
(Universal) Unconditional Verifiability in E-Voting without Trusted Parties

Vincenzo Iovino∗, Alfredo Rial†, Peter B. Rønne†, Peter Y. A. Ryan†

∗University of Salerno, Italy
Email: vinciovino@gmail.com

†SnT, University of Luxembourg
Email: {alfredo.rial, peter.roenne, peter.ryan}@uni.lu

Abstract—In e-voting protocols, cryptographers must balance
usability with strong security guarantees, such as privacy and
verifiability. In traditional e-voting protocols, privacy is often
provided by a trusted authority that learns the votes and
computes the tally. Some protocols replace the trusted authority
by a set of authorities, and privacy is guaranteed if less than
a threshold number of authorities are corrupt. For verifiability,
stronger security is demanded. Typically, corrupt authorities that
try to fake the tally result must always be detected.

To provide verifiability, many e-voting protocols use Non-
Interactive Zero-Knowledge proofs (NIZK). Thanks to their non-
interactive nature, NIZK allow anybody, including third parties
that do not participate in the protocol, to verify the correctness
of the tally. Therefore, NIZK can be used to obtain universal
verifiability. Additionally, NIZK also improve usability because
they allow voters to cast a vote non-interactively.

The disadvantage of NIZK is that their security is based on
setup assumptions such as the common reference string (CRS) or
the random oracle model. The former requires a trusted party to
generate a CRS. The latter, though a popular model for secure
protocol design, has been shown to be unsound.

We address the design of e-voting protocols that provide
verifiability without any trust assumptions. We show that Non-
Interactive Witness-Indistinguishable proofs can be used for this
purpose. Our e-voting protocols are private under the Decision
Linear assumption, while perfect individual verifiability, i.e. a
fake tally is detected with probability 1, holds unconditionally.
Perfect universal verifiability requires a trusted public bulletin
board. We remark that our definition of verifiability does not
consider eligibility or end-to-end verifiability. First, we present a
general construction that supports any tally function. Then, we
show how to efficiently instantiate it for specific types of elections
through Groth-Sahai proofs.

I. INTRODUCTION

The parties participating in a standard e-voting protocol are
multiple voters and one authority. First, the authority computes
a key pair, keeps the secret key and publishes the public key. A
voter computes a ballot on input the public key of the authority
and her intended vote and sends the ballot to a public bulletin
board (PBB), which records it in an entry associated with that
voter. In case of abstention, a special symbol ⊥ is recorded
on the PBB. The authority uses its secret key to compute the
tally on input all the ballots on the PBB, which could possibly

be ⊥ in case of abstention. Finally, the correctness of the tally
can be checked by running a verification algorithm.1

E-voting protocols must provide two security properties:
privacy and verifiability. Privacy should protect the secrecy of
the votes. Verifiability should prevent a corrupt authority from
faking the tally.

Privacy protection assumes the existence of a trusted au-
thority in many e-voting systems [1]–[8]. As for schemes that
distribute the trust among several authorities, privacy protection
still requires that not all of the authorities are corrupt. However,
verifiability (also called integrity) should be ensured even if
the authorities are corrupt.

Many e-voting systems make use of Non-Interactive Zero-
Knowledge Proofs (NIZK) [9]–[13] to provide verifiability.
NIZK must provide two properties: soundness and zero-
knowledge (ZK). Soundness prevents a corrupt prover from
proving a false statement, i.e., a statement for which no
witness exists. ZK ensures that the verifier does not learn
any information about the witness.

ZK is defined following the simulation paradigm, i.e., it
requires the existence of a simulator that computes a valid
proof without knowledge of the witness. However, if such a
simulator existed, soundness would not hold. This apparent
contradiction is solved by resorting to trust assumptions like
the Common Reference String (CRS) model [9]. In the CRS
model, a trusted party generates a CRS that is used by both
provers and verifiers. The simulator is given the additional
power of computing the CRS. Thanks to that, the simulator
knows trapdoor information that allows it to simulate proofs
for all statements.

For some applications of NIZK, the CRS model is not
problematic. For instance, in IND-CCA public key encryption
schemes [13]–[15], ZK does not need to hold for the receiver
of ciphertexts because the receiver must be able to decrypt
anyway. Therefore, the CRS is computed by the receiver, while
NIZK are computed by the sender. However, in e-voting, the
authority cannot compute the CRS because it must compute
proofs that show the correctness of the tally.

1In this description we skipped some details (e.g., eligibility and authenti-
cation) that are not relevant to our setting. See below for more discussion.

1

An alternative to the CRS model is the Random Oracle (RO)
model [16]. The RO model assumes that a perfect random
function is available to all the parties. NIZK that use the RO
model are constructed following the Fiat-Shamir heuristic [17].
To prove that NIZK constructed following this heuristic are
ZK, we need programmability of the RO, i.e., the ability of
the simulator to change the input/output of the RO.2

To compute a proof, in practice, the prover replaces the RO
by some “secure” hash function. Therefore, this hash function
must be chosen honestly for ZK to hold. Consequently, all
the parties must trust the implementation of a concrete hash
function (e.g., SHA-3 [18]). We note that a hash function could
have been designed in a malicious way (e.g., “programmed” like
in the simulation) to allow the computation of a proof for a false
statement. Moreover, even when programmability is not needed,
the RO methodology has been shown to be unsound [19].
Further problems are known regarding the programmability
of the RO in the context of NIZK [20]–[22]. The current
techniques to avoid the need of programmability resort to the
CRS model [23]–[26]. This motivates our main question: is it
possible to design a verifiable e-voting scheme without trust
assumptions (like CRS and RO)?

Lipmaa [27] asks whether Non-Interactive Witness Indis-
tinguishable Proofs (NIWI) can be used to replace NIZK:
“Moreover, we think that the CRS model is almost realistic,
but it would still be desirable to do without it. The implication
of non-interactive witness-indistinguishable protocols to the
e-voting is something that must still be studied.” NIWI can be
constructed without using any trust assumptions [28]–[31].3 Re-
cently, Bellare, Fuchsbauer and Scafuro [33] started the study of
security of NIZKs in face of public parameter subversion. They
showed the impossibility of attaining subversion soundness
while retaining ZK, thus justifying our need of sidestepping
NIZKs. Subsequent works show that there is an increasing
interest in studying security under parameter subversion [34],
[35].

NIWI is a non-interactive proof/argument system that pro-
vides weaker security guarantees in comparison to NIZK. While
NIZK ensure that a proof does not reveal any information about
the witness, NIWI only guarantee that, for any two witnesses w1

and w2 for the same statement, a proof computed on input w1

is computationally indistinguishable from a proof computed on
input w2. Note that this notion only makes sense for languages
with multiple witnesses for each statement, which is not always
the case.

To our knowledge, it was not known how to use NIWI
to construct an e-voting scheme (eVote, in short) that is
both private and verifiable. Usually, it is very difficult to use

2We remark that it is not known how to obtain efficient NIZK proofs in
the RO model. In fact, NIZK systems that use the Fiat-Shamir heuristic only
satisfy soundness against polynomial-time provers, and thus are not statistically
sound.

3Note that, in the literature, there are both NIWI in the CRS model, like
the ones of Groth and Sahai [32], and one-message NIWI without CRS (see
the citations above). Henceforth, unless specified otherwise, we denote by
NIWI the (one-message) variant without CRS, and in particular we refer to
the NIWI for CircuitSat of Groth et al. [28].

NIWI because of its weaker security guarantee. Nonetheless,
inspired by a recent result on functional encryption [36], [37]
of Badrinarayanan, Goyal, Jain and Sahai [38], surprisingly we
are able to use NIWI to answer our main question affirmatively.

A. Our Results

First, we define the correctness, privacy and verifiability
properties for an eVote. Then we propose a private and
verifiable eVote that supports any tally function (representable
as a polynomial-sized Boolean circuit). Our eVote uses as
building blocks a NIWI proof system, a public-key encryption
scheme with perfect correctness and unique secret key, and a
perfectly-binding commitment scheme. It can be instantiated
by using just bilinear groups [39], [40]. For instance, we can
instantiate our construction with the NIWI of Groth, Ostrovsky
and Sahai [28] and the Decision Linear (DLIN) encryption
scheme of Boneh et al. [41].

Our construction provides universal verifiability, i.e. parties
that do not participate in the elections can verify the correctness
of the tally, under the only assumption of a trusted public
bulletin board (PBB). Without a trusted PBB, universal verifia-
bility degrades to an individual verifiability notion. Therefore,
our construction achieves perfect individual verifiability, i.e.,
individual verifiability is achieved without trusted parties and
without any assumption, while universal verifiability needs a
trusted PBB. Our definition of verifiability does not consider
eligibility. In Section II-D, we discuss how eligibility can be
attained. Our definition of verifiability does not consider end-
to-end verifiability. Concretely, it does not consider the case in
which an adversarial voting device can modify the vote of an
honest voter. The DLIN assumption is only needed to prove
that our eVote fulfills the privacy property. This assumption
is well-studied and falsifiable [42]. This is a key point of our
results because otherwise one could just claim that an eVote
in the RO model is secure when instantiated with any hash
function.

Our eVote supports any tally function representable as a
polynomial-sized Boolean circuit. The drawback is that the
computation has to be expressed as a Boolean circuit as well
and, though all algorithms run in probabilistic polynomial
time, the overall performances may be prohibitive in practice.
Nevertheless, in Appendix E, we provide an efficient instanti-
ation of our eVote for the concrete case of the sum function
over a binary domain (i.e., a referendum). This instantiation
uses Groth-Sahai proofs [32], [43], whose security can also be
proven under the DLIN assumption. We provide an efficiency
analysis to attest the practicality of our instantiation.

In Section V, we outline how to adapt our construction
for general functions to a model with multiple authorities.
In this model, the tally evaluation algorithm is run by a
set of authorities and the privacy property must hold if
at least one authority is honest. (As this is not the main
focus of our work, we do not present formal definitions and
details for its construction.) An important advantage of our
construction is that no interaction among the authorities is
required. In this respect, our techniques completely diverge

from previous approaches to the problem and may be of
independent interest. We stress that the multi-string model
of Groth and Ostrovsky [44], though conceptually appealing
in this scenario, fails to provide a solution.

In this work, we use cryptographic primitives to demon-
strate the achievability of perfect verifiable e-voting systems.
However, we are not concerned about usability and “human-
friendly” verifiability, as dealt with in [45]–[47]. Moreover,
we only consider traditional e-voting systems and hence we
neglect other approaches [48]–[53].
Organization. In Section II, we define an eVote and its
verifiability and privacy properties. In Section III we present
the building blocks we use in our construction. In Section IV,
we present our construction for an eVote. In Section V, we
discuss a construction with multiple authorities. In Section VI
we discuss related work. In Section VII we discuss future
directions in cryptography and e-voting that our work opens
up.

II. DEFINITIONS

A. Notation

A negligible function negl(k) is a function that is smaller
than the inverse of any polynomial in k (from a certain point
and on). We denote by [n] the set of numbers {1, . . . , n}. If
S is a finite set, we denote by a← S the process of setting a
equal to a uniformly chosen element of S. With a slight abuse
of notation, we assume the existence of a special symbol ⊥
that does not belong to {0, 1}?.

If A is an algorithm, then A(x1, x2, . . .) denotes the prob-
ability distribution of the output of A when A is run on
input (x1, x2, . . .) and randomly chosen coin tosses. Instead,
A(x1, x2, . . . ; r) denotes the output of A when run on input
(x1, x2, . . .) and (sufficiently long) coin tosses r. All algorithms,
unless explicitly noted, are probabilistic polynomial time
(PPT) and all adversaries are modeled by non-uniform PPT
algorithms.

If A is a PPT algorithm, we say that y ∈ A(x) iff there
exists a random value r such that y = A(x; r); in that case,
we say that y is in the range of A(x). If E is an event in a
probability space, Ē denotes its complement.

The following definition is used in the definition of verifi-
ability. Essentially, it states that a tally y is compatible with
votes z1, . . . , zk if the latter values are in its pre-image.

Definition 2.1: Given a function F (x1, . . . , xn) : An → B,
we say that a value y ∈ B is compatible with z1, . . . , zk ∈ A
at indices i1, . . . , ik ∈ [N] if y is in the range of the restriction
F|Cz1,...,zk,i1,...,ik

of F to Cz1,...,zk,i1,...,ik
4
= {(x1, . . . , xn)|∀j

∈ [k], xij = zj}.

B. E-Voting Schemes

An eVote is parameterized by the tuple (N,M,Σ, F). The
natural number N > 0 is the number of voters. The set M is
the domain of valid votes. The set Σ is the range of possible
results. The function F : (M∪ {⊥})N → Σ ∪ {⊥} is the
tally function. We allow the tally function to take as input
the special symbol ⊥, which denotes either an abstention, an

invalid ballot or a blank vote4, and to output ⊥ to indicate an
error. We require that the tally function outputs an error on
input a sequence of strings iff all the strings are equal to ⊥.
Formally, the tally function is defined as follows.

Definition 2.2: [Tally function] A function F is a tally
function if there exists a natural number N > 1, and sets
M,Σ ⊂ {0, 1}? such that the domain of F is (M∪{⊥})N , the
range is Σ∪{⊥} and for all strings m1, . . . ,mN ∈M∪{⊥},
it holds that F (m1, . . . ,mN) = ⊥ iff m1 = ⊥, . . . ,mN = ⊥.

We use a simple e-voting model with a single authority. In
Section V, we outline how to adapt our construction to a model
with multiple authorities.

Definition 2.3: [E-voting Scheme] A (N,M,Σ, F)-e-voting
scheme EVOTE for number of voters N > 1, domain of
valid votes M, range of possible results Σ and tally function
F : (M∪ {⊥})N → Σ ∪ {⊥} is a tuple

EVOTE
4
= (Setup,Cast,VerifyBallot,EvalTally,VerifyTally)

of 5 PPT algorithms, where VerifyBallot and VerifyTally are
deterministic, that fulfill the following syntax:

1) Setup(1λ): on input the security parameter in unary, it
outputs the public key Pk and the secret key Sk.

2) Cast(Pk, j, v): on input the public key Pk, the voter
identifier j ∈ [N], and a vote v ∈M, it outputs a ballot
Blt.

3) VerifyBallot(Pk, j,Blt): on input the public key Pk, the
voter identifier j ∈ [N] and a ballot Blt, it outputs a
value in {OK,⊥}.

4) EvalTally(Pk,Sk,Blt1, . . . ,BltN): on input the public
key Pk, the secret key Sk, and N strings that are either
ballots or the special symbol ⊥, it outputs the tally
y ∈ Σ ∪ {⊥} and a proof γ of tally correctness.

5) VerifyTally(Pk,Blt1, . . . ,BltN , y, γ): on input the public
key Pk, N strings that are either ballots or the special
symbol ⊥, a tally y ∈ {0, 1}? ∪ {⊥} and a proof γ of
tally correctness, it outputs a value in {OK,⊥}.

The voting ceremony is as follows.
• Setup phase. An authority (also called voting authority

or election authority) uses algorithm Setup to compute a
public key Pk and a secret key Sk.

• Voting phase. Each of the N voters runs an algorithm
Cast on input the voter identifier j ∈ [N], the public key
Pk and a vote v ∈M to compute a ballot Blt. The voter
sends Blt to an append-only public bulletin board (PBB).

• Tallying phase. The well-formedness of each ballot Blt
published in the PBB can be publicly verified by means
of an algorithm VerifyBallot. If the ballot is invalid, a
new row in which the ballot is replaced by ⊥ is appended
to the PBB. Later, only the new row is used. If a voter
did not cast a vote, ⊥ is appended to the PBB.
The authority runs algorithm EvalTally on input the public
key, the secret key, and N strings that represent either
ballots or ⊥ symbols appended to the PBB. EvalTally

4We note that our tally function can be made more general by assigning
different symbols to an abstention, to an invalid ballot and to a blank vote.

outputs the tally, i.e., the result of the election, and a
proof of tally correctness. The tally equals the special
symbol ⊥ to indicate an error.

• Verification phase. Algorithm VerifyTally takes as input
the public key, a tuple of N strings that represent either
ballots or the special symbol ⊥, the tally and the proof of
tally correctness. VerifyTally outputs a value in {OK,⊥}.
Each participant, not necessarily a voter, can verify the
correctness of the result of the election as follows. First,
verify whether the ballots cast by the voters are valid using
the VerifyBallot algorithm. Check whether the authority
replaced with ⊥ only the invalid ballots. Assign ⊥ to
any voter who did not cast her vote. After that, run
the VerifyTally algorithm on input the public key, the N
strings that represent either ballots or the special symbol
⊥, the tally and the proof of tally correctness.

An eVote must satisfy the following correctness, verifiability,
and privacy properties.

C. Definition of Correctness

Traditionally, the correctness property guarantees both (1)
that the ballot verification algorithm accepts the ballots com-
puted by the cast algorithm, and (2) that the tally verification
algorithm accepts the tally and the proof computed by the
tally evaluation algorithm. In the latter, the ballots taken as
input by the tally evaluation algorithm are computed by the
cast algorithm. Therefore, it is not guaranteed that the tally
verification algorithm accepts the output of the tally evaluation
algorithm when the ballots are not computed by the cast
algorithm.

Consider a scheme where the ballot verification algorithm
accepts any ballot. It would be possible to make such a scheme
verifiable by just changing the tally verification algorithm so
that it accepts y = ⊥ only when no ballot passes the ballot
verification algorithm. As can be seen, condition (1) in the
definition of verifiability (cf. Def. 2.5) is fulfilled because the
“if part” of the condition never holds. However, intuitively, such
a scheme is incorrect. Namely, if an honest authority that runs
the tally evaluation algorithm and gets y = ⊥ (because some
ballots were ill-formed), the tally verification algorithm should
accept that result.

To address this issue, we add condition (2) to the definition
of correctness (cf. Def. 2.4 in Fig. 1). This condition states
that the tally verification algorithm must accept the output of
the tally evaluation algorithm when run on input ballots that
are accepted by the ballot verification algorithm (as opposed to
ballots computed by the cast algorithm). We point out that in
some works on definitional foundations (e.g., Bernhard et al.
[54]) this issue has been overlooked. The verifiable eVote we
design accepts y = ⊥ only when no ballot passes the ballot
verification test but, in order to fulfill this stronger correctness
property, has proofs of well-formedness in the ballots.

D. Definition of Verifiability

In our definition of verifiability (cf. Def. 2.5 in Fig. 2), we
require two conditions to hold. The first condition states that,

if each ballot and the proof of correctness of the tally issued
by the authority are verified successfully by the respective
algorithms, then each ballot Ci (possibly computed on input a
maliciously generated public key) must be associated with a
unique message mi ∈M∪ {⊥}, and the result y claimed by
the authority equals F (m1, . . . ,mn).

The second one requires that, even when the adversary
generates the public key, if honest voters cast a ballot that is
accepted by the ballot verification algorithm, then the ballot has
to be “counted”. (This condition lies in some sense between
correctness and verifiability as it states a requirement about
honest voters.) More concretely, consider that some ballots
are computed by honest voters and are accepted by the ballot
verification algorithm. (These ballots could be ill-formed if they
are computed on input a public key generated by the adversary.)
Consider also that the remaining ballots are computed by
corrupt voters. In this situation, the tally evaluation algorithm
outputs a tally y and a proof of correctness that, along with the
public key and the ballots, is accepted by the tally verification
algorithm. Then, it must be the case that the ballots sent by
honest voters were counted to obtain y. For example, if the
tally function is a sum function that sums binary votes and
three honest voters cast three 1’s, then the authority should not
be able to claim that y < 3.

In this paper, for simplicity, we do not directly address
issues of eligibility. We assume that a ballot is associated
with a voter uniquely and that the adversary cannot submit a
ballot on behalf of some voters. We could use e.g. a PKI and
digital signatures on the ballots to prove eligibility, but such an
approach is not secure against a computationally unbounded
adversary. Alternatively, a private trusted setup can be used to
attain eligibility without relying on a computational assumption.

