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A B S T R A C T   

Evaluating microbial responses to pharmaceuticals in agricultural soils is essential to improve our fundamental 
understanding of the fate of micropollutants and their potential implications for the environment and human 
health. In this study, we focused on the immediate (1 d), short- (13 d) and long-term effects (61 d) of phar
maceutical amendment on microbial communities in seven soils differing in physical chemical properties. Basal 
respiration was used to indicate microbial activity, while phospholipid fatty acids were used to determine mi
crobial biomass and community structure. We identified four microbial responses to pharmaceutical amendment: 
stimulation, inhibition, stress and dormancy, which were highly significant in the short-term. The largest 
stimulatory effect accompanied by shifts in the microbial community structure towards fungi and G- bacteria was 
detected for sulfamethoxazole. The inhibitory effect was mainly observed for citalopram, irbesartan and phar
maceutical mixture in Cambisol Dystric with minor alterations in microbial community structure compare to a 
non-amended control. The stress effect was detected for all pharmaceuticals in Arenosol and Cambisol Haplic. 
While the dormancy effect was mainly observed in Chernozem Siltic for most of the pharmaceuticals. Microbial 
responses were highly dependent on the soil type, pharmaceutical compound and time, highlighting the 
importance to consider these parameters including a resilience of soil microbial communities to micropollutants 
within a long-term agricultural soil management.   

1. Introduction 

Pharmaceuticals and their transformation products enter the soil 
with manure, biosolids and/or the reuse of treated wastewater (Gott
schall et al., 2012; Ivanová et al., 2018; Kinney et al., 2006; Klement 
et al., 2020; Kümmerer, 2009; Kyselková et al., 2013; Monteiro and 
Boxall, 2009). After being introduced into the environment, these 
emerging contaminants affect soil microorganisms, invertebrates, plants 
and even reach groundwater, which enters the food chain, posing an 
environmental and health risk (Carter et al., 2014; Gielen et al., 2011; 
Jurado et al., 2019; Kodešová et al., 2019a, 2019b; Vystavna et al., 
2017). It should be considered that pharmaceuticals are designed to 

have a biological effect at low doses, acting on physiological systems 
that can be evolutionarily conserved across taxa (Elizalde-Velázquez 
et al., 2019). 

After being introduced into soil, pharmaceuticals were found to be 
adsorbed on organic matter and clay minerals but were also found 
processed via chemical and microbial degradation (Grossberger et al., 
2014; Fer et al., 2018; Klement et al., 2018; Biel-Maeso et al., 2019; 
Schmidtová et al., 2020). Multiple factors control the fate of pharma
ceuticals, including the physical and chemical characteristics of soil and 
the introduced pharmaceuticals, as well as the ability of microbes to 
degrade these emerging compounds (Topp et al., 2008; Lin and Gan, 
2011; Li et al., 2013; Srinivasan and Sarmah, 2014). The sorption 
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affinity of soil, which is a principle factor controlling the bioavailability 
of chemicals, is determined by soil moisture, organic carbon and clay 
contents, pH, bioactivity and initial climate conditions (temperature, 
relative humidity, precipitation) (Grossberger et al., 2014; Kodešová 
et al., 2016, 2015; Fer et al., 2018). The sorption capacity of pharma
ceuticals is mainly related to their polarity and degree of dissociation 
(Kodešová et al., 2015). The sorption of non-ionic (neutral) molecules is 
driven by hydrophobic partitioning to soil organic matter and its content 
and by hydrogen bonding with hydroxyl groups on solid surfaces. The 
sorption of cationic molecules is mainly governed by the attraction of 
the solid surface (e.g., a clay mineral surface or organic matter) to 
negative charges and thus is controlled by the cation exchange capacity 
or by the basic cation saturation (Kodešová et al., 2015; Fer et al., 2018; 
Klement et al., 2018; Schmidtová et al., 2020). 

Chemical and photochemical degradation of pharmaceuticals is 
determined by various reactions, including oxidation, hydroxylation, 
decarboxylation and demethylation (Rubasinghege et al., 2018). How
ever, studies confirm that among these processes, microbial degradation 
(biodegradation) is a key mechanism of pharmaceuticals transformation 
in soil (De Groot et al., 2002; Xu et al., 2009; Rodarte-Morales et al., 
2011; Topp et al., 2013; Biel-Maeso et al., 2019). Biodegradation, which 
is understood as the transformation of organic compounds into metab
olites, microbial biomass, extractable and non-extractable residues, is 
highly related to microbial activity (Gielen et al., 2011; Cycoń et al., 
2019). Previous studies (Kodešová et al., 2016; Koba et al., 2016, 2017) 
have found that the degradation of pharmaceuticals in soils (taken from 
surface horizons), but also the formation, and follow-up degradation of 
their metabolites are strongly soil type-dependent and are associated 
with differences in overall soil quality (i.e., texture, water and nutrient 
content, etc.). Microbial degradation in laboratory experiments has 
shown the dependence on the nutrient supply (Vasiliadou et al., 2013; 
Popa Ungureanu et al., 2014), on the existence of positive synergetic 
effects of different microorganisms (Larcher and Yargeau, 2011) or on 
the co-metabolic potential of different chemical compounds (Gauthier 
et al., 2010). Most recent studies have highlighted that pharmaceuticals 
affect the soil microbial community by both stimulating and inhibiting 
microbial respiration and biomass, indicating diverse microbial re
sponses to exposure to pharmaceuticals in soil (Gielen et al., 2011; 
Cycoń et al., 2019). 

Studies on microbial response to pharmaceuticals in soil have mainly 
focused on the impact of antibiotics on microbial activity and commu
nities (Liu et al., 2012; Ding et al., 2014; Jechalke et al., 2014), exposure 
to a single pharmaceutical compound (Srinivasan and Sarmah, 2014), 
exposure to high concentrations (Cycoń et al., 2016; Pino-Otín et al., 
2017), exposure during a short-term incubation period (up to 21 days) 
(Pino-Otín et al., 2017), and/or a single soil type (Liu et al., 2009; 
Gutiérrez et al., 2010; Cycoń et al., 2016). To the best of our knowledge, 
no comprehensive study has been reported on microbial responses in 
terms of microbial respiration, biomass and community shifts to un
derstand the time-varying effect of environmentally relevant concen
trations of pharmaceuticals and their mixture applied to various 
agricultural soils differing in physical chemical properties. This knowl
edge gap became the overall goal of our study, which had the following 
objectives: i) to explore the trends in residual concentrations of amended 
pharmaceuticals in a wide range of soil types; ii) to assess the effects of 
pharmaceutical amendment to soils on basal respiration, microbial 
biomass and community structure; and iii) to determine and describe 
microbial responses to pharmaceuticals in soil in immediate (1 day), 
short-term (13 days) and to evaluate the resilience of the community 
after additional 48 days (long-term, 61 d). To address these tasks, we 
measured concentrations of pharmaceuticals, basal respiration and 
PLFA community profiles in soils amended with selected pharmaceuti
cals and their mixture and non-amended (controls) in respective expo
sure times. Using both basal respiration and PLFA analysis we could 
follow the responses of whole soil microbial communities, and not only 
their particular populations. In addition, PLFA enables quantitative 

calculations of microbial biomass of active taxa, thus indicating their 
relative contributions to ecosystem functioning (e. g. Frostegård et al., 
2011; Kotas et al., 2018). 

