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Abstract

Motivation and Context. Modern Internet-based services (e.g., home-banking, personal-training,
healthcare) are delivered through Web-oriented software systems which run on multiple and dif-
ferent devices including computers, mobile devices, wearable devices, and smart TVs. They
manage and exchange users’ personal data such as credit reports, locations, and health status.
Therefore, the security of the system and its data are of crucial importance.

Unfortunately, from security requirements elicitation to security testing, there are a number
of challenges to be addressed to ensure the security of Web-oriented software systems. First,
existing practices for capturing security requirements do not rely on templates that ensure the
specification of requirements in a precise, structured, and unambiguous manner. Second, security
testing is usually performed either manually or is only partially automated. Most of existing
security testing automation approaches focus only on specific vulnerabilities (e.g., buffer overflow,
code injection). In addition, they suffer from the oracle problem, i.e., they cannot determine that
the software does not meet its security requirements, except when it leads to denial of service
or crashes. For this reason, security test automation is usually partial and only addresses the
generation of inputs and not the verification of outputs.

Though, in principle, solutions for the automated verification of functional requirements
might be adopted to automatically verify security requirements, a number of concerns remain
to be addressed. First, there is a lack of studies that demonstrate their applicability, in the context
of security testing. Second, the oracle problem remains an open problem in many aspects of soft-
ware testing research, not only security testing. In the context of functional testing, metamorphic
testing has shown to be a viable solution to address the oracle problem; however, it has never been
studied in the context of security testing.

Contributions. In this dissertation, we propose a set of approaches to address the above-mentioned
challenges. (1) To model security requirements in a structured and analyzable manner, we propose
a use case modeling approach that relies on a restricted natural language and a template already
validated in the context of functional testing. It introduces the concepts of security use case spec-
ifications (i.e., what the system is supposed to do) and misuse case specifications (i.e., malicious
user behaviours that the system is supposed to prevent). Moreover, we propose a template for
capturing guidelines for the mitigation of security threats. (2) To verify that systems meet their
security requirements, we propose an approach to automatically generate security test cases from
misuse use case specifications. More precisely, we propose a natural language programming so-
lution that automatically generates executable security test cases and test inputs from misuse case
specifications in natural language. (3) To address the oracle problem, we propose a metamor-
phic testing solution for Web-oriented software systems. The solution relies on a predefined set
of metamorphic relations that capture (a) how an attacker likely alters a valid input to exploit a
vulnerable system and (b) how the output of the system should change as a result of the attack if



the system meet its security requirements. Our solution relies on Web-crawlers to automatically
identify the valid inputs to be used for testing. (4) We identify a set of testability guidelines to
facilitate the adoption of the proposed approaches in software projects. The identified guidelines
indicate (a) which types of vulnerabilities can be addressed through the solutions proposed in this
dissertation and (b) which design solutions should be integrated into the system to enable effective
test automation.
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Chapter 1

Introduction

1.1 Context
Modern Internet-based services are delivered through web-oriented software systems [Gall, 2008] that
include multiple and different devices, e.g., computers, mobile devices, wearable devices, smart TVs.
Typical services of this type are healthcare [Sunwave, 2020], home-banking [USC Credit Union,
2017], personal-training [FitBit, 2017], music-streaming [Spotify, 2017], and food-delivery [Deliv-
eryHero, 2017]. The common characteristic of these systems is that they manage and exchange users’
personal data such as locations, credit reports, and health status. Therefore, the security of the system
and its data are of crucial importance.

Multiple case study systems that are representative of modern Internet-based services are con-
sidered in this dissertation. One case study is the EDLAH2 [EDLAH2, 2017a] system, which is
the system developed in the context of a European project [EDLAH2, 2017b]. This project aims
to rely on gamification principles to engage elder people in improving the quality of their life, by
providing them with daily objectives such as walking, communicating with other people, or play-
ing games. EDLAH2 is based on a platform including multiple devices (e.g., computers, tablets,
bracelets) and multiple services (e.g., collecting daily activities, playing games, communication).
Other systems are Jenkins [Eclipse Foundation, 2020], which is a system used to deliver ICT services,
and Joomla! [Joo, 2020], a content management system used as backbone for popular websites [Nin-
tendo, 2020, Data2.eu, 2020].

This dissertation focuses on the definition of methods to ensure that web-oriented software systems
meet their security requirements. To achieve this objective, it is necessary, first, to define strategies
for eliciting security requirements in a structured and analyzable form to support communication
among stakeholders and ease the security verification process, while accounting for the specificities
of Web-oriented software systems. Second, it is necessary to identify methods that verify that all
the security requirements are actually addressed in the implemented system. This may be achieved
through test automation since it is more scalable than other verification approaches (e.g., based on
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formal verification). Third, to lower testing costs, it is necessary to identify means to automatically
generate test inputs and test oracles [Barr et al., 2015, Pezze and Zhang, 2014].

To specify the security requirements of Web-oriented software systems, the characteristics of the
developed services and the device types on which the services will be deployed need to be specified.
Some approaches have been proposed to elicit and analyze security requirements in terms of use cases
such as abuse cases [McDermott and Fox, 1999, McDermott, 2001], security use cases [Firesmith,
2003], and misuse cases [Opdahl and Sindre, 2009, Rostad, 2006, Sindre and Opdahl, 2005, Sindre
and Opdahl, 2001]. However, the applicability of these approaches in the security context is limited;
indeed, there is a lack of methods for the definition of threat scenarios and mitigation schemes for
these threats. In this dissertation, we propose, apply, and assess a use case modeling approach to
model the security requirements of Web-oriented software systems.

After eliciting software security requirements in natural language in terms of positive requirements
(i.e., what the system is supposed to do to ensure security) and negative requirements (i.e., undesirable
behavior undermining security), it is necessary to validate whether positive requirements are properly
addressed by the system to prevent the scenarios captured by negative requirements. In this disserta-
tion, we address the problem of automatically generating executable security test cases from security
requirements in natural language to verify if Web-oriented software systems comply with them. Since
existing approaches for the generation of test cases from natural language (NL) requirements verify
only positive requirements [Carvalho et al., 2014, de Figueiredo et al., 2006, Wang et al., 2015a, Wang
et al., 2015b, Kaplan et al., 2008], we focus on the problem of generating test cases from negative
requirements. To this end, we propose, apply and assess a natural language programming [Manning
et al., 2014, Le et al., 2013, Guzzoni et al., 2007, Landhausser et al., 2017, Thummalapenta et al.,
2012] approach that automatically generates security test cases from misuse case specifications. A
misuse case specification is a description, in natural language, of the actions performed by a mali-
cious user to trigger a behaviour that is not legal, based on the security requirements of the system.
A misuse case specification thus captures an attack against the system. The specific fault causing the
software not to comply with its security requirements is called a vulnerability. Vulnerabilities might
share common characteristics, i.e., types of vulnerabilities. In this dissertation, in accordance with
common practice [CWE, 2020s], we use the term weakness to indicate a vulnerability type.

Approaches for the generation of test cases are beneficial when they (1) enable the selection of
the test inputs to be used for testing, (2) lead to the generation of executable test cases that can au-
tomatically exercise the software under test, (3) are capable of automatically deriving test oracles
(i.e, means to determine if the software outputs match the requirements, based on the provided in-
puts). Unfortunately, although test input generation and test cases executions are addressed by many
state-of-the-art work, the automated generation of test oracles is an open research problem in many
contexts [Barr et al., 2015]. In many systems, a test oracle may not exist or may not be easy to spec-
ify, even manually, because of the many inputs to be tested. For instance, the security test case for
the bypass authorization vulnerability should check, for every user role in the system, whether it is
possible to access resources dedicated to another user role [Meucci and Muller, 2014]. To alleviate
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the oracle problem, we propose to adapt metamorphic testing to the security testing of web-oriented
software systems.

In this dissertation, we propose two test automation approaches. The first one can automate any
attack that can be described through a set of attacker-system interactions, but it requires the manual
specification of inputs and oracles. The second one fully automates the testing process, but cannot au-
tomate some types of attacks. Therefore, we investigate the types of security vulnerabilities (hereafter
referred to as weaknesses) that can be addressed by our two test automation approaches. To this end,
we rely on the weaknesses reported in the common weakness enumeration (CWE) database [CWE,
2020s]. Moreover, we provide testability guidelines that enable effective test automation with our
approaches.

1.2 Challenges
Our primary goal in this dissertation is to develop automated, requirements-based security testing
techniques for web-oriented software systems. Our contributions range from methods for specifying
security requirements to automating security tests and alleviating the oracle problem. To achieve this
goal, we address the following challenges:

• The existing templates [Sindre and Opdahl, 2005, Opdahl and Sindre, 2009, Firesmith, 2003,
McDermott and Fox, 1999], which support the specification of security requirements in use
case-driven development of Web-oriented software systems, are not sufficiently precise and un-
ambiguous to support automation. Moreover, the elicitation of threat scenarios is not structured
and analyzable in terms of making control flow structures explicit and distinguishing types of
scenarios for successful attacks.

• There is a lack of template support for specifying mitigation schemes that can be reused and
adapted for various security threats. Existing approaches only supports specifying the flow of
events mitigating each specific threat scenario [Sindre and Opdahl, 2001].

• Most security testing approaches focus on a particular vulnerability (e.g., code injection vulner-
abilities [Tripp et al., 2013, Appelt et al., 2014] and buffer overflows [Haller et al., 2013, Og-
nawala et al., 2016]). Further, they only deal with simple inputs such as strings and files.

• Model-based approaches used to generate test cases are based on interaction protocol speci-
fications [Veanes et al., 2005, Silva et al., 2008] and they can potentially generate test cases
for such complex attack scenarios [Lebeau et al., 2013]. However, these approaches require
detailed system models, which are seldom produced by engineers.

• There exist approaches used to generate functional test cases from natural language [Carvalho
et al., 2014, Wang et al., 2015a]. Unfortunately, they only target functional testing but security
vulnerability testing.

• Security testing suffers from the oracle problem [Barr et al., 2015, Pezze and Zhang, 2014]. In
many situations where potential vulnerabilities are tested, a test oracle may not exist, or may be
impractical to specify. Several proposed security testing approaches assume the availability of
an implicit test oracle [Barr et al., 2015].
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• Metamorphic testing has been proposed to alleviate the oracle problem [Chen et al., 1998].
It has been applied in many domains such as computer graphics [Mayer and Guderlei, 2006,
Guderlei and Mayer, 2007, Just and Schweiggert, 2009, Kuo et al., 2011b], Web services [Chan
et al., 2007b, Sun et al., 2011, Zhou et al., 2012], and embedded systems [Tse and Yau, 2004,
Chan et al., 2007a, Kuo et al., 2011a, Jiang et al., 2013]. However, it has not yet been applied
in the context of security testing, except for a few approaches targeting the functional testing of
security components (e.g., code obfuscators [Chen et al., 2016]).

1.3 Research Contributions
In this dissertation, we address the preceding challenges with the following contributions:

1. The Restricted Misuse Case Modeling (RMCM) approach, a use case-driven modeling
method, is proposed to capture the security requirements of web-oriented software sys-
tems. We rely on misuse case diagrams [Sindre and Opdahl, 2005] to model security require-
ments in terms of use cases. A misuse case diagram describes the relations between actors
(including users and attackers), use cases (i.e., functional use cases), misuse cases (i.e., mali-
cious use cases which harm the system) and security use cases (i.e., system features support
mitigating misuse cases). To elicit security threats and threat scenarios in a structured and ana-
lyzable form, we adopt the Restricted Use Case Modeling method (RUCM) [Yue et al., 2013]
to write use case specifications. RUCM is based on a template and restriction rules to support
the specification of precise and analyzable use case specifications. Nevertheless, RUCM does
not support specifying misuse case specifications. We extend RUCM with new rules to help
specifying misuse case specifications and mitigation schemes. Furthermore, we define a set of
NLP-based algorithms to automatically check the consistency between requirement specifica-
tions and diagrams, and the conformance between requirement specifications and the proposed
template.
This contribution has been published in a journal paper [Mai et al., 2018a], presented as a
journal first paper at RE’18 [Maalej et al., 2018] and is discussed in Chapter 4.

2. Misuse Case Programming (MCP), an approach that automatically generates security
test cases from misuse case specifications. This approach adopts the Natural Language Pro-
gramming concepts [Ballard and Biermann, 1979, Pulido-Prieto and Juárez-Martínez, 2017]
to support test case generation. MCP relies on natural language processing techniques (i.e.,
semantic role labeling) to extract the concepts (e.g., inputs and activities) appearing in require-
ments specifications and generates executable test cases by matching the extracted concepts
to the members of a provided test driver API. Besides generating executable test cases, MCP
automatically identifies input entities, their relationships (e.g., one-to-one or one-to-many), and
test oracles.
This contribution has been published in a conference paper [Mai et al., 2018b] and the imple-
mented toolset has been presented in a tool demo paper [Mai et al., 2019]. It is discussed in
Chapter 5.
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3. The Metamorphic Security Testing (MST) approach that alleviates the oracle problem in
security testing. It facilitates the specification of metamorphic relations that capture security
properties of the system. These metamorphic relations are then used to automate testing and
detect vulnerabilities. This contribution consists of a domain specific language used to specify
metamorphic relations, an Eclipse-based editor supporting specifying metamorphic relations
and transforming them to Java code, a crawler used to automatically collect source inputs, and
a metamorphic testing framework running metamorphic relations against the system under test.
Moreover, we provide a catalog of 22 system-agnostic metamorphic relations to automate secu-
rity testing in Web systems. The approach has been applied to discover known vulnerabilities
of the EDLAH2 system [MiC, 2017] and two open source systems (i.e. Jenkins [Eclipse Foun-
dation, 2020] and Joomla [Joo, 2020]). Furthermore, MST has shown to help discover a new
vulnerability (CVE-2020-2162 [Sto, 2020]) in Jenkins.
This contribution has been published in a conference paper [Mai et al., 2020b] and in a tool
demo paper [Mai et al., 2020a]. It is discussed in Chapter 6.

4. Testability guidelines to support the adoption of the proposed approaches. To characterize
the weaknesses that can be identified by the proposed approaches and thus enable engineers to
determine when the proposed approaches fit their needs, we analyze the weaknesses reported by
MITRE1 in the common weakness enumeration database [CWE, 2020s]. We identify the weak-
nesses that can and cannot be automatically tested by using MCP or MST. A list of applicability
and inapplicability conditions have been identified. In addition, we investigate the testability
factors (e.g., observability, controllability) which affect the applicability of our proposed test
automation approaches on web-oriented software systems. Based on this, we propose guide-
lines for software designers and software developers to improve the testability of web-oriented
software systems. These studies and guidelines are discussed in Chapter 7.

1.4 Dissertation Outline
Chapter 2 describes case study systems and introduces background concepts used in this dissertation
such as modeling functional requirements, natural language programming, and metamorphic testing.

Chapter 3 discusses related work.

Chapter 4 describes our restricted misuse case modeling approach for eliciting structured and ana-
lyzable security requirements and mitigation schemes in terms of diagram and specifications.

Chapter 5 presents our natural language programming approach that automatically generates exe-
cutable test cases from threat scenarios in natural language.

Chapter 6 introduces our metamorphic security testing approach that alleviates the oracle problems
and improve test automation.

1The MITRE Corporation (abbreviated as MITRE) is an American not-for-profit organization that manages federally
funded research and development centers [MITRE Corporation, 2018]. It provides a number of cybersecurity services.
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Chapter 7 presents our investigation of the applicability of the proposed approaches for various
security weaknesses and provides design and implementation guidelines to improve testability.

Chapter 8 summarizes the dissertation contributions and discusses perspectives on future work.
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Chapter 2

Background

In this chapter, we present the case study systems and the background concepts that are used through-
out this dissertation. This chapter is organized as follows. Section 2.1 presents the representative case
study systems considered in this dissertation to evaluate the proposed approaches. Section 2.2 de-
scribes an approach for modeling functional requirements as use case specifications and presents the
definition of security requirements with use case templates and its challenges. Sections 2.3 to 2.5 re-
spectively introduce Natural Language Processing (NLP), Natural Language Programming (NLRP),
and Metamorphic Testing (MT), backbone of the solutions presented in this dissertation.

2.1 Case study systems
The work presented in this dissertation has been partially motivated by the case study systems devel-
oped in the context of a European Union (EU) project in the healthcare domain named EDLAH2 [ED-
LAH2, 2017b]. The project brings academic institutions and software development companies to-
gether in a consortium to enhance the lifestyle of elderly people through a gamification-based ap-
proach. Gamification transforms activities that we are normally reluctant to do, e.g., exercising regu-
larly, into a competition [Deterding et al., 2011]. The objective of the EDLAH2 project is to provide
a set of gamification-based services on mobile devices that engage and challenge clients (elderly
people) to improve their physical, mental, and social activities.

To achieve this objective, the EDLAH2 consortium developed a Web-oriented software system,
i.e., a set of software components that can run on multiple types of systems and devices, which
include mobile and wearable device applications (services). In EDLAH2, mobile applications are
used to incentivize elderly people to perform intellectual activities (e.g., solving logic-based games
including Sudoku), while the wearable device applications are used to track physical activities (e.g.,
tracking heartbeat and footsteps via a bracelet device). These applications collect data to be stored in
a central data repository. The EDLAH2 website (i.e., iCare [MiC, 2017]) provides access to the data
collected by the applications. It allows the carers of the clients to create user accounts and to configure
the system (e.g., selecting mobile applications to install on the client’s devices). The EDLAH2 system
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has thus a multi-tier and multi-device architecture, in which mobile applications interact with Web
applications (i.e., software applications running on a Web server), Web applications interact with
databases and third-party software, and mobile applications interact with mobile device data storage
(e.g., SQLite or SD cards).

The objective of EDLAH2 entails that end-users (i.e., elderly people) provide access not only to
their personal data but also to their daily activities. Hence, EDLAH2 is representative of contexts
where engineers face the significant challenge of defining and ensuring security requirements in sys-
tems that process users’ private data which is produced and shared by multiple components. Ensuring
security in such contexts is complicated by multiple factors such as the presence of multiple compo-
nents, communication over networks, and complex information flows involving multiple actors (e.g.,
end-users, mobile apps, third party software, and Web apps).

Web-oriented software systems like EDLAH2 are thus exposed to numerous security threats such
as information disclosure, information modification, unauthorized access, and denial of service. A
security threat becomes a reality in the presence of vulnerabilities that can be exploited by an at-
tacker. Vulnerabilities might be introduced because of different reasons, ranging from the incomplete
identification of security requirements to the adoption of bad programming practices, or the miscon-
figuration of software components and libraries. For example, disclosure of customer information
may depend on improper requirements analysis, (e.g., the software analyst does not realize that the
system should not expose the email addresses registered on the platform). SQL injection (SQLI) at-
tacks often depend on bad programming practices (e.g., SQL statements created without relying on
standard libraries that include sanitization mechanisms). Cross Site Scripting (XSS) vulnerabilities
may depend on misconfiguration of default Javascript protection options. To systematically deter-
mine countermeasures which mitigate security threats, it is thus crucial to explicitly model both the
activities that the system should perform to protect itself and the potential security threats that depend
on the type of software components being developed.

In this dissertation, we use the Web-oriented software system developed for EDLAH2 as a case
study to motivate, illustrate, and assess our proposed approaches. However, to ensure generalizability,
we also apply the developed solutions to well-known Web-oriented systems, that is, Jenkins [Eclipse
Foundation, 2020] and Joomla [Joo, 2020], which are illustrated below.

The second case study, Jenkins [Eclipse Foundation, 2020], is a free and open-source automation
server. It is commonly used for building projects, running tests, static code analysis, and deploying,
facilitating continuous integration and continuous delivery. We choose Jenkins as a case study since
it is widely adopted by a large number of developers and well-known companies [app, 2020] such
as ebay [eba, 2020], Facebook [Fac, 2020], LinkedIn [Lin, 2020], Netflix [Net, 2020], SpaceX [Spa,
2020]. Its Web interface includes advanced features such as Javascript-based login and AJAX inter-
faces thus beeing a representative case study for any modern Web-oriented system.

The third case study is the free and open-source content management system Joomla [Joo, 2020].
It is built on a model-view-controller Web application framework. Joomla supports multiple interfaces
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for end-users and administrators. It is one of the most popular content management systems. It is
commonly used for building web sites for multiple categories such as corporate websites and small
business websites, online magazines, E-commerce, online reservations, and Government websites.
For example, it is used to manage the content of popular Web sites such as Nintendo [Nintendo,
2020] and Data2EU [Data2.eu, 2020].

The case studies considered in this dissertation are therefore different and provide complementary
perspectives. EDLAH2 is developed in PHP [The PHP Group, 2017] and based on the Drupal content
management system [Dru, 2017]; Jenkins is a Java Web application that can be executed within any
servlet container [Eclipse Foundation, 2018]; Joomla is a PHP-based [The PHP Group, 2017] system.
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Figure 2.1. Part of the use case diagram of EDLAH2

2.2 Requirements Elicitation
In this dissertation, we define a methodology for modelling security requirements that integrates well
with use case-driven solutions to capture functional requirements. Our motivation lies on the fact that,
in addition to be one of the most popular agile solutions for capturing functional requirements [Lar-
man, 2002], use case-driven solutions have been successfully adopted by methodologies for the au-
tomated generation of functional test cases [Wang et al., 2015a, Wang et al., 2015b, Wang et al.,
2017, Wang et al., 2018, Wang et al., 2020].

Our reference use case-driven method for capturing functional requirements involves UML use
case diagrams and use case specifications for describing functional requirements. This practice has
been adopted in EDLAH2.

Fig. 2.1 depicts part of the use case diagram of EDLAH2. Client and Carer are the main actors of
the system while Bracelet, Game App, Browser and Skype are the secondary actors representing the
third-party apps. The use cases describe seven main functionalities: get fitter, play games, do social
activities, get rewards, log in, create account, and configure system.

A use case specification contains a detailed description of a use case and usually conforms to a
template [Cockburn, 2001, Armour and Miller, 2001, Kulak and Guiney, 2003, Yue et al., 2013]. The
Cockburn template [Cockburn, 2001] is a possibility to specify functional use cases of EDLAH2.
Fig. 2.2 shows two examples of such specifications that are part of EDLAH2. Log in describes how
the carer logs into the system via the iCare website. Get Fitter describes how the client checks his

10



2.2. Requirements Elicitation

1 USE CASE Log in
2 Precondition The system displays the login screen.
3 Basic Path
4 1. The carer enters the user name and password in the login form.
5 2. The system checks in the browser if the user name and password are valid.
6 3. The system builds a database query using the user name and password.
7 4. The system evaluates the query in the database.
8 5. The system checks that the query is successful.
9 6. The system displays the welcome message.
10 Postcondition The carer has successfully logged in the system.
11 Alternative Paths
12 2a. The entered user name or password is invalid.
13 2a1. The system displays the wrong user name or password message.
14 5a. The query is unsuccessful.
15 5a1. The system displays the database error message.
16
17 USE CASE Get Fitter
18 Precondition The client has been successfully logged into the system.
19 Basic Path
20 1. The client requests to get current measurement.
21 2. The system receives the heart beat rate data from the bracelet.
22 3. The system checks whether the received heart beat rate data is correct.
23 4. The system stores the received data.
24 5. The system sets one point as a reward for the client.
25 6. The system displays the received heart beat rate data.
26 7. The system displays one point as a reward.
27 Postcondition The heart beat rate data and reward have been stored.
28 Alternative Paths
29 1a. The client requests to get activity data.
30 1a1. The system receives the client’s activity data from the bracelet.
31 1a2. The system checks whether the activity data is correct.
32 1a3. The system stores the activity data.
33 1a4. The system sets two point as a reward for the client.
34 1a5. The system displays the activity data.
35 1a6. The system displays two points as a reward.
36 1a3a. The system displays the error for incorrect activity data.
37 4a. The system displays the error for incorrect heart beat rate measurement.

Figure 2.2. Sample use case specifications for part of the EDLAH2 system

physical activities and condition (e.g., heart beat rate, number of steps and minutes of walking) as
measured by the wearable device (i.e., bracelet).

Unfortunately, the Cockburn template does not support any explicit control flow structure. It
is not feasible to specify a complex use case specification with loops by using Cockburn template.
Moreover, it does not enable automatically test cases generation from use case specifications. We
therefore chose a more structured and analyzable form of use case specifications, i.e., Restricted Use
Case Modeling (RUCM) template [Yue et al., 2013].
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Table 2.1. Restricted Use Case Modeling (RUCM) Template

Use Case Name The name of the use case.

Brief Description Summarizes the use case in a short paragraph.

Precondition What should be true before the use case is executed.

Primary Actor The actor which initiates the use case.

Secondary Actors Other actors which interact with the system to accomplish the use case.

Dependency Include and extend relationships to other use cases.

Generalization Generalization relationships to other use cases.

Basic Flow Specifies the main successful path.

Steps(numbered) Flow of events

Postcondition What should be true after the basic flow executes.

Specific Alternative Flow Applies to one specific step of the basic flow.

RFS A reference flow step number where flow branches from.

Steps(numbered) Flow of events

Postcondition What should be true after the alternative flow executes.

Global Alternative Flow Applies to all the steps of the basic flow.

Steps(numbered) Flow of events

Postcondition What should be true after the alternative flow executes.

Bounded Alternative Flow Applies to more than one step of the basic flow, but not all of them.

RFS A list of reference flow steps where flow branches from.

Steps(numbered) Flow of events

Postcondition What should be true after the alternative flow executes.

2.2.1 Restricted Use Case Modeling (RUCM)

RUCM [Yue et al., 2013] is a methodology for capturing use case specifications. It is based on a tem-
plate and restriction rules, reducing the imprecision and incompleteness in use cases. We use RUCM
to specify EDLAH2 system requirements including security requirements because it is designed to
make use case specifications more precise and analyzable, while preserving their readability. The
RUCM template consists of eleven fields, which are described in the Table 2.1. The structure of
the RUCM template is specified by a set of restriction rules that are summarized in Table 2.2 and
Table 2.3.

To reduce the ambiguity of use case specifications and to facilitate automated NL parsing, RUCM
provides 16 restriction rules to constrain the use of natural language (named R1 to R16, see Table 2.2).
RUCM includes additional 12 rules that specify the keywords to be used in specifications (i.,e. rules
R17 to R28 in Table 2.3 except R26). Rules R27 and R28 had been introduced in follow-up work by
Wang et al. [Wang et al., 2015a] to state additional keywords SENDS ... TO (see steps in Lines 9, 13,
18, 30-33, 39-42 in Fig. 2.3) and REQUESTS ... FROM (see steps in Lines 5, 6, 26, 28, 37 in Fig. 2.3)
to specify data flow between the system and actors.

Fig. 2.3 shows the specifications in Fig. 2.2 modelled according to the RUCM template. The
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Table 2.2. Restricted Rules (R1-R16)
# Description Explanation
R1 The subject of a sentence in basic and alternative flows should

be the system or an actor.
Enforce describing flows of events correctly. These
rules conform to our use case template (the five
interactions).R2 Describe the flow of events sequentially.

R3 Actor-to-actor interactions are not allowed.
R4 Describe one action per sentence. (Avoid compound predi-

cates.)
Otherwise it is hard to decide the sequence of multi-
ple actions in a sentence.

R5 Use present tense only. Enforce describing what the system does, rather than
what it will do or what it has done.

R6 Use active voice rather than passive voice. Enforce explicitly showing the subject and/or
object(s) of a sentence.R7 Clearly describe the interaction between the system and actors

without omitting its sender and receiver.
R8 Use declarative sentence only. “Is the system idle?” is a non-

declarative sentence.
Commonly required for writing use case specifica-
tions.

R9 Use words in a consistent way. Keep one term to describe one thing.
R10 Do not use modal verbs (e.g., might). Modal verbs and adverbs usually indicate uncertainty;

Instead, metrics should be used if possible.R11 Avoid adverbs (e.g., very).
R12 Use simple sentences only. A simple sentence must contain

only one subject and one predicate. Facilitate automated natural language parsing and
reduce ambiguity.R13 Do not use negative adverb and adjective (e.g., hardly, never),

but it is allowed to use not or no.
R14 Do not use pronouns (e.g. he, this)
R15 Do not use participle phrases as adverbial modifier. For exam-

ple, the italic-font part of the sentence “ATM is idle, displaying
a Welcome message”, is a participle phrase.

R16 Use “the system” to refer to the system under design consis-
tently.

Keep one term to describe the system; therefore re-
duce ambiguity.

Table 2.3. Restricted Rules (R17-R28)
# Description # Description

R17 INCLUDE USE CASE R23 DO-UNTIL
R18 EXTENDED BY USE CASE R24 ABORT
R19 RFS R25 RESUME STEP
R20 IF-THEN-ELSE-ELSEIF-ENDIF R26 Each basic flow and alternative flow should have its own postconditions.
R21 MEANWHILE R27 SENDS-TO
R22 VALIDATE THAT R28 REQUESTS-FROM

Precondition field describes the conditions that should hold to perform the use case. Line 2 in Fig. 2.3
indicates that the system should display the login screen before executing the Log in functionality.
The Primary Actor field indicates the actor who initiates the use case (e.g., the carer is the primary
actor of the use case Log in Fig. 2.3). The Basic Flow specifies the main successful path of the use
case. It does not include any condition or branches. Each use case has only one Basic Flow. A Basic
Flow consists of a sequence of steps and a postcondition. In Fig. 2.3, the Basic Flow of the use case
Log in (Lines 4-10) consists of five steps, while the Basic Flow of the use case Get Fitter (Lines
25-34) consists of eight steps. Alternative Flows describe alternative sequences of steps. There are
three types of Alternative Flows: Specific Alternative Flow, Bounded Alternative Flow, and Global
alternative Flow [Yue et al., 2013]. The Specific Alternative Flow in Lines 11-15 in Fig. 2.3 (Specific
Alternative Flow 1) describes an alternative scenario that takes place when entered user name is
incorrect (i.e., when the condition in Line 3 is false). The keyword RFS (the restriction rule R19) is
used in a specific (or bounded) alternative flow to refer to a step number (or a set of step numbers) of
a reference flow (i.e., basic or alternative flows) that this alternative flow branches from. Line 12 in
Fig. 2.3 specifies that the Specific Alternative Flow 1 of the use case Log in refers to step 3 of the Basic
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1 USE CASE Log in
2 Precondition The system displays the login screen.
3 Primary Actor Carer
4 Basic Flow
5 1. The system REQUESTS the user name and password FROM the carer.
6 2. The system REQUESTS the password for the entered user name FROM the database.
7 3. The system VALIDATES THAT the entered user name is correct.
8 4. The system VALIDATES THAT the entered password is correct.
9 5. The system SENDS the welcome message TO the carer.
10 Postcondition The carer has been logged in the system.
11 Specific Alternative Flow 1
12 RFS 3
13 1. The system SENDS the invalid user name message TO the carer.
14 2. RESUME STEP 1.
15 Postcondition The carer has not been logged into the system. The system has displayed the invalid user

name message.
16 Specific Alternative Flow 2
17 RFS 4
18 1. The system SENDS the invalid password message TO the carer.
19 2. RESUME STEP 1.
20 Postcondition The carer has not been logged into the system. The system has displayed the invalid

password message.
21
22 USE CASE Get Fitter
23 Precondition The client has been successfully logged into the system. The system displays the menu

for the get fitter.
24 Primary Actor Client
25 Basic Flow
26 1. The system REQUESTS the choice FROM the client.
27 2. The system VALIDATES THAT the client’s choice is getting current measurement.
28 3. The system REQUESTS the client’s heart beat rate data FROM the sensor (bracelet).
29 4. The system VALIDATES THAT the client’s heart beat rate data is correct.
30 5. The system SENDS the client’s heart beat rate data TO the database.
31 6. The system SENDS one point reward TO the database.
32 7. The system SENDS one point reward to the client.
33 8. The system SENDS the client’s heart beat rate data to the client.
34 Postcondition The client’s heart beat rate data and reward (one point) have been stored in the database.
35 Specific Alternative Flow 1
36 RFS 2
37 1. The system REQUESTS the client’s activity data FROM the sensor (bracelet).
38 2. The system VALIDATES THAT the client’s activity data is correct.
39 3. The system SENDS the client’s activity data TO the database.
40 4. The system SENDS two points reward TO the database.
41 5. The system SENDS two points reward to the client.
42 6. The system SENDS the client’s activity data to the client.
43 Postcondition The client’s activity data and reward (two points) have not been stored in the database.

Figure 2.3. Sample use case specifications in RUCM template for part of the EDLAH2 system

Flow. In other words, if the condition stated at the step 3 (Line 7) is not true, the Specific Alternative
Flow 1 will be executed. The keyword VALIDATES THAT (the restriction rule R22) is used to state
a condition checking (e.g., Line 7, 8 in Fig. 2.3). This means that the condition is validated by the
system and must be true to proceed the next step. For instance, the condition in Line 7 has to be true
to proceed the step 4 in Line 8. The keyword RESUME STEP (the restriction rule R25) is used when
an alternative flow goes back to its corresponding basic/alternative flow. For instance, after executing
all steps in the Specific Alternative Flow 1 (Line 14 in Fig. 2.3), the actor will go back to the step 1 of
the Basic Flow (Line 5).
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1 MISUSE CASE Get Unauthorized Access
2 Precondition At least one client account has already been created in the system.
3 Basic Path
4 1. The crook tampers with the values in the login URL.
5 2. The crook submits the tampered URL directly to the system.
6 3. The system builds a query using the values provided in login URL.
7 4. The system evaluates the query in the database.
8 5. The system checks that the query is successful.
9 6. The system displays the welcome message.
10 Postcondition The crook has gained some privileges.
11 Alternative Paths
12 5a. The query is unsuccessful.
13 5a1. The system displays the database error message, revealing some

information about the database structure.
14 5a2. The crook tampers with the values in the login URL again

based on the exposed information.
15 5a3. The crook submits the tampered URL directly to the system

until the system checks that the query is successful.
16 5a3. The crook reaches maximum number of login attempts.
17 5a3a. The system displays the error message for login.
18 Mitigation Points
19 mp1. In Step 3, the system sanitizes the values before building the query.
20 mp2. In Step 5a1, the system does not replay the exact database error message

and instead, it displays only non-confidential information.
21
22 MISUSE CASE Expose Information from Mobile
23 Precondition The mobile device also has a malware installed.
24 Basic Path
25 1. The malware requests access to user data stored in the system.
26 2. The system accepts the request.
27 3. The system sends user data to the malware.
28 Postcondition The malware has obtained user’s private information.
29 Alternative Paths
30 2a. The system rejects the request.

Figure 2.4. Sample misuse case specifications for part of the EDLAH2 system

2.2.2 Elicitation of Security Requirements

Standard use case templates, such as Cockburn’s, are insufficient to document security concerns in
use case specifications [Sindre and Opdahl, 2001] [Sindre and Opdahl, 2005]. One state-of-the-art
approach for eliciting security concerns, together with functional requirements, provides a misuse
case specification template [Opdahl and Sindre, 2009] [Sindre and Opdahl, 2005] which extends
a use case template with additional notions such as misuse and mitigation point. We applied this
template in the context of the EDLAH2 project and attempted to elicit some of the security concerns
for the use case specifications reported in Fig. 2.2. Some results of our attempt are shown in Fig. 2.4.
The Get Unauthorized Access and Expose Information from Mobile misuse case specifications we
targeted are similar to the example given in [Sindre and Opdahl, 2005]. The basic and alternative
paths in Fig. 2.4 describe the sequence of actions that malicious actors go through to cause harm. The
mitigation points document the actions in a path where the misuse case can be mitigated (Lines 19-20
in Fig. 2.4).

Based on this attempt, we identified three challenges that need to be considered when capturing
security requirements in use case-driven development of Web-oriented software systems:
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Eliciting security threats in an explicit, precise form (Challenge 1). We noticed that although
the template we applied supports specifying various threats, it does not support their specification in
a precise and unambiguous manner. This is the same for other related approaches such as [Sindre and
Opdahl, 2005, Opdahl and Sindre, 2009, Firesmith, 2003, McDermott and Fox, 1999]. We identified
three main limitations, reported in the following.

First, existing templates do not provide glossary or keywords for specifying common security
threats. For instance, the Get Unauthorized Access misuse case in Fig. 2.4 corresponds to unau-
thorized access via SQLI (for categorizing the security threats, we follow the common, well-known
terminology given in OWASP [OWASP, 2016]). In the specification, the term “SQL” was not even
used. Likewise, the Expose Information from Mobile misuse case corresponds to information disclo-
sure due to insecure data storage.

Second, existing templates do not provide a precise and systematic way to determine malicious ac-
tors in the specification. However, providing security extensions or keywords for precisely specifying
common security threats, specific to the device type, would be useful. It would facilitate unambigu-
ous communication among stakeholders and support various automated analyses, including security
testing (e.g., identify the attacks that might hit a specific functionality and verify if its implementation
properly prevents the attacks by simulating the attacker behaviour).

Third, existing templates do not explicitly distinguish between malicious actor-system interactions
and other types of interactions. For instance, the steps in Lines 4-5 in Fig. 2.4 correspond to the
malicious actor-system interactions, whereas the steps in Lines 6-9 correspond to the system’s internal
state changes. The interactions between malicious actors and the system contain information about
the attack surfaces. But since the specification provided in Fig. 2.4 does not make this important
difference, it might be difficult for a security tester to precisely determine where the attack surface is.
In this case, the attack surface consists of the parameters in the login URL.

Eliciting threat scenarios in a structured and analyzable form (Challenge 2). The existing
templates have two shortcomings in eliciting threat scenarios.

First, they do not have any explicit control flow structure. For instance, the Get Unauthorized
Access misuse case in Fig. 2.4 tries a list of user name and password tuples iteratively until the
malicious user logs into the system to get privileges. Since we do not have any explicit loop structure
in the template we use for misuse cases in Fig. 2.4, we tried to describe the loop condition for the
threat in non-restrictive natural language (‘...until the system checks that...’ in Line 15 in Fig. 2.4).
However, it is not clear where the iteration starts in the execution flow.

Second, this does not allow to discern different types of scenarios — scenarios that a malicious
actor may follow to successfully harm the system and scenarios that may not result in such harm. For
instance, in the Get Unauthorized Access misuse case in Fig. 2.4, there are two alternative paths —
the one starting from Line 12 leads to the scenario where the malicious actor harms the system and
the other one starting from Line 16 leads to the scenario where the malicious actor fails to harm the
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system. As a result, it may not be easy for the stakeholders or an analysis tool to distinguish control
flows and conditions leading to threat scenarios. Therefore, such specifications can be ambiguous and
cannot support automated analyses.

Eliciting mitigation schemes (Challenge 3). After identifying security threats in threat scenar-
ios, it is crucial to specify mitigation schemes matching these threats to demonstrate that the software
design complies with applicable security standards and regulations. Such mitigation schemes provide
the developers with guidance on how to prevent security threats specified in misuse cases. Different
security threats and threat scenarios often share common mitigation methods and guidance. For in-
stance, the two different security threats — information disclosure via SQLI and unauthorized access
via SQLI — can both be mitigated by parameterizing the SQL queries. Existing work only supports
specifying the flow of events mitigating each specific threat scenario (see Section 3.1). Such flows
of events are embedded in misuse case specifications where one should specify the mitigation points
(Lines 18-20 in Fig. 2.4). There is no structured way to specify the guidance for developers to mitigate
security threats. In other words, there is a lack of template support for specifying mitigation schemes
that can be reused and adapted for various security threats.

In this work, we aim to address these three challenges in a practical manner.

2.3 Natural Language Processing (NLP)
NLP techniques extract structured information from documents in Natural Language (NL) [Jurafsky
and Martin, 2017]. They implement a pipeline that executes multiple analyses, e.g., tokenization,
morphology analysis, syntax analysis, and semantic analysis. Each pipeline step produces results
based on the output of the previous step.

In this dissertation, we rely on Semantic Role Labeling (SRL) [Jurafsky and Martin, 2017] as
the NLP technique used to process requirements in NL. SRL is a semantic analysis technique that
determines the roles played by the phrases in a sentence, e.g., the actor affected by an activity. For the
sentences “The system starts” and “The system starts the database”, SRL determines that the actors
affected by the actions are the system and the database, respectively. The component that is started
coincides with the subject in the first sentence and with the object in the second sentence although the
verb “to start” is used with an active voice in both. Therefore, this information cannot be captured by
other NLP techniques like POS tagging and dependency parsing. The SRL roles can be effectively
used to represent the meaning of a sentence in a structured form [Wang et al., 2018], which we need
to generate API calls from a misuse case step.

To perform SRL, we rely on the CogComp NLP pipeline [University of Illinois, 2017] (hereafter
CNP, which has shown to be effective in prior research work [Wang et al., 2018]. CNP tags the
words in a sentence with keywords (e.g., A0, A1, A2, AN) to indicate the roles according to the
PropBank model [Palmer et al., 2005]. A0 indicates who (or what) performs an action, while A1
indicates the actor most directly affected by the action. The other roles are verb-specific despite some
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{The malicious user}A0 {sends}verb {dictionary values}A1 {to the system}A2 {through the username and
password fields}AM−MNR

Figure 2.5. Example SRL tags generated by CNP.

Table 2.4. Some of the PropBank Additional Semantic Roles.

Identifier Definition
AM-LOC Indicates a location.
AM-MNR Captures the manner in which an activity is performed.
AM-MOD Indicates a modal verb.
AM-NEG Indicates a negation, e.g. ’no’.
AM-PRD Secondary predicate with additional information about A1.

commonalities (e.g., A2 which is often used for the end state of an action). The PropBank model has
also some other verb-independent roles (see Table 2.4). They are labeled with general keywords and
match adjunct information in different sentences, e.g., AM-NEG indicating a negation.

Fig. 2.5 shows the SRL output for an example misuse case step. The phrase “The malicious user”
represents the actor who performs the activity (tagged with A0); the phrase “dictionary values” is
the actor affected by the verb (i.e., tagged with A1). The phrase “to the system” is the final location
(tagged with A2), while the last chunk of the sentence represents the manner (tagged with AM-MNR)
in which the activity is performed.

2.4 Natural Language Programming (NLRP)
Natural language programming (NLRP) refers to a family of approaches that automatically generate
programs from NL specifications [Manning et al., 2014, Le et al., 2013, Guzzoni et al., 2007, Land-
hausser et al., 2017, Thummalapenta et al., 2012]. MCP has been inspired by techniques for building
NL interpreters [Manning et al., 2014, Le et al., 2013, Guzzoni et al., 2007, Landhausser et al., 2017],
in particular NLCI, a technique accepting action commands in English to translate them into exe-
cutable code.

NLCI [Landhausser et al., 2017] translates NL sentences describing the system activities into
sequences of API calls that implement the intended actions. To this end, it requires an ontology that
captures the structure of the given API. To identify the API calls, NLCI relies on a scoring mechanism
using the string similarity between the terms in the sentence and the method and parameter names in
the API.

Although inspired by NLCI, our approach MCP differs from NCLI in many ways: MCP directly
addresses security testing, MCP adopts a different scoring mechanism, and, finally, MCP supports
the generation of assignment statements and (input) data structures (i.e., dictionaries), which is not
supported by NLCI (see Section 5.6).
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2.5 Metamorphic Testing (MT)
Metamorphic Testing is a technique used to alleviate the oracle problem. The core of MT is a set of
Metamorphic Relations (MRs), which are necessary properties of the program under test in relation
to multiple inputs and their expected outputs [Chen et al., 2018].

In MT, a single test case run requires multiple executions of the system under test with distinct in-
puts. The test outcome (pass or fail) results from the verification of the outputs of different executions
against the MR.

As an example, let us consider an algorithm f that computes the shortest path for an indirect graph
G. For any two nodes a and b in the graph G, it may not be practically feasible to generate all possible
paths from a to b, and then check whether the output path is really the shortest path. However, a
property of the shortest path algorithm is that the length of the shortest path will remain unchanged if
the nodes a and b are swapped. Using this property, we can derive an MR, i.e.,

| f (G,a,b)|= | f (G,b,a)|

in which we need two executions of the function under test, one with (G,a,b) and another one
with (G,b,a). The results of the two executions are verified against the relation. If there is a violation
of the relation, then f is faulty.

We provide below basic definitions underpinning MT.

Definition 1 (Metamorphic Relation - MR). Let f be a function under test. A function f typically
processes a set of arguments; we use the term input to refer to the set of arguments processed by the
function under test. In our example, one possible input is (G,a,b). The function f produces an output.
An MR is a condition that holds for any set of inputs 〈x1, ...,xn〉 where n≥ 2, and their corresponding
outputs 〈 f (x1), ..., f (xn)〉. MRs are typically expressed as implications.

In our example, the property of the target algorithm f is “the length of the shortest path will
remain the same if the start and end nodes are swapped”. The MR of this property is

(x1 = (G,a,b))∧ (x2 = (G,b,a))→ | f (x1)|= | f (x2)|.

Definition 2 (Source Input and Follow-up Input). An MR implicitly defines how to generate a
follow-up input from a source input. A source input is an input in the domain of f . A follow-up input
is a different input that satisfies the properties expressed by the MR. In our example, (G,a,b) and
(G,b,a) are the source and follow-up inputs, respectively.
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Follow-up inputs can be defined by applying transformation functions to the source inputs. The
use of transformation functions in MRs simplifies the identification of follow-up inputs. In our ex-
ample, a transformation function that swaps the last two arguments of the source input can be used to
define the follow-up input:

x1 = (G,a,b)∧ x2 = swapLastArguments(x1)→ | f (x1)|= | f (x2)|

where swapLastArguments is the transformation function.

Definition 3 (Metamorphic Testing - MT). MT consists of the following five steps:

1 Generate one source input (or more if required). In our example, a (random) graph G is gener-
ated; two vertices a and b in G are randomly selected for the source input.

2 Derive follow-up inputs based on the MR. In our example, the function swapLastArguments is
applied to (G,a,b).

3 Execute the function under test with the source and follow-up inputs to obtain their respective
outputs. In our example, the shortest path function is executed two times with (G,a,b) and
(G,b,a).

4 Check whether the results violate the MR. If the MR is violated, then the function under test is
faulty.

5 Restart from (1), up to a predefined number of iterations.
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Related Work

This chapter provides an overview of state-of-the-art solutions concerning the topics covered in this
dissertation: modeling security requirements, automatically generating executable test cases, and
addressing the oracle problem.

3.1 Modeling Security Requirements
There are numerous approaches in the literature to model security requirements [Turpe, 2017, Fabian
et al., 2010, Mellado et al., 2010, Souag et al., 2016, Salini and Kanmani, 2012, Tondel et al.,
2008, Anthonysamy et al., 2017, Beckers, 2012]. In a comprehensive literature review [Fabian
et al., 2010], security requirements engineering methods were distinguished across six categories:
multilateral (e.g., [Gurses et al., 2006, Gurses and Santen, 2006, Mead et al., 2005]), UML-based
(e.g., [Sindre and Opdahl, 2005, Lodderstedt et al., 2002, Jürjens, 2003]), goal-oriented (e.g., [Liu
et al., 2003, Elahi and Yu, 2007, Giorgini et al., 2005, van Lamsweerde, 2004, Mouratidis and
Giorgini, 2007, Pasquale et al., 2016, Kalloniatis et al., 2008] ), problem frame-based (e.g., [Lin
et al., 2004, Hatebur et al., 2006, Hatebur et al., 2008, Haley et al., 2008, Haley et al., 2004, Thomas
et al., 2014]), risk/threat analysis-based (e.g., [den Braber et al., 2007, Asnar et al., 2007, Cailliau
and van Lamsweerde, 2013, van Lamsweerde, 2009, Asnar et al., 2011, Mayer et al., 2007]), and
common criteria-based approaches (e.g., [CC, 2018, Mellado et al., 2006b, Mellado et al., 2006a]).
The multilateral approaches follow the principles of multilateral security [Rannenberg et al., 1999]
and focus on consolidating and reconciling the views of multiple stakeholders on the security re-
quirements. Goal-oriented methods guide engineers towards the refinement of security [Liu et al.,
2003, Elahi and Yu, 2007, Giorgini et al., 2005, van Lamsweerde, 2004, Mouratidis and Giorgini,
2007, Pasquale et al., 2016] features from high level requirements and have been applied to check
whether a system meets its security requirements [Liu et al., 2003, Mouratidis and Giorgini, 2007],
to identify trade-offs between security and other requirements [Pasquale et al., 2016], and to identify
the architecture that suits the given goals [Kalloniatis et al., 2008]. The risk/threat analysis-based
approaches consist of the identification of security goals and threats and focus on the analysis of the
effects of these threats based on system specific information like trust relations among parties [Asnar
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et al., 2007], likelihood of incidents [den Braber et al., 2007], or data storage locations [Spiekermann
and Cranor, 2008]. The problem frame-based approaches make use of the ideas underlying Jack-
son’s problem frames [Jackson, 2001], and have been adopted to model both security [Lin et al.,
2004, Hatebur et al., 2006, Hatebur et al., 2008, Haley et al., 2008, Haley et al., 2004] requirements.
The common criteria-based approaches follow an international standard for information technology
security evaluation [CC, 2018].