E. Definition of Privacy
Our privacy definition is indistinguishability-based and states

that no nonuniform PPT adversary can win the following
game with non-negligible advantage. The adversary receives
the public key generated by a challenger and chooses two
tuples of strings that encode either valid votes in the message
spaceM∪{⊥} or arbitrary ballots, which are cast by possibly
corrupt voters. We require that the tally function outputs the
same result on input any of the tuples of strings.

The challenger chooses at random one of the two tuples.
The challenger runs the ballot verification algorithm on input
each of the arbitrary ballots and replaces the arbitrary ballot in
the tuple by ⊥ if verification is unsuccessful. The challenger
runs the cast algorithm on input each of the valid votes in the
message space to compute a ballot and replaces the valid vote
in the tuple by the ballot. Then the challenger computes the
tally and a proof of correctness of the tally.

The new tuple, which replaces valid votes by ballots and
invalid arbitrary votes by ⊥, is given to the adversary along
with a proof of the correctness of the tally. The adversary
guesses which of the two tuples was chosen by the challenger.

More formally, privacy for a (N,M,Σ, F)-eVote

EVOTE
4
= (Setup,Cast,VerifyBallot,EvalTally,VerifyTally)

Definition 2.4: [(Perfect) Correctness] We require the following conditions (1) and (2) to hold.
1) Let Abst be a special symbol not in M∪ {⊥} that denotes that a voter did not cast her vote. (We need Abst to differentiate the

case of a voter who did not cast a vote at all (Abst) from the case of a voter who casts ⊥ as her own vote but wishes to preserve
the anonymity of her choice. However, in both cases, correctness guarantees that the result of the election equals the output of the
tally function, and the input to the tally function is ⊥ both when a voter casts ⊥ and when a voter does not cast any vote.) For
all (Pk, Sk) ∈ Setup(1λ), all m1, . . . ,mN ∈M∪ {⊥,Abst}, all (Bltj)Nj=1 such that for all j ∈ [N], Bltj = ⊥ if mj = Abst,
Bltj ∈ Cast(Pk, j,mj) if mj ∈M and Bltj ∈ Cast(Pk, j,⊥) otherwise, the following two conditions (a) and (b) hold:

a) For all j ∈ [N], if mj 6= Abst then VerifyBallot(Pk, j,Bltj) = OK.
b) if (y, γ)

4
= EvalTally(Pk, Sk,Blt1, . . . ,BltN) then it holds that:

y = F (m1, . . . ,mN) and VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = OK.

2) For all (Pk,Sk) ∈ Setup(1λ), Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥}, if S
4
= {j| Bltj 6= ⊥ ∧ VerifyBallot(Pk, j,Bltj) = ⊥} and

Blt′1, . . . ,Blt
′
N are such that for all j ∈ [N], Blt′j = Bltj if j /∈ S and Blt′j = ⊥ otherwise, it holds that:

If (y, γ)
4
= EvalTally(Pk, Sk,Blt′1, . . . ,Blt

′
N) then VerifyTally(Pk,Blt′1, . . . ,Blt

′
N , y, γ) = OK.

Fig. 1. Definition of correctness

Definition 2.5: [Verifiability] We require the following conditions (1) and (2) to hold.
1) For all Pk ∈ {0, 1}?,Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥}, there exist unique m1, . . . ,mN ∈ M ∪ {⊥} such that for all y ∈
{0, 1}? ∪ {⊥} and γ in {0, 1}?, if S

4
= {j| Bltj 6= ⊥∧ VerifyBallot(Pk, j,Bltj) = ⊥} and Blt′1, . . . ,Blt

′
N are such that for all

j ∈ [N], Blt′j = Bltj if j /∈ S and Blt′j = ⊥ otherwise, it holds that:
if VerifyTally(Pk,Blt′1, . . . ,Blt′N , y, γ) = OK then y = F (m1, . . . ,mN).

2) For all Pk ∈ {0, 1}?, all k ∈ [N], i1, . . . , ik ∈ [N], all mi1 , . . . ,mik ∈M∪{⊥}, all Blt1, . . . ,BltN ∈ {0, 1}?∪{⊥} such that for
all j ∈ [k], Bltj ∈ Cast(Pk, j,mij) and VerifyBallot(Pk, j,Bltj) = OK, if S

4
= {j| Bltj 6= ⊥∧ VerifyBallot(Pk, j,Bltj) = ⊥}

and Blt′1, . . . ,Blt
′
N are such that for all j ∈ [N], Blt′j = Bltj if j /∈ S and Blt′j = ⊥ otherwise, it holds that:

if there exist y ∈ {0, 1}? ∪ {⊥} and γ ∈ {0, 1}? such that VerifyTally(Pk,Blt′1, . . . ,Blt′N , y, γ) = OK, then y is compatible
with mi1 , . . . ,mik at indices i1, . . . , ik.

Fig. 2. Definition of verifiability

PrivN,M,Σ,F,EVOTE
A (1λ)

• Setup phase. C generates (Pk, Sk)← Setup(1λ), chooses a random bit b← {0, 1} and runs A on input Pk.
• Query phase. A outputs two tuples M0

4
= (m0,1, . . . ,m0,N) and M1

4
= (m1,1, . . . ,m1,N), and a set S ⊂ [N]. (The set S contains

the indices of the strings in the tuples that are possibly dishonest ballots. The strings in the tuples whose indices are not in S are
supposed to be votes to be given as input to the Cast algorithm.)

• Challenge phase. The challenger does the following. For all j ∈ [N], if j ∈ S, set Bltj
4
= mb,j , else set Bltj ← Cast(Pk, j,mb,j).

For all j ∈ S, if VerifyBallot(Pk, j,Bltj) = ⊥, set Bltj
4
= ⊥. Compute (y, γ) ← EvalTally(Pk, Sk,Blt1, . . . ,BltN) and return

(Blt1, . . . ,BltN , y, γ) to the adversary.
• Output. At some point the adversary outputs its guess b′.
• Winning condition. The adversary wins the game if all the following conditions hold:

1) b′ = b.
2) For all j ∈ S,m0,j = m1,j . (That is, if the adversary submits a dishonest ballot, it has to be the same in both tuples.)
3) For all d1, . . . , dN ∈M∪ {⊥}, for all j ∈ [N], let m′0,j

4
= m′1,j

4
= dj if j ∈ S, and for all b ∈ {0, 1} let m′b,j

4
= mb,j if

mb,j ∈M and m′b,j
4
= ⊥ if mb,j /∈M. Then, F (m′0,1, . . . ,m

′
0,N) = F (m′1,1, . . . ,m

′
1,N).

(That is, the tally function outputs the same result on input both tuples, even if the ballots corresponding to indices in S are
replaced by arbitrary messages in M∪ {⊥}.)

Fig. 3. Definition of privacy

is formalized by means of the game PrivN,M,Σ,F,EVOTE
A

between a stateful adversary A and a challenger C. We describe
the game in Fig. 3.

In the game PrivN,M,Σ,F,EVOTE
A , the advantage of adversary

A is defined as

AdvEVOTE,Priv
A (1λ)

4
= |Pr[PrivN,M,Σ,F,EVOTE

A (1λ) = 1]− 1/2|
Definition 2.6: [Privacy] An EVOTE for parameters (N,

M,Σ, F) is private or IND-Secure if the advantage of all
non-uniform PPT adversaries A is at most negligible in λ in
the game PrivN,M,Σ,F,EVOTE

A .
The privacy definitions that we use here are simple and do

not capture vote replay attacks, see e.g. [55]. Such attacks
are easily prevented by enforcing ballot independence. This
can e.g. be done by appending a proof of knowledge of the
plaintext in the ballots of the voters. Presently, this has not
been done in the NIWI setting, so we will disregard this point
for clarity. However, we stress that it is easy to change the
schemes to satisfy full privacy definitions within the framework
of having trust for privacy, but not for verifiability.

Our privacy definition is inspired by the one of Benaloh [56],
also called “PRIV” in [54], which we reformulate by using
modern terminology and we modify to withstand the attacks
shown in [54] by adding the third winning condition. One
might think that an indistinguishability-based definition like
ours is too weak. The reason why we introduce our definition
and we do not use the definition in [54] is the following.
The definition in [54] requires that a real proof must be
indistinguishable from a simulated proof, and thus cannot be
fulfilled by a construction based on witness-indistinguishable
proofs. Luckily, in Appendix A, we show that our construction
fulfills a simulation-based privacy definition like the one in [54]
when the tally function is invertible, which includes functions
of interest in e-voting.

F. Remarks on Our Definitions
Our definitions assume that algorithm VerifyBallot is run

on input each ballot before running algorithm VerifyTally. The
ballots that are input to VerifyTally are replaced by ⊥ if they
were not accepted by VerifyBallot. Another possibility would
be to let VerifyTally do this task itself.

We require that VerifyBallot and VerifyTally be deterministic
algorithms. Alternatively, they can be defined as PPT, but
then the definition of verifiability would have to be changed
accordingly to hold with probability 1 over the random coins
of the algorithms.

Our definition is parameterized by the number of voters
N . It is possible to define a more restricted eVote that may
possibly be “unbounded”. Note that our definition is more
general and, for instance, takes into account e-voting schemes
in which the public key is of size proportional to the number
of voters.

III. BUILDING BLOCKS

Our construction uses IND-CPA public-key encryption with
perfect correctness and unique secret key, perfectly bind-
ing commitment schemes, and (one-message) non-interactive

witness-indistinguishable proof systems with perfect soundness
for NP [28] (see also [29], [29]–[31], [57]). In this section,
we describe briefly those primitives. We give a more complete
description in Appendix B.

An IND-CPA secure PKE scheme consists of three PPT
algorithms (Setup,Encrypt,Decrypt). Algorithm Setup, on
input 1λ, outputs public key Pk and decryption key Sk.
Algorithm Encrypt, on input message m and public key Pk,
outputs ciphertext Ct. Algorithm Decrypt, on input ciphertext
Ct and decryption key Sk, outputs m. We require a PKE scheme
that is IND-CPA secure and fulfills the perfect correctness
and unique secret key properties. PKE schemes with those
properties are known in the literature [41], [58] and can be
constructed, e.g., from the Decision Linear assumption [41].

A commitment scheme Com is a PPT algorithm that takes
as input a string x and randomness r ∈ {0, 1}k and outputs
com ← Com(x; r). We use a commitment scheme that is
perfectly binding and computationally hiding. A perfectly
binding non-interactive commitment scheme can be constructed
from one-way permutations.

A non-interactive proof system for a language L with a
PPT relation R is a tuple of algorithms (Prove,Verify). Prove
receives as input a statement x and a witness w and outputs a
proof π. Verify receives as input a statement x and a proof π
and outputs a symbol in {OK,⊥}. We use a (one-message) non-
interactive proof system that fulfills the perfect completeness,
perfect soundness and witness-indistinguishability properties.
We refer to it as a (one-message) NIWI proof system.

IV. OUR EVOTE

Let N be the number of voters and let F be a tally function
with message space M. We present an eVote scheme EVOTE
that is IND-Secure and verifiable.

Definition 4.1: [EVOTE] Let E = (E .Setup, E .Encrypt,
E .Decrypt) be a public-key encryption scheme with perfect
correctness and unique secret key. Let Com be a perfectly
binding commitment scheme. Let NIWIenc = (Proveenc,
Verifyenc) and NIWIdec = (Provedec,Verifydec) be two NIWI
proof systems for the relations Renc and Rdec, which we specify
in Fig. 5 and Fig. 6. We define in Fig. 4 an (N,M,Σ, F)-eVote

EVOTEN,M,Σ,F,E,Com,NIWIenc,NIWIdec

= (Setup,Cast,VerifyBallot,EvalTally,VerifyTally)

Our eVote uses 3 instances of a public-key encryption (PKE)
scheme in parallel. We need 3 instances to “engineer” multiple
witnesses for the NIWI proof system, as explained below. To
compute the tally, 2 instances are used. We require that the
PKE scheme fulfills two properties: perfect correctness and
unique secret key. In addition to the three public keys of
the PKE scheme, the public key of the authority contains a
perfectly binding commitment Z to the bit 1, i.e., the public
key is Pk = (Pk1,Pk2,Pk3, Z), where Z = Com(1). The
commitment Z is used to enable a trapdoor mode for Renc.
The secret key consists of the 3 corresponding secret keys
(Sk1,Sk2,Sk3) of the PKE.

• Setup(1λ): on input the security parameter in unary, do the following.
1) Choose randomness r ← {0, 1}λ and set Z = Com(1; r).
2) For all l ∈ [3], choose randomness sl ← {0, 1}λ and run (E .Pkl, E .Skl) = E .Setup(1λ; sl).
3) Output Pk = (E .Pk1, E .Pk2, E .Pk3, Z) and Sk = (E .Sk1, E .Sk2, s1, s2, r). (As the randomness for the setup of

our PKE scheme uniquely determines the secret key, it would be sufficient to just include the sl’s in Sk.)
• Cast(Pk, j, v): on input the public key Pk, the voter index j ∈ [N], and a vote v, do the following.

1) For all l ∈ [3], choose randomness rl ← {0, 1}λ and compute Ctj,l = E .Encrypt(E .Pkl, v; rl).
2) Consider the relation Renc in Fig. 5. Run Proveenc on input the statement (j,Ct1,Ct2,Ct3, E .Pk1, E .Pk2, E .Pk3, Z)

and the witness (v, r1, r2, r3) to compute a proof πj . Output Bltj = (Ctj,1,Ctj,2,Ctj,3, πj).
• VerifyBallot(Pk, j,Blt): on input the public key Pk, the voter index j ∈ [N], and a ballot Blt, output
Verifyenc((j,Ct1,Ct2,Ct3, E .Pk1, E .Pk2, E .Pk3, Z), π).

• EvalTally(Pk,Sk,Blt1, . . . ,BltN): on input the public key Pk, the secret key Sk, and N strings (Blt1, . . . ,BltN) that
can be either ballots cast by a voter or the special symbol ⊥, do the following.

1) For all j ∈ [N], if VerifyBallot(Pk, j,Bltj) = ⊥, set Bltj = ⊥. If, for all j ∈ [N], Bltj = ⊥, then output
(y = ⊥, γ = ⊥).

2) Else, for all j ∈ [N], l ∈ [2],

mj,l =


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,l, E .Skl) /∈M,

E .Decrypt(Ctj,l, E .Skl) otherwise.

3) For all l ∈ [2], compute yl = F (m1,l, . . . ,mN,l).
4) If y1 = y2 then set y = y1, else set y = ⊥. (Here, in an honest execution, in which the ballots computed by the

voters are replaced by ⊥ if they are not accepted by the verification ballot algorithm, the “else” case will never
happen.)

5) Consider the relation Rdec in Fig. 6. (If the indices (i1, i2) in the witness of the relation Rdec fulfill i1 = 1 and
i2 = 2 (resp. i1 6= 1 or i2 6= 2), the statement or the proof is in real mode (resp. trapdoor mode).) Run Provedec

on input the statement (Blt1, . . . ,BltN , E .Pk1, E .Pk2, E .Pk3, y) and the witness (E .Sk1, E .Sk2, s1, s2, i1 = 1,
i2 = 2) to compute a proof γ.

6) Output (y, γ).
• VerifyTally(Pk,Blt1, . . . ,BltN , y, γ): on input the public key Pk, N strings that can be either ballots cast by a voter

or the special symbol ⊥, a tally y and a proof γ of tally correctness, do the following. Replace Bltj’s with ⊥ when
VerifyBallot(Pk, j,Bltj) = ⊥. Then, if y = ⊥ and all Bltj’s are equal to ⊥, output OK. If y = ⊥ but not all Bltj’s
are equal to ⊥, output ⊥. Otherwise output the decision of Verifydec((Blt1, . . . ,BltN , E .Pk1, E .Pk2, E .Pk3, y), γ).
Precisely, the algorithm does the following:

1) For all j ∈ [N], if VerifyBallot(Pk, j,Bltj) = ⊥, set Bltj = ⊥.
2) If y 6= ⊥, then output Verifydec((Blt1, . . . ,BltN , E .Pk1, E .Pk2, E .Pk3, y), γ).
3) If y = ⊥, then, if for all j ∈ [N],Bltj = ⊥, output OK, else output ⊥.

Fig. 4. Our eVote EVOTEN,M,Σ,F,E,Com,NIWIenc,NIWIdec

Our cast algorithm takes as input the public key (Pk1,Pk2,
Pk3, Z), the index j of the voter5 (for j ∈ [N]), and a vote v.
The cast algorithm outputs a ballot Bltj = (Ctj,1,Ctj,2,Ctj,3,
πj) for the j-th voter. A ballot consists of three ciphertexts and
of a proof that either the three ciphertexts encrypt the same
message in the message space M∪ {⊥} (real mode) or Z
is a commitment to 0 (trapdoor mode). Formally, the ballot

5The index is needed to associate a ballot with a unique voter. For instance,
an eVote could require that each voter encrypts her ballot with a different PKE
public key, adding a proof of well-formedness. The public key of the eVote
would contain N PKE’s public keys, one for each voter, and so the statement
of the proof would have to contain the index of the voter in the set N .

contains a NIWI proof for the relation Renc in Fig. 5. The
ballot verification algorithm runs the verification algorithm for
the NIWI proof system for the relation Renc.

The tally evaluation algorithm works as follows. For all
j ∈ [N], set a ballot to ⊥ if the ballot does not pass the
ballot verification algorithm. Else, for all l ∈ [2], decrypt
Ctj,l with Skl to get mj,l. Then, for all l ∈ [2] compute
yl = F (m1,l, . . . ,mN,l), where for indices j such that either
mj,l /∈ M or the ballot is ⊥, we set mj,l = ⊥. If the two
yl’s are equal to the same string y then return this as the
tally, otherwise return an error y = ⊥. Finally, compute a

Relation Renc(x,w):

Instance: x
4
= (j,Ct1,Ct2,Ct3, E .Pk1, E .Pk2, E .Pk3, Z).

Witness: w
4
= (m, r1, r2, r3, u), where the rl’s are the randomness used to compute the ciphertexts Ctl’s and u is the

randomness used to compute the commitment Z.

Renc(x,w) = 1 if and only if either of the following two conditions hold:

1) Real mode. All 3 ciphertexts (Ct1,Ct2,Ct3) encrypt the same string in M∪ {⊥}.
Precisely, for all l ∈ [3], Ctl = E .Encrypt(E .Pkl,m; rl) and m ∈M∪ {⊥}.

OR

2) Trapdoor mode. Z is a commitment to 0.
Precisely, Z = Com(0;u).

Fig. 5. Relation Renc

NIWI proof γ of the fact that x = (Blt1, . . . ,BltN ,Pk1,Pk2,
Pk3, y) satisfies the relation Rdec in Fig. 6 using as witness
(Sk1,Sk2, s1, s2). Another part of the witness is the two indices
i1, i2 ∈ [3], i1 < i2, which determine the two columns of
ciphertexts that are used to compute the tally. In the real mode
described above, we have i1 = 1, i2 = 2, but we can also have
trapdoor modes with other index choices, which is essential to
prove privacy.

More in detail, to be able to prove that our eVote fulfills
the privacy property, we need to show that the ballots that
encrypt messages m0,j are indistinguishable from the ballots
that encrypt messages m1,j . To prove that, we need to be able
to switch the messages encrypted in the ballots from m0,j to
m1,j and prove indistinguishability based on the IND-CPA
property of the PKE scheme. If the ballot consisted of only
one ciphertext, we would not be able to that, because the
witness-indistinguishability property of the proof system for
Rdec would not suffice. To solve this problem, we need to
“engineer” multiple witnesses for the NIWI.