The novelty of this multidisciplinary research lies in the application 
of a complex approach to determine microbial responses to environ
mental concentrations of pharmaceuticals in a wide range of agricultural 
soils, in which different degradation and transformation patterns were 
observed for selected pharmaceuticals (Kodešová et al., 2016;Kodešová 
et al., 2020; Koba et al., 2016, 2017). The proposed multi-parameter 
approach allowed us to find a link between biotic (basal respiration, 
microbial biomass and community structure) and abiotic parameters 
(pharmaceuticals concentration and soil physical chemical properties) 
that was summarized in a conceptual scheme. 

2. Material and methods 

2.1. Chemicals and soil properties 

Six pharmaceuticals with different properties from diverse thera
peutic classes (two antibiotics, clindamycin and sulfamethoxazole, 
anticonvulsant carbamazepine, antidepressant citalopram, antihista
minic fexofenadine and angiotensin receptor blocker irbesartan) were 
selected for our study (SI-1). The selection was based on the widespread 
occurrence of these pharmaceuticals in wastewater, surface water and 
groundwater as well as their possible veterinary applications (i.e., 
clindamycin, fexofenadine and sulfamethoxazole) and detection in 
manure (Fedorova et al., 2014; Golovko et al., 2014a, 2014b; Gottschall 
et al., 2012; Vystavna et al., 2017, 2019). All chemicals were of 
analytical purity (≥98%). Stock solutions of the pharmaceuticals were 
prepared in ethanol (96%, Penta, Prague, Czech Republic) at a con
centration of 1 mg mL− 1, and subsequent dilutions were performed in a 
tap water. 

A mixture of native standards and their metabolites (trans-10,11- 
dihydro-10,11-dihydroxy carbamazepine, 10,11-dihydro carbamaze
pine, carbamazepine 10,11-epoxide, N-desmethylcitalopram, clinda
mycin sulfoxide, N1- and N4-acetyl sulfamethoxazole; suppliers are 
given in SI-1) was used to generate the calibration curve and matrix- 
matching standard. Isotopically labelled standards (carbamazepine- 
D8, citalopram-D6, clindamycin-D3, fexofenadine-D6, irbesartan-D4 
and sulfamethoxazole-D4; all from Toronto Research Chemicals, North 
York, ON, Canada) were used as internal standards for the quantification 
of pharmaceuticals in soil. Acetonitrile and isopropanol (both LC/MS 
grade, Merck, Darmstadt, Germany) were used as extraction solvents. 
Acidified (formic acid, >98%, Sigma Aldrich, Darmstadt, Germany) 
acetonitrile and ultra-pure water (AquaMax Basic 360 Series and Ultra 
370 Series, Young Lin Instruments, Anyang, Korea) were used as mobile 
phases for liquid chromatography. 

Seven of eleven arable soils, which were previously tested by (Koba 
et al., 2017, 2016; Kodešová et al., 2016), were evaluated in this study: 
Stagnic Chernozem Siltic (Chernozem S), Haplic Chernozem (Cher
nozem H), Greyic Phaeozem (Phaeozem), Haplic Luvisol (Luvisol), 
Dystric Cambisol (Cambisol D), Haplic Cambisol (Cambisol H), and 
Arenosol Epieutric (Arenosol), ordered according to the progressive 
deterioration of soil quality (following parent material and oxidizable 
carbon values, Cox). The selected soils cover the majority of soil types 
that occur in Central Europe (European Soil Bureau Network European 
Commission, 2005), differ in physical chemical properties (SI-2), and 
have diverse degradation and transformation patterns for the tested 
pharmaceuticals (i.e., carbamazepine, clindamycin, sulfamethoxazole, 
trimethoprim, clarithromycin, atenolol and metoprolol (Kodešová et al., 
2016)). 

2.2. Experimental set-up 

A degradation experiment was developed according to OECD (2002). 
Soils were collected from the surface layer (at the depth of 0–25 cm); air- 
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dried; and homogenized (2 mm sieve). The time needed for sample 
preparation did not exceed 5 days. Fifty grams of air-dried soil was 
transferred to 100-mL polyethylene bottles, irrigated with 6 mL (3 mL in 
the case of Arenosol) of tap water and pre-incubated in the dark at 20 ◦C 
for 6 days. Next, each soil was amended with 6 mL (4 mL in the case of 
Arenosol) of a solution containing different pharmaceuticals (concen
trations of 8.3 and 12.5 μg mL− 1, respectively) and was mixed thor
oughly by shaking for 30 s. The amounts of added tap water and solution 
approximately corresponded the half and full field water holding ca
pacity, respectively, according to (Kodešová et al., 2016). The final 
concentration was approximately 1 μg g− 1 per compound of dry soil 
weight (dw) as previously used in other environmental studies (Gross
berger et al., 2014; Monteiro and Boxall, 2009; Srinivasan and Sarmah, 
2014). All the treatments, including the six individual pharmaceuticals, 
their mixture (at a concentration ratio 1:1:1:1:1:1) and the non-amended 
control (with no pharmaceutical addition), were carried out in triplicate 
for each soil type. Soils were incubated at 20 ◦C in the dark and were 
destructively sampled at predefined times (after 0, 1, 13 and 61 days) to 
represent non-amended control (0 d), immediate (1 d), short- (13 d) and 
long-term (61 d) effects. 

Here is important to highlight that all tests have been carried out 
with a single amendment of the pharmaceuticals. A repetitive amend
ment of the compounds to soils should be the objective of a future study. 
Additionally, it should be considered that not all processes of the given 
soils under the real conditions may be included in a single microcosm 
study. Microcosms are simplified, physical models of an ecosystem that 
enable controlled experiments to be conducted in the laboratory or in 
situ and serve as a proxy to study the specific environmental processes 
that cannot be easily controlled at the larger scale (Matheson, 2008). 

2.3. Soil extraction and pharmaceutical analysis 

The method used for extraction was identical to that published by 
(Kodešová et al., 2016). The extracts were analysed by liquid chroma
tography with a high-resolution mass spectrometry (LC-HRMS) method 
according to (Koba et al., 2017, 2016). 

Briefly, the whole contents of the bottle were extracted with mixtures 
A (acetonitrile/water mixture - 1:1 v/v, with 0.1% of formic acid) and B 
(acetonitrile/2-propanol/water mixture - 3:3:4 v/v/v, with 0.1% formic 
acid) in three consequent steps (A:B:B, 60:35:20 mL) using an ultrasonic 
bath. All subsequent supernatants were combined, and 10-mL aliquots 
were filtered through a syringe filters (regenerated cellulose, 0.45 μm) 
and stored for LC-HRMS analysis. Aliquots of 100 μL were collected and 
placed in autosampler vials, and internal standards were added and 
analysed by LC-HRMS. The analytical system consisted of an analytical 
LC pump Accela 1250 (Thermo Fisher Scientific, San Jose, USA), HTS 
XT-CTC autosampler (CTC Analytics AG) and a Q-Exactive plus mass 
spectrometer (Thermo Fisher Scientific). A Hypersil Gold aQ column 
(50 mm × 2.1 mm i.d., 5 μm particle size, Thermo Fisher Scientific) was 
used for chromatographic separation of the target compounds according 
to (Koba et al., 2016). The analytes were ionized by a heated electro
spray and were analysed in the positive full scan mode at a resolution of 
70000 FWHM. The spray voltage was set to 2.8 kV, capillary tempera
ture to 325 ◦C and auxiliary gas heater temperature to 250 ◦C. Nitrogen 
was used as the sheath gas (40 arbitrary units) and auxiliary gas (10 
arbitrary units). Detailed information regarding the analytical condi
tions are described in SI-3. The matrix effects were corrected using a 
matrix matching standard if the deviation from calibration curve 
response factor was greater than 30% according to (Golovko et al., 2016; 
Koba et al., 2017). The obtained data were processed with TraceFinder 
3.3 software (Thermo Fisher Scientific). The limits of quantification for 
the individual compounds in soil did not exceed 3.7 ng g− 1 (SI-3). 

