadallah, “A com-
parative study of mpc and optimised pid control,” Interna-
tional Journal of Industrial Electronics and Drives, vol. 2, no. 4,
pp. 242–250, 2015.

[30] H. O. Bansal, R. Sharma, and P. Shreeraman, “Pid controller
tuning techniques: a review,” Journal of Control Engineering
and Technology, vol. 2, no. 4, pp. 168–176, 2012.

[31] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view
of sparse approximate Gaussian process regression,” Journal
of Machine Learning Research, vol. 6, pp. 1939–1959, 2005.

[32] T. D. Bui, J. Yan, and R. E. Turner, “A unifying framework for
Gaussian process pseudo-point approximations using power
expectation propagation,” Oe Journal of Machine Learning
Re- Search, vol. 18, no. 1, pp. 3649–3720, 2017.

[33] M. Titsias, “Variational learning of inducing variables in
sparse gaussian processes,” in Proceedings of Intelligence and
Statistics, pp. 567–574, University of Manchester, Manchester,
England, UK, June 2009.

[34] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational
inference: a review for statisticians,” Journal of the American
Statistical Association, vol. 112, no. 518, pp. 859–877, 2017.

[35] D. Duvenaud, Automatic Model Construction with Gaussian
Processes, University of Cambridge, Cambridge, England, UK,
2014.

[36] J. Wu and H. Li, “Aggregated multi-deep deterministic policy
gradient for self-driving policy,” in Proceedings of Interna-
tional Conference on Internet of Vehicles, pp. 179–192,
Springer, Paris, France, November 2018.

[37] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778:
L-bfgs-b: fortran subroutines for large-scale bound-con-
strained optimization,” ACM Transactions on Mathematical
Software, vol. 23, no. 4, pp. 550–560, 1997.

[38] H. Salimbeni, V. Dutordoir, J. Hensman, and
M. P. Deisenroth, “Deep gaussian processes with importance-

weighted variational inference,” 2019, https://arxiv.org/abs/
1905.05435.

[39] M. Havasi, J. M. Hernández-Lobato, and J. J. Murillo-Fuentes,
“Inference in deep Gaussian processes using stochastic gra-
dient Hamiltonian Monte Carlo,” in Proceedings of Advances
in Neural Information Processing Systems, pp. 7506–7516,
Association for Computing Machinery, New York, Ny, USA,
December 2018.

[40] T. Bui, D. Hernández-Lobato, J. Hernandez-Lobato, Y. Li, and
R. Turner, “Deep Gaussian processes for regression using
approx- imate expectation propagation,” in Proceedings of
International Conference on Machine Learning,
pp. 1472–1481, Associationfor Computing Machinery, New
York, Ny, USA, June 2016.

[41] G. Py GPy, A Gaussian Process Framework in python, Uni-
versity of Sheffield, Sheffield, England, UK, 2012.

[42] L. Cardamone, P. L. Lanzi, D. Loiacono, and Trackgen,
“TrackGen: an interactive track generator for TORCS and
Speed-Dreams,”Applied Soft Computing, vol. 28, pp. 550–558,
2015.

[43] R. S. Wallace, A. Stentz, C. E.)orpe, H. P. Moravec,
W. Whit- taker, and T. Kanade, “First results in robot road-
following,” in Proceedings of the 9th international joint con-
ference on Artificial intelligence, pp. 1089–1095, Association
for ComputingMachinery, New York, Ny, USA, August 1985.

[44] S.)run, M. Montemerlo, H. Dahlkamp et al., “Stanley: the
robot that won the DARPA grand challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

Journal of Advanced Transportation 11

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1611.01626
https://arxiv.org/abs/1611.01626
https://arxiv.org/abs/1905.05435
https://arxiv.org/abs/1905.05435

