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Abstract—We propose a one-bit symbol-level precoding method
for massive multiuser multiple-input multiple-output (MU-MIMO)
downlink systems using the idea of constructive interference (CI).
In particular, we adopt a max-min fair design criterion which aims
to maximize the minimum instantaneous received signal-to-noise
ratio (SNR) among the user equipments (UEs), while ensuring
a CI constraint for each UE and under the restriction that the
output of the precoder is a vector of binary elements. This design
problem is an NP-hard binary quadratic programming due to
the one-bit constraints on the elements of the precoder’s output
vector, and hence, is difficult to solve. In this paper, we tackle this
difficulty by reformulating the problem, in several steps, into an
equivalent continuous-domain biconvex form. Our final biconvex
reformulation is obtained via an exact penalty approach and can
efficiently be solved using a standard block coordinate ascent
algorithm. We show through simulation results that the proposed
design outperforms the existing schemes in terms of (uncoded) bit
error rate. It is further shown via numerical analysis that our
solution algorithm is computationally-efficient as it needs only a
few tens of iterations to converge in most practical scenarios.

Index Terms—Biconvex optimization, constructive interference,
massive multiuser multiple-input multiple-output downlink, one-
bit quantized precoding.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is regarded
as a promising, or perhaps even indispensable technology for
future generation wireless communication networks, providing
high spectral/energy efficiency and high reliability [1]. In a
massive multiuser MIMO (MU-MIMO) system, the base station
(BS) employs a large-scale (e.g., in the order of hundreds) an-
tenna array to serve a much smaller number of user equipments
(UEs) via spatial multiplexing. This multitude of antennas
offers a vast number of spatial degrees of freedom to each UE,
potentially leading to high data rates and some other favorable
properties such as robustness to channel fading [1], [2].

While dirty paper coding (DPC), in the noncausal presence
of perfect channel state information at the BS, achieves the
sum-rate capacity of the MU-MIMO downlink [3], simpler
linear precoding schemes such as maximum ratio transmission
(MRT) and (regularized) zero-forcing (ZF) have been shown
to be (asymptotically) near-optimal in the large system limit
[4]. However, the benefits of such easy-to-implement precoding
strategies under a massive MIMO setting come with a pro-
hibitively high hardware complexity and cost as well as an
extensively increased power consumption. This is primarily due
to the need for an ideal radio frequency (RF) chain, including
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highly linear power amplifiers and high-resolution digital-to-
analog converter (DAC), dedicated to each antenna element.
Thus, a more limited use of RF hardware components is of in-
terest for practical realizations of massive MU-MIMO systems,
but it requires in turn the precoding scheme to be properly
designed by taking the hardware limitations into account.

A wide variety of approaches have been proposed addressing
the hardware-limited multiuser precoding problem in a massive
MU-MIMO downlink, among which we refer to finite-precision
quantized precoding techniques where each antenna element is
equipped with finite-precision DACs. In particular, the use of
low-resolution DACs can hugely decrease the amount of power
consumption, simplifies the hardware design, and reduces the
associated cost. Within this line of work, there have been
some research towards revisiting conventional linear precoding
strategies while the effect of quantization distortion has been
taken into account for low-to-moderate resolution (up to 5
bits) DACs, commonly referred to as linear-quantized precoding
[5]–[8]. These linear precoders, however, mostly suffer from
an unfavorably high error floor in the moderate-to-high SNR
regime [8], and perform reasonably only in systems with
extremely large number of BS antennas. Recently, the case with
one-bit DACs has become an attractive research direction due
to its simplicity and the dramatic reduction it can provide in
circuit power consumption and hardware cost; see, e.g., [9]–
[12]. Most of the work in this direction considers a non-linear
precoding design based on a symbol-by-symbol approcah. The
superiority of these nonlinear quantized approaches over linear-
quantized precoding is demonstrated in [9].