In the following, we discuss to what extent related work addresses the challenges identified in
Section 2.2.2.

Eliciting security threats in an explicit, precise form. Most of the existing approaches rely
on UML diagrams and use case specification templates to capture security threats. McDermott and
Fox [McDermott and Fox, 1999, McDermott, 2001] propose abuse cases to describe harmful interac-
tions (i.e., security threats) between a system and malicious actors, but relations between abuse cases
and other types of requirements are not described. Sindre and Opdahl [Sindre and Opdahl, 2005]
extend UML use case diagram with misuse cases and security use cases to model security threats
(i.e., misuse), security-related requirements (i.e., threat mitigation) and other functional requirements.
Alexander discusses automation to support misuse case diagrams [Alexander, 2003b, Alexander,
2003a] and reports experiences with misuse case diagrams in an industrial setting [Alexander, 2002].
Rosado et al. [Rosado et al., 2009] show how misuse case diagrams are employed to model the se-
curity requirements of a grid application, while Rostad [Rostad, 2006] extends misuse case diagrams
with the notion of vulnerability, i.e., a weakness that may be exploited by attackers. Misuse case
diagrams can be employed to represent misuse cases, security use cases and their relations, but not to
capture security threats in misuse cases. To address this problem, Sindre and Opdahl [Sindre and Op-
dahl, 2001] adapt a use case specification template for detailed textual descriptions of threat scenarios.
Common criteria-based approaches [Mellado et al., 2006b, Mellado et al., 2006a] apply the adapted
template with misuse case diagrams [Sindre and Opdahl, 2005, Sindre and Opdahl, 2001] to elicit
security threats and requirements. This template is extended for misuse case generalization [Sindre
et al., 2002] and reuse [Sindre et al., 2003]. Deng et al. [Deng et al., 2011] employ the misuse case
template [Sindre and Opdahl, 2001] in their privacy threat analysis framework to elicit privacy threat
scenarios. Omoronyia et al. [Omoronyia et al., 2011] introduce two new fields into the template
to highlight contextual properties of privacy misuse cases. Firesmith [Firesmith, 2003] proposes a
similar template for security use cases which represent security-related requirements combined with
a form of threat scenarios. However, these templates do not provide any construct or restriction
rule to capture security threats in a precise and analyzable form to support automated analyses. El-
Attar [El-Attar, 2012, El-Attar, 2014] proposes an approach to guide the analysts towards developing
consistent misuse case diagrams and specifications. El-Attar’s specifications can be automatically
processed thanks to the presence of keywords, e.g., misuse case and include, that are used within the
fields present in common use case templates. However, the keywords introduced by El-Attar do not
support capturing security threats in an explicit form.
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Goal-based approaches, such as KAOS [van Lamsweerde, 2004], Secure Tropos [Mouratidis and
Giorgini, 2007], and attack trees [Swiderski, 2004], provide templates for specifying threats and com-
mon security goals. For instance, KAOS [van Lamsweerde, 2004] models threats as fault trees, also
referred to as obstacle trees, in which the root is a negation (anti-goal) of a security goal. Based on the
anti-goals, the approach determines how attackers may harm the system under design. PriS [Kalloni-
atis et al., 2008] is a goal-oriented methodology that focusses on privacy requirements. It includes a
set of patterns that describe the processes to put in place in order to achieve a specific privacy goal,
and provides a method to determine the architectural solution that fits the requirements. PriS mostly
focusses on goals, and provides little support to model privacy threats. CORAS [den Braber et al.,
2007], a risk analysis-based approach, rather focuses on the risks posed by security threats and on
guiding the analysts in performing security risk analysis. It supports eliciting security threats using
UML-like diagrams and some security-related notations at a high level. Rashid et al. [Rashid et al.,
2016] employ the grounded theory method [Glaser and Strauss, 1967] and incident fault trees [John-
son, 2003] to discover and document emergent security threats which are implicit within and across
a variety of security incidents. Risk-analysis approaches targeting privacy concerns instead focus on
the definition of questionnaires that support analysts in the identification of privacy risks, but do not
provide templates or models to capture the risks in a structured form [Hong et al., 2004, Spiekermann
and Cranor, 2008].

Other approaches focus on security policy violations [Lodderstedt et al., 2002, Breaux et al.,
2014, Breaux and Rao, 2013] and conflicting security objectives [Mead et al., 2005, Gurses et al.,
2006]. SecureUML [Lodderstedt et al., 2002] is a modeling language for the model-driven develop-
ment of secure, distributed systems based on UML, but its modeling support is limited to specifying
policies for access control threats. Breaux et al. [Breaux et al., 2014, Breaux and Rao, 2013] propose
a methodology which maps privacy requirements in natural language text to a formal language in de-
scription logic to detect conflicting privacy requirements causing threats. The analysis of conflicting
privacy requirements is limited to the detection of conflicts between which data is actually processed
and which data processing activity is declared in the policy. Multilateral approaches [Mead et al.,
2005, Gurses et al., 2006] analyze general security needs of all the stakeholders of a system-to-be to
consolidate different stakeholders’ views on security threats. These approaches focus on identifying
and resolving conflicts between different security goals of stakeholders. Their artifacts (e.g., UML
models and attack trees) may explicitly capture interactions among security requirements as well as
between security and functional requirements. Automated analysis of the artifacts to identify con-
flicts and ambiguities is also possible with some form of formalization work. However, the existing
multilateral approaches provide rather conceptual frameworks. For example, SQUARE [Mead et al.,
2005] only recommends to apply existing techniques that best suit the project at hand to model various
threats.

In general, all the above-mentioned approaches provide systematic methods for modeling secu-
rity threats and requirements in terms of security goals, anti-goals, attack trees, and/or access control
policies at a high level. However, they do not focus on capturing security threats in a precise, detailed,
and structured form. Therefore, automated analyses of the artifacts produced by these approaches are
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often not possible without incorporating additional formal notations such as temporal logics or logical
formulas, which can be a tedious requirement even for developers and security analysts. In contrast
to these approaches, our aim is to provide well-defined templates, restriction rules, and keywords to
precisely capture various security threats in misuse case specifications. Our objective is to require
knowledge on use case specification methods, thus enabling stakeholders to participate and commu-
nicate. Finally, we aim to propose templates, restriction rules and keywords that enable automated
analyses (to identify conflicts and ambiguities) on the generated artifacts (i.e., misuse case diagrams
and specifications).

Eliciting threat scenarios in a structured and analyzable form. The templates proposed for
misuse cases [Sindre and Opdahl, 2001, El-Attar, 2012, El-Attar, 2014], security use cases [Firesmith,
2003] and abuse cases [McDermott, 2001] extend the common use case templates in the literature to
elicit security requirements. But in general they do not provide any extension or any control flow
structure to systematically identify and capture various threat scenarios. Some approaches employ
UML models to use the control flow structures of UML in eliciting threat scenarios. For instance,
Whittle et al. [Whittle et al., 2008] propose the use of sequence diagrams for the analysis of threat
scenarios in misuse cases, while Sindre et al. [Sindre, 2007] incorporate malicious activities and ma-
licious actors in UML activity diagrams to model potential attacks. Secure Tropos [Mouratidis and
Giorgini, 2007] incorporates security rules in UML sequence diagrams. Song et al. [Song et al.,
2005] propose to use aspect sequence diagrams to model access control-related security require-
ments. CORAS [den Braber et al., 2007] employs UML sequence and activity diagrams to model
the behavior of the system under attack. UMLsec [Jürjens, 2001] combines several UML diagrams
(e.g., statecharts and interaction diagrams) for modeling and analyzing threat scenarios. It also pro-
poses some UML extensions (i.e., stereotypes, constraints, tagged values defined in a UML profile)
to capture security concepts.

Attack trees [Schneier, 1999] and Microsoft’s threat modeling approach [Swiderski, 2004], which
can be considered as a special case of goal-based approaches, represent attacks or security threats
against a system in a tree structure. The root node in the tree structure represents the attacker’s goal
while leaf nodes represent different ways of achieving that goal. A tree reflects the sequences of
actions that must be carried out (a threat scenario) to realize a threat. However, it does not capture
the conditions that must be met for the attack to happen. Problem frames are also used to model
security threats [Lin et al., 2004, Lin et al., 2003, Hatebur et al., 2006]. They are basically diagrams
representing the assets to be protected, the malicious subjects, the potential vulnerabilities of the
system that the malicious subjects may exploit, and the environment through which the malicious
users interact with the assets. Hatebur et al. [Hatebur et al., 2006] equip problem frames, representing
threat scenarios, with preconditions and postconditions. Preconditions are specified using logical
formulas to express what conditions must be met for a frame to be applicable.

Although the above-mentioned approaches provide diagrams or formalizations that employ a form
of control flow structures in describing threat scenarios in a structured form, they do not provide any
systematic way to distinguish scenarios that cause harm from those that do not. In addition, these
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approaches generally aim to aid the analysts for modeling threat scenarios using sequence/activity
diagrams or formal methods. It is not clear whether stakeholders, who are not developers and with
different levels of technical competence, can use these approaches.

In this dissertation, we propose an approach based on use cases, it allows different types of stake-
holders to participate and communicate. We extend the RUCM template because it already provides
control flow structures, e.g., ‘do...while’ and ‘if...then...else...’, which can also be used for modeling
threat scenarios. The new extensions we proposed capture success and failure scenarios in a structured
and analyzable form.

Eliciting mitigation schemes. The template proposed by Sindre and Opdahl [Sindre and Opdahl,
2001] supports mitigation points where one can specify the flow of events mitigating each specific
threat scenario. There is, however, no structured way to specify mitigation schemes, i.e., the guidance
and methods for developers to mitigate security threats. For this reason, in this dissertation, we aim
to provide template support for specifying mitigation schemes, which can be reused for mitigating
various security threats. Further, to the best of our knowledge, the current approaches do not provide
a way for stakeholders to demonstrate compliance of their software design against applicable security
standards, which is an important requirement in many contexts. The mitigation and security use case
templates proposed in this dissertation should enable traceability to demonstrate compliance with
requirements.

3.2 Generating Test Cases
Security testing verifies the compliance of a software system with its security requirements [Felderer
et al., 2016a, Felderer et al., 2016b, Hafner and Breu, 2008], which, in turn, can be given as positive
requirements, specifying the expected functionality of a security mechanism, and as negative require-
ments, specifying what the system should not do [Meucci and Muller, 2014, Tian-yang et al., 2010].
For instance, a positive security requirement is “a user account is disabled after five unsuccessful lo-
gin attempts”, while a negative security requirement is “a malicious customer should not be able to
access resources that are dedicated to users with a different role (e.g., employee)”. This classification
of security requirements is reflected in security testing [Meucci and Muller, 2014, Tian-yang et al.,
2010, Felderer et al., 2016a]: (1) security functional testing validating whether the specified security
properties are implemented correctly, and (2) security vulnerability testing addressing the identifica-
tion of system vulnerabilities. Security vulnerability testing mimics attackers who aim to compromise
the security properties of the system (e.g., confidentiality, integrity, and availability) [Felderer et al.,
2016a, Arkin et al., 2005]. Security vulnerability testing requires specific expertise for simulating
attacks (e.g., identifying risks in the system and generating tests driven by those risks), which makes
test case generation and execution difficult to automate [Potter and McGraw, 2004].

Most vulnerability testing approaches focus on a particular vulnerability like buffer overflow and
code injection vulnerabilities. For instance, Appelt et al. [Appelt et al., 2014] present an automated
approach that generates test inputs for SQLi attacks, while Tripp et al. [Tripp et al., 2013] provide
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a learning algorithm for black-box detection of cross-site scripting (XSS) vulnerabilities. Ognawala
et al. [Ognawala et al., 2016] present a tool that uses symbolic execution to detect memory out-of-
bounds/buffer overflow vulnerabilities caused by unhandled memory operations in a program. Those
approaches support engineers for a limited set of attack-related activities (e.g., input generation for
an SQL injection vulnerability), and cannot be adopted to generate executable test cases for complex
attack scenarios involving articulate interactions among parties, e.g., stealing an invitation email to
register multiple fake users on a platform. For this reason, in this dissertation, we propose an ap-
proach, MCP, that enables engineers to specify such attack scenarios in misuse case specifications
and automatically generates executable test cases from the specifications.

Model-based testing approaches are capable of generating test cases based on interaction proto-
col specifications [Veanes et al., 2005, Silva et al., 2008] and thus can potentially generate test cases
for complex attack scenarios [Lebeau et al., 2013]. Model-based security testing is a relatively new
research field [Felderer et al., 2016b], where some approaches have been proposed for security vul-
nerability testing (e.g., [Bertolino et al., 2012, Blome et al., 2013, He et al., 2008, Marback et al.,
2013, Jürjens, 2008a, Masood et al., 2010a, Xu and Nygard, 2006, Martin and Xie, 2007b, Martin
and Xie, 2007a, Martin et al., 2006]). For instance, Marback et al. [Marback et al., 2013] propose
a model-based security testing approach that automatically generates security test sequences from
threat trees. Wimmel and Jürjens [Wimmel and Jürjens, 2002] present an approach that generates
security test sequences for vulnerabilities from a formal model supported by the CASE tool AutoFo-
cus. Whittle et al. [Whittle et al., 2008] provide another approach that generates test sequences from
attack scenarios in UML sequence and interaction overview diagrams. In these approaches, however,
engineers have to transform the generated test sequences into executable tests manually, thus leading
to limited benefits.

Xu et al. [Xu et al., 2012b, Xu et al., 2015] introduce the MISTA tool that automatically gen-
erates executable vulnerability test cases from formal threat models (i.e., Predicate/Transition - PrT
nets). Jürjens [Jürjens, 2008a] relies on some security extensions of UML, i.e., UMLsec [Jürjens,
2002, Jürjens, 2005b, Jürjens, 2005a], to generate security vulnerability test cases from detailed UML
statecharts capturing control and data-flow. Bertolino et al. [Bertolino et al., 2012] present a model-
based approach for the automatic generation of test cases for security policies specified in a process
algebra language. All these approaches require detailed formal models, which limits their adoption in
industrial settings. In fact, engineers tend to avoid such detailed models because of the costs related
to their development and maintenance, especially in contexts where system requirements are already
available in NL.

There are approaches that generate functional system test cases from NL requirements (e.g., [Car-
valho et al., 2014, de Figueiredo et al., 2006, Wang et al., 2015a, Wang et al., 2015b, Kaplan et al.,
2008]). For instance, Wang et al. [Wang et al., 2015a, Wang et al., 2015b] automatically generate
functional test cases from use case specifications written in RUCM. These approaches can be em-
ployed in the context of security functional testing, but not security vulnerability testing since they
generate test cases only for the intended system behavior. Khamaiseh and Xu [Khamaiseh and Xu,
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2017] present an approach that automatically builds, from misuse case specifications, PrT nets for the
MISTA tool to automatically generate security vulnerability test cases. For the test code generation,
test engineers have to provide some helper code and a model-implementation mapping description
which maps the individual elements of a PrT net to their implementation constructs. In contrast, in
this dissertation we propose test automation approaches that do not need any helper code or model-
implementation mapping.

3.3 Addressing the Oracle Problem in Security Testing
Many vulnerability testing approaches rely on an implicit test oracle, i.e., one that relies on implicit
knowledge to distinguish between correct and incorrect system behavior [Haley et al., 2008]. This is
the case for approaches targeting buffer overflows, memory leaks, unhandled exceptions, and denial
of service [Ognawala et al., 2016, Bekrar et al., 2011, Takanen et al., 2018], most of which rely
on mutational fuzzing [Zeller et al., 2019], i.e., the generation of new inputs through the random
modification of existing inputs. Implicit oracles deal with simple abnormal system behavior such as
unexpected system termination and are not system-agnostic. What is abnormal in one system might
be considered normal in a different context [Barr et al., 2015].

Vulnerability testing approaches for code injections also suffer from the oracle problem [Raghavan
and Garcia-Molina, 2000, Kals et al., 2006, Martin and Lam, 2008, Bau et al., 2010, Appelt et al.,
2014, Salas and Martins, 2014, Tripp et al., 2013, Appelt et al., 2013]. To resolve this problem, Huang
et al. [Huang et al., 2003] proposed an MT-like technique which sends multiple HTTP requests, i.e.,
one request with an injection, an intentionally invalid request, and a valid request. They compare the
responses to determine if the request with the injection is filtered. Unfortunately, MT-like approaches
that address a broader set of security vulnerabilities are missing.

Model-based approaches [Felderer et al., 2016b, Felderer et al., 2011] typically target security
vulnerability testing (e.g., [Bertolino et al., 2012, Blome et al., 2013, He et al., 2008, Marback et al.,
2013, Jürjens, 2002, Jürjens, 2005b, Jürjens, 2005a, Jürjens, 2008b, Masood et al., 2010b, Xu and
Nygard, 2006, Martin and Xie, 2007b, Martin and Xie, 2007a, Martin et al., 2006, Wimmel and
Jürjens, 2002, Whittle et al., 2008, Xu et al., 2012b, Xu et al., 2015]) whereas a few solutions address
security functional testing (e.g., [Le Traon et al., 2007, Mouelhi et al., 2008, Mouelhi et al., 2009, Xu
et al., 2012a]). Most of these approaches only generate test sequences from security models and do not
address the oracle problem. Approaches that generate test cases including oracles [Xu et al., 2012b,
Xu et al., 2015, Xu et al., 2012a] rely on mappings between model-level abstractions (i.e., tokens
in markings of PrT networks) and executable code implementing the oracle logic (e.g., searching
for error messages in system output). Unfortunately, these approaches do not free engineers from
implementation effort since they require the manual implementation of the executable oracle code.
Furthermore, the model-based mapping supported by these approaches does not enable engineers to
specify precise test oracles (e.g., oracles that verify the exact content of the output of the system with
respect to its inputs [Xu et al., 2012b]).
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With MT, we aim to address the limitations of security testing approaches. Indeed, MT supports
oracle automation thanks to MRs that can precisely capture the relations between inputs and outputs.
Considerable research has been devoted to developing MT approaches for various domains such as
computer graphics (e.g., [Mayer and Guderlei, 2006, Guderlei and Mayer, 2007, Just and Schweig-
gert, 2009, Kuo et al., 2011b]), simulation (e.g., [Chen et al., 2009, Ding et al., 2011, Murphy et al.,
2011]), Web services (e.g., [Chan et al., 2007b, Sun et al., 2011, Zhou et al., 2012]), embedded sys-
tems (e.g., [Tse and Yau, 2004, Chan et al., 2007a, Kuo et al., 2011a, Jiang et al., 2013]), compilers
(e.g., [Tao et al., 2010, Le et al., 2014]), and machine learning (e.g., [Xie et al., 2009, Murphy et al.,
2008]). Preliminary applications of MT to security testing [Chen et al., 2016] focus on the func-
tional testing of security components (i.e., verifying the output of code obfuscators and the rendering
of login interfaces) and the verification of low level properties broken by specific security bugs (e.g.,
heartbleed [Synopsys Inc., 2018]). Although these works show the feasibility of MT for security, they
focus on a narrow set of vulnerabilities and do not automate the generation of executable metamorphic
test cases, which are manually implemented based on the identified MRs.

Although MT is highly automatable, very few approaches provide proper tool support enabling
engineers to write system-level MRs [Segura et al., 2016]. They require that MRs be defined either
as Java methods [Zhu, 2015] or pre-/post-conditions [Murphy et al., 2009], which limit the adoption
of MT to verify system-level, security properties. Furthermore, since MRs are often specified by
capturing properties using a declarative notation, the use of an imperative language to implement the
relations may force engineers to invest additional effort to translate abstract, declarative MRs.

To summarize, existing automated security testing approaches lack support for the generation of
test oracles. The few approaches addressing the oracle problem either focus on a limited set of security
vulnerabilities, or integrate oracles with limited capabilities. MT can overcome these limitations. It
can be applied to both security functional testing and vulnerability testing since MRs can capture both
security properties (e.g., a login screen should always be shown after a session timeout) and properties
of the inputs and outputs involved in the discovery of a vulnerability (e.g., admin pages are accessed
without authentication). Existing MT solutions target few, specific security bugs and do not support
automated MT based on MRs capturing general security properties. To overcome these limitations,
we need a DSL for MRs and algorithms that automate the execution of MT.
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Restricted Misuse Case Modeling

In this chapter, we propose, apply, and assess a modeling method that supports the specification of
security requirements in a structured and analyzable form. Our motivation is that, in many con-
texts, use cases are common practice for the elicitation of functional requirements and should also
be adapted for describing security requirements. We integrate an existing approach for modeling
security requirements in terms of security threats, their mitigations, and their relations to use cases
in a misuse case diagram. We introduce new security-related templates, i.e., a mitigation template
and a misuse case template for specifying mitigation schemes and misuse case specifications in a
structured and analyzable manner. Natural language processing can then be used to automatically
report inconsistencies among artifacts and between the templates and specifications. We successfully
applied our approach to an industrial healthcare project and report lessons learned and results from
structured interviews with engineers. Since our approach supports the precise specification and anal-
ysis of security threats, threat scenarios and their mitigations, it also supports decision making and
the analysis of compliance to standards.

4.1 Introduction
Modern internet-based services like home-banking [USC Credit Union, 2017], music-streaming [Spo-
tify, 2017], food-delivery [DeliveryHero, 2017], and personal-training [FitBit, 2017] are delivered
through Web-oriented software systems, i.e., software systems with components and interfaces that
are executed on different types of devices including Web browsers, desktop applications, mobile ap-
plications, smart-TVs, and wearable devices. Most of the Web-oriented software systems process
private end-user data collected and stored by different devices, such as credit balance reported by
banking applications, locations visited by end-users, and health status tracked by personal training
applications. The adoption of multiple devices augments security risks because of the presence of
multiple attack surfaces (points at which security attacks can be executed), including malware that
steals consumer and corporate data from smartphones [Jain and Shanbhag, 2012] and Web applica-
tions that unintentionally expose confidential data [Bortz and Boneh, 2007]. Therefore, security has
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become a crucial concern in the development of software systems, in this chapter we address the
problem of facilitating the analysis of security requirements.

To identify the security requirements of a Web-oriented software system, it is necessary to take
into consideration the characteristics of the specific service being developed and of the device types
on which the service is going to be deployed. An example requirement of a home-banking smartphone
service is that the user should automatically log off when the phone screen is locked to prevent phone
thieves from accessing the bank account. This requirement is inappropriate for other types of services,
e.g., personal training services which are used by runners and thus should be accessible without
logging in, even after a screen lock (which normally happens while running). Examples of device
specific characteristics that impact on security requirements include Web applications running on
dedicated servers that are always online and thus prone to brute force attacks via the network. Mobile
applications, instead, are often idle or offline, but they usually run on a device that is potentially shared
with malicious applications inadvertently installed by end-users. Such applications can steal private
data if it is not properly protected (e.g., through encryption). Therefore, it is crucial to precisely model
and analyze security requirements of such Web-oriented software systems early in their development.

In this chapter, we propose, apply, and assess a use case-driven modeling method that supports
the specification of security requirements of Web-oriented software systems in a structured and ana-
lyzable form. Use cases are one of the most common means adopted by software engineers to elicit
requirements because they ease the communication between stakeholders [Larman, 2002]. Therefore,
to achieve widespread applicability, the need for integrating security requirements with use case mod-
eling warrants the development of a use case-driven, security requirements modeling method that is,
in our context, tailored to the development of Web-oriented software systems.

Considerable research has been devoted to eliciting and analyzing security requirements using
various forms of use cases (e.g., abuse cases [McDermott and Fox, 1999, McDermott, 2001], security
use cases [Firesmith, 2003], and misuse cases [Opdahl and Sindre, 2009, Rostad, 2006, Sindre and
Opdahl, 2005, Sindre and Opdahl, 2001]). However, as we detailed in Section 2.2.2, the applicabil-
ity of these approaches in the context of security requirements modeling for Web-oriented software
systems shows limitations with respect to (1) their support for explicitly specifying various types of
security threats (a security threat is a possible event that exploits a vulnerability of the system to cause
harm), (2) the definition of threat scenarios (a threat scenario is a flow of events containing interac-
tions between a malicious actor and system to cause harm), and (3) the specification of mitigation for
these threats.

These three features are essential in the type of business context we target where it is required
to explicitly identify the threat scenarios that may affect important business operations in order to
identify appropriate mitigation schemes and trade-offs between functional requirements and security
concerns. It is also expected that such security requirements, specified in a structured and analyzable
form, provide support for security testing, for example by helping with the identification of attack
surfaces. In addition to specifying security threats, a common practice in many environments requires
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mitigation schemes to be documented for the stakeholders to demonstrate compliance with applicable
security standards and regulations. However, existing approaches lack reusable templates to specify
such mitigation schemes.

The goal of this chapter is to address the above challenges by proposing a use case-driven, secu-
rity requirements modeling method called Restricted Misuse Case Modeling (RMCM), which adapts
existing methods and extends them. In RMCM, we employ misuse case diagrams proposed by Sindre
and Opdahl [Sindre and Opdahl, 2005] to model security requirements in terms of use cases. Mis-
use cases describe attacks that may compromise use cases; security use cases specify how to mitigate
such attacks. For eliciting security threats and threat scenarios in a structured and analyzable form, we
adopt the Restricted Use Case Modeling method (RUCM) proposed in [Yue et al., 2013] to write use
case specifications. RUCM is based on a template and restriction rules, reducing ambiguities and in-
completeness in use cases. It was previously evaluated through controlled experiments and has shown
to be usable and beneficial with respect to making use cases less ambiguous and more amenable to
precise analysis and design [Wang et al., 2015a, Wang et al., 2015b, Hajri et al., 2015, Hajri et al.,
2018b, Hajri et al., 2016, Hajri et al., 2017b, Hajri et al., 2017a, Hajri et al., 2018a]. However,
since RUCM was not originally designed for modeling security requirements, we extend the RUCM
template with new restriction rules and constructs, targeting the precise modeling of security threats.
Further, we provide a template for mitigation schemes and three mitigation schemes that are pre-
specified with standard and secure coding methods for mitigating common security threats. They can
be readily used and revised as necessary.

RMCM employs Natural Language Processing (NLP) to report inconsistencies between a misuse
case diagram and its RMCM specifications, and to analyze the compliance of such specifications
against the provided RMCM templates. NLP is also used to identify and highlight the control flow
leading to different threat scenarios and the steps in RMCM specifications that refer to interactions
between malicious actors and the system. The latter provides security testers with information about
attack surfaces on which security testing should focus. To summarize, the contributions of this chapter
are:

• RMCM, a security requirements modeling method supporting the precise and analyzable spec-
ification of security threats, threat scenarios, and their mitigations, in the context of use case
driven development of Web-oriented software systems;

• a practical toolchain, available at our tool website [Mai, 2017], including (1) a component that
extends Papyrus [Papyrus, 2017] to support misuse case diagrams, (2) a component that extends
IBM Doors [IBM Doors, 2017] to support misuse case specifications and mitigation schemes
in the RMCM templates, and (3) a component relying on NLP to detect inconsistencies among
these artifacts;

• a case study demonstrating the applicability of RMCM in a realistic development context in-
volving multiple service and software providers in the healthcare domain.
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This chapter is structured as follows. Section 4.2 provides an overview of RMCM. Section 4.3
focuses on the use case extensions in RMCM. In Section 4.4, we present our tool support. Section 4.5
reports on our industrial case study, from which we draw conclusions on the benefits and applicability
of the proposed approach. Section 4.6 concludes this chapter.

4.2 Overview of the RMCM Modeling Method
The process in Fig. 4.1 presents an overview of our modeling method, Restricted Misuse Case Model-
ing (RMCM). It is designed to address the challenges stated at the section 2.2.2 in the use case-driven
development context we described for Web-oriented software systems, and builds upon and integrates
existing work. The RMCM output is a misuse case diagram, use case specifications, security use case
specifications, misuse case specifications, and mitigation schemes.

In Step 1, Elicit requirements as use cases, security use cases and misuse cases, the analyst elicits
functional and security requirements relying on a misuse case diagram and the extended RUCM
template (hereafter RMCM template), which are detailed in Section 4.3. Functional requirements
and security requirements are captured in the misuse case diagram while it is further detailed in use
case, security use case and misuse case specifications (Challenges 1 and 2). While use cases capture
functional requirements, security use cases capture security countermeasures addressing potential
attacks, which are themselves represented with misuse cases.

In Step 2, Check conformance for diagram and specifications, RMCM-V (Restricted Misuse Case
Modeling - Verifier), the tool we developed for RMCM, automatically checks the consistency between
the misuse case diagram and specifications, and between the specifications and the RMCM template.
It relies on NLP. If there is any inconsistency, the analyst updates the diagram or specifications (Step
1). Steps 1 and 2 are iterative: the specifications and diagram are updated until the specifications
conform to the RMCM template and they are consistent with the diagram.

In Step 3, Elicit mitigation schemes for misuse cases, mitigation schemes are elicited for the
security threats specified in misuse cases (Challenge 3). Different from security use cases specifying
the flow of events mitigating a specific threat scenario, mitigation schemes provide the secure coding
methods adopted by the system, guidelines on how to educate users and other mechanisms to prevent
various security threats in general. In Step 4, Check conformance for mitigation schemes, RMCM-
V automatically checks whether the mitigation schemes conform to the mitigation template. Steps 3
and 4 are also iterative: the mitigation schemes are updated until they conform to the template.

The proposed method enables engineers to capture security threats and countermeasures. Risk
analysis, i.e., ranking and prioritizing of security threats, is out of our scope. However, in contexts
where risk analysis drives the engineering process (e.g., to prioritize test cases [Großmann and See-
husen, 2015]), the proposed approach can be integrated with existing risk analysis techniques, for
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example, techniques that rely on misuse case diagrams [Kim and Cha, 2012]. Similarly, the Com-
mon Vulnerability Scoring System (CVSS) [CVS, 2020] can be used to evaluate the risks due to
vulnerabilities affecting the deployed production system.

In the following sections, we provide a detailed description of the steps of the proposed approach.

4.3 Capturing Security Requirements
In this section, we describe the artifacts produced by RMCM. We discuss how they were extended,
compared to what was proposed in existing work, and illustrate how they address our three challenges
with the running example.

4.3.1 Use Case Diagram with Misuse Case Extensions

To capture misuse cases, security use cases, use cases, and their relationships, RMCM relies on
the misuse case extensions proposed by Sindre and Opdahl [Sindre and Opdahl, 2005] for use case
diagrams. We made this choice for RMCM because of the explicit representation of misuse cases,
security use cases, and their relationships (i.e., threaten and mitigate). In the following, we briefly
introduce our extensions. The reader is referred to [Sindre and Opdahl, 2005] for further details.
Fig. 4.2 depicts part of the misuse case diagram for EDLAH2.

As shown in Fig. 4.2, misuse cases, i.e., sequence of actions that a malicious actor can perform to
cause harm, are greyed to distinguish them from use cases. Likewise, malicious actors (e.g., Malicious
app) are distinguished from benign actors (e.g., Carer) and labeled with the keyword ‘malicious’. The
UML stereotype «security» is used to distinguish security use cases that are countermeasures against
misuse cases. In addition to the use case relationships (e.g., include and extend), mitigate is used
for specifying the relationships between security use cases and misuse cases; and threaten is used
for specifying the relationships between misuse cases and use cases [Sindre and Opdahl, 2005]. For
instance, in Fig. 4.2, Validate Website Inputs mitigates Get Unauthorized Access via SQLI, which
threatens Log in. Expose Information via Insecure Data Storage is an abstract misuse case that is
extended by some concrete misuse cases threatening Get Fitter, Play Games, Do Social Activities,
and Get Rewards.

4.3.2 Misuse Case and Security Use Case Specifications

Regarding misuse case specifications, to elicit security threats in a precise form and to elicit threat
scenarios in a structured and analyzable form (Challenges 1 and 2), we propose the RMCM template,
an extension of the RUCM template, shown in Table 4.1, and new restriction rules, shown in Table 4.2.
The misuse case specifications are elicited using this template, further using the new restriction rules
in addition to the original ones. These template and restriction rules are designed to make (mis)use
case specifications explicit, precise, and analyzable by restricting the use of natural language and by
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Figure 4.2. Part of the misuse use case diagram for EDLAH2

using specific keywords. Our extensions specifically target the modeling of security concerns for
Web-oriented software systems.

Fig. 4.3 shows two simplified misuse case specifications of EDLAH2 written in RMCM, with all
the RMCM keywords written in capital letters.

The original RUCM template provides basic and alternative flows which we adapted as Basic
Threat Flow, Specific/Bounded/Global Alternative Flow and Specific/Bounded/Global Alternative
Threat Flow (see Table 4.1). Threat flows specify unwanted incidents. Different from a basic flow in a
use case specification, which describes a nominal scenario for an actor to use the system as intended,
a basic threat flow describes a nominal scenario for a malicious actor to harm the system. It contains
misuse case steps and a postcondition (Lines 6-13 and 38-41). A misuse case step can be one of the
following interactions: a malicious actor initiates a security attack to the system (Lines 7, 8, 18, 19,
20 and 39); the system validates a request and/or data (Line 11); the system replies to a malicious
actor with a result (Lines 12, 17, 27 and 40). A step can also capture the system altering its internal
state (Lines 9 and 10). In addition, the inclusion of another use case can be specified as a step.

In RMCM, the assets impacted by a threat scenario are specified in the Assets field of the mis-
use case specifications. In addition, the assets should appear also in the postcondition of the basic
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Table 4.1. Restricted misuse case modeling (RMCM) template

Misuse Case Name The name of the misuse case.

Brief Description Summarizes the misuse case in a short paragraph.

Precondition What should be true before the misuse case is executed.

Primary Actor The actor which initiates the misuse case.

Secondary Actors The actors which interact with the system to accomplish the misuse case.

Dependency Include and extend relationships to other (mis)use cases.

Generalization Generalization relationships to other misuse cases.

Threats Threaten relationships to use cases.

Assets The assets (potentially) impacted by this threat.

Basic Threat Flow Specifies the main sequence of actions that the misuser carries out to harm the
system.

Steps(numbered) Flow of events

Postcondition The resulting unwanted condition and the asset(s) impacted
after the threat flow executes.

Specific/Bounded/Global
Alternative Threat Flow

A specific alternative sequence of actions that the misuser carries out to harm
the system.

RFS A reference flow step number where flow branches from.

Steps(numbered) Flow of events

Postcondition The resulting unwanted condition and the asset(s) impacted
after the threat flow executes.

Specific/Bounded/Global
Alternative Flow

A specific alternative sequence of actions that do not result in any harm to the
system.

RFS A reference flow step number where flow branches from.

Steps(numbered) Flow of events

Postcondition The resulting condition after the alternative flow executes.

Mitigation Scheme Refers to the name of the mitigation scheme, specified using our mitigation
template, to mitigate this misuse case. This complements security use case(s).

threat flow or the specific/bounded/global alternative threat flows (Lines 13, 23, 30, 41 and 47). In
RMCM, the purpose of postconditions is to capture the consequences that the activities of the mali-
cious user/app have on the assets (Line 13).

In the following, we discuss with examples how the rules in Table 4.2 (R1-R15) are applied to
address Challenge 1 (see Section 2.2.2):

The step in Line 7 applies R12 to explicitly specify the security threat in which a malicious actor,
tagged with the ‘MALICIOUS’ keyword (R1), initiates an SQL injection attack through the two
user input fields ‘user name’ and ‘password’ of the login URL. The ‘SQLI’ keyword (R3) is used
to explicitly specify the type of security threat. The step in Line 8 specifies another threat in which
the malicious actor bypasses the input validation method, possibly implemented on the client side
(browser), and submits the login URL to the login server program directly (R13). Notice that in
place of the ‘SQLI’ keyword as the value of the parameter 〈attack〉 in R12, the keywords ‘XPATHI’,
‘XMLI’, ‘LDAPI’, ‘XSS’, ‘JSONI’, ‘BO’, ‘RCE’ described in R4-R10 can be used to explicitly elicit
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1 MISUSE CASE Get Unauthorized Access via SQLi
2 Precondition At least one client account has already been created in the system.
3 Primary Actor MALICIOUS user
4 Threats Log In
5 Assets client DATA
6 Basic Threat Flow
7 1. The MALICIOUS user PROVIDES SQLI VALUES IN the user name and

password fields of the login url.
8 2. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
9 3. The system builds a query with the values provided in the login url.
10 4. The system evaluates the query in the database.
11 5. The system VALIDATES THAT the query is successful.
12 6. The system SENDS the welcome message TO the MALICIOUS user.
13 Postcondition The MALICIOUS user accessed the client DATA without

authorization.
14 Specific Alternative Threat Flow
15 RFS 5
16 1. DO
17 2. The system SENDS the database error message DATA TO the MALICIOUS

user.
18 3. The MALICIOUS user EXPLOITS the database error message DATA from

the system.
19 4. The MALICIOUS user PROVIDES SQLI VALUES IN the user name and

password fields of the login url.
20 5. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
21 6. UNTIL the query is successful.
22 7. RESUME STEP 6.
23 Postcondition The MALICIOUS user accessed the client DATA without

authorization.
24 Bounded Alternative Flow
25 RFS SATF1 1-6
26 1. IF the maximum number of login attempts is reached THEN
27 2. The system SENDS the invalid login message TO the MALICIOUS user.
28 3. ABORT.
29 4. ENDIF.
30 Postcondition The MALICIOUS user did not access the client DATA.
31 Mitigation Scheme Secure Coding for Server-side Program
32
33 MISUSE CASE Expose Information via Insecure Data Storage
34 Precondition The mobile device, in which the system is installed, also has a

MALICIOUS app installed. The client has already used the system.
35 Primary Actor MALICIOUS app
36 Threats Get Fitter, Play Games, Do Social Activities
37 Assets user location DATA
38 Basic Threat Flow
39 1. The MALICIOUS app GETS the user location DATA FROM the log file

of the system.
40 2. The system SENDS the user location DATA TO the MALICIOUS app.
41 Postcondition The MALICIOUS app obtained the user location DATA.
42 Specific Alternative Flow
43 RFS 2
44 1. IF the user location DATA is encrypted THEN
45 2. ABORT.
46 3. ENDIF.
47 Postcondition The MALICIOUS app did not obtain the user location DATA.
48 Mitigation Scheme Secure Coding for Mobile Program

Figure 4.3. Misuse case specifications in RMCM
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Table 4.2. RMCM extensions

# Description Explanation

R1 MALICIOUS Referring to a malicious actor to enforce explicitly describing the actions/steps that involve a mali-
cious actor.

R2 DATA Referring to the security-sensitive or privacy data to enforce explicitly describing the actions/steps
that access or modify security-sensitive or privacy data.

R3 SQLI Referring to SQL injection attacks to enforce explicitly describing the type of security threat.
R4 XPATHI Referring to XPath injection attacks to enforce explicitly describing the type of security threat.
R5 XMLI Referring to XML injection attacks to enforce explicitly describing the type of security threat.
R6 LDAPI Referring to LDAP injection attacks to enforce explicitly describing the type of security threat.
R7 XSS Referring to cross site scripting attacks to enforce explicitly describing the type of security threat.
R8 JSONI Referring to JSON injection attacks to enforce explicitly describing the type of security threat.
R9 BO Referring to Buffer overflow attacks to enforce explicitly describing the type of security threat.
R10 RCE Referring to remote code execution attacks to enforce explicitly describing the type of security threat.
R11 GETS 〈data〉 FROM

〈location〉
Enforcing the explicit description of the security threats that leak data from the system (e.g., the
MALICIOUS app GETS credit card DATA FROM log files).

R12 PROVIDES 〈attack〉
VALUES IN
〈parameter〉

Enforcing the explicit description of the security threat that exploits injection vulnerabilities. 〈attack〉
is the parameter in which the injection attack type (listed in R3-R10) is to be specified explicitly (e.g.,
the MALICIOUS user PROVIDES SQLI VALUES IN name and password).

R13 BYPASSES 〈service-
request〉 REQUEST
TO 〈server-program〉

Enforcing the explicit description of the security threats that enable a malicious actor to bypass any
direct interaction with the client program and directly submit service requests to the server program
(e.g., the MALICIOUS app BYPASSES view users REQUEST TO viewInfo program).

R14 EXPLOITS 〈error-
message〉

Enforcing the explicit description of the security threat that exploits the information exposed in error
or exception messages. The exposed information enables a malicious actor to understand the system
better and conduct informed security attacks (e.g., the MALICIOUS user EXPLOITS exception
message from the system).

R15 SENDS PRIVI-
LEGED 〈permission〉
REQUEST TO
〈client-program〉

Enforcing the explicit description of the security threat that exploits insecure authorization schemes,
which allows a malicious app to request the mobile app to execute privileged functionalities (e.g.,
the MALICIOUS app SENDS PRIVILEGED phone call REQUEST TO the main activity program).

other types of code injection security threats. The step in Line 18 applies R14 to specify a security
threat that exploits the information exposed in error or exception messages, tagged with the keyword
‘DATA’ (R2). The step in Line 39 applies R11 to specify a security threat in which a malicious actor
attempts to access the user location data, tagged with the keyword ‘DATA’ (R2), locally stored in the
mobile device (specified by stating the location of the data: ‘log file of the system’ in the 〈location〉
parameter). Note that in the step in Line 12, the ‘welcome message’ is not tagged with the keyword
‘DATA’ because it is not security-sensitive and thus, not considered as an information asset.

Some of the RMCM extensions in Table 4.2 are based on the mobile security threats listed in
well accepted standards such as CWE [CWE, 2020s] and OWASP [OWASP, 2016], and in more
general threat modeling approaches such as STRIDE from Microsoft [Kohnfelder and Garg, 1999].
For instance, the security extension in R15 reflects permission re-delegation threats specific to mobile
apps; also local storage problem of mobile apps is covered by the extension in R11.

In the following, we discuss with examples how Challenge 2 (see Section 2.2.2) is addressed:

The ‘VALIDATES THAT’ keyword (Line 11), described in the original RUCM [Yue et al., 2013],
indicates a condition that must be true to take the next step, otherwise an alternative flow is taken. It
is one of the control flow structures we use for threat scenarios. In Fig. 4.3, the system proceeds to
Step 6 (Line 12) if the query is successful (Line 11).
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In the original RUCM template, there are three types of alternative flows: specific, bounded and
global. In RMCM, we employ these alternative flows to describe failure scenarios for security attacks.
A specific alternative flow always refers to and depends on a condition in a specific step of the basic
threat flow. A bounded alternative flow refers to more than one step in the basic flow (Lines 24-30)
while a global alternative flow refers to any step in the basic flow. For specific and bounded alternative
flows, the keyword RFS is used to refer to one or more reference flow steps (Line 25).

In the RMCM template (Table 4.1), we introduce Specific/Bounded/Global alternative threat flows
to describe alternative success scenarios and to distinguish them from failure scenarios for security
attacks. For instance, in the Get Unauthorized Access via SQLI in Fig. 4.3, the specific alternative
threat flow describes another success threat scenario (Lines 14-23) where the query is not validated
by the system in the basic threat scenario (Line 11). The bounded alternative flow (Lines 24-30)
describes the failure scenario for the attack given in this alternative threat flow (Lines 14-23).

Bounded and global alternative (threat) flows begin with the ‘IF ... THEN’ keyword, which is
described in the original RUCM template, to describe the conditions under which alternative (threat)
flows are taken (Line 26). Specific alternative flows do not necessarily begin with ‘IF .. THEN’ since
a guard condition can be indicated in its reference flow step (Line 12). In addition, to describe threat
scenarios, we also use other control flow structures — ‘DO ... UNTIL’ and ‘MEANWHILE’ — which
are described in the original RUCM template. For instance, in the Get Unauthorized Access via SQLI
misuse case in Fig. 4.3, the malicious user tries a list of user name and password tuples iteratively in
an attempt to log in the system to obtain privileges. By having such explicit loop structure (Lines 16
and 21), we are able to specify where the iteration starts and ends in the execution flow of the threat
scenario.

In RMCM, use case specifications are elicited according to the original RUCM template and
restriction rules [Yue et al., 2013]. Following [Sindre and Opdahl, 2005], security use cases in
RMCM specify the flow of events performed by the system to mitigate the attacks described in misuse
cases. Differently from the original RUCM template, RMCM security use cases include two addi-
tional fields, ‘Compliance’ and ‘Mitigate’, to specify the standard provisions that the security use case
should comply with and to specify the mitigated misuse case specifications (see Fig. 4.4).

1 SECURITY USE CASE Validate Website Inputs
2 Precondition The system has received some inputs.
3 Compliance ISO/IEC 27001:2013 clause A.9.4:System and application access

control.
4 Mitigate Get Unauthorized Access via SQLi, Expose Information via XSS,

Modify Information via XSS.
5 Basic Flow
6 1. The system sanitizes the inputs according to the input specification.
7 2. The system VALIDATES THAT the inputs are valid.
8 Postcondition The system has successfully validated the inputs.
9 Specific Alternative Flow
10 RFS 2
11 1. The system displays an error message.
12 2. ABORT.
13 Postcondition The system has shown the invalid characters in an error message.

Figure 4.4. A security use case specification
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Table 4.3. Mitigation template

Scheme Name The name of the mitigation scheme.

Brief Description A short description about the mitigation scheme.

Actors The actors who are responsible for reviewing and/or
implementing the mitigation tasks.

Mitigated Misuse
Cases

Mitigate relationships to the misuse case(s). It spec-
ifies the misuse case(s) mitigated by the mitigation
scheme.

Compliance Specifies the standard/applicable provision(s) that
this mitigation scheme provides compliance.

Mitigation Tasks Specifies the mitigation tasks.

Tasks(numbered) Mitigation Tasks

Fig. 4.4 shows a simplified security use case (only some fields are shown) for mitigating the threat
Get Unauthorized Access via SQLi. It provides compliance (Line 3) with a clause in the widely-used
security standard — ISO/IEC 27001:2013 Information Security Management Systems Requirements.

Even though the proposed templates are generic, our current security extensions (Table 4.2) focus
on the threats specific to multi-device software ecosystems including mobile and desktop devices,
as per the focus of our dissertation. For instance, RMCM has some mobile-specific extensions in
Table 4.2 while other extensions (e.g., SQLI in R3 in Table 4.2) are specific to database-centric Web
applications. However, our security requirements modeling method can a priori be adapted to other
types of systems. The proposed RMCM and mitigation templates in Table 4.1 and Table 4.3 are
generic enough to apply our security requirements modeling method to other application domains by
introducing further security extensions into Table 4.2. However, since we have only evaluated our
approach in the context of multi-device software ecosystems (see Section 4.5), we choose to remain
conservative in our conclusions.

4.3.3 Mitigation Schemes

To address Challenge 3 (see Section 2.2.2), RMCM provides the mitigation template given in Ta-
ble 4.3. The field ‘Mitigation Scheme’ in misuse case specifications refers to the scheme mitigating
misuse cases (Table 4.1). Mitigation schemes themselves are specified in a separate table, according
to the mitigation template, to facilitate reuse. Differently from security use cases specifying flow of
events mitigating a specific threat scenario, mitigation schemes provide the secure coding methods
adopted by the system, guidelines on how to educate users and other mechanisms to prevent various
security threats in general. As different security threats can be mitigated by applying standard secure
coding methods, such as those listed in OWASP [OWASP, 2016], once a mitigation scheme is speci-
fied, it can be reused or tailored as necessary for various security threats. The field ‘Mitigated Misuse
Cases’ in Table 4.3 lists such various security threats mitigated by a given scheme, while the field
‘Compliance’ lists the standard provisions that the mitigation scheme addresses.