The determined concentration of each target analyte was recalcu
lated to a molar concentration (pmol g− 1 dw soil) by dividing the weight 
concentration by the corresponding molecular mass of the studied 
compound, which was not dependent on the molecular mass of each 

analyte. To assess pharmaceutical degradation over time and facilitate 
comparisons among soils and individual treatments, the data are 
described as relative residual concentrations corresponding to the dif
ference between c0 and ct (concentration in time). 

2.4. Microbial analyses 

Basal respiration was estimated from the headspace CO2 accumula
tion rates (Anderson and Domsch, 1985). In brief, 5 g of soil in 100-mL 
Duran bottles was sealed with a butyl rubber stopper and tightly closed 
with a bottle cap. After 1 h of incubation at 22 ◦C, the CO2 in the head 
space was determined on an Agilent HP 5890 series II gas chromato
graph (GC) equipped with a thermal conductivity detector (TCD) and a 
capillary column Agilent HP-Plot Q operated at 60 ◦C. Additionally, at 
each time point, subsamples for phospholipid fatty acid (PLFA) extrac
tion and dry matter measurements were obtained. The PLFA method 
served as a rapid assessment of the microbial biomass and composition 
of microbial communities in soil since many PLFAs are indicative of 
microbial groups in soil. In addition, the ratios of the biomasses of 
bacteria/fungi (B/F) and Gram-positive/Gram-negative (G+/G-) bac
teria were used to evaluate the response of microorganisms to organic 
pollutants (Frostegård et al., 1993, 2011; Liu et al., 2016). The extrac
tion of PLFA was performed according to (Bligh and Dyer, 1959) with 
modifications by (Frostegård et al., 1993). In total, 1–2.5 g of the 
lyophilized soil sample (according to the soil Cox) was placed in a baked 
test tube and extracted with 4.75–9.5 mL (according to the sample 
weight) of chloroform/methanol/phosphate buffer (1:2:0.8 v/v/v) for 2 
h at room temperature in the dark. After centrifugation (3500 RPM, 5 
min, 20 ◦C), the supernatants from the two subsequent extractions were 
pooled and separated into two phases by the addition of 2–4 mL (ac
cording to the sample weight) chloroform/buffer (1:1 v/v). The lipids 
from the lower phase were fractioned through silicic acid-columns, 
LiChrolut Si 60 (Merck, Germany). Phospholipids were eluted with 2 
mL methanol and subjected to mild alkaline metanolysis according to 
(Dowling et al., 1986). Samples were analysed on an Agilent Trace 1310 
GC (Agilent, Wilmington, Delaware, USA) equipped with a flame ioni
zation detector and a 60 m × 0.32 mm BPX70 × 0.25 μm column (SGE 
Analytical Science), with H2 and air flow of 35 and 400 mL min− 1, 
respectively, and N2 at 28 mL min− 1. The initial oven temperature was 
110 ◦C following the temperature gradient: 5.5 min: increase 12 ◦C 
min− 1 to 140 ◦C; 13.5 min: increase 5 ◦C min− 1 to 180 ◦C; 40.167 min: 
increase 1.5 ◦C min− 1 to 220 ◦C; 45.917 min: increase 8 ◦C min− 1 to 250 
◦C; and 50.317 min: decrease 250 ◦C–140 ◦C (Kotas et al., 2018). The 
inlet and detector temperatures were 250 and 300 ◦C, respectively. The 
results were processed by Chromeleon 7.2. PLFAs with <12 C and >20 C 
atoms were excluded from the analysis of soil microbial communities, as 
were PLFAs with less than 0.5% of the total in peak area. The responses 
from all the remaining PLFAs were summed to obtain the total PLFA 
biomass (nmol g− 1 of dw soil). Grouping according to the main micro
bial taxa using indicative fatty acids was performed according to 
(Johansen and Olsson, 2005; Willers et al., 2015). 

2.5. Evaluation of microbial responses 

To interpret the response of microbial communities to pharmaceu
tical exposure, we plotted basal respiration in relation to microbial 
biomass by applying graphical vector analyses with the non-amended 
conditions (control, 1, 13 and 61 d) as a reference according to a pro
posed “microbial metabolic quotient” (Weetman and Fournier, 1982; 
Anderson and Domsch, 1985; Gielen et al., 2011). The response of a 
microbial community to pharmaceutical exposure was adapted from 
(Gielen et al., 2011) and analysed as the ratio of the mean values (n = 3) 
of soil basal respiration to microbial biomass (total PLFA). A greater 
distance from the intersect (non-amended controls) indicated a greater 
disturbance and development of the microbial community, whereas the 
direction of the vector (and thus quadrant) qualified the type of 
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response. Positive responses of both respiration and biomass were 
interpreted as a stimulatory effect on the microbial community, a pos
itive response for respiration and a negative response for biomass were 
indicative of a microbial community under stress, negative responses for 
both respiration and biomass suggested an inhibitory effect that seri
ously affected the microbial community and its function, and a negative 
response for respiration and positive for biomass were indicative of 
dormancy or a maintenance state of the microbial community. 

2.6. Statistics and microbial response analysis 

Two- and three-way ANOVAs were used to determine the significant 
difference between paired means (pharmaceuticals concentration in the 
soil, basal respiration and PLFA biomass and relative abundance of 
microbial groups in mol%) according to many similar studies, e.g., 
(Gutiérrez et al., 2010; Srinivasan and Sarmah, 2014; Cycoń et al., 
2016). This statistical method was also used to perform univariate 
analysis of the PLFA data to compare the total PLFA biomass and the 
PLFA biomass of selected groups among the soil samples and pharma
ceutical treatments. The post hoc Tukey test was then used to identify 
differences in all possible pairs of means. To evaluate the overall pat
terns in the PLFA composition among samples, multivariate analyses 
(MANOVA) of all PLFAs were conducted to determine the variation 
attributable to the factors being tested. Principal component analysis 
(PCA) of the PLFA profiles was used to describe the changes in the mi
crobial community structure after different exposure times during 
exposure to various treatments. Linear models were also used to study 
the effects of the treatment on PLFA biomass, microbial group abun
dance, and B/F and G+/G- ratios. The relative PLFA data (mol%) were 
log-transformed in all statistical tests. Statistical analysis was performed 
in R (R Development Core Team 2011) using the packages vegan, 
multcomp, factoextra and FactoMineR (Hothorn et al., 2008; Lê et al., 
2008; Oksanen et al., 2019). 