The idea of designing the precoder in a per-symbol manner
has been studied in [13], and then elaborated in [14] and
[15] where the concept of constructive interference (CI) is
introduced. This type of precoding, which is also termed in
the literature as symbol-level precoding (SLP), is based on the
notion that a noise-free received signal can be decoded correctly
not necessarily when it is close enough to the intended symbol,
rather, as long as it lies within the correct decision region
even far away from the intended symbol. This has been the
underlying motivation in defining a variety of CI regions; see,
e.g., [14]–[17]. In designing a one-bit quantized precoder for
massive MU-MIMO downlink, one can utilize the CI concept to
achieve lower bit error rates (BER) for the UEs. This approach
has been used in [18] and [19] for PSK and QAM signaling.

In this paper, we propose a novel one-bit CI-based precoding
method for massive MU-MIMO downlink. Unlike [18] and
[19], we do not restrict ourselves to PSK or QAM signal-



ing, but consider a generic modulation scheme. The adopted
precoding design approach aims to maximize the minimum
(instantaneous) SNR among all the UEs while ensuring the
UEs’ symbols to be received within the correct CI region.
Due to the finite-alphabet domain of the design variable, the
CI constraints may result in an empty feasible set; therefore,
to avoid infeasibility, we first provide an unconstrained CI-
penalized reformulation of the original problem. The new
formulation is a binary quadratic programming, and thus, is
NP-hard. We transform the binary constraints into an equiv-
alent continuous-domain biconvex form. The resulting design
formulation, after recasting via the exact penalty method, is
reducible to a standard block coordinate ascent (BCA) problem
under certain conditions which will be shown to be met in our
design. This is different from [18] and [19] where the one-
bit constraints are dealt via simple convex relaxations. Note
also that in [20], a similar technique is used to treat the one-bit
constraints; however, our design objective and constraints differ
from those in [20], as will be explained later in the paper. Our
simulation results indicate an improved uncoded bit error rate
performance for the proposed method compared to the existing
one-bit precoding schemes. Remarkably, the BCA algorithm
used to solve the proposed design formulation converges (with
a reasonable accuracy) in a few tens of iteration cycles for
moderately-sized systems, which makes the proposed method
attractive for practical use.
Notations: We use bold-faced uppercase and lowercase letters
to represent matrices and vectors, respectively. For matrices and
vectors, ∥ · ∥ denotes, respectively, the Frobenius norm and the
ℓ2 norm. For vectors, ≼ and ≽ denote elementwise inequality.
Operators diag(·) and blkdiag(·) represent diagonal and block-
diagonal matrices. We use I, 1 and 0 to represent, respectively,
the identity matrix, the all-ones vector, and the all-zeros matrix
(or vector, depending on the context) of appropriate dimensions.
The operator ⊗ stands for the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a narrowband single-cell downlink MU-MIMO
wireless system where a BS, equipped with an array of nt

antennas, serves nr single-antenna UEs through the same time-
frequency resource block, where nt ≫ nr

1. We further assume
that each BS’s antenna is equipped with a pair of one-bit
DACs (where a single one-bit DAC simply operates as a one-
bit scalar quantizer) followed by an individual RF chain. The
BS aims to transmit nr independent streams of data symbols,
each intended for one UE. Let si denote the discrete-time
complex symbol intended for the ith UE. It is assumed that
si is drawn from a finite equiprobable constellation set with
unit average power for all i = 1, ..., nr. As shown in Fig. 1,
the UEs’ data symbols are spatially multiplexed at the BS
via a (non-linear) multiuser symbol-level precoder such that
the nt × 1 complex-valued precoded signal ū is directly and
instantaneously obtained every symbol period as the solution
to an optimization problem. Then, each complex element of

1The assumption nt ≫ nr rationalizes the use of one-bit DACs at the BS,
however, it is not strictly necessary for the subsequent derivations in this paper.
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Fig. 1. The considered system model: the output of the symbol-level precoder,
ū, undergoes one-bit quantization, yielding the quantized baseband signal ūq.

the precoder’s output is passed through a pair of one-bit scalar
quantizers, each operating independently on the real/imaginary
part of the input signal. The entire vector quantization operation
Q(·) can be described as

ūq , Q(ū) = sgn (Re{ū}) + j sgn (Im{ū}) , (1)

where ūq is the resulting signal vector after DACs, sgn(·)
represents the element-wise sign function, and j =