Mitigation schemes have a different purpose than security use cases. While a security use case
describes the sequence of activities that should be performed to implement an application specific

40



4.3. Capturing Security Requirements

requirement, mitigation schemes aim to be more general and capture compliance with standards, reg-
ulations and guidelines. Although, in general, mitigation schemes complement security use cases, in
some situations these two specifications might be used to address the same security requirements. For
example, data encryption, in addition to be a mitigation scheme item (see Task Item 2 of the mitigation
scheme in Fig. 4.5), might be modelled as a security use case. The decision to model requirements
with mitigation schemes or security use cases is taken by the software engineer based on the char-
acteristics of the developed system, according to common practices. For example, a usual practice
is to adopt use cases to model significant actor-system interactions but not to model a functionality
exposed by third party services or software component interfaces (e.g., an API). According to this
practice, data encryption is unlikely to be modelled as a security use case in systems that implement
data encryption using standardized APIs.

Since mitigation schemes and security use cases are complementary, we have introduced the field
‘Compliance’ in both to provide precise traceability to specific clauses in standard provisions. To-
gether, these artifacts provide a means for stakeholders to demonstrate compliance with applicable
security standards and regulations. For instance, the mitigation scheme in Fig. 4.5 mitigates two mis-
use cases — Expose Information via Insecure Data Storage and Expose Information due to Insecure
Authentication. It also supports compliance with some of the clauses in ISO/IEC 27001:2013. On our
website [Mai, 2017], we give two additional mitigation schemes which are used to mitigate various
security threats for EDLAH2.

Scheme Name Secure Coding for Mobile Program.

Brief Description This mitigation scheme mitigates serious and com-
mon security threats for mobile apps.

Actors Software Developer, Security Engineer.

Mitigated Misuse
Cases

Expose Information via Insecure Data Storage, Ex-
pose Information due to Insecure Authentication.

Compliance ISO/IEC 27001:2013 clause A.6.1.5:Information
security in project management, clause
A.9.4:System & application access control,
clause A.10.1:Cryptographic controls.

Mitigation Tasks 1 OBFUSCATE all apk files using an Android apk
obfuscator.

2 ENCRYPT sensitive data stored in mobile device,
such as SQLite database, cache and log files, and
SD card.

3 Apply root detection check. If jailbreak is detected,
the system warns the client of potential privacy
data leakage.

4 Periodically clear caching data automatically.
5 Do not grant files world readable or writable per-

missions.
6 Perform code integrity violation check.
7 Educate users not to download apps from unofficial

stores.

Figure 4.5. A sample mitigation scheme

One may argue that mitigation schemes seem to be no more than best secure coding practices with
repetitions. We remark that the mitigation schemes precisely specify the actual practices adopted by
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the system (because not all of the security standards are applicable in practice for a specific system).
Hence, they provide precise traceability to specific clauses in standard provisions for stakeholders to
demonstrate compliance. In addition, mitigation schemes provide guidelines on how to educate users.
As they are reusable for different security threats, repetitions would be minimal.

4.4 Tool Support
We have implemented a tool, RMCM-V (Restricted Misuse Case Modeling-Verifier), for checking
the consistency between the misuse case diagram and the specifications, and the compliance of the
specifications with the RMCM template. RMCM-V reports inconsistencies such as a misuse case
diagram missing a threaten or mitigate relationship in specifications. Section 4.4.1 describes the
layered architecture of the tool. Section 4.4.2 presents the tool features with some screenshots. For
more details and accessing the tool executables, see: https://sntsvv.github.io/RMCM/.

4.4.1 Tool Architecture

Fig. 4.6 shows the architecture of the tool. It consists of three layers: (i) the User Interface (UI) layer,
(ii) the Application layer, and (iii) the Data layer.
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User Interface (UI) Layer. This layer supports the activities of eliciting security and (mis)use
cases, and mitigation schemes (see Fig. 4.1). We employ IBM Doors [IBM Doors, 2017] for elic-
iting security and (mis)use case specifications and mitigation schemes according to the RUCM and
RMCM templates and their restriction rules. We employ Papyrus [Papyrus, 2017] for misuse case
diagrams. Sindre and Opdahl [Sindre and Opdahl, 2005] proposed a metamodel of the basic misuse
case concepts and their relation to the UML metamodel. We adopted and implemented their proposed
metamodel as a UML profile in Papyrus so that we can use the Papyrus model editor for drawing
misuse case diagrams.

Application Layer. This layer supports the main activities of our modeling method in Fig. 4.1:
checking conformance for diagram and specifications and checking conformance for mitigation schemes.
It contains three main components implemented in Java: Mediator, Diagram-Specification Consis-
tency Checker, and Specification-Template Conformance Checker. To access these Application Layer
components through the UI Layer, we implemented an IBM Doors plugin.

The Mediator is a coordinator that manages the other two components. The Specification-Template
Conformance Checker employs NLP to check whether the specifications and mitigation schemes
comply with the RUCM and RMCM templates and their restriction rules. NLP is also used by the
Diagram-Specification Consistency Checker to check the consistency between the misuse case dia-
gram and specifications.

To support NLP, inspired by previous work in requirements engineering (i.e., [Arora et al., 2015a,
Hajri et al., 2015, Hajri et al., 2018b, Arora et al., 2015b, Arora et al., 2015c]), we employ a regular ex-
pression engine, called JAPE [H. Cunningham et al, 2017], in the GATE workbench [GAT, 2017], an
open-source NLP framework. We implemented the restriction rules in JAPE. First, the specifications
are split into tokens. Second, Part-Of-Speech (POS) tags (i.e., verb, noun, and pronoun) are assigned
to each token. By using the restriction rules implemented in JAPE, blocks of tokens are tagged to
distinguish RUCM/RMCM steps (e.g., actor to system interaction, malicious actor to system interac-
tion, and internal actions), types of flows (i.e., threat-specific, alternative, and global), and mitigation
scheme tasks. The NLP output contains the annotated use case steps and mitigation scheme tasks.
The Diagram-Specification Consistency Checker and Specification-Template Conformance Checker
process these annotations with the misuse case diagram to generate the list of inconsistencies among
artifacts.

Data Layer. The specifications and the mitigation schemes are stored as native IBM Doors format.
The misuse case diagram is stored using the UML profile mechanism.

4.4.2 Tool Features

We describe the most important features of our tool: managing RMCM artifacts, checking the confor-
mance of RMCM specifications with the RMCM template, checking the consistency of the misuse case
diagram and the RMCM specifications, and checking the conformance of mitigation schemes with the
mitigation template. These features support the steps of the modeling process given in Fig. 4.1.
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Table 4.4. Some of the conformance checking rules for misuse case specifications
Modeling Element Conformance Rules

Misuse Case Steps in
Threat Flows

1 A misuse case step in a threat flow should begin with a step head containing
an ordinal number and a dot punctuation.

2 Each misuse case step should contain a structure given in one of the
RMCM extensions rules R11, R12, R13, R14 and R15 in Table 4.2 or a struc-
ture given in the original RUCM [Yue et al., 2013].

Specific Alternative
Threat Flow

1 A specific alternative threat flow should have the header ‘Specific Alternative
Threat Flow’.

2 A specific alternative threat flow should begin with the ‘RFS’ keyword which
refers to a misuse case step in the basic threat flow or in another alternative
threat flow.

3 A specific alternative threat flow should have either an ‘ABORT’ step or a
‘RESUME’ step.

4 A specific alternative threat flow should end with a post condition.

Bounded Alternative
Threat Flow

1 A bounded alternative threat flow should have the header ‘Bounded Alterna-
tive Threat Flow’.

2 A bounded alternative threat flow should begin with the ‘RFS’ keyword which
refers to a range of misuse case steps in the basic threat flow or in another
alternative threat flow.

3 The step after the ‘RFS’ step in a bounded alternative threat flow should in-
clude the ‘IF...THEN’ keyword.

4 The last step of a bounded alternative threat flow should have the ‘ENDIF’
keyword.

5 The step before the last step of a bounded alternative threat flow should be an
‘ABORT’ step or a ‘RESUME’ step.

6 A bounded alternative threat flow should end with a post condition.

GETS 〈data〉 FROM
〈location〉

1 The subject of the sentence should start with the ‘MALICIOUS’ keyword fol-
lowed by the ‘GETS’ and ‘FROM’ keywords, while any string can be used to
represent 〈data〉.

PROVIDES 〈attack〉
VALUES IN
〈parameter〉

1 The subject of the sentence should start with ‘MALICIOUS’ keyword fol-
lowed by the ‘PROVIDES’ and ‘VALUE IN’ keywords, while any string can
be used to represent 〈attack〉 and 〈parameter〉.

BYPASSES 〈req.〉
REQUEST TO
〈server-program〉

1 The subject of the sentence should start with the ‘MALICIOUS’ keyword fol-
lowed by the ‘BYPASSES’ and ‘REQUEST TO’ keywords, while any string
can be used to represent 〈req.〉 and 〈server-program〉.

Managing RMCM artifacts. This feature supports Step 1, Elicit Requirements as Use Cases,
Security Use Cases and Misuse Cases, and Step 3, Elicit Mitigation Schemes for Misuse Cases, in
Fig. 4.1. The analyst can create, update, and delete the misuse case diagram, the corresponding
specifications, and the mitigation schemes by using the selected modeling tools (i.e., IBM Doors and
Papyrus) adopted in RMCM-V.

Checking the conformance of RMCM specifications with the RMCM template. The confor-
mance of use case, misuse case and security use case specifications with the RMCM template and
extensions needs to be ensured in Step 2, Check Conformance for Diagram and Specifications, in
Fig. 4.1. Our tool automatically checks (1) if the use case and security use case specifications con-
form to the RUCM template [Yue et al., 2013] and (2) if the misuse case specifications conform to
the RMCM template and the security extensions in Table 4.1 and in Table 4.2. Table 4.4 presents
some of the conformance rules for misuse case specifications. For instance, a specific alternative
threat flow should have the header ‘Specific Alternative Threat Flow’ followed by the ‘RFS’ keyword
which refers to a misuse case step in the basic threat flow or in another alternative flow. To implement
the conformance rules, RMCM-V leverages the information provided by the NLP framework; for
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example, in the case of the rule ’GETS 〈data〉 FROM 〈location〉’, NLP enables RMCM-V to
identify the noun phrase that corresponds with the subject of the sentence appearing in the use case
step. NLP is required also to verify writing rules inherited from RUCM; for example, to foster clarity
in requirements, RUCM requires that only the present tense be used and that adverbs be avoided.
Both verb tenses and adverbs are determined using NLP.

Figure 4.7. A conformance checking result reported in RMCM-V user interface

Fig. 4.7 shows a sample result of the conformance checking of the use case and misuse case
specifications for EDLAH2 in Section 4.3. Four types of inconsistencies are reported in Fig. 4.7: (i)
the ‘REQUEST’ keyword of R13 in Table 4.2 is missing in the misuse case specification, (ii) there is
no ‘AUTHENTICATE-BYPASS’ keyword which can be used with the ‘PROVIDES’ keyword of R12,
(iii) the ‘MALICIOUS’ keyword is missing before the ‘GETS’ and ‘FROM’ keywords of R11, and
(iv) the ‘ABORT/RESUME’ step is missing in one of specific alternative threat flows in the misuse
case specification. By clicking the links in the user interface, the user can access the non-conformant
parts of the RMCM specifications (see ‘id’ links in Fig. 4.7).

Checking the consistency of the misuse case diagram and the RMCM specifications. The
consistency of the misuse case diagram and the corresponding specifications needs to be ensured as
part of Step 2, Check Conformance for Diagram and Specifications, in Fig. 4.1. Table 4.5 presents
some of the consistency rules for misuse case diagrams and RMCM specifications. For instance,
for a misuse case threatening a use case in the misuse case diagram, the corresponding misuse case
specification should have the threaten relation in its ‘Threats’ field (e.g., Lines 4 and 36 in Fig. 4.3).
Fig. 4.8 presents an example output of the consistency checking of the misuse use case diagram and
the corresponding specifications for EDLAH2 in Section 4.3.

Four types of inconsistencies are reported in Fig. 4.8: (i) a misuse case in the specifications does
not exist in the misuse case diagram, (ii) the ‘Threaten’ relationship in the misuse case diagram does
not exist in the specifications, (iii) the ‘Threaten’ relationship in the specifications does not exist in
the misuse case diagram, and (iv) the ‘Mitigate’ relationship in the misuse case diagram does not exist
in the specifications.

Checking the conformance of mitigation schemes with the mitigation template. The confor-
mance of the mitigation schemes with the mitigation template needs to be ensured in Step 4, Check
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Table 4.5. Some of the conformance checking rules for misuse case diagrams and specifications
Modeling Element Consistency Checking Rules

Misuse Case Name 1 A misuse case specification should have a name.
2 A misuse case in the misuse case diagram should have a name.
3 Each misuse case specification name should match the name of the corresponding misuse case

in the misuse case diagram.
4 Each misuse case name in the misuse case diagram should match the name of the correspond-

ing misuse case specification.

Associations between
Misusers and Misuse

1 A misuser should have a name with the ‘MALICIOUS’ keyword in the misuse case diagram
and in the misuse case specifications.

Cases 2 A misuser in the misuse case diagram should be described as Primary Actor or Secondary
Actor in the corresponding misuse case specification.

3 In the misuse case diagram, the relation between a misuse case and its misuser should be
described using the association relationship.

4 Each relation of a misuser and a misuse case in the misuse case specification should be given
in the misuse case diagram, and vice versa.

The ‘Threaten’ Rela-
tionship

1 For a misuse case specification with the ‘Threats’ field referring to a use case specification,
there should be a ‘Threaten’ relationship from the corresponding misuse case to the corre-
sponding use case in the misuse case diagram.

2 For a misuse case with a ‘Threaten’ relationship to a use case in the misuse case diagram,
the corresponding missue case specification should have the ‘Threats’ field referring to the
corresponding use case specification.

The ‘Mitigate’ Rela-
tionship

1 For a security use case specification with the ‘Mitigate’ field referring to a misuse case speci-
fication, there should be a ‘Mitigate’ relationship from the corresponding security use case to
the corresponding misuse case in the misuse case diagram.

2 For a security use case with a ‘Mitigate’ relationship to a misuse case in the misuse case
diagram, the corresponding security use case specification should have the ‘Mitigate’ field
referring to the corresponding misuse case specification.

Figure 4.8. RMCM-V user interface for reporting inconsistencies

Conformance for Mitigation Schemes, in Fig. 4.1. To do so, we derived some conformance checking
rules from the mitigation template in Table 4.3. RMCM-V provides a conformance checking report
identical to Fig. 4.7.

4.5 Evaluation
The goal of our evaluation is to assess, in an industrial context and on a case study, how our proposed
modeling method RMCM and our tool RMCM-V can improve the practice of eliciting and analyzing
security requirements, and how well they address the challenges that we identified in Section 2.2.2.
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To this end, we first formulate four research questions:

• RQ1: Are the RMCM extensions to the RUCM template expressive enough to precisely and
systematically model security threats?

• RQ2: Are the control flow structures of RMCM expressive enough to elicit the execution flow
of threat scenarios in a structured form?

• RQ3: Does RMCM provide a structured way for stakeholders to specify guidance for mitigating
common security threats?

• RQ4: Does RMCM-V provide useful automated assistance to correctly apply RMCM?

In light of the research questions given above, we evaluate our security requirements modeling
method, RMCM, via reporting on (i) an industrial case study, i.e., EDLAH2, to demonstrate the
feasibility of RMCM for a representative system (Section 4.5.1) and (ii) the results of a questionnaire
survey along with discussions with EDLAH2 engineers, which aim at investigating how the approach
is perceived to address the challenges listed in Section 2.2.2 and, furthermore, at gathering qualitative
insights into the benefits and challenges of applying the method in an industrial setting (Section 4.5.2).

4.5.1 Industrial Case Study

We report our findings about the feasibility of our modeling method and its tool support in an indus-
trial context. In order to experiment with RMCM in an industrial project, we applied it to the security
requirements of the EDLAH2 project, which has been introduced in Section 2.1.

Table 4.6. The size of the RMCM artifacts in EDLAH2

No. Relations Alt.
flows

Alt.
threat
flows

Steps Malicious
steps

Use cases 9 15 26 NA 151 NA
Security use cases 4 28 7 NA 29 NA
Mitigation schemes 3 20 NA NA NA NA
Misuse cases 17 20 25 9 216 26

To model the security requirements of EDLAH2 according to RMCM, we first examined initial
EDLAH2 documentation consisting of a use case diagram and specifications, provided by the soft-
ware engineers involved in the project and augmented with informal textual notes about security.
Based on these artefacts, we worked together with EDLAH2 engineers to build and iteratively refine
our models. EDLAH2 involves three different development teams for a total of ten software engi-
neers. All the engineers working on EDLAH2 hold a master degree and some of them have more than
ten years of software development experience. Since every team is responsible for different software
components, the definition and refinement of the models has been performed independently by each
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Table 4.7. Number of Occurrences of the RMCM Restrictions in EDLAH2

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
142 120 4 0 0 0 9 2 2 2 2 15 1 6 2

team to mentor them to ensure that the methodology was applied properly. The training activity has
been performed both during face-to-face project meetings and by sharing documents and tutorials in
emails and online project meetings. Table 4.6 provides the size of the resulting RMCM artifacts.

In Table 4.6, the column ‘No.’ shows the numbers of use cases, security use cases, mitigation
schemes, and misuse cases we modeled. The column ‘Relations’ shows the numbers of include,
mitigate, and threaten relations among those artifacts. More precisely, in the case of the first row, the
column ’Relations’ indicates the number of security use cases included by functional use cases, in
the case of the second and third rows, the column ’Relations’ indicates the number of misuse cases
mitigated by security use cases and mitigation schemes, while in the case of the fourth row the column
’Relations’ indicates the number of use cases threatened by misuse cases. The columns ‘Alt. flows’,
‘Alt. threat flows’, ‘Steps’, ‘Malicious steps’ show the numbers of alternative flows, alternative threat
flows, steps, and malicious steps, respectively. ‘Malicious steps’ denotes the steps in misuse case
specifications that correspond to interactions between malicious actors and the system. ‘NA’ denotes
“not applicable”. In the following paragraphs, we rely on the data reported in Table 4.6 to respond to
the research questions above.

RQ1

To support eliciting security threats in an explicit, precise form, RMCM includes two main exten-
sions to RUCM, which are the identification of threaten relationships in misuse case specifications,
and the adoption of specific keywords to capture common security threats.

To respond to RQ1, it is thus necessary to determine whether these modeling solutions (i.e., cap-
turing threaten relationships and using security keywords) are useful, in practice, to precisely model
security requirements. As an indirect measure of usefulness, we look at the number of occurrences of
the threaten relationships and the security keywords in the misuse specifications of EDLAH2.

As shown in Table 4.6, we elicited 17 misuse cases threatening nine use cases, with a total of
20 threaten relationships among them. These numbers show that several threats tend to be relevant
for each use case. This makes security requirements engineering rather complex, especially when
involving many stakeholders, and it is therefore highly important to be systematic in identifying and
specifying security requirements.

As for restriction rules, instead, we report in Table 4.7 the number of times each restriction rule
(R1-R15 in Table 4.2) is applied when eliciting misuse cases. As shown in Table 4.7, we applied
almost all the proposed restriction rules to systematically model the security threats of EDLAH2.
Only three restriction rules (R4, R5, R6) were not used since EDLAH2 uses an SQL database and
they correspond to security threats targeting XML and LDAP databases.
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Table 4.8. Number of Occurrences of the RMCM Control Flow Structures in EDLAH2
Misuse
Cases

Security
Use Cases

Use
Cases

Total

DO...UNTIL 10 0 0 10
IF...THEN 15 0 8 23
VALIDATES THAT 18 8 18 44
MEANWHILE 0 0 0 0
RESUME STEP 12 0 11 23
ABORT 21 8 15 44

Furthermore, it is interesting to note that some of the keywords introduced by RMCM to capture
common security threats were not covered in the initial EDLAH2 documentation. For instance, the
extensions helped us model that the misuse case getting unauthorized access can be performed by
means of an SQLI injection attack (R3 and R12) while the misuse case exposing information from
mobile exploits insecure data storage (R2 and R11), which was not previously documented. Capturing
specific threats is useful since it helps engineers in identifying mitigation mechanisms to adopt.

Finally, RMCM keywords enable the precise identification of malicious steps, i.e., misuse case
steps containing information about the attack surfaces. Typical attack surfaces include parameters,
URLs, files, and programs. In total, we have identified 216 steps belonging to misuse cases, and
among these, we have identified 26 malicious steps. The identification of malicious steps is important
because it enables engineers to easily identify attack surfaces and the mechanisms to put in place in
order to prevent these attacks.

RQ2

To respond to RQ2, we analyze the frequency of adoption of control flow structures in the misuse
case specifications of EDLAH2. More precisely, we focus on the presence of alternative threat flows,
which capture the conditions and the flow of events that may still lead to successful attacks when
the attacks specified in the basic threat flows fail, and alternative flows, which capture the conditions
under which a potential attack does not harm the system. In addition, we report also on the frequency
of the control flow keywords appearing in the specifications.

Table 4.6 shows that we explicitly captured nine alternative threat flows (column ‘alt. threat
flows’), and 25 alternative flows (column ‘alt. flows’), thus suggesting that a security threat can
materialize through multiple threat scenarios which all need to be identified and carefully analyzed.
It is therefore important to have a structured and precise mechanism to express such scenarios.

Table 4.8 reports the number of occurrences of the RMCM Control Flow Structures in the ED-
LAH2 specifications. As shown in Table 4.8, we made frequent use of all the RMCM control flow
structures in misuse cases, except the ‘MEANWHILE’ structure for concurrency sentences. This
happens because in EDLAH2 we did not have to model threat scenarios in which multiple activities
are executed in parallel (e.g., because the presence of two malicious users is required to put in place
a specific attack). More generally, misuse cases contain the same set of keywords appearing in use
cases, with the exception of the keyword ‘DO...UNTIL’ which appears in misuse cases only. This
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Table 4.9. Results from the analysis of non-conformant (mis)use case specifications in EDLAH2
Non-conformance
Type

Explanation Example

Unknown Step A flow step does not follow the re-
stricted rules for (mis)use case steps,
i.e. actor-to-actor interactions, wrong
keywords, wrong structures.

- RESUME step 3 (The STEP keyword should be upper-
case)
- The system PROVIDES CLIENT-SENSITIVE-INFO IN
the parameters sent TO the game applications (The structure
of the sentence should follow the rule R12 in the RMCM
extensions)

Using Adverb in a
Step

An adverb is used in a flow step. This
violates the rule R11 in the original
RUCM [Yue et al., 2013].

IF the user name in the entered account information is al-
ready in the system THEN (The adverb ‘already’ appears in
the sentence).

More than One Action
in a Step

There are two actions in a flow step
sentence. This violates the rule R4 in
the original RUCM [Yue et al., 2013].

The system REQUESTS the user name and password
FROM the MALICIOUS user (This sentence should be split
in two steps)

Wrong Structure of
Specific Alternative
Flows

A specific alternative threat flow uses
RFS in a wrong way at the beginning
of the flow, or the last step of the flow
is not a valid Abort or Resume step.

- RFS SAF 2 (It should be written in the format of ‘RFS
SAF 1-2’. In this case, SAF 1 points out the first specific
alternative flow)
- There are three specific alternative threat flows using the
wrong keyword ‘RESUME STEP’.
- There are two specific alternative flows ending without
‘ABORT’ or ‘RESUME STEP’.

keyword is typically used to describe iterative attacks in misuse cases (e.g., malicious users trying to
log into the system by trying a list of available usernames). In the use case specifications of EDLAH2,
instead, we do not describe iterative behaviors of valid system users.

RQ3

To respond to RQ3, we focus on security use cases and mitigation schemes. Table 4.6 shows that
we elicited four security use cases and three mitigation schemes. They typically mitigate more than
one misuse case since there are 28 mitigate relations between security use cases and misuse cases and
20 mitigate relations between mitigation schemes and misuse cases (column ‘relations’). These num-
bers show that both security use cases and mitigation schemes can be reused across multiple misuse
cases and, therefore, they are useful and reusable artifacts that should be captured independently from
the misuse cases.

RQ4

To respond to RQ4, we applied RMCM-V to check the conformance of the first version of the
EDLAH2 misuse case specifications with the RMCM template, and to check the consistency of the
misuse case diagram and the (mis)use case specifications in EDLAH2. RMCM-V reported 29 warn-
ings matching four non-conformance types when analyzing the conformance of the EDLAH2 speci-
fications with the RMCM template (see Table 4.9).

Two warnings among the twenty nine warnings in the conformance checking results (2 / 29 = 6%)
were related to the wrong use of the security keywords in the RMCM extensions in Table 4.2. All
other warnings were about the violation of the rules in the original RUCM template [Yue et al., 2013],
e.g., more than one action being described in a single step.
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Table 4.10. Results from the analysis of the inconsistent misuse case diagram and specifications in EDLAH2
Inconsistency Type Explanation Example

Lack of Security Use
Cases

A security use case defined in the
RMCM specifications does not exist
in the misuse case diagram.

The Security Use Case ‘Validate Mobile Inputs’ is given in
the specification, but it does not appear in the diagram.

Missing ‘Include’ Re-
lations

Some ‘Include’ relations between use
cases and security use cases in the
misuse case diagram do not exist in
the specifications.

Nine ‘Include’ relations in the misuse case diagram do not
appear in the specifications. For instance, in the misuse case
diagram, the use case ‘Get Fitter’ includes the security use
case ‘Provide Privacy Control Settings’, but there is no re-
lation between them in the specifications.

Missing ‘Threaten’
Relations

Some ‘Threaten’ relations between
misuse cases and use cases in the mis-
use case diagram do not exist in the
specifications, and vice versa.

The ‘Threaten’ relation between the misuse case ‘Get Unau-
thorized Access via SQLi’ and the use case ‘Login’ in the
misuse case diagram does not exist in the specifications.

Missing ‘Mitigate’
Relations

Some ‘Mitigate’ relations between se-
curity use cases and misuse cases in
the specifications do not exist in the
misuse case diagram.

The ‘Mitigate’ relation between the security use case ‘Pro-
vide Privacy Control Settings’ and the misuse case ‘Leak
Privacy Data from Play Games due to Unintentional Data
Flow’ in the specifications does not exist in the misuse case
diagram.

Missing Actor-
(Mis)use Case Re-
lations

Some Actor - (Mis)use case relations
in the misuse case diagram do not
exist in the specifications, and vice
versa.

The relation between the use case ‘Create Account’ and the
actor ‘Manager’ in the misuse case diagram does not exist
in the corresponding specification.

RMCM-V reported 17 inconsistencies between the misuse case diagram and the (mis)use case
specifications (see Table 4.10). Four of them (4 / 17 = 23%) are related to the misuse cases. All other
inconsistencies are about missing use cases, missing ‘Include’ relations or missing actors in use cases.

We, together with EDLAH2 engineers, were able to correct, in one iteration, all the issues reported
in Table 4.9 and in Table 4.10. Our main observation was that it was easy, after some training, for the
EDLAH2 engineers to correctly use our security extensions. Additionally, we manually inspected the
specifications and verified that RMCM-V was able to identify all the inconsistencies and parts of the
misuse case specifications that did not conform with the RMCM template.

4.5.2 Questionnaire Study and Discussions with the Engineers

The questionnaire study is described and reported according to the template provided by Oppen-
heim [Oppenheim, 2005]. To qualitatively evaluate the RMCM output in light of the four research
questions presented at the beginning of this section, we had semi-structured interviews with four en-
gineers holding various roles in the EDLAH2 consortium (i.e., project manager, software engineer,
and game architect). All participants have substantial software development experience, ranging from
three to 28 years. All of them had experiences with use case driven development and modeling. The
interview included a presentation illustrating the RMCM steps, a tool demo, and examples from ED-
LAH2. The participants of the questionnaire study were also involved in the case study reported in
Section 4.5.1. To perform the case study, we, together with the participants, had multiple face-to-face
project meetings. We had shared the documents and online tutorials with them. To confirm the misuse
case models of EDLAH2, we had many technical meetings with the EDLAH2 engineers, including
the participants of the questionnaire.

51



Chapter 4. Restricted Misuse Case Modeling

Table 4.11. Questionnaire for the Evaluation of RMCM with the average of the votes.
Question Result

Misuse Case Diagrams
1. The diagram is simple enough to enable communication between engineers and stakeholders. 2.50
2. If a misuse case diagram like the one we presented were available to you, would you use it to help you capture or
understand security threats and mitigations?

3.00

3. The notation provides enough expressiveness to conveniently capture the security threats and mitigations in your
projects

3.00

Misuse Case Specifications for Capturing Security Threats.
4. Misuse case specifications are simple enough to enable communication between engineers and stakeholders. 2.75
5. If misuse case specifications like the ones we presented were available to you, would you use those specifications to
help you capture or understand security threats?

2.75

6. Security threats captured in the misuse case diagram are adequately reflected in the specifications. 3.50
Mitigation Schemes for Capturing Secure Coding Methods.

7. Mitigation schemes are simple enough to enable communication between analysts and programmers. 2.25
8. If mitigation schemes like the ones we presented were available to you, would you use those schemes to help you
capture or understand secure coding methods for mitigating security threats?

2.50

Restricted Misuse Case Modeling Method for Security and Privacy
9. The steps in our modeling method are easy to follow. 3.50
10. The effort required to learn how to apply our method is reasonable. 2.50
11. Would you see value in adopting the presented method for capturing security threats and mitigations? 2.75
12. Does the presented method provide useful assistance for easing the communication between engineers and stake-
holders?

2.25

13. Does the presented method provide useful assistance for capturing and analyzing security threats compared to the
current modeling practice in your projects?

2.50

14. Do you think that the presented tool provides useful assistance for minimising the inconsistencies in misuse case
diagrams and specifications?

2.75

Score for answers to interrogative questions: 4 - very probably, 3 - probably, 2 - probably not, 1 - surely not. Score for answers to
statements: 4 - strongly agree, 3 - agree, 2 - disagree, 1 - strongly disagree.

To capture the perception of the participants regarding the potential benefits of RMCM, and as-
sess the extent to which it addresses the targeted challenges, we handed out a questionnaire [Edl,
2017] including questions to be answered according to a Likert scale [Oppenheim, 2005], along with
open, written comments. The questionnaire was structured for the participants to assess RMCM in
terms of adoption effort, expressiveness, and comparison with current practice. Table 4.11 shows the
questions appearing in the questionnaire (divided by topic), along with the average of the scores for
each answer (column result). The Likert scale answers provided in the questionnaire were ‘strongly
agree’, ’agree’, ‘disagree’, and ‘strongly disagree’ for statement sentences in the questionnaire (e.g.,
question one in Table 4.11) while ‘very probably’, ‘probably’, ‘probably not’, and ‘surely not’ were
for interrogative sentences (e.g., question 2). A discussion of the questionnaire results in light of the
four research questions driving the study follows.

RQ1

The answers given to the first six questions in Table 4.11 indicate that the RMCM extensions
provide enough expressiveness to conveniently capture security requirements in EDLAH2. More pre-
cisely, the answers to questions one and four indicate that misuse case diagrams and misuse case
specifications properly support the communication between stakeholders. According to the answers
to questions two and five, the participants would adopt misuse case diagrams and misuse case spec-
ifications in their daily practice. The answers to questions three and six indicate that the notation of
misuse case diagrams and the use case specification template enable engineers to properly capture se-
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curity requirements. The answers to questions 11, 12 and 13 further conclude that RMCM is valuable
to capture security requirements.

RQ2

In our questionnaire, we did not include questions explicitly referring to control flow structures
because they are perceived by engineers as a feature of the approach, which has been evaluated as
being expressive enough to conveniently capture security requirements (question six in Table 4.11).

RQ3

The answers given to questions seven and eight let us respond to RQ3. The answers given to
these two questions are inconsistent, with two ‘agree’, one ‘disagree’, and one ‘strongly disagree’
for question seven (average score 2.25), and two ‘probably’ and two ‘probably not’ for question
eight (average score 2.5). Therefore, we cannot draw clear conclusions from the data. However,
we observed that the responses given by the participants are linked to their software development
expertise, with the less experienced software engineers providing the more negative answers.

In general, participants find mitigation schemes less useful than misuse case specifications (the
scores of the first six questions are higher). This may be due to less experienced engineers being
more reluctant to document their development choices (i.e., the mitigation schemes adopted). In our
context, the absence of such documentation makes it difficult to demonstrate compliance with the
security standards and regulations.

RQ4

The answers given to question 14 indicate that RMCM-V provides useful assistance for minimiz-
ing inconsistencies in the RMCM artifacts of EDLAH2.

The questionnaire study had open, written comments under each section, in which the participants
could state their opinions in a few sentences about how RMCM addresses the challenges reported in
Section 2.2.2.

Based on the initial comments, we further discussed three aspects with the participants: industrial
adoption of the approach, additional extensions in RMCM, and degree of automation.

4.5.2.1 Industrial Adoption of the Approach

Given the current practice in EDLAH2, like in many other environments, there is no systematic way
to capture security requirements in use case models. Even though the effort required to apply our
modeling approach was considered to be reasonable by EDLAH2 engineers (questions nine and ten
in Table 4.11), they stated that it may be a challenge to convince engineers to engage in this additional
modeling effort. The costs and benefits of such an activity should be further evaluated to help with
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adoption. This is, however, a common and general challenge when introducing new practices in
software development. For example, in the case of EDLAH2, the proposed methodology enabled
the identification of effective test cases capable of identifying 14 vulnerabilities in the developed
system. The test cases were derived according to traditional coverage approaches [Jacobson, 2004]
that aims to generate a test case for each scenario described in the security use case and misuse case
specifications.

4.5.2.2 Additional Extensions in RMCM

The security extensions in RMCM cover various security concerns to be captured in use case models.
However, EDLAH2 engineers stated that, due to rapidly changing software and hardware technology,
new types of security threats will likely need to be covered with further security extensions. In a
way, such extensions can be treated as a knowledge repository of potential vulnerabilities and their
associated mitigation schemes. Such repository has to be regularly updated and is expected to help
creating awareness of security threats and solutions across an organization.

4.5.2.3 Degree of Automation

RMCM consists of various automated security requirements modeling and specification activities in
the context of use case-driven development. Though modeling security requirements in misuse case
models is mostly manual, RMCM-V provides automatic consistency checking for these models and
feedback to the analyst to help them refine and correct the models. EDLAH2 engineers considered
the automated consistency checking of RMCM artifacts to be highly valuable.

4.5.3 Threats to Validity

The main threat to the validity of our evaluation is the generalizability of the conclusions. To mitigate
the threat, we applied RMCM to a representative system that includes nontrivial use cases in an
application domain entailing numerous and varied security threats. Although we had a relatively low
number of respondents in our interviews, we selected the respondents to hold various roles and with
substantial industry experience. To limit threats to the internal validity of the case study, we had many
meetings with the EDLAH2 engineers to verify the correctness and completeness of our models.

4.6 Conclusion
In this chapter, we presented a use case-driven security requirements modeling method, called RMCM,
for documenting the security requirements of Web-oriented software systems in a structured and an-
alyzable form. Our main motivation is to enable security requirements modeling by relying on com-
monly used artifacts in use-case driven development and by adding a limited number of extensions,
thus achieving widespread applicability.
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RMCM builds on and integrates existing work and is supported by a tool employing NLP for
checking the consistency of artifacts and compliance to the RMCM templates. The key characteristic
of our method is that it captures threat scenarios and mitigation schemes in an explicit and structured
form, thus enabling both automated analysis of threat scenarios, e.g., consistency and conformance
checking, and reuse of mitigation schemes.

Initial results from structured interviews with experienced engineers suggest that RMCM is pre-
cise and practical to capture the security requirements of Web-oriented software systems in industrial
settings.

In addition to supporting more precise and complete security requirements, RMCM enables the
automated generation of test cases for requirements-driven security testing (see Chapter 5). Our ulti-
mate objective is to achieve adequate coverage of the specified security requirements, with traceability
information between security requirements and generated test cases.
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Chapter 5

Misuse Case Programming

To facilitate communication among stakeholders, software security requirements are typically written
in natural language and capture both positive requirements (i.e., what the system is supposed to do to
ensure security) and negative requirements (i.e., undesirable behavior undermining security).

In this chapter, we tackle the problem of automatically generating executable security test cases
from security requirements in natural language (NL). More precisely, since existing approaches for
the generation of test cases from NL requirements verify only positive requirements, we focus on the
problem of generating test cases from negative requirements.

We propose, apply and assess Misuse Case Programming (MCP), an approach that automatically
generates security test cases from misuse case specifications (i.e., use case specifications capturing
the behavior of malicious users). MCP relies on natural language processing techniques to extract
the concepts (e.g., inputs and activities) appearing in requirements specifications and generates exe-
cutable test cases by matching the extracted concepts to the members of a provided test driver API.
The evaluation performed with the EDLAH2 case study system provides evidence of the feasibility
and benefits of the approach.

5.1 Introduction
Security testing is driven by requirements [Meucci and Muller, 2014] and can be divided in two
categories [Tian-yang et al., 2010, Felderer et al., 2016a]: (1) security functional testing validating
whether the specified security properties are implemented correctly, and (2) security vulnerability
testing addressing the identification of system vulnerabilities. Although several security testing ap-
proaches have been proposed [Felderer et al., 2016a], the automated generation of security test cases
from security requirements remains limited in industrial settings. Security test cases are manually
crafted by engineers who rely on automated tools for a limited set of activities (e.g., input generation
to discover SQL injection vulnerabilities [SQL, 2017]).
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Most security testing approaches focus on a particular vulnerability (e.g., buffer overflows [Haller
et al., 2013, Ognawala et al., 2016] and code injection vulnerabilities [Tripp et al., 2013, Appelt et al.,
2014]). These approaches deal with the generation of simple inputs (e.g., strings, files), and cannot
be adopted to verify that the system is not prone to complex attack scenarios involving several inter-
actions among parties, e.g., stealing an invitation email to register multiple fake users on a platform.
Model-based approaches are capable of generating test cases based on interaction protocol specifi-
cations [Veanes et al., 2005, Silva et al., 2008] and thus can potentially generate test cases for such
complex attack scenarios [Lebeau et al., 2013]. They require formal models, which limits their adop-
tion in industrial settings. Unfortunately, engineers tend to avoid such models because of the costs
related to their development and maintenance, especially in contexts where system requirements in
Natural Language (NL) are already available. There are approaches that generate functional sys-
tem test cases from NL requirements [de Figueiredo et al., 2006, Carvalho et al., 2014, Wang et al.,
2015a, Wang et al., 2015b, Kaplan et al., 2008]. However, these approaches can be adopted in the
context of security functional testing, but not security vulnerability testing since they generate test
cases only for the intended behavior of the system. In contrast, security vulnerability testing deals
with the problem of simulating the behavior of a malicious user. Our goal in this chapter is to en-
able automated security vulnerability test case generation from NL requirements. Our motivation is
to have a systematic way to identify threats, to test whether they can be exploited, and to automate
testing relying exclusively on artifacts that can be realistically expected in most environments.

In this chapter, we propose, apply and assess Misuse Case Programming (MCP), an approach that
generates security vulnerability test cases from misuse case specifications. To generate executable
test cases from misuse case specifications we employ some concepts of natural language program-
ming, a term which refers to approaches automatically generating software programs (e.g., executable
test cases) from NL specifications [Ballard and Biermann, 1979, Pulido-Prieto and Juárez-Martínez,
2017]. To enable the automated generation of executable test cases, MCP assumes that security re-
quirements are elicited according to a misuse case template that includes keywords to support the
extraction of control flow information. Our MCP tool currently relies on the Restricted Misuse Case
Modeling (RMCM) template (see Section 4.3.2), which presents these characteristics. To interact
with the system under test, MCP requires a test driver API that implements basic security testing
activities (e.g., requesting a URL).

The natural language programming solution implemented by MCP includes an initial Natural
Language Processing (NLP) step in which MCP derives models that capture the control flow of the
activities described in a misuse case specification. MCP then translates the derived models into se-
quences of executable instructions (e.g., invocations of the test driver API’s functions) that implement
the malicious activities. To this end, we adapt the idea, developed by other works [Manning et al.,
2014, Le et al., 2013, Guzzoni et al., 2007, Landhausser et al., 2017], of combining string similarity
and ontologies [Gruber, 1993] to generate test cases from misuse case specifications. Similarly to
other approaches, MCP builds an ontology that captures the structure of the given test driver API and
generates executable instructions by looking for nodes in the ontology that are similar to phrases in
NL requirements. The specificity of MCP is that it integrates additional analyses required to enable
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automated testing, which include the identification of test inputs, the generation of test input values
and the generation of test oracles.

We successfully applied and evaluated our approach to an industrial case study in the healthcare
domain, thus showing evidence that the approach is practical and beneficial to automatically generate
test cases detecting vulnerabilities in industrial settings.

This chapter is structured as follows. The Section 5.2 introduces an overview of the approach.
Sections 5.3 to 5.6 provide the details of the cored technical parts of our approach. Section 5.7
describes the MCP toolset. Section 5.8 presents our industrial case study. We conclude the chapter in
Section 5.9.

5.2 Overview of MCP
The process in Fig. 5.1 presents an overview of our approach. MCP takes as input a set of misuse
case specifications and a test driver API implementing the functions required to test the system (e.g.,
functions that load URLs). The MCP tool includes a generic test driver API for Web testing that can
be extended for system specific operations. The input misuse case specifications should conform to
a template which enforces (i) the use of simple sentences to facilitate NLP, (ii) the use of keywords
to capture the control flow, and (iii) the use of attack keywords to specify which inputs should be
generated according to predefined attack patterns. These are some of the characteristics of the RMCM
template, though MCP may work with other templates.

MCP generates as output a set of executable security test cases that rely on the provided test driver
API to perform the activities described in the misuse case specifications.

An essential component of the approach is an automatically populated ontology (hereafter MCP
ontology). An ontology is a graph that captures the types, properties and relationships of a set of
individuals (i.e., the basic blocks of an ontology). MCP uses the ontology to model programming
language and test infrastructure concepts (Label A in Fig. 5.1), to capture the relationships and struc-
ture of the classes of the test driver API (Label B), to capture the relationships between inputs (Label
D), and to represent the variables declared in the generated test case (Label F). We employ an OWL
ontology [OWL, 2017] instead of UML diagrams because OWL provides simple means to query the
modeled data. The MCP ontology is populated and managed using Apache Jena [Jen, 2017].

To generate test cases from misuse case specifications, MCP works in four phases. In the first
phase, Map the test driver API to the MCP ontology, MCP processes the test driver API and augments
the MCP ontology with individuals that model the classes and functions belonging to the given test
driver API (Labels A and B). In the second phase, Generate misuse case models, MCP relies on an
NLP pipeline to derive models that explicitly capture the control flow implicitly described in misuse
cases (Label C).

58



5.2. Overview of MCP

reuseInvitation.py

Phase 1: Map the test driver API to the MCP ontology

Phase 2: Generate Misuse Case Models

Phase 3: Identify Test Inputs

Phase 4: Generate Executable Test Cases

(E) Test Input Files.

(A) Initial ontology provided by MCP 
(models programming language 

concepts).

Class

Attribute
Method

Class

AttributeMethod

«Class»
HttpTest

«Class»
System

«Method»
send

(B) Ontology including information 
about the test driver API.

Bypass Authorization
Step 1:…
Step 2:…

Misuse Case Specifications
In Natural Language

Test Driver API provided by MCP
(possibly extended by engineers)

Step 1

Step 3Step 5

(G) Executable Test Cases.

Class

AttributeMethod

«Class»
HttpTest

«Class»
System

«Variable»
system

(F) Ontology updated with information about instance 
variables in the scope of test case lines.

(C) Misuse Case 
Model capturing 

control flow.

«Class»
BPA

«Variable»
this

«Scope»
line21

Test Generation

Test Execution
bypassAuthorization.py

(G) Executable Test Case

inputs.json

(E) Test Input 
File modified 
by engineers

MCP

«use»
System

Under Test

FAILURES (i.e., vulnerabilities found)

Legend:

Data flow

guessUserAccount.py

bypassAuthorization.py

inputs.json
(D) Ontology updated with 

individuals  capturing the
relations between inputs.

«Key»
role

«Key»
username

«Key»
password

«Dictionary»
inputs

Figure 5.1. Overview of the MCP approach.
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In the third phase, Identify test inputs, MCP determines the inputs to be sent to the system. It
first identifies the input entities (Label D) and then prepares a configuration file that will be filled out
by engineers with concrete input values to be used during testing (Label E). MCP can automatically
generate the input values when these values can be derived by relying on predefined strategies (e.g.,
using grammars to generate inputs for code injection attacks [Tripp et al., 2013, Appelt et al., 2014]).

In the fourth phase, Generate executable test cases, MCP automatically generates executable test
cases from the misuse case models (Labels C and G). Each generated test case follows the control
flow in the corresponding misuse case model and, for each step in the model, executes an operation
implemented by the given test driver API. MCP employs a natural language programming solution to
map each step in the misuse case model to an operation exposed by the test driver API. This solution
maps NL commands (i.e., sentences in misuse case steps) to objects and methods of the provided
API by retrieving information from the MCP ontology (Label F). While generating the test cases, the
MCP ontology is augmented with individuals matching the variables declared in the test case.

We provide the MCP tool with a set of predefined misuse case specifications derived from the
OWASP testing guidelines [Meucci and Muller, 2014]. These misuse cases can be reused (or adapted)
across multiple projects; in addition, security analysts can write new, system specific misuse case
specifications.

The rest of the chapter provides a detailed description of each phase of MCP shown in Fig. 5.1,
with a focus on how we achieved automation. The misuse case Bypass Authorization Schema in
Fig. 5.2 will be used as an example to demonstrate these phases of MCP. This misuse case specifica-
tion is produced in the RMCM template (see Section 4.3.2).

5.3 Mapping the Test Driver API to an Ontology
We provide an ontology (i.e., the MCP ontology) with concepts common to object-oriented program-
ming languages (e.g., Type, Class, Attribute, Method, and Parameter). The MCP ontol-
ogy also captures the concepts required to model the runtime behavior of a test case: Instance (i.e.,
an instance of a Type) and Variable (i.e., a program variable pointing to an instance). Fig. 5.3
shows part of the MCP ontology; we model programming language concepts as types, shown in
Fig. 5.3 using UML classes. We depict the ontology using a UML class diagram. UML classes model
types of individuals. UML associations capture properties.

MCP automatically populates the MCP ontology with types and individuals that match the ele-
ments (e.g., methods) in the test driver API. For example, Fig. 5.4-A shows part of the populated
MCP ontology that models the test driver API used in our case study. UML classes model types.
UML objects model individuals. Part-A models the test driver API. Part-B models the variables in the
scope of Line 21 of the test case in Fig. 5.9. System is a type while send is an individual of type
Methodwith the property methodOf set to System (we use association links to model properties).
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1 MISUSE CASE Bypass Authorization Schema
2 Description The MALICIOUS user accesses resources that are dedicated to a

user with a different role.
3 Precondition For each role available on the system, the MALICIOUS user has

a list of credential of users with that role, plus a list functions/resources that
cannot be accessed with that role.

4 Basic Threat Flow
5 1. FOREACH role
6 2. The MALICIOUS user sends username and password to the system through

the login page
7 3. FOREACH resource
8 4. The MALICIOUS user requests the resource from the system.
9 5. The system sends a response page to the MALICIOUS user.
10 6. The MALICIOUS user EXPLOITS the system using the response page and

the role.
11 7. ENDFOR
12 8. ENDFOR
13 Postcondition: The MALICIOUS user has executed a function dedicated to

another user with different role.
14 Specific Alternative Threat Flow (SATF1)
15 RFS 4.
16 1. IF the resource contains a role parameter in the URL THEN
17 2. The MALICIOUS user modifies the role values in the URL.
18 3. RESUME STEP 4.
19 4. ENDIF.
20 Postcondition: The MALICIOUS user has modified the URL.
21 Specific Alternative Threat Flow (SATF2)
22 RFS 4.
23 1. IF the resource contains a role parameter in HTTP post data THEN
24 2. The MALICIOUS user modifies the role values in the HTTP post data.
25 3. RESUME STEP 4.
26 4. ENDIF.
27 Postcondition: The MALICIOUS user has modified the HTTP post data.
28 Specific Alternative Flow (SAF1)
29 RFS 6
30 1. IF the response page contains an error message THEN
31 2. RESUME STEP 7.
32 3. ENDIF.
33 Postcondition The malicious user cannot access the resource dedicated to users

with a different role.

Figure 5.2. ‘Bypass Authorization Schema’ misuse case specification.