3. Results 

3.1. Residual concentrations of pharmaceuticals 

After being amended to soils as a single compound or in a mixture, 
the residual concentrations of parent pharmaceutical compounds 
showed decreasing trends during the exposure time (Fig. 1, SI-4). The 
degradation half-lives DT50 are provided in SI-2. It should be noted that 
these DT50 values were estimated from only 4 residual concentrations 
during the exposure time. To better determine the degradation rates of 
different compounds, residual concentrations over time should be ana
lysed more frequently. When applied solely after pharmaceutical 
exposure for 1 d, the residual concentrations ranged between 71 and 
100% for sulfamethoxazole in Phaeozem and Cambisol H, followed by 
citalopram in Cambisol H, irbesartan in Luvisol, clindamycin in Luvisol 
and Cambisol H (Fig. 1, SI-4). Carbamazepine and fexofenadine in the 
various soils showed less to negligible degradation. On 13 d, the residual 
concentration of sulfamethoxazole ranged from 8 to 32%, and the lowest 
and highest values were for Phaeozem and Arenosol, respectively, 
indicating the highest degradation potential among the studied com
pounds. The lowest degradation potential was observed for carbamaz
epine, which ranged from 67 to 97%, with the highest residual 
concentration in Phaeozem and the lowest in Arenosol (Fig. 1, SI-4). 
Fexofenadine displayed a degradation ranging from 29 to 95% and 
irbesartan from 41 to 78% depending on the soil type. On 61 d, the 
relative concentrations of sulfamethoxazole and clindamycin were close 
to 0, but the relative concentrations of carbamazepine and citalopram 
were degraded by less than 50% regardless of the soil type. Irbesartan 
was degraded on average by 80%, while fexofenadine degradation 
differed among the soil types, with residual concentrations close to 0 in 
Phaeozem and Chernozem S but 38% in Chernozem H and over 60% in 
Arenosol (Fig. 1, SI-4). 

In addition to the parent compounds, five degradation products 
(metabolites) were found for the seven analysed (Fig. 1), two for car
bamazepine and one for citalopram, clindamycin and sulfamethoxazole. 
Despite the possible existence of two acetyl sulfamethoxazole metabo
lites, only NAT-SMX (N4-acetyl sulfamethoxazole) was detected at the 

Fig. 1. Residual concentrations of pharmaceuticals when applied to soils solely: first line displays parent compounds (carbamazepine, citalopram, clindamycin, 
fexofenadine, irbesartan and sulfamethoxazole), following lines show their metabolites (carbamazepine 10,11-epoxide/CBZ-E, trans-10,11-dihydro-10,11-dihydroxy 
carbamazepine/2OH-CBZ, N-desmethylcitalopram/DCT, clindamycin sulfoxide/CLN-SO, N4-acetyl sulfamethoxazole/NAT-SMX) as arithmetic mean (n = 3/2), error 
bars stay for standard deviation. Incubation time is presented as an ordinal variable. Different colours represent studied soils. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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highest concentration in Chernozem S and Phaeozem and the lowest 
concentration in Arenosol. Compared with other observed metabolites, 
NAT-SMX formation started immediately after soil was spiked with the 
sulfamethoxazole solution, with the maximum concentration reached on 
1 d and rapid degradation over 13 d in most soils except Arenosol, for 
which the maximum concentration was reached on 13 d regardless of 
individual or mixture application (SI-5). Complete degradation of sul
famethoxazole was observed in all soils on 61 d. The concentration of 
CLN-SO (clindamycin-sulfoxide) started to increase in Luvisol, both 
Cambisols and Arenosol on 1 d, reaching the maximum value on 13 
d and remaining persistent during the study period. 

When applied as the pharmaceutical mixture, the half-life of 
pharmaceuticals (SI-2) slightly increased for most of the compounds. 
The residual concentration showed comparable trends as it was 
observed for the single application. The lowest values of the relative 
concentration were observed for sulfamethoxazole and the highest 
values for carbamazepine and citalopram (SI-5). Accordingly, the rate of 
metabolite formation decreased (SI-5). In addition, in the case of clin
damycin, when applied solely, the highest formation of CLN-SO was 
observed in Cambisol D; when applied in a mixture, formation in this soil 
decreased to one-quarter, while the highest formation was observed in 
Chernozem S. The opposite result was observed for sulfamethoxazole 
and the formation of NAT-SMX, in which the highest detection was 
occurred in Chernozem S when applied alone and in Cambisol D when 
applied in a mixture (SI-5). 

3.2. Microbial biomass and community profile shifts in treated soils 

Microbial biomass varied between the soils and was particularly 
affected by the exposure time (Fig. 2A; SI-6, SI-7). Principal component 
analysis (PCA) separated PLFA data into two principle components 
(PCs), where PC1 (exposure time) explained 39–73% of the variation in 
the community composition (Fig. 3). Under the initial conditions, the 
level of total PLFA ranged from 51 (±13) to 241 (±16) nmol g− 1 dw soil, 
with the lowest PLFA biomass corresponding to Arenosol, followed by 
Chernozem H (73 ± 25), Luvisol (131 ± 35), Cambisol D (142 ± 5), 
Phaeozem (144 ± 5), and Chernozem S (177 ± 4 nmol g− 1 dw, 
respectively; means ± standard deviation), and the highest PLFA 
biomass for Cambisol H (Fig. 2A). Bacteria prevailed in all soils with a 
minor portion of the other microbial groups (Fig. 2A,B, SI-6). The G+/G- 
ratio was ≤1 and was higher in Arenosol and Cambisol H than in the 
other studied soils and lowest in Chernozem S. The B/F ratio was be
tween 6.2 (Arenosol) and 29.5 (Chernozem H) in relation to the different 
qualities of the studied soils (Fig. 2B, SI-6). 

On 1 d, no consistent difference was observed in the soil microbial 
community profiles among the various treatments and soils, as also 
supported by the PCA results (Fig. 3). On 13 d, however, a significant 
increase in biomass (22–85%) was observed in all soils. The highest 
PLFA biomass was predominantly observed in Cambisol H regardless of 
the treatment, with the highest value of 322 nmol g− 1 for the control, 
while the lowest PLFA biomass was found for all treatments in Arenosol, 
ranging between 36 and 87 nmol g− 1 from citalopram to the control, 
respectively (Fig. 2A). The G+/G- ratio decreased in some soils and 

Fig. 2. Summary of total PLFA biomass, bacterial and protozoan portion in individual soils as affected by treatments (A), and corresponding ratios between bacteria 
and fungi (B/F), and G+ and G- bacteria (G+/G-) (B). Error bars in microbial biomass stay for standard deviation (n = 3). Incubation time is presented as an ordinal 
variable. Different colours represent studied treatments. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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treatments, especially in Luvisol (0.5 for irbesartan, 0.6 for carbamaz
epine and mixture) and slightly increased in Arenosol to 1.1 for both 
antibiotics and mixture treatments (Fig. 2B). A general drop in the B/F 
ratio was detected after 13 d in all soils, ranging between 2.8 for cit
alopram in Arenosol and 26.4 for fexofenadine in Chernozem S. PCA 
revealed clear trends towards a fungal community in Chernozem H and 
Phaeozem when amended with the sulfamethoxazole or pharmaceutical 
mixture (Fig. 3). A similar, nonetheless smaller, trend was also observed 
in Luvisol (along with Chernozem H and Phaeozem, all soils derived 
from loess parent material), while the effect of the treatments in other 
soils was insignificant (Fig. 3). On 61 d, a small decline in biomass was 
observed (Fig. 2A), with the highest detected biomass in the control of 
Cambisol H (267 nmol g− 1) and the lowest in Arenosol amended with 
sulfamethoxazole and citalopram (39 and 45 nmol g− 1). PCA revealed a 
general shift towards a protozoan community (Fig. 3). 