Our solution consists in using ballots with three ciphertexts,
and a tally evaluation algorithm that decrypts two of them.
In real mode, Renc proves that the three ciphertexts encrypt
the same message, and Rdec uses the first two ciphertexts to
prove correctness of the tally. In the security prove, we use
the trapdoor mode of Renc and Rdec. The trapdoor mode of
Renc allows us to switch the message encrypted in one the
ciphertexts from m0,j to m1,j . To prove indistinguishability
based on the IND-CPA property of the PKE scheme, we
switch the ciphertext that is not used in Rdec as follows. When
i1 = 1 and i2 = 2 in Rdec, and starting with a ballot the
encrypts m0,j , we switch the message encrypted in the third
ciphertext. Then we modify the witness of Rdec to i1 = 1 and
i2 = 3 and prove indistinguishability by using the witness-
indistinguishability property of the NIWI proof system. This
allows us to switch now the message encrypted in the second

ciphertext. By repeating these steps, we obtain ballots that
encrypt m1,j .

The tally verification algorithm verifies (y, γ) by using the
verification algorithm of the NIWI system. Additionally, if
either (1) not all ballots are ⊥ and y = ⊥, or (2) all ballots
are ⊥ and y 6= ⊥, the tally verification algorithm outputs ⊥.

The reason for the latter is the following. First, note that,
in our scheme, the ballots that are rejected by the ballot
verification algorithm are replaced by ⊥ as input to the tally
evaluation algorithm. Our tally functions must fulfill a very natu-
ral property: F (m1, . . . ,mN) = ⊥ iff m1 = ⊥, . . . ,mN = ⊥
(cf. Def. 2.2). That is, if at least one message is valid, then it
has to be “counted”. We prove that, if the public key is honestly
generated, the tally evaluation algorithm never returns ⊥ on
input a tuple of possibly dishonest ballots. Therefore, except
for the case that all the ballots are invalid, a tally y = ⊥ may
only occur if the authority acted dishonestly and, consequently,
the tally verification algorithm should not accept y = ⊥.

A. Verifiability of our eVote

We describe why our eVote fulfills the verifiability property.
A detailed proof is given in Appendix C. This property consists
of two conditions defined in Def. 2.5.

First, we show that our scheme fulfills the first condition.
The first condition states that, if each ballot and the proof of
correctness of the tally issued by the authority are verified
successfully by the respective algorithms, then each ballot
(possibly computed on input a maliciously generated public key)
must be associated with a unique message mi ∈M∪{⊥}, and
the result y claimed by the authority equals F (m1, . . . ,mn).

We show that our construction fulfills the first condition
as follows. Our tally verification algorithm only accepts a
tally y = ⊥ when all the ballots are invalid. Therefore, (1)
the authority is not able to wrongly claim that a tally is ⊥.
Furthermore, (2) the authority cannot output two tallies y0, y1

Relation Rdec(x,w):

Instance: x
4
= (Blt1, . . . ,BltN , E .Pk1, E .Pk2, E .Pk3, y). (Recall that a ballot is set to ⊥ if either the corresponding voter

did not cast her vote or her ballot is not accepted by the ballot verification algorithm.)

Witness: w
4
= (E .Sk′1, E .Sk

′
2, s1, s2, i1, i2), where the sl’s are the randomness used to generate the secret keys and public

keys (which are known to the authority who set up the system).

Rdec(x,w) = 1 if and only if the following conditions hold: i1 6= i2; 2 of the secret keys corresponding to indices
E .Pki1 , E .Pki2 are constructed using honestly generated public and secret key pairs and are equal to E .Sk′1, E .Sk

′
2; and

either y = ⊥ or for all l ∈ [2], y = F (ml
1, . . . ,m

l
N) and for all j ∈ [N], if Bltj 6= ⊥ then for l ∈ [2], E .Skil decrypts

ciphertext Ctj,il in Bltj to mil
j ∈M; and for all l ∈ [2], ml

j = ⊥ if either Bltj = ⊥ or E .Skil decrypts Ctj,il to a string /∈M.

Precisely, Rdec(x,w) = 1 if and only if the following conditions hold. In the following, items (1) and (3) are not actually
conditions that have to be checked but are steps needed to define (note the use of “

4
=”) the variables E .Pkil ’s, E .Skil ’s and

mil
j ’s that are used in the checks (2) and (4).

1) For all l ∈ [2], (E .Pkil , E .Skil)
4
= E .Setup(1λ; sl).

2) For all l ∈ [2], E .Sk′l = E .Skil .
3) For all j ∈ [N], l ∈ [2],

mil
j

4
=


⊥ if Bltj = ⊥,
⊥ if Bltj 6= ⊥ ∧ E .Decrypt(Ctj,il , E .Skil) /∈M,

E .Decrypt(Ctj,il , E .Skil) otherwise.

4) (y = ⊥) ∨ (for all l ∈ [2], y = F (mil
1 , . . . ,m

il
N)).

5) i1 6= i2.
(Note that E .Sk′1 and E .Sk′2 do not necessarily have to correspond to the first two secret keys. If the indices (i1, i2) fulfill
i1 = 1 and i2 = 2 (resp. i1 6= 1 or i2 6= 2), the statement or the proof is in real mode (resp. trapdoor mode).)

Fig. 6. Relation Rdec

such that y0 6= y1, y0, y1 6= ⊥ along with proofs γ0 and γ1

that are accepted by the tally verification algorithm. We use a
contradiction to show (2). Let us assume that there exist two
results y0, y1 6= ⊥ such that y0 6= y1, and two proofs γ0, γ1

that are accepted by the tally verification algorithm. By the
unique secret key property, the decryption of the ciphertexts in
the ballots produces a unique result. By the pigeon principle,
there exists one index i? ∈ [3] used by both proofs. Therefore,
it must be the case that either y0 = y1 = ⊥ or y0 and y1 are
equal to the evaluation of the tally function F on input the
messages obtained by decrypting the ciphertexts. Consequently,
y0, y1 6= ⊥ such that y0 6= y1 is a contradiction. Therefore,
(1) and (2) together imply that the result y claimed by the
authority equals F (m1, . . . ,mn).

The second condition requires that, even when the adversary
generates the public key, if honest voters cast a ballot that is
accepted by the ballot verification algorithm, then the ballot has
to be “counted”. We show that the second condition also holds.
First, we note that the authority can only create a dishonest
public key by setting the commitment dishonestly. The reason
is that the authority has to prove that the public key of the

PKE scheme is honestly generated, i.e., the perfect soundness
of the NIWI ensures that the public key for the PKE scheme is
honestly generated. The perfect correctness of the PKE scheme
ensures that a ballot that encrypts m will be decrypted to
m. Therefore, the NIWI and the PKE scheme guarantee that
an honestly computed ballot6 for the j-th voter that encrypts
message m will always be “counted”, i.e., for any (y, γ) pair
that is accepted by the tally verification algorithm, y will be
compatible with m at index j according to Def. 2.1.

B. On The Reusability of the Public Parameters

Our definition of verifiability does not prevent the following
undesirable case. Consider an ill-formed ballot Blt1. Con-
sider other valid ballots Blt2, . . . ,BltN that encrypt respec-
tively v2, . . . , vN . The authority is able to compute a tally

6Here, “honestly computed ballot” just means that it is computed by the
voter using the Cast algorithm on input the public key of the authority, which
could be honestly or dishonestly created. By design of our construction, an
honestly generated ballot computed on input an honestly created public key
has the same distribution of an honestly created ballot computed on input
any possibly dishonest public key whenever the authority is able to compute
proofs of tally correctness that are accepted by the tally verification algorithm.

y = F (v1, . . . , vN) and a valid proof of tally correctness.
Consider now other valid ballots Blt′2, . . . ,Blt

′
N that encrypt

v′2, . . . , v
′
N . The authority can possibly compute another tally

y′ = F (v′1, v
′
2, . . . , v

′
N) and another proof of tally correctness.

The problem is that the ill-formed ballot Blt1 can be decrypted
to more than one message.

This does not contradict our definition because, for Blt1,
. . . ,BltN , there still exist messages v1, . . . , vN that satisfy
the statement of the definition, i.e., given Pk and Blt1, . . . ,
BltN , the authority cannot output two different results and two
valid proofs of tally correctness for each of them. However, it
can occur that for Pk,Blt1,Blt′2, . . . ,Blt

′
N , there are different

messages that satisfy the definition. We remark that the public
key Pk does not change.

Let us present a concrete example. Consider two 0/1
elections with only 2 voters. A ballot could possibly be reused
in the second election, i.e., if the public parameters of the
system are reused, the same ballot can be cast again. Given
an ill-formed ballot Blt1, there could exist two ballots Blt2
and Blt′2 such that, in an election with ballots Blt1 and Blt2,
the result is 2, and, in a election with ballots Blt1 and Blt′2,
the result is 0. This can only happen if the first ballot is
“associated” with vote 1 in the first election and with vote
0 in the second election. Therefore, the first and the second
elections are incoherent. More undesirable issues would emerge
if different tally functions could be computed in different
elections carried out with the same parameters and ballots.

A stronger definition could state that, for all Pk and all Blt1,
there exists m1 such that, for all Blt2, . . . ,BltN , there exist
m2, . . . ,mn such that the authority is only able to output a
tally y = F (m1, . . . ,mN) along with a valid proof of tally
correctness. We note that this is a simplification because a
general definition should take into account multiple dishonest
voters.

Fortunately, in our e-voting model, as well as in other
traditional models, the parameters cannot be reused through
different elections. Therefore, the above-mentioned problem
does not occur.

In a stronger model in which the parameters can be
reused, our construction would not be secure. Nevertheless, the
inconsistency of results through different elections would occur
only in the case that a malicious authority sets the commitment
in the public key dishonestly to 0, which allows the computation
of ill-formed ballots.

This state of affairs could be paralleled to the case of garbled
circuits, where the original one-time version [59], [60] can
be based on the minimal assumption of existence of one-way
functions, whereas the reusable variant [61] is known to be
implementable only under stronger assumptions. Similarly, in
functional encryption, the schemes with bounded security [62],
[63] can be based just on public-key encryption, whereas the
unbounded secure variants are only known to be implementable
under very strong assumptions [64]. For instance, the scheme
of Sahai and Seyalioglu [62] becomes completely insecure
when the adversary can decrypt a ciphertext with two different
secret keys, exactly as it occurs for our scheme.

C. Privacy of our eVote

We show now that our scheme fulfills the privacy property
defined in Def. 2.6. Here we summarize the proof. In Ap-
pendix D, we describe the proof in detail. We stress that, for
privacy to hold, the authority must be honest and thus the
public key is honestly generated.

In the security proof, we consider a sequence of hybrid
experiments. First, we define an experiment HZ in which the
commitment in the public key is a commitment to 0. We show
that HZ is indistinguishable from the real experiment under
the computationally hiding property of the commitment.

Second, we define an event E1 in experiment HZ . In E1,
the adversary submits a ballot that is accepted by the ballot
verification algorithm but, when decrypting the three ciphertexts
in the ballot, the three decrypted messages inM∪{⊥} are not
equal. We show that the probability of E1 is negligible under
the computationally hiding property of the commitment. More
concretely, we show that if E1 occurs with non-negligible
probability, then the adversary can be used to distinguish a
commitment to 0 from a commitment to 1. We note that
if Z is a commitment to 1, then the perfect soundness of
the NIWI guarantees that the adversary can never submit an
ill-formed ballot that is accepted by the ballot verification
algorithm. Therefore, the probability Ē1 of its complement is
overwhelming.

We recall that the adversary sends two tuples V0 =
(m0,1, . . . ,m0,N) and V1 = (m1,1, . . . ,m1,N), and a set
S ⊂ [N] that contains the indices of the strings of arbitrary
ballots. The hybrid experiments after HZ work as follows.

• Hybrid experiment H1 is equal to the experiment HZ ,
except that the challenger sets the bit b = 0.

• Hybrid experiment H2 switches the message encrypted in
the third ciphertext in any ballot to encrypt m1,j instead
of m0,j . More in detail, for k = 0 to N , we define a
sequence of hybrid experiments Hk

2 . Hk
2 is identical to

H1, except that, for all j = 1, . . . , k such that j /∈ S,
the challenger computes the third ciphertext of the ballot
on input m1,k. Therefore, H0

2 is identical to H1, while
HN

2 is identical to H2. We show that Hk
2 and Hk+1

2 are
indistinguishable thanks to the IND-CPA property of the
PKE scheme.

• Hybrid experiment H3 is identical to experiment H2,
except that the challenger computes the NIWI proof γ on
input a witness that contains indices (1, 3) and secret keys
Sk1,Sk3, instead of indices (1, 2) and secret keys Sk1,
Sk2. We show that H3 and H2 are indistinguishable thanks
to the witness-indistinguishability property of the NIWI
proof. Because Ē1 occurs with overwhelming probability,
any ballot in S is either replaced by ⊥, if the ballot
verification algorithm does not accept it, or decrypted
to the same value in H2 and H3. Therefore, the tally
evaluation algorithm outputs the same tally in H2 and
H3.

• Hybrid experiment H4 is identical to H3, except that
the second ciphertext in any ballot encrypts m1,j instead

TABLE I
HYBRID GAMES TO PROVE FULFILLMENT OF THE PRIVACY PROPERTY.

Exp (Ctj,1,Ctj,2,Ctj,3) Sk index γ Security
H1 (m0,j ,m0,j ,m0,j) (1,2,3) R -
H2 (m0,j ,m0,j ,m1,j) (1,2,3) R IND-CPA
H3 (m0,j ,m0,j ,m1,j) (1, 2,3) T WI
H4 (m0,j ,m1,j ,m1,j) (1,2,3) T IND-CPA
H5 (m0,j ,m1,j ,m1,j) (1,2 ,3) T WI
H6 (m1,j ,m1,j ,m1,j) (1,2,3) T IND-CPA
H7 (m1,j ,m1,j ,m1,j) (1,2 ,3) R WI

of m0,j . More in detail, for k = 0 to N , we define a
sequence of hybrid experiments Hk

4 . Hk
4 is identical to

H3, except that, for all j = 1, . . . , k such that j /∈ S, the
challenger computes the second ciphertext of the ballot
on input m1,k. Therefore, H0

4 is identical to H3, while
HN

4 is identical to H4. We show that Hk
4 and Hk+1

4 are
indistinguishable thanks to the IND-CPA property of the
PKE scheme.

The remaining hybrid experiments are symmetrical to the
ones described above. In H5, the witness used to compute
the NIWI proof contains the indices (2, 3) and secret keys
Sk2,Sk3, and indistinguishability between H5 and H4 follows
from the witness-indistinguishability property of the NIWI
proof. In H6, the first ciphertext of each ballot encrypts
m1,j instead of m0,j and indistinguishability between H6

and H5 follows from the IND-CPA property of the PKE
scheme. Finally, in H7 the witness used to compute the NIWI
proof contains the indices (1, 2) and secret keys Sk1,Sk2,
and indistinguishability between H7 and H6 follows from the
witness-indistinguishability property of the NIWI proof.

The sequence of hybrid experiments after HZ is summarized
in Table IV-C. In Table IV-C, the first column shows the
name of the hybrid experiment. The second column shows
the three messages that are encrypted in the 3 ciphertexts
Ctj,1,Ctj,2,Ctj,3 contained in the challenge ballot Bltj asso-
ciated with voter j. The text in blue in the “Sk index” column
denotes the indices used as witness in the proof γ. As mentioned
above, if such blue indices correspond to the set {1, 2} (resp.
to a set different from {1, 2}) we say that the statement or
proof is in real mode (resp. trapdoor mode), which we denote
by R (resp. T) in the column γ. The text in red indicates the
difference from the previous hybrid experiment.

Thanks to the hybrid experiment HZ , in the subsequent
hybrid experiments we can show indistinguishability by using
the IND-CPA property of the PKE scheme. The reason is that,
thanks to HZ , the NIWI proof in the ballots can be a proof
that the commitment in the public key is a commitment to 0.
Therefore, we avoid the computation of a proof that shows that
the three ciphertexts encrypt the same message, which allows us
to switch the message encrypted in one of the ciphertexts and
prove indistinguishability by using the IND-CPA assumption.

When showing indistinguishability between the hybrid
experiments after HZ , we have to guarantee that, when we
switch the indices used as witness for the NIWI proof of tally

correctness, the tally does not change. To illustrate this issue,
suppose that, in an adversarial ballot, the first two ciphertexts
encrypt the same message x but the third one encrypts a
different message z. Then the tally computed by the secret
keys for indices {1, 2} could differ from the one computed
with secret keys for indices {2, 3}. In that case, we cannot
prove indistinguishability between a hybrid experiment where
the NIWI witness comprises Sk1,Sk2 and a hybrid experiment
where the NIWI witness comprises Sk2,Sk3. To solve this
issue, we show that event E1 occurs with negligible probability.
Therefore, it is sufficient to analyze the advantage of the
adversary in the hybrid experiments after HZ conditioned
on the occurrence of Ē1 (i.e., the complement of E1).

We would like to remark the subtle difference between ill-
formed and invalid ballots. An ill-formed ballot is a ballot
that is not in the range of the cast algorithm. However, an
ill-formed ballot could be valid in the sense that, along with
other (possibly ill- or well- formed) N−1 ballots, the authority
obtains a tally, i.e., the tally obtained when decrypting the first
and the second ciphertext in the ballots is the same. An ill-
formed ballot can be computed when the commitment in the
public key is computed dishonestly.

The event Ē1 may occur even if the adversary submits
an ill-formed ballot that is accepted by the ballot verification
algorithm. In fact, if a (non-honestly computed) ballot is formed
by strings that are not in the ciphertext space of the encryption
algorithm of the PKE, but decryption of those strings outputs
the same message, such a ballot is not considered invalid.

Note also that the proof of well-formedness of the ballots
states that the encrypted messages may be equal to ⊥. Ballots
that encrypt ⊥ are blank ballots. We consider tally functions
in which the symbol ⊥ indicates a blank vote. For example, in
case of an eVote for the sum function in which ⊥ is counted as
0, an adversary should not be able to distinguish three ballots
that encrypt (1, 1,⊥) from three ballots that encrypt (1,⊥, 1).

V. EVOTE WITH MULTIPLE AUTHORITIES

We sketch how to generalize our eVote to fit a model
with multiple authorities. In this model, the tally evaluation
algorithm is run by a set of authorities. The privacy property
must hold if not all the authorities are corrupt. Our generalized
scheme guarantees a statistical verifiability property (see below),
which assumes that there is at least one honest voter.

First, we note that the multi-string model of Groth and
Ostrovsky [44] does not provide a solution to this problem.
The multi-string model assumes that the majority of the parties
that set up the CRSs are honest. It does not guarantee soundness,
which would provide verifiability in our application, when all
those parties, which would be the authorities in our application,
are corrupt. In the multi-string model, there is a trade-off
between soundness and zero-knowledge. Namely, soundness
could hold when all the authorities are corrupt, but then zero-
knowledge does not hold. Zero-knowledge is guaranteed only
when there is a majority of honest authorities. In contrast, our
generalized scheme fulfills the privacy property when at least
one authority is honest.

A. Sketch of the Construction

Our generalized construction works for tally functions
that can be represented as polynomials. Such tally functions
comprise many functions of interest for e-voting. For simplicity,
henceforth we only consider the case of the sum function with
a binary message space. The general case follows by using
Lagrange’s polynomial interpolation.

Consider the sum function over a set of integers Sk, which
we specify later. Consider m authorities. Each authority k ∈
[m] publishes a public key that consists of the public key of
our eVote and, in addition, a commitment comk to a tuple of
N 0’s.

A ballot Bltj for the j-th voter consists of the ballots
(Bltj,1, . . . ,Bltj,m). For a vote vj , each voter computes m
shares vj,1, . . . , vj,m whose sum is vj . (Later we describe how
the shares are computed in order to preserve privacy.) The
ballot Bltj,k for the k-th authority is computed following the
cast algorithm of our eVote on input the share vj,k. In addition,
the voter adds a NIWI proof that either (the real statement)
for all k ∈ [m], Bltj,k encrypts a number in Sk such that the
sum of the encrypted numbers is in {0, 1} (for simplicity, here
we do not consider messages equal to ⊥) OR (the trapdoor
statement) for all k ∈ [m], comk is a commitment to a tuple
(z1, . . . , zN) such that zj is equal to the tuple (Bltj,1, . . . ,
Bltj,m).