Although our approach is language independent, the MCP tool works with the test driver API in
Python. Therefore, our tool includes a Python component that relies on reflection to extract the names
of classes, methods and method parameters from the given API. Although the Python programming
language does not enforce the declaration of method parameter types, we assume that parameter types
are captured by means of function annotations, a common practice adopted by Python programmers
to document their software [Pyt, 2017].
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Figure 5.3. Part of the MCP ontology capturing programming language concepts.

Figure 5.4. Part of the MCP ontology populated when generating a test case for ‘Bypass Authorization
Schema’.
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Figure 5.5. Misuse case model for the misuse case specification in Fig. 5.2.

5.4 Generating Misuse Case Models
MCP automatically generates a misuse case model for each misuse case specification (see Fig. 5.5).
It employs an NLP pipeline that looks for control flow keywords (e.g., IF ... THEN, FOREACH,
RFS and RESUME in RMCM) to build a model that captures the control flow implicitly specified
in the misuse case specification. Each node in the model corresponds to a step in the misuse case
specification. For simplicity, in Fig. 5.5, we indicate only the type of the control flow nodes (i.e.,
CONDITION, FOREACH, ENDFOR and EXIT), while we report the line number of the step for the
remaining nodes.

We do not provide details of the misuse case model generation because it is algorithmically simple
and similar to the one adopted in the previous work [Wang et al., 2015a]. Briefly, for each condition
keyword encountered (i.e., IF ... THEN), MCP generates a control flow node that is linked to
the first steps of the false and true branches. For each iteration keyword (i.e., FOREACH and DO ...

UNTIL), it generates a node that is linked to the node corresponding to the step in the iteration body
(see the arrows BODY in Fig. 5.5) and to the node matching the step executed after the iteration (see
the arrows NEXT).

5.5 Identifying Test Inputs
MCP determines input entities (e.g., ‘role’, ‘password’, ‘username’, and ‘resource’ in Fig. 5.2), input
relationships (e.g., each ‘username’ is associated to a ‘role’), and values to be assigned to input
entities.
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Consistent with RMCM, MCP assumes that input entities appear in misuse case steps with a verb
that indicates that one or more entities are sent to the system under test by an actor (e.g., “The mali-
cious user sends username and password to the system” and “The malicious user inserts the password
into the system”). SRL (see Section 2.3) is employed to automatically determine sentences indicating
the sending of an entity to a destination. Depending on the verb, SRL usually tags destinations with
A2 or AM-LOC (see Section 2.3). Therefore, a sentence containing terms tagged with A2 or AM-LOC
likely describes an input activity. In such sentences, MCP looks for the entities being sent, which
match the terms tagged with A1 (i.e., the terms affected by the verb).

MCP automatically identifies relationships between input entities to avoid generating input values
that may hamper the detection of vulnerabilities. For example, in Fig.5.2, we need to determine
the roles associated to a username and password. This is necessary, for instance, to avoid using the
username ‘Mr. Phu’, who is a patient, to simulate the behavior of a malicious doctor trying to access
managers’ data. If we use the username with the wrong role, the test case may not reveal that the
system is vulnerable (e.g., malicious doctors might be able to access managers’ data while patients
might not).

MCP relies on the fact that a relationship between input entities can be derived from the control
flow in a misuse case specification. For example, in Fig. 5.2, there is a one-to-many relationship be-
tween ‘role’ and ‘resource’ because multiple resources are requested with the same role (see Lines 5,
7 and 8). There is a one-to-one relationship between ‘role’ and ‘username’ because only one username
is sent for each role (see Lines 5 - 6).

The MCP ontology is employed to capture input relationships by creating instances of the dict
type. The dict type in the ontology is used to model the Python dictionary type, which maps
keywords to values. Fig. 5.6 shows part of the populated MCP ontology that captures the input rela-
tionships in the misuse case in Fig. 5.2. The dict inputs individual contains one Key individual
for each input entity in the misuse case specifications (e.g., role, username and password).
Also, it contains additional dict individuals for each entity appearing in an iteration (e.g., role)
because these entities usually present containment relationships (e.g., each role has an associated
username and password).

MCP relies on engineers to select input values. Automating the generation of input values is a
challenge since it entails a complete understanding of system specifications. For example, to generate
input values from the misuse case in Fig. 5.2, MCP needs existing users and roles, which cannot be
automatically extracted without the architecture of the system under test. This information can be
manually retrieved by engineers who know the system architecture and configuration.

To guide engineers in generating input values, MCP automatically generates a JSON file using
the MCP ontology. The JSON format represents the content of dictionaries in textual form. The
generated file contains input types (e.g., role) and placeholders to be replaced by engineers with
values. Fig. 5.7 shows the JSON file generated from the MCP ontology in Fig. 5.6. Fig. 5.8 shows
part of the same file with values. Note that engineers can specify more values for an input entity
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Figure 5.6. Part of the populated MCP ontology for Fig. 5.2.

{"role": [
{

"password": "REPLACE-THIS-STRING",
"role": "REPLACE-THIS-STRING",
"username": "REPLACE-THIS-STRING"
"resource": [
{

"resource": "REPLACE-THIS-STRING",
"error_message": "REPLACE-THIS-STRING",
"role_values": "REPLACE-THIS-STRING",
"the_resource_contains_the_role_parameter_in_the_URL": "PUT-EXPRESSION",
"the_resource_contains_the_role_parameter_in_the_HTTP_post_data": "PUT...

},
ADD-MORE-ENTRIES
],

},
ADD-MORE-ENTRIES
]

}

Figure 5.7. Input file generated by MCP.

as suggested by the keyword ADD-MORE-ENTRIES; this is necessary to deal with iterations. The
repeated entries might have a complex structure like in the case of role and resource which
contain inner values (see Fig. 5.8).

To reveal some vulnerabilities, it is necessary to generate a large number of input values by using a
predefined input generation strategy; this happens, for example, in the case of misuse cases that model
attacks based on dictionary values or code injection (e.g., SQL injection). To assist engineers in such
cases, MCP requires that an input generation strategy be indicated with a keyword in the misuse case
specification (e.g., the keyword ‘DICTIONARY VALUES’ in Fig. 2.5).

To determine whether a predefined strategy needs to be used, MCP checks the terms tagged with
A1 (i.e., the entity sent to the system) matching the keyword for the given strategy (e.g., ‘DICTIO-
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{"role": [
{

"role": "Doctor",
"username": "phu@mymail.lu"
"password": "testPassword1",
"resource": [
{

"resource": "http://www.icare247.eu/?q=micare_invite&accountID=11"
"error_message": "error",

. . .
},
{

"resource": "http://www.icare247.eu/?q=micare_skype/config&clientID=36"
"error_message": "error",
"the_resource_contains_the_role_parameter_in_the_URL": False,
"the_resource_contains_the_role_parameter_in_the_HTTP_post_data": False

}, ], }
{

"role": "Patient",
. . .

Figure 5.8. Part of the JSON file in Fig. 5.7 with input values.

NARY VALUES’ in Fig. 2.5). If so, MCP looks for the terms tagged with AM-MNR (see Section 2.3)),
which are the input entities to which dictionary values are assigned (e.g., ‘username’ and ‘password’
in the example above).

5.6 Generating Executable Test Cases
MCP generates an executable test case for each misuse case specification. In the MCP tool, each
generated test case corresponds to a Python class that implements a method named run. Fig. 5.9
shows part of the test case generated for the misuse case in Fig. 5.2.

MCP declares and initializes three variables, system, maliciousUser and inputs (Lines 3,
4 and 5 in Fig. 5.9). The variable system refers to an instance of the class System, which pro-
vides methods that trigger the functions of the system under test (e.g., request). The variable
maliciousUser refers to the test class, since the test class simulates the behavior of the mali-
cious user. The variable inputs refers to a dictionary populated with the input values specified in
the JSON input file. These three assignments are given in the MCP ontology with the individuals
maliciousUser, system and inputs (see Fig. 5.4-B).

MCP identifies the program elements (e.g., an API method) to be used in the generated test case
based on string similarity. To do so, we employ a string similarity solution successfully used in the
prior work [Wang et al., 2018], i.e., a function based on the Needleman-Wunsch string alignment
algorithm [Needleman and Wunsch, 1970]. To generate an executable test case, MCP processes
all the nodes in the generated misuse case model (see Fig. 5.5). For each control flow node, MCP
generates a control operation in the test case. For each other node, MCP generates both a method call
and an assignment instruction by using the string similarity, and then selects one of them according
to a scoring procedure.
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1 class bypassAuthorizationSchema(HTTPTester):
2 def run(self):
3 system = System(path=self.rootPath)
4 maliciousUser = self
5 inputs = self.loadInput("inputs.json")
6 roleIter = inputs["role"].__iter__()
7 while True:
8 try:
9 role = roleIter.__next__()
10 parameters = dict()
11 parameters["password"] = role["password"]
12 parameters["username"] = role["username"]
13 system.send("login page",parameters)
14 resourceIter = role["resource"].__iter__()
15 while True:
16 try:
17 resource = resourceIter.__next__()
18 if not eval(resource["the_resource_contains_a_role_
19 parameter_in_the_URL"]):
20 if not eval(resource["the_resource_contains_a_role_parameter..
21 system.request(resource)
22 maliciousUser.responsePage = system.responsePage
23 if not responsePage.contains( resource["error message"] )
24 parameters = dict()
25 parameters["resource"] = resource["resource"]
26 parameters["role"] = role["role"]
27 system.exploit(parameters)
28 else:
29 maliciousUser.abort("The MALICIOUS user CANNOT ex...")

Figure 5.9. Part of the test case generated from the misuse case in Fig. 5.2.

In the following, we present the string similarity solution adopted by MCP, and the generation of
method calls, assignments, control flow instructions and oracles.

5.6.1 String Similarity Measures
The Needleman-Wunsch string alignment algorithm maximizes the matching between characters by
allowing for some degree of misalignment between them. The similarity degree adopted by MCP is
computed as the percentage of matching characters in the aligned strings. In the rest of the chapter,
we write that a string sa belonging to a set of strings S best matches a string st if the following holds:

∀s : s ∈ S,D(sa,st)≥ D(s,st) and D(sa,st)≥ T

with D being the function for computing the degree of similarity of two strings and T being a
threshold, set to 0.4 in our experiments, below which matching strings are excluded.

5.6.2 Generation of Method Calls
For each misuse case step, MCP aims to generate a method call that performs the activity described
in the sentence. To achieve this goal, MCP must select the correct method to be invoked (i.e., a
method with a proper name and parameters that belongs to a specific class instance) and identify
which instance variables should be passed as argument.

To identify the class instance that should expose the method to be invoked, MCP queries the MCP
ontology looking for individuals that best match, using similarity scores, the actors typically involved
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in a misuse case sentence: the system, the actor that performs the activity (SRL label A0), the actor
affected by the activity (SRL label A1) or the actor that receives the inputs mentioned in the sentence
(SRL labels A2 and AM-LOC). For each selected individual, MCP looks for a method that is most
likely to perform the activity described in the misuse case sentence.

MCP selects the method that maximizes a score that results from the average of: (S1) the string
similarity degree between the method name and the verb in the sentence (to measure how well the
method name matches the activity described by the sentence); (S2) the average string similarity degree
of all the parameters with the best matching input entity (to determine if the method is supposed to
work with the input entities appearing in the sentence); (S3) the percentage of terms (i.e., verb and
noun phrases appearing in the misuse case sentence) that match the method parameters (to measure the
completeness of the generated instruction, i.e., to what extent the concepts appearing in the sentence
are reflected in the method call). The last point distinguishes MCP from other natural language
programming solutions (e.g., [Landhausser et al., 2017]) since these do not measure the completeness
of the generated instruction. MCP may also select a method call that best-matches the full sentence;
this is done to properly deal with sentences describing specific attacks (e.g., “execute a network
sniffing tool” which is implemented by the method executeNetworkSniffingTool, whose
name includes the verb and the object in the sentence).

After identifying a method as the best candidate for a misuse case sentence, MCP generates the
corresponding executable instruction as follows. First, MCP generates the program code correspond-
ing to the invocation of the selected method (e.g., system.request in Line 21 in Fig. 5.9). Then
MCP identifies the instance variables to pass as arguments; to this end, MCP queries the ontology
looking for instance variables with the same type as the method parameter and with the best matching
name. For example, in the case of Line 21 in Fig. 5.9, MCP selects the instance variable resource,
which exactly matches the name of the parameter of the method request. If there is no variable
matching the method parameter, MCP derives the value to be used directly from the text of the input
entity that best matches the parameter name. This is necessary because the misuse case specification
may include some of the values to be used during testing. If the parameter is a string, MCP sets
the value to the name of the input entity (e.g., "login page" in Line 13). If the parameter is
a boolean, MCP sets its value to True (this helps dealing with methods presenting boolean flags,
e.g., the method modify shown in Fig. 5.4). Otherwise, MCP signals the missing parameter using a
dedicated keyword in the generated code.

MCP also deals with API methods that declare an arbitrary number of parameters. This is the
case of method send of the class System (Fig. 5.4-B), which is used to send a set of input values
to the system under test and enables the specification of inputs to be sent according to the input
page. For example, a login page may require two inputs (e.g., username and password), while
the page for registering a new user may require more inputs. In Python, an arbitrary number of
named arguments can be passed to a method by using a dictionary parameter. For this reason, in the
presence of a dictionary parameter whose name does not match any input entity, MCP assumes that
the dictionary parameter can be used to pass named arguments to the method. More precisely, MCP
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uses the identified dictionary parameter to pass input entities that do not match any other method
parameter. These entities are taken into account when computing the score of the method (point S3
above). This is what occurs when MCP processes Line 6 of the misuse case specification in Fig. 5.2,
which leads to generating the code appearing in Lines 10 - 13 in Fig. 5.9. The parameter pars
of the method system.send is used by MCP to pass additional parameters to the method (i.e.,
username and password).

To simplify testing further, in the presence of test driver API methods requiring specific configu-
ration parameters (e.g., the method System.send requires a mapping between a page name and its
URL), engineers, instead of manually crafting a configuration file, can provide API methods that are
invoked by MCP to automatically generate a file with the required configuration parameters.

5.6.3 Generation of Assignments

Assignment instructions are expected to be generated when some data (input or output) is exchanged
between an actor and the system under test. MCP relies on SRL to identify the actor who performs
the action (i.e., A0 which is supposed to be the source of the data) and the final destination, which
is captured by the SRL labels A2 or AM-LOC. The data being transferred correspond to the terms
tagged with A1. The assignment is then generated by looking for two instance variables that best
match the terms tagged with A0 (i.e., the data source for the right-hand side) and A2 or AM-LOC (i.e.,
the destination for the left-hand side). The term tagged with A1 (i.e., the data being moved) should
then match an attribute of the objects referred by the selected variables. For example, the misuse
case step “The system sends a response page to the malicious user” (Line 9 in Fig. 5.2) leads to the
generation of the assignment in Line 22 in Fig. 5.9.

The score of the generated assignments is calculated by computing the mean of (1) the average
string similarity degree for the terms used to identify the left-hand side and right-hand side of an
assignment (to measure the likelihood that the selected terms match the concepts in the sentence) and
(2) a value indicating the proportion of terms of the misuse case step that appear in the generated
assignments (to measure the completeness of the generated assignments with respect to the concepts
appearing in the step).

5.6.4 Generation of Control Flow Instructions

The generation of control flow instructions is straightforward and follows typical practices adopted
in DSL-based and model-based code generation [Bettini, 2016]. In this section, we focus on the
generation of instructions from iterations and conditional sentences in NL, which is not addressed by
DSL-based and model-based approaches.

Since iterations (i.e., sentences containing the keyword FOREACH) are used to indicate that a
sequence of activities is repeated for a given set of input entities, MCP generates a block of code that
iterates over all the values of the input variable matching the input entity mentioned in the FOREACH
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sentence. For example, Lines 6 - 9 in Fig. 5.9 show that the test case iterates over the elements of the
list named role.

Condition sentences, instead, are used to indicate that certain activities are performed when a
given condition, written in NL, holds. In general, a condition in the test code can be used to eval-
uate the truth value of either runtime data (e.g., the value returned by a method call) or input data
(e.g., a configuration parameter). To deal with the first case, MCP generates a method call that best
matches the condition in NL (Line 23 in Fig. 5.9). If the condition sentence does not match any
method call, MCP assumes that the condition works with test input parameters, and thus generates a
condition instruction evaluating the truth value of an input entity that matches the sentence (Line 18
in Fig. 5.9). The name of the input entity is added to the JSON input file (see the parameters starting
with the_resource_contains in Fig. 5.7).

5.6.5 Generation of Oracles

In executable test cases, an automated oracle is typically implemented by means of instructions that
report a failure when a certain condition does not hold; this is, for example, what JUnit assertions
do [JUn, 2017]. MCP automatically generates oracles; this is implicitly achieved during the gen-
eration of the executable test case because MCP generates code that matches all the use case steps,
including conditions that check erroneous outputs (e.g., Line 30 in Fig. 5.2) and instructions indi-
cating that the malicious user can exploit a vulnerability (e.g., Line 10 in Fig. 5.2). However, to
determine if the system in is a legal state or if it generates a valid output, MCP often requires the
specification of regular expressions matching conditional sentences in the misuse case specifications
(e.g., Line 18 in Fig. 5.9), which, based on our experience is of limited costs, but are still required to
be manually specified by engineers.

For example, the condition instruction in Line 23 of the test case in Fig. 5.9 corresponds to Line 30
in Fig. 5.2 and determines whether the system was not able to detect an unauthorized access. The
instruction in Line 27 of Fig. 5.9, which corresponds to Line 10 in Fig. 5.2, is used to report a failure.
In the MCP tool, the method System.exploit, which matches misuse case steps indicating that a
malicious user exploits a vulnerability, is used to report a failure.

5.7 Tool support
We have implemented MCP as a Java application. The MCP tool takes as inputs the test driver API
and misuse case specifications and automatically generates executable test cases in Python, input files,
and configuration files. Fig. 5.10 shows the architecture of MCP tool.

SpecificationProcessor parses misuse case specifications to extract a model (misuse case model)
that captures the control flow in the specifications. OntologyLoader maps the test driver API into an
OWL ontology to have a structured representation of the API elements (i.e., classes, methods, and
parameters).
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ExecutableCodeGenerator identifies input entities and generates executable code. NLPHandler
executes NLP on each misuse case step. More specifically, NLPHandler executes the CogComp NLP
pipeline [University of Illinois, 2017] to perform Semantic Role Labeling. InputEntitiesIdentifier uses
SRL results to identify input entities. To speed up NLP, NLPHandler relies on the CogComp NLP
pipeline running as a Web service1. If the service is not reachable, the analysis is executed locally.

PythonCodeGenerator generates Python code together with configuration files. It processes the
misuse case model and generates a method call or an assignment for each use case step, except
condition and iteration steps which are translated into Python instructions. In general, thanks to SRL
outputs, a method call is identified by selecting a method (1) that belongs to a class instance with a
name similar to either the actor performing the activity or the destination in the sentence, (2) that has a
name textually similar to the verb in the sentence, and (3) that has parameters matching the remaining
semantic roles in the sentence. An assignment instruction is generated when some data is exchanged
between an actor and the system. It is generated by looking for two variables textually similar to the
source and destination of the data exchange.

Additional details about MCP, including executable files and a screencast, are available on the
tool’s website at: https://sntsvv.github.io/MCP/.

5.8 Empirical Evaluation
We have performed an empirical evaluation to respond to the following research questions:

1MCP can rely both on the installation of the University of Pennsylvania,
http://macniece.seas.upenn.edu:4001/annotate, or services running in-house.
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• RQ1. Does MCP correctly identify input entities?
• RQ2. Can MCP generate executable test cases from misuse case specifications?
• RQ3. How do the generated test cases compare to manual test cases in terms of effectiveness,

soundness and costs?

5.8.1 Case Study System and Empirical Setup
We applied MCP to generate test cases for the software system developed in the context of the
EU project EDLAH2 [EDLAH2, 2017b] and the open-source continuous integration server Jenk-
ins [Eclipse Foundation, 2020] (see Section 2.1).

The EDLAH2 engineers follow the RMCM methodology to capture security requirements because
RMCM specifications are written in NL and thus ease communication among all the stakeholders.
The EDLAH2 misuse case specifications include a total of 68 misuse cases which describe both
general attack patterns derived from the OWASP guidelines [Meucci and Muller, 2014, OWA, 2018]
and system specific attacks that leverage some characteristics of the EDLAH2 system. For example,
one of the EDLAH2 misuse cases models a malicious user who generates multiple user accounts by
stealing the token of the page for inviting new users. The misuse case specifications of the EDLAH2
system have been used to manually derive test cases (scripts for manual testing and executable test
cases).

We have used the MCP tool to generate executable test cases from 12 misuse case specifications.
We have selected 12 misuse cases targeting the Web interface and with the highest risk according to
the OWASP risk rating methodology [Meucci and Muller, 2014]. Nine of the test cases manually
derived from the selected misuse cases enabled the identification of vulnerabilities.

To ensure the generalizability of the results, we also applied the 12 generated test cases to test the
Jenkins case study system. We target 10 vulnerabilities of Jenkins. Seven out of these 10 vulnerabili-
ties were reported in the CVE database [MITRE Corporation, 2020] in the second half of 2018 (i.e.,
CVE-2018-1000406 [MITRE, 2018a], CVE-2018-1000409 [MITRE, 2018b], CVE-2018-1999003
[MITRE, 2018c], CVE-2018-1999004 [MITRE, 2018d], CVE-2018-1999006 [MITRE, 2018e], CVE-
2018-1999046 [MITRE, 2018g], and CVE-2018-1999047 [MITRE, 2018h]). The other three vulner-
abilities are related to the default configuration of Jenkins such as the lockout mechanism and the
weak password requirement. Besides the 12 generated test cases derived from OWASP testing guide-
lines [Meucci and Muller, 2014] and EDLAH2 case study, we derived five additional misuse case
specifications from five selected Jenkins vulnerabilities reported in CVE database and generated test
cases with MCP. To summarize, we executed 17 MCP-generated test cases for the Jenkins case study.

To perform the experiments, we have used a test driver API that was developed to support the
manual implementation of the test cases from the EDLAH2 misuse case specifications. The API
consists of ten classes and 87 methods in total.
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5.8.2 RQ1 - Input Entities Identification
MCP reports the input entities in the JSON input file, which we inspected to evaluate the capability
of MCP to determine correct input entities. We measure precision and recall according to standard
formula [Lane, 2003]. In our context, true positives coincide with input entities, identified by MCP,
which are correct (i.e., necessary to perform the test). False positives are input entities that do not
correspond to software inputs. False negatives are input entities required to perform the attack (e.g.,
an input that should be provided to a form field of a Web page), which have not been identified by
MCP.

In total, MCP leads to 86 true positives (i.e, input entities correctly identified), one false pos-
itive, and 10 false negatives. The false positive is due to the fact that one input entity belongs to
an activity that is executed under conditions that do not hold for the EDLAH2 system (this is the
case of the input entity ‘role values’ which is used in ‘Bypass Authorization Schema’ only for sys-
tems with URLs including role parameters). The three false negatives are caused by a concept (i.e.,
invitation request) which corresponds to three distinct input entities for the system under
test (i.e., email, username and message). Other two false negatives are related to password
and password confirmation input entities in the EDLAH2’s reset password functionality. Five
false negatives are caused by the sign up activity in Jenkins which corresponds to five input entities
(i.e., username, password, password confirmation, full name, and email). Over-
coming false positives and negatives has shown to be simple since we did not modify the generated
test code, but simply removed and added entries from and to the JSON input file. Precision and recall
are particularly high, 0.99 and 0.90 respectively, which will favor the adoption of the technique in
industrial settings.

5.8.3 RQ2 - Test Cases Generation
We inspected the source code of the generated test cases to spot the presence of errors affecting the
control instructions, assignments, method calls and parameters. We also counted the number of test
cases successfully executed without runtime errors due to programming mistakes. To execute the test
cases, we have filled out the MCP input files for EDLAH2 and Jenkins case study systems.

The test cases generated by MCP do not contain any programming error and, furthermore, were
all successfully executed against EDLAH2and Jenkins systems. The generated test cases, one for
each misuse case, are not trivial, and include a total of 1107 lines of code (101 max for a single test,
54 min), 252 method calls (23 max, 10 min), 71 assignments (7 max, 3 min), 358 method arguments
(42 max, 12 min). A subset of 230 method invocations concern the test driver API methods, while
the rest corresponds to general Python utility methods. The generated test cases have been delivered
to our industrial partners and are used to test the EDLAH2 system.
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5.8.4 RQ3 - Comparison Between Automatically Generated and Manual
Implemented Test Cases

To answer the RQ3, we compared 12 test cases automatically generated by MCP with the test cases
manually derived by EDLAH2 engineers for the same set of misuse case specifications, and with
respect to effectiveness, soundness, and costs.

A security test case is effective if it is capable of discovering vulnerabilities that affect the system
and it is sound if it does not report false alarms. The test cases generated by MCP identified all the
nine vulnerabilities detected with manual testing, which shows that MCP test cases are as effective as
manual test cases. Note that all these vulnerabilities result from real errors committed by engineers
during software development. The test cases generated by MCP did not lead to the identification of
any false alarm, thus showing that the approach is sound.

We discuss costs by comparing the effort required to perform vulnerability testing using MCP
with the effort required by manual testing. To manually implement executable test cases, engineers
must read and understand the security specifications of the system, an activity that requires substantial
effort. Also, the implemented test cases might be error-prone and difficult to maintain. In the case
of MCP, engineers do not need to implement or maintain executable test cases, but they require a
test driver API and security specifications in NL. The results reported in Chapter 4 have shown that
experienced engineers find that writing security specifications according to a structured format is
helpful to support communication among stakeholders, which motivates the adoption of the RMCM
methodology. In the presence of RMCM specifications, the generation of vulnerability test cases can
be fully automated by MCP. To give additional evidence of the benefits of MCP, we count the lines
of code of nine test cases developed by EDLAH2 engineers based on nine misuse case specifications,
which is 1523. Considering that EDLAH2 requirements include more than 60 misuse cases, the
manual implementation of all the required test cases would become expensive because of the effort
required to write hundreds of lines of code after carefully reading several requirements specifications.
This further motivates the adoption of MCP.

A test driver is also required by the manually written test cases, including functional test cases.
Since a project-specific test driver API is necessary for both functional and security testing, its devel-
opment costs do not directly result from the adoption of MCP. In addition, we provide the MCP tool
with a general test driver API that can be used with different Web projects, thus further reducing API
development costs.

In both MCP and manual testing, engineers need to identify the input values to be used during
testing (e.g., URLs). In general, the number of input values required for MCP and manual test cases
derived from the same set of misuse cases is similar since they both cover the same scenarios. For each
of the 12 MCP test cases generated in our experiment, engineers provided, on average, 15 distinct
input values (excluding dictionary values) in the JSON input files and 11 configuration parameters
required by the test driver API methods.
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5.8.5 Threats to Validity

The main threat to the validity regards generalizability, since results are linked to case study systems
considered and the selected misuse case specifications. To deal with this threat, we selected case
study systems that are representative of modern Web systems but are different from both a techni-
cal and process perspective. Moreover, we considered misuse cases that enabled the detection of
vulnerabilities caused by real mistakes reported in the CVE database [MITRE Corporation, 2020].

5.9 Conclusion
In this chapter, we presented MCP, an approach that automatically generates vulnerability test cases,
that is test cases simulating attacks and aimed at uncovering security vulnerabilities. MCP focuses on
contexts where security requirements are written in Natural Language (NL), which is a common case
since NL facilitates communication among stakeholder as in our industrial case study.

MCP requires as input a set of misuse case specifications and a test driver API and automatically
generates a set of executable test cases that simulate the activities described in the misuse case spec-
ifications. MCP is a natural language programming solution that automatically translates each step
in the misuse case specifications into executable instructions. The identification of the instructions to
execute relies on NLP techniques. These techniques enable the identification of concepts that match
the elements of the test driver API to be used in the test cases. For example, the actor performing
an activity usually corresponds to an instance of an API class that exposes a method matching the
verb in the sentence. The matching between concepts in NL requirements and the API is enabled
by string similarity and an ontology which is used to model the test driver API and the generated
test case. MCP assumes a consistent use of terminology between misuse case specifications and test
driver API, which is generally true for modern test-driven development approaches. Future work will
include the handling of synonyms (e.g., [Wang et al., 2018]).

Empirical results with the EDLAH2 system, which is a representative commercial case study
system in the healthcare domain, include the automated identification of real vulnerabilities in the
developed system, an indication of the effectiveness of MCP. Also, MCP reduces the effort required
for performing security vulnerability testing since it automates the generation of executable test cases
which are not trivial to manually implement. The main limitation of MCP is the need for the man-
ual specification of inputs and the need for regular expressions used to process system outputs and
determine if the system output is valid. Such limitations are partially addressed by the metamorphic
security testing approach described in Chapter 6 and they are further discussed in Chapter 7.
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Chapter 6

Metamorphic Security Testing for Web
Systems

Security testing verifies that the data and the resources of software systems are protected from attack-
ers. Unfortunately, it suffers from the oracle problem, which refers to the challenge, given an input
for a system, of distinguishing correct from incorrect behavior. In many situations where potential
vulnerabilities are tested, a test oracle may not exist, or it might be impractical due to the many inputs
for which specific oracles have to be defined.

In this chapter, we propose a metamorphic testing approach that alleviates the oracle problem in
security testing. It enables engineers to specify metamorphic relations (MRs) that capture security
properties of the system. Such MRs are then used to automate testing and detect vulnerabilities.

We provide a catalog of 22 system-agnostic MRs to automate security testing in Web systems.
Our approach targets 39% of the OWASP security testing activities not automated by state-of-the-art
techniques. It automatically detected 11 out of 14 vulnerabilities affecting three widely used systems,
one commercial and two open source systems (i.e., Jenkins and Joomla).

6.1 Introduction
In contexts where test case execution is automated, an automated test oracle (i.e., a mechanism for
determining whether a test case has passed or failed) is needed to check the execution result. It often
consists of comparing expected and observed outputs.

Security test cases seldom rely on automated test oracles, most often because it is infeasible or im-
practical to specify them due to a large number of test inputs. In other words, security testing suffers
from the oracle problem [Barr et al., 2015, Staats et al., 2011, Pezze and Zhang, 2014], which refers
to situations where it is extremely difficult or impractical to determine the correct output for a given
test input. For instance, a security test case for the bypass authorization schema vulnerability should
verify, for every specific user role, whether it is possible to access resources that should be available
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only to a user who holds a different role [Meucci and Muller, 2014]. This type of vulnerability can
often be discovered by verifying the access to various resources with different privileges and roles.
This is the case for the MCP test case in Fig. 5.2 of Chapter 5, which requires the specification of
the URLs that should not be accessed by a user along with a regular expression to determine if the
expected error page is returned. Such inputs might be expensive to be produced. Indeed, questions
arise when defining oracles. What are the resources that can only be accessible by a user with a spe-
cific role or privilege? Are the test outputs consistent with expectations regarding accessibility? In
practice, it is not always feasible to answer such questions when expected outputs need to be identi-
fied for a large set of test inputs (e.g., for various resources, roles and privileges). Recent incidents
involving corporate Web sites, such as Facebook’s, indicate that it is particularly difficult to verify,
at testing time, large sets of input sequences including the ones that trigger vulnerabilities [Rosen,
2018, Deahl, 2018]. Another example, the case study EDLAH2 provides many types of roles such
as administrator, master carer, normal carer, and client. Applying MCP (see Chapter 5) to run the
test case Bypass Authorization Schema against this system, when we prepare inputs and oracles for
test cases we need to enumerate all resources (i.e., URLs dedicated to access functions of the system)
which should not be accessed by each type of role. For instance, for the role normal carer, we need
to list all resources only dedicated to administrators or master carer (e.g., URLs relevant to invitation
of new clients). This process requires a lot of efforts from test engineers and is error-prone.

Although several security testing approaches have been proposed, they typically do not address the
oracle problem and assume the availability of an implicit test oracle [Barr et al., 2015]. Furthermore,
most approaches focus on a particular vulnerability (e.g., buffer overflows [Haller et al., 2013, Og-
nawala et al., 2016]) and can only uncover vulnerabilities that prevent a system from providing results
(e.g., system crashes because of buffer overflows).

Metamorphic Testing (MT) is a testing technique which has shown, in some contexts, to be very
effective to alleviate the oracle problem [Chen et al., 1998, Liu et al., 2014]. MT is based on the idea
that it may be simpler to reason about relations between outputs of multiple test executions, called
metamorphic relations (MRs), than it is to specify its input-output behavior [Segura et al., 2016]. In
MT, system properties are captured as MRs that are used to automatically transform an initial set of
test inputs into follow-up test inputs. If the outputs of the system under test for the initial and follow-
up test inputs violate the MR, it is concluded that the system is faulty (see Section 2.5 for additional
details).

Considerable research has been devoted to developing MT approaches for application domains
such as computer graphics (e.g., [Mayer and Guderlei, 2006, Guderlei and Mayer, 2007, Just and
Schweiggert, 2009, Kuo et al., 2011b]), Web services (e.g., [Chan et al., 2007b, Sun et al., 2011, Zhou
et al., 2012]), and embedded systems (e.g., [Tse and Yau, 2004, Chan et al., 2007a, Kuo et al.,
2011a, Jiang et al., 2013]). Unfortunately, only a few approaches target security aspects [Chen et al.,
2016]; also, their applicability is limited to the functional testing of security components (e.g., code
obfuscators [Chen et al., 2016]) or to the verification of specific security bugs (e.g., heartbleed [Syn-
opsys Inc., 2018]). They do not support the specification of general security properties by using MRs.
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Although MT is automatable, very few MT approaches provide proper tool support [Segura et al.,
2016]. This is also a significant obstacle for tailoring the current approaches for security testing. Our
goal in this chapter is to adopt MT to address the test oracle problem in security testing. Our mo-
tivation is to have a systematic way to specify MRs that capture security properties of Web systems
(i.e., properties that are violated only if the system is vulnerable) and to automate security testing by
relying on these MRs. An example of MR to spot bypass authorization schema vulnerabilities is: a
Web system should return different responses to two users when the first user requests a URL that is
provided to her by the GUI (e.g., in HTML links) and the second user requests the same URL but this
URL is not provided to her by the GUI. In other words, a user should not be able to directly access
URLs not provided by the GUI.

In this chapter, we propose an MT approach (hereafter MST– Metamorphic Security Testing) that
supports engineers in specifying MRs to capture security properties of Web systems and that auto-
matically detects vulnerabilities (i.e., violations of security properties) based on those relations. Our
approach is built on top of the following novel contributions: (1) a Domain-Specific Language (DSL)
for specifying MRs for software security, (2) a catalog of system-agnostic MRs targeting well-known
security vulnerabilities of Web systems [Meucci and Muller, 2014], (3) a framework that automat-
ically collects the data required to perform MST, and (4) a testing framework that automatically
performs security testing based on the MRs and the collected data. To facilitate the specification
of MRs in our DSL, we provide an editor which has been implemented as a plug-in for the Eclipse
IDE [Ecl, 2018].

We applied our approach to discover vulnerabilities in a commercial Web system, in Jenkins, a
leading open source automation server [Eclipse Foundation, 2020], and in Joomla, a popular open
source content management system [Joo, 2020]. The approach automatically detected 100%, 75%,
and 100% of the targeted vulnerabilities affecting these three systems, respectively. Furthermore,
MST has shown to help discover a new vulnerability (i.e., CVE-2020-2162 [Sto, 2020]) in Jenkins.
Based on these results and an assessment of the effort involved, we conclude that our approach is prac-
tical and beneficial to alleviate the oracle problem in security testing and to automatically detect vul-
nerabilities in industrial settings. Our MST toolset and the empirical data are publicly available [Web,
2019].

This chapter is structured as follows. In Section 6.2, we present an overview of the approach.
Sections 6.3 to 6.6 describe the core technical solutions. Section 6.7 presents our catalog of MRs.
Section 6.8 introduces the MST toolset. In Section 6.9, we present the empirical evaluation of our
approach. We conclude this chapter in Section 6.10.

6.2 Overview of the Approach
The process in Fig. 6.1 presents an overview of our approach. In Step 1, the engineer selects, from
a catalog of predefined MRs, the relations for the system under test. We have derived our catalog of
MRs from the testing guidelines [Meucci and Muller, 2014] edited by OWASP [OWA, 2017b]. In
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Figure 6.1. Overview of the approach.

addition, the engineer can also specify new relations by using our DSL. Step 1 is manual. We discuss
this step in Section 6.3. In Step 2, our approach automatically transforms the MRs into executable
Java code (Section 6.4).

In Step 3, the engineer executes a Web crawler to automatically collect information about the sys-
tem under test (e.g., the URLs that can be visited by an anonymous user). The crawler determines the
structure of the system under test and the actions that trigger the generation of new content on a page.
The collected information includes the source inputs for MST. To collect additional information, the
engineer can process manually implemented test scripts, if available. Step 3 does not depend on other
steps. We discuss Step 3 in Section 6.5.

In Step 4, our approach automatically loads the source inputs required by the MRs and generates
follow-up inputs as described by the relation. After the source and follow-up inputs are executed,
their execution results are checked according to the MRs. The details of the step are described in
Section 6.6.

Our DSL and the data collection framework can be extended to support new language constructs
and data collection methods. The MST framework can be extended to deal with input interfaces not
supported yet (e.g., Silverlight plug-ins [Microsoft Corp., ]) and to load data collected by new data
collection methods.
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Figure 6.2. An MR for the Bypass Authorization Schema vulnerability.

6.3 SMRL: A DSL for Metamorphic Relations
Our approach starts with the activity of selecting and specifying MRs (Step 1 in Fig. 6.1). To enable
specifying new MRs, we provide a DSL called Security Metamorphic Relation Language (SMRL).
Engineers can also select MRs for the system under test from the set of predefined MRs.

SMRL is an extension of Xbase [Efftinge et al., 2012], an expression language provided by
Xtext [Xte, 2018]. Xbase specifications can be translated to Java programs and compiled into ex-
ecutable Java bytecode. We rely on Xbase since DSLs extending Xbase inherit the syntax of a Java-
like expression language as well as language infrastructure components, including a parser, a linker,
a compiler and an interpreter [Efftinge et al., 2012]. These features will facilitate the adoption of
SMRL.

SMRL extends Xbase by introducing (1) a set of data representation functions, (2) a set of boolean
operators to specify security properties, and (3) a set of Web-specific functions to express data prop-
erties and transform data. These functions can also be extended by defining new Java APIs to be
invoked in MRs.

Fig. 6.2 presents an MR written in our SMRL editor. The relation checks whether the URLs
dedicated to specific users can be accessed by other users through a direct request. We use it as a
running example.

In the following, we introduce the SMRL grammar, the boolean operators, the data representation
functions, and the Web-specific functions.
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Table 6.1. Excerpt of the data functions in SMRL.
Data function Description
Input(int i) Returns the ith input sequence.
Action(int i) Returns the ith input action.
Session(int i) Returns the ith Web session.
User(int i) Returns the ith user of the system.
Output(Input i) Returns the sequence of outputs generated by Input i.
Output(Input i, int n) Returns the output generated by the nth action of Input i.
HttpMethod() Returns the name of an HTTP method (e.g., DELETE).
RandomFilePath() Returns a file system path. We select paths of files in the Web system

subfolder, ignoring images, and replacing symbolic links (e.g., ‘plugins’
is mapped to ‘plugin’ in Jenkins).

RandomValue(Type t) Returns a random value of the given type.

6.3.1 SMRL Grammar

The SMRL grammar extends the Xbase grammar, which extends the Java grammar. Each SMRL
specification can have an arbitrary number of import declarations which indicate the APIs to be used
in MRs (Line 1 in Fig. 6.2).

A package declaration resembles the Java package structure and can contain one or more MRs.
Line 4 in Fig. 6.2 declares the package owasp, which is is the package for our MRs. Like in Java,
MRs defined in different SMRL specification files can belong to the same package.

An MR can contain an arbitrary number of XBlock- Expressions, which are nonterminal sym-
bols defined in the Xbase grammar. An XBlockExpression can contain loops, function calls, opera-
tors, and other XBlockExpressions.

6.3.2 Data Representation Functions

SMRL provides 18 functions to represent different types of data (i.e., system inputs and outputs)
in MRs. Data is typically represented by a keyword followed by an index number used to identify
different data items. To keep SMRL simple, we represent data by using functions (hereafter data
functions) with capitalized names (e.g., Input(1)). Table 6.1 presents a subset of the data functions
in SMRL.

Each data function returns a data class instance. Fig. 6.3 presents the SMRL data model where all
classes are subtypes of either InputType or OutputType. InputType represents input data that can
be defined to trigger a certain system behavior. InputSequence represents a sequence of interactions
between a user and the system under test and is consequently associated with Action. Action rep-
resents an activity performed by a user (e.g., requesting a URL). It carries information about actions
such as a URL requested by an action and parameters in the URL query string. Action is associated
with Session, which represents a user session in a Web application. User represents a system user.

A source input is an instance of InputType returned by one of the data functions; a follow-up
input is an instance of InputType modified by means of a Web-specific function (see Section 6.3.4).
For example, a source input might be a sequence of two HTTP requests for user login and user profile
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Figure 6.3. Metamorphic data classes in SMRL.

visualization. A follow-up input is the same sequence with login credentials for a different user.
Instances of OutputType capture outputs generated by the system when processing an input; each
instance of OutputType is associated with an instance of InputType. The last three functions in
Table 6.1 return predefined/random values. They are used to redefine attributes of follow-up inputs as
described in Section 6.6.

6.3.3 Boolean Operators

SMRL provides seven boolean operators, i.e., IMPLIES, AND, OR, TRUE, FALSE, NOT and EQUAL. They
enable the definition of metamorphic expressions, which are boolean expressions that should hold
for an MR to be true. A metamorphic expressions is a specific kind of XBlockExpression. We
use metamorphic expressions to decompose an MR into simple properties. They are defined in a
declarative manner, which is standard practice in MT.

The MR in Fig. 6.2 includes a metamorphic expression using the operator IMPLIES. Since the
expression is within a loop body, the relation holds only if the expression evaluates to true in all the
iterations over the input actions.

The semantics of the operators IMPLIES, AND, OR, TRUE, FALSE, and NOT is straightforward. The
operator EQUAL, instead, does not simply evaluate the equality of two arguments but defines a follow-
up input by assigning the second parameter to the first parameter. The operator EQUAL acts as an
equality operator only when its first parameter refers to an input that has already been used in previous
expressions of the MR. Otherwise, it acts as an assignment operator. In Fig. 6.2, the operator EQUAL
defines the follow-up input Input(2) as a modified copy of Input(1).
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Table 6.2. Excerpt of the Web-specific functions in SMRL.
Operator Description
changeCredentials(Input i, User u) Creates a copy of the provided input sequence where the credentials

of the specified user are used (e.g., within login actions).
copyActionTo(Input i, int from, int
to)

Creates a new input sequence where an action is duplicated in the
specified position and the remaining actions are shifted by one.

cannotReachThroughGUI( User u,
String URL)

Returns true if a URL cannot be reached by the given user by exploring
the user interface of the system (e.g., by traversing anchors).

isLogin(Action a) Returns true if the action performs a login.
isSupervisorOf(User a,User b) Returns true if ‘a’ can access the URLs of ‘b’.
afterLogin(Action a) Returns true if the action follows a login.
isSignup(Action a) Returns true if the action registers a new user on the system.
isError(Output page) Returns true if the page contains an error message.
userCanRetrieveContent(User u,
Object out)

Returns true if the output data (i.e., the argument ‘out’) has ever been
received in response to any of the input sequences executed by the
given user during data collection.

6.3.4 Web-Specific Functions

MRs for security testing often capture complex properties of Web systems that cannot be expressed
with simple boolean or arithmetic operators. Therefore, SMRL provides a set of functions that capture
typical properties of Web systems and alter Web data. Table 6.2 describes a portion of the 30 Web-
specific functions in SMRL [Web, 2019]. Each function is provided as a method of the SMRL API.
Engineers can specify additional functions as Java methods. The new functions can be used in SMRL
thanks to the underlying Xtext framework.

The MR in Fig. 6.2 uses the Web-specific functions cannotReachThroughGUI, isSupervisorOf,
isError and changeCredentials. The relation indicates that the same sequence of actions should
provide different outputs when performed by two different users under a certain condition. The con-
dition is that one of the two users cannot access one of the requested URLs by simply browsing the
GUI of the system. In other words, if the system does not provide a URL to a user through its GUI,
then the user should not be allowed to access the URL. Also, to avoid false alarms, the user who can-
not access the URL from the GUI, indicated as User(2) in Fig. 6.2, should not be a supervisor with
access to all the resources of the other user, i.e., User(1). Finally, we avoid source inputs that return
an error message to User(1) because, for these inputs, it is not possible to characterize the output that
should be observed for User(2), who, indeed, may observe the same error, a different error, or an
empty page.

In Fig. 6.2, the function cannotReachThroughGUI checks if the URL of the current action cannot
be reached from the GUI (Line 9). The function isSupervisorOf checks if User(2) is not a super-
visor of User(1) (Line 10). The function isError returns true if an output page contains an error
message, based on a configurable regular expressions (Line 11). The function changeCredentials

creates a copy of a provided input sequence using different credentials. It is invoked to define the
follow-up input (Line 12). The data function Output executes the sequence of actions in an input
sequence (e.g., requests a sequence of URLs) and returns the output of the i-th action.
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Figure 6.4. Java code generated from the MR in Fig. 6.2.

6.4 SMRL to Java transformation
SMRL specifications are automatically transformed into Java code (Step 2 in Fig. 6.1). To this end,
we extended the Xbase compiler (hereafter SMRL compiler). Each MR is transformed into a Java
class with the name of the relation and its package. The generated classes extend the class MR and
implement its method mr.

The method mr executes the metamorphic expressions in the MR. It returns true if the relation
holds and false otherwise. To do so, the SMRL compiler transforms each boolean operator into a
set of nested IF conditions. For example, for the operator IMPLIES, the generated code returns false
when the first parameter is true and the second one is false. For the case in which the MR holds, the
SMRL compiler generates a statement that returns true at the end of mr.

Fig. 6.4 shows the Java code generated from the relation in Fig. 6.2. A loop control structure is
generated from the loop instruction in the relation (Line 7). The loop body contains the Java code
generated from the metamorphic expression using the operator IMPLIES (Lines 10-24). The first IF
condition checks whether the first parameter of the operator IMPLIES holds (Lines 10-13). The nested
IF block checks whether the second parameter of IMPLIES holds (Line 17). If the expression does
not hold, mr returns false (Line 20). The relation holds only if all the expressions in the loop hold.
Therefore, the SMRL compiler generates a return true statement after the loop body (Line 25).
Calls to the methods ifThenBlock and expressionPass are used to erase the generated follow-up
inputs at each iteration.
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A1 A2

A3A4

A5 A6

A7

Action
ID

Action
Type

Element URL data

A1 CLICK DIV[1]/BUTTON[1] me.com/login id="tester"; pwd="123"

A2 CLICK DIV[2]/TABLE[1]/A[1] me.com/stats session={...}

A3 CLICK DIV[2]/TABLE[1]/A[2] me.com/startSlave session={...}

A4 CLICK DIV[2]/TABLE[1]/A[3] me.com/profile session={...}

A5 CLICK DIV[1]/BUTTON[1] me.com/login id="devel"; pwd="abc"

A6 CLICK DIV[2]/TABLE[1]/A[1] me.com/stats session={...}

A7 CLICK DIV[2]/TABLE[1]/A[2] me.com/profile session={...}

Step 1: Crawl the system under test

Crawljax graphs

Web System
Under Test

Crawljax

Step 2: Derive source inputs
Input(1) A1,A2

Input(2) A1,A3

Input(3) A1,A4

Input(4) A5,A6

Input(5) A5,A7

User(1) id="tester",pwd="123"

User(2) id="devel",pwd="abc"

exercise

save

derive

Graph edges legend

Figure 6.5. Data collection with a simplified example.