Bacterial PLFA significantly decreased in Phaeozem after being 
amended with the mixture of pharmaceuticals and in Cambisol H after 
all pharmaceutical amendments. The treatment had a low (~1%) but 
significant effect on the community composition across soils (SI-7). 
However, the effect of the treatments was apparently higher in distinct 
soils (SI-8). The abundance of Actinomycetes increased after citalopram 
or clindamycin exposure in Cambisol H and after sulfamethoxazole 
exposure in Cambisol D. In contrast, the abundance of Actinomycetes 
decreased after pharmaceutical mixture in Chernozem S and Phaeozem. 

Fungi responded to the pharmaceutical mixture in Phaeozem and Are
nosol, in which their abundance increased. Conversely, fungi were 
negatively affected by all the pharmaceutical compounds and their 
mixture in Cambisol H. Protozoa responded positively to citalopram, 
irbesartan, sulfamethoxazole, and the pharmaceutical mixture in Cam
bisol H and to clindamycin in Cambisol H and Chernozem S. Negative 
effects of clindamycin, fexofenadine, sulfamethoxazole and pharma
ceutical mixture on protozoa were observed in Arenosol. Microbial 
community shifts affected by the pharmaceuticals were reflected by 
changes in the B/F and G+/G- ratios. In particular, the B/F ratio 
decreased in response to sulfamethoxazole and pharmaceutical mixture 
amendments in both Chernozem H and Phaeozem. In addition, the 
pharmaceutical mixture decreased the B/F ratio in Cambisol D and 
Arenosol and negatively affected the G+/G- ratio in Chernozem H, 
Phaeozem, and Cambisol H. Similarly, clindamycin decreased the G+/ 
G- ratio in Phaeozem because of the decline in G+ bacteria. Shifts in the 
microbial community composition were most pronounced on 13 d and 
persisted long term (to 61 d) in most cases. The details of the pairwise 
comparisons between the treatments and controls in the given soil were 
significant at p<0.05 and are shown in SI-9. 

3.3. Basal respiration 

On 1 d, an overall increase in basal respiration was observed in 

Fig. 3. PCAs of PLFA-profiles from microbial communities in the studied agricultural soils. A) indicates distribution according to general microbial markers, B) 
displays these measurements grouped in line with exposure time (0, 1, 13 and 61 d) and C) displays these measurements grouped according to the applied treatment. 
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Chernozem S regardless of the treatment, in Phaeozem (except fex
ofenadine) and in Cambisol D (except citalopram and clindamycin). In 
contrast, a general decrease in respiration was found in Luvisol and 
Cambisol H for all treatments except the control, Chernozem H (except 
control, carbamazepine and irbesartan) and Arenosol (except fex
ofenadine and irbesartan). Compared with the control, basal respiration 
significantly dropped in Phaeozem when amended with sulfamethoxa
zole or the pharmaceutical mixture. Still, compared to the initial con
ditions, an increase in basal respiration was pronounced in all 
treatments in Chernozem H, Phaeozem and Arenosol, and Cambisol D 
(except when amended with the pharmaceutical mixture) on 13 d. In 
Chernozem S, respiration increased in response to clindamycin, irbe
sartan and sulfamethoxazole along with the control, while it decreased 
in response to carbamazepine, citalopram and mixture treatments. No 
increase in respiration was confirmed for Luvisol and Cambisol H, 
including the control treatment. On 61 d, the differences in respiration 
as affected by treatment were not significant (p>0.05). A general 
decrease in respiration was observed in Chernozem S, Luvisol and both 
Cambisols, while a decrease in respiration was found in Chernozem H 
only with clindamycin and fexofenadine, the Phaeozem control and 
when amended with carbamazepine, fexofenadine, irbesartan and 
mixture, and Arenosol with citalopram. Based on microbial community 
biomass and basal respiration, we obtained different types of responses 
to pharmaceutical exposure (Fig. 4) that are further explored in the 
Discussion. 

According to the three-way ANOVA results, basal respiration was 
shown to be significantly affected by treatment (p < 0.001) as a single 
factor as well as by the interaction with exposure time and soil (SI-7). 
Respiration was shown to be particularly affected by the interaction 
among all three factors, which explained 25.4% of the variance, as well 
as the interaction between soil and treatment and between time and 
treatment; however, these factors explained only 9.9% and 6.6% of the 
variance, respectively, while the effect of treatment as a single factor 
explained only 1% of the variance in basal respiration. 

4. Discussion 

Degradation of all the examined pharmaceuticals with the simulta
neous formation of several metabolites was detected in all the studied 
soils, but varied depending on the soil type and pharmaceuticals (Fig. 1). 
Considering that the degradation of pharmaceuticals in soil is governed 
by microbial activity (Lin and Gan, 2011; Löffler et al., 2005; Radke 
et al., 2009; Srinivasan and Sarmah, 2014; Zhang et al., 2017), these 
variations can be explained by the different time-dependent microbial 
responses to the applied treatment within specific soil properties. The 
assessment is rather qualitative and based on the method described by 
(Gielen et al., 2011). 

Fig. 3. (continued). 
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4.1. Stimulatory effect of pharmaceuticals on respective microbial 
communities 

The increase in basal respiration relative to the non-amended con
dition (controls) was indicative of enhanced mineralization of carbon 
sources to CO2 for energy production, whereas the increased microbial 
biomass was indicative of the conversion of carbon sources into biomass 
and thus growth (Brown et al., 2004). A stimulatory effect was found in 
some soils amended with sulfamethoxazole (Cambisol D, Luvisol, 
Phaeozem, Chernozem H and S), clindamycin (Arenosol and Phaeozem), 
fexofenadine (Chernozem H), irbesartan (Phaeozem and Chernozem S), 
citalopram (Chernozem H) (Fig. 4). In the case of sulfamethoxazole this 
phenomenon might be explained by the low sorption potential, partic
ularly in Phaeozem, Chernozems H and S (kf values of 0.57, 0.88 and 
0.64, respectively, SI-2). Sulfonamides are fairly water soluble and 
polar; thus, soil sorption is a pH-related process, decreasing with 
increasing pH (Boxall et al., 2002; Koba et al., 2016). Weak sorption of 
sulfamethoxazole onto soil and thereby its high mobility and bioavail
ability has been shown in silty clay, clay loam and silty clay loam soils 
with pH(CaCl2) ranging from 4.5 to 6.9 (Höltge and Kreuzig, 2007; Liu 
et al., 2010) and previously in the same set of soils (Kodešová et al., 
2016, 2015). Additionally, biodegradation has been shown to be the 
predominant mechanism of sulfamethoxazole degradation in clay loam 
soil (pH(CaCl2) 4.9, TOC 13.5 g kg− 1) (Liu et al., 2010). In our case, 
Phaeozem and Chernozem S showed the highest production of NAT-SMX 

(Fig. 1), likely confirming the degradation and low sorption of 
sulfamethoxazole. 