For each k ∈ [m], the k-th authority computes the tally yk
as in our eVote. The proof of correctness of the tally is a proof
for the following modified relation: either (the real statement)
the witness satisfies the relation Rdec of our eVote and comk

is a commitment to 0 OR (the trapdoor statement) comk is a
commitment to a tuple (z1, . . . , zN) such that zj = Bltj for
all j ∈ [N], where Blt1, . . . ,BltN are the N ballots published
on the public bulletin board.

Finally, the tally is computed by summing the tallies yk’s
output by each of the authorities to obtain y. We give more
details below.

To support functions represented as polynomials, the follow-
ing modifications should be applied. To compute the shares
vj,1, . . . , vj,m, the voter j chooses a polynomial pj of degree
m− 1 such that pj(0) equals her vote vj . The shares are the
evaluation of pj on input 1, . . . ,m. The tally is computed by
using Lagrange interpolation.

B. Verifiability of the Construction

We analyze now the verifiability of our generalized con-
struction. If the commitments in the public key are computed
honestly, we can show that the generalized construction fulfills
the verifiability property by using the same arguments given
for our construction with one authority.

Consider that w.l.o.g the k-th authority outputs a commitment
comk that does not commit to a tuple of 0’s. If at least one
voter j is honest, the probability that this voter outputs a ballot
Bltj such that comk is a commitment to a tuple (z1, . . . , zN)
and zj = Bltj is negligible over the random coins of the j-th
voter. Therefore, assuming that there is at least one honest voter,
the authorities can compute proofs of tally correctness by using

the witness for the “trapdoor statement” in the relation only
with negligible probability. Similarly, assuming that there is at
least one honest voter, the voters can compute proofs of ballot
correctness by using the witness for the “trapdoor statement”
only with negligible probability over the random coins of
the honest voters. In conclusion, the generalized construction
fulfills (a statistical variant of) the verifiability property thanks
to the verifiability of our eVote in Section IV and to the fact
that, in real mode, the sum of the messages encrypted in a
ballot is equal to a number in {0, 1}.

C. Privacy of the Construction

We use a selectively-secure model [65] for our definition of
privacy. In the game between the challenger and the adversary,
the adversary has to declare its challenge at the outset of the
game before receiving the public keys of the authorities. The
adversary is allowed to receive the secret keys of all except
one authority.

We show that our generalized construction fulfills this
definition of privacy. First, we define the sets Sk and a method
for computing the shares vj,1, . . . , vj,m for a vote vj . This
method must guarantee that any subset of m− 1 authorities
does not get any information about vj . For simplicity, consider
that m = 2. Then, the sets S1 = S2 = S are equal by definition
to {−p, . . . , p}, where p is a number of size super-polynomial
in the security parameter. The message space of the PKE
scheme must comprise numbers between −Np and Np. To
encrypt 0 (resp. 1), the voter chooses a random number v1 in
S and sets v2 to −v1 (resp. −v1 + 1). It is easy to see that,
except when either v1 or v2 equal −p, any value of v2 (resp.
v1) can correspond to v1 = −v2 (resp. v2 = −v1) if the voter
cast a vote for 0 or to v1 = −v2 +1 (resp. v2 = −v1 +1) if the
voter cast a vote for 1. The case in which either v1 or v2 equal
−p occurs with negligible probability, which is guaranteed by
choosing p to be super-polynomial in the security parameter.
Consequently, each authority does not get any information on
the vote vj . This method can be generalized to the case m > 2.
We skip the details.

Because the adversary receives the public keys after sending
the challenge, in the security proof we can define a hybrid
experiment where the commitments in the public key commit
to ballots (Blt1 . . . ,BltN) computed on input the challenge
messages. Like in the reduction of Section IV-C, we prove
that the probability that the adversary submits an ill-formed
ballot that is accepted by the ballot verification algorithm is
negligible by using the computationally hiding property of the
commitment scheme.

In the next hybrid experiments, the NIWI proofs of ballot
correctness and of tally correctness can be computed by using
the witness for the trapdoor statement, i.e., the randomness used
to compute the commitments. Thanks to that, we are able to
compute ballots where not all the ciphertexts encrypt the same
message. This allows us to switch the message encrypted in one
of the ciphertexts of the ballots and prove indistinguishability
between the experiments by using the IND-CPA property of
the PKE scheme.

To prove that our scheme fulfills a definition for privacy in a
non-selective (i.e., full) security model, one can use complexity
leveraging arguments. Such arguments can profit from the fact
that, in our formulation, we required the number of voters N
and the size of the message space to be independent of the
security parameter. This allows the challenger to just guess
the challenge messages in advance with constant probability.
This requirement can be weakened to the case of N and size
of message space logarithmic in the security parameter. We
leave open how to achieve full security without complexity
leveraging.

Note that we do not require any interaction between the
authorities. The public keys of the authorities are completely
independent from each other. Moreover, the authorities do not
need any coordination (e.g., to run sequentially), i.e., the tally
can be computed and publicly verified from the output of
each authority individually. Thus, our techniques diverge from
previous approaches to the problem.

VI. RELATED WORK

Our work is inspired by the work of Badrinarayanan et al.
[38], which puts forward the concept of verifiable functional
encryption. (We note that the committing IBE of [66] can be
seen as a weaker variant of verifiable identity-based encryption.)
Our work shares with BGJS the idea of “engineering” multiple
witnesses, which are needed when using NIWI proofs, to
enforce privacy in conjunction with verifiability.

Notwithstanding, the constructions are quite different, espe-
cially due to the different requirements of functional encryption
and e-voting. For instance, in the security definition of
functional encryption, the keys are handed to the adversary,
so one needs a proof that each secret key and ciphertext is
computed correctly. Instead, in our case, the adversary does
not see the secret key. We can profit from this fact to just
prove that the claimed tally equals the evaluation of the tally
function over all ballots.

Such complications in functional encryption introduce a
severe limitation: in the security reduction of BGJS, it is
fundamental that the public key contain a commitment that
in some hybrid experiment is set to the challenge ciphertext.
Therefore, it is assumed that the adversary commits to the
challenge before receiving the public key, i.e., security is proven
in the selective model [65]. On the contrary, our constructions
are secure in the full (i.e., non-selective) model.

In other respects, in e-voting we face new challenges. In
BGJS, the challenger computes the NIWI on input a witness that
comprises all the secret keys and proves the well-formedness
of all the secret keys except one, but, in addition, proves
that all the secret keys decrypt some challenge ciphertext
correctly. This is sufficient to use the IND-CPA property of
functional encryption to prove indistinguishability between two
hybrid experiments where the message encrypted in one of
the ciphertexts is switched from m0 to m1. The reason is that
the secret keys are supposed to be for the same function f
such that f(m0) = f(m1). (More concretely, in the IND-CPA
property of functional encryption, the adversary is allowed

to receive secret keys for a function f that evaluates both
challenge messages to the same value.) Therefore, the secret
keys do not allow to distinguish between the two ciphertexts.
In our setting, we can only input to the NIWI all the secret keys
except one. Otherwise we could not use the IND-CPA property
to prove indistinguishability between two hybrid experiments
where the encrypted message is switched from m0 to m1.

Furthermore, in our privacy definition, we have to handle
challenge tuples that contain ill-formed ballots, whereas in
verifiable multi-input functional encryption the challenge
contains only honestly computed ciphertexts. Therefore, the
differences between the two settings make the respective
techniques utterly incomparable.

It is tempting to think that the construction of BGJS of multi-
input verifiable functional encryption (which extends multi-
input functional encryption of Goldwasser et al. [67]) can be
directly used to construct a verifiable eVote. Though it seems
plausible, we did not verify that. However, this would eventually
result in a verifiable eVote based on indistinguishability
obfuscation [37], a very strong assumption, and would only
be secure in the selective model.

Needless to say, our techniques, as well as the ones of BGJS,
owe a lot to the celebrated FLS’ OR trick [57]. They can be
viewed as a generalization of it.

Kiayias et al. [68] (see also [69] for a distributed implemen-
tation) put forth a verifiable eVote without trust assumptions
(except the existence of a PBB) that represents a breakthrough
along this direction, but diverges from ours in several funda-
mental aspects:

• The definition of privacy in [68] includes receipt-freeness.
To provide receipt-freeness, the construction in [68]
requires untappable channels between voters and the
authority.

• The definition of verifiability in [68] considers eligibility
and end-to-end verifiability. The latter provides protection
against adversarial voting devices.

• Our construction provide universal verifiability, i.e., ex-
ternal parties that do not participate in the elections can
verify the result by checking the information published
in the PBB, without requiring any information from
protocol participants. In [68], for end-to-end verifiability,
an external party needs to collect receipts from voters
and then check the PBB. For universal verifiability, those
receipts would not be needed.

• The universal verifiability achieved by our construction
is perfect. The scheme in [68] provides end-to-end ver-
ifiability (including eligibility) information theoretically,
but there is a small probability of a wrong tally being
accepted that depends on the number of honest successful
voters.

• In [68], the privacy property is proven under group-based
assumptions at the cost of using complexity leveraging
and assuming sub-exponential security, whereas ours
only requires the standard version of Decision Linear

assumption with polynomial security.7

In a subsequent work [70], Kiayias et al. propose an e-
voting scheme related to [68], which uses Groth-Sahai proofs
and improves [68] in terms of efficiency. The scheme in [70]
provides end-to-end verifiability without trust assumptions
(except the existence of a PBB), but against computationally
bounded adversaries.

Moran and Naor [71] construct an universally verifiable e-
voting protocol with very strong provable-security properties.
However, it assumes either the availability of a “random beacon”
that has to be sampled honestly or the soundness of the
Fiat-Shamir’s heuristic. Therefore, verifiability does not hold
unconditionally, i.e., without any assumption (both physical or
computational).

We are not aware of other traditional e-voting schemes that
achieve perfect verifiability without interaction and without
trust assumptions. We refer to [72] and [54] for a survey.

We point out that our definition of verifiability is motivated
by the guidelines of [72]. In its formalization, our definition
is similar to the ones of [53], the verifiability for multi-input
functional encryption of BGJS and the uniqueness of tally
of Bernhard et al. [54]. Anyhow, the latter is formulated to
hold only against computationally bounded adversaries and
both BGJS16 and Bernhard et al. do not take into account
our condition (2) for verifiability.8 See also [73] for symbolic
approaches to verifiability.

Perfect verifiability and perfect correctness seem incompati-
ble with receipt-freeness [71], [74]–[78]. Notwithstanding, we
think that it should be possible to define a statistical variant
of verifiability achievable without any trust assumptions that
could coexist with some form of receipt-freeness. Another
possibility could be to resort to some voting server trusted for
receipt-freeness but not for privacy, such as the server that
re-randomizes the ballots in BeleniosRF of Chaidos, Cortier,
Fuchsbauer and Galindo [78]. (We note that they also address
the problem of authenticity that we neglect.) As it is out of
the scope of this work, we deliberately omit receipt-freeness
in our treatment.

VII. FUTURE DIRECTIONS

Our work opens up new directions in e-voting and generally
in cryptography. We discuss some of them.
• Efficiency. An important problem is to improve the

efficiency of verification. It would be desirable that
the cost for verifiers be sub-linear in the number of
voters. The verifiability guarantees attained would then
be computational but hopefully it could be possible to

7At some point in the security reduction for our eVote, we make use
of the fact that the number of voters N is a constant independent of the
security parameter that could be viewed as a complexity leveraging trick or
as problematic in the case that N be large. But we stress that this is done
only for simplicity of exposition and we sketch how the reduction and our
results can be generalized even to the case of N(·) function of the security
parameter.

8Needless to say, for many applications of multi-input functional encryption,
the lack of condition (2) could not pose a threat.

avoid trust assumptions. A possibility would be to employ
variants of succinct arguments (see [79] for a survey).

• Receipt-freeness. Perfect verifiability and perfect correct-
ness seem incompatible with receipt-freeness [71], [74]–
[78], but we think that it should be possible to define a
statistical variant of verifiability that could coexist with
some form of receipt-freeness. Another possibility could
be to resort to some voting server trusted for receipt-
freeness but not for privacy that re-randomizes the ballots,
as done in BeleniosRF of Chaidos, Cortier, Fuchsbauer
and Galindo [78].

• Other applications of our techniques. We think that our
techniques could be of wide applicability to other settings.
For instance, Camenisch and Shoup [80] put forth the
concept of verifiable encryption (that in some sense could
be also viewed as a special case of verifiable functional
encryption [38]) and present numerous applications of it,
such as key escrow, optimistic fair exchange, publicly veri-
fiable secret and signature sharing, universally composable
commitments, group signatures, and confirmer signatures.
We believe that our techniques can be employed profitably
to improve their results with the aim of removing the need
of trust assumptions.

Acknowledgements. Vincenzo Iovino was supported by the
Luxembourg National Research Fund (FNR grant no. 7884937).
Alfredo Rial is supported by the Luxembourg National Research
Fund (FNR) CORE project “Stateful Zero-Knowledge” (Project
code: C17/11650748). This work was also supported by
the INTER-Sequoia project from the Luxembourg National
Research Fund, which is joint with the ANR project SEQUOIA
ANR-14-CE28-0030-01.

REFERENCES

[1] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
1981.

[2] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” in Advances in Cryptology
– EUROCRYPT’97, ser. Lecture Notes in Computer Science, W. Fumy,
Ed., vol. 1233. Springer, May 1997, pp. 103–118.

[3] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system,” in PKC 2001:
4th International Workshop on Theory and Practice in Public Key
Cryptography, ser. Lecture Notes in Computer Science, K. Kim, Ed.,
vol. 1992. Springer, Feb. 2001, pp. 119–136.

[4] P. Y. A. Ryan and S. A. Schneider, “Prêt à voter with re-encryption
mixes,” University of Newcastle, Tech. Rep. CS-TR-956, 2006.

[5] B. Adida, “Helios: Web-based open-audit voting.” in USENIX Security
Symposium, vol. 17, 2008, pp. 335–348.

[6] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. A. Ryan, E. Shen, A. T. Sherman, and P. L. Vora,
“Scantegrity II: end-to-end verifiability by voters of optical scan elections
through confirmation codes,” IEEE Trans. Information Forensics and
Security, vol. 4, no. 4, pp. 611–627, 2009. [Online]. Available:
http://dx.doi.org/10.1109/TIFS.2009.2034919

[7] P. Y. A. Ryan and V. Teague, “Pretty good democracy,” in IN:
WORKSHOP ON SECURITY PROTOCOLS, 2009.

[8] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic
elections,” in Towards Trustworthy Elections. Springer, 2010, pp. 37–63.

[9] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications (extended abstract),” in 20th Annual ACM Symposium
on Theory of Computing. ACM Press, May 1988, pp. 103–112.

[10] A. De Santis, S. Micali, and G. Persiano, “Non-interactive zero-
knowledge proof systems,” in Advances in Cryptology – CRYPTO’87,
ser. Lecture Notes in Computer Science, C. Pomerance, Ed., vol. 293.
Springer, Aug. 1988, pp. 52–72.

[11] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack,” in Advances in Cryptology –
CRYPTO’91, ser. Lecture Notes in Computer Science, J. Feigenbaum,
Ed., vol. 576. Springer, Aug. 1992, pp. 433–444.

[12] O. Goldreich, Foundations of Cryptography: Basic Techniques. Cam-
bridge, UK: Cambridge University Press, 2001, vol. 1.

[13] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
“Robust non-interactive zero knowledge,” in Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, 2001, pp.
566–598.

[14] M. Naor and M. Yung, “Public-key cryptosystems provably secure against
chosen ciphertext attacks,” in 22nd Annual ACM Symposium on Theory
of Computing. ACM Press, May 1990, pp. 427–437.

[15] R. Cramer and V. Shoup, “Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack,”
SIAM Journal on Computing, vol. 33, no. 1, pp. 167–226, 2003.

[16] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in ACM CCS 93: 1st Conference on
Computer and Communications Security, V. Ashby, Ed. ACM Press,
Nov. 1993, pp. 62–73.

[17] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Advances in Cryptology –
CRYPTO’86, ser. Lecture Notes in Computer Science, A. M. Odlyzko,
Ed., vol. 263. Springer, Aug. 1987, pp. 186–194.

[18] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The KECCAK
reference,” 2011, http://keccak.noekeon.org/.

[19] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology,
revisited (preliminary version),” in 30th Annual ACM Symposium on
Theory of Computing. ACM Press, May 1998, pp. 209–218.

[20] S. Goldwasser and Y. T. Kalai, “On the (in)security of the Fiat-Shamir
paradigm,” in 44th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Oct. 2003, pp. 102–115.

[21] Y. T. Kalai, “Attacks on the fiat-shamir paradigm and program obfusca-
tion,” Ph.D. dissertation, Massachusetts Institute of Technology, 2006.

[22] N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. T. Kalai, A. López-
Alt, and D. Wichs, “Why “fiat-shamir for proofs” lacks a proof,” in
Theory of Cryptography: 10th Theory of Cryptography Conference, TCC
2013, Tokyo, Japan, March 3-6, 2013. Springer, 2013, pp. 182–201.

[23] I. Damgård, N. Fazio, and A. Nicolosi, “Non-interactive zero-knowledge
from homomorphic encryption,” in TCC 2006: 3rd Theory of Cryptogra-
phy Conference, ser. Lecture Notes in Computer Science, S. Halevi and
T. Rabin, Eds., vol. 3876. Springer, Mar. 2006, pp. 41–59.

[24] Y. Lindell, “An efficient transform from sigma protocols to NIZK with a
CRS and non-programmable random oracle,” in Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, 2015, pp. 93–109.

[25] P. Chaidos and J. Groth, “Making sigma-protocols non-interactive without
random oracles,” in Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key
Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings, 2015, pp. 650–670.

[26] M. Ciampi, G. Persiano, L. Siniscalchi, and I. Visconti, “A transform
for NIZK almost as efficient and general as the fiat-shamir transform
without programmable random oracles,” in Theory of Cryptography -
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part II, 2016, pp. 83–111.

[27] H. Lipmaa, “Secure electronic voting protocols,” in Handbook of
Information Security, Volume 2, Information Warfare, Social, Legal, and
International Issues and Security Foundations, H. Bidgoli, Ed. John
Wiley & Sons, Inc., 2005, pp. 647–657, electronic edition available at
http://kodu.ut.ee/ lipmaa/papers/voting4hb.pdf.

[28] J. Groth, R. Ostrovsky, and A. Sahai, “Non-interactive zaps and new
techniques for NIZK,” in Advances in Cryptology – CRYPTO 2006, ser.
Lecture Notes in Computer Science, C. Dwork, Ed., vol. 4117. Springer,
Aug. 2006, pp. 97–111.

[29] C. Dwork and M. Naor, “Zaps and their applications,” in 41st Annual
Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Nov. 2000, pp. 283–293.

[30] B. Barak, S. J. Ong, and S. P. Vadhan, “Derandomization in cryptography,”
in Advances in Cryptology – CRYPTO 2003, ser. Lecture Notes in
Computer Science, D. Boneh, Ed., vol. 2729. Springer, Aug. 2003, pp.
299–315.

[31] N. Bitansky and O. Paneth, “Zaps and non-interactive witness in-
distinguishability from indistinguishability obfuscation,” in Theory of
Cryptography Conference. Springer, 2015, pp. 401–427.

[32] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear
groups,” in Advances in Cryptology – EUROCRYPT 2008, ser. Lecture
Notes in Computer Science, N. P. Smart, Ed., vol. 4965. Springer, Apr.
2008, pp. 415–432.

[33] M. Bellare, G. Fuchsbauer, and A. Scafuro, “Nizks with an untrusted
CRS: security in the face of parameter subversion,” in Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part II, 2016, pp. 777–804.

[34] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zaj~kac, “A subversion-
resistant snark,” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security. Springer, 2017, pp.
3–33.

[35] G. Fuchsbauer, “Subversion-zero-knowledge snarks,” in IACR Interna-
tional Workshop on Public Key Cryptography. Springer, 2018, pp.
315–347.