6.5 Data Collection Framework
To automatically derive source inputs (Step 3 in Fig. 6.1), we extended the Crawljax Web crawler [Mes-
bah et al., 2012, Mesbah et al., 2008]. Crawljax explores the user interface of a Web system (e.g.,
by requesting URLs in HTML anchors or by entering text in HTML forms). It generates a graph
whose nodes represent the system states reached through the user interface and edges capture the
action performed to reach a given state (e.g., clicking on a button). Crawljax detects states based
on the content of the displayed page. Our extension relies on the edit distance to distinguish system
states [Levenshtein, 1966]. We keep a cache of the HTML page associated to each state detected by
Crawljax. When a new page is loaded, our extension computes the edit distance between the loaded
page and all the pages associated to the different system states. When the distance is below a given
threshold (5% of the page length), we assume that two pages belong to the same state. If a page does
not belong to any state, Crawljax adds a new state to the graph. Crawling stops when no more states
are encountered or a timeout is reached.

Our Crawljax extensions enable replicating and modifying portions of a crawling session. In
addition to (i) the Crawljax actions and (ii) the XPath of the elements targeted by the actions (e.g., a
button being clicked on), our extension records (iii) the URLs requested by the actions, (iv) the data
in the HTML forms, and (v) the background URL requests. This enables, for example, replicating
modified portions of crawling sessions that request URLs not appearing in the last Web page returned
by the system. To crawl the system under test, we require only its URL and a list of credentials.
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Fig. 6.5 exemplifies the data collection steps. First, Crawljax generates the graphs of the system
under test. Second, source inputs are automatically derived from the graphs. For example, an input
sequence is a path from the root to a leaf of a Crawljax graph in depth-first traversal. The source
inputs are later queried by the SMRL functions (see Section 6.6). For example, Input(i) returns the
ith input sequence; User(i) returns the ith unique login credentials in the input sequences.

In addition to Crawljax, our toolset also processes manually implemented test scripts to generate
additional source inputs. It processes test scripts based on the Selenium framework [web, 2018] and
derives a source input from each. We rely on test scripts to exercise complex interaction sequences not
triggered by Crawljax (see Section 6.9). Crawljax, instead, performs an almost exhaustive exploration
of the Web interface, which is typically not done by test scripts. Engineers can reuse scripts developed
for functional testing, or define new ones.

6.6 Metamorphic Testing Framework
We automatically perform testing based on the executable MRs in Java and the data collected by the
data collection framework (Step 4 in Fig. 6.1). Fig. 6.6 presents our testing algorithm. The algorithm
takes as input a MR and a data provider exposing the collected data (source inputs). We first process
the bytecode of the MR to identify the types of source inputs referenced by the relation (e.g., Input
and User). This is achieved by the function extractSourceInputTypes (Line 2) which identifies
the calls to the data representation functions using the ASM static analysis framework [ASM, 2018].
We ensure that all possible combinations of available source inputs are stressed during the execution
of the relation (e.g., we would like to access all available URLs with all configured users). This is
achieved by the function iterateOverInputTypes (Line 3). The function iterates over all available
items for a given input type (e.g., all available users) and is recursively invoked for each input type in
the MR.

The function iterateOverInputTypes is driven by the methods exposed by the data provider
(Lines 7 and 8). The data provider works as a circular array that provides, in each iteration of
iterateOverInputTypes, a different view on the collected data. This is achieved through the
method nextView (Line 8), which, for N input items of a given type (e.g., User), generates N different
views, with items shifted by one position.

After the views are generated, the MR is executed (Line 12). Follow-up inputs are generated
within the execution of the MR by the calls to the operator EQUAL. For example, in Fig. 6.2, the
operator EQUAL makes Input(2) refer to a copy of the input sequence returned by the function
changeCredentials.

When the relation does not hold (Lines 13 and 14), the function addFailure stores the failure
context information (i.e., source-inputs, follow-up inputs, and system outputs). To minimize the time
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Require: MR, the bytecode of the metamorphic relation to be executed
Require: dataProvider, an object that exposes the data collected by the crawlers
Ensure: Failures, a list of failing executions with contextual information

1: function EXECUTEMETAMORPHICTESTING(MR, dataProvider)
2: srcTypes← extractSourceInputTypes(MR)
3: iterateOverInputTypes(MR, dataProvider, 0, dataTypes)
4: return Failures
5: end function
6: function ITERATEOVERINPUTTYPES(MR, dataProvider, i, dataTypes)
7: while dataProvider.hasMoreViews(dataTypes[i]) do
8: dataProvider.nextView(dataTypes[i])
9: if (i < dataTypes.lenght) then //need to iterate over other types

10: iterateOverInputTypes(MR,dataProvider, i+1,srcTypes)
11: else //we have set a view for every input type in the relation
12: result = MR.run() //execute the metamorphic relation
13: if ( result == false) //the MR does not hold
14: addFailure(Failures,dataProvider) //trace the failure
15: end if
16: end while
17: end function

Figure 6.6. Metamorphic testing algorithm.

iterateOverInputTypes(..,1,..)

nextView("Input")
iterateOverInputTypes(..,2,..)

nextView("User")

MR.run()

nextView("User")

MR.run()

nextView("Input")

iterateOverInputTypes(..,2,..)

nextView("User")

MR.run()
addFailure()

nextView("User")

...

Call # Input Type i-th item
[1] Input <A1,A2> <A1,A3> <A1,A4>

[2] User <"devel"> <"tester">

[3] User <"tester"> <"devel">

[4] Input <A1,A3> <A1,A4> <A1,A2>

[5] User <"devel"> <"tester">

Input(1) → <A1,A2>
User(2) → <"devel">
cannotReachThroughGUI(<"devel">,"../login")→false
cannotReachThroughGUI(<"devel">,"../startSlave")→true
changeCredentials(..)→<{"../login";user="devel";pwd=... >
Input(2) →<{"../login";user="devel";pwd="abc"},...>
Output(Input(1),2) → <HTMLofStartSlave>
Output(Input(2),2) → <HTMLofStartSlave>
return false

Sequence of functions 
invoked by the metamorphic 

testing algorithm

Legend: → val : f(..) : function returned value/object < .. > : complex data type with nested fields

Content of the views generated by the different 
calls to method 'nextView'

Method calls and data generated within 'MR.run()'

[1]

[2]

[3]

[4]

[5]

Figure 6.7. Data processing for the relation in Fig. 6.2.

spent by engineers in analyzing failures triggered by distinct follow-up inputs exercising a same vul-
nerability, we report only failures that perform HTTP requests (e.g., accessing a URL) not generated
by input sequences that led to previously reported failures.

Function nextView is iteratively invoked until all the items of a given input type are processed
(Line 7). This guarantees that all input item combinations are used. For the data functions providing
random values, nextView returns 100 different views by default. Since this may lead to combinatorial
explosion, we test each MR for a maximum of 24 hours.
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Figure 6.8. Example metamorphic test case.

Fig. 6.7 exemplifies the execution of the relation in Fig. 6.2. The table on the left represents the
sequence of functions invoked by our algorithm. In this example, two views for User are inspected for
each view of Input. The first two invocations of MR.run return true (not shown in Fig. 6.7) because
the login and stats pages have been accessed by both users devel and tester and thus the implication
holds. The third invocation of MR.run returns false because the output page for the startSlave URL is
the same for the two input sequences and thus the relation does not hold. To determine if Web pages
are equal, we rely on edit distance. Our framework relies on JUnit [JUn, 2017] to integrate MT into
traditional testing environments (see Fig. 6.8). Engineers need only to configure the data provider and
select the MR (s) to be tested.

6.7 Catalog of Metamorphic Relations
We derived a catalog of MRs from the activities described in the OWASP book on security test-
ing [Meucci and Muller, 2014]. The book provides detailed descriptions of 90 testing activities
(hereafter OWASP testing activities) for Web systems; each OWASP testing activity targets a spe-
cific vulnerability. For example, for the bypass authorization schema vulnerability, OWASP suggests
to collect links in administrative interfaces and to directly access the corresponding URLs by using
credentials of other users. Based on this suggestion, we defined the MR in Fig. 6.2.

Some OWASP testing activities can be performed in multiple ways. Therefore, we have multi-
ple relations for those activities. Also, not all the OWASP testing activities benefit from MT. The
capabilities of MT are discussed in Section 6.9. We defined 22 MRs which automate 16 OWASP
activities.

The MRs in our catalog rely on the observation that security testing might be performed using
follow-up inputs that cannot be generated by interacting with the GUI of the system but conform
with the input format of the system and match its configuration (e.g., the URLs requested by the
unauthorized user refer to existing system resources). We inherit from mutational fuzzing the idea
of generating follow-up inputs by altering valid source inputs. However, to generate inputs that are
both valid and match the system configuration, instead of relying on random values, we alter source
inputs using the data provided by the SMRL Web-specific functions, which return domain-specific
information (e.g., protocol names) and crawled data. Finally, by capturing properties of the output
generated by source and follow-up inputs we identify vulnerabilities that cannot be detected with
implicit oracles.
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Table 6.3. Excerpt of the metamorphic relation catalog for security testing.

OTG-AUTHN-001: Testing for credentials transported over an encrypted chan-
nel

Description: A login operation should not succeed if per-
formed on the
http channel. The 1st parameter of the operator
IMPLIES is a boolean expression with three clauses
joined with logical conjunctions. The 1st clause checks
if the current action performs a login. The 2nd clause
defines the follow-up input. The 3rd clause changes the
channel of the login action in the follow-up input. The
2nd parameter of IMPLIES checks if the output gener-
ated by the login operation is different in the two cases.

OTG-AUTHZ-001: Testing for directory traversal/file include Description: A file path passed in a parameter should
never enable a
user to access data that is not provided by the user in-
terface. This metamorphic relation contains two nested
loops; the first iterates over the actions in the input se-
quence, the second iterates over the parameters of the ac-
tion. The 1st parameter of the operator IMPLIES is a
boolean expression with two clauses joined with a logical
conjunction. The 1st clause defines a follow-up input that
is a copy of the source input. The 2nd clause set the value
of a parameter to a random file path. The 2nd parameter
of IMPLIES verifies the result. It is implemented as an
OR operation where the 1st parameter verifies that the
follow-up input leads to an error page. The 2nd parame-
ter deals with the case in which the generated request is
valid, and verifies that the returned content is something
that the user has the right to access. The framework eval-
uates the MR as many times as needed to provide 100
different random file paths to the parameters of the action
in the position pos.

OTG-SESS-003: Testing for session fixation Description: A signup action should always lead to a new
session ID,
even when performed by a user who is already logged-
in. This metamorphic relation contains two nested loops
iterating over the actions of two distinct source input se-
quences (i.e., Input(1) and Input(2) ). The first
loop looks for a signup action (i.e., ‘signup’), the second
looks for an action (i.e., ‘f’) following a login. The 1st
parameter of the operator IMPLIES is a boolean expres-
sion with three clauses joined with a logical conjunction.
The 1st clause checks if we are in the presence of a signup
action. The 2nd clause checks if the action ‘f’ follows a
login. The 3rd clause defines a follow-up input by copy-
ing the signup action after the action ‘f’ in the source
input Input(2). The 2nd parameter of IMPLIES ver-
ifies the result by checking that the session ID following
the signup action is different than the one of the previous
page.

Notes: Our catalog of metamorphic relations covers also the following OWASP activities: testing for HTTP Strict Transport Security
(OTG-CONFIG-007), testing for weaker authentication in alternative channel (OTG-AUTHN-010), testing for privilege escalation (OTG-
AUTHZ-003), testing for bypassing authentication schema (OTG-AUTHN-004), testing for insecure direct object references (OTG-AUTHZ-
004), testing for logout functionality (OTG-SESS-006), test session timeout (OTG-SESS-007), testing for Session puzzling (OTG-SESS-
008), testing for HTTP verb tampering (OTG-INPVAL-003), testing for HTTP parameter pollution (OTG-INPVAL-004), testing for weak
encryption (OTG-CRYPST-004), test number of times a function can be used (OTG-BUSLOGIC-005), test for bypass authorization schema
(OTG-AUTHZ-002, see Fig. 6.2).
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Table 6.3 presents an excerpt of our catalog along with a description of each MR. The com-
plete catalog of MRs is reported in Appendix B. All the MRs in the catalog are expressed by means
of an implication (the operator IMPLIES). The operator EQUAL is used to define follow-up inputs.
It indicates that the follow-up input (typically Input(2)) is a copy of the source input (usually
Input(1)) except for the differences made by the function calls following the operator. For example,
in OTG_AUTHN_001, the follow-up input is equal to the source input except for one action of the input
sequence which should be performed on the HTTP channel.

All the MRs include a loop, which enables defining multiple follow-up inputs by iteratively mod-
ifying different actions of the source input. For example, OTG_AUTHN_001 works with all the login
actions observed in the source input sequence. The function isLogin() returns true only if the current
action performs a login; otherwise, the implication trivially holds and no follow-up input is generated.

In our catalog, the right-hand side of the implication usually captures the relation between the
outputs of the source and follow-up inputs. In OTG_AUTHN_001, it is implied that the output for the
follow-up input (which performs a login on the unencrypted HTTP channel) should be different than
the output for the source input because it should not be possible to login using the HTTP channel.

6.8 Tool Support
The MST toolset supports our approach for security testing based on MRs. Fig. 6.9 provides an
overview of our toolset. It consists of an Eclipse plugin, a library (i.e., SMRL.tar), and a Web
crawler.

The Eclipse plugin provides the Editor for our SMRL language and automatically generates Java
code from MRs (see Section 6.4). The Editor supports the auto-completion functionality to facilitate
the specification of MRs. The SMRL compiler, which is extended from Xbase (see Section 6.4),
automatically generates a Java class corresponding to each MR without any request to compile the
MR.

The MST library (i.e., SMRL.tar) provides utility functions supporting the writing of MRs such
as data representation functions (see Section 6.3.2), Boolean Operators (see Section 6.3.3), and Web-
Specific functions (see Section 6.3.4). Moreover, our library supports functionalities of MST frame-
work (see Section 6.6) such as the data provider, and MR, MRBaseTest classes.

The MST toolset relies on JUnit to automatically execute MT within Eclipse through our library.
The Eclipse workspace is used to store all the data, which includes MRs and source inputs. Further-
more, the MST toolset includes the catalog of 22 system-agnostic MRs (sec Section 6.7).

The MST toolset, and usage instructions are available on the toolset’s website at: https://
sntsvv.github.io/SMRL/.
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Figure 6.9. Components of the MST tool.

6.9 Evaluation
Our evaluation addresses the following research questions:

• RQ1. To what extent can metamorphic testing address the oracle problem in the context of
security testing? We aim to determine which types of security vulnerabilities can be addressed
by our solution.

• RQ2. Is the proposed solution effective? The goal is to assess whether the proposed solution
enables, in a reliable manner, the automated detection of security vulnerabilities.

6.9.1 RQ1 - Targeted Types of Security Vulnerabilites

To answer RQ1, we analyzed the security testing activities recommended by OWASP [Meucci and
Muller, 2014]. For each activity, we identified state-of-the-art oracle automation strategies. Table 6.4
lists the number of activities automated by these strategies. Details are available online [Web, 2019].

Implicit oracle. Some activities can be automated by random test input generation strategies
relying on implicit oracles. For instance, testing for buffer overflow [OWASP, 2017d] is automated
by looking for system crashes in response to lengthy inputs.

Catalog-based. We can automate some activities based on a predefined catalog in which we
specify inputs and oracles. For instance, we can use a catalog to perform a dictionary attack for
testing for default credentials [OWASP, 2017a].
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Table 6.4. Oracle automation strategies for security testing
Oracle automation strategy # OWASP activities automated
Implicit oracle 2
Catalog-based 6
No oracle needed 19
Manual oracle 25
Vulnerability-specific 22
Metamorphic testing 16

Table 6.5. Vulnerability types addressed by SMRL MRs
Vulnerability type #MRs
Injection 0
Broken Authentication 6
Sensitive Data Exposure 5
XML External Entities(XEE) 0
Broken Access Control 7
Security Misconfiguration 3
Cross-site scripting (XSS) 0
Insecure Deserialization 0
Vulnerable Components 1
Insufficient Logging 0

No oracle needed. Some activities collect data to reverse engineer the system under test. They
do not verify security properties of the system and thus do not have an oracle problem. For instance,
the activity mapping application architecture [OWASP, 2017c] identifies the components of a Web
system.

Manual oracle. Some activities require humans to determine vulnerabilities based on system
specifications. For instance, when testing for the circumvention of work flows [OWASP, 2017b] on
pay-per-view systems, only a human can decide if pending transactions should grant service access,
based on specifications.

Vulnerability-specific approaches. Some activities can be automated by state-of-the-art tools such
as Burp Suite (BS) [Portswigger, 2018a] and thus may not necessarily benefit from MT. These are
the OWASP testing activities that detect cross site scripting and code injection vulnerabilities. Other
activities are either not targeted or partially automated. For example, BS does not automate oracles
for OTG-AUTHZ-002 [Portswigger, 2018c]. BS enables engineers to compare the content of site
maps [Portswigger, 2018b] recorded in different user sessions (e.g., with and without certain privi-
leges). Unfortunately, it requires that engineers manually identify the privileged resources and inspect
the differences in the observed system outputs, which is error prone (e.g., overlooking privileged re-
sources) and expensive. Even BS plug-ins using Crawljax to build site maps do not address the
oracle problem but generate JUnit tests that simply retrieve the mapped resources [Liverani, 2018].
With SMRL, engineers, instead, can focus on the specification of system-level properties without
performing manual testing activities. Testing activities, including oracles, are automated by the MT
framework.

Metamorphic testing. All the other OWASP testing activities not addressed by the approaches
above can be automated by MT. In general, these activities verify if a resource of the system under test
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can be accessed under circumstances that should prevent it (e.g., unauthenticated user or unencrypted
channel). They benefit from MT since such activities entail the verification of all system resources,
which are numerous and present specific security properties (e.g., each Web page might be accessed
by a different set of users). For these activities, we provide a set of MRs (see Table 6.3).

Based on our analysis, out of 90 OWASP testing activities, 19 are not affected by the oracle
problem, 30 are automated by state-of-the-art approaches, and 41 cannot be addressed by existing
approaches. MT can automate 16 (39%) of these 41 activities. Therefore, we conclude that MT can
play a key role in addressing the oracle problem in security testing.

To further characterize our catalog of MRs, we report in Table 6.5 the number of MRs targeting
the vulnerability types in the OWASP top ten list [OWA, 2020b]. The MRs in our catalog can discover
five of these ten vulnerability types, and thus have a broad applicability scope. Note that MRs can
discover injection vulnerabilities [Huang et al., 2003] and, potentially, also XSS and XEE because
they all concern injected code. In this chapter we specifically target vulnerabilities not addressed by
existing oracle automation approaches, which is the reason why we ignored injections. We leave the
investigation of other vulnerability types to future work.

6.9.2 RQ2 - Effectiveness

We applied the proposed approach MST to discover vulnerabilities in three case studies: the commer-
cial Web system developed in the context of the EDLAH2 project [EDLAH2, 2017a], and two open
source systems Jenkins [Eclipse Foundation, 2020] and Joomla [Joo, 2020]. As mentioned in Chap-
ter 2, EDLAH2 is the entry point of a healthcare service developed by our industry partner [MiC,
2017]. The second case study, Jenkins, is an open-source continuous integration server. The third
case study, Joomla, is an open-source content management system. We used the latest EDLAH2 ver-
sion, Jenkins version 2.121.1, and Joomla version 3.8.7. EDLAH2 is affected by 12 vulnerabilities
discovered by manual testing following the OWASP guidelines (See 5.8.1). We selected the Jenkins
and Joomla versions affected by all the vulnerabilities triggerable from the Web interface, discovered
in 2018, and reported in the Common Vulnerabilities and Exposures (CVE) database [MITRE Cor-
poration, 2020] after June 1st, 20181. Jenkins 2.121.1 and Joomla 3.8.7 are respectively affected by
20 and 16 such vulnerabilities.

Our approach addresses 36% (4 out of 11), 40% (8 out of 20), and 31% (5 out of 16) of the
vulnerabilities affecting EDLAH2, Jenkins, and Joomla, respectively. This is consistent with our
analysis in RQ1.

For each system under test, we configured our data collection framework with multiple users
having different roles. We used two credentials for EDLAH2, four credentials for Jenkins, and six
credentials for Joomla. For each role, we executed the data collection framework to crawl the system
under test for a maximum of 300 minutes. In total, the data collection took 1000 minutes for Jenkins,

1after May 20, 2018 for the case of Joomla

93



Chapter 6. Metamorphic Security Testing for Web Systems

Table 6.6. Summary of RQ2 results grouped by data collection method.

Case study Vulnerabilities Crawljax Crawljax & Manual
Specificity Sensitivity Specificity Sensitivity

EDLAH2 4 * 100.00% 75.00% 100.00% 100.00%
Jenkins 2.121.1 8 ** 99.888% 50.00% 99.893% 75.00%
Joomla 3.8.7 2 *** 99.525% 50.00% 99.573% 100.00%
Overall 14 99.817% 57.14% 99.826% 85.71%

* See Section 5.8.1
** [MITRE, 2018h, MITRE, 2018g, MITRE, 2018f, MITRE, 2018e, MITRE, 2018d, MITRE, 2018c, MITRE, 2018b,
MITRE, 2018a]
*** [MITRE, 2020a, MITRE, 2020b]

2280 minutes for Joomla, and 40 minutes for EDLAH2. For EDLAH2 and for the anonymous role in
Jenkins and Joomla, Crawljax completed in less than 300 minutes because all states were visited. The
data collection time for Joomla was long because Joomla has two different user interfaces (i.e., user
and administrative interfaces). 73, 156, and 147 input sequences were identified for EDLAH2, Jenk-
ins, and Joomla, respectively. Also, we implemented Selenium-based test scripts to exercise use cases
not covered by Crawljax. This led to one, two, and one test scripts for EDLAH2, Jenkins, and Joomla,
respectively. We tested the three systems against the MRs that target the vulnerabilities affecting them
(4 for EDLAH2, 8 for Jenkins, and 2 for Joomla). In the case of Joomla, we considered only 2 out of
the 5 vulnerabilities addressed by the approach because, due to the lack of detailed description of the
attack scenarios, we could manually replicate only 2 out of 5 vulnerabilities. Our replicability pack-
age [Web, 2019] does not include EDLAH2 data because of confidentiality restrictions. Comparing
with state-of-the-art tools is infeasible because they do not provide automated oracles.

We measured specificity and sensitivity [Lane, 2003]. Specificity (i.e., the true negative rate)
is the ratio of follow-up inputs, generated by our framework, that do not trigger any vulnerability
and (correctly) do not lead to any MT failure. In other words, 1 - specificity measures the time
spent by engineers on unwarranted MT failures. Sensitivity (i.e., the true positive rate) is the ratio
of vulnerabilities being discovered. Based on the existing vulnerability reports for the two systems
considered, we identified the inputs that should uncover vulnerabilities. MT failures are expected for
these inputs to be true positives. For each MT failure, we manually verified if the test input actually
triggered any vulnerability (true positive). Table 6.6 summarizes the results obtained with different
data collection methods (i.e., based on Crawljax only or integrating Crawljax and manual test scripts).
Each MR was tested in less than 12 hours, except five MRs run more than 24 hours. Performance
optimizations are part of our future work.

We observe that the approach has extremely high specificity (99,826%), which indicates that only
a negligible fraction of follow-up inputs inspected lead to false alarms (76 out of 43700, ∼0.17%).
False alarms are due to limitations in Crawljax, which, in cases of Jenkins and Joomla (i.e., 36 and
40 false alarms, respectively), did not traverse all the URLs provided by the GUI, for all the users.
Consequently, MRs concerning authorization vulnerabilities fail. However, it is easy to determine
that the URLs causing the false alarms should be accessible to all the users.
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Sensitivity is high when data collection is based on both Crawljax and manual test scripts (100%
for EDLAH2, 75% for Jenkins, and 100% for Joomla). Since sensitivity reflects the fault detection
rate (i.e., the portion of vulnerabilities discovered), we conclude that our approach is highly effective.
Overall, it detects 85.71% of the vulnerabilities targeted in our evaluation. More precisely, the ap-
proach identifies 146 distinct inputs sequences triggering these vulnerabilities. The approach misses
two of the eight targeted vulnerabilities in Jenkins. One of them can be detected only if the server con-
figuration is modified during test execution [MITRE, 2018f], which is not supported by our toolset.
The other one cannot be reproduced since it concerns the termination of Jenkins’ reboot [MITRE,
2018h], which is not interruptible when Jenkins is not overloaded (our case).

When the data collection relies on Crawljax only, sensitivity drops below 50% for both Jenkins
and Joomla. This occurs since Jenkins requires quick system interactions to exercise certain features
(e.g., first writing a valid Unix command in a textbox to enqueue a batch job, and then quickly pressing
a button to delete it from the queue). For the case of Joomla, data collection is complicated by the
presence of dynamic menus based on JavaScript. For instance, it might be necessary to first click on
the menu Components to display the list of sub-menus, and then quickly click on the sub-menu Tags,
which is unlikely performed by a Web crawler that clicks on randomly selected elements in the page.
However, even when the data collection is based on Crawljax only, the overall fault detection rate is
satisfactory (i.e., 57.14%), with 8 out of 14 vulnerabilities being detected. Automatically detecting
57.14% of the vulnerabilities not targeted by state-of-the-art approaches, without the need for any
manual test script, is encouraging.

The benefits of our approach mostly stems from the MRs in our catalog being reusable to test any
Web system. Furthermore, the required manual test scripts are few and inexpensive to implement.
For the Web systems above, we manually wrote four test scripts which only include 17 actions in
total. This is very limited in comparison to the total of 43700 inputs sequences (314907 actions)
automatically generated by our approach to test the three systems. A traditional way to verify the
same scenarios would require 43700 manually implemented test scripts, each providing a distinct
input sequence, and a dedicated oracle (e.g., an assertion statement). Therefore, we conclude that our
approach provides an advantageous cost-effectiveness trade-off compared to current practice.

Besides known vulnerabilities, our MST toolset assists in discovering a new vulnerability of Jenk-
ins – Stored XSS vulnerability in file parameters. This new vulnerability of Jenkins enables a mali-
cious user (with the ’job build’ permission) to make administrators inadvertently perform privileged
actions (i.e., delete an existing job in the system). This new vulnerability has been reported in the
CVE vulnerability database with the identification CVE-2020-2162 [Sto, 2020].

6.9.3 Threats to Validity

The main threat to validity in our evaluation concerns the generalizability of the conclusions. Re-
garding RQ1, to mitigate this threat and minimize the risk of considering a set of testing activities
that is not representative of Web application testing, we considered testing activities proposed by a
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third party organization (i.e., OWASP). As for RQ2, to mitigate this threat, we selected systems that
are representative of modern Web systems but are very different from both a technical and process
perspective.

6.10 Conclusion
In this chapter, we presented an approach that enables engineers to specify metamorphic relations
(MR) capturing security properties of Web systems, and that automatically detects security vulnera-
bilities based on those relations. Our approach aims to alleviate the oracle problem in security testing.

Our contributions include (1) a DSL and supporting tools for specifying MRs for security testing,
(2) a set of MRs inspired by OWASP guidelines, (3) a data collection framework crawling the system
under test to automatically derive input data, and (4) a testing framework automatically performing
security testing based on the MRs and the input data [Web, 2019].

Our analysis of the OWASP guidelines shows that MST can automate 39% of the security test-
ing activities not currently targeted by state-of-the-art techniques, which indicates that the approach
significantly contributes to addressing the oracle problem in security testing. Our empirical results
with three commercial and open source case studies show that the MST approach requires limited
manual effort and detects 85.7% of the targeted vulnerabilities, thus suggesting it is highly effective.
Moreover, our MST approach helps to discover a new vulnerability.
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Chapter 7

Applicability of Proposed Approaches and
Testability Guidelines

In this chapter, we investigate which types of security vulnerabilities can be identified by the ap-
proaches proposed in this PhD dissertation (i.e.,MCP and MST), and what guidelines (hereafter,
testability guidelines) should be followed to adopt these approaches in software projects.

We investigate the following Research Questions (RQs):

• RQ1. To what extent is MCP applicable in the context of security testing? MCP has been
designed and implemented to test the user-system interactions involving some malicious activi-
ties. Not every type of vulnerability can be discovered through a sequence of interactions (e.g.,
some may require program analysis). This RQ aims to determine, in a systematic way, the types
of security vulnerabilities that can and cannot be addressed by MCP.

• RQ2. Is it possible to define testability guidelines that enable effective test automation with
MCP? Software testability is the degree to which a software artifact (i.e., a software system,
module, requirements or design document) supports its testing [Voas and Miller, 1995]. A
higher degree of testability results in decreased test effort, increased quality of test activities, a
higher probability of findings software defects and, as a result, higher quality software. This RQ
investigates if it is possible to identify testability guidelines that assist engineers in designing,
implementing, and configuring their software to enable test automation with MCP.

• RQ3. To what extent is MST applicable in the context of security testing? MST is based on
metamorphic relations that leverage source inputs that are sequences of inputs for the system
under test that are either collected by means of a Web-crawler or encoded in manually im-
plemented test scripts. In general, it may not be possible to define a metamorphic relation to
determine if the system is vulnerable; also, some vulnerabilities may not be detected by simply
altering the sequence of source inputs in a predefined manner but may be exploited only after
identifying specific inputs by means of program analysis. For these reasons, the objective of
this RQ is to determine the types of security vulnerabilities that can and cannot be addressed by
MST.
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• RQ4. Is it possible to define testability guidelines that enable test automation with MST? This
RQ studies if it is possible to identify testability guidelines that assist engineers in designing,
implementing, and configuring their software to enable test automation with MST.

• RQ5. How do MCP and MST compare in terms of applicability? This research question aims
to investigate if the two approaches are complementary by discussing the type of vulnerabilities
detected by both or by just one of them.

• RQ6. How do MCP and MST compare in terms of testability guidelines? This research
question aims to investigate if the same testability guidelines enable applying both MCP and
MST.

7.1 Subject of the Study
To address our research questions in a systematic way, we study the list of weaknesses reported in the
Common Weakness Enumeration (CWE) database [CWE, 2020a].

We provide the following definitions of vulnerability and weakness since their definitions in the
CWE framework [CWE, 2020l] lack clarity1. A vulnerability is a specific fault of the system un-
der test that causes the system to not meet its security requirements. A weakness represents a fault
type (i.e., the type of a vulnerability). It describes a human error made in the analysis, design, or
implementation of the system that may affect the degree to which the system meets its security re-
quirements.

The CWE database is organized into distinct views, each view grouping weaknesses according
to a different set of categories, which are common security architectural tactics [CWE, 2020n], soft-
ware development concepts [CWE, 2020q], research concepts [CWE, 2020p], software fault pat-
terns [CWE, 2020k], most dangerous errors [CWE, 2020m], and hardware design [CWE, 2020o].
Other views map the weaknesses to some security-related catalogs (e.g., OWASP Top 10 [OWA,
2020a] and SERT CEI C Coding standards [CWE, 2020j]).

The CWE view for common security architectural tactics organizes weaknesses according to se-
curity design principles. This view has twelve categories representing the individual security design
principles that are part of a secure-by-design approach to software development. It covers, in total,
223 weaknesses. The security design principles assist engineers in identifying potential mistakes that
can be made when designing software [Santos et al., 2017a, Santos et al., 2017b]. A weakness is thus
the result of a design principle not being followed. For instance, the weaknesses in design principle
Audit are related to audit-based components in the system. These components deal with logging user
activities to identify malicious users and modifications to the system [CWE, 2020n]. The views for

1The definitions provided by CWE are unclear since they rely on synonyms to distinguish vulnerability and weakness,
as follows: ‘Weaknesses are flaws, faults, bugs, and other errors in system design, architecture, code, or implementation
that if left unaddressed could result in systems and networks, and hardware being vulnerable to attack. Weaknesses can
lead to vulnerabilities. A vulnerability is a mistake in software or hardware that can be used by a malicious user to gain
access to a system or network [CWE, 2020l]’.
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Table 7.1. Subset of the security weaknesses in the CWE view for common security design principles and the
applicability of MCP and MST.

Design
principle Weakness CWE

Top 25
OWASP
Top 10 Generic Addressed by Testability Feature (TF) /

Reason cannot apply (R)
MCP MST MCP MST

Audit Omission of Security-relevant
Information

No No Yes No No R2 R2

Obscured Security-relevant In-
formation by Alternate Name

No No Yes Yes No TF1, TF2 R5

Authenticate
Actors

Improper Authentication Yes Yes Yes Yes Yes TF3 TF3
Weak Password Recovery
Mechanism for Forgotten
Password

No No Yes No No R3 R3

Authorize
Actors

Improper Privilege Manage-
ment

Yes No Yes Yes Yes TF3, TF7 TF3, TF7

Process Control No No Yes No No R1 R1

Encrypt Data Small Space of Random Values No No Yes No No R0, R2 R0, R2
Unprotected Transport of Cre-
dentials

No No Yes Yes Yes TF9 TF9

Limit Access Improper Restriction of XML
External Entity Reference

Yes Yes Yes Yes No TF13 R6

External Control of File Name
or Path

Yes No Yes Yes Yes TF3 TF3

Manage User
Sessions

J2EE Bad Practices: Non-
serializable Object Stored in
Session

No No No No No R1 R1

Insufficient Session Expiration No No Yes Yes Yes TF4, TF11 TF4, TF11
Validate
Inputs

Cross-site Scripting Yes Yes Yes Yes No TF13 R6
Deserialization of Untrusted
Data

Yes Yes Yes No No R2 R2

software development concepts and hardware design organize weaknesses based on the types of errors
that affect the software implementation (e.g., illegal pointer dereferences) and the hardware design
(e.g., faults in semiconductor logic), respectively. The views for software fault patterns and research
concepts group implementation errors into categories capturing fault patterns [Ben A. Calloni, 2011]
or high level descriptions of the faulty software behaviour (e.g., incorrect comparison, or improper
access control).

In our analysis, we focus on the weaknesses in the CWE view for common security architectural
tactics [CWE, 2020n], the weaknesses in the view for the CWE Top 25 most dangerous software
errors (CWE Top 25) [CWE, 2020m], and the weaknesses in the view for the OWASP Top 10 Web
security risks (OWASP Top 10) [CWE, 2020r]. We select the common security architectural tactics
view because it enables us to determine the security design principles that can be verified with MCP
or MST. We do not consider the view for software development concepts because both MCP and
MST are specifications-based (i.e., misuse case specification and metamorphic relations), black-box
testing approaches, that do not aim to discover specific implementation errors (e.g., type errors). The
specifications processed by MCP capture how a malicious user may behave, they are not inspired by
the specific underlying implementation errors. For the same reason we ignore the views on software
fault patterns, research concepts, and mappings to coding standards [CWE, 2020j] since they focus
on software implementation. We also ignore the CWE view for hardware design since MCP and MST
do not address hardware vulnerabilities.
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However, we include the CWE Top 25 and OWASP Top 10 views to assess to what extent MCP
and MST can address the most widespread and critical security vulnerabilities. The CWE Top 25
view lists twenty-five most widespread weaknesses, which are often easy to find and exploit. These
weaknesses are considered dangerous because they often allow attackers to completely take over
the control of software, steal data, or prevent software from working [CWE, 2020m]. The OWASP
Top 10 [OWA, 2020a] is the list of the ten most common web application security risks edited by
the Open Web Application Security Project [OWASP, 2016], i.e., an online community producing
freely-available articles, methodologies, documentation, tools, and technologies in the field of web
application security. It is updated every three to four years. The most up-to-date version concerns 43
weaknesses grouped into 10 categories [CWE, 2020r].

To provide concrete examples of the weaknesses in our analysis, we report, in Table 7.1, a subset
of the weaknesses in the CWE view for common security architectural tactics.We refer to Table 7.1 in
the rest of this chapter. Columns Design principle and Weakness report the security design principle
and the name of the weakness, respectively. Columns CWE Top 25 and OWASP Top 10 indicate
whether a weakness also belongs to the CWE Top 25 view or the OWASP Top 10 view, respectively.
We also indicate if the weakness can be addressed by MCP or MST. The remaining columns refer to
concepts introduced later in this chapter.

7.2 RQ1: MCP Applicability

7.2.1 Measurements

To respond to RQ1, we compute, for each category in the views, the percentage of weaknesses that
can be automatically discovered by MCP.

Weaknesses are systematically analyzed with the objective of writing, for each one, one or more
misuse case specifications. For each weakness, we first inspect its description, its demonstrative
examples, the description of the concrete vulnerabilities (CVE) and the common attack patterns
(CAPEC) [CAP, 2020b] associated with the weakness. Common attack patterns are unstructured
NL descriptions of the activities performed by malicious users to exploit a vulnerability. They re-
semble misuse case specifications, except that they are not written in a structured form that can be
automatically analyzed by MCP. However, they facilitate the writing of misuse case specifications.

Based on the information collected from our inspection, we assess whether it is possible to write,
using the RMCM template, a misuse case specification capturing a malicious user-system interaction.
Each time we cannot do so, we keep track of the reasons preventing the writing of a specification.

We then report the percentage of the weaknesses that can be automatically discovered by MCP.
Since some of the weaknesses in the CWE database are specific to certain types of systems (e.g., Java
Enterprise [J2E, 2020]), we identify weaknesses that refer to specific systems. We then distinguish be-
tween the results achieved with all the weaknesses (i.e., generic and specific), and the results achieved
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with the generic weaknesses only. In Table 7.1, weakness J2EE Bad Practices: Non-serializable Ob-
ject Stored in Session is an example of a system-specific weakness.

To better characterize the weaknesses that cannot be discovered by means of MCP, we analyze the
distribution of the reasons why MCP cannot be applied, across the categories of the views considered
in our analysis. Finally, we discuss the percentage of the weaknesses belonging to the CWE Top 25
and OWASP Top 10 weaknesses lists.

7.2.2 Results

Table 7.2 presents the summary of the CWE Security Design Principles and related security weak-
nesses addressed by MCP. The first column in Table 7.2 lists the security design principles appearing
in the common security architectural tactics view. The second and third columns give, for each design
principle, the overall number of weaknesses and the number of generic weaknesses, respectively. The
fourth and fifth columns report the number and percentage of weaknesses that can be automatically
discovered by MCP. In total, 131 out of all 223 weaknesses (59%) and 103 out of 164 generic weak-
nesses (63%) in the view can be addressed by MCP. These numbers show that MCP enables engineers
to automatically discover a large portion of weaknesses. In addition, the higher percentage achieved
for generic weaknesses shows that it performs better in the general case. Readers can download the
details of our analysis for the 223 weaknesses from the MCP page [MCP, 2018].

MCP can automatically discover a high percentage of weaknesses (above 80%) related to security
design principles Lock Computer, Validate Inputs, Audit, and Identify Actors (i.e., 100%, 85%, 83%,
and 83%, respectively). These weaknesses are about external systems or actors with invalid certifica-
tion trying to access the system (Identify Actors), their logging activities (Audit), providing malformed
input data (e.g., code injection) to the system (Validate Inputs), or performing multiple attempts to
access a given resource (Lock Computer). On the other hand, MCP addresses a low percentage of
the weaknesses (below 20%) related to security design principles Limit Exposure and Encrypt Data
(i.e., 0% and 18%, respectively). Our approach MCP is mainly used to test user-system interactions
involving malicious activities. The weaknesses related to Limit Exposure and Encrypt Data are, on
the contrary, about the quality of data encryption and the information that the system exposes, which
require either static or dynamic program analysis with a human assessing the analysis outputs.

The three security design principles associated with the highest number of weaknesses are Au-
thorize Actors (38 addressed out of 60 weaknesses - 63%), Validate Inputs (33 addressed out of 39
weaknesses - 85%), and Encrypt Data (7 addressed out of 38 weaknesses - 18%) . Only in the latter
case, MCP addresses a low percentage of weaknesses.

Table 7.3 gives the summary of the CWE Top 25 weaknesses addressed by MCP. Our approach
can automatically discover 15 out of the 25 top weaknesses (60%) and 14 out of the 23 generic
top weaknesses (61%). MCP addresses all the top 25 weaknesses except the ones that require code
analysis to be detected, i.e., Improper Restriction of Operations within the Bounds of a Memory
Buffer, Out-of-bounds Read, Use After Free, Out-of-bounds Write, NULL Pointer Dereference, Use
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Table 7.2. Summary of the CWE architectural security design principles and weaknesses addressed by MCP.
Security Design weaknesses addressed weaknesses

Principle all generic all generic
Audit 6 6 5 (83%) 5 (83%)
Authenticate Actors 28 20 20 (71%) 15 (75%)
Authorize Actors 60 47 38 (63%) 31 (66%)
Cross Cutting 9 8 5 (56%) 4 (50%)
Encrypt Data 38 22 7 (18%) 6 (27%)
Identify Actors 12 8 10 (83%) 6 (75%)
Limit Access 8 7 5 (63%) 5 (71%)
Limit Exposure 6 4 0 (0%) 0 (0%)
Lock Computer 1 1 1 (100%) 1 (100%)
Manage User Sessions 6 3 4 (67%) 3 (100%)
Validate Inputs 39 28 33 (85%) 24 (86%)
Verify Message Integrity 10 10 3 (30%) 3 (30%)

Total 223 164 131 (59%) 103 (63%)

Table 7.3. Summary of the CWE Top 25 weaknesses addressed by MCP.
Weaknesses Addressed weaknesses
all generic all generic
25 23 15 (60%) 14 (61%)

Table 7.4. Summary of the Security Weaknesses for OWASP Top 10 security risks addressed by MCP.

OWASP Security Risk Weaknesses Addressed weaknesses
all generic all generic

Injection 9 8 8 (89%) 8 (100%)
Broken Authentication 9 8 6 (67%) 5 (63%)
Sensitive Data Exposure 11 10 6 (55%) 5 (50%)
XML External Entities 2 2 1 (50%) 1 (50%)
Broken Access Control 5 5 5 (100%) 5 (100%)
Security Misconfiguration 3 2 2 (67%) 1 (50%)
Cross-Site Scripting (XSS) 1 1 1 (100%) 1 (100%)
Insecure Deserialization 1 1 0 (0%) 0 (0%)
Using Components with - - - -

Known Vulnerabilities
Insufficient Logging 2 2 1 (50%) 1 (50%)

& Monitoring
Total 43 39 30 (70%) 27 (69%)

of Hard-coded Credentials, Uncontrolled Resource Consumption, Missing Release of Resource after
Effective Lifetime, Untrusted Search Path, Deserialization of Untrusted Data.

For example, MCP can automatically verify weakness Cross-site Scripting (XSS) with a misuse
case specification describing a Stored-XSS [CAP, 2020a] [CWE, 2020i] attack in which a malicious
user uploads harmful scripts to the Web server, while another user (e.g., a system administrator)
executes actions that run these harmful scripts [Sto, 2020].

Table 7.4 presents the summary of the security weaknesses related to the OWASP Top 10 security
risks addressed by MCP. MCP can address 30 out of the 43 weaknesses (70%) in this view. Similar
results are observed for the 39 generic weaknesses (69%). MCP addresses a high percentage (above
80%) of the weaknesses leading to security risks Broken Access Control, Cross-Site Scripting, and
Injection (i.e., 100%, 100%, and 89%, respectively). These risks are about unauthorized access to
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Table 7.5. Reasons preventing the application of MCP.

ID Reason
R0 The weakness cannot be discovered by means of user-system interactions.
R1 The weakness concerns a system that is not Web-based or mobile-based.
R2 The weakness can be discovered only by means of program analysis.
R3 It is not possible to specify a regular expression to parse the system output and

determine its correctness; a human needs to inspect it.

Table 7.6. Distribution of reasons preventing the application of MCP to discover Security Design Principles
weaknesses.

Security Design Weaknesses R0 R1 R2 R3 Sum
Principle not addressed
Audit 1 1 1
Authenticate Actor 8 1 6 1 8
Authorize Actor 22 15 6 1 22
Cross Cutting 4 3 1 4
Encrypt Data 31 12 22 1 35
Identify Actors 2 2 2
Limit Access 3 1 2 3
Limit Exposure 6 4 6 10
Lock Computer 0 0
Manage User Sessions 2 1 1 2
Validate Inputs 6 1 5 6
Verify Message Integrity 7 7 7
Total 92 13 20 54 13 100

resources, injecting malicious client-side scripts into a website, and sending invalid data to a web
application. All involve malicious user-system interactions.

However, MCP addresses less than 50% of the weaknesses only for security risk Insecure Dese-
rialization, which, however, includes only one weakness. For security risk Using Components with
Known Vulnerabilities, there is no associated weakness in the CWE database. Since “known vulner-
abilities” may arise from any kind of weakness, it is not possible to map this OWASP security risk to
any specific weakness in the CWE database [OWA, 2017a].

Table 7.5 presents the reasons why MCP cannot be applied to discover weaknesses. MCP has been
designed to generate test cases simulating the interaction between malicious users and Web-based or
mobile-based systems. Therefore, MCP cannot be applied when the attack is not based on user-system
interactions (see R0 in Table 7.5) or when the weakness concerns a system that is not Web-based or
mobile-based (see R1 in Table 7.5). Also, some weaknesses can be discovered only by means of
program analysis, which MCP does not support (see R2 in Table 7.5). In that case, the analysis
should be either performed without actually executing programs (e.g., through code inspection) or the
output of program analysis should be reviewed manually to eliminate false positives, which typically
come in large numbers. R2 differs from R0. Indeed, R2 concerns weaknesses that, without system
execution, can be proved to be exploitable by an attacker. Also, it is associated with weaknesses that
require the system under test to be in a vulnerable state that is expensive to reach during testing. R0
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Table 7.7. Distribution of preventing the application of MCP to discover weaknesses associated with the
OWASP Top 10 security risks.

OWASP Security Risk Weaknesses R0 R1 R2 R3 Sum
not addressed

Injection 1 1 1
Broken Authentication 3 1 1 1 3
Sensitive Data Exposure 5 5 5
XML External Entities 1 1 1
Broken Access Control 0 0
Security Misconfiguration 1 1 1
Cross-Site Scripting 0 0
Insecure Deserialization 1 1 1
Using Components with - - - - - -
Known Vulnerabilities
Insufficient Logging 1 1 1
& Monitoring
Total 13 1 0 9 3 13

Table 7.8. Distribution of reasons preventing the application of MCP to discover CWE Top 25 weaknesses.

Weakness R0 R1 R2 R3
Improper Restriction of Operations within the Bounds of 1
a Memory Buffer
Out-of-bounds Read 1
Use After Free 1
Out-of-bounds Write 1
NULL Pointer Dereference 1
Use of Hard-coded Credentials 1
Uncontrolled Resource Consumption 1
Missing Release of Resource after Effective Lifetime 1
Untrusted Search Path 1
Deserialization of Untrusted Data 1
Total 0 1 8 1

concerns weaknesses that can be discovered only through system execution using a complex input
difficult to identify at test specification time.

For some weaknesses, it is not always possible to specify a regular expression that determines if
the system output matches a predefined pattern; such expressions are used as oracles to determine the
correctness of the test output (see R3 in Table 7.5). For instance, weakness Weak Password Recovery
Mechanism for Forgotten Password in Table 7.1 is a generic weakness that MCP cannot discover. This
weakness indicates that the system under test contains a mechanism for the recovery of passwords
that is weak (e.g., it is based on a security question whose answer can be easily determined [CWE,
2020h]). It is not possible to specify a pattern that recognizes an easy security question. An expert
needs to manually inspect such question (see R3 in Table 7.5). Weakness Omission of Security-
relevant Information in Table 7.1 is another weakness that cannot be discovered by MCP. It indicates
that the system under test does not record information that would be important for identifying the
source or nature of an attack, or for determining if an action is safe [CWE, 2020c]. For example, the
system may log failed login attempts when a certain limit is reached. This can be verified by static
program analysis techniques (see R2 in Table 7.5).
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Table 7.6 presents the distribution of reasons preventing the application of MCP cannot be ap-
plied for the weaknesses regarding common security architectural tactics. Please note that there is
more than one reason for some of the weaknesses (e.g., weakness Small Space of Random Values in
Table 7.1). In 54 out of 92 weaknesses (59%) that cannot be discovered by MCP, program analysis is
required (see R2). The security design principle with most of the weaknesses not being addressed by
MCP is Encrypt Data, in which 12 out of 13 weaknesses (92%) are not addressed due to R0. Indeed,
these weaknesses are related to the inefficiency of the random numbers generator (e.g., small range
of random values and insufficient entropy) which could not be detected by triggering a sequence of
user-system interactions, but requires a statistical analysis of the generated random values. Also, 22
out of 54 weaknesses (41%) are not addressed due to R2; indeed, these 22 weaknesses are associated
with the protection of credentials or password (e.g., hard-coded cryptography key, password in con-
figuration file), or the use of encryption/hash algorithm (e.g., weak cryptography, hash without a salt).
Therefore, in these cases, a static program analysis approach should be used; for example, to find a
hard-coded cryptography keys, or the invocation of weak encryption APIs.