√
−1. Next,

the quantized baseband signal ūq is fed into a set of nt RF
chains, each dedicated to an antenna element, for up-conversion
to the carrier frequency. The up-converted signal is then sent
over uncorrelated quasi-static flat-fading channels towards the
UEs. Under the above described settings, the overall downlink
channel corresponding to the ith UE can be modeled as

ri =
√
ρhT

i ūq + wi, i = 1, ..., nr, (2)

where ri is the signal received by the ith UE, ρ = pmax/(2nt)
is a fixed gain ensuring a total transmission power of pmax (note
that ∥ūq∥2 = 2nt), hi denotes the complex-valued nt×1 vector
of the ith downlink channel coefficients and wi represents
the additive noise at the ith UE’s receiver front-end which is
modeled as a zero-mean complex Gaussian random variable
with variance σ2

i /2 per real dimension. At the receiver side, it is
assumed that each UE employs an infinite-precision analog-to-
digital converter (ADC) and the optimal single-user maximum-
likelihood (ML) criterion is used for symbol detection.

For the sake of convenience, we define the following equiv-
alent real-valued notations: u , [Re(ū)T , Im(ū)T ]T , uq ,
[Re(ūq)

T , Im(ūq)
T ]T , and for all i = 1, ..., nr, we denote

si , [Re(si), Im(si)]
T and

Hi ,
[
Re(hT

i ) − Im(hT
i )

Im(hT
i ) Re(hT

i )

]
.

Using the above real-valued notations, the real-valued quantized
signal vector can simply be expressed as

uq = sgn(u). (3)
When processing the UE’s intended data symbols via a CI-

based symbol-level precoder, each noise-free received signal√
ρHiuq, i=1, ..., nr, is allowed to lie within a specific region

corresponding to the symbol vector si which is referred to
as CI region. In this work, we adopt the so-called distance-
preserving CI regions [17], as illustrated in Fig. 2, in which any
two points belonging to two distinct CI regions are distanced
by at least the distance between the corresponding constellation
points. Thereby, we aim to design a CI precoder maximizing the
minimum instantaneous (per-symbol) quality-of-service (QoS)
level among the UEs, while ensuring the CI constraint for every
UE. The precoded signal u is taken from a finite-alphabet set
dictated by the set of one-bit DACs so that u= sgn(u) =uq,
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Fig. 2. The distance-preserving CI regions (depicted as green areas) associated
with the optimized 8-ary constellation.

thereby the quantization distortion can be avoided. Denoting
the distance-preserving CI region associated with symbol si by
Di, we can obtain the optimal (one-bit constrained) precoded
signal u by solving the following optimization problem:

maximize
u∈Q2nt

min
i

∥Hiu∥2/σ2
i

s.t.
√
ρHiu ∈ Di, i = 1, ..., nr,

(4)

where Q,{−1,+1}, implying the use of one-bit quantizers. It
should be noted that in formulating (4), we implicitly assume
that the downlink channels {H1,H2, ...,Hnr} are perfectly and
instantaneously known to the BS.
Remark 1: Unlike conventional linear precoding schemes, the
nonlinear-precoded signal u may not be explicitly decomposed
as a linear combination of distinct UEs’ signatures (i.e., pre-
coding vectors). Hence, signal-to-interference-plus-noise ratio
(SINR) could no longer be an applicable measure. Instead,
we consider the UEs’ received SNRs

{
∥Hiu∥2/σ2

i

}nr

i=1
as the

measure of QoS, as it is typical in the context of CI precoding;
see, e.g., [14]–[16], [21].