Luvisol had relatively low sorption potential (kf value of 1.28, SI-2) 
suggesting the similar process as explained for Phaeozem and Cher
nozem S. Interestingly, stimulation was detected in Cambisol D, but only 
immediate to short-term (1 and 13 d, Fig. 4), which could be explained 
by a delay in sorption of the antibiotic. 

The effect of application of the mixture on the microbial community 
displayed similar patterns to sulfamethoxazole (Figs. 3 and 4) despite 
the minor differences between single and mixture amendments found 
for pharmaceutical degradation (Fig. 1, SI-4). We suggest that this result 
could be due to the more pronounced and distinct effect of sulfameth
oxazole on the microbial community than that of the other studied 
compounds (Fig. 3). However, such similar stimulation effect was only 
observed in Chernozem H (13 and 61 d) and Chernozem S (61 d). More 
detailed research is planned to identify this phenomenon. 

Along with the increase in microbial biomass, a short-term response 
(13 d) to the pharmaceutical mixture resulted in shifts in the microbial 
community; the decrease in the B/F ratio altered the microbial com
munity towards fungi in Chernozem H, Phaeozem, Cambisol D and 
Arenosol, while the decrease in the G+/G- ratio indicated a negative 
impact on the G+ bacteria in Chernozem H, Phaeozem, and Cambisol H 
(Fig. 2B, SI-8). Similarly, sulfamethoxazole decreased the B/F ratio in 
Chernozem H and Phaeozem. The decrease in the B/F ratio was often 
associated with a stimulatory effect on the soil microbial community. 

Fig. 3. (continued). 
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Stimulation of the fungal biomass may indicate enhanced degrading 
activity of fungal members of the community, e.g., through the pro
duction of extracellular laccases and peroxidases (Chen et al., 2016). 
Similar community shifts caused by sulfamethoxazole amendment have 
only been reported for a loamy sand soil (pH 6.6, Corg 0.86%), resulting 
in alterations towards G- bacteria and an increased proportion of fungal 
biomass (Gutiérrez et al., 2010). Tentative explanations for this phe
nomenon could be a gradual increase in the resistance of a number of 
bacterial species in the environment (Fahrenfeld et al., 2014; Goodman 
and Gilman, 2011; Heuer et al., 2008) and that plasmid-mediated 
resistance may be possessed to a greater extent by G- bacteria (Stokes 
and Gillings, 2011). 

The stimulatory effect of the other antibiotic, clindamycin, promoted 
substantial changes in the microbial community composition only in 
Phaeozem, where exposure to clindamycin revealed G+/G- ratio de
clines while maintaining the same B/F ratio. The reduced G+/G- ratio 
and thus enhanced abundance of G- bacteria at the extent of G+ bacteria 
persisted over the long-term (61 d, Phaeozem). These results suggested, 
first, that clindamycin has a lower bacterial inhibitory effect than sul
famethoxazole, as shown for other sulfonamide antibiotics (Majewsky 
et al., 2014). Second, clindamycin may lose antibacterial activity via 
sorption (Kümmerer, 2009). Considering its pKa of 7.7, clindamycin 
exists predominantly as a cation in acidic environments and as a neutral 
species when introduced into basic soil. Earlier studies (Porubcan et al., 
1978; Kodešová et al., 2016) described a strong interaction of clinda
mycin with clay by cation exchange mechanisms at pH values favouring 
the cationic form of clindamycin. However, in other research, the 
mobility of clindamycin in the soil profile was limited despite pH < 7 
and the very low amounts of clay (8.4%), organic carbon (1.6%) and 
CEC (14.3 cmol kg− 1), suggesting that a retaining mechanism other than 

cation exchange might be relevant (Koba et al., 2017; Kodešová et al., 
2015; Wu et al., 2010; Schmidtová et al., 2020). In our study, the rapid 
decline in clindamycin concentration was accompanied by the forma
tion of clindamycin sulfoxide (CLN-SO; up to 35% on 13 d, Fig. 1, SI-5) 
with the lowest concentrations in Chernozems (Chernozem S and 
Chernozem H; better quality soils with higher organic content, microbial 
biomass and pH), suggesting a rapid transformation into some minor 
metabolites in these soils (Koba et al., 2017), possibly via microorgan
isms. To our knowledge, thioester oxidation (forming clindamycin-SO) 
as a proof of biodegradation has been reported only for 
wastewater-derived microbial communities (Ooi et al., 2017; Zumstein 
and Helbling, 2019). 

The low bioavailability of citalopram, described here by its pKa and 
kf values (SI-1, 2), reflects the importance of cation binding in all the 
studied soils with a predicted sorption behaviour. The stimulation was 
only observed in Chernozem H (better-quality soil, well-structured and 
with higher nutrient availability). In addition, N-demethylation of cit
alopram and the corresponding formation of N-desmethylcitalopram 
(DCT) was also detected only in the long-term (61 d) at very low con
centrations (Fig. 1, SI-4), supporting the theory that within the exposure 
time, citalopram was mostly inaccessible to the soil microorganisms. 

Limited removal of carbamazepine in soils is also more associated 
with sorption phenomena than with biodegradation, as other authors 
have already observed (Kodešová et al., 2015; Löffler et al., 2005; 
Martínez-Hernández et al., 2016; Tiehm et al., 2011; Williams et al., 
2006; Schmidtová et al., 2020), and noted that carbamazepine sorption 
is mainly controlled by the organic carbon content. Nevertheless (Mar
tínez-Hernández et al., 2016), suggested the occurrence of carbamaze
pine 10,11-epoxide (CBZ-E) as a proof of enzymatic function and 
biodegradation. In addition, the biological transformation of 

Fig. 4. Effect of pharmaceutical exposure on basal respiration and PLFA biomass in time and various soil types. The axes’ origins in all figures represent soil mi
crobial responses from the non-amended controls on 1, 13 and 61 d, each colour represent individual pharmaceutical treatment. The upper left, right and lower left 
and right quadrants are indicative of relative shifts in stress, stimulatory, inhibition and dormancy soil microbial responses, respectively. Exposure time is designated 
by different symbols: ▴1 d, ◼13d and +61d. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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carbamazepine in a loamy sand soil (pH 7.7, 1.4% Corg) was shown to be 
the only mechanism with a significant ability to form trans-10, 
11-dihydro-10,11-dihydroxy carbamazepine (2OH-CBZ) (Löffler et al., 
2005). This metabolite slowly increased in our study (detected on 13 and 
61 d), although only in a few soils, mainly Phaeozem, followed by 
Chernozem H and Arenosol. While, the stimulation was not observed in 
Arenosol, short-term stimulation by carbamazepine was found in Luvisol 
(13 d) and Phaeozem (1 and 13 d) (Fig. 4), suggesting that a microbial 
contribution to carbamazepine transformation cannot be excluded. 
Stimulation in Chernozems H and S amended with carbamazepine was 
only detected on 61 d, likely suggesting the recovery response in these 
nutrient-rich soils and ability to process the compound and its metab
olites. Additionally, we hypothesize that biodegradation would continue 
if incubated for a longer period, thereby confirming its slow elimination 
regardless of the soil type (Koba et al., 2016; Thelusmond et al., 2019). 
In the case of 2OH-CBZ, the presence of two neighbouring hydroxyl 
groups suggested ring cleavage by relevant bacteria, considering that 
only <10% of carbamazepine was transformed into metabolites. Finally, 
the concentrations of 2OH-CBZ and CBZ-E did not decrease during the 
exposure time, showing a continuous upward trend. This phenomenon 
could indicate that the enzymes responsible for the transformation of 
carbamazepine are probably not common in agriculture soils, as recently 
proposed by the lack of impact on the microbial metabolic pathways 
involved in biodegradation and the limited removal of carbamazepine 
(Thelusmond et al., 2016, 2018). The low kf value further suggested the 
bioavailability of carbamazepine to certain bacteria in soil. Previously 
(Thelusmond et al., 2018), noted that some phylotypes (Actinobacteria, 
Rhizobiales, Gammaproteobacteria) appear to benefit from carbamaze
pine application to soil (three sandy loam soils of pH 6.9, with 2.8%, 
2.4%, 1.4% Corg, and one loamy sand soil of pH 6.6, 1.9% Corg) and that 
the effect of carbamazepine on the soil microbial community likely de
creases with time. 