The second design principle with most of the weaknesses not being addressed by MCP is Autho-
rize Actors, for which MCP cannot address 22 weaknesses. 15 out of these 22 weaknesses (68%)
concern a system that is not Web-based (R1). Indeed, these weaknesses affect the file system (e.g.,
preservation of permissions related to files, ownership management) or the process control in an op-
eration system (e.g., Linux). These weaknesses cannot be discovered by an automated test framework
dedicated to Web-based interactions, but require an analysis of the server configuration.

Security design principles Encrypt Data and Authorize Actors include the largest number of weak-
nesses not being addressed because of reasons R0, R1, and R2. Reason R3 affects mostly security
design principle Limit Exposure, which indicates that the system should not provide information about
its internal architecture or configuration (e.g., in error messages). To determine if this is an issue, it
is necessary to inspect the system output. However, since it may come in many different forms, it is
seldom possible to specify a regular expression that captures if information about the system internals
has been provided.

Tables 7.7 and 7.8 report the reasons why MCP cannot be applied to discover some highly critical
vulnerabilities. In these cases as well, the main reason is the necessity to rely on static program
analysis to discover such vulnerabilities. This is expected since testing and program analysis are
complementary quality assurance activities.

Summary. As a result of our analysis, we conclude that MCP can address most of the weak-
nesses organized in the CWE view for common security architectural tactics. It can also address a
high percentage of high-risk weaknesses (60% of the CWE Top 25 weaknesses and 70% of the weak-
nesses related to the OWASP Top 10 security risks). These results are promising as they demonstrate
that MCP is relevant for a large subset of vulnerabilities occurring in practice. Since MCP has been
designed to test web-based or mobile-based systems for malicious user-system interaction, the weak-
nesses it cannot address are mostly those that can be discovered only by means of program analysis,
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Table 7.9. Testability features and factors

ID Testability feature Testability factor
TF1 The system under test provides a feature to access log files Observability
TF2 It is possible to define a test oracle by means of a regular expression to parse the system output Observability
TF3 The feature under test is accessible via a URL/path Controllability
TF4 The testing framework supports modifying parameter values Test support environment
TF5 It is possible to log-in with a predefined list of credentials Controllability
TF6 System settings or configuration elements can be controlled by the test engineer Controllability
TF7 The testing framework can control the Web-browser (e.g., click on back button) Test support environment
TF8 The type of the parameters of the request (in URL or post-data) is known or can be easily Controllability

determined
TF9 Parameters and sent data can be observed through a proxy Observability
TF10 The testing framework provides data analysis functions Test support environment
TF11 The system under test provides a feature to configure the system time Controllability
TF12 The system under test provides access to intermediate results (e.g., hashed passwords) Observability
TF13 The testing framework supports handling multiple user sessions in parallel Test support environment
TF14 The testing framework has a feature to validate certificates Test support environment

Table 7.10. Distribution of testability features for MCP.

Security Design Principle Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Audit 5 2 - - - - - - - 3 - - - -
Authenticate Actors - - 3 8 5 - - - 1 - 2 1 - -
Authorize Actors 1 3 26 10 - 3 3 1 1 - - - - -
Cross Cutting - - 2 3 - - - - - - - - - -
Encrypt Data 2 - 1 1 - - - - 5 - - - - -
Identify Actors - - 2 2 - - - - - - - - 1 7
Limit Access - 1 2 - - 1 - - 2 - - - 2 -
Limit Exposure - - - - - - - - - - - - - -
Lock Computer - - - - 1 - - - - - - - - -
Manage User Sessions - - 1 1 - - - - - - 1 - 2 -
Validate Inputs 1 - 19 19 - - - - 1 - - - 2 -
Verify Message Integrity - - 2 2 - - - - - - - - - -
Total 9 6 58 46 6 4 3 1 10 3 3 1 7 7
% of weaknesses * 7% 5% 45% 35% 5% 3% 2% 1% 8% 2% 2% 1% 5% 5%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

that are not based on user-system interactions, or that concern a different type of systems than those
targeted.

7.3 RQ2: Testability Guidelines for Applying MCP

7.3.1 Measurements

This research question investigates the possibility to define testability guidelines that support engi-
neers in automatically testing software systems with MCP. More precisely, we aim to identify a set of
features (hereafter, testability features) that should be provided either by the software under test or by
the test framework and environment. Testability guidelines should indicate which testability features
are required to detect specific categories of weaknesses, e.g., targeting a security design principle or
entailing a high risk.
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To identify testability features, we study the weaknesses that can be discovered by MCP, in the
CWE view for common security architectural tactics. For each weakness, we identify a set of features
that are necessary to enable automated testing with MCP.

The identification of features or, more generally, factors that affect or influence software testability
is the subject of active research on testability. A recent survey [Garousi et al., 2019] lists 21 testability
factors: observability, controllability, complexity, cohesion, understandability, inheritance, reliabil-
ity, availability, flexibility, test suite reusability, maintainability, unit size, statefulness, isolateability,
software process capability, modularity, test support environment, fault-proneness, manageability,
quality of the test suite, and self-documentation. To guide engineers towards the inspection of the
proposed testability features for MCP, we match each testability feature to the testability factors in
the literature. This allows us to group related testability features.

Finally, we analyze the distribution of the testability features across the security design principles
of the CWE view for common security architectural tactics, the security risks in the OWASP Top 10
CWE view, and the weaknesses in the CWE Top 25 view. This analysis should assist engineers in
prioritizing the implementation of testability features for the system under test, based on the targeted
weaknesses and security design principles.

7.3.2 Results

Table 7.9 presents the testability features for MCP and the corresponding testability factors. In total,
we have 14 testability features. Nine features concern the system under test, while the other five
features concern the test environment (see testability factor Test support environment).

In the case of MCP, three out of the 21 testability factors in the literature are required; these are
(i) Controllability (i.e., the degree to which it is possible to control the state of the component un-
der test [Garousi et al., 2019]), (ii) Observability (i.e., how easy it is to observe the behavior of a
program in terms of its outputs, effects on the environment, and other hardware and software com-
ponents [Garousi et al., 2019]), and (iii) Test Support Environment. In our context, testability factor
Test Support Environment refers to the capability of the testing environment or framework to provide
features to analyze system outputs or to alter the inputs transmitted to the system under test. The
required testability factors are mostly determined by the type of testing performed by MCP: security
vulnerability testing at system level by mimicking the actions performed by a malicious users. There-
fore, to determine if the output of the system is correct, MCP may require improved Observability.
To test the system under specific configurations, it needs high Controllability, and to automate activ-
ities typically performed by malicious users manually, the Test Support Environment requires a high
degree of automation

Before discussing the distribution of testability features across design principles, we explain some
of the testability features for the weaknesses in Table 7.1. For instance, weakness Improper Authen-
tication is a generic weakness associated with design principle Authenticate Actors. It indicates that
the system under test does not properly verify the identity claimed by an actor [CWE, 2020e]. MCP
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can be applied to identify this weakness when the feature under test is accessible through a URL/path
(see TF3 in Table 7.9). We match this testability feature to testability factor controllability.

Another weakness that MCP can address is Obscured Security-relevant Information by Alternate
Name [CWE, 2020d] associated with design principle Audit. In the weakness, the system records
security-relevant information according to an alternate name of the file accessed by the malicious
user but does not indicate that the two file names point to the same inode. Malicious users can hide
their access to a file by using the alternate name of the file. A test case targeting this weakness checks
whether only the alternate name of the affected file appears in the log file without any reference
to the original file. To do so, we need a regular expression that distinguishes the malicious user’s
activity information (i.e., accessing a file) in log files. Therefore, MCP can be applied to identify this
weakness when the system under test provides a feature to access log files (TF1), and when a regular
expression can be used as an oracle (TF2), which requires proper log message templates. These
testability features belong to testability factor Observability.

In weakness Insufficient Session Expiration [CWE, 2020g] in Table 7.1, a Web system permits
malicious users to reuse old session credentials or session IDs for authorization. MCP automatically
identifies this weakness only when it is possible to modify parameter values (TF4 concerning Test
Support Environment), and when the system under test provides a feature to configure the system
time (TF11 concerning Controllability). For instance, MCP can generate test cases that modify the
HTTP-request (e.g., session IDs and cookie values) to reuse old session credentials. This is a feature
implemented in the MCP test driver API.

Table 7.10 presents the distribution of the testability features for the security design principles in
the CWE view for common security architectural tactics. Please note that there are more than one
testability feature for some of the weaknesses associated with the security design principles. Indeed,
we identify 164 testability features for 131 weaknesses concerning the 12 security design principles
in Table 7.10. An example is weakness Improper Privilege Management in Table 7.1. Security design
principles Authorize Actors and Validate Inputs are the ones that require the most testability features;
this mostly depends on the fact that they are related the largest subset of weaknesses (see Table 7.2).
In Table 7.10, rows Total and % of weaknesses show that the two testability features with the largest
number of associated weaknesses are TF3 and TF4 (45% and 35%, respectively). These two features
are related to testability factor Controllability.

In our analysis, we observe that controllability, test support environment and observability are
required to address 53%, 51% and 15% of the weaknesses, respectively. These numbers are not
fully in line with the literature on the topic, where the two most popular factors are observability
(mentioned in 101 papers) and controllability (82 papers) [Garousi et al., 2019]. We believe that this
difference is due to the fact that MCP performs security testing at the system level while the literature
on testability mostly concerns functional and robustness testing.

Since MCP automates security testing by mimicking the actions performed by malicious users, it
does not require a high degree of observability; indeed, the information that cannot be observed by
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Table 7.11. Distribution of testability features of MCP for the weaknesses associated with the OWASP Top 10
security risks.

OWASP Security Risk Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Injection - - 5 5 - - - - - - - - - -
Broken Authentication - - 2 1 1 - - - 1 - 1 - 1 -
Sensitive Data Exposure 2 1 1 - - - - - 3 - - - - 1
XML External Entities - - - - - - - - - - - - 1 -
Broken Access Control - - 4 1 - - 1 - - - - - - -
Security Misconfiguration - - 2 1 - - - - - - - - - -
Cross-Site Scripting - - - - - - - - - - - - 1 -
Insecure Deserialization - - - - - - - - - - - - - -
Using Components with - - - - - - - - - - - - - -
Known Vulnerabilities
Insufficient Logging & 1 - - - - - - - - 1 - - - -
Monitoring
Total 3 1 14 8 1 0 1 0 4 1 1 0 3 1
% of weaknesses * 10% 3% 47% 27% 3% 0% 3% 0% 13% 3% 3% 0% 10% 3%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

MCP cannot be observed also by malicious users, which indicates that such data is secure. The high
relevance of testability factor Test Support Environment for MCP is due to the fact that, to mimic a
malicious user, it is necessary to automate all the actions typically performed manually by attackers.

Tables 7.11 and 7.12 show the testability features that enable testing for the weaknesses in the
OWASP Top 10 and CWE Top 25 views, respectively. Numbers are in line with the ones in Table 7.10.
Indeed, the testability features that are required for testing a higher subset of weaknesses are also TF3
and TF4 in Tables 7.11 and 7.12. Similar trends are observed for TF9, TF13, and TF14, which address
more than 5% of the weaknesses in Tables 7.10, 7.11, and 7.12.

Tables 7.10, 7.11, and 7.12 provide testability guidelines for engineers. They enable engineers
to determine, based on the security requirements of the system under test, which testability features
need to be enabled. For example, if the system provides authorization and authentication features,
engineers need to implement the security design principles Authenticate Actors and Authorize Actors.
Consequently, it might be useful to ensure that these two features under test are accessible through
a URL/path (TF3) and that the testing framework supports modifying parameter values (TF4). Also,
more generally, TF3 and TF4 enable test automation for highly critical weaknesses, which concern
code injection, authorization, and authentication. In addition, by looking at the testability features
addressing more than 5% of the vulnerabilities in Tables 7.10, 7.11, and 7.12 (i.e., at least two weak-
nesses associated with the OWASP Top 10 risks, one weakness in the CWE Top 25 list, and five
weaknesses concerning the Security Design Principles), it is possible to identify a minimal set of
testability features (i.e., TF1, TF3, TF4, TF9, TF13, and TF14) that should be prioritized to automat-
ically verify both Security Design Principles and Top Security Risks. Finally, if the system under test
does not need to identify actors through certificates, it is not necessary to rely on a testing framework
with a feature to validate certificates (TF14).
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Table 7.12. Distribution of testability features of MCP for the CWE Top 25 weaknesses.

CWE Top 25 Weakness Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Cross-Site Scripting - - - - - - - - - - - - 1 -
Improper Input Validation - - 1 1 - - - - - - - - - -
Information Exposure - 1 - - - - - - 1 - - - - -
SQL Injection - - 1 1 - - - - - - - - - -
Integer Overflow - - - 1 - - - - - - - - - -
or Wraparound
Cross-Site Request Forgery - - - - - - - - - - - - 1 -
(CSRF)
Path Traversal - - 1 - - - - - - - - - - -
OS Command Injection - - 1 - - - - - - - - - - -
Improper Authentication - - 1 - - - - - - - - - - -
Incorrect Permission - - 1 - - - - - - - - - - -
Assignment for
for Critical Resource
Unrestricted Upload of File - - - 1 - - - - - - - - - -
with Dangerous Type
Improper Restriction of - - - - - - - - - - - - 1 -
XML External Entity
Reference
Code Injection - - - 1 - - - - - - - - - -
Improper Privilege - - 1 - - - 1 - - - - - - -
Management
Improper Certificate - - - - - - - - - - - - - 1
Validation
Total 0 1 7 5 0 0 1 0 1 0 0 0 3 1
% of weaknesses * 0% 7% 47% 33% 0% 0% 7% 0% 7% 0% 0% 0% 20% 7%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

7.4 RQ3: MST Applicability

7.4.1 Measurements

Following the same procedure adopted for RQ1, to address RQ3, we analyze the weaknesses in the
CWE views Security Design Principles, CWE Top 25, and OWASP Top 10 with the objective of
specifying, for each weakness, one or more MRs. For each weakness, we first inspect its description,
its demonstrative examples, the description of the concrete vulnerabilities (CVE) and the common
attack patterns (CAPEC) [CAP, 2020b] associated with the weakness. Based on the information
collected from our inspection, we assess whether it is possible to use an available MR in our catalog
of MRs (see Section 6.7) or to specify a new MR to address these weaknesses. Each time we cannot
specify a MR for a weakness, we keep track of the reasons for not doing so.

To address RQ3, we discuss the weaknesses that can be automatically discovered by MST and we
study the distribution of the reasons preventing the application of MST, across the categories of the
views considered in our analysis.
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7.4.2 Results

Table 7.13 presents the summary of the CWE Security Design Principles and related security weak-
nesses addressed by MST. The first column in Table 7.13 presents the security design principles
appearing in the CWE view for common security architectural tactics. The second and third columns
give, for each design principle, the overall number of weaknesses and the number of generic weak-
nesses, respectively. The fourth and fifth columns report the number and percentage of weaknesses
that can be automatically discovered by MST. In total, 101 out of all 223 weaknesses (45%) and 78
out of 164 generic weaknesses (48%) in the view can be addressed by MST. These numbers show that
MST enables engineers to automatically discover a large portion of weaknesses. This is consistent
with our conclusion in Section 6.9.1, where we state that MST can automate 39% of OWASP testing
activities (each activity targets a different type of vulnerability). In addition, the higher percentage
achieved for generic weaknesses shows that it performs slightly better in the general case. The details
of our analysis for the 223 weaknesses is reported in Appendix C and on the MST Web page [Web,
2019].

MST can automatically discover a high percentage of weaknesses (above 60%) related to security
design principles Identify Actors (75%), Manage User Sessions (67%), and Validate Inputs (67%).
Weaknesses related to the principle Identify Actors concern malicious users trying to access the sys-
tem with invalid certificates. Weaknesses related to the principle Manage User Sessions are about
resources accessed by malicious users because of session management faults. Weaknesses related to
Validate Inputs allow attackers to provide malformed input data (e.g., code injection) to the system,
which enables attackers to affect either confidentiality, integrity, or accessibility. On the other hand,
MST addresses a low percentage of the weaknesses (below 20%) related to security design principles
Audit, Limit Exposure, Lock Computer, and Encrypt Data (i.e., 0%, 0%, 0% and 13%, respectively).
This is mostly due to our MST being based on MRs that use as source inputs sequences of user-system
interactions collected by a Web crawler, while these weaknesses concern mostly the analysis of data.
Indeed, the weaknesses related to Audit, Limit Exposure, Lock Computer, and Encrypt Data are, on
the contrary, about the quality of recorded logs, the information that the system exposes, restrictions
of the lock out mechanism (e.g., lock an account after a predefined number of failed logins), and the
quality of data encryption, all of them requiring the manual inspection of data.

The three security design principles associated with the highest number of weaknesses are Au-
thorize Actors (32 addressed out of 60 weaknesses - 53%), Encrypt Data (5 addressed out of 38
weaknesses - 13%), and Validate Inputs (26 addressed out of 39 weaknesses - 67%). The exception
is Encrypt Data, for which MST addresses a low percentage of weaknesses.

Table 7.14 provides a summary of the CWE Top 25 weaknesses addressed by MST. MST can
automatically discover nine out of the CWE Top 25 weaknesses (36%) and nine out of the 23 (i.e.,
39%) generic weaknesses belonging to the Top 25 view. These percentages are in line with our
analysis in Section 6.9.1 (i.e., MST addressing 39% of vulnerabilities). For example, MST can au-
tomatically verify the weakness Improper Input Validation with a MR including follow-up inputs
containing either malformed input data (e.g., date, time, and special characters), or equivalent inputs
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Table 7.13. Summary of the CWE architectural security design principles and weaknesses addressed by MST.
Security Design weaknesses addressed weaknesses

Principle all generic all generic
Audit 6 6 0 (0%) 0 (0%)
Authenticate Actors 28 20 15 (54%) 11 (55%)
Authorize Actors 60 47 32 (53%) 25 (53%)
Cross Cutting 9 8 5 (56%) 4 (50%)
Encrypt Data 38 22 5 (13%) 5 (23%)
Identify Actors 12 8 9 (75%) 5 (63%)
Limit Access 8 7 3 (38%) 3 (43%)
Limit Exposure 6 4 0 (0%) 0 (0%)
Lock Computer 1 1 0 (0%) 0 (0%)
Manage User Sessions 6 3 4 (67%) 3 (100%)
Validate Inputs 39 28 26 (67%) 20 (71%)
Verify Message Integrity 10 10 2 (20%) 2 (20%)

Total 223 164 101 (45%) 78 (48%)

Table 7.14. Summary of the CWE Top 25 weaknesses addressed by MST.
Weaknesses Addressed weaknesses
all generic all generic
25 23 9 (36%) 9 (39%)

Table 7.15. Summary of the Security Weaknesses for OWASP Top 10 security risks addressed by MST.

OWASP Security Risk Weaknesses Addressed weaknesses
all generic all generic

Injection 9 8 7 (78%) 7 (88%)
Broken Authentication 9 8 6 (67%) 5 (63%)
Sensitive Data Exposure 11 10 4 (37%) 3 (30%)
XML External Entities 2 2 0 (0%) 0 (0%)
Broken Access Control 5 5 5 (100%) 5 (100%)
Security Misconfiguration 3 2 2 (67%) 1 (50%)
Cross-Site Scripting (XSS) 1 1 0 (0%) 0 (0%)
Insecure Deserialization 1 1 0 (0%) 0 (0%)
Using Components with - - - -

Known Vulnerabilities
Insufficient Logging 2 2 0 (0%) 0 (0%)

& Monitoring
Total 43 39 24 (56%) 21 (54%)

(e.g., using both "-e" and "–exec", which are are the same command-line switch that could be used
when calling an external program) [CWE, 2020b]. This MR helps to check if the system under test
validates all input values. MST cannot address the top 25 weaknesses that require program analysis
or interactions from third parties (e.g., other system users or system administrators) to be detected,
i.e., Improper Restriction of Operations within the Bounds of a Memory Buffer, Cross-site Scripting,
Information Exposure, Out-of-bounds Read, Use After Free, Integer Overflow or Wraparound, Cross-
Site Request Forgery (CSRF), Out-of-bounds Write, NULL Pointer Dereference, Improper Restriction
of XML External Entity Reference, Improper Control of Generation of Code (’Code Injection’), Use
of Hard-coded Credentials, Uncontrolled Resource Consumption, Missing Release of Resource after
Effective Lifetime, Untrusted Search Path, and Deserialization of Untrusted Data.

Table 7.15 presents the summary of the security weaknesses related to the OWASP Top 10 se-
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Table 7.16. Reasons preventing the application of MST.

ID Reason
R0 The weakness cannot be discovered by means of user-system interactions.
R1 The weakness concerns a system that is not Web-based or mobile-based.
R2 The weakness can be discovered only by means of program analysis.
R3 It is not possible to distinguish valid and invalid behaviour based on system

output; a human needs to inspect it.
R4 The weakness can be discovered only by means of data analysis.
R5 MT is inefficient. The weakness can be discovered only one test case execution.
R6 The weakness can be discovered only with results retrieved from a third side.

curity risks addressed by MST. MST can address 24 out of the 43 weaknesses (56%) and 21 out of
30 generic weaknesses (54%) in this view. MST addresses a high percentage (above 60%) of the
weaknesses leading to security risks Broken Access Control, Injection, Broken Authentication, and
Security Misconfiguration (i.e., 100%, 78%, 67%, and 67%, respectively). These risks are about
unauthorized access to resources, injecting malicious client-side scripts into a website, bypassing
the authentication, and gaining system information thanks to system misconfiguration. All involve
malicious user-system interactions.

MST cannot address any of the weaknesses related to the four security risks XML External En-
tities, Cross-Site Scripting (XSS), Insecure Deserialization, and Insufficient Logging & Monitoring
which, however, include only a total of six weakness. For the security risk Sensitive Data Exposure,
37% (4 out of 11) weaknesses can be addressed by MST. This percentage is aligned with our study
in the Section 6.9.1. For security risk Using Components with Known Vulnerabilities, there is no
associated weakness in the CWE database (detail in Section 7.2).

In total, MST discovers 104 weaknesses from the three CWE views analyzed in this work. Among
them, 101 weaknesses are related to the Security Design Principles view, and three weaknesses belong
to the OWASP Top 10 view only. Among the discovered weaknesses, 21 belong to both the Security
Design Principles view and the OWASP Top 10 view, while eight belong to both the Security Design
Principles view and the CWE Top 25 view.

Table 7.16 presents the reasons why MST cannot be applied to discover weaknesses. The strategy
currently adopted by MST, to generate source inputs, relies on either a Web crawler to automate the
user-system interactions or manually implemented test scripts that automate such interactions. Such
source inputs are turned into follow-up inputs which are used to discover vulnerabilities. Therefore,
MST can discover vulnerabilities that can be exercised by means of a sequence of interactions and
thus cannot be applied to discover weaknesses due to reasons R0, R1, and R2, similar to the case of
MCP (see Section 7.2).

In some cases, it is not possible to define a MR because a human is needed to inspect the sys-
tem output (R3). For instance, to discover the weakness Weak Password Recovery Mechanism for
Forgotten Password (see Table 7.1), a human needs to indicate that the system under test contains a
mechanism for the recovery of passwords that is weak (e.g., it is based on a security question whose
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Table 7.17. Distribution of reasons preventing the application of MST to discover Security Design Principles
weaknesses.

Security Design Weaknesses R0 R1 R2 R3 R4 R5 R6 Sum
Principle not addressed
Audit 6 1 3 2 6
Authenticate Actor 13 1 6 1 4 1 13
Authorize Actor 28 16 6 2 2 2 28
Cross Cutting 4 3 1 4
Encrypt Data 33 12 22 1 4 39
Identify Actors 3 2 1 3
Limit Access 5 1 2 1 1 5
Limit Exposure 6 4 6 10
Lock Computer 1 1 1
Manage User Sessions 2 1 1 2
Validate Inputs 13 1 5 7 13
Verify Message Integrity 8 7 1 8
Total 122 13 21 54 14 5 16 9 132

Table 7.18. Distribution of reasons preventing the application of MST to discover weaknesses associated with
the OWASP Top 10 security risks.

OWASP Security Risk Weaknesses R0 R1 R2 R3 R4 R5 R6 Sum
not addressed

Injection 2 1 1 2
Broken Authentication 3 1 1 1 3
Sensitive Data Exposure 7 5 1 1 7
XML External Entities 2 1 1 2
Broken Access Control 0 0
Security Misconfiguration 1 1 1
Cross-Site Scripting 1 1 1
Insecure Deserialization 1 1 1
Using Components with - - - - - - - - -
Known Vulnerabilities
Insufficient Logging 2 1 1 2
& Monitoring
Total 19 1 0 10 3 2 1 2 19

answer can be easily determined [CWE, 2020h]). Reason R3 is a generalization of reason R3 pre-
sented in Section 7.2.2, i.e., It is not possible to specify a regular expression to parse the system output
and determine its correctness; a human needs to inspect it.

Because of the characteristic of MT (based on MRs), MST cannot be applied to address weak-
nesses that can be discovered only by means of data analysis (see R4 in Table 7.16). More precisely,
these weaknesses can be found out only by analyzing large amounts of data (e.g., log files) based
on statistics or machine learning; these types of analyses cannot be specified by means of a MR.
In addition, for some weaknesses, it is not efficient to apply an MT approach because they can be
discovered with a single test case execution (see R5 in Table 7.16). In that case, it is not needed
to generate follow-up inputs from a large number of source inputs, which is the main characteris-
tic of MT. Finally, some weaknesses can be discovered only with results retrieved from a third side
(e.g., passwords stored on a third party server) or with interactions from a third side (e.g., a victim
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Table 7.19. Distribution of reasons preventing the application of MST to discover CWE Top 25 weaknesses.

Weakness R0 R1 R2 R3 R4 R5 R6
Improper Restriction of Operations within the Bounds of 1
a Memory Buffer
Cross-site Scripting 1
Information Exposure 1
Out-of-bounds Read 1
Use After Free 1
Integer Overflow or Wraparound 1
Cross-Site Request Forgery (CSRF) 1
Out-of-bounds Write 1
NULL Pointer Dereference 1
Improper Restriction of XML External Entity Reference 1
Code Injection 1
Use of Hard-coded Credentials 1
Uncontrolled Resource Consumption 1
Missing Release of Resource after Effective Lifetime 1
Untrusted Search Path 1
Deserialization of Untrusted Data 1
Total 0 1 8 3 0 0 4

clicks on the harmful URL provided by an attacker) (see R6 in Table 7.16). Expressing these types of
interactions by means of metamorphic relations appears infeasible in the general case.

Please note that R0, R2, and R4 represent three distinct cases. R0 characterizes weaknesses that
can be detected based on an input that cannot be derived by means of a predefined transformation
function used in MRs. R2 concerns weaknesses that can be directly detected by means of program
analysis. R4 concerns weaknesses that cannot be detected by verifying a single output but require the
(statistical) analysis of multiple outputs.

Table 7.17 presents the distribution of reasons why MST cannot be applied for the weaknesses
in the CWE view for common security architectural tactics. Please note that there is more than one
reason for some of the weaknesses (e.g., weakness Small Space of Random Values in Table 7.1). In
54 out of 122 weaknesses (44%) that cannot be discovered by MST, the reasons lie in the necessity
of using program analysis to discover the weaknesses (see R2 in Table 7.16), which is expected since
program analysis complements software testing in software verification.

The security design principle with most of the weaknesses not being addressed by MST is Encrypt
Data, with 12 out of 13 weaknesses (92%) not addressed because of R0. Indeed, these weaknesses
are related to the inefficiency of a random numbers generator (e.g., small range of random values and
insufficient entropy) which could not be detected by triggering a sequence of user-system interactions,
but requires the statistical analysis of the generated random values. Also, 22 out of 54 weaknesses
(41%) are not addressed because of R2; indeed, these 22 weaknesses are associated with the protection
of credentials or password (e.g., hard-coded cryptography key, password in configuration files), or
the use of encryption/hash algorithm (e.g., weak cryptography, hash without a salt). Therefore, in
these cases, a static program analysis approach should be used; for example, to find a hard-coded
cryptography key, or the invocation of weak encryption API. The four remaining weaknesses should
not be detected by using MST because they require only one test case execution (see R5 in Table 7.16).
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For example, to discover the weakness Cleartext Storage of Sensitive Information in a Cookie [CWE,
2020f], the test engineer only needs to log into the Web system under test one time and use a network
sniffer or a proxy to capture the cookie. The test engineer then checks if the cookie contains a
password in clear text. MST is inefficient to capture this type of weaknesses.

The second design principle with most of the weaknesses not being addressed by MST is Au-
thorize Actors, for which MST cannot address 28 weaknesses. 16 out of these 28 weaknesses (57%)
concern a system that is not Web-based (see R1). Indeed, these weaknesses affect the file system (e.g.,
preservation of permissions related to files, ownership management), the process control in an opera-
tion system (e.g., Linux), or the process communication in a mobile operation system (e.g., Android).
These weaknesses cannot be discovered by an automated test framework dedicated to Web-based
interactions, but require an analysis of the server/device configuration.

Security design principles Encrypt Data and Authorize Actors include the largest number of weak-
nesses not applied because of reasons R0, R1, and R2. Reason R3 affects mostly security design
principle Limit Exposure, which indicates that the system should not provide information about its
internal architecture or configuration (e.g., in error messages). To determine weaknesses concerning
this design principle, it is necessary to inspect the system output. However, a MR cannot automati-
cally capture (e.g., extract information from error messages) internal information of system. A human
is usually needed to inspect the system output. Reason R4 affects mostly the security design princi-
ple Audit which requires to assess the quality of system logs (e.g., containing sensitive information,
containing too much information, or too little information). To this end, we need data analysis (e.g.,
based on statistics or machine learning) to analyze system logs. Furthermore, it is not possible to
specify a MR which describes the quality of system logs in a relation. Reason R5 typically affects
weaknesses belonging to security design principles Authenticate Actor and Encrypt Data. Indeed,
weaknesses concerning the security design principle Authenticate Actor affect the management of
passwords (e.g., weak password requirements, not using password aging) which could be detected
through a single test case execution. Reason R5 concerns 13% of the weaknesses (i.e., 16 out of 122).
Reason R6 affects 7 out of 13 (54%) weaknesses not addressed by MST and concerning the security
design principle Validate Inputs. These weaknesses are about injecting code into the Web system
under test (e.g., Cross-Site Scripting, Cross-Site Request Forgery). In these cases, to determine if the
attack can be performed, we require interactions from a third actor (e.g., an administrator, a valid
user) who should inadvertently execute the injected code. Deriving interactions from a third actor
using source inputs appears infeasible, at the current stage.

Tables 7.18 and 7.19 report the reasons why MST cannot be applied to discover some highly
critical vulnerabilities. Even in these cases, the main reason is the necessity to rely on static program
analysis (R2).

Summary. As a result of our analysis, we conclude that MST can address a significant number of
the weaknesses listed in the CWE view for common security architectural tactics. It can also address a
good percentage of high-risk weaknesses (56% of the weaknesses related to OWASP Top 10 security
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risks and 36% of CWE Top 25 weaknesses). We find the results of our analysis promising regarding
MST’s feasibility and widespread applicability. The weaknesses that MST cannot address are mostly
those that (1) can be discovered only by means of program analysis, (2) are not based on user-system
interactions, or (3) concern a non Web-based system. Also, MST is inefficient for weaknesses that
could be discovered by means of a single test case execution.

7.5 RQ4: Testability Guidelines for Applying MST

7.5.1 Measurements

This research question evaluates the possibility to define testability guidelines that support engineers
in automatically testing software systems with MST. More precisely, we aim to identify a set of
testability features that should be provided either by the software under test or by the test framework
and environment.

To identify testability features, we study the weaknesses that can be discovered by MST, in the
CWE view for common security architectural tactics, the OWASP Top 10 CWE view, and the CWE
Top 25 view. For each weakness, we identify a set of features that are necessary to enable auto-
mated testing with MST. Similar to the case of MCP (see Section 7.3), to guide engineers towards
the inspection of the proposed testability features for MST, we match each testability feature to the
testability factors in the literature. This enables us to group testability features based on the associated
testability factors.

Finally, we analyze the distribution of the testability features across the security design principles
of the CWE view for common security architectural tactics, the security risks in the OWASP Top 10
CWE view, and the weaknesses in the CWE Top 25 view. This analysis could assist engineers in
prioritizing the implementation of testability features for the system under test, based on the targeted
weaknesses and security design principles.

7.5.2 Results

Since MST triggers sequences of interactions with the system under test, it shares the same testability
features described in Table 7.9 for MCP. In total, MST requires 10 out of the 14 testability features
in Table 7.9. These 10 testability features belong to three testability factors (i.e., Controllability,
Observability, and Test Support Environment). MST does not require TF1, TF2, TF10, and TF12 (a
discussion of the diferences between MST and MCP is reported in Section 7.7).

Table 7.20 presents the distribution of the testability features for the security design principles in
the CWE view for common security architectural tactics. Please note that there might be more than
one testability feature associated to each weakness. An example is the weakness Insufficient Session
Expiration, which is associated to both TF4 and TF11 (see Table 7.1). Precisely, TF4 supports the
test engineer to reuse an old session (e.g., credentials or ID) by modifying the corresponding request
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Table 7.20. Distribution of testability features for MST.

Security Design Principle Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Audit - - - - - - - - - - - - - -
Authenticate Actors - - 3 9 2 - - - 1 - - - - -
Authorize Actors - - 24 10 - 3 3 1 - - - - - -
Cross Cutting - - 2 2 - - - - - - - - - -
Encrypt Data - - 1 1 - - - - 3 - - - - -
Identify Actors - - 2 2 - - - - - - - - - 7
Limit Access - - 2 - - 1 - - 1 - - - 1 -
Limit Exposure - - - - - - - - - - - - - -
Lock Computer - - - - - - - - - - - - - -
Manage User Sessions - - 1 1 - - - - - - 1 - 2 -
Validate Inputs - - 17 15 - - - - - - - - - -
Verify Message Integrity - - 1 2 - - - - - - - - - -
Total 0 0 53 42 2 4 3 1 5 0 1 0 3 7
% of weaknesses * 0% 0% 52% 42% 2% 4% 3% 1% 5% 0% 1% 0% 3% 7%

* Percentage of weaknesses that can be discovered thanks to a testability feature.

parameters while TF11 helps to change the system time in order to invalid this session (i.e., expired).
If the test engineer is authorized to access the system, the system is suffering the weakness Insufficient
Session Expiration. In total, we identify 121 testability features for 101 weaknesses concerning the
12 security design principles in Table 7.20. Security design principles Authorize Actors and Validate
Inputs are the ones that require the largest number of testability features; this mostly depends on
the fact that they are related the largest portion of weaknesses (see Table 7.13). In Table 7.20, rows
Total and % of weaknesses show that the two testability features with the largest number of associ-
ated weaknesses are TF3 and TF4 (52% and 42%, respectively). These two features are related to
testability factor Controllability.

In our analysis, we observe that Controllability, Test Support Environment and Observability are
required to address 57%, 54% and 5% of the weaknesses, respectively. Similar to the case of MCP,
these numbers are not fully in line with the literature on the topic (see Section 7.3). MST automatically
simulates actions performed by a user on the Web system under test under specific conditions (e.g.,
after performing a login). It thus requires a high degree of controllability to exercise the features
under test or control the state of the system, instead of a high degree of observability. To automate all
the actions that are typically executed manually by attackers, testability features concerning the Test
Support Environment are required.

Tables 7.21 and 7.22 show the testability features that enable testing for the weaknesses in the
OWASP Top 10 and CWE Top 25 views, respectively. Numbers are in line with the ones in Table 7.20.
Indeed, also in Tables 7.21 and 7.22, the testability features that are required for testing a higher
portion of weaknesses are TF3 and TF4. A similar trend across Tables 7.20, 7.21, and 7.22 is observed
also for TF9, which addresses more than 5% of the weaknesses.

Tables 7.20, 7.21, and 7.22 provide testability guidelines for engineers. They enable engineers
to determine, based on the security requirements of the system under test, which testability features
need to be enabled. For example, if the system implements authorization and authentication features,
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Table 7.21. Distribution of testability features of MST for the weaknesses associated with the OWASP Top 10
security risks.

OWASP Security Risk Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Injection - - 4 5 - - - - - - - - - -
Broken Authentication - - 2 1 1 - - - 1 - 1 - 1 -
Sensitive Data Exposure - - 1 - - - - - 2 - - - - 1
XML External Entities - - - - - - - - - - - - - -
Broken Access Control - - 4 1 - - 1 - - - - - - -
Security Misconfiguration - - 2 1 - - - - - - - - - -
Cross-Site Scripting - - - - - - - - - - - - - -
Insecure Deserialization - - - - - - - - - - - - - -
Using Components with - - - - - - - - - - - - - -
Known Vulnerabilities
Insufficient Logging & - - - - - - - - - - - - - -
Monitoring
Total 0 0 13 8 1 0 1 0 3 0 1 0 1 1
% of weaknesses * 0% 0% 54% 33% 4% 0% 4% 0% 13% 0% 4% 0% 4% 4%

* Percentage of weaknesses that can be discovered thanks to a testability feature.

Table 7.22. Distribution of testability features of MST for the CWE Top 25 weaknesses.

CWE Top 25 Weakness Testability Feature Number
TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14

Improper Input Validation - - 1 1 - - - - - - - - - -
SQL Injection - - 1 1 - - - - - - - - - -
Path Traversal - - 1 - - - - - - - - - - -
OS Command Injection - - 1 - - - - - - - - - - -
Improper Authentication - - 1 - - - - - - - - - - -
Incorrect Permission - - 1 - - - - - - - - - - -
Assignment for
for Critical Resource
Unrestricted Upload of File - - - 1 - - - - - - - - - -
with Dangerous Type
Improper Privilege - - 1 - - - 1 - - - - - - -
Management
Improper Certificate - - - - - - - - - - - - - 1
Validation
Total 0 0 7 3 0 0 1 0 1 0 0 0 0 1
% of weaknesses * 0% 0% 78% 33% 0% 0% 11% 0% 11% 0% 0% 0% 0% 11%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

it might be useful to ensure that all the features under test are accessible through a URL/path (TF3)
and that the testing framework supports modifying parameter values (TF4). Moreover, TF3 and TF4
also enable test automation for the highly critical weaknesses, which concern code injection, authen-
tication, and authorization. In addition, by looking at the testability features addressing more than 5%
of the vulnerabilities in Tables 7.20, 7.21, and 7.22 (i.e., at least five weaknesses concerning the Secu-
rity Design Principles, two weaknesses associated with the OWASP Top 10 risks, and one weakness
in the CWE Top 25 list), it is possible to identify a minimal set of testability features (i.e., TF3, TF4,
and TF9) that is necessary to automatically verify both Security Design Principles and Top security
risks. Since TF3, TF4, and TF9 are common in Web-oriented systems, we conclude that MST is
likely applicable in most software projects without the need for adapting existing design or testing
framework.

119



Chapter 7. Applicability of Proposed Approaches and Testability Guidelines

7.6 RQ5: Complementary Applicability of MCP and MST

7.6.1 Measurements

In RQ1 and RQ3, we discussed separately the applicability of MCP (see Section 7.2) and MST (see
Section 7.4) to automate the testing of web-oriented software systems. In this Section, we aim to
study if the two approaches are complementary by discussing the type of vulnerabilities discovered
by both.

7.6.2 Results

Table 7.23 presents the numbers of weaknesses in Security Design Principles that can be detected
by our approaches. The second column presents the number of weaknesses of each security design
principle. The third, fourth, and fifth columns show the number weaknesses that can be detected
by both MCP and MST, only by MCP, and only by MST, respectively. The number of weaknesses
that can be discovered by either MCP or MST is shown in the last column. In total, 131 out of 223
(59%) weaknesses from the CWE Security Design Principles can be discovered by our approaches.
101 out of these 131 (77%) weaknesses can be discovered by both MCP and MST. In other words,
we can apply either MCP or MST to detect these 101 weaknesses. This mostly depends on the
fact that both approaches perform testing by automating user-system interactions. In MCP, user-
system interactions are indicated in misuse case specifications in natural language that are manually
written by test engineers. Therefore, it is easy to simulate a complex attack scenario that potentially
includes a large set of activities performed by a malicious user. Instead, the user-system interactions
in MST correspond to the source inputs that are automatically collected by a Web crawler or belong
to manually implemented test scripts (e.g., test scripts for functional system testing). Therefore, in
the case of MST it is difficult to discover weaknesses that require complex interactions to be tested
(e.g., input sequences that include activities from multiple, distinct users). Consequently, MCP can
cover all the weaknesses detected by MST (see fifth Column in Table7.23).

We now discuss the weaknesses detected by MCP only, which are 30 out of 131 (23%), as shown
in Table 7.23. The four security design principles associated with most of these weaknesses are
Validate Inputs, Authorize Actors, Audit, and Authenticate Actors (i.e., seven, six, five, and five weak-
nesses, respectively). The seven weaknesses related to Validate Inputs are about injecting harmful
code to the system (see Section 7.4). The Authorize Actors weaknesses are about retrieving sensitive
or private information by means of data analysis (reason R4 in Table 7.16) or about the storage of sen-
sitive data in a mobile operation system (e.g., Android), which is not supported by MST (reason R1 in
Table 7.16). Most of the weaknesses related to Authenticate Actors concern passwords management
(e.g., password aging, empty password); they can be discovered through a single test case execution
and thus should not be targeted through MT (reason R5 - MT is inefficient - in Table 7.16). Audit
weaknesses require data analysis to evaluate the quality of system logs (reason R4, see the discussion
in Section 7.4).
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Table 7.23. CWE security design principle weaknesses addressed by MCP and MST

Security Design Principle # weaknesses # addressed weaknesses
both only MCP only MST sum

Audit 6 0 5 0 5
Authenticate Actors 28 15 5 0 20
Authorize Actors 60 32 6 0 38
Cross Cutting 9 5 0 0 5
Encrypt Data 38 5 2 0 7
Identify Actors 12 9 1 0 10
Limit Access 8 3 2 0 5
Limit Exposure 6 0 0 0 0
Lock Computer 1 0 1 0 1
Manage User Sessions 6 4 0 0 4
Validate Inputs 39 26 7 0 33
Verify Message Integrity 10 2 1 0 3
Total 223 101 30 0 131

Table 7.24. OWASP Top 10 security risk weaknesses addressed by MCP and MST

OWASP Security Risk # weaknesses # addressed weaknesses
both only MCP only MST sum

Injection 9 7 1 0 8
Broken Authentication 9 6 0 0 6
Sensitive Data Exposure 11 4 2 0 6
XML External Entities 2 0 1 0 1
Broken Access Control 5 5 0 0 5
Security Misconfiguration 3 2 0 0 2
Cross-Site Scripting (XSS) 1 0 1 0 1
Insecure Deserialization 1 0 0 0 0
Using Components with - - - - -

Known Vulnerabilities
Insufficient Logging 2 0 1 0 1

& Monitoring
Total 43 24 6 0 30

Table 7.25. CWE Top 25 weaknesses addressed by MCP and MST

# weaknesses # addressed weaknesses
both only MCP only MST sum

25 9 6 0 15

Table 7.24 and Table 7.25 compare MST and MCP based on high-risk weaknesses in OWASP
Top 10 security risks and CWE Top 25. MCP can detect all the weaknesses that can be discovered by
MST. However, the percentage of weaknesses which can be detected by both MCP and MST is still
high (80% for the cases in OWASP Top 10 security risks and 60% for the case of CWE Top 25).

Although MCP is capable of discovering a higher percentage of weaknesses than MST, it presents
a major limitation with respect to MST, which is the need for manually specified inputs and oracles.
Instead, MST can automatically perform security testing by automatically deriving test inputs from
Web-crawler data and do not require manually specified oracles. For this reason, to reduce testing
effort, we recommend to apply both MST and MCP.

First, MST should be applied to maximize the number of security vulnerabilities that can be
automatically tested with minimal engineering effort. In total, MST enables the identification of 104
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weaknesses (see Section 7.4. MCP should then be applied to verify the weaknesses not covered by
MST. MCP will enable targeting 33 additional weaknesses (30 belonging to CWE Security Design
Principles, 1 to OWASP Top 10 only, 2 to CWE Top 25 only, and 2 belonging to all the three views).
In Section 7.7, we discuss to what extent the adoption of both approaches may augment costs related
to testability.

7.7 RQ6: Comparison of Testability Guidelines for MCP and
MST

7.7.1 Measurements

In this RQ, we aim to investigate if the same testability guidelines enable the application of both MCP
and MST. To this end, we identify the testablity features that are required by both MCP and MST for
the three CWE views considered in our analysis. Furthermore, we discuss why certain features are
required by one approach only. Finally, we discuss which testability features are required we combine
the use of MCP and MST as suggested in Section 7.6.

7.7.2 Results

MCP can discover 131 weaknesses in the CWE Security Design Principles view (Table 7.2), with
support from 14 testability features (Table 7.10). MST can detect 101 weaknesses in the same CWE
view (Table 7.13), with support from 10 testability features (Table 7.20).

In the Security Design Principles view, MCP and MST share 10 testability features. A high
percentage (71%, i.e., TF3, TF4, TF5, TF6, TF7, TF8, TF9, TF11, TF13, and TF14 ) of them enable
testing through user-system interactions. Among these 10 testability features, TF3 and TF4 play the
most important role. Indeed they enable MCP and MST to discover respectively 88 (67%) or 82
(81%) weaknesses in the CWE view Security Design Principles.

The four testability features which are not required by MST are TF1, TF2, TF10, and TF12. We
discuss them below.

With TF1, the test framework can access log files in the system thanks to the features provided
by the system under test. This testability feature supports MCP to detect five Audit weaknesses, two
Encrypt Data weaknesses, one Authorize Actors weakness, and one Validate Inputs weakness in the
view CWE Security Design Principles (Table 7.10). All these weaknesses can be discovered through
the analysis of log files; more precisely, by looking for relations between test inputs and content
appearing in the log files. Since these relations cannot be defined in a MR, MST cannot discover
these weaknesses and thus TF1 is not needed by MST.

The testability feature TF2 concerns retrieving information from the system under test by means
of a regular expression. It supports MCP to detect six weaknesses in the CWE Security Design
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Table 7.26. Distribution of testability features of MST and MCP for the security design principles view.

Security Design Principle Testability Feature Number Sum1 2 3 4 5 6 7 8 9 10 11 12 13 14
MST
Audit - - - - - - - - - - - - - - 0
Authenticate Actors - - 3 9 2 - - - 1 - - - - - 15
Authorize Actors - - 24 10 - 3 3 1 - - - - - - 41
Cross Cutting - - 2 2 - - - - - - - - - - 4
Encrypt Data - - 1 1 - - - - 3 - - - - - 5
Identify Actors - - 2 2 - - - - - - - - - 7 11
Limit Access - - 2 - - 1 - - 1 - - - 1 - 5
Limit Exposure - - - - - - - - - - - - - - 0
Lock Computer - - - - - - - - - - - - - - 0
Manage User Sessions - - 1 1 - - - - - - 1 - 2 - 5
Validate Inputs - - 17 15 - - - - - - - - - - 32
Verify Message Integrity - - 1 2 - - - - - - - - - - 3
MCP
Audit 5 2 - - - - - - - 3 - - - - 10
Authenticate Actors - - - - 2 - - - - - 2 1 - - 5
Authorize Actors 1 3 2 - - - - - 1 - - - - - 7
Cross Cutting - - - - - - - - - - - - - - 0
Encrypt Data - - - - - - - - 1 - - - - - 1
Identify Actors - - - - - - - - - - - - 1 - 1
Limit Access - 1 - - - - - - 1 - - - 1 - 3
Limit Exposure - - - - - - - - - - - - - - 0
Lock Computer - - - - 1 - - - - - - - - - 1
Manage User Sessions - - - - - - - - - - - - - - 0
Validate Inputs 1 - - 4 - - - - - - - - 2 - 7
Verify Message Integrity - - 1 - - - - - - - - - - - 1
Total 7 6 56 46 5 4 3 1 8 3 3 1 7 7 157
% of weaknesses * 5% 5% 43% 34% 4% 3% 2% 1% 6% 2% 2% 1% 5% 5% 100%

Total, MST features only 0 0 53 42 2 4 3 1 5 0 1 0 3 7 121
% of weaknesses * 0% 0% 40% 31% 2% 3% 2% 1% 4% 0% 1% 0% 2% 5% 77%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

Principles view (Table 7.10). The regular expression is manually defined by test engineers and is used
as an oracle. In contrast, for MST, we do not expect engineers to define regular expressions as oracles
since they are derived from the comparison of the output of source and follow-up inputs. Thus, MST
does not require TF2.