The CI constraints of problem (4), as it has been shown in
[22], can be written in an explicit compact form as

√
ρHu =

Σs+A−1Wd, where the following definitions are used: H ,
[HT

1 ,H
T
2 , ...,H

T
nr
]T ; A , blkdiag(A1,A2, ...,Anr

); Ai =
[ai,1,ai,2]

T is a 2×2 real-valued matrix containing the normal
vectors of the CI boundaries2; Σ , diag(σ1, σ2, ..., σnr

)⊗ I2;
s , [s1, s2, ..., snr

]T ; and W denotes a diagonal weighting
matrix with a diagonal element being one if the corresponding
symbol is an outer constellation point3 and zero otherwise.
Furthermore, the 2nr × 1 non-negative slack vector variable
d , [d1,d2, ...,dnr

]T , where di = [di,1, di,2]
T , collects the

orthogonal distances of the received symbol
√
ρHiu to its

corresponding CI boundaries for all i = 1, ..., nr. An illustration
of the CI regions and their characterizing parameters/variables
is shown in Fig. 2 for the optimized 8-ary constellation [23].
We then proceed by reformulating (4) into an equivalent form,
provided in [21], as

2The sub-matrices {A1, ...,Anr} can always be formed as full-rank square
(hence invertible) matrices, so is A.

3Any constellation point residing on the convex hull of the constellation set
is referred to as outer constellation point.

maximize
u∈Q2nt ,d≽0

min(d) s.t.
√
ρHu = Σs+A−1Wd, (5)

where min(·) denotes elementwise minimum. We further intro-
duce a slack variable γ which enables us to recast problem (5),
in an easier-to-handle form, as

maximize
u∈Q2nt ,d≽γ1,γ≥0

γ s.t.
√
ρHu = Σs+A−1Wd. (6)

Two difficulties arise with problem (6) as described below:
i. The optimization problem (6) could have an empty feasible

region since u has to be chosen from the finite set Q2nt .
In fact, there could be situations where one (or more) CI
constraint(s) cannot be satisfied for any u ∈ Q2nt .

ii. Due to the finite-alphabet variable u, problem (6) is a
combinatorial optimization, and hence, is NP-hard. To be
more specific, in order to find the exact solution to (6), one
needs to solve a linear programming (LP) for every single
vector u ∈ Q2nt and then pick the best solution for u
which results in the largest value of γ. The finite set Q2nt

has a cardinality of 22nt . Keeping in mind that nt refers to
the number of elements of a large-scale antenna array, such
an approach requires solving an exponentially-growing
number of LPs, for each UEs’ symbol combination (i.e.,
for all possible realizations of vector s), which might be
quite impractical.

In order to address the above challenges, we need to take a few
steps to modify the original problem, as will be explained in
the next section.

III. PROPOSED ONE-BIT QUANTIZED CI PRECODING

We start off by addressing the first challenge highlighted in
the previous section. To avoid infeasibility, we consider a new
(not necessarily equivalent) design formulation by introducing
soft CI constraints added as a penalizing term to the objective
function, which results in the following problem:

maximize
u∈Q2nt ,d≽γ1,γ≥0

γ −
∥∥√ρHu−Σs−A−1Wd

∥∥2 . (7)

By applying the change of variable d → t+ γ1, the optimiza-
tion problem in (7) can equivalently be rewritten as

maximize
u∈Q2nt ,t≽0,γ≥0

γ −
∥∥√ρHu−Σs−A−1W(t+ γ1)

∥∥2 .
(8)

It is worth noting that the design in [20] attempts to minimize
the maximum (among the UEs) distance between a received
signal and its intended constellation point up to a scaling factor,
while our design formulation (8) aims to minimize the average
distances (due to the ℓ2 norm) from the boundaries of the CI
regions. In fact, the scaling factor in [20] can be viewed as a
special case of CI regions with strict phase constraints.

Given u and t, the maximization over γ is now amenable to
a closed-form provably positive solution given by

γ∗ =
1

2η
+

(√
ρHu−Σs−A−1Wt

)T
A−1W1

η
, (9)

where η , 1TWA−TA−1W1. By plugging γ∗ into (8) and
taking some straightforward algebraic steps, the design problem
of interest boils down to a binary linearly-constrained quadratic
programming (LCQP) as



maximize
u∈Q2nt ,t≽0

√
ρqTu−pT t−

∥∥√ρΘHu−ΘA−1Wt− z
∥∥2 ,
(10)

where q , (1/η)HTA−1W1, p , (1/η)WA−TA−1W1,
Θ , I − (1/η)(1TWA−T ⊗A−1W1), and z , ΘΣs +
(A−1W1)/(2η) are all non-variables.
Method 1 – Convex Relaxation: In order to tackle the second
difficulty, one simple approach is to solve a convex relaxation of
(10) obtained by replacing the strict equality constraints on the
elements of u (imposed by Q) with appropriate box constraints.
This relaxed problem can be expressed as a standard LCQP, i.e.,

P1: maximize
−1≼u≼1,t≽0

√
ρqTu−pT t−

∥∥√ρΘHu−ΘA−1Wt−z
∥∥2.