[36] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in TCC 2011: 8th Theory of Cryptography Conference,
ser. Lecture Notes in Computer Science, Y. Ishai, Ed., vol. 6597. Springer,
Mar. 2011, pp. 253–273.

[37] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption for
all circuits,” in 54th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Oct. 2013, pp. 40–49.

[38] S. Badrinarayanan, V. Goyal, A. Jain, and A. Sahai, “Verifiable functional
encryption,” in Advances in Cryptology - ASIACRYPT 2016 - 22nd Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part II, 2016, pp. 557–587.

[39] D. Boneh and M. K. Franklin, “Identity based encryption from the Weil
pairing,” SIAM Journal on Computing, vol. 32, no. 3, pp. 586–615, 2003.

[40] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” Journal
of Cryptology, vol. 17, no. 4, pp. 263–276, Sep. 2004.

[41] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Advances in Cryptology – CRYPTO 2004, ser. Lecture Notes in Computer
Science, M. Franklin, Ed., vol. 3152. Springer, Aug. 2004, pp. 41–55.

[42] M. Naor, “On cryptographic assumptions and challenges (invited talk),” in
Advances in Cryptology – CRYPTO 2003, ser. Lecture Notes in Computer
Science, D. Boneh, Ed., vol. 2729. Springer, Aug. 2003, pp. 96–109.

[43] E. Ghadafi, N. P. Smart, and B. Warinschi, “Groth-Sahai proofs revisited,”
in PKC 2010: 13th International Conference on Theory and Practice of
Public Key Cryptography, ser. Lecture Notes in Computer Science, P. Q.
Nguyen and D. Pointcheval, Eds., vol. 6056. Springer, May 2010, pp.
177–192.

[44] J. Groth and R. Ostrovsky, “Cryptography in the multi-string model,”
Journal of Cryptology, vol. 27, no. 3, pp. 506–543, Jul. 2014.

[45] R. L. Rivest, “The threeballot voting system,” 2006.
[46] B. Randell and P. Y. A. Ryan, “Voting technologies and trust,” in IEEE

Security and Privacy, 2006, pp. 50–56.
[47] P. Y. A. Ryan, P. B. Rønne, and V. Iovino, “Selene: Voting with transparent

verifiability and coercion-mitigation,” in Financial Cryptography and
Data Security - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, 2016, pp. 176–192.

[48] A. Kiayias and M. Yung, “Self-tallying elections and perfect ballot
secrecy,” in PKC 2002: 5th International Workshop on Theory and
Practice in Public Key Cryptography, ser. Lecture Notes in Computer
Science, D. Naccache and P. Paillier, Eds., vol. 2274. Springer, Feb.
2002, pp. 141–158.

[49] I. Damgård and M. Jurik, “A length-flexible threshold cryptosystem with
applications,” in ACISP 03: 8th Australasian Conference on Information
Security and Privacy, ser. Lecture Notes in Computer Science, R. Safavi-
Naini and J. Seberry, Eds., vol. 2727. Springer, Jul. 2003, pp. 350–364.

[50] J. Groth, “Efficient maximal privacy in boardroom voting and anonymous
broadcast,” in International Conference on Financial Cryptography.
Springer, 2004, pp. 90–104.

[51] F. Hao, P. Y. A. Ryan, and P. Zielinski, “Anonymous voting by two-round
public discussion,” IET Information Security, vol. 4, no. 2, pp. 62–67,
2010.

[52] D. Khader, B. Smyth, P. Y. A. Ryan, and F. Hao, “A fair and robust voting
system by broadcast,” in 5th International Conference on Electronic
Voting 2012, (EVOTE 2012), Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC, July 11-14, 2012, Castle
Hofen, Bregenz, Austria, 2012, pp. 285–299.

[53] R. Giustolisi, V. Iovino, and P. Rønne, “On the possibility of non-
interactive voting in the public-key setting,” in Financial Cryptography
and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, 2016.

[54] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi, “Sok:
A comprehensive analysis of game-based ballot privacy definitions,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
499–516.

[55] V. Cortier and B. Smyth, “Attacking and fixing helios: An analysis
of ballot secrecy,” Cryptology ePrint Archive, Report 2010/625, 2010,
http://eprint.iacr.org/2010/625.

[56] J. Benaloh, “Verifiable secret-ballot elections,” Ph.D. dissertation, Yale
University, 1987.

[57] U. Feige, D. Lapidot, and A. Shamir, “Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract),”
in 31st Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 1990, pp. 308–317.

[58] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[59] A. C.-C. Yao, “How to generate and exchange secrets (extended abstract),”
in 27th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 1986, pp. 162–167.

[60] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol for two-
party computation,” Journal of Cryptology, vol. 22, no. 2, pp. 161–188,
Apr. 2009.

[61] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich, “Reusable garbled circuits and succinct functional encryption,”
in 45th Annual ACM Symposium on Theory of Computing, D. Boneh,
T. Roughgarden, and J. Feigenbaum, Eds. ACM Press, Jun. 2013, pp.
555–564.

[62] A. Sahai and H. Seyalioglu, “Worry-free encryption: functional encryption
with public keys,” in ACM CCS 10: 17th Conference on Computer
and Communications Security, E. Al-Shaer, A. D. Keromytis, and
V. Shmatikov, Eds. ACM Press, Oct. 2010, pp. 463–472.

[63] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Functional encryption
with bounded collusions via multi-party computation,” in Advances in
Cryptology – CRYPTO 2012, ser. Lecture Notes in Computer Science,
R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer, Aug. 2012,
pp. 162–179.

[64] S. Garg, C. Gentry, S. Halevi, and M. Zhandry, “Functional encryption
without obfuscation,” in Theory of Cryptography: 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Pro-
ceedings, Part II, E. Kushilevitz and T. Malkin, Eds. Springer, 2016,
pp. 480–511.

[65] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security from
identity-based encryption,” in Advances in Cryptology – EURO-
CRYPT 2004, ser. Lecture Notes in Computer Science, C. Cachin and
J. Camenisch, Eds., vol. 3027. Springer, May 2004, pp. 207–222.

[66] M. Green and S. Hohenberger, “Blind identity-based encryption and simu-
latable oblivious transfer,” in Advances in Cryptology – ASIACRYPT 2007,
ser. Lecture Notes in Computer Science, K. Kurosawa, Ed., vol. 4833.
Springer, Dec. 2007, pp. 265–282.

[67] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu,
A. Sahai, E. Shi, and H.-S. Zhou, “Multi-input functional encryption,”
in Advances in Cryptology – EUROCRYPT 2014, ser. Lecture Notes
in Computer Science, P. Q. Nguyen and E. Oswald, Eds., vol. 8441.
Springer, May 2014, pp. 578–602.

[68] A. Kiayias, T. Zacharias, and B. Zhang, “End-to-end verifiable elections
in the standard model,” in Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part II, 2015, pp. 468–498.

[69] N. Chondros, B. Zhang, T. Zacharias, P. Diamantopoulos, S. Maneas,
C. Patsonakis, A. Delis, A. Kiayias, and M. Roussopoulos, “A distributed,

end-to-end verifiable, internet voting system,” CoRR, vol. abs/1507.06812,
2015. [Online]. Available: http://arxiv.org/abs/1507.06812

[70] A. Kiayias, T. Zacharias, and B. Zhang, “DEMOS-2: scalable E2E
verifiable elections without random oracles,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, 2015, pp. 352–363. [Online].
Available: https://doi.org/10.1145/2810103.2813727

[71] T. Moran and M. Naor, “Receipt-free universally-verifiable voting with
everlasting privacy,” in Advances in Cryptology – CRYPTO 2006, ser.
Lecture Notes in Computer Science, C. Dwork, Ed., vol. 4117. Springer,
Aug. 2006, pp. 373–392.

[72] V. Cortier, D. Galindo, R. Küsters, J. Mueller, and T. Truderung, “Sok:
Verifiability notions for e-voting protocols,” in IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
2016, pp. 779–798.

[73] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in electronic
voting protocols,” in European Symposium on Research in Computer
Security. Springer, 2010, pp. 389–404.

[74] J. C. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections
(extended abstract),” in 26th Annual ACM Symposium on Theory of
Computing. ACM Press, May 1994, pp. 544–553.

[75] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme - a practical
solution to the implementation of a voting booth,” in Advances in
Cryptology – EUROCRYPT’95, ser. Lecture Notes in Computer Science,
L. C. Guillou and J.-J. Quisquater, Eds., vol. 921. Springer, May 1995,
pp. 393–403.

[76] M. Michels and P. Horster, “Some remarks on a receipt-free and
universally verifiable mix-type voting scheme,” in Advances in Cryptology
– ASIACRYPT’96, ser. Lecture Notes in Computer Science, K. Kim and
T. Matsumoto, Eds., vol. 1163. Springer, Nov. 1996, pp. 125–132.

[77] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type
properties of electronic voting protocols,” Journal of Computer
Security, vol. 17, no. 4, pp. 435–487, 2009. [Online]. Available:
http://dx.doi.org/10.3233/JCS-2009-0340

[78] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo, “Beleniosrf: A
non-interactive receipt-free electronic voting scheme,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, 2016, pp. 1614–1625,
full version available at http://eprint.iacr.org/2015/629.

[79] N. Bitansky, “Getting inside the adversary’s head: New directions in non-
black-box knowledge extraction,” Ph.D. dissertation, Tel Aviv University,
2014.

[80] J. Camenisch and V. Shoup, “Practical verifiable encryption and decryp-
tion of discrete logarithms,” in Advances in Cryptology – CRYPTO 2003,
ser. Lecture Notes in Computer Science, D. Boneh, Ed., vol. 2729.
Springer, Aug. 2003, pp. 126–144.

[81] A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano,
“On the achievability of simulation-based security for functional encryp-
tion,” in Advances in Cryptology – CRYPTO 2013, Part II, ser. Lecture
Notes in Computer Science, R. Canetti and J. A. Garay, Eds., vol. 8043.
Springer, Aug. 2013, pp. 519–535.

[82] J. Groth, “Simulation-sound nizk proofs for a practical language and
constant size group signatures,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2006,
pp. 444–459.

[83] J. Groth, R. Ostrovsky, and A. Sahai, “New techniques for noninteractive
zero-knowledge,” Journal of the ACM (JACM), vol. 59, no. 3, p. 11,
2012.

[84] C. Ràfols, “Stretching groth-sahai: NIZK proofs of partial satisfiability,”
in Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II,
2015, pp. 247–276.

APPENDIX A
BOOSTING OUR PRIVACY DEFINITION TO

SIMULATION-BASED SECURITY

Our definition, though formulated as an indistinguishability-
based one, can be bootstrapped, for large classes of tallying
functions, to a simulation-based one. Consider a real and an
ideal world defined as follows. In the real world, the adversary
outputs a tuple of messages that specify the set S of possibly

invalid ballots as in the definition in Fig. 3. The adversary gets
a set of ballots corresponding to such messages, after replacing
the invalid ballots with ⊥, along with a proof γ exactly as in
the definition in Fig. 3. In the ideal world, in addition to the
adversary, there is a simulator. The simulator gets as input the
set of possibly invalid ballots and the evaluation of the tally
function on the messages provided by the adversary, and has to
output an indistinguishable set of ballots along with the proof.

The adversary has to guess whether the set of ballots along
with the proof were simulated or computed correctly. We
require that, for any PPT adversary, there exists a simulator
such that the advantage of the adversary in distinguishing the
real world from the ideal world is negligible.

Our IND-Secure definition implies such a simulation-based
definition when the tally function is invertible (i.e. for almost
all interesting e-voting applications) for the following reason.
For concreteness, let us focus on the case of the sum function.
The simulator does not know the messages output by the
adversary but gets as input the set of possibly invalid ballots
and, in addition, the result of the sum function. Therefore the
simulator, for the indices corresponding to valid ballots, can
define messages that sum up to the desired result (that it knows)
and, by using the public key of the authority, can encrypt
them and add a proof to the ballot. (It can do that because it
knows the corresponding witness). Note that, for the indices
corresponding to possibly invalid ballots, the simulator can just
check by using the verification ballot algorithm whether the
ballot is invalid and replace it by ⊥. Thanks to the IND-Security,
the view created by the simulator will be indistinguishable to
the view in the real world.

It is easy to see that this can be generalized to any invertible
function. This is similar to the way De Caro et al. [81] amplify
IND-Security to SIM-Security for functional encryption.

APPENDIX B
BUILDING BLOCKS

Our construction uses IND-CPA public-key encryption with
perfect correctness and unique secret key, perfectly bind-
ing commitment schemes, and (one-message) non-interactive
witness-indistinguishable proof systems with perfect soundness
for NP [28] (see also [29], [29]–[31], [57]). In this section,
we recall the definitions of those primitives.

A. Public-Key Encryption

Definition B.1: [IND-CPA secure PKE with perfect correct-
ness and unique secret key] An IND-CPA (or semantically)
secure Public-Key Encryption (PKE) scheme consists of three
PPT algorithms (Setup,Encrypt,Decrypt) defined as follows.
• Setup(1λ): On input 1λ, it outputs public key Pk and

decryption key Sk.
• Encrypt(m,Pk): On input message m and public key Pk,

it outputs ciphertext Ct.
• Decrypt(Ct,Sk): On input ciphertext Ct and decryption

key Sk, it outputs m.
The PKE scheme is said to be IND-CPA (or semantically)
secure if for any PPT adversary A, there exists a negligible

function ν(·) such that the following is satisfied for any two
messages m0,m1 and for b ∈ {0, 1}:

|Pr
[
A(1λ,Encrypt(m0,Pk)) = b

]
−

Pr
[
A(1λ,Encrypt(m1,Pk)) = b

]
| ≤ ν(λ).

Perfect correctness requires that, for all pairs (Pk,Sk) ∈
Setup, for all messages m in the message space and all ci-
phertexts Ct output by Encrypt(Pk,m), Decrypt(Ct,Sk) = m
must hold. Unique secret key requires that, for all Pk, there
exists at most one Sk such that (Pk,Sk) ∈ Setup(1λ).

The Decision Linear Encryption scheme [41] fulfills those
properties. It is secure under the Decision Linear Assump-
tion [41]. We recall them next.

First, we define bilinear groups. We assume the existence
of a PPT algorithm G(1λ), the bilinear group generator, that
outputs a pairing group setup (p,G,Gt, e, g), where G and Gt
are multiplicative groups of prime order p and e : G×G→ Gt
is a bilinear map satisfying the following three properties: (1)
bilinearity, i.e., e(gx, gy) = e(g , g)xy; (2) non-degeneracy, i.e.,
for all generators g ∈ G, e(g , g) generates Gt; (3) efficiency,
i.e., e can be computed in polynomial time.

Assumption 1 (Decision Linear Assumption for G. [41]):
Let the tuple (p,G,Gt, e, g) be a pairing group setup output
by G as defined above, and let g1, g2 and g3 be generators
of G. Given (g1, g2, g3, g

a
1 , g

b
2, g

c
3), where a and b are picked

randomly from Zp, the Decision Linear (DLIN) assumption is
to decide whether c = a+ b mod p. Precisely, the advantage
of an adversary A in solving the Decision Linear assumption
is given by:∣∣Pr [A(G, p, g1, g2, g3, g

a
1 , g

b
2, g

a+b
3) = 1 |

(p,G,Gt, e, g)← G(1λ);

(g1, g2, g3)← G; (a, b)← Zp]−
Pr [A(G, p, g1, g2, g3, g

a
1 , g

b
2, g

c
3) = 1 |

(p,G,Gt, e, g)← G(1λ);

(g1, g2, g3)← G; (a, b, c)← Zp]
∣∣

The Decision Linear assumption states that the advantage of A
is negligible in λ. Boneh et al. [41] provide a bilinear group
generator G for which such assumption is conjectured to hold.

Consider the following PKE scheme described by a setup
algorithm Setup, an encryption algorithm Encrypt and a
decryption algorithm Decrypt.
• Setup(1λ): pick (p,G,Gt, e, g)← G(1λ), pick randomly

(x, y) ← Zp. Compute f = g1/x and h = g1/y. Output
the public key Pk = (G, p, g, f, h) and the secret key Sk
= (Pk, x, y).

• Encrypt(Pk,m): on input a public key Pk and a message
m ∈ G, pick random (a, b) ← Zp. Output a ciphertext
Ct = (fa, hb,m · ga+b).

• Decrypt(Sk,Ct): on input a secret key Sk and a ciphertext
Ct = (c1, c2, c3), output m = c3/(c

x
1c
y
2).

This scheme fulfills the IND-CPA property under the Decision
Linear assumption (see [41] for details) and it is easy to verify
that it fulfills the unique secret key property.

B. Commitment Schemes

Definition B.2: [(Perfectly binding) Commitment Schemes]
A commitment scheme Com is a PPT algorithm that takes
as input a string x and randomness r ∈ {0, 1}k and outputs
com← Com(x; r). A perfectly binding commitment scheme
must satisfy the following properties:
• Perfectly Binding: This property states that two different

strings cannot have the same commitment. More formally,
∀x1 6= x2 and r1, r2,Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of
the same length), there exists a negligible function ν(·)
such that, for all PPT adversaries A, we have that
the following holds: |Prr∈{0,1}k [A(Com(x0; r)) = 1]−
Prr∈{0,1}k [A(Com(x1; r)) = 1)]| ≤ ν(k).

C. NIWI Proofs

We define (one-message) non-interactive witness indistin-
guishability (NIWI) proof systems [28]. Groth et al. [28]
construct such NIWIs for all languages in NP, and in particular
for CircuitSat.

Definition B.3: [Non-interactive Proof System] A non-
interactive proof system for a language L with a PPT relation
R is a tuple of algorithms (Prove,Verify). Prove receives as
input a statement x and a witness w and outputs a proof π.
Verify receives as input a statement x and a proof π and outputs
a symbol in {OK,⊥}. The following properties must hold:
• Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr [Verify(x,Prove(x,w)) = OK] = 1, where the proba-
bility is taken over the coins of Prove and Verify.

• Perfect Soundness: For every family {xk}k>0 of state-
ments xk /∈ L, x ∈ {0, 1}k, for every non-uniform
(possibly, computationally unbounded) adversary A =
{Ak}k>0, for all k > 0, it holds that:

Pr

[
Verify(xk, π) = OK :
π ← Ak(xk)

]
= 0.

Definition B.4: [(one-message) NIWI proof system] A non-
interactive proof system NIWI = (Prove,Verify) for a language
L with a PPT relation R is witness-indistinguishable (WI) if
for any triplet (x,w0, w1) such that (x,w0) ∈ R and (x,w1) ∈
R, the distributions {Prove(x,w0)} and {Prove(x,w1)} are
computationally indistinguishable.

APPENDIX C
CORRECTNESS AND VERIFIABILITY OF OUR EVOTE

A. Correctness of Our eVote

Condition (1) of (perfect) correctness of EVOTE follows
from the perfect correctness of the PKE scheme and the perfect
completeness of NIWIenc and NIWIdec. Condition (2) follows
analogously. We note the following. For all honestly computed
Pk, Pk = (Pk1,Pk2,Pk3, Z) holds for some Pk1,Pk2,Pk3

and Z. Z is a commitment to 1. Therefore, relation Renc and
the perfectly binding property of the commitment scheme
imply that, if there exists a proof π and a statement x =
(j,Ct1, . . . ,Ct3,Pk1, . . . ,Pk3, Z) such that VerifyBallot ac-
cepts (x, π), then it must be the case that Ct1, . . . ,Ct3 encrypt

the same string inM∪{⊥}. For all j ∈ [N], if Bltj is accepted
by VerifyBallot, Blt′j = Bltj , else Blt′j = ⊥. Therefore, for
all Blt1, . . . ,BltN , if (y, γ) = EvalTally(Pk,Blt1, . . . ,BltN),
then y = F (m1, . . . ,mN), where, for all j ∈ [N], if Bltj is
accepted by VerifyBallot, mj is the string encrypted in the first
two ciphertexts of Bltj , else mj is ⊥. Then, it is easy to see
that VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = OK.