Three Audit weaknesses in the view of CWE Security Design Principles can be discovered by
MCP when the testability features TF1 and TF10 are fulfilled. These three weaknesses concern the
quality of recorded logs in the system (i.e., insufficient logging or excessive data). However, since
MST does not deal with log files (see Paragraph above), MST cannot discover such weaknesses.
Therefore, TF10 is not required by MST.

The last testability feature required only by MCP is TF12. It helps MCP to detect one weakness
related to the security design principle Authenticate Actors (i.e., use of password hash instead of
password for authentication). To cover this weakness, MCP needs a feature to get stored passwords
in the database server. Since such type of testing cannot be expressed in terms of a metamorphic
relation (i.e, a password can be replaced by a single hash only), MST does not cover this weakness
and, consequently, does not require TF12.
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Table 7.27. Distribution of testability features of MST and MCP for the weaknesses associated with the
OWASP Top 10 security risks.

OWASP Security Risk Testability Feature Number Sum1 2 3 4 5 6 7 8 9 10 11 12 13 14
MST
Injection - - 4 5 - - - - - - - - - - 9
Broken Authentication - - 2 1 1 - - - 1 - 1 - 1 - 7
Sensitive Data Exposure - - 1 - - - - - 2 - - - - 1 4
XML External Entities - - - - - - - - - - - - - - 0
Broken Access Control - - 4 1 - - 1 - - - - - - - 6
Security Misconfiguration - - 2 1 - - - - - - - - - - 3
Cross-Site Scripting - - - - - - - - - - - - - - 0
Insecure Deserialization - - - - - - - - - - - - - - 0
Using Components with - - - - - - - - - - - - - - 0
Known Vulnerabilities
Insufficient Logging & Monitoring - - - - - - - - - - - - - - 0
MCP
Injection - - 1 - - - - - - - - - - - 1
Broken Authentication - - - - - - - - - - - - - - 0
Sensitive Data Exposure - 1 - - - - - - 1 - - - - - 2
XML External Entities - - - - - - - - - - - - 1 - 1
Broken Access Control - - - - - - - - - - - - - - 0
Security Misconfiguration - - - - - - - - - - - - - - 0
Cross-Site Scripting - - - - - - - - - - - - 1 - 1
Insecure Deserialization - - - - - - - - - - - - - - 0
Using Components with - - - - - - - - - - - - - - 0
Known Vulnerabilities
Insufficient Logging & Monitoring 1 - - - - - - - - 1 - - - - 2
Total 1 1 14 8 1 0 1 0 4 1 1 0 3 1 36
% of weaknesses * 3% 3% 47% 27% 3% 0% 3% 0% 13% 3% 3% 0% 10% 3% 100%
Total, MST features only 0 0 13 8 1 0 1 0 3 0 1 0 1 1 29
% of weaknesses * 0% 0% 43% 27% 3% 0% 3% 0% 10% 0% 3% 0% 3% 3% 80%

* Percentage of weaknesses that can be discovered thanks to a testability feature.

In OWASP Top 10 security risks, MCP and MST share eight common testability features (i.e.,
TF3, TF4, TF5, TF7, TF9, TF11, TF13 and TF14: see Table 7.11 and Table 7.21). MCP needs three
additional testability features (i.e., TF1. TF2, and TF10) to cover six weaknesses not covered by
MST. TF3 and TF4 still play the most important role.

According CWE top 25 weaknesses, five testability features (i.e., TF3, TF4, TF7, TF9 and TF14:
see Table 7.11 and Table 7.21) are shared between MCP and MST. Two additional testability features
(i.e., TF2 and TF13) are required by MCP to discover six weaknesses not detected by MST. TF3 and
TF4 remain the most important testability features.

At the end of Section 7.6, we proposed to combine MST and MCP to discover a total of 137
weaknesses, 104 with MST and 33 additional ones with MCP. Tables 7.26 to 7.28 show the testability
features required to automate such a process, for each CWE view considered in our analysis. Con-
cerning Security Design Principles view, 10 testability features are required to test 101 weaknesses
with MST, and 4 additional features are required by MCP. It can be observed that the 10 testability
features required by MST enable the testing of 120 weaknesses (101 with MST, 19 with MCP); thus,
MCP can be applied on top of MST without additional costs. Concerning the OWASP Top 10 secu-
rity risks view, MST needs eight testability features (i.e., TF3, TF4, TF5, TF7, TF9, TF11, TF13, and
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Table 7.28. Distribution of testability features of MST and MCP for the CWE Top 25 weaknesses.

CWE Top 25 Weakness Testability Feature Number Sum1 2 3 4 5 6 7 8 9 10 11 12 13 14
MST
Improper Input Validation - - 1 1 - - - - - - - - - - 2
SQL Injection - - 1 1 - - - - - - - - - - 2
Path Traversal - - 1 - - - - - - - - - - - 1
OS Command Injection - - 1 - - - - - - - - - - - 1
Improper Authentication - - 1 - - - - - - - - - - - 1
Incorrect Permission Assignment - - 1 - - - - - - - - - - - 1
for Critical Resource
Unrestricted Upload of File with - - - 1 - - - - - - - - - - 1
Dangerous Type
Improper Privilege Management - - 1 - - - 1 - - - - - - - 2
Improper Certificate Validation - - - - - - - - - - - - - 1 1
MCP
Cross-Site Scripting - - - - - - - - - - - - 1 - 1
Information Exposure - 1 - - - - - - 1 - - - - - 2
Integer Overflow or Wraparound - - - 1 - - - - - - - - - - 1
Cross-Site Request Forgery (CSRF) - - - - - - - - - - - - 1 - 1
Improper Restriction of - - - - - - - - - - - - 1 - 1
XML External Entity Reference
Code Injection - - - 1 - - - - - - - - - - 1
Total 0 1 7 5 0 0 1 0 1 0 0 0 3 1 19
% of weaknesses * 0% 7% 47% 33% 0% 0% 7% 0% 7% 0% 0% 0% 20% 7% 100%
Total, MST features only 0 0 7 3 0 0 1 0 0 0 0 0 0 1 12
% of weaknesses * 0% 0% 47% 20% 0% 0% 7% 0% 0% 0% 0% 0% 0% 7% 75%

* The percentage of weaknesses that can be discovered thanks to the testability feature.

TF14) to discover 24 weaknesses, while MCP requires two additional features (i.e., TF1 and TF2) to
discover six additional weaknesses. The eight testability features required by MST enable the testing
of 28 weaknesses (24 with MST and 4 with MCP). Regarding the CWE Top 25 view, four testability
features are required to detect nine weaknesses with MST, and three additional testability features are
needed by MCP to discover six more weaknesses. With only four testability features (i.e., TF3, TF4,
TF7, and TF14) required by MST, 11 weaknesses can be discovered (nine by MST and two additional
by MCP).

Tables 7.26 to 7.28 can be used as testability guidelines for the software engineers who aim to
automate testing by combining MST and MCP. Following our suggestion (see Section 7.6), MST
should be applied first because it requires minimal inputs from the test engineer. For this reason,
implementing the testability features required by MST is highly suggested since MST comes with
limited additional costs. Also, we have observed that the testability features required by MST enable
the testing of a number of weaknesses discovered by MCP only. Indeed, MCP covers six additional
weaknesses belonging to the Validate Inputs security design principle with the same set of 10 testa-
bility features required by MST. Three of them are high risk weaknesses (i.e., Cross-Site Script,
Cross-Site Request Forgery, Code Injection). Though the discovery of such weaknesses requires the
definition of complex attack scenarios including interactions between the system under test and mul-
tiple users, the RMCM template used by MCP enable the definition of such scenarios. Therefore,
MCP complements MST for weaknesses with complex attack scenarios without additional testability
costs.
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Concerning the additional testability features required by MCP, we highlight that MCP can dis-
cover weaknesses related to Audit, Authorize Actors, Limit Access, and Validate Inputs. The Audit
security design principle is not addressed by MST; therefore, if the verification of log quality is im-
portant, the adoption of MCP is strongly suggested. The implementation of the additional testability
features required by MCP (i.e., TF1, TF2, and TF10) is thus highly justified in this case. If the ver-
ification of log file quality is not necessary, engineers may evaluate whether it is more expensive to
implement TF1, TF2, and TF10 or manually test the six weaknesses related to Authorize Actors, Limit
Access, and Validate Inputs. In general, we suggest to implement TF1, TF2, and TF10 because test
automation is an investment that minimizes human errors and pays off on the long term.
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Chapter 8

Conclusions and Future Work

In this chapter we summarize the contributions of this dissertation and discuss some perspectives on
potential future work in this area.

8.1 Summary
Software systems are pervasive in most areas of society and industry. People continuously interact
with software applications (e.g., Apps on a smartphone, browser in a desktop computer) to perform
different kinds of important activities (e.g., working, reading, playing games, doing physical exer-
cise). A common characteristic of many of these software systems is that they are Web-oriented,
i.e., the computation is performed on a remote system (e.g., a server) and the input data and results
are communicated through the Web. With these types of systems, the security and privacy of both
software and data are a primary concern for all stakeholders.

Examples of such Web-oriented systems are systems developed in the context of a European
project in the healthcare domain named EDLAH2. The objective of the project was to improve the
daily activities of elder people through a gamification-based approach. EDLAH2 case systems man-
age and exchange personal and sensitive information (i.e., health status, personal security information,
personal messages and pictures). The work described in this dissertation has been partially motivated
by the needs of the EDLAH2 project.

In this dissertation, we focused on the definition of methods and the design of automated solutions
to help ensure that web-oriented software systems meet their security requirements.

First, we addressed the challenges related to the specification of security requirements in a struc-
tured and analyzable form that supports communication among stakeholders, and eases the verifi-
cation of security requirements. To this end, we defined a requirements specification template and
a requirements modelling methodology, called RMCM. RMCM supports the modeling of security
requirements in a structured and analyzable manner by means of misuse case diagrams and security
use case specifications. A misuse case diagram describes the relations between actors, use cases,
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misuse cases, and security use cases. To specify security use case specifications, we extended the
RUCM modelling method for functional requirements. More precisely, we extended RUCM with
rules to specify misuse case specifications and mitigation schemes. Furthermore, we defined a set
of NLP-based algorithms to automatically check the consistency between requirement specifications
and diagrams, and the conformance between requirement specifications and the proposed template.
Empirical results and a questionnaire with the EDLAH2 engineers have shown that RMCM is pre-
cise and practical to capture the security requirements of Web-oriented software systems in industrial
settings.

Second, we defined solutions to automatically generate executable security test cases from secu-
rity requirements in natural language. More precisely, our solution processes requirements written ac-
cording to the RMCM requirements specification template to generate executable test cases that verify
the correct implementation of security requirements. Our approach, called Misuse Case Programming
(MCP), automatically generates executable security test cases from misuse case specifications. More
specifically, MCP relies on Natural Language Programming concepts to support test case generation.
MCP leverages Natural Language Processing (NLP) techniques to extract the concepts appearing in
requirements specifications and generates executable test cases by matching the extracted concepts to
the members of a provided test driver API. The evaluation performed with the EDLAH2 case study
system provides evidence of the feasibility and benefits of the approach. MCP also reduces the effort
required for performing security vulnerability testing since it automates the generation of executable
test cases which are not easy to implement manually.

Third, we proposed a solution to contain test automation costs due to the identification of test in-
puts and associated test oracles. More precisely, we defined a metamorphic security testing approach,
MST, to automatically generate test inputs and test oracles for security testing. MST enables engi-
neers to specify metamorphic relations (MR) capturing security properties of web-oriented software
systems. To the best of our knowledge, the work described in this dissertation is the first metamorphic
testing solution automating the detection of a large set of security vulnerabilities. Our contributions
to the state-of-the-art include (1) a DSL and supporting tools for specifying MRs for security test-
ing, (2) a set of MRs inspired by OWASP guidelines, (3) a data collection framework that crawls the
system under test to automatically derive input data, and (4) a metamorphic testing framework that
automatically detect security vulnerabilities based on the provided MRs. Our analysis of the OWASP
guidelines shows that MST can automate 39% of the security testing activities not currently targeted
by state-of-the-art techniques. Empirical results performed with three case study systems have shown
that the approach requires limited manual effort and detects 85.7% of the targeted vulnerabilities.
Moreover, MST allowed us to discover an unknown vulnerability in a widely adopted CI/CD system
(Jenkins).

Fourth, we derived testability guidelines to support test engineers in automatically testing soft-
ware systems with the proposed automated testing approaches (i.e., MCP and MST). More precisely,
we investigated which types of security vulnerabilities can be identified by the proposed approaches,
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and what guidelines should be followed to adopt these approaches as effectively as possible in web-
oriented software systems. Our study has shown that MCP and MST address a high percentage of
weaknesses reported in the CWE database [CWE, 2020s]. More precisely, they enable the detection
of 59% and 45% of the weaknesses related to security design principles, respectively. They can detect
70% and 56% of the OWASP Top 10 security risks, respectively. Also, they can discover 60% and
36% of the CWE Top 25 weaknesses, respectively. In general, MCP can discover a superset of the
vulnerabilities detected by MST but entails higher costs due to test input selection and test oracle def-
inition. For this reason, we recommend to apply both MST and MCP; more precisely, we suggest to
rely on MCP to discover those vulnerabilities that cannot be detected by MST. Concerning testability,
we have identified 14 different features (i.e., testability features) that either the software under test or
the test framework should implement to fully leverage the capabilities of MCP and MST. MCP and
MST share most of the features, with MCP requiring a larger set. As part of our guidelines, we have
identified the subset of testability features required to verify distinct design principles or high-risk
weaknesses. Our testability guidelines thus support engineers to determine, based on the security
requirements of the system under test, which testability features need to be enabled.

8.2 Future Work
In this dissertation, we focused on the problem of capturing security requirements in a structured and
analyzable manner, automating the process of security requirements verification, and addressing the
oracle problem in security testing. In the future, we aim to extend and consolidate the techniques
developed in the context of this dissertation to make them applicable to a broader set of systems,
including cyber-physical, Internet-of-Things (IoT), and telecommunication (e.g., satellite) systems.

Concerning requirements elicitation (i.e., RMCM) and verification (i.e., MCP), future work should
focus on introducing more flexibility in the writing of the requirements specifications, which includes
the handling of synonyms [Wang et al., 2018], and support for compound sentences. Also, from a
more technical standpoint, it is necessary to extend the MCP test driver API to support a broader set
of testability features that might be required in different contexts (e.g., IoT and satellite communica-
tions).

Concerning metamorphic security testing, we believe that the proposed DSL and toolset can be
leveraged by other researchers to extend the set of supported metamorphic relations, including domain
specific ones (e.g., to detect vulnerabilities in cyber-physical systems). Also, since the degree of
automation of MST largely depends on the capability of the Web crawler used to collect source inputs,
future research directions should include the development of Web crawlers aiming at mimicking the
behaviour of end-users and capable of exploring a large set of features of the system under test.
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Appendix A

Misuse Case Specifications

In this chapter, we list 13 misuse case specifications that follow the RMCM template. Twelve of
them were derived from the OWASP testing guidelines [Meucci and Muller, 2014]; an additional
specification is dedicated to the EDLAH2 system.

These 13 misuse case specifications were used as input for MCP to test the EDLAH2 system (see
Section 5.8). Besides, we present two Mitigation Schemes (in Section A.3) which are used to mitigate
these misuse cases.

A.1 Misuse Case Specifications Derived from OWASP Testing
Guidelines
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Appendix A. Misuse Case Specifications

1. Access Directory Traversal

MISUSE CASE Access directory traversal
Description The misuse case simulates the OWASP testing activity OTG-AUTHZ-001 (i.e., Testing Directory traversal/file
include) [Meucci and Muller, 2014]. The MALICIOUS user tries to access a system file by passing the file path in a URL
parameter. File paths are provided by the malicious user in a text file.
Precondition There exists a file containing the list of file paths being requested.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In, Query Client Info, Create Account, Query Statistical Analysis Report
Assets system DATA
Basic Threat Flow

1. FOREACH url
2. DO
3. The MALICIOUS user SENDS FUZZ VALUES TO the system THROUGH the URL.
4. The system SENDS a response page TO the MALICIOUS user.
5. The MALICIOUS user EXPLOITS the system USING the url.
6. UNTIL the MALICIOUS user used all fuzz values.
7. ENDFOR.
Postcondition The MALICIOUS user may have accessed sensitive files or folders on the Web server.

Specific Alternative Flow SAF1
RFS 5
1. IF the response page contains the error message THEN
2. RESUME STEP 6.
3. ENDIF.
Postcondition The MALICIOUS user cannot access sensitive files or folders on the Web server.

Mitigation Scheme Secure Coding for Web App
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A.1. Misuse Case Specifications Derived from OWASP Testing Guidelines

2. Bypass Authentication Schema

MISUSE CASE Bypass Authentication Schema
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-004 (i.e., Testing for bypassing authentica-
tion schema) [Meucci and Muller, 2014]. Precisely, this misuse case replicates the direct page request method (i.e., attempt to
directly access a protected page).
Precondition None
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Query Client Info, Create Account, Query Statistical Analysis Report
Assets client DATA
Basic Threat Flow

1. FOREACH resource
2. The MALICIOUS user REQUESTS the resource FROM the system
3. The system SENDS the response page TO the malicious user
4. The MALICIOUS user EXPLOITS the system USING the resource
5. ENDFOR
Postcondition The MALICIOUS user has executed a function dedicated to an authenticated user

Specific Alternative Threat Flow SATF1
RFS 2
1. IF the resource contains the role parameter in the URL THEN
2. The MALICIOUS user MODIFIES the role values IN the URL
3. RESUME STEP 2
4. ENDIF
Postcondition The MALICIOUS user has executed a function dedicated to an authenticated user

Specific Alternative Threat Flow SATF2
RFS 5
1. IF the resource contains the role parameter in the HTTP post data THEN
2. The MALICIOUS user MODIFIES the role values IN the HTTP post data THEN
3. RESUME STEP 2
4. ENDIF
Postcondition The MALICIOUS user has executed a function dedicated to an authenticated user

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains the error message THEN
2. ABORT
3. ENDIF
Postcondition The MALICIOUS user CANNOT execute a function dedicated to an authenticated user

Mitigation Scheme Secure Coding for Web App
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Appendix A. Misuse Case Specifications

3. Bypass Authorization Schema

MISUSE CASE Bypass Authorization Schema
Description The misuse case simulates the OWASP testing activity OTG-AUTHZ-002 (i.e., Testing for bypassing authorization
schema ) [Meucci and Muller, 2014]. Precisely, this misuse case attempts to access to resources dedicated to a different role.
Precondition At least two client accounts have already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Query Client Info, Create Account, Query Statistical Analysis Report
Assets client DATA
Basic Threat Flow

1. FOREACH role
2. The MALICIOUS user SENDS the username and the password TO the system THROUGH the Login page
3. FOREACH resource
4. The MALICIOUS user REQUESTS the resource FROM the system
5. The system SENDS the response page TO the malicious user
6. The MALICIOUS user EXPLOITS the system USING the role and the resource
7. ENDFOR
8. ENDFOR
Postcondition The MALICIOUS user has executed a function dedicated to another user with different role

Specific Alternative Threat Flow SATF1
RFS 4
1. IF the resource contains the role parameter in the URL THEN
2. The MALICIOUS user MODIFIES the role values IN the URL
3. RESUME STEP 4
4. ENDIF
Postcondition The MALICIOUS user has executed a function dedicated to another user with different role

Specific Alternative Threat Flow SATF2
RFS 4
1. IF the resource contains the role parameter in the HTTP post data THEN
2. The MALICIOUS user MODIFIES the role values IN the HTTP post data
3. RESUME STEP 4
4. ENDIF
Postcondition The MALICIOUS user has executed a function dedicated to another user with different role

Specific Alternative Flow SAF1
RFS 3
1. IF the response page contains the failure login message THEN
2. ABORT
3. ENDIF
Postcondition The MALICIOUS user CANNOT login

Specific Alternative Flow SAF2
RFS 6
1. IF the response page contains the error message THEN
2. ABORT
3. ENDIF
Postcondition The MALICIOUS user CANNOT execute a function dedicated to another user with different role

Mitigation Scheme Secure Coding for Web App

154



A.1. Misuse Case Specifications Derived from OWASP Testing Guidelines

4. Exploit HTTP verbs

MISUSE CASE Exploit HTTP verbs
Description The misuse case simulates the OWASP testing activity OTG-INPVAL-003 (i.e., Testing for HTTP Verb Tam-
pering) [Meucci and Muller, 2014]. As the HTML standard does not support request methods other than GET or POST, the
MALICIOUS user crafts custom HTTP requests to test other methods (e.g., PUT, TRACE, OPTIONS, DELETE).
Precondition None
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In, Query Client Info, Create Account, Query Statistical Analysis Report
Assets system DATA
Basic Threat Flow

1. DO
2. The MALICIOUS user alters the HTTP request with FUZZ VALUES.
3. The MALICIOUS user requests the url FROM the system.
4. The system SENDS a response page TO the MALICIOUS user.
5. The MALICIOUS user EXPLOITS the system.
6. UNTIL the MALICIOUS user used all fuzz values
Postcondition The MALICIOUS user may exploit the system using different HTTP methods

Specific Alternative Flow SAF1
RFS 5
1. IF the response page contains the error message THEN
2. RESUME STEP 6.
3. ENDIF.
Postcondition The MALICIOUS user cannot exploit the system using different HTTP methods
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5. Exploit Insecure Direct Object References

MISUSE CASE Exploit insecure direct object references
Description The misuse case simulates the OWASP testing activity OTG-AUTHZ-004 (Testing for Insecure Direct Object
References) [Meucci and Muller, 2014]. This vulnerability allows the MALICIOUS user to bypass authorization and access
resources directly by modifying the value of a parameter used to directly point to an object.
Precondition The malicious user needs to map out all locations in the application where user input is used to reference objects
directly.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Query Client Info, Create Account, Query Statistical Analysis Report
Assets client DATA
Basic Threat Flow

1. FOREACH url
2. DO
3. The MALICIOUS user SENDS FUZZ VALUES TO the system THROUGH the URL.
4. The system SENDS a response page TO the MALICIOUS user.
5. The MALICIOUS user EXPLOITS the system USING the url.
6. UNTIL the MALICIOUS user used all fuzz values
7. ENDFOR
Postcondition The MALICIOUS user may have accessed sensitive files or folders on the Web server.

Specific Alternative FlowSAF1
RFS 5
1.IF the response page contains the error message THEN
2. RESUME STEP 6.
3. ENDIF
Postcondition The MALICIOUS user cannot access sensitive files or folders on the Web server.
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A.1. Misuse Case Specifications Derived from OWASP Testing Guidelines

6. Exploit Weak Lock Out Mechanism - Account

MISUSE CASE Exploit weak lock out mechanism - Account
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-003 (i.e., Testing for Weak lock out mech-
anism) [Meucci and Muller, 2014]. This test aims to verify if the account lockout mechanism mitigates brute force password
guessing.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In
Assets system DATA
Basic Threat Flow

1. DO
2. The MALICIOUS user SENDS DICTIONARY VALUES TO the system THROUGH the login page IN the username and

password fields.
3. The system SENDS the response page TO the MALICIOUS user.
4. UNTIL the MALICIOUS user reaches the predefined threshold attempts.
5. The MALICIOUS user EXPLOITS the system.
Postcondition The MALICIOUS user knows the number of failed login attempts after which the account is locked.

Specific Alternative Threat Flow SATF1
RFS 4
1. IF the MALICIOUS user has been logged into the system THEN
2. The MALICIOUS user resets the attempt counter.
3. RESUME STEP 2.
4. ENDIF.
Postcondition The MALICIOUS user knows a valid account of the system.

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains a locked account message THEN
2. ABORT.
3. ENDIF.
Postcondition The system applies a lock out mechanism.
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7. Exploit Weak Lock Out Mechanism - IP

MISUSE CASE Exploit weak lock out mechanism - IP
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-003 (i.e., Testing for Weak lock out mecha-
nism) [Meucci and Muller, 2014]. This test aims to verify if the IP lockout mechanism mitigates brute force password guessing.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In
Assets system DATA
Basic Threat Flow

1. DO
2. The MALICIOUS user SENDS DICTIONARY VALUES TO the system THROUGH the login page IN the username and

password fields.
3. The system SENDS the response page TO the MALICIOUS user.
4. UNTIL the MALICIOUS user reaches the high predefined number of attempts.
5. The MALICIOUS user EXPLOITS the system.
Postcondition The MALICIOUS user knows the number of failed login attempts after which the account is locked.

Specific Alternative Threat Flow SATF1
RFS 4
1. IF the MALICIOUS user has been logged into the system THEN
2. The MALICIOUS user resets the attempt counter.
3. RESUME STEP 2.
4. ENDIF.
Postcondition The MALICIOUS user knows a valid account of the system.

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains a locked account message THEN
2. ABORT.
3. ENDIF.
Postcondition The system applies a lock out mechanism for IP address.
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8. Exploit Weak Password Policy

MISUSE CASE Exploit weak password policy
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-007 (i.e., Testing for Weak password pol-
icy) [Meucci and Muller, 2014]. This test aims to evaluate the length, complexity, reuse and aging requirements of passwords.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Reset Password
Assets system DATA
Basic Threat Flow

1. FOREACH PasswordType
2. The MALICIOUS user SENDS the password and the password confirmation value TO the system THROUGH the reset

password page.
3. The system SENDS the response page TO the MALICIOUS user.
4. The MALICIOUS user EXPLOITS the system USING the PasswordType.
Postcondition The MALICIOUS user exploits the weak password policy.

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains a password mismatch message THEN
2. ABORT.
3. ENDIF.
Postcondition The password and the confirm password do not match.

Specific Alternative Flow SAF2
RFS 4
1. IF the response page contains a failure message THEN
2. ABORT.
3. ENDIF.
Postcondition The password does not match the password complexity policy.
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9. Exploit Weak Password Reset Functionality

MISUSE CASE Exploit weak password reset functionality
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-009 (i.e., Testing for weak password change
or reset functionalities ) [Meucci and Muller, 2014]. This misuse case aims to verify if the password reset functionality could
be interrupted.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors Client, Network sniffing tool
Dependency None
Generalization None
Threats Reset password
Assets client DATA
Basic Threat Flow

1. The MALICIOUS user RUNS the network sniffing tool.
2. The client SENDS the password and the password confirmation value TO the system THROUGH the reset password page.
3. The MALICIOUS user GETS the packets FROM the network sniffing tool.
4. The MALICIOUS user MODIFIES the new password fields IN the HTTP post data.
5. The MALICIOUS user RESENDS the modified packet TO the system.
6. The system SENDS the response page TO the MALICIOUS user.
7. The MALICIOUS user EXPLOITS the system.
Postcondition The MALICIOUS user successfully resets a client’s password.

Specific Alternative Flow SAF1
RFS 7
1. IF response page contains a failure message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS cannot reset client’s password.
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A.1. Misuse Case Specifications Derived from OWASP Testing Guidelines

10. Get Credentials Transported over an Unencrypted Channel

MISUSE CASE Get credentials transported over an unencrypted channel
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-001 (i.e., Testing for Credentials Trans-
ported over an Encrypted Channel) [Meucci and Muller, 2014]. This misuse case verifies if the user’s authentication data are
transferred via an encrypted channel to avoid being intercepted by malicious users.
Precondition At least one client account has already been created in the system. The web browser has been configured to
forward all packets to a proxy under the control of the MALICIOUS user.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In
Assets client’s credentials DATA
Basic Threat Flow

1. The MALICIOUS user SENDS the username and the password TO the system THROUGH the login page.
2. The system SENDS the response page TO the MALICIOUS user.
3. The MALICIOUS user MODIFIES the protocol IN the URL.
4. The MALICIOUS user RESENDS the modified packet TO the system.
5. The system SENDS the response page TO the MALICIOUS user.
6. The MALICIOUS user EXPLOITS the system USING the protocol.
Postcondition The MALICIOUS user knows that the client’s account information is transferred on an unsecured channel.

Specific Alternative Threat Flow SATF1
RFS 4
1. IF the MALICIOUS user uses the GET method THEN
2. The MALICIOUS user EXPLOITS the system.
2. ABORT.
3. ENDIF.
Postcondition condition

Specific Alternative Flow SAF1
RFS 3
1. IF the response page contains a failed login message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS user filled wrong account credential or accessed wrong login page.

Specific Alternative Flow SAF2
RFS 5
1. IF the response page contains a failed login message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS user cannot log in the system.
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11. Get Default Credentials

MISUSE CASE Get default credentials
Description The misuse case simulates the OWASP testing activity OTG-AUTHN-002 (i.e., Testing for default creden-
tials) [Meucci and Muller, 2014]. The objective of this misuse case is to check if there exist default credentials in the system.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In
Assets system DATA
Basic Threat Flow

1. DO
2. The MALICIOUS user SENDS DICTIONARY VALUES TO the system THROUGH the login page IN the username and

password fields
3. The system SENDS the response page TO the malicious user
4. UNTIL the MALICIOUS user has been logged into the system
5. The MALICIOUS user EXPLOITS the system.
Postcondition The MALICIOUS user has been logged into the system by using a default credential.

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains a timeout message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS user has not been logged into the system

Specific Alternative Flow SAF2
RFS 4
1. IF the MALICIOUS user reaches the high predefined threshold attempts THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS user has not been logged into the system
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A.1. Misuse Case Specifications Derived from OWASP Testing Guidelines

12. Guess User Account

MISUSE CASE Guess user account
Description The misuse case simulates the OWASP testing activity OTG-IDENT-004 (i.e., Testing for Account Enumeration
and Guessable User Account ) [Meucci and Muller, 2014]. The MALICIOUS user collects a set of valid usernames in the
system.
Precondition At least one client account has already been created in the system.
Primary Actor MALICIOUS user
Secondary Actors None
Dependency None
Generalization None
Threats Log In
Assets client credentials DATA
Basic Threat Flow

1. FOREACH combination
2. The MALICIOUS user SENDS the username and the password TO the system THROUGH the login page.
3. The system SENDS the response message TO the MALICIOUS user.
4. The MALICIOUS user EXPLOITS the system USING the username and the password.
5. ENDFOR.
Postcondition The MALICIOUS tried all the username and password combinations

Specific Alternative Threat Flow SATF1
RFS 4
1. IF the response page contains the wrong password message THEN
2. The MALICIOUS user EXPLOITS the system USING the username.
3. EXIT.
4. ENDIF.
Postcondition The MALICIOUS user knows that the username exists but the password is wrong.

Specific Alternative Flow SAF1
RFS 4
1. IF the response page contains the unknown combination message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS user does not know whether the username exists or not.
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A.2 Specifications Dedicated to the EDLAH2 System

1. Reuse Invitation to Create a User Account

MISUSE CASE Reuse invitation to create a user account
Description The misuse case aims to detect a vulnerability of EDLAH2 system [EDLAH2, 2017a]. The MALICIOUS user
captures an invitation to create a new user account and then reuse it to create another user account.
Precondition The client user has the right to send an invitation to other people.
Primary Actor MALICIOUS user
Secondary Actors Client
Dependency None
Generalization None
Threats Invite user
Assets system DATA
Basic Threat Flow

1. The client SENDS the username and the password TO the system THROUGH the login page.
2. The MALICIOUS user RUNS the network sniffing tool.
3. The client SENDS the invitation request TO the system THROUGH the invitation page.
4. The MALICIOUS user GETS the packets FROM the network sniffing tool.
5. The MALICIOUS user MODIFIES the email field, and the recipient field, and the message field IN the HTTP post data.
6. The MALICIOUS user RESENDS the modified packet TO the system.
7. The system SENDS the response page TO the MALICIOUS user.
8. The MALICIOUS user EXPLOITS the system.
Postcondition The MALICIOUS user successfully creates a new account on the EDLAH2 system.

Specific Alternative Flow SAF1
RFS 8
1. IF response page contains a failure message THEN
2. ABORT.
3. ENDIF.
Postcondition The MALICIOUS cannot create a new account.
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A.3. Mitigation Schemes

A.3 Mitigation Schemes
1. Secure Coding for Web App

Scheme Name Secure Coding for Web App.

Brief Description This mitigation guideline provides secure coding guidelines for the developers who develop
the web app.

Actors Software Developer, Security Engineer.

Mitigated Misuse
Cases

Access Directory Traversal, Bypass Authentication Schema, Bypass Authorization Schema,
Exploit HTTP verbs, Exploit Weak Lock Out Mechanism - Account, Exploit Weak Lock Out
Mechanism - IP, Exploit Weak Password Policy, Get Default Credentials, Guess User Account,
Reuse Invitation to Create a User Account

Compliance ISO/IEC 27001:2013 clause A.6.1.5: Information security in project management, clause
A.9.2: User access management, clause A.9.4: System & application access control, clause
A.9.3.1: Use of secret authentication information.

Mitigation Tasks 1 Parameterize SQL queries, i.e., bind variables in stored procedures or prepared statements
for SQL queries. Avoid dynamic SQL queries.

2 Avoid using user inputs in HTML outputs such as JavaScript and event handlers. If
it cannot be avoided, sanitize user inputs using adequate security APIs (e.g. Apache’s
StringEscapeUtils)

3 Implement user authorization method. For example, the system prompts or alerts the client
before launching sensitive actions (invoking sensitive APIs/resources, propagating sensi-
tive information to external entities).

4 Implement user authentication method. For example, for every service request on the server
side, attach an authentication token. Implement persistent authentication as opt-in rather
than by default.

5 Implement a strong password policy that ensures password length, complexity, reuse and
aging.

6 Implement the lockout mechanism that provides a balance between protecting accounts
from unauthorized access and protecting users from being denied authorized access.

7 Eliminate all default credentials, default configuration in the system before deploying.
8 Educate users about phishing attacks. For example, educate them not to trust seemingly

benign but malicious URLs sent to emails, messages, or social networking websites by
unknown entities.

2. Anonymize User Data

Scheme Name Anonymize User Data.

Brief Description This mitigation guideline provides the guidelines for anonymizing user data to prevent external
entities from being able to identify clients individually.

Actors Software Developer

Mitigated Misuse
Cases

Exploit Insecure Direct Object References, Exploit Weak Password Reset Functionality, Get
Credentials Transported over an Unencrypted Channel

Compliance ISO/IEC 27001:2013 clause A.6.1.5: Information security in project management, clause
A.9.4: System & application access control, clause A.10.1: Cryptographic controls.

Mitigation Tasks 1 Store all user data in a secure, reliable database with proper access control rights specified.
2 Transmit user data between the system side and client side (e.g., browsers) via standard

secure transport protocols (e.g. SSL/TLS).
3 Encrypt all explicit user identifiers (e.g., names, IDs, and addresses).
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Appendix B

Catalog of Metamorphic Security Relations

In this chapter, we present 22 system-agnostic metamorphic security relations (see Section 6.7). These
MRs are also available on the MST toolset website at: https://sntsvv.github.io/SMRL/.

These 22 MRs are derived from the following 16 OWASP testing activities [Meucci and Muller,
2014]:

1. Testing for Credentials Transported over an Encrypted Channel: OTG_AUTHN_001.
2. Testing for Bypassing Authentication Schema : OTG_AUTHN_004.
3. Testing for Weaker Authentication in Alternative Channel: OTG_AUTHN_010.
4. Testing Directory traversal/file include: OTG_AUTHZ_001a and OTG_AUTHZ_001b.
5. Testing for Bypassing Authorization Schema: OTG_AUTHZ_002, OTG_AUTHZ_002a,

OTG_AUTHZ_002b, OTG_AUTHZ_002c, OTG_AUTHZ_002d, and OTG_AUTHZ_002e.
6. Testing for Privilege Escalation: OTG_AUTHZ_003.
7. Testing for Insecure Direct Object References: OTG_AUTHZ_004.
8. Test Number of Times a Function Can be Used Limits: OTG_BUSLOGIC_005.
9. Test HTTP Strict Transport Security: OTG_CONFIG_007.

10. Testing for Weak Encryption: OTG_CRYPST_004.
11. Testing for HTTP Verb Tampering: OTG_INPVAL_003.
12. Testing for HTTP Parameter pollution: OTG_INPVAL_004.
13. Testing for Session Fixation: OTG_SESS_003.
14. Testing for Logout Functionality: OTG_SESS_006.
15. Test Session Timeout: OTG_SESS_007.
16. Testing for Session puzzling: OTG_SESS_008.

166

https://sntsvv.github.io/SMRL/


 

import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** A login operation should not succeed if performed on the HTTP channel. 
 *   
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunctions.  
 * The 1st clause checks if the current action performs a log in. The 2nd 
clause defines the follow-up input. The 3rd clause changes the channel of the 
login action in the follow-up input.  
 *  
 * The 2nd parameter of IMPLIES checks if the output generated by the login 
operation is different in the two cases. 
 */ 
MR OTG_AUTHN_001 { 
 { 
   for ( Action action : Input(1).actions() ) { 
      var pos = action.getPosition(); 
      IMPLIES(  
         isLogin(action)    //1st par (1st clause) 
         && EQUAL ( Input(2), Input(1) ) //1st par (2nd clause) 
         &&Input(2).actions.get(action.position).setChannel("http")   

//1st par (3rd clause) 
         ,  
         different ( Output(Input(1), pos), Output(Input(2), pos) )  
       //2nd par of IMPLIES 

 );//end-IMPLIES 
   }//end-for 
 }}//end-MR 
}//end-package 
 
  

Figure B.1. MR OTG_AUTHN_001
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OTG_INPVAL_003
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** Without being authenticated, a user should not be able to access a page 
that normally can be reached only through the user interface of authenticated 
users. 
 *   
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunction. 
 * The 1st clause checks if the current action has been performed after a log 
in. The 2nd clause checks if the current action has ever been performed by a 
non-authenticated user. The 3rd clause defines a follow-up input that performs 
only the given action, without logging in before. 
 *   
 * The 2nd parameter of IMPLIES checks if the output generated by the action 
is different in the two cases. 
 */ 
MR OTG_AUTHN_004 { 
 { 
   for ( Action action : Input(1).actions() ) {  
      IMPLIES(  
         afterLogin( action )  //1st par of IMPLIES (1st clause) 
         && notVisibleWithoutLoggingIn( action.getUrl() )   

//1st par of IMPLIES (2nd clause) 
         && EQUAL( Input(2), action )  

//1st par of IMPLIES (3rd clause) 
         ,  
         different(  
            Output(Input(1), action.position ),  
            Output(Input(2), action.position ) ) 

//2nd par of IMPLIES  
      );//end-IMPLIES 
   }//end-for   
 }}//end-MR 
}//end-package 
  Figure B.2. MR OTG_AUTHN_004
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** Without begin authenticated, a user should not be able to access a page 
that normally can be reached only through the user interface of authenticated 
users.  
 * This should be true even if she tries on the http channel (i.e., the result 
of a same operation being performed on a different channel should be 
different). 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with four 
clauses joined with logical conjunction. 
 * The 1st clause checks if the current action has been performed after a 
login. The 2nd clause checks if the current action is not occurring already on 
the http channel. The 3rd clause defines a follow-up input. The 4th clause set 
the channel of the action the follow-up input to "http". 
 *  
 * The 2nd parameter of the operator IMPLIES checks if the output generated by 
the action is different in the two cases. 
 */ 
MR OTG_AUTHN_010 { 
 { 
    for ( Action action : Input(1).actions() ){ 
   var pos = action.position; 
   IMPLIES(  
         afterLogin( action )  //1st par of IMPLIES (1st clause) 

    &&!Input(1).actions().get(pos).getChannel().equals("http") 
//1st par of IMPLIES (2st clause) 

         && EQUAL ( Input(2), Input(1) )  
//1st par of IMPLIES (3nd clause) 

         && Input(2).actions().get(pos).setChannel("http") 
//1st par of IMPLIES (4rd clause) 

         ,  
         different( Output(Input(1),pos), Output(Input(2),pos) )  

//2nd par of IMPLIES 
  );//end-IMPLIES 
    }//end-for 
 }}//end-MR   
}//end-package 
  Figure B.3. MR OTG_AUTHN_010
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** A file path passed in a parameter should never enable a user to access 
data that is not provided by the user interface. 
 * This metamorphic relation contains two nested loops; the first iterates 
over the actions in the input sequence, the second iterates over the 
parameters of the action. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with two 
clauses joined with a logical conjunction. 
 * The 1st clause defines a follow-up input that is a copy of the source 
input. The 2nd clause sets the value of a parameter to a random file path. 
 *  
 * The 2nd parameter of IMPLIES verifies the result. It is implemented as an 
OR operation where the 1st parameter verifies that the follow-up input leads 
to an error page.  
 * The 2nd parameter deals with the case in which the generated request is 
valid, and verifies that the returned content is something that the user has 
the right to access. 
 */ 
MR OTG_AUTHZ_001a { 
 { 
   for ( Action action : Input(1).actions() ){ 
      for (var par=0; par < action.getParameters().size(); par++){  
         var pos = action.getPosition(); 
         IMPLIES(  
            EQUAL( Input(2), Input(1) ) 

//1st par of IMPLIES (1st clause) 
            && Input(2).actions().get(pos) 

.setParameterValue(par, RandomFilePath()) 
//(2nd clause) 

            , 
 //2nd par of IMPLIES, OR operator receiving 2 parameters 

            OR(   
               Output(Input(2),pos).isError()   //1st par of OR 
               , 
               userCanRetrieveContent( 

action.getUser(),  
Output(Input(2),pos)) ) //2nd par of OR  

         );//end-IMPLIES 
      }//end-for 
   }//end-for 
 }}//end-MR 
}//end-package 
 
  Figure B.4. MR OTG_AUTHZ_001a
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** A file path passed in the URL of a request should never enable a user to 
access data that is not provided by the user interface. 
 * This metamorphic relation contains two nested loops; the first is used to 
introduce relative paths in the query (jumps to parent folders), the second 
iterates over the actions in the input sequence. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with a logical conjunction. 
 * The 1st clause verifies whether the current action has been not performed 
by an administrator. The 2nd clause checks if the current action has been 
performed after a login. The 3rd clause defines a follow-up input that is a 
copy of the source input. The 4th clause adds to the end of the current URL a 
relative path to a file. The 5th clause verifies that the given path was not 
tried in a previous execution of the loop (to speed up). 
 *  
 * The 2nd parameter of IMPLIES verifies the result. It is implemented as an 
OR operation where the 1st parameter verifies that the follow-up input does 
not lead to a file; the 2nd parameter deals with the case in which the 
generated request is valid, and verifies that the returned file is something 
that the user has the right to access; the 3rd parameter verifies that the 
follow-up input leads to an error page. 
*/ 
MR OTG_AUTHZ_001b { 
 { 
   var sep="/"; 
      for ( var par=0; par < 4; par++ ){  
         for ( Action action : Input(1).actions() ){  
            var pos = action.getPosition(); 
            var newUrl = action.urlPath+sep+RandomFilePath(); 
            IMPLIES(  

    //1st clause of IMPLIES 
               !isAdmin(action.user) && afterLogin(action) && 
               EQUAL( Input(2), Input(1) ) && 
               Input(2).actions().get(pos).setUrl( newUrl ) && 
               notTried( action.getUser(), newUrl ) 

    , //2nd par of IMPLIES  
    TRUE (   

                  Output(Input(2),pos).noFile() ||  
                  userCanRetrieveContent( action.getUser(),   
                        Output(Input(2),pos).file()) ||  
                  Output(Input(2),pos).isError()    
            );//end-IMPLIES 
         }//end-for 
         sep=sep+"../"; 
      }//end-for 
   }}//end-MR 
}//end-package 
 
  Figure B.5. MR OTG_AUTHZ_001b
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import static smrl.mr.language.Operations.* 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
  /*** A URL that cannot be reached by a user while navigating the user 
interface should not be available to that same user even when she directly 
requests the URL to the server.  
   * For this reason, an input sequence that is valid for a given user, should 
not lead to the same output when it is executed by another user, if it 
includes access to a URL with these characteristics. 
   * The metamorphic relation iterates over all the actions of an input 
sequence. 
   *  
   * The 1st parameter of IMPLIES is made of three clauses. 
   * The 1st clause checks whether the user in User() is not a supervisor of 
the user performing the current action. The 2nd clause verifies that the user 
cannot retrieve the URL of the action through the GUI (based on the data 
collected by the crawler). The 3rd clause defines a follow-up input that 
matches the source input except that the credentials of User() are used in 
this case. 
   *  
   * The 2nd parameter of IMPLIES verifies the result. It is implemented as an 
OR operation where the 1st parameter verifies that the follow-up input leads 
to an error page; The 2nd parameter verifies that the output generated by the 
action containing the URL indicated above leads to two different outputs in 
the two cases. 
   */  
MR OTG_AUTHZ_002 { 
 {  
   for ( Action action : Input(1).actions() ){ 
      IMPLIES( 
         //1st par of IMPLIES 
         (!isSupervisorOf(User(), action.user)) &&    
         cannotReachThroughGUI( User(), action.url ) && 
         EQUAL( Input(2), changeCredentials(Input(1), User()) ) 
         , 
         OR( //2nd par of IMPLIES 
            isError(Output(Input(1),action.position)), 
            NOT(Output(Input(1),action.position).equals( 
               Output(Input(2),action.position)))  
      )); //end-IMPLIES   
   } //end-for 
   