The number of studies on fexofenadine and irbesartan metabolites 
and the enzymes responsible for their biodegradation is limited. Based 
on the pKa and soil pH values, fexofenadine was in the zwitterionic form 
in all the studied soils, having both positive and negative charges. 
Excluding Luvisol and Arenosol, almost all fexofenadine was degraded 
within the exposure time, with little differences among mixed and in
dividual applications. Since these two soils were the poorest in terms of 
microbial biomass, organic carbon and CEC perspective (SI-1, SI-2), we 
may expect limited removal mechanisms by these efforts. Short-term 
stimulation of microbial community in Chernozem H (13 d) may sug
gest possible microbial uptake. Irbesartan was found to be degraded in 
wastewater-activated sludge (Boix et al., 2016; Shah et al., 2010), with 
25–30% removal obtained in 35 days. In addition, five metabolites were 
identified as a result of irbesartan hydroxylation, hydrogenation, 
oxidation or dealkylation in different parts of the molecule (Boix et al., 
2016). In our study, irbesartan concentrations significantly decreased 
within the exposure time regardless the soil or application in the 
mixture. Immediate and long-term stimulation was observed in Phaeo
zem and short-term in Chernozem S (Fig. 4). Based on the physical 
chemical properties of irbesartan, its neutral or anionic characteristics, 
low sorption potential in these soils (SI-2), and therefore its bioavail
ability, it can be speculated that this removal mechanism was also 
supported by microorganisms. The detection of fexofenadine and irbe
sartan metabolites is beyond the scope of this study. Since the behaviour 
of these pharmaceuticals in soils is still unclear and only limited reports 
have examined their fate, a complex analytical and molecular study 
mapping possible metabolic pathways should be performed. 

4.2. Stress effect of pharmaceuticals on respective microbial communities 

Microbial communities demonstrating insufficient nutrients to form 
new microbial biomass while creating more energy through increased 
respiration indicated a stress effect of pharmaceuticals (Gielen et al., 
2011; Rui et al., 2016). All the investigated pharmaceuticals imposed a 

degree of stress on soil microbial communities (each of them in at least 
one soil, Fig. 4). The immediate stress response (1 d) was observed for all 
pharmaceuticals in Chernozem S and was associated with the increase of 
protozoan PLFA (Figs. 2A and 3, SI-8). The stress response on all phar
maceuticals was observed in Arenosol on 13 and 61 d (except clinda
mycin, 61 d). These findings could be explained mainly by the apparent 
low microbial biomass associated with a low resilience capacity of its 
microbial community due to nutrient limitations. The short-term stress 
effect was also found in Cambisol H on all treatments and remained until 
the long-term exposure in sulfamethoxazole and mixture treatments 
(Fig. 4), being replaced by inhibition in other pharmaceuticals. Inter
estingly, despite the low biodegradation capacity for carbamazepine, 
this pharmaceutical was able to provoke stress microbial responses in all 
soils (Fig. 4). Immediate (1 d) stress response to carbamazepine was 
observed in Cambisol D and Chernozem S, which was previously re
ported only on 13 d at higher carbamazepine concentration (1000 μg 
g− 1) in a sandy loam soil of pH 5.6 (Gielen et al., 2011). In some cases 
(clindamycin in Arenosol, irbesartan in Phaeozem and Chernozem S, 
carbamazepine in Chernozems H and S, sulfamethoxazole and mixture 
in Chernozem S) stress response changed to stimulation indicating that 
microbial communities were able to mitigate stress responses to phar
maceuticals after a longer exposure time. 

4.3. Inhibitory effect of pharmaceuticals on respective microbial 
communities 

The concurrent decrease in microbial biomass and respiration, which 
indicated the inhibitory effect of pharmaceuticals on microbial com
munity (Gielen et al., 2011), demonstrated unfavourable environmental 
conditions or a potentially toxic effect of pharmaceuticals (Zielezny 
et al., 2006). This effect was detected in all soils, except Chernozem S 
(Fig. 4). Immediate inhibition to all pharmaceuticals was found in soils 
with a lower organic content, i.e. Arenosol (except citalopram), Cam
bisol H and Luvisol (Fig. 4). While, the inhibition was replaced by stress 
under longer exposure (13 and 61 d) in Arenosol, still, it was observed in 
Cambisol H on 61 d for most of pharmaceuticals (except sulfamethox
azole and mixture). In Cambisol H, the overall drops in total PLFA 
biomass started immediately and was mostly pronounced when amen
ded with fexofenadine and clindamycin. The subsequent alterations in 
microbial biomass in all treatments (13 d) were accompanied by distinct 
changes in the community composition; the B/F ratio decreased by half 
in all treatments with negligible alterations of the G+/G- ratio, and the 
protozoan PLFA significantly increased in response to both antibiotic 
treatments. Soil protist communities respond to anthropogenic pertur
bations; however, they are rarely included in ecotoxicological studies in 
soils (Geisen et al., 2018). Elevated protozoan populations have been 
detected in aquifers contaminated with aromatic hydrocarbons, sug
gesting that protists increased because of grazing on bacterial pop
ulations that accelerate nutrient turnover (Sinclair et al., 1993; Kota 
et al., 1999). An immediate inhibitory effect in Luvisol was mainly 
switched to stimulation and dormancy. An inhibitory response to anti
biotics was pronounced in slightly acidic soils such as Cambisol H and 
Arenosol (Fig. 4, SI-2). A similar response was reported for a silt loam 
soil (pH 5.7, TC 18.2 g kg− 1), where amendment with the antibiotic 
sulfamethoxazole at 7 μg g-1 resulted in a decrease in respiration within 
the first 2 days (Liu et al., 2009); furthermore, an inhibitory effect was 
observed in a sandy loam soil (pH 7.6, TOC 0.95%) at higher sulfa
methoxazole levels (>25 μg g− 1), while microbial biomass was signifi
cantly reduced at environmentally relevant concentrations (Molaei 
et al., 2017). After a short-term exposure (9 days), direct inhibition of 
bacterial growth has been previously reported in a loamy sand soil 
(pH(KCl) 4.9, 3.7% Corg) by (Demoling et al., 2009), in which bacterial 
growth decreased with increasing sulfamethoxazole concentrations 
(0.1-1-20-500 mg kg− 1 soil). A long-term inhibitory effect of pharma
ceuticals was observed in Cambisols, and occasionally in Luvisol and 
Chernozem H (Fig. 4). 
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4.4. Dormancy effect of pharmaceuticals on respective microbial 
communities 