B. Verifiability of Our eVote

Theorem C.1: For all N > 0, all sets M,Σ ⊂ {0, 1}?, and
all tally functions F : (M ∪ {⊥})N → Σ ∪ {⊥}, if E is
a perfectly correct PKE scheme with unique secret key (cf.
Def. B.1), Com is a PPT algorithm, and NIWIenc and NIWIdec

are (one-message) NIWIs (cf. Def. B.4), for the relations Renc

and Rdec respectively, then EVOTEN,M,Σ,F,E,Com,NIWIenc,NIWIdec

satisfies the verifiability property (cf. Def. 3).

Proof: We first prove that condition (1) of verifiability is
satisfied. We have to prove that, for all Pk ∈ {0, 1}?, and
all Blt1, . . . ,BltN ∈ {0, 1}? ∪ {⊥} such that, for all j ∈ [N],
either Bltj = ⊥ or VerifyBallot(Pk, j,Bltj) = OK, there exist
m1, . . . ,mN ∈ M ∪ {⊥} such that, for all y, γ ∈ {0, 1}?,
if VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = 1 then y = F (m1,
. . . ,mN). Henceforth, w.l.o.g, we let Pk and Blt1, . . . ,BltN
be arbitrary strings such that, for all j ∈ [N], either Bltj = ⊥
or VerifyBallot(Pk, j,Bltj) = OK.

First, we prove the following claim.

Claim C.2: Given Pk and (Blt1, . . . ,BltN), for every two
pairs (y0, γ0) and (y1, γ1), if VerifyTally(Pk,Blt1, . . . ,BltN ,
y0, γ0) = VerifyTally(Pk,Blt1, . . . ,BltN , y1, γ1) = OK then
y0 = y1.

For every (y0, γ0) and (y1, γ1), we have two cases.

1) Either y0 = ⊥ and y1 6= ⊥ or y1 = ⊥ and y0 6= ⊥.
Suppose w.l.o.g. that y0 = ⊥ and y1 6= ⊥. The other
case (i.e., y1 = ⊥ and y0 6= ⊥) is symmetrical.
By construction, for all (y, γ), it holds that (A) if Blt1 =
· · · = BltN = ⊥, then VerifyTally(Pk,Blt1, . . . ,BltN ,
y, γ) = OK if and only if y = ⊥ and (B) if, for some
j ∈ [N],Bltj 6= ⊥, then VerifyTally(Pk,Blt1, . . . ,BltN ,
⊥, γ) = ⊥. We now have two cases.

a) Blt1 = · · · = BltN = ⊥. Then we have that
VerifyTally(Pk,Blt1, . . . ,BltN , y1, γ1) = OK and
by (A) y1 = ⊥, which is a contradiction.

b) It is not the case that Blt1 = · · · = BltN = ⊥.
Then, by (B) we have that VerifyTally(Pk,Blt1,
. . . ,BltN , y0, γ0) = ⊥, which contradicts the fact
that (y0, γ0) is accepted.

2) y0, y1 6= ⊥.
Let y0, γ0, y1, γ1 be arbitrary strings in {0, 1}? ∪ {⊥}
such that y0, y1 6= ⊥. Suppose that VerifyTally(Pk,Blt1,
. . . ,BltN , y0, γ0) = VerifyTally(Pk,Blt1, . . . ,BltN , y1,
γ1) = OK. The perfect soundness of NIWIdec implies
that, for all b ∈ {0, 1}, the proof γb is computed on input
some witness (E .Sk′b1 , E .Sk

′b
2 , s

b
1, s

b
2, i

b
1, i

b
2).

In the following, when we talk about “condition X for
proof γb”, we refer to the items (1)-(5) in the definition
of relation Rdec in Fig. 6.
By the pigeon principle, there exists an index i? ∈ [3]
such that one of the following cases holds.

a) i? = i01 = i12. For all b ∈ {0, 1}, let (mi?,b
1 , . . . ,

mi?,b
N) be the messages guaranteed by condition

(3) of relation Rdec for proof γb. Condition (1)
for proof γ0 (resp. γ1) implies that the secret key
Sk′01 (resp. Sk′12) is honestly computed and thus, the
unique secret key property and the fact that it fulfills
E .Pki01 = E .Pki? (resp. E .Pki12 = E .Pki?) imply
that for all j ∈ [N], E .Decrypt(Ctj,i? , E .Sk′01) =
E .Decrypt(Ctj,i? , E .Sk′12).
Furthermore, condition (2) and (3) for proof γ0

(resp. γ1) imply that for all j ∈ [N], either mi?,0
j =

⊥ or mi?,0
j = E .Decrypt(Ctj,i? , E .Sk′1) ∈M (resp.

either mi?,1
j = ⊥ or mi?,1

j = E .Decrypt(Ctj,i? ,
E .Sk′12) ∈M).
Hence, for all j ∈ [N], mi?,0

j = mi?,1
j ∈M∪{⊥}.

Now, condition (4) for proof γ0 (resp. γ1) implies
that either y0 = F (m

i01,0
1 , . . . ,m

i01,0
N) or y0 = ⊥

(resp. either y1 = F (m
i12,1
1 , . . . ,m

i12,1
N) or y1 = ⊥)

and, as by hypothesis y0, y1 6= ⊥, it holds that
y0 = y1.

b) i? = i02 = i11. This case is identical to the first one,
except that we replace i01 with i02 and i12 with i11.

c) i? = i01 = i11. This case is identical to the first one,
except that we replace i12 with i11.

d) i? = i02 = i12. This case is identical to the first one,
except that we replace i01 with i02.

In all cases, if it is the case that VerifyTally(Pk,Blt1, . . . ,
BltN , y0, γ0) = VerifyTally(Pk,Blt1, . . . ,BltN , y1, γ1) = OK
then y0 = y1. In conclusion, the claim is proved.

From the previous claim, it follows that there exists a unique
value y? such that, for all (y, γ) such that y 6= ⊥, if
VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) = OK then y = y? (1).
Moreover, it is easy to see that, for all (y, γ), if VerifyTally(Pk,
Blt1, . . . ,BltN , y, γ) = OK, there exist messages m1, . . . ,
mN ∈M∪ {⊥} such that y = F (m1, . . . ,mN) (2).

Now, we have two mutually exclusive cases.

• For all (y, γ) such that y 6= ⊥, VerifyTally(Pk,Blt1,
. . . ,BltN , y, γ) = ⊥. Then, letting m1, . . . ,mN in
the statement of the theorem be arbitrary messages in
M∪ {⊥}, the statement is verified with respect to Pk
and Blt1, . . . ,BltN .

• There exists (y′, γ) such that y′ 6= ⊥ and VerifyTally(Pk,
Blt1, . . . ,BltN , y

′, γ) = OK. In this case, (2) implies that
there exist m′1, . . . ,m

′
N ∈ M ∪ {⊥} such that y′ =

F (m′1, . . . ,m
′
N) (3). Hence, (1) and (3) together imply

that y? = F (m′1, . . . ,m
′
N) (4).

Therefore, for all (y, γ) such that y 6= ⊥, if we have that
VerifyTally(Pk,Blt1,BltN , y, γ) = OK then (by (1)) y =

y? = (by (4)) = F (m′1, . . . ,m
′
N).

Then, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of

condition (1) of verifiability is verified with respect to Pk
and Blt1, . . . ,BltN .

In both cases, for m1
4
= m′1, . . . ,mN

4
= m′N , the statement of

condition (1) of verifiability is verified with respect to Pk and
Blt1, . . . ,BltN . As Pk and Blt1, . . . ,BltN are arbitrary strings,
the statement of condition (1) of verifiability is proven.

It is also easy to check that condition (2) of verifiability
is satisfied. This follows straightforwardly from the perfect
soundness of NIWIdec. Thanks to NIWIdec, the authority always
proves that the public key of the PKE scheme is honestly
generated. Therefore, by the perfect correctness of the PKE
scheme, an honestly computed ballot for message m for the
j-th voter is decrypted to m (because an honestly computed
ballot, by definition, consists of three ciphertexts that encrypt
the same message, and thus the value committed to in Z is not
relevant). Consequently, if the tally y is different from ⊥ (i.e.,
if the evaluation of the tally function is equal for all indices),
then y has to be compatible with m at index j (cf. Def. 2.1).

In essence, condition (2) is satisfied because the degree of
freedom of the authority in creating a dishonest public key
only allows it to set up the commitment dishonestly. This does
not affect how honest ballots are decrypted and “counted”.

Note that, for the proof of the theorem above, the security of
the commitment scheme Com is not needed, i.e., the theorem
holds for any PPT algorithm Com, even insecure ones.

APPENDIX D
PRIVACY OF OUR EVOTE

Theorem D.1: For all N > 0, all sets M,Σ ⊂ {0, 1}?, and
all tally functions F : (M∪ {⊥})N → Σ ∪ {⊥}, if E is a
perfectly correct PKE scheme with unique secret key (cf. Def.
B.1), Com is a computationally hiding commitment scheme
(cf. Def. B.2), and NIWIenc and NIWIdec are (one-message)
NIWIs (cf. Def. B.4), respectively, for the relations Renc and
Rdec, then EVOTEN,M,Σ,F,E,Com,NIWIenc,NIWIdec is IND-Secure
(cf. Def. 2.6).

Proof: Consider the following experiment HZ
A(1λ) between a

challenger and a non-uniform PPT adversary A (henceforth,
we often omit the parameters). HZ is equal to the experiment
PrivN,M,Σ,F,EVOTE

A except that the challenger sets the commit-
ment Z in the public key to be a commitment to 0 instead
of 1. We define the output of the experiment to be a bit that
is 1 if and only if all winning conditions are satisfied. Then,
consider the following claim.

Claim D.2: The probability P0 that A wins the experiment
PrivN,M,Σ,F,EVOTE

A is negligibly different from the probability
P1 that A wins game HZ .

Proof: Suppose towards a contradiction that the difference
between P0 and P1 is some non-negligible function ε(λ). We

construct an adversary B that breaks the computationally hiding
property of Com with non-negligible probability.

B receives as input a commitment com that is either a
commitment to 0 or to 1. For l ∈ [3], B runs E .Setup(1λ)
to compute (E .Pkl, E .Skl) and sets the public key Pk =
(E .Pk1, . . . , E .Pk3, Z = com). B follows the challenger of
PrivN,M,Σ,F,EVOTE

A to compute the remaining messages that
are sent to the adversary. Finally, B gets the output b′ from A.
B outputs 1 if and only if all winning conditions are satisfied.

By hypothesis, if com is a commitment to 1, the probability
that B outputs 1 equals the probability that A wins in
PrivN,M,Σ,F,EVOTE

A , and if com is a commitment to 0, the
probability that B outputs 1 equals the probability that A wins
in HZ . Thus, the advantage of B in breaking the computa-
tional hiding property of Com is ε(λ), which contradicts the
assumption that the commitment scheme is computationally
hiding.

Before continuing with the proof, we would like to remark a
subtle point. In the previous claim, we implicitly assumed that
the adversary B is able to check all of the winning conditions
efficiently. This is possible if M is efficiently enumerable and
its cardinality, as well as the number of voters N , are constant
in the security parameter. This could seem like resorting to
“complexity leveraging” arguments. In fact, one could ask if our
proof would break down if N and M depend on the security
parameter. However, the whole proof can be generalized to
the case of N and |M| polynomial in the security parameter
by using the following observation. Let A be the event that A
submits challenges that satisfy the winning condition. Then,
if the probability that A wins the PrivN,M,Σ,F,EVOTE

A is non-
negligible, then the event A must occur with non-negligible
probability and, conditioned on it, A wins with non-negligible
probability as well. Therefore, the rest of the proof would
follow analyzing the probability that A wins in the next hybrid
experiments conditioned under the occurrence of the event
that, in such experiments, A submit challenges satisfying the
winning condition. As we will see now, a similar “conditioning”
argument will be anyhow necessary for the rest of the proof.

Let E1 be the event that, in experiment HZ , A submits as
challenge two tuples M0 = (m0,1, . . . ,m0,N) and M1 =
(m1,1, . . . ,m1,N) and a set S ⊂ [N] that fulfill the following
condition: there exists j ∈ S such that m0,j = m1,j and, letting
Bltj = m0,j = (Ctj,1, . . . ,Ctj,3, πj) (suppose that m0,j can be
parsed that way), it holds that VerifyBallot(Pk, j,Bltj) = OK
but there exist i1, i2 ∈ [3], i1 6= i2 such that E .Decrypt(Cti1 ,
Ski1) 6= E .Decrypt(Cti2 ,Ski2).

Claim D.3: The probability that E1 occurs is negligible.

Proof: Suppose towards a contradiction that the probability
of occurrence of E1 be some non-negligible function ε(λ).
We construct an adversary B that breaks the computationally
hiding property of Com with non-negligible probability.

B receives as input a commitment com that is either a
commitment to 0 or to 1. For l ∈ [3], B runs E .Setup(1λ)
to compute (E .Pkl, E .Skl) and sets the public key Pk =
(E .Pk1, . . . , E .Pk3, Z = com). B follows the challenger of
PrivN,M,Σ,F,EVOTE

A to compute the remaining messages that
are sent to the adversary. B receives two tuples M0 =
(m0,1, . . . ,m0,N) and M1 = (m1,1, . . . ,m1,N) and a set
S ⊂ [N] from the adversary.

For all j ∈ S, B checks whether the following conditions
are all satisfied: m0,j = m1,j and, after setting Bltj = m0,j ,
Bltj can be parsed as (Ctj,1, . . . ,Ctj,3, πj) and it holds that
VerifyBallot(Pk, j,Bltj) = OK but there exist i1, i2 ∈ [3], i1 6=
i2 such that E .Decrypt(Cti1 ,Ski1) 6= E .Decrypt(Cti2 ,Ski2).
If for some j ∈ S the conditions are satisfied, B outputs 0,
otherwise it outputs 1.

If com is a commitment to 1, the perfect soundness of NIWIenc

and the definition of relation Renc guarantee that the conditions
above are never satisfied for any j ∈ S. Therefore, if com is a
commitment to 1 B outputs 1 with probability 1.

On the other hand, if com is a commitment to 0, the probability
that the conditions are satisfied for some j ∈ [S] equals the
probability of E1. Therfore, B outputs 0 with probability ε
and 1 with probability 1− ε. In conclusion, the advantage of
B in breaking the computationally hiding property of Com is
ε(λ), which contradicts the assumption that the commitment
scheme is computationally hiding.

From Claim D.2 and Claim D.3, we now know that, for some
negligible function negl(·), the following equations hold:∣∣Pr [Priv = 1]− Pr

[
HZ = 1

]∣∣ ≤ negl(λ), (1)

Pr
[
E1
]
≤ negl(λ), (2)

Pr
[
HZ = 1

]
= Pr

[
HZ = 1|E1

]
Pr
[
E1
]
+

Pr
[
HZ = 1|Ē1

]
Pr
[
Ē1
]
≤

negl + Pr
[
HZ = 1|Ē1

]
(1− negl). (3)

Here and henceforth, we omit the parameters, but it is meant
that the experiments are parameterized by λ and negl(·).

Thus, to show that Pr [Priv = 1] equals 1/2 plus a negligible
quantity, it is sufficient to show that Pr

[
HZ = 1|Ē1

]
equals

1/2 plus a negligible quantity. We prove the latter by means
of a series of hybrid experiments. In the following we analyze
the behavior of the adversary conditioned on the occurrence
of the event Ē1.

• Hybrid H1. Experiment H1 is equal to the experiment
HZ except that the challenger sets b = 0.

• Hybrid Hk
2 , for k = 0, . . . , N . For all k = 0, . . . , N ,

experiment Hk
2 is identical to experiment H1 except that,

for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,3 on input m1,k. Note that H0

2 is identical
to H1.

Claim D.4:
∣∣Pr
[
Hk−1

2 = 1|Ē1
]
− Pr

[
Hk

2 = 1|Ē1
]∣∣ is

negligible for all k = 1, . . . , N ,.

Proof: Suppose toward a contradiction that the difference
between such probabilities is a non-negligible function
ε(λ). We construct an adversary B that has advantage at
most ε(λ) against the IND-CPA security of E .

B receives from the challenger of IND-CPA a public key
pk and sets Pk3 = pk. For l ∈ [2], B runs E .Setup to
compute (E .Pkl, E .Skl), computes Z ← Com(0) and runs
A on input Pk = (E .Pk1, E .Pk2, E .Pk3, Z).

A outputs two tuples (m0,1, . . . ,m0,N) and (m1,1, . . . ,
m1,N) and a set S. If k ∈ S, B sends (0, 0) as its pair
of challenge messages to the IND-CPA challenger, which
returns the challenge ciphertext ct? to B. If k /∈ S, B sends
(m0,k,m1,k) as its pair of challenge messages to the IND-
CPA challenger, which returns the challenge ciphertext
ct? to B.

If k ∈ S, B sets Bltj as the challenger in the real experi-
ment would do, else B computes Bltk = (Ctk,1,Ctk,2, ct

?)
by computing Ctk,1 and Ctk,2 on input m0,j . For all
j ∈ [N](j 6= k), B computes the ballots Bltj exactly as
the challenger in both experiments would do. B computes
y using EvalTally and uses the 2 secret keys E .Sk1, E .Sk2

to compute a proof γ exactly as the challenger in both
experiments would do. B sends A the computed ballots
along with (y, γ) and returns the output of A.

It is easy to see that, if ct? is an encryption of m0,k and
if k /∈ S, then B simulates experiment Hk−1

2 and if ct?

is an encryption of m1,k and k /∈ S, then B simulates
experiment Hk

2 . If k ∈ S the advantage of A is 0.

Therefore, B has non-negligible probability of winning
the IND-CPA game, which contradicts the assumption
that the PKE scheme fulfills the IND-CPA property.

• Hybrid H3. Experiment H3 is identical to experiment
HN

2 except that the challenger computes the proof γ on
input a witness that contains indices (1, 3) and secret keys
(Sk1,Sk3) (precisely, the witness contains the randomness
used to compute those secret keys, but henceforth, for
simplicity, we omit this detail).
Claim D.5:

∣∣Pr
[
HN

2 = 1|Ē1
]
− Pr

[
H3 = 1|Ē1

]∣∣ is
negligible.

Proof: The proof follows from the WI property of
NIWIdec. We observe that both the randomness used to
compute (Sk1,Sk2) and the randomness used to compute
(Sk1,Sk3) constitute valid witnesses for the statement
(Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y). Additionally, we
observe that, if event Ē1 occurs, any ballot in the set S is
in both experiments either replaced by ⊥, if VerifyBallot
refuses it, or decrypted to the same value. Consequently,
the tally is identical in both experiments.

• Hybrid Hk
4 , for k = 0, . . . , N . For all k = 0, . . . , N ,

experiment Hk
4 is identical to experiment H3 except that,

for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,2 on input m1,k. Note that H0

4 is identical
to H3.
Claim D.6: For all k = 1, . . . , N , we have that∣∣Pr
[
Hk−1

4 = 1|Ē1
]
− Pr

[
Hk

4 = 1|Ē1
]∣∣ is negligible.

Proof: The proof is identical to the one for Claim D.4
except that the third index and the second index are
swapped.

• Hybrid H5. Experiment H5 is identical to experiment
HN

4 except that the challenger computes the proof γ on
input a witness that contains indices (2, 3) and secret keys
(Sk2,Sk3).
Claim D.7:

∣∣Pr
[
HN

4 = 1|Ē1
]
− Pr

[
H5 = 1|Ē1

]∣∣ is
negligible.

Proof: This follows straightforwardly from the WI prop-
erty of NIWIdec. We observe that both the randomness
used to compute (Sk1,Sk3) and the randomness used to
compute (Sk2,Sk3) constitute valid witnesses for the state-
ment (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y). Additionally,
we observe that, if event Ē1 occurs, any ballot in the
set S is in both experiments either replaced by ⊥, if
VerifyBallot refuses it, or decrypted to the same value.
Consequently, the tally is identical in both experiments.