 }} //end-MR 
}//end-package 
  Figure B.6. MR OTG_AUTHZ_002
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import static smrl.mr.language.Operations.* 
import smrl.mr.language.actions.ClickOnNewRandomElement 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** If a redirecting URL cannot be reached by a user while navigating the 
user interface, the same URL, if directly requested to the server, should 
not enable the same user to access a page where the click on one of its 
elements (e.g., a warning message) enables the user to access the content of 
the URL. 
 * The metamorphic relation iterates over all the actions of an input 
sequence. 
 *  
 * The 1st parameter of IMPLIES is made of three clauses. 
 * The 1st clause checks whether the user in User() is not a supervisor of the 
user performing the current action. The 2nd clause verifies that the user 
cannot retrieve the URL of the action through the GUI (based on the data 
collected by the crawler). The 3rd clause defines a follow-up input that 
matches the source input except that the credentials of User() are used in 
this case. 
 *  
 * The 2nd parameter of IMPLIES verifies the result. It is made of three 
clauses. 
 * The 1st clause verifies that the original URL does not perform any 
redirect. The 2nd clause verifies that the original URL does not perform any 
redirect. The 3rd clause verifies that the follow up input does not lead to 
the same redirect from the original input. 
 */ 
MR OTG_AUTHZ_002a { 
 { 
   for ( Action action : Input(1).actions() ){ 
      var pos = action.getPosition(); 
      IMPLIES( 
         (!isSupervisorOf(User(), action.user)) && // 1st par 
         cannotReachThroughGUI(User(), action.url) && 
         EQUAL( Input(2), changeCredentials( Input(1), User() ) )  
         , 
         ( Output(Input(1), pos).redirectURL()===null || 
           Output(Input(2), pos).redirectURL()===null ) || 
           NOT( 
            EQUAL ( 
               Output(Input(2), pos).redirectURL(), 
               Output(Input(1), pos).redirectURL())) 
      ); //end-IMPLIES 
   }//end-IMPLIES 
 }} //end-MR 
} //end-package 
  Figure B.7. MR OTG_AUTHZ_002a
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import static smrl.mr.language.Operations.* 
package smrl.mr.owasp { 
   /*** If a certain action is not available to a given user, this user should not 
be able to perform the action. Assume we have two users, user a and user b. Given 
(1) a source input as a sequence of actions performed by a user 'a' which contains 
an action y that is dedicated to user a (i.e., it is not visible to user b) and 
(2) a follow-up input that is a copy of that sequence which, however, includes, 
before action y, an action that matches action y (e.g., same URL requested) but is 
performed by user 'b'.  
   * The result of action y should not be different when performed in the source 
input (i.e., without any action of b) or in the follow-up input (i.e., when 
performed also by user b).   
   * This MR contains two loops. The first iterates over the actions of the source 
input to identify a login operation (action x) for user a, the second iterates 
over the remaining y-th actions. 
   * The 1st parameter of IMPLIES defines the follow-up input. The 1st clause 
checks whether the user in User() is not a supervisor of the user performing the 
y-th action. The 2nd clause checks that action y cannot be accessed by user b 
(User()). The 3rd clause defines Input(2) which just performs a login. The 4th 
clause defines Input(3) which just performs a login as user b. The 5th clause 
creates a copy of Input(1) with a login as b before action y (this way action y is 
performed as User b). The 6th clause adds after action y+1 (the original action y 
now shifted) new copy of action y (now performed by user b). The 7th clause adds 
after the new copy of action y a new login as user a.  
   * The 2nd parameter of IMPLIES checks that the output of the action y in the 
two sequences remains the same when performed by user a (in the follow-up sequence 
the action of user a is shifted by three because three actions are introduced, the 
login of user b, the current action and a new login for user a). */ 
MR OTG_AUTHZ_002b { 
 { 
   for(var x = 0; x < Input(1).actions().size() ; x++){ 
      for (var y = x+1;  
         isLogin(Input(1).actions().get(x)) &&  
          (y < Input(1).actions().size()); y++) { 
         IMPLIES( //1st par of IMPLIES including 7 clauses             
            (!isSupervisorOf(User(),Input(1).actions().get(y).user)) && 
            cannotReachThroughGUI( User(),  
               Input(1).actions().get(y).getUrl()) && 
            EQUAL(Input(2), Input(1).actions().get(x)) && 
            EQUAL(Input(3), changeCredentials(Input(2), User())) && 
            EQUAL( Input(4), addAction(Input(1), y,  
                   Input(3).actions().get(0))) && 
            EQUAL( Input(5), addAction(Input(4), y+1, 
                   Input(1).actions().get(y))) && 
            EQUAL( Input(6), addAction(Input(5), y+2, 
                   Input(1).actions().get(x) ) ) 
            , //2nd par of IMPLIES 
            EQUAL(Output(Input(1), y), Output(Input(6), y+3 )) 
         ); //end-IMPLIES 
      } //end-for 
   } //end-for 
 }} //end-MR 
} //end-package 
  Figure B.8. MR OTG_AUTHZ_002b
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import static smrl.mr.language.Operations.* 
 
package smrl.mr.owasp { 
/*** A URL that cannot be reached by a user while navigating the user 
interface should not be available to that same user even when she directly 
requests the URL to the server.  
   * The metamorphic relation iterates over all the actions of an input 
sequence. 
   *  
   * The 1st parameter of IMPLIES is made of four clauses. The 1st clause 
checks whether the user in User() is not a supervisor of the user performing 
the y-th action. The 2nd clause verifies that the y-th action is performed 
after a login. The 3rd clause verifies that the follow-up user cannot retrieve 
the URL of the action through the GUI (based on the data collected by the 
crawler). The 4th clause defines a follow-up input that performs the login as 
the follow-up user and then performs the given action. 
   * The 2nd parameter of IMPLIES verifies the result. It is implemented as an 
OR operation where The 1st parameter checks if the y-th action from the source 
input leads to an error page; The 2nd parameter verifies if the output 
generated by the action containing the URL indicated above, lead to two 
different outputs in the two cases. 
   */ 
MR OTG_AUTHZ_002c { 
 { 
   for(var y = Input(1).actions().size()-1; ( y > 0 ); y--){ 
      IMPLIES( //1st par of IMPLIES including 4 clauses          
          (!isSupervisorOf( User(), 
             Input(1).actions().get(y).user)) && 
         afterLogin(Input(1).actions().get(y)) && 
         cannotReachThroughGUI( User(),  
            Input(1).actions().get(y).getUrl()) && 
         EQUAL( 
            Input(2), 
            Input(LoginAction(User()), Input(1).actions().get(y))) 
         , //2nd par of IMPLIES 
         OR( 
            isError(Output(Input(1), y)), 
            different( Output(Input(1), y), Output(Input(2), 1)) 
         ) 
      ); //end-IMPLIES 
   } //end-for 
 }} //end-MR 
} //end-package 
  Figure B.9. MR OTG_AUTHZ_002c
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import static smrl.mr.language.Operations.* 
package smrl.mr.owasp { 
 /*** A user should not be able to overwrite an admin file by writing its path 
in a file form. 
 * The first loop iterates over all the actions of an input sequence. 
 * The second loop looks for an action that contains a form that appear to be 
used to specify paths. 
 * The 1st parameter of IMPLIES is made of four clauses. The 1st clause 
verifies that the follow-up user is not an admin (admin may access any file). 
The 2nd clause verifies that the selected text input in a form contains a file 
path (or a file name). The 3rd clause verifies defines a follow-up input that 
is a copy of the source input. The 4th clause puts a randomly selected path of 
an admin file in the selected form input of the follow-up sequence. 
 * The 2nd parameter of IMPLIES verifies the result. It is implemented as an 
OR operation where the 1st parameter checks if the y-th action from the source 
input leads to an error page; The 2nd parameter verifies if the output 
generated by sequence containing the path to the admin file is different than 
the output of the sequence performed by the original user. We do not check 
only for the output of action x because the error might be observed afterwards 
(e.g., during execution). */ 
MR OTG_AUTHZ_002d { 
 { 
   for ( var x=0; Input(1).containFormInputForFilePath() && 
         x<Input(1).actions().size; x++) { 
      var action = Input(1).actions.get(x); 
      var randomPath = RandomAdminFilePath(); 
      var formInputs = action.getFormInputs(); 
      for(var i=0; action.containFormInputForFilePath() &&  
            i< formInputs.size(); i++){ 
         var formInput = 
               action.getFormInputs().get(i).getAsJsonObject(); 
         IMPLIES( //1st par of IMPLIES including 4 clauses             
            ! isAdmin(action.user) &&   
            isFormInputForFilePath( formInput ) && 
            EQUAL(Input(2), Input(1)) && 
            updateStringFormInput( 
               Input(2).actions.get(x).getFormInputs() 
                  .get(i).getAsJsonObject(),  
               randomPath) 
            , //2nd par of IMPLIES             
            OR( 
               isError(Output(Input(1))), 
               different(Output(Input(1)), Output(Input(2)) 
            ) 
         ); //end-IMPLIES 
      } //end-for 
   } //end-for 
 }} //end-MR 
} //end-package   

Figure B.10. MR OTG_AUTHZ_002d
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import static smrl.mr.language.Operations.* 
package smrl.mr.owasp { 
/*** This MR matches OTG_AUTHZ_002b with the difference that in this case we 
check for the content provided by action (y+1). 
 *  
 * The MR verifies that the content provided to the original user is either an 
error or is not anomalous (i.e., was already observed). 
 */ 
MR OTG_AUTHZ_002e { 
 { 
   for(var x = 0; (x < Input(1).actions().size() ); x++){ 
      for (var y = x+1;  
         (isLogin(Input(1).actions().get(x)) &&  
         y < Input(1).actions().size()); y++) { 
         IMPLIES( //1st par of IMPLIES including 5 clauses             
          (!isSupervisorOf(User(), Input(1).actions().get(y).user)) && 
         cannotReachThroughGUI(User(),  
            Input(1).actions().get(y).getUrl()) && 
         EQUAL( Input(2), Input(1).actions().get(x)) &&  
         EQUAL( Input(3), changeCredentials(Input(2), User())) && 
         EQUAL( Input(4),  
            addAction(Input(1), y, Input(3).actions().get(0))) 
         , //2nd par of IMPLIES          
         OR( 
            userCanRetrieveContent( 
               Input(4).actions().get(y+1).getUser(),  
               Output(Input(4), y+1)) 
            , 
            Output(Input(4), y+1).isError() 
         ) 
      ); //end-IMPLIES 
      } //end-for 
   } //end-for 
 }} //end-MR 
} //end-package 
  Figure B.11. MR OTG_AUTHZ_002e
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** If an action is not expected to be executed by a user 'u' (because is not 
available in his GUI), then user 'u' should not be able to execute that action 
even if he changes the user id parameter in that action (i.e., the action 
should lead to different results when executed by a valid and invalid user). 
 *  
 * The first loop iterates over all the actions of the input sequence.  
 * The second iterates over all the parameters of the action to identify a 
parameter that specifies the user id. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with four 
clauses joined with logical conjunctions.  
 * The 1st clause checks if the current action contains a user ID.  
 * The 2nd clause defines the follow-up input as a copy of the source input. 
 * The 3rd clause changes the user ID to the one of User 
 * The 4th clause changes the login credentials of the follow-up input to the 
one of User  
 *  
 * The 2nd parameter of IMPLIES checks if the output generated by the action 
is different in the two cases. 
 */ 
MR OTG_AUTHZ_003 { 
{ 
   for ( Action action : Input(1).actions() ){ 
      for (var par=0; par < action.getParameters().size(); par++ ){  
         var pos = action.getPosition(); 
         IMPLIES (  
            isUserIdParameter(action,par,action.getUser() ) && 
            ( equal ( Input(2), Input(1) ) && 
            Input(2).actions().get(pos) 
               .setParameterValue(par,User()) ) && 
            equal (Input(3), changeCredentials(Input(1), User()) ) 
            ,  
            different (Output(Input(2),pos), Output(Input(3),pos)) ) 
      } 
   } 
 } 
}} 
  Figure B.12. MR OTG_AUTHZ_003
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** By randomly changing the parameter values passed to URLs, a user should 
not be able to retrieve content she cannot retrieve from GUI. 
 *  
 * The first loop iterates over all the actions of the input sequence.  
 * The second iterates over all the parameters of the action. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with two 
clauses joined with logical conjunctions.  
 * The 1st clause defines the follow-up input.  
 * The 2nd clause set a parameter value to a random value. 
 * 
 * The 2nd parameter of IMPLIES checks if the content of the output generated 
by the login operation is either an error message or some content that can be 
retrieved from the GUI. 
 */ 
MR OTG_AUTHZ_004 { 
 { 
   for ( Action action : Input(1).actions() ){ 
      for (var par=0; par < action.getParameters().size(); par++){  
         var pos = action.getPosition(); 
         IMPLIES(  
            EQUAL ( Input(2), Input(1) )  
            &&  Input(2).actions().get(pos)  
               .setParameterValue(par,    
               RandomValue( typeOf( action.getParameterValue(par))))  
            ,  
            OR( Output( Input(2),pos).isError(),  
                userCanRetrieveContent( action.user, 
                  Output(Input(2),pos)) 

 ) 
         );//end-IMPLIES 
      }//end-for 
   }//end-for 
 }}//end-MR 
}  

Figure B.13. MR OTG_AUTHZ_004
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** Some URLs are expected to be used only once. These URLs can be identified 
(by the data collection framework) by checking if a same action (e.g., 
clicking on a button) triggers always different  
(e.g., the button URL is always different) over different executions. 
 * In this case a user should not be able to reuse the URL multiple times 
(e.g., sending POST data to the same URL). 
 * The loop iterates over all the actions of the input. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with four 
clauses joined with logical conjunctions. The 1st clause checks if the URL of 
the current action changes over multiple executions. The 2nd clause defines 
the follow-up input as a copy of the source input where the action above is 
duplicated.  
 *  
 * The 2nd parameter of IMPLIES checks if the output generated by the second 
action different than in the case of the first action. 
 */ 
MR OTG_BUSLOGIC_005 { 
 {  
   for ( Action action : Input(1).actions() ){ 
      var pos = action.getPosition(); 
      IMPLIES( (  
         urlOfActionChangesOverMultipleExecutions( action ) 
         && equal ( Input(2), addAction( Input(1), pos, action ))) 
         ,  
         different( Output(Input(1),pos), Output(Input(2), pos) ) ) 
   } 
 }}  
} 
  Figure B.14. MR OTG_BUSLOGIC_005

OTG_INPVAL_004

OTG_INPVAL_004

OTG_INPVAL_004

OTG_INPVAL_004

OTG_INPVAL_004

OTG_INPVAL_004

180



 

import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** An action with strict transport security header should not be available 
on the http channel. 
 * The loop iterates over all the actions of the input. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunctions.  
 * The 1st clause defines the follow-up input.  
 * The 2nd clause checks if the output of the source input has strict 
transport security header. 
 * The 3rd clause set the channel of the action to http  
 *  
 * The 2nd parameter of IMPLIES checks that if the modified action has not 
been redirected to httpsthen the output generated by the action should be 
different than in the case of the source input. 
 */ 
MR OTG_CONFIG_007 { 
 { 
   for ( Action action : Input(1).actions() ) { 
      var pos = action.getPosition(); 
      IMPLIES(  
          ( equal ( Input(2) , Input(1) ) && 
         Output(Input(1),pos).hasStrictTransportSecurityHeader() && 
         Input(2).actions().get(pos).setMethod("http") ) 
         ,  
         AND (  
            equal ( Output(Input(2),pos).getChannel(), "https" ), 
            equal ( Output(Input(1),pos) , Output(Input(2),pos)))) 
   }  
 }} 
} 
 
  

Figure B.15. MR OTG_CONFIG_007
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** Weak encryption algorithms should not be available. 
 *  
 * The loop iterates over all the actions of the input. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunctions.  
 * The 1st clause checks if the action works on the encrypted channel.  
 * The 2nd clause defines a follow-up input. 
 * The 3rd clause set the encryption algorithms to a weak one. 
 *  
 * The 2nd parameter of IMPLIES checks that the output generated by the action 
using the weak encryption algorithm lead to different results. 
 */ 
MR OTG_CRYPST_004 { 
 { 
   for ( Action action : Input(1).actions() ){ 
      IMPLIES (  
          (isEncrypted( action ) && 
         equal ( Input(2) , Input(1) ) && 
         Input(2).actions().get(action.position) 
               .setEncryption( WeakEncryption() ) ) 
         ,  
         different ( Output( Input(1) ), Output( Input(2) ) ) ) 
   } 
 }} 
} 
  Figure B.16. MR OTG_CRYPST_004
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp { 
/*** This MR checks that  actions available with one HTTP method (e.g., POST ) 
should not be available with another method (e.g., DELETE). 
 * The metamorphic relation iterates over all the actions of an input 
sequence. 
 *  
 * The 1st parameter of IMPLIES is made of two clauses. 
 * The 1st clause verifies that the user cannot retrieve the URL of the action 
through the GUI (based on the data collected by the crawler). 
 * The 2nd clause defines a follow-up input in which the selected action is 
performed using a different HTTP method. 
 *  
 * The 2nd parameter of IMPLIES verifies that the output generated by the 
modified action is different in the two cases. 
 */ 
MR OTG_INPVAL_003 { 
 { 
   for ( Action action : Input(1).actions() ) {  
      var pos = action.getPosition(); 
      IMPLIES(  
         ( EQUAL( Input(2) , Input(1) ) && 
         Input(2).actions().get(pos).setMethod( HttpMethod() )) 
         ,  
         different ( Output(Input(1),pos),  Output(Input(2),pos) )) 
   }   
 }} 
} 
  Figure B.17. MR OTG_INPVAL_003
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** Duplicating a parameter value should not lead to a different behaviour in 
the system. 
 * The first loop iterates over all the actions of an input sequence. 
 * The second loop iterates over all the parameters. 
 *  
 * The 1st parameter of IMPLIES is made of two clauses. 
 * The 1st clause defines a follow-up input. 
 * The 2nd clause duplicates one parameter. 
 *  
 * The 2nd parameter of IMPLIES verifies that the output generated by the 
modified action is the same in the two cases. 
 */ 
MR OTG_INPVAL_004 { 
 { 
   for ( Action action : Input(1).actions() ){ 
      for (var par=0; par < action.getParameters().size(); par++ ){  
         var pos = action.getPosition(); 
         IMPLIES (  
            ( equal ( Input(2), Input(1) ) && 
            Input(2).actions().get(pos).addParameter( 
                     action.getParameterName(par),  
                     action.getParameterValue(par) )) 
            ,  
            equal ( Output(Input(1) ) , Output( Input(2) ))) 
      } 
   } 
 }} 
} 
  Figure B.18. MR OTG_INPVAL_004
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** A login action performed by a user already authenticated should always 
trigger the generation of a new session ID. 
* This metamorphic relation contains two nested loops. the first iterates over 
the inputs to find a sign up action, the second iterates over the actions that 
follow the sign up. The second loop is necessary to check that a sign up 
action repeated at any point of the action sequence leads to a new session ID. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with two 
clauses joined with logical conjunction. 
 * The 1st clause checks if the current action has been performed after a 
login.  
 * The 2nd clause defines a follow-up input with the sign up action being 
duplicated in a certain position. 
 *  
 * The 2nd parameter of IMPLIES checks if the session ID of the response page 
sent after the two successive login actions is different. 
 */ 
MR OTG_SESS_003 { 
 {  
   for( Action signup : Input(1).actions() ){ 
      for ( var i=0;  
         isSignup(signup) && i < Input(2).actions().size; i++ ) { 
         var f = Input(2).actions().get(i); 
         var pos = f.getPosition(); 
         IMPLIES(  
            afterLogin( f ) &&  //1st par of IMPLIES (1st clause) 
            EQUAL(  
               Input(3),  
               addAction( Input(2), pos+1, signup ))  //(2nd clause) 
            , 
            different(  //2nd par of IMPLIES 
               Output(Input(3), pos).getSession(),  
               Output(Input(3), pos+1).getSession())  
         );//end-IMPLIES 
       }//end-for 
   }//end-for 
 }}//end-MR 
} 
 
  

Figure B.19. MR OTG_SESS_003
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import static smrl.mr.language.Operations.*; 
 
package smrl.mr.owasp{ 
/*** A logout action should always lead to a new session. 
 * This MR iterates over all the actions to find a logout action. The second 
loop iterates over all the actions to find an action performed after login. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with two 
clauses joined with logical conjunction. 
 * The 1st clause checks if the current action x is a logout operation. 
 * The 2nd clause checks that the action y is performed after a login.  
 * The 3rd clause checks that the action y is not a login. 
 * The 4th clause defines a follow-up input with the logout action being 
duplicated in position y. 
 *  
 * The 2nd parameter of IMPLIES checks if the session ID before and after 
executing the logout is different. 
 */ 
MR OTG_SESS_006 { 
{ 
   for ( var x=0; x < Input(1).actions().size() ; x++ ){ 
      for ( var y=0; y < x ; y++ ){ 
         IMPLIES (  
            isLogout( Input(1).actions().get(x) ) && 
            afterLogin( Input(1).actions().get(y) ) && 
            ! isLogin( Input(1).actions().get(y) ) && 
            EQUAL ( Input(2) , copyActionTo( Input(1), x, y ) )  
            ,  
            different(Session(Input(2),y-1), Session(Input(2),y))) ; 
      } 
   } 
 }} 
} 
  Figure B.20. MR OTG_SESS_006
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** After a session timeout the user should not be able to perform an action 
that requires to be logged in. 
 * This MR iterates over all the actions to find actions executed within a 
session, after login. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunction. 
 * The 1st clause checks that the action is generally not available without 
login. The 2nd clause checks if the session is not null. The 3rd clause checks 
that a session timeout is set. The 4th clause defines a follow-up input where 
the selected action is executed after timeout (usually simulated). 
 *  
 * The 2nd parameter of IMPLIES checks if the output of the action generated 
after timeout is different than in the case in which it is executed before the 
timeout. 
 */ 
MR OTG_SESS_007 { 
 { 
   for ( Action action : Input(1).actions() ){ 
      IMPLIES (  
         notAvailableWithoutLoggingIn(action) && 
         NOT ( NULL ( action.session ) ) && 
         action.session.timeout > 0 &&  
         EQUAL ( Input(2) ,  
            addAction( Input( 1 ),  
               action.position, 
               Wait(action.session.timeout) ))  
         ,  
         different (  
            Output( Input(1), action.position ),  
            Output( Input(2), action.position ) ));  
   } 
 }} 
} 
  Figure B.21. MR OTG_SESS_007
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import static smrl.mr.language.Operations.*; 
import smrl.mr.language.Action; 
 
package smrl.mr.owasp{ 
/*** An action that (1) is available without logging in and (2) generates a 
session, should not enable a user to execute an action that requires to be 
logged in. 
 * This MR iterates over all the actions of the input. 
 *  
 * The 1st parameter of the operator IMPLIES is a boolean expression with 
three clauses joined with logical conjunction. 
 * The 1st clause checks that the current action is not available without 
being logged in. The 2nd clause looks for an action available without being 
logged-in that generates a session. The 3rd clause defines a follow-up input 
that executes two actions, the action available without being logged in, and 
the selected action (i.e., the one available only by being logged-in). 
 *  
 * The 2nd parameter of IMPLIES checks that the output of the action is 
different when execute with and without being logged in (even if after an 
action that does not require a log-in but generates a session). 
 */ 
MR OTG_SESS_008 { 
{ 
   for ( Action action : Input(1).actions() ){ 
      IMPLIES(  
         notAvailableWithoutLoggingIn( action ) && 
         NOT (NULL(ActionAvailableWithoutLogin().getSession() ) ) && 
         EQUAL( Input(2) ,   
            Input( ActionAvailableWithoutLogin(), action ) )  
         ,  
         different (  
            Output( Input(1), action.position ),  
            Output( Input(2), 1 ) ) );  
   }  
 }} 
} 
 Figure B.22. MR OTG_SESS_008
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Appendix C

Analysis of Weaknesses Reported in the
CWE Database

This chapter provides eight Tables with the data concerning the CWE weaknesses presented in Chap-
ter 7.

Columns ’CWE ID’ and ’Weakness’ report the identification and the name of each weakness,
which are numbered and named by CWE [CWE, 2020s]. The column ’Gen.’ indicates if the weakness
is generic (see Section 7.2). The fourth and the fifth columns are related to MCP, while the sixth
and the seventh columns are related to MST. The fourth and the sixth columns ’App.’ indicate if
the weakness can be addressed by MCP and MST, respectively. The fifth and the seventh columns
’Conditions’ specify testability features (i.e., applicability conditions enables the application of our
approaches) or reasons (i.e., inapplicability reasons preventing the application of our approaches to
address the weaknesses) for MCP and MST, respectively.

Tables C.1 to C.5 group 223 weaknesses into 12 security design principles: Audit, Authenticate
Actors, Authorize Actors, Cross Cutting, Encrypt Data, Identify Actors, Limit Access, Limit Exposure,
Lock Computer, Manage User Sessions, Validate Inputs, and Verify Message Integrity. Meanwhile,
43 weaknesses related to OWASP Top 10 Security Risks are categorized in ten groups named A1 to
A10. They are shown in Tables C.6 and C.7. Table C.8 presents weaknesses in the CWE Top 25 most
dangerous software errors view.
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Appendix C. Analysis of Weaknesses Reported in the CWE Database

Table C.1. Weaknesses related to CWE security design principles view - Audit & Authenticate Actors
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
Audit - (1009)
117 Improper Output Neutralization for Logs 1 1 TF1 + TF10 - R4
223 Omission of Security-relevant Information 1 - R2 - R2
224 Obscured Security-relevant Information by Alternate Name 1 1 TF1 + TF2 - R5
532 Inclusion of Sensitive Information in Log Files 1 1 TF1 + TF2 - R5
778 Insufficient Logging 1 1 TF1 + TF10 - R4
779 Logging of Excessive Data 1 1 TF1 + TF10 - R4
Authenticate Actors - (1010)
258 Empty Password in Configuration File - 1 TF5 - R5
259 Use of Hard-coded Password - - R2 - R2
262 Not Using Password Aging 1 1 TF11 - R5
263 Password Aging with Long Expiration 1 1 TF11 - R5
287 Improper Authentication 1 1 TF3 1 TF3
288 Authentication Bypass Using an Alternate Path or Channel 1 1 TF3 1 TF3
289 Authentication Bypass by Alternate Name - 1 TF4 1 TF4
290 Authentication Bypass by Spoofing 1 1 TF4 1 TF4
291 Reliance on IP Address for Authentication - 1 TF4 1 TF4
293 Using Referer Field for Authentication - 1 TF4 1 TF4
294 Authentication Bypass by Capture-replay 1 1 TF4 1 TF4
301 Reflection Attack in an Authentication Protocol - - R2 - R2
302 Authentication Bypass by Assumed-Immutable Data - 1 TF4 1 TF4
303 Incorrect Implementation of Authentication Algorithm 1 1 TF4 1 TF4
304 Missing Critical Step in Authentication 1 1 TF4 1 TF4
305 Authentication Bypass by Primary Weakness 1 1 TF5 1 TF5
306 Missing Authentication for Critical Function 1 1 TF3 1 TF3
307 Improper Restriction of Excessive Authentication Attempts 1 1 TF5 1 TF4
308 Use of Single-factor Authentication 1 - R0 - R0
322 Key Exchange without Entity Authentication 1 1 TF9 1 TF9
521 Weak Password Requirements 1 1 TF5 - R5
593 Authentication Bypass: OpenSSL CTX Object Modified after SSL

Objects are Created
- - R2 - R2

603 Use of Client-Side Authentication 1 - R2 - R2
620 Unverified Password Change 1 1 TF5 1 TF5
640 Weak Password Recovery Mechanism for Forgotten Password 1 - R3 - R3
798 Use of Hard-coded Credentials 1 - R2 - R2
836 Use of Password Hash Instead of Password for Authentication 1 1 TF12 - R6
916 Use of Password Hash With Insufficient Computational Effort 1 - R2 - R2
Authorize Actors - (1011)
114 Process Control 1 - R1 - R1
15 External Control of System or Configuration Setting 1 1 TF6 1 TF6
219 Sensitive Data Under Web Root - 1 TF3 1 TF3
220 Sensitive Data Under FTP Root - 1 TF3 1 TF3
266 Incorrect Privilege Assignment 1 1 TF3, TF4 1 TF3, TF4
267 Privilege Defined With Unsafe Actions 1 1 TF3 1 TF3
268 Privilege Chaining 1 1 TF3 1 TF3
269 Improper Privilege Management 1 1 TF3, TF7 1 TF3, TF7
270 Privilege Context Switching Error 1 1 TF7 1 TF7
271 Privilege Dropping / Lowering Errors 1 - R1 - R1
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Table C.2. Weaknesses related to CWE security design principles view - Authorize Actors (cont.)
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
Authorize Actors - (1011) - (cont.)
272 Least Privilege Violation 1 - R1 - R1
273 Improper Check for Dropped Privileges 1 - R1 - R1
274 Improper Handling of Insufficient Privileges 1 - R1 - R1
276 Incorrect Default Permissions 1 1 TF3 1 TF3
277 Insecure Inherited Permissions - 1 TF3 1 TF3
279 Incorrect Execution-Assigned Permissions - - R3 - R3
280 Improper Handling of Insufficient Permissions or Privileges 1 1 TF3 - R5
281 Improper Preservation of Permissions 1 - R1 - R1
282 Improper Ownership Management 1 - R1 - R1
283 Unverified Ownership 1 - R1 - R1
284 Improper Access Control 1 1 TF3, TF7 1 TF3, TF7
285 Improper Authorization 1 1 TF3 1 TF3
286 Incorrect User Management 1 1 TF3 1 TF3
300 Channel Accessible by Non-Endpoint (’Man-in-the-Middle’) 1 1 TF9 - R5
341 Predictable from Observable State 1 1 TF8 1 TF8
359 Exposure of Private Information (’Privacy Violation’) 1 1 TF2 - R4
403 Exposure of File Descriptor to Unintended Control Sphere (’File De-

scriptor Leak’)
1 - R1 - R1

419 Unprotected Primary Channel 1 1 TF3 1 TF3
420 Unprotected Alternate Channel 1 1 TF3 - R3
425 Direct Request (’Forced Browsing’) 1 1 TF3 1 TF3
426 Untrusted Search Path 1 - R1 - R1
434 Unrestricted Upload of File with Dangerous Type 1 1 TF4 1 TF4
527 Exposure of CVS Repository to an Unauthorized Control Sphere - - R1 - R1
528 Exposure of Core Dump File to an Unauthorized Control Sphere - 1 TF4 1 TF4
529 Exposure of Access Control List Files to an Unauthorized Control

Sphere
- 1 TF3, TF4 1 TF3, TF4

530 Exposure of Backup File to an Unauthorized Control Sphere - 1 TF3 1 TF3
538 File and Directory Information Exposure 1 1 TF1 + TF2 - R4
551 Incorrect Behavior Order: Authorization Before Parsing and Canon-

icalization
1 1 TF3 1 TF3

552 Files or Directories Accessible to External Parties 1 1 TF3 1 TF3
566 Authorization Bypass Through User-Controlled SQL Primary Key - - R1 - R1
639 Authorization Bypass Through User-Controlled Key 1 1 TF4 1 TF4
642 External Control of Critical State Data 1 1 TF3, TF4,

TF6
1 TF3, TF4,

TF6
647 Use of Non-Canonical URL Paths for Authorization Decisions - 1 TF3 1 TF3
653 Insufficient Compartmentalization 1 - R2 - R2
656 Reliance on Security Through Obscurity 1 - R2 - R2
668 Exposure of Resource to Wrong Sphere 1 1 TF3, TF4,

TF6
1 TF3, TF4,

TF6
669 Incorrect Resource Transfer Between Spheres 1 1 TF4 1 TF4
671 Lack of Administrator Control over Security 1 - R2 - R2
673 External Influence of Sphere Definition 1 - R2 - R2
708 Incorrect Ownership Assignment 1 - R1 - R1
732 Incorrect Permission Assignment for Critical Resource 1 1 TF3 1 TF3
770 Allocation of Resources Without Limits or Throttling 1 1 TF4 1 TF4
782 Exposed IOCTL with Insufficient Access Control - - R1 - R1
827 Improper Control of Document Type Definition - - R2 - R2
862 Missing Authorization 1 1 TF3 1 TF3
863 Incorrect Authorization 1 1 TF3 1 TF3
921 Storage of Sensitive Data in a Mechanism without Access Control 1 1 TF2 - R1
923 Improper Restriction of Communication Channel to Intended End-

points
1 1 TF3, TF4 1 TF3, TF4

939 Improper Authorization in Handler for Custom URL Scheme 1 - R1 - R1
942 Overly Permissive Cross-domain Whitelist - - R2 - R2
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Appendix C. Analysis of Weaknesses Reported in the CWE Database

Table C.3. Weaknesses related to CWE security design principles view - Cross Cutting & Encrypt Data
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
Cross Cutting - (1012)
208 Information Exposure Through Timing Discrepancy 1 - R3 - R3
392 Missing Report of Error Condition 1 1 TF3 1 TF3
460 Improper Cleanup on Thrown Exception 1 - R2 - R2
544 Missing Standardized Error Handling Mechanism 1 - R2 - R2
602 Client-Side Enforcement of Server-Side Security 1 1 TF4 1 I4
703 Improper Check or Handling of Exceptional Conditions 1 1 TF3 1 TF3
754 Improper Check for Unusual or Exceptional Conditions 1 - R2 - R2
784 Reliance on Cookies without Validation and Integrity Checking in a

Security Decision
- 1 TF4 1 TF4

807 Reliance on Untrusted Inputs in a Security Decision 1 1 TF4 1 TF4
Encrypt Data - (1013)
256 Unprotected Storage of Credentials 1 - R2 - R2
257 Storing Passwords in a Recoverable Format 1 - R2 - R2
260 Password in Configuration File 1 - R2 - R2
261 Weak Cryptography for Passwords 1 - R2 - R2
311 Missing Encryption of Sensitive Data 1 1 TF1, TF9 1 TF9
312 Cleartext Storage of Sensitive Information 1 1 TF1, TF9 1 TF9
313 Cleartext Storage in a File or on Disk - - R2 - R2
314 Cleartext Storage in the Registry - - R0 - R0
315 Cleartext Storage of Sensitive Information in a Cookie - 1 TF9 - R5
316 Cleartext Storage of Sensitive Information in Memory - - R0 - R0 + R5
317 Cleartext Storage of Sensitive Information in GUI - - R2 - R2 + R5
318 Cleartext Storage of Sensitive Information in Executable - - R2 - R2
319 Cleartext Transmission of Sensitive Information 1 1 TF9 - R5
321 Use of Hard-coded Cryptographic Key - - R2 - R2
323 Reusing a Nonce, Key Pair in Encryption - - R2 - R2
324 Use of a Key Past its Expiration Date 1 - R2 - R2
325 Missing Required Cryptographic Step 1 - R2 - R2
326 Inadequate Encryption Strength 1 - R2 - R2
327 Use of a Broken or Risky Cryptographic Algorithm 1 - R2 - R2
328 Reversible One-Way Hash 1 - R2 - R2
330 Use of Insufficiently Random Values 1 - R2, R3 - R2, R3
331 Insufficient Entropy 1 - R0 - R0
332 Insufficient Entropy in PRNG - - R0 - R0
333 Improper Handling of Insufficient Entropy in TRNG - - R0 - R0
334 Small Space of Random Values 1 - R2, R0 - R2, R0
335 Incorrect Usage of Seeds in Pseudo-Random Number Generator

(PRNG)
1 - R0 - R0

336 Same Seed in Pseudo-Random Number Generator (PRNG) - - R2, R0 - R2, R0
337 Predictable Seed in Pseudo-Random Number Generator (PRNG) - - R0 - R0
338 Use of Cryptographically Weak Pseudo-Random Number Generator

(PRNG)
1 - R0 - R0

339 Small Seed Space in PRNG - - R2, R0 - R2, R0
347 Improper Verification of Cryptographic Signature 1 - R0 - R0
522 Insufficiently Protected Credentials 1 1 TF3 1 TF3
523 Unprotected Transport of Credentials 1 1 TF9 1 TF9
757 Selection of Less-Secure Algorithm During Negotiation (’Algorithm

Downgrade’)
1 1 TF4 1 TF4

759 Use of a One-Way Hash without a Salt - - R2 - R2
760 Use of a One-Way Hash with a Predictable Salt - - R2 - R2
780 Use of RSA Algorithm without OAEP - - R2 - R2
922 Insecure Storage of Sensitive Information 1 - R2 - R2
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Table C.4. Weaknesses related to CWE security design principles view - Identify Actors, Limit Access, Limit
Exposure, Lock Computer, Manage User Sessions, and Verify Message Integrity

CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
Identify Actors - (1014)
295 Improper Certificate Validation 1 1 TF14 1 TF14
296 Improper Following of a Certificate’s Chain of Trust 1 1 TF14 1 TF14
297 Improper Validation of Certificate with Host Mismatch - 1 TF14 1 TF14
298 Improper Validation of Certificate Expiration - 1 TF14 1 TF14
299 Improper Check for Certificate Revocation 1 1 TF14 1 TF14
345 Insufficient Verification of Data Authenticity 1 1 TF13 - R5
346 Origin Validation Error 1 1 TF3, TF4 1 TF3, TF4
370 Missing Check for Certificate Revocation after Initial Check - 1 TF14 1 TF14
441 Unintended Proxy or Intermediary (’Confused Deputy’) 1 1 TF3, TF4 1 TF3, TF4
599 Missing Validation of OpenSSL Certificate - 1 TF14 1 TF14
940 Improper Verification of Source of a Communication Channel 1 - R1 - R1
941 Incorrectly Specified Destination in a Communication Channel 1 - R1 - R1
Limit Access - (1015)
201 Information Exposure Through Sent Data 1 1 TF2 + TF9 - R5
209 Information Exposure Through an Error Message 1 - R3 - R3
212 Improper Cross-boundary Removal of Sensitive Data 1 1 TF9 1 TF9
243 Creation of chroot Jail Without Changing Working Directory - - R1 - R1
250 Execution with Unnecessary Privileges 1 - R3 - R3
610 Externally Controlled Reference to a Resource in Another Sphere 1 1 TF3, TF6,

TF13
1 TF3, TF6,

TF13
611 Improper Restriction of XML External Entity Reference 1 1 TF13 - R6
73 External Control of File Name or Path 1 1 TF3 1 TF3
Limit Exposure - (1016)
210 Information Exposure Through Self-generated Error Message 1 - R2, R3 - R2, R3
211 Information Exposure Through Externally-Generated Error Message 1 - R2, R3 - R2, R3
214 Information Exposure Through Process Environment 1 - R3 - R3
550 Information Exposure Through Server Error Message - - R3 - R3
829 Inclusion of Functionality from Untrusted Control Sphere 1 - R2, R3 - R2, R3
830 Inclusion of Web Functionality from an Untrusted Source - - R2, R3 - R2, R3
Lock Computer - (1017)
645 Overly Restrictive Account Lockout Mechanism 1 1 TF5 - R5
Manage User Sessions - (1018)
384 Session Fixation - 1 TF13 1 TF13
488 Exposure of Data Element to Wrong Session 1 1 TF13 1 TF13
579 J2EE Bad Practices: Non-serializable Object Stored in Session - - R1 - R1
6 J2EE Misconfiguration: Insufficient Session-ID Length - - R3 - R3
613 Insufficient Session Expiration 1 1 TF4 + TF11 1 TF4 + TF11
841 Improper Enforcement of Behavioral Workflow 1 1 TF3 1 TF3
Verify Message Integrity - (1020)
353 Missing Support for Integrity Check 1 - R2 - R2
354 Improper Validation of Integrity Check Value 1 - R2 - R2
390 Detection of Error Condition Without Action 1 - R2 - R2
391 Unchecked Error Condition 1 - R2 - R2
494 Download of Code Without Integrity Check 1 - R2 - R2
565 Reliance on Cookies without Validation and Integrity Checking 1 1 I4 1 I4
649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs

without Integrity Checking
1 - R2 - R2

707 Improper Enforcement of Message or Data Structure 1 1 TF3, TF4 1 TF3, TF4
755 Improper Handling of Exceptional Conditions 1 1 TF3 - R5
924 Improper Enforcement of Message Integrity During Transmission in

a Communication Channel
1 - R2 - R2
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Appendix C. Analysis of Weaknesses Reported in the CWE Database

Table C.5. Weaknesses related to CWE security design principles view - Validate Inputs
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
Validate Inputs - (1019)
138 Improper Neutralization of Special Elements 1 1 TF3 1 TF3
150 Improper Neutralization of Escape, Meta, or Control Sequences - 1 TF1 - R6
20 Improper Input Validation 1 1 TF3, TF4 1 TF3, TF4
349 Acceptance of Extraneous Untrusted Data With Trusted Data 1 - R1 - R1
352 Cross-Site Request Forgery (CSRF) - 1 TF13 - R6
472 External Control of Assumed-Immutable Web Parameter 1 1 TF4 1 TF4
473 PHP External Variable Modification - 1 TF4 1 TF4
502 Deserialization of Untrusted Data 1 - R2 - R2
59 Improper Link Resolution Before File Access (’Link Following’) 1 1 TF4 - R6
601 URL Redirection to Untrusted Site (’Open Redirect’) 1 1 TF3 + TF9,

TF4
1 TF4

641 Improper Restriction of Names for Files and Other Resources 1 - R2 - R2
643 Improper Neutralization of Data within XPath Expressions (’XPath

Injection’)
1 1 TF4 1 TF4

652 Improper Neutralization of Data within XQuery Expressions
(’XQuery Injection’)

1 1 TF4 1 TF4

74 Improper Neutralization of Special Elements in Output Used by a
Downstream Component (’Injection’)

1 1 TF3 1 TF3

75 Failure to Sanitize Special Elements into a Different Plane (Special
Element Injection)

1 1 TF3 1 TF3

76 Improper Neutralization of Equivalent Special Elements 1 1 TF3 1 TF3
77 Improper Neutralization of Special Elements used in a Command

(’Command Injection’)
1 1 TF3 1 TF3

78 Improper Neutralization of Special Elements used in an OS Com-
mand (’OS Command Injection’)

1 1 TF3 1 TF3

79 Improper Neutralization of Input During Web Page Generation
(’Cross-site Scripting’)

1 1 TF13 - R6

790 Improper Filtering of Special Elements 1 1 TF3 1 TF3
791 Incomplete Filtering of Special Elements 1 1 TF3 1 TF3
792 Incomplete Filtering of One or More Instances of Special Elements - 1 TF3 1 TF3
793 Only Filtering One Instance of a Special Element - 1 TF3 1 TF3
794 Incomplete Filtering of Multiple Instances of Special Elements - 1 TF3 1 TF3
795 Only Filtering Special Elements at a Specified Location 1 1 TF3, TF4 1 TF3, TF4
796 Only Filtering Special Elements Relative to a Marker - 1 TF3, TF4 1 TF3, TF4
797 Only Filtering Special Elements at an Absolute Position - 1 TF3, TF4 1 TF3, TF4
88 Improper Neutralization of Argument Delimiters in a Command

(’Argument Injection’)
1 1 TF4 1 TF4

89 Improper Neutralization of Special Elements used in an SQL Com-
mand (’SQL Injection’)

1 1 TF3, TF4 1 TF3, TF4

90 Improper Neutralization of Special Elements used in an LDAP Query
(’LDAP Injection’)

1 1 TF4 1 TF4

91 XML Injection (aka Blind XPath Injection) 1 1 TF4 1 TF4
93 Improper Neutralization of CRLF Sequences (’CRLF Injection’) 1 1 TF3, TF4 1 TF4
94 Improper Control of Generation of Code (’Code Injection’) 1 1 TF4 - R6
943 Improper Neutralization of Special Elements in Data Query Logic 1 1 TF3, TF4 1 TF3, TF4
95 Improper Neutralization of Directives in Dynamically Evaluated

Code (’Eval Injection’)
- 1 TF4 - R6

96 Improper Neutralization of Directives in Statically Saved Code
(’Static Code Injection’)

1 - R2 - R2

97 Improper Neutralization of Server-Side Includes (SSI) Within a Web
Page

- - R2 - R2

98 Improper Control of Filename for Include/Require Statement in PHP
Program (’PHP Remote File Inclusion’)

- - R2 - R2

99 Improper Control of Resource Identifiers (’Resource Injection’) 1 1 TF4 - R6

194



Table C.6. Weaknesses related to OWASP Top 10 Security Risks - Categories A1-A3
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
OWASP Top Ten 2017 Category A1 - Injection - (1027)
77 Improper Neutralization of Special Elements used in a Command

(’Command Injection’) - (77)
1 1 TF3 1 TF3

78 Improper Neutralization of Special Elements used in an OS Com-
mand (’OS Command Injection’) - (78)

1 1 TF3 1 TF3

88 Improper Neutralization of Argument Delimiters in a Command
(’Argument Injection’) - (88)

1 1 TF4 1 TF4

89 Improper Neutralization of Special Elements used in an SQL Com-
mand (’SQL Injection’) - (89)

1 1 TF3, TF4 1 TF3, TF4

90 Improper Neutralization of Special Elements used in an LDAP Query
(’LDAP Injection’) - (90)

1 1 TF4 1 TF4

91 XML Injection (aka Blind XPath Injection) - (91) 1 1 TF4 1 TF4
564 SQL Injection: Hibernate - (564) - - R3 - R3
917 Improper Neutralization of Special Elements used in an Expression

Language Statement (’Expression Language Injection’) - (917)
1 1 TF3 - R2

943 Improper Neutralization of Special Elements in Data Query Logic -
(943)

1 1 TF3, TF4 1 TF3, TF4

OWASP Top Ten 2017 Category A2 - Broken Authentication - (1028)
287 Improper Authentication - (287) 1 1 TF3 1 TF3
256 Unprotected Storage of Credentials - (256) 1 - R2 - R2
308 Use of Single-factor Authentication - (308) 1 - R0 - R0
384 Session Fixation - (384) - 1 TF13 1 TF13
522 Insufficiently Protected Credentials - (522) 1 1 TF3 1 TF3
523 Unprotected Transport of Credentials - (523) 1 1 TF9 1 TF9
613 Insufficient Session Expiration - (613) 1 1 TF4 + TF11 1 TF4 + TF11
620 Unverified Password Change - (620) 1 1 TF5 1 TF5
640 Weak Password Recovery Mechanism for Forgotten Password - (640) 1 - R3 - R3
OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure - (1029)
220 Storage of File With Sensitive Data Under FTP Root - (220) - 1 TF3 1 TF3
295 Improper Certificate Validation - (295) 1 1 TF14 1 TF14
311 Missing Encryption of Sensitive Data - (311) 1 1 TF1, TF9 1 TF9
312 Cleartext Storage of Sensitive Information - (312) 1 1 TF1, TF9 1 TF9
319 Cleartext Transmission of Sensitive Information - (319) 1 1 TF9 - R5
320 Key Management Errors - (320) 1 - R2 - R2
325 Missing Required Cryptographic Step - (325) 1 - R2 - R2
326 Inadequate Encryption Strength - (326) 1 - R2 - R2
327 Use of a Broken or Risky Cryptographic Algorithm - (327) 1 - R2 - R2
328 Reversible One-Way Hash - (328) 1 - R2 - R2
359 Exposure of Private Personal Information to an Unauthorized Actor

- (359)
1 1 TF2 - R4

===
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Appendix C. Analysis of Weaknesses Reported in the CWE Database

Table C.7. Weaknesses related to OWASP Top 10 Security Risks - Categories A4-A10
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
OWASP Top Ten 2017 Category A4 - XML External Entities (XXE) - (1030)
611 Improper Restriction of XML External Entity Reference - (611) 1 1 TF13 - R6
776 Improper Restriction of Recursive Entity References in DTDs

(’XML Entity Expansion’) - (776)
1 - R2 - R2

OWASP Top Ten 2017 Category A5 - Broken Access Control - (1031)
22 Improper Limitation of a Pathname to a Restricted Directory (’Path

Traversal’) - (22)
1 1 TF3 1 TF3

284 Improper Access Control - (284) 1 1 TF3, TF7 1 TF3, TF7
285 Improper Authorization - (285) 1 1 TF3 1 TF3
425 Direct Request (’Forced Browsing’) - (425) 1 1 TF3 1 TF3
639 Authorization Bypass Through User-Controlled Key - (639) 1 1 TF4 1 TF4
OWASP Top Ten 2017 Category A6 - Security Misconfiguration - (1032)
16 Configuration - (16) 1 1 TF3, TF4 1 TF3, TF4
209 Generation of Error Message Containing Sensitive Information -

(209)
1 - R3 - R3

548 Exposure of Information Through Directory Listing - (548) - 1 TF3 1 TF3
OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS) - (1033)
79 Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’) - (79)
1 1 TF13 - R6

OWASP Top Ten 2017 Category A8 - Insecure Deserialization - (1034)
502 Deserialization of Untrusted Data - (502) 1 - R2 - R2
OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities - (1035)
OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring - (1036)
223 Omission of Security-relevant Information - (223) 1 - R2 - R2
778 Insufficient Logging - (778) 1 1 TF1 + TF10 - R4

Table C.8. CWE Top 25 Most Dangerous Software Errors View
CWE Weakness Gen. MCP MST
ID App. Conditions App. Conditions
119 Improper Restriction of Operations within the Bounds of a Memory

Buffer
1 - R2 - R2

79 Cross-site Scripting 1 1 TF13 - R6
20 Improper Input Validation 1 1 TF3, TF4 1 TF3, TF4
200 Information Exposure 1 1 TF2 + TF9,

TF2
- R3

125 Out-of-bounds Read 1 - R2 - R2
89 SQL Injection 1 1 TF3, TF4 1 TF3, TF4
416 Use After Free - R2 - R2
190 Integer Overflow or Wraparound 1 1 TF4 - R3
352 Cross-Site Request Forgery (CSRF) - TF13 - R6
22 Path Traversal 1 1 TF3 1 TF3
78 OS Command Injection 1 1 TF3 1 TF3
787 Out-of-bounds Write 1 - R2 - R2
287 Improper Authentication 1 1 TF3 1 TF3
476 NULL Pointer Dereference 1 - R2 - R2
732 Incorrect Permission Assignment for Critical Resource 1 1 TF3 1 TF3
434 Unrestricted Upload of File with Dangerous Type 1 1 TF4 1 TF4
611 Improper Restriction of XML External Entity Reference 1 1 TF13 - R6
94 Code Injection 1 1 TF4 - R6
798 Use of Hard-coded Credentials 1 - R2 - R2
400 Uncontrolled Resource Consumption 1 - R2 - R2
772 Missing Release of Resource after Effective Lifetime 1 - R3 - R3
426 Untrusted Search Path 1 - R1 - R1
502 Deserialization of Untrusted Data 1 - R2 - R2
269 Improper Privilege Management 1 1 TF3, I10 1 TF3, I10
295 Improper Certificate Validation 1 1 TF14 1 TF14
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