In contrast, an increasing microbial biomass with respect to 
decreasing respiration suggests an antagonistic conversion or a 
dormancy and maintenance state of microbial communities (Anderson 
and Domsch, 1985; Gielen et al., 2011), which are usually higher for 
microorganisms adapted to a permanent input of available substrates 
rather than for microbial communities from nutrient-limited environ
ments (Van Bodegom, 2007). Such a dormancy effect was mainly 
detected in better quality soils (e.g., Chernozems). All pharmaceuticals 
provoke dormancy effect at different exposure time. Immediate 
dormancy was found in Phaeozem and Chernozem H after sulfameth
oxazole, but it was shortly replaced by stimulation, suggesting a high 
resilience of the microbial community to this amendment and strong 
capability of microbial community to recover respiration and biomass 
(Fig. 4). Immediate dormancy in Arenosol treated with citalopram, 
short-term dormancy in Luvisol treated with clindamycin, fexofenadine, 
irbesartan and citalopram, were replaced by stress and inhibition, and 
the long-term dormancy was found in Cambisol D amended with fex
ofenadine and irbesartan, suggesting that microbial communities in 
these soils were not able to recover from the negative effect of these 
pharmaceuticals. In addition to the low concentrations of total carbon 
and nitrogen, we can speculate that the capacity of these soils to sustain 
microbial productivity via promoting the minimum necessary nutrients 
decreased over time. Above described processes could also be valid for 
soils with a higher nutrient content, such as Phaeozem with fex
ofenadine and citalopram, Chernozem H with clindamycin and fex
ofenadine, and Chernozem S with fexofenadine, irbesartan and 
citalopram (Fig. 4). While this phenomenon could be explained by the 
overall nutrient depletion and starving of microorganisms over the 61 
days of exposure (Chernozems H and S), short-term dormancy effect of 
some pharmaceuticals, mainly fexofenadine, irbesartan and citalopram 
should be additionally studied in details. 

5. Practical application of the obtained results 

Based on our results, we propose a simplified conceptual scheme of 
the soil-pharmaceutical-time interaction (Fig. 5) that can be used as 
background for decision making in soil management related to 
contamination by emerging compounds. Our concept is based on inte
grative assessment of the soil, pharmaceutical properties and microbial 
activity. It includes a set of generally available indicators at different 

multi-disciplinary scales (soil and pharmaceuticals properties, parame
ters of microbial activity) and the following activities were performed 
(Fig. 5): (i) description of soil and pharmaceuticals properties; (ii) 
amendment of pharmaceuticals in soil; (iii) detection of effects (stimu
latory, dormancy, inhibitory and stress); (iv) evaluation of microbial 
resilience by recovery of biomass and respiration and (v) mitigation of 
the effect when the recovery of biomass and respiration was not ach
ieved in a certain type of soil. Taking into account that it is difficult to 
avoid soil contamination by pharmaceuticals during wastewater, sludge 
and manure application, we suggest that soil management should be 
focused on the facilitation of biodegradation of pharmaceuticals by 
stress reduction and inhibition prevention of soil microbial activity. Our 
concept is a first step towards determining microbial responses at 
different time intervals, the data provide important information on the 
mitigation of stress and inhibition of a microbial community facilitating 
the biodegradation of emerging compounds. For example, when we 
compare the responses of 13 d and 61 d, we can determine if the mi
crobial activity and biomass have recovered from the stress and inhi
bition by displaying stimulation or dormancy effects. These trends can 
be indicative for microbial resilience and determine needs in mitigation 
steps (e.g. increase of nutrients supply, decrease or stop pharmaceuticals 
inputs, etc.). 

6. Conclusion 

The presented microcosm experiment provides a unique opportunity 
to study the immediate (1 d), short- (13 d) and long-term effects (61 d) of 
pharmaceutical application on microbial community changes in a 
representative set of European agricultural soils differing in physical 
chemical properties. Microbial responses are highly dependent on the 
soil type, pharmaceutical compound and time, highlighting the impor
tance of considering these parameters in the evaluation of the effect. 
Even at low concentrations, pharmaceuticals have a negative effect on 
soil microorganisms. This effect (dormancy, inhibition or stress), how
ever, is temporary. Our findings indicate that most of the effects are 
significant short-term while others remain during a longer exposure 
time. Here, soil microbial communities show resilience towards negative 
effects, since their biomass and activity recovered after an additional 7 
weeks. Based on our method and the results obtained we provide a 
conceptual scheme to determine microbial responses under different 
exposure conditions, which may help to elucidate the effect of individual 
treatments on microbial activity, community size and structure in 
diverse soils. The proposed scheme considers the resilience of soil 

Fig. 5. Conceptual scheme of the integrative assessment of the soil-pharmaceutical-time interaction to support the microbial resilience and determine the mitiga
tion steps. 
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microbial communities to micropollutants within long-term agricultural 
soil management. 
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Koba, O., Golovko, O., Kodešová, R., Klement, A., Grabic, R., 2016. Transformation of 
atenolol, metoprolol, and carbamazepine in soils: the identification, quantification, 
and stability of the transformation products and further implications for the 
environment. Environmental Pollution 218, 574–585. https://doi.org/10.1016/j. 
envpol.2016.07.041. 
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Klement, A., Nikodem, A., Grabic, R., 2020. Competitive and synergic sorption of 
carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and 
sulfamethoxazole in seven soils. Journal of Contaminant Hydrology. https://doi.org/ 
10.1016/j.jconhyd.2020.103680 (in press).  

Shah, R.P., Sahu, A., Singh, S., 2010. Identification and characterization of degradation 
products of irbesartan using LC-MS/TOF, MSn, on-line H/D exchange and LC-NMR. 
Journal of Pharmaceutical and Biomedical Analysis 51, 1037–1046. https://doi.org/ 
10.1016/j.jpba.2009.11.008. 

Sinclair, J.L., Kampbell, D.H., Cook, M.L., Wilson, J.T., 1993. Protozoa in subsurface 
sediments from sites contaminated with aviation gasoline or jet fuel. Applied and 
Environmental Microbiology 59, 467–472. 

Srinivasan, P., Sarmah, A.K., 2014. Dissipation of sulfamethoxazole in pasture soils as 
affected by soil and environmental factors. The Science of the Total Environment 
479–480, 284–291. https://doi.org/10.1016/j.scitotenv.2014.02.014. 

Stokes, H.W., Gillings, M.R., 2011. Gene flow, mobile genetic elements and the 
recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS 
Microbiology Reviews 35, 790–819. https://doi.org/10.1111/j.1574- 
6976.2011.00273.x. 

Thelusmond, J.R., Kawka, E., Strathmann, T.J., Cupples, A.M., 2018. Diclofenac, 
carbamazepine and triclocarban biodegradation in agricultural soils and the 
microorganisms and metabolic pathways affected. The Science of the Total 
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