• Hybrid Hk
6 , for k = 0, . . . , N . For all k = 0, . . . , N ,

experiment Hk
6 is identical to experiment H5 except that,

for all j = 1, . . . , k such that j /∈ S, the challenger
computes Ctk,1 on input m1,k. Note that H0

6 is identical
to H5.
Claim D.8: For all k = 1, . . . , N , we have that∣∣Pr
[
Hk−1

6 = 1|Ē1
]
− Pr

[
Hk

6 = 1|Ē1
]∣∣ is negligible.

Proof: The proof is identical to the one for Claim D.4
except that the third index and the first index are swapped.

• Hybrid H7. Experiment H7 is identical to experiment
HN

6 except that the challenger sets b = 1 (so that the
winning condition be computed differently) and computes
the proof γ on input a witness that contains indices (1, 2)
and secret keys (Sk1,Sk2).
Claim D.9:

∣∣Pr
[
HN

6 = 1|Ē1
]
− Pr

[
H7 = 0|Ē1

]∣∣ is
negligible.

Proof: The proof follows straightforwardly from the WI
property of NIWIdec. We observe that both the randomness
used to compute (Sk1,Sk2) and the randomness used to
compute (Sk2,Sk3) constitute valid witnesses for the state-
ment (Blt1, . . . ,BltN , E .Pk1, . . . , E .Pk3, y). Additionally,
we observe that, if event Ē1 occurs, any ballot in the
set S is in both experiments either replaced by ⊥, if
VerifyBallot refuses it, or decrypted to the same value.
Consequently, the tally is identical in both experiments.

Note that according to the proof received, an adversary
against NIWI can emulate experiment HN

6 or H7, and

return the output of A. In the first case, the probability
that A outputs 0 is exactly Pr

[
HN

6 = 1|Ē1
]

because
the winning condition is computed with respect to b = 0,
whereas in the second case it is Pr

[
H7 = 0|Ē1

]
because

the winning condition is computed with respect to b = 1.

Now, consider Equation 4 in Fig. 7. Claim D.2 and equations
2, 3 and 4 imply that Pr [Priv = 1] ≤ 1/2 + ν for some
negligible function ν. Therefore, the advantage of the adversary
is negligible and the theorem is proven.

Corollary D.10: If the Decision Linear assumption (see
Section B) holds, then there exists a private and verifiable
eVote.

Proof: Boneh et al. [41] show the existence of a PKE with
perfect correctness and unique secret key that fulfills the IND-
CPA property under the Decision Linear assumption. Groth
et al. [28] show the existence of (one-message) NIWI (with
perfect soundness) for all languages in NP and of statistically
binding commitments. Both constructions are secure under the
Decision Linear assumption. Then, because Theorem C.1 and
Theorem D.1 are proven, the corollary follows.

APPENDIX E
INSTANTIATION OF EVOTE

In this section, we describe an instantiation of our e-voting
scheme EVOTE. In Section E-A, we describe the algorithms
of our efficient instantiation without describing the details
of the one-message NIWI proofs for the relations Renc and
Rdec. The next subsections describe how we construct efficient
one-message NIWI proofs for the relations Renc and Rdec.
First, in Section E-B, we define NIWI proofs that are secure
under a trusted setup, which are used as building block of
our construction for one-message NIWI. In Section E-C, we
summarize Groth-Sahai NIWI proofs, which provide us with
NIWI proofs secure under a trusted setup for the satisfiability
of equations over bilinear groups. In Section E-D, we describe
our construction for one-message NIWI. When instantiated
with Groth-Sahai proofs, we obtain a one-message NIWI for
the satisfiability of equations over bilinear groups. We analyze
the efficiency of Groth-Sahai NIWI proofs in Section E-E.
In Section E-F, we describe a concrete instantiation of the
relations for Renc and Rdec over bilinear groups, which can be
used in our construction in Section E-A. Finally, in Section E-G,
we analyze the efficiency of our instantiation of EVOTE.

A. Algorithms of our Efficient Instantiation of EVOTE

EVOTE uses a public-key encryption scheme with algo-
rithms E = (E .Setup, E .Encrypt, E .Decrypt) with perfect
correctness and unique secret key (see Def. B.1). We use
the DLIN encryption scheme, which we recall in Section B,
in order to instantiate the public-key encryption scheme.

EVOTE also uses a perfectly binding commitment scheme
Com. We also use the DLIN encryption scheme for this purpose.
A DLIN ciphertext is used as a perfectly binding commitment.

Finally, EVOTE uses two one-message NIWI proofs for the
relations Renc and Rdec. We describe in the next sections how
to compute those NIWI proofs.

We use as tally function F =
∑N
j=1 vj , i.e., the sum of the

votes vj ∈ {0, 1}. We represent {0, 1} as 1, g ∈ G.
In Fig. 8, we describe the algorithms of our instantiation

of EVOTE. In our scheme in Section IV, the setup algorithm
consists of 3 public keys and a commitment value Z. In this
instantiation, the setup algorithm outputs an additional public
key Pk4 to be used as the parameters of the commitment
scheme used for computing Z.

B. NIWI Proofs Secure Under a Trusted Setup

The following definitions are taken from [32]. Let R be
a polynomial time computable binary relation. For tuples
(gk, x ,w) ∈ R, we call gk the public parameter, x the instance
and w the witness. Let L be the NP-language consisting
of the instances x for which witnesses w exist such that
(gk, x ,w) ∈ R.

Definition E.1: [NIWI proof system in the CRS model] A
NIWI proof system in the CRS model for the relation R consists
of four algorithms NIWISetup, NIWIKeygen, NIWIProve and
NIWIVerify. On input a security parameter 1k, NIWISetup(1k)
outputs a setup (gk, sk) consisting of the public parameter
gk and the secret parameter sk. (For example, in Groth-
Sahai proofs, gk is a public parameter that represents the
description of a pairing group setup.) NIWIKeygen(gk, sk)
outputs a common reference string crs . NIWIProve(gk, crs,
w , x) checks whether (gk, x ,w) ∈ R and if so outputs a proof
π. NIWIVerify(gk, crs, x , π) outputs 1 if π is a valid proof
that x ∈ L, or 0 if that is not the case. A NIWI system must
fulfill the following properties.
• Completeness: Completeness requires that algorithm

NIWIVerify accepts the proofs computed by algorithm
NIWIProve. More formally, for all (gk,w , x) ∈ R, the
completeness property is defined as follows:

Pr


(gk, sk)← NIWISetup(1k);
crs ← NIWIKeygen(gk, sk);
π ← NIWIProve(gk, crs,w , x) :
1 = NIWIVerify(gk, crs, x , π)

 = 1.

• Perfect Soundness: For every non-uniform adversary A,
it holds that:

Pr


(gk, sk)← NIWISetup(1k);
crs ← NIWIKeygen(gk, sk);
(x , π)← A(gk, crs) :
NIWIVerify(gk, crs, x , π) = 0 ∧ x /∈ L

 = 1.

Computational soundness holds against any non-uniform
PPT adversary A.

• Composable witness indistinguishability: The standard
definition of witness indistinguishability requires that
proofs computed on input different witnesses for the same
instance are computationally indistinguishable. Compos-
able witness indistinguishability also requires that there
is a simulator S that generates a simulated common

Pr
[
H

Z
= 1|Ē1

]
=

Pr
[
H

Z
= 1|Ē1 ∧ b = 0

]
Pr [b = 0] + Pr

[
H

Z
= 1|Ē1 ∧ b = 1

]
Pr [b = 1] =

= 1/2 ·
(
Pr
[
H

Z
= 1|Ē1 ∧ b = 0

]
+ Pr

[
H

Z
= 1|Ē1 ∧ b = 1

])
=

(since H1 is identically distributed to H
Z with bit b = 0 and H7 to H

Z with b = 1)

= 1/2 ·
(
Pr
[
H1 = 1|Ē1

]
+ Pr

[
H7 = 1|Ē1

])
=

= 1/2 + 1/2 ·
(
Pr
[
H1 = 1|Ē1

]
− Pr

[
H7 = 0|Ē1

])
=

(since H1 (resp. H3, H5) is identically distributed to H
0
2 (resp. H0

4 , H
0
6))

= 1/2 + 1/2 · (
N−1∑
k=0

(Pr
[
H

k
2 = 1|Ē1

]
− Pr

[
H

k+1
2 = 1|Ē1

]
) + (Pr

[
H

N
2 = 1|Ē1

]
− Pr

[
H

0
4 = 1|Ē1

]
)+

N−1∑
k=0

(Pr
[
H

k
4 = 1|Ē1

]
− Pr

[
H

k+1
4 = 1|Ē1

]
) + (Pr

[
H

N
4 = 1|Ē1

]
− Pr

[
H

0
6 = 1|Ē1

]
)+

N−1∑
k=0

(Pr
[
H

k
6 = 1|Ē1

]
− Pr

[
H

k+1
6 = 1|Ē1

]
) + (Pr

[
H

N
6 = 1|Ē1

]
− Pr

[
H7 = 0|Ē1

]
)) ≤

≤ 1/2 + 1/2 · |(
N−1∑
k=0

(Pr
[
H

k
2 = 1|Ē1

]
− Pr

[
H

k+1
2 = 1|Ē1

]
) + (Pr

[
H

N
2 = 1|Ē1

]
− Pr

[
H

0
4 = 1|Ē1

]
)+

N−1∑
k=0

(Pr
[
H

k
4 = 1|Ē1

]
− Pr

[
H

k+1
4 = 1|Ē1

]
) + (Pr

[
H

N
4 = 1|Ē1

]
− Pr

[
H

0
6 = 1|Ē1

]
)+

N−1∑
k=0

(Pr
[
H

k
6 = 1|Ē1

]
− Pr

[
H

k+1
6 = 1|Ē1

]
) + (Pr

[
H

N
6 = 1|Ē1

]
− Pr

[
H7 = 0|Ē1

]
))| ≤

(by the triangle inequality)

≤ 1/2 + 1/2 · (
N−1∑
k=0

|Pr
[
H

k
2 = 1|Ē1

]
− Pr

[
H

k+1
2 = 1|Ē1

]
| + |(Pr

[
H

N
2 = 1|Ē1

]
− Pr

[
H

0
4 = 1|Ē1

]
)|+

N−1∑
k=0

|Pr
[
H

k
4 = 1|Ē1

]
− Pr

[
H

k+1
4 = 1|Ē1

]
| + |Pr

[
H

N
4 = 1|Ē1

]
− Pr

[
H

0
6 = 1|Ē1

]
|+

N−1∑
k=0

|Pr
[
H

k
6 = 1|Ē1

]
− Pr

[
H

k+1
6 = 1|Ē1

]
| + |Pr

[
H

N
6 = 1|Ē1

]
− Pr

[
H7 = 0|Ē1

]
|) ≤

(by Claims D.4 - D.9)

≤ 1/2 + 1/2 · 3k · negl, where negl is the sum of the negligible functions guaranteed by Claims D.4 - D.9.

(4)

Fig. 7. Equation 4

reference string that is indistinguishable from a real one.
Additionally, on a simulated common reference string
there is no information to distinguish witnesses that might
have been used to construct the proof. More formally, there
exists a PPT simulator S such that for all non-uniform
PPT adversaries A, it holds that:

∣∣Pr

 (gk, sk)← NIWISetup(1k);
crs ← NIWIKeygen(gk, sk) :
A(gk, crs) = 1

−
Pr

 (gk, sk)← NIWISetup(1k);
crs ← S(gk, sk) :
A(gk, crs) = 1

∣∣ ∈ negl(k).

Moreover, for all non-uniform adversaries A, it holds that:

∣∣Pr


(gk, sk)← NIWISetup(1k);
crs ← S(gk, sk);
(x ,w0,w1)← A(gk, crs);
π ← NIWIProve(gk, crs, x ,w0) :
A(π) = 1 ∧ (gk, x ,w0) ∈ R

−

Pr


(gk, sk)← NIWISetup(1k);
crs ← S(gk, sk);
(x ,w0,w1)← A(gk, crs);
π ← NIWIProve(gk, crs, x ,w1) :
A(π) = 1 ∧ (gk, x ,w1) ∈ R

∣∣ = 0.

C. Groth-Sahai NIWI Proofs

Groth and Sahai [32] show how to compute NIWI proofs
under a trusted setup (i.e., in the CRS model) for satisfiability of
equations over bilinear groups. The Groth-Sahai non-interactive
system can be instantiated in two settings (based on the DLIN
assumption): in the “binding” setting, it fulfills the perfect
soundness and composable witness indistinguishability proper-
ties, whereas in the “hiding” setting it fulfills computational
soundness and composable witness indistinguishability (actually
more).

Let us describe the instantiation of Groth-Sahai NIWI proofs
in the CRS model based on the DLIN assumption in both

• Setup(1λ): on input the security parameter in unary, do the following.
1) Compute a bilinear map setup Γ = (p,G,Gt, e, g)← G(1λ).
2) Compute four key pairs for the DLIN encryption scheme. For l = 1 to 4, run (E .Pkl, E .Skl) ← E .Setup(Γ),

where E .Skl = (gl, fl, hl) and (E .Skl) = (xl, yl).
3) Compute a perfectly binding commitment Z to 1. We use a DLIN encryption of 1, i.e., we run Z ←
E .Encrypt(E .Pk4, g), where Z = (a, b, c). Note that we represent 1 as g ∈ G.

4) Output Pk← (Γ, E .Pk1, . . . , E .Pk4, Z) and Sk← (E .Sk1, E .Sk2).
• Cast(Pk, j, v): on input the public key Pk, the voter index j ∈ [N], and a vote v, do the following.

1) Check that v is in {1, g} ∈ G. We remark that, in this instantiation example, we do not consider the possibility
of encrypting ⊥.

2) For all l ∈ [3], compute Ctj,l = Encrypt(E .Pkl, v), where Ctj,l = (aj,l, bj,l, cj,l).
3) Compute a one-message NIWI πj for the relation Renc. We describe a construction for one-message NIWI in

Section E-D and we describe an instantiation of the relation Renc over bilinear groups in Section E-F.
4) Output Bltj = (Ctj,1, . . . ,Ctj,3, πj).

• VerifyBallot(Pk, j,Blt): on input the public key Pk, the voter index j ∈ [N], and a ballot Blt, verify the proof πj in
the ballot by using the verification algorithm of our one-message NIWI construction in Section E-D for the relation
Renc over bilinear groups in Section E-F. Output the verification result.

• EvalTally(Pk,Sk,Blt1, . . . ,BltN): on input the public key Pk, the secret key Sk, and N strings (Blt1, . . . ,BltN) that
can be either ballots cast by a voter or the special symbol ⊥, do the following.

1) For all j ∈ [N], if VerifyBallot(Pk, j,Bltj) = ⊥, set Bltj = ⊥. If, for all j ∈ [N], Bltj = ⊥, then output
(y = ⊥, γ = ⊥).

2) For all j ∈ [N], l ∈ [2], set mj,l ← E .Decrypt(Ctj,l, E .Skl). Recall that in this instantiation example, we do not
consider the possibility of encrypting ⊥.

3) For all l ∈ [2], compute yl =
∏N
j=1mj,l. Recall that we encode the votes {0, 1} in the exponent and thus,

for each l ∈ [2], yl should correspond to g
∑
vj , where the sum is over the voters whose ballots passed the

verification ballot test.
∑
vj can be computed (by brute force) by doing dloggyl.

4) If y1 = y2 then set y = y1, else set y = ⊥.
5) Compute a one-message NIWI γ for the relation Rdec. We describe a construction for one-message NIWI in

Section E-D and we describe an instantiation of the relation Rdec over bilinear groups in Section E-F.
6) Output (y, γ).

• VerifyTally(Pk,Blt1, . . . ,BltN , y, γ): on input the public key Pk = (Γ, E .Pk1, . . . , E .Pk4, Z), N strings that can be
either ballots cast by a voter or the special symbol ⊥, a tally y and a proof γ of tally correctness, do the following.

1) If there exist two indices i1, i2 ∈ [3] such that i1 6= i2 and E .Pki1 = E .Pki2 return ⊥. This step is necessary
because in our instantiation of Rdec we do not directly enforce that the two secret keys given as witness for
the relation correspond to different indices. However, our equations are satisfied if and only if both of the two
secret keys correspond to one of the public keys E .Pk1, E .Pk2, E .Pk3 and thus, as DLIN encryption enjoys the
property of unique secret key, verifying that there are no two equal public keys guarantees that the two secret
keys that satisfy the relation are for two different indices.

2) For all j ∈ [N], if VerifyBallot(Pk, j,Bltj) = ⊥, set Bltj = ⊥.
3) If y 6= ⊥, then verify the proof γ by using the verification algorithm of our one-message NIWI construction in

Section E-D for the relation Rdec over bilinear groups in Section E-F. Output the verification result.
4) If y = ⊥, then, if for all j ∈ [N],Bltj = ⊥, output OK, else output ⊥.

Fig. 8. Our efficient instantiation of eVote EVOTE

settings. Let (p,G,Gt, e, g) be a pairing group setup. Let
X1, . . . , Xm ∈ G and x1, . . . , xm′ ∈ Zp be variables. Groth
and Sahai show how to compute proofs for the following types
of equations:

• Pairing product equation. A pairing product equation is
an equation of the form

m∏
i=1

e(Xi, Bi)

m∏
i=1

m∏
j=1

e(Xi, Xj)
λij = e(R,S)

with constants Bi, R, S ∈ G and λij ∈ Zp.
• Multi-scalar multiplication equation. A multi-scalar multi-

plication equation is an equation of the form

m′∏
i=1

Bxi
i

m∏
i=1

Xbi
i

m∏
i=1

m′∏
j=1

X
xiλij

i = T

with constants Bi, T ∈ G and bi, λij ∈ Zp.
• Quadratic equation. A quadratic equation is an equation

of the form

m′∑
i=1

xibi +

m′∑
i=1

m′∑
i=1

λijxixj ≡ t mod p

with constants bi, λij , t ∈ Zp.

We remark that, in our instantiation, we will only consider
pairing product equations and thus we do not need to take into
account the issues pointed out by Ghadafi et al. [43].

It is possible to compute a proof of the disjunction of two or
more pairing product equations [82]. Consider a simple example
of two pairing product equations e(X0, B0) = e(R0, S0) and
e(X1, B1) = e(R1, S1) where X0, X1 ∈ G are variables and
B0, R0, S0, B1, R1, S1 ∈ G are constants. We wish to prove
satisfiability of either the first or the second equation.

(The reader may notice that when the constants are different
from 1, any instance B0, R0, S0, B1, R1, S1 ∈ G belongs to
the language defined by the relation. Therefore, the trivial non-
interactive system that outputs an empty proof and verifies it
in the obvious way would be a valid NIWI proof system that
satisfies completeness, soundness and WI. Nevertheless, this
example is instructive to understand disjunctive proofs and can
be generalized to any kind of equation.)

To this end, we add two new variables ∆0 and ∆1 and
an equation e(∆0, g) · e(∆1, g) = e(g, g). This equation
guarantees that at least one of (∆0,∆1) does not equal 1.
If ∆0 6= 1, we prove satisfiability of the equation e(X0, B0) =
e(R0, S0). If ∆1 6= 1, we prove satisfiability of the equation
e(X1, B1) = e(R1, S1). We also add two variables δ0 and
δ1 and two equations e(∆0, δ0) · e(∆−1

0 , R0) = 1 and
e(∆1, δ1) · e(∆−1

1 , R1) = 1. The first equation guarantees
that, if ∆0 6= 1, then δ0 = R0, whereas, if ∆0 = 1, we can
set δ0 = 1. The second equation guarantees that, if ∆1 6= 1,
then δ1 = R1, whereas, if ∆1 = 1, we can set δ1 = 1.
Finally, we replace R0 and R1 by δ0 and δ1 respectively in

the original equations. In summary, the OR proof is a proof
for the following relation:

R ={(w , x) :

e(∆0, g) · e(∆1, g) = e(g, g) ∧
e(∆0, δ0) · e(∆−1

0 , R0) = 1 ∧
e(∆1, δ1) · e(∆−1

1 , R1) = 1 ∧
e(X0, B0) = e(δ0, S0) ∧ e(X1, B1) = e(δ1, S1)}

Groth-Sahai proofs are proofs about committed values. In
order to compute a proof, first one must compute commitments
to the variables X1, . . . , Xm ∈ G and x1, . . . , xm′ ∈ Zp. To
this end, the common reference string includes a commitment
key. There are two types of keys: a perfectly binding key, which
allows the computation of perfectly binding commitments, and a
perfectly hiding key, which allows the computation of perfectly
hiding commitments. A common reference string contains
a key for one of the types. The witness-indistinguishability
property of Groth-Sahai proofs holds under the assumption
that a perfectly binding key and a perfectly hiding key are
computationally indistinguishable.