(11)
It is worth noting that solving P1 results in an upper-bound
for the objective function of (10). Our numerical experiments
show that a relatively noticeable number of the elementwise box
constraints −1 ≤ ul ≤ 1, for l = 1, ..., 2nt, are not active at
the optimum of (11). These observations suggest the possibility
of further improvement of the method. In the sequel, the goal
is to achieve a more accurate solution, while considering P1
as a benchmark for comparison purposes.
Method 2–Equivalent Biconvex Formulation: We first restate
from [24] an equivalent implication of the binary constraint
u ∈ Q2nt , which is given in a biconvex form.

Lemma 1. Let u and v be two real vectors of equal length 2nt.
Then, provided that −1 ≼ u ≼ 1 and ∥v∥2 ≤ 2nt, the condi-
tion uTv = 2nt implies that u = v and u ∈ {−1,+1}2nt .

The biconvex implication of the binary constraint on u, pro-
vided by Lemma 1, allows us to cast an equivalent continuous-
domain reformulation of the original binary LCQP (10), which
can be expressed as

maximize
−1≼u≼1,t≽0,v

√
ρqTu−pT t−

∥∥√ρΘHu−ΘA−1Wt−z
∥∥2,

s.t. uTv = 2nt, vTv ≤ 2nt,
(12)

where uTv=2nt is referred to as the equilibrium constraint.
The reformulation (12) is not yet a convex problem; however,
there are well-known efficient approaches to solve (12) such
as the exact penalty method (EPM) or the alternating direction
method of multipliers (ADMM). Here, we adopt an EPM-based
approach due to its simplicity. The accuracy and convergence
characteristics of the EPM are studied in, e.g., [25].

In the EPM, the equilibrium constraint is enforced by adding
a penalizing term to the objective function. The added penalty
function appears with a positive multiplier λ which has to be
monotonically increased until a certain threshold is reached.
Denoting the objective function of (12) by f(u, t), we write

P2 : maximize
−1≼u≼1,t≽0,v

f(u, t) + λ(uTv − 2nt),

s.t. vTv ≤ 2nt,
(13)

which is our final formulation for the one-bit quantized CI
precoding problem of interest. Even though, generally speaking,
problem P2 is not equivalent to (12), it can be verified that
if f(u, t) is an L-Lipschitz continuous concave function on
−1≼u≼1, problem P2 has the same local and global maxima

as those of (12) for λ≥2L, where L is the Lipschitz constant
of f(u, t) with respect to u; see [24, Th. 1]. The following
lemma indicates that the Lipschitz continuity condition holds
for f(u, t) within the domain −1 ≼ u ≼ 1.

Lemma 2. Given t, function f(u, t) is L-Lipschitz continuous
on −1≼u≼1 with Lipschitz constant

L =
√
ρ ∥q+ 2HTΘT (ΘA−1Wt+ z)∥+ 2ρ

√
2nt ∥ΘH∥2.

(14)

Sketch of the proof. Given t, function f(u, t) is composed of
affine and ℓ-2 norm terms in u and hence is continuously
differentiable everywhere. Then, plugging u1 ∈ R2nt×1 and
u2 ∈ R2nt×1 with −1 ≼ u1,u2 ≼ 1 as two distinct inputs
into f(u, t), we obtain an upper bound on |f(u1, t)−f(u2, t)|
in terms of ∥u1−u2∥. This leads us to an upper bound on the
absolute value of the derivative of f(u, t), i.e., the Lipschitz
constant, implying the Lipschitz continuity property for f(u, t).
The details are omitted due to space limitation, but will appear
in an extended version of this paper.

The objective function of P2, i.e., f(u, t)+λ(uTv−2nt) is a
biconvex quadratic function in u and v, i.e., fixing either u or v
results in a concave function in the other variable. From Lemma
2, it then follows that finding at least a locally optimal solution
to problem (12) is equivalent to solving P2 via, e.g., a standard
block coordinate ascent (BCA) algorithm, where a coordinate
block refers to either of the vector variables t, u or v. More
specifically, the objective function f(u, t)+λ(uTv−2nt) can
be maximized over t, u, and v by solving the respective sub-
problems in an alternating manner. The penalty multiplier λ can
also be updated in every K outer iterations until the threshold
2L is achieved. Based on this approach, the BCA algorithm
solving P2 runs in the kth iteration as follows:
First step – Updating t: Given u, maximizing f(u, t) over
t is equivalent to a standard LCQP. Hence, the value of t is
updated as the solution to the following maximization problem:

t(k) = argmax
t≽0

−pT t−
∥∥∥√ρΘHu(k−1)−ΘA−1Wt−z

∥∥∥2 .
(15)

Second step – Updating u: For given t and v, the value of
u in the kth iteration can be updated by solving the following
box-constrained QP:
u(k) = argmax

−1≼u≼1
f
(
u, t(k)

)
+ λ

(
uTv(k−1) − 2nt

)
. (16)

Third step – Updating v: The kth update of v can be obtained
as the optimal solution to the following problem:

v(k) = argmax
∥v∥2≤2nt

vTu(k). (17)

This norm-constrained inner product maximization has a simple
closed-form solution which is given by

v(k) =
√
2nt u

(k)/∥u(k)∥. (18)

Forth step – Updating λ: In every K iterations, we update
the penalty parameter λ as

λ(k) = min{2L, λ(k−1) µ}, (19)

where µ > 1 is an arbitrary constant.



Remark 2. No closed-form solution is known in general for
the inner sub-problems (15) and (16). Nonetheless, they both
can be solved using standard algorithms such as (accelerated)
projected gradient methods [26], or quasi-Newton methods,
e.g., L-BFGS-B [27]. In particular, for a Lipschitz smooth
(not strongly) concave objective function, all these algorithms
converge superlinearly at a rate of O(1/k2).

IV. SIMULATION RESULTS

We consider a downlink massive MU-MIMO with multiuser
precoding and subsequent one-bit quantization at the BS, where
independent QPSK symbols are intended for the UEs. At
the UEs, identical noise distributions wi ∼ CN (0, σ2) with
σ2 = 1 are assumed for all i = 1, ..., nr. We further assume
a Rayleigh block fading channel, where i.i.d. vectors {hi}nr

i=1

are randomly generated for each fading block following the
standard circularly symmetric complex Gaussian distribution,
i.e., hi∼CN (0, I). As for the EPM-based formulation, we set
µ = 1.5 and initialize the penalty parameter as λ0 = 0.4, where
the values are chosen empirically. All the presented results
have been averaged over 200 fading block realizations, each
of 200 symbols. Throughout this section, the one-bit quantized
precoding schemes of interest are referred to as:
- MSM: Maximum safety margin [19]
- SQUID: Squared-infinity norm Douglas-Rachford splitting [9]
- QSLP-CRE: Quantized SLP via convex relaxation (P1)
- QSLP-BIC: Quantized SLP via biconvex formulation (P2)
The inner sub-problems within the outer cycle of QSLP-BIC are
solved via the accelerated projected gradient ascent algorithm
[26]. The results are also compared to those obtained from
the conventional matched filter (MF), ZF, and Wiener filter
(WF) precoding techniques [28] with one-bit quantized outputs.
We further consider the unquantized WF precoding as the
benchmark for the infinite-resolution case.

We compare in Fig. 3 and Fig. 4 the BER performances
achieved by the one-bit quantized precoding schemes of interest
versus transmit SNR, i.e., pmax/σ

2 for two practical systems
with (nt, nr) = (16, 4) and (nt, nr) = (64, 8). It can be
seen that the proposed method, QSLP-BIC, outperforms both
the MSM and the SQUID one-bit precoders. The gain is
around 1 dB in the applicable range of SNR (i.e., 5-10 dB)
for an uncoded QPSK signaling. Furthermore, the QSLP-BIC
approach performs superior to our naive precoding formulation
QSLP-CRE, which exploits CI in the design but simply treats
the one-bit constraints via convex relaxations. From Fig. 3, we
can further observe that the one-bit precoders MSM, SQUID
and QSLP-CRE all experience an error floor at high SNRs
(i.e., above 15 dB). This indicates that these one-bit precoders
require more degree of freedoms (either more transmit antennas
or higher resolution bits) to perform well for the multiuser
system with (nt, nr) = (16, 4).

Next, we numerically evaluate the complexity of the QSLP-
BIC method in Fig. 5, where the numbers of inner and outer
iterations required for a normalized squared error of 10−4 are
separately plotted. It can be verified from the simulation results
that all the iteration numbers grow linearly with transmit power

Fig. 3. BER versus transmit SNR over a massive MU-MIMO downlink system
with (nt, nr) = (16, 4).

Fig. 4. BER versus transmit SNR over a massive MU-MIMO downlink system
with (nt, nr) = (64, 8).

for large values of pmax, while the number of inner iterations
to solve the sub-problem on t shows a relatively faster growth
with pmax. However, we remark that the update iterations on t
are of dimension 2nr, whereas the dominant complexity order
comes from the even larger dimension 2nt. For this reason, in
our evaluations, only those 2nt-dimensional iterations updating
u are accounted for the complexity cost of QSLP-BIC.

Finally, to evaluate the convergence behavior of QSLP-BIC
as a function of system parameters, i.e., nt and nr, we report in
Table I the average number of required iterations for different
values of pmax/σ

2 within the effective SNR range associated
with QPSK signaling. With reference to Table I, the proposed
QSLP-BIC method offers a favorably fast converges speed, in
the order of tens of iterations, even for large system parameters.
For instance, at pmax/σ

2 = 3.4 ≈ 5.4 dB, the QSLP-BIC
algorithm needs only ∼ 48 and ∼ 56 iterations on average to
achieve those uncoded BER performances as shown in Fig. 3
and Fig. 4. Table I, on the other hand, indicates that the
complexity of QSLP-BIC (in terms of the number of iterations
till convergence) scales linearly with nt, which is an attractive
feature for implementation purposes.



Fig. 5. The QSLP-BIC method: average number of outer and inner iterations
to reach a squared error of 10−4 as a function of transmit SNR in linear scale.

TABLE I
AVERAGE NUMBER OF ITERATIONS OF DIMENSION 2nt TILL

CONVERGENCE OF THE QSLP-BIC ALGORITHM.

pmax/σ
2 (nt, nr)

(8, 2) (16, 4) (64, 8) (128, 16)

3.4 ≈ 5.4 dB 35.3 47.3 55.7 64.9

9.2 ≈ 9.6 dB 48.8 65.8 75.7 87.2

V. CONCLUSIONS

We proposed a quantized symbol-level precoding method
for massive MU-MIMO downlink system equipped with one-
bit DACs, using the idea of constructive interference (CI).
With the objective of maximizing the minimum instantaneous
SNR among all the UEs with CI constraints, the design
problem of interest is a binary (due to one-bit constraints)
linearly-constrained quadratic programming where its solution
requires a high computational complexity. Therefore, we used
an equivalent implication of the binary one-bit constraints
given in a continuous-domain biconvex form. We then dealt
with the biconvex constraints via applying the exact penalty
technique. The resulting design reformulation was reduced to
a standard block coordinate ascent problem by proving the
Lipschitz continuity property for the objective function. Com-
paring our proposed symbol-level approach with well-known
one-bit precoding schemes showed a superior performance in
terms of uncoded BER. Numerical analysis on the complexity
indicated that the our proposed method converges in a few tens
of iterations in a practical massive MU-MIMO system.
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