In the instantiations of Groth-Sahai proofs based on the
DLIN assumption, these commitment keys are computed as
follows. Pick random x, y ← Zp and compute f ← gx and
h← gy . Pick random r, s ∈ Zp and compute u← fr, h← hs

and w ← gr+s. A perfectly binding key is (g , f, h, u, v, w),
while a perfectly hiding key is (g , f, h, u, v, wg−1). Thus, in
the Groth-Sahai proof system, we define a common reference
string generator NIWIKeygenb for the binding setting and
a common reference string generator NIWIKeygenh for the
hiding setting. Moreover, in the binding setting, the system
has perfect soundness.

A commitment to a variable X ∈ G is computed as
follows. Pick random s1, s2, s3 ← Zp. A perfectly binding
commitment is C = (fs1us3 , hs2vs3 , Xgs1+s2ws3), which is
a DLIN encryption of X . A perfectly hiding commitment is
C = (fs1us3 , hs2vs3 , Xg−s3gs1+s2ws3).

A commitment to a variable x ∈ Zp is computed as follows.
Pick random s1, s2 ← Zp. A perfectly binding commitment is
(uxfs1 , vxhs2 , wxgxgr1+r2). A perfectly hiding commitment
is (uxfs1 , vxhs2 , wxgr1+r2).

D. One-message NIWI for the Satisfiability of Equations Over
Bilinear Groups

We give a construction of a one-message NIWI for satisfiabil-
ity of equations over bilinear groups. We follow the construction
in [83]. In [83], a one-message NIWI for CircuitSat is
constructed by using as building blocks two NIZK proofs
for CircuitSat. The NIZK proofs use two correlated common
reference strings (CRS) and the verifier can check that at least
one of them contains a perfectly binding commitment key. The
prover computes one NIZK proof for each of the common
reference strings. Perfect soundness is guaranteed by the fact
that one of the common reference strings contains a perfectly
binding commitment key. The common reference string that

contains a perfectly hiding commitment key allows one to
prove witness indistinguishability.

The one-message NIWI for CircuitSat in [83] can be used to
construct NIWI proofs for the relations Renc and Rdec. However,
the resulting NIWI proofs are inefficient.

In [32], Groth and Sahai provide NIWI and NIZK proofs for
the satisfiability of equations over bilinear groups. The NIWI
proofs in [32] use a CRS as trust assumption, and therefore
we cannot use them directly to construct NIWI proofs for the
relations Renc and Rdec. However, we observe that the NIWI
and NIZK proofs in [32] are also computed by using two types
of CRS: one type contains a perfectly binding commitment
key and the other one a perfectly hiding commitment key.
Moreover, as in [83], both CRS are indistinguishable but it is
possible to check that at least one of the commitment keys
is perfectly binding. Consequently, our idea is to construct
a one-message NIWI for the satisfiability of equations over
bilinear groups by using as building blocks two Groth-Sahai
NIWI proofs, one with a CRS that contains a perfectly binding
commitment key and another one with a CRS that contains
a perfectly hiding commitment key. We remark that, in [83],
the prover computes two NIZK proofs instead of NIWI proofs,
but we observe that witness-indistinguishability is sufficient.
Ràfols [84] already observed that Groth-Sahai proofs can be
boosted to non-interactive zaps.

Let R be a relation for which Groth-Sahai NIWI proofs
can be computed. Let NIWI = (NIWISetup,NIWIKeygenb,
NIWIKeygenh,NIWIProve,NIWIVerify) be the algorithms of
a Groth-Sahai NIWI proof system for relation R. NIWI has
verifiable correlated key generation if there exist two efficient
algorithms K and V with the following properties. We require
perfect correctness, i.e., V always accepts the output of
K given that gk and sk are honestly generated. We also
require soundness, i.e., that for all strings gk, sk, crs0, crs1

if V (crs0, crs1) = 1 then either crs0 is a perfectly binding
key associated with public parameter gk or crs1 is a perfectly
binding key associated with public parameter gk. Furthermore,
we require that, given (gk, sk)← NIWISetup(1k), K(gk, sk)
outputs two strings crs0 and crs1 such that crs0 (resp. crs1)
has the same distribution of the common reference strings out-
put by NIWIKeygenb(gk, sk) (resp. NIWIKeygenh(gk, sk)).

In Groth et al. [83], it is shown how to achieve verifiable
correlated key generation. Essentially, Groth et al. generate
two commitment keys crs0 and crs1 that are the same strings,
except for the last elements w0, w1 for which it has to hold that
w1 = w0 ·g. (We note that it can be efficiently verified whether
a bilinear setup has been generated correctly and that in our
case we do not require that K also outputs a trapdoor.) We
observe that the common reference string of Groth-Sahai proofs,
when instantiated based on the DLIN assumption, contains a
commitment key that is equal to the commitment key in [83],
and so the property of verifiable correlated key generation also

holds for Groth-Sahai proofs.9

We describe now the algorithms (ProveR,VerifyR) defined
in Section B of a one-message NIWI proof system (without
CRS) for satisfiability of equations over bilinear groups.
ProveR and VerifyR receive as input (gk, sk) output by
NIWISetup(1k). In our instantiation of EVOTE in Section E-A,
gk is replaced by the pairing group setup Γ contained in the
public key Pk← (Γ, E .Pk1, . . . , E .Pk4, Z), while sk is ⊥. Let
(gk, x ,w) belong to R.
• ProveR(gk, sk, x ,w): On input the setup (gk, sk), the

instance x and the witness w , do the following:
1) Compute two common reference strings (crs0, crs1)
← K(gk, sk).

2) Compute a proof π0 ← NIWIProve(gk, crs0, x ,w).
3) Compute a proof π1 ← NIWIProve(gk, crs1, x ,w).
4) Output the proof π ← (crs0, crs1, π0, π1).

• VerifyR(gk, sk, x , π): On input the setup (gk, sk), the
instance x and the proof π, do the following:

1) Output ⊥ if 0 = V (gk, sk, crs0, crs1).
2) Output ⊥ if 0 = NIWIVerify(gk, crs0, x , π0).
3) Output ⊥ if 0 = NIWIVerify(gk, crs1, x , π1).
4) Else, output OK.

We follow the reasoning in [83] to show that this one-
message NIWI fulfills the properties of perfect completeness,
perfect soundness and computational witness indistinguishabil-
ity but we simplify the analysis for the latter property.
Completeness. The protocol is perfectly complete because the
NIWI proofs for the satisfiability of equations over bilinear
groups are perfectly complete both on perfectly binding keys
and perfectly hiding keys and the verifiable correlated key
generation has perfect correctness.
Soundness. Perfect soundness follows from the fact that if
V (gk, sk, crs0, crs1) = 1, then either crs0 or crs1 must be
a perfectly binding key. The perfect soundness of the proof
system over this CRS then implies that the equations must be
satisfiable.
WI. We now argue that our one-message NIWI is computation-
ally witness indistinguishable assuming verifiable correlated
key generation for the homomorphic proof commitment scheme
by means of a hybrid argument. The adversary generates an
instance x and two witnesses w0 and w1.

1) Hybrid 1. This corresponds to an experiment in which
the keys are generated using K(gk, sk) and the proof is
computed with witness w0.

2) Hybrid 2. The second hybrid proceeds as the first, except
that crs0 is generated using the simulator guaranteed
by the composable witness indistinguishability of NIWI.
The computational indistinguishability of hybrid 1 and 2
follows from the composable witness indistinguishability
of NIWI.

9We note that the perfectly binding commitment key (resp. perfectly hiding
commitment key) in [83] is the perfectly hiding commitment key (resp. perfectly
binding commitment key) in [32]. The reason is the way the commitments are
computed in [83] and in [32]. Nevertheless, the arguments to show that the
commitment keys satisfy the property of verifiable correlated key generation
given in [83] also hold for [32].

3) Hybrid 3. The third hybrid proceeds as the first, except
that π0 is generated by using witness w1 instead of
using witness w0. Hybrid 2 and Hybrid 3 are identically
distributed; this follows from the composable witness
indistinguishability of NIWI on simulated common ref-
erence string.

4) Hybrid 4. The fourth hybrid proceeds as the third, except
that crs1 is generated using the simulator guaranteed
by the composable witness indistinguishability of NIWI.
The computational indistinguishability of hybrid 3 and 4
follows from the composable witness indistinguishability
of NIWI.
(Actually, if we used the fact that crs1 is a key for a
perfectly hiding commitment, we could conclude that
the two experiments are identically distributed but here
we are using the composable witness indistinguishability
without taking advantage of the two settings.)

5) Hybrid 5. The fifth hybrid proceeds as the fourth, except
that π1 is generated by using witness w1 instead of w0.
Hybrid 4 and Hybrid 5 are identically distributed; this
follows from the composable witness indistinguishability
of NIWI on simulated common reference string. The
computational indistinguishability of hybrid 3 and 4
follows from the composable witness indistinguishability
of NIWI.

The indistinguishability of the above hybrid experiments
implies the computational witness indistinguishability of NIWI.

E. Efficiency of Groth-Sahai NIWI proofs based on DLIN

We describe the computation and communication cost of
Groth-Sahai NIWI proofs based on DLIN. For a paring group
setup Γ = (p,G,Gt, e, g) ← G(1λ), let |G|, |Gt| and |Zp|
denote the bit size of elements of G, Gt and Zp respectively.
We denote by |exp|, |mul| and |map| the time in seconds needed
to compute an exponentiation, a multi-exponentiation and a
bilinear map respectively. We omit faster operations such as
multiplication.

We focus our analysis on pairing product equations because
this is the type of equation used in the relations Renc and Rdec

described in Section E-F.
We distinguish two types of pairing product equation: linear

and quadratic. For variables X1, . . . , Xm ∈ G, a linear pairing
product equation is of the form

m∏
i=1

e(Xi, Bi) = e(R,S)

with constants Bi, R, S ∈ G.
For variables X1, . . . , Xm ∈ G, a quadratic pairing product

equation is of the form
m∏
i=1

e(Xi, Bi)

m∏
i=1

m∏
j=1

e(Xi, Xj)
λij = e(R,S)

First, we analyze the size of the proof. The common reference
string consists of 6 group elements. The size of two correlated
common reference strings, i.e., two common reference strings

where one contains a perfectly hiding commitment key and
the other one a perfectly binding commitment key and that
share all the elements except the last one, is 7 · |G|. The size
of a proof is independent of whether they are computed on
input a perfectly binding or a perfectly hiding commitment
key. For a relation that involves K linear pairing product
equations, a proof γ = (d̄, φ̄) consists of a vector d̄ of m
commitments to the variables X1, . . . , Xm and a vector φ̄
of dimension K, where each component consists of three
group elements. Therefore, the size of the proof for a relation
with m variables and K linear pairing product equations is
3(m+K) · |G|. For a relation that involves K quadratic pairing
product equations, a proof γ = (d̄, φ̄) consists of a vector of
m commitments to the variables X1, . . . , Xm and a vector φ̄
of dimension K, where each component is a matrix of group
elements of dimension 3× 3. Therefore, the size of the proof
is (3m+ 9K) · |G|. If a relation with m variables combines
K1 linear equations and K2 quadratic equations, the size of
the proof is (3(m+K1) + 9K2) · |G|.

We analyze now the computation cost. The computation
time of two correlated common reference strings is 5 · |exp|.
The computation time of a proof is independent of whether it
is computed on input a perfectly binding or a perfectly hiding
commitment key.

For a linear pairing product equation with variables X1, . . . ,
Xm and constants B1, . . . , Bm, a proof γ = (d̄, φ̄) consists
of a vector d̄ of m commitments to the variables X1, . . . , Xm

and a vector φ̄. The computation time of the commitments d̄
is (3m) · |mul|. The computation time of φ̄ is 3 · |mul|. (We
note that the complexity of each of the multi-exponentiations
needed to compute φ̄ depends on m.) The verification time of a
linear pairing product equation is (3m+9) · |map|. If a relation
contains K equations and m variables, the computation time of
φ̄ and the verification time for each of the equations depends
on the number of variables m′ ≤ m that are actually involved
in each of the equations.

For a quadratic pairing product equation, a proof γ = (d̄, φ̄)
consists of a vector d̄ of m commitments to the variables
X1, . . . , Xm and a vector φ̄. The computation time of the
commitments d̄ is (3m) · |mul|. The computation time of φ̄
is (24) · |mul|. (We note that the complexity of some of the
multi-exponentiations needed to compute φ̄ depends on m.)
The verification time is (3m + 9n + 27) · |map|, where we
denote by m the number of pairings in the equation that take
as input one variable and by n the number of pairings in the
equation that take as input two variables.

F. Groth-Sahai NIWI Proofs for Renc and Rdec

Groth-Sahai NIWI Proofs for Renc. We describe an in-
stantiation of the relation Renc as a set of pairing product
equations over bilinear groups. Groth-Sahai NIWI proofs for
this instantiation exist. For clarity of exposition, we describe
first a simple relation, which we augment step by step until
showing the instantiation of relation Renc.

Consider the DLIN public key encryption scheme. Let
Γ = (p,G,Gt, e, g) be a paring product setup. Let E .Pk ←

Witness: w = (∆2,∆3, α4, β4, δ30, δ31, δ32, [αl, βl,ml, δ20l, δ21l, δ22l]
3
l=1, δ2,∆0,∆1, δ00, δ01, δ02, δ10, δ11, δ12)

Instance: x = (Γ, [gl, fl, hl, al, bl, cl]
4
l=1)

Renc ={(w , x) :

e(∆2, g) · e(∆3, g) = e(g, g) ∧ e(∆−1
3 , δ30) · e(∆3, a4) = 1 ∧

e(∆−1
3 , δ31) · e(∆3, b4) = 1 ∧ e(∆−1

3 , δ32) · e(∆3, c4) = 1 ∧
e(f4, α4) = e(δ30, g4) ∧ e(h4, β4) = e(δ31, g4) ∧
e(g, α4) · e(g, β4) = e(g, δ32) ∧ e(∆−1

2 , δ2) · e(∆2, g) = 1 ∧
3∧
l=1

[e(∆−1
2 , δ20l) · e(∆2, al) = 1 ∧ e(∆−1

2 , δ21l) · e(∆2, bl) = 1 ∧

e(∆−1
2 , δ22l) · e(∆2, cl) = 1 ∧

e(fl, αl) = e(δ20l, gl) ∧ e(hl, βl) = e(δ21l, gl) ∧
e(g, αl) · e(g, βl) · e(g,ml) = e(g, δ22l)] ∧
e(g,m1) · e(g−1,m2) = 1 ∧ e(g,m1) · e(g−1,m3) = 1 ∧
e(∆0, g) · e(∆1, g) = e(δ2, g) ∧
e(∆−1

0 , δ00) · e(∆0, c1) = 1 ∧ e(∆−1
0 , δ01) · e(∆0, α1) = 1 ∧

e(∆−1
0 , δ02) · e(∆0, β1) = 1 ∧ e(g, δ01) · e(g, δ02) = e(δ00, g) ∧

e(∆−1
1 , δ10) · e(∆1, g

−1c1) = 1 ∧ e(∆−1
1 , δ11) · e(∆1, α1) = 1 ∧

e(∆−1
1 , δ12) · e(∆1, β1) = 1 ∧ e(g, δ11) · e(g, δ12) = e(δ10, g)}

Fig. 9. Relation Renc

R1 ={(w , x) :

e(f, α) = e(a, g) ∧ e(h, β) = e(b, g) ∧
e(g, α) · e(g, β) · e(g,m) = e(g, c)}

Fig. 10. Relation R1.

(Γ, g, f, h) be the public key and E .Sk← (x, y) be the secret
key such that f = g1/x and h = g1/y. Let C = (a, b, c) =
(fr, hs, gr+s ·m) be a DLIN ciphertext, which can be decrypted
by computing m← c/(axby).

Consider the following relation R1 in Fig. 10. The witness
is w = (α, β,m) for α = gr and β = gs, and the instance is
x = (Γ, g, f, h, a, b, c). This relation is fulfilled by the message
m encrypted in the ciphertext (a, b, c).

In Renc, we need to prove that three ciphertexts (a1, b1, c1),
(a2, b2, c2) and (a3, b3, c3) encrypt the same message. For l = 1
to 3, each of the ciphertexts (al, bl, cl) is computed on input

R2 ={(w , x) :
3∧
l=1

[e(fl, αl) = e(al, gl) ∧

e(hl, βl) = e(bl, gl) ∧
e(g, αl) · e(g, βl) · e(g,ml) = e(g, cl)] ∧
e(g,m1) · e(g−1,m2) = 1 ∧
e(g,m1) · e(g−1,m3) = 1}

Fig. 11. Relation R2.

a different public key E .Pkl = (Γ, gl, fl, hl).10 Consider the
following relation R2 in Fig. 11. The witness is w = [αl,
βl,ml]

3
l=1 and the instance is x = (Γ, [gl, fl, hl, al, bl, cl]

3
l=1).

This relation is satisfied if m1 = m2 = m3.
In Renc, we need to prove that the encrypted message is in the

10For the sake of clarity, we include in each public key a different element
gl but note that, according to the description of the DLIN encryption scheme
presented in Section B, all gl’s values correspond to the same group element
g that is contained in Γ.

R3 ={(w , x) :

[e(fl, αl) = e(al, gl) ∧ e(hl, βl) = e(bl, gl) ∧
e(g, αl) · e(g, βl) · e(g,ml) = e(g, cl)]

3
l=1 ∧

e(g,m1) · e(g−1,m2) = 1 ∧
e(g,m1) · e(g−1,m3) = 1 ∧
e(∆0, g) · e(∆1, g) = e(g, g) ∧
e(∆−1

0 , δ00) · e(∆0, c1) = 1 ∧
e(∆−1

0 , δ01) · e(∆0, α1) = 1 ∧
e(∆−1

0 , δ02) · e(∆0, β1) = 1 ∧
e(g, δ01) · e(g, δ02) = e(δ00, g) ∧
e(∆−1

1 , δ10) · e(∆1, g
−1c1) = 1 ∧

e(∆−1
1 , δ11) · e(∆1, α1) = 1 ∧

e(∆−1
1 , δ12) · e(∆1, β1) = 1 ∧

e(g, δ11) · e(g, δ12) = e(δ10, g)}

Fig. 12. Relation R3.

message spaceM. We consider here the message space {0, 1},
which we represent as {1, g} ∈ G. Consider the following
relation R3 in Fig. 12. The witness is w = [αl, βl,ml]

3
l=1,∆0,

∆1, δ00, δ01, δ02, δ10, δ11, δ12) and the instance is x = (Γ, [gl,
fl, hl, al, bl, cl]

3
l=1). We introduce two variables ∆0 and ∆1.

These variables are used to compute an OR proof of pairing
product equations as described in Section E-C. When ∆0 6= 1,
relation R3 is satisfied if m1 = 1, whereas if ∆1 6= 1, relation
R3 is satisfied if m1 = g. If ∆0 6= 1, the variables (δ00, δ01,
δ02) must equal (c1, α1, β1), else we can set (δ00, δ01, δ02) =
(1, 1, 1). Similarly, if ∆1 6= 1, the variables (δ10, δ11, δ12) must
equal (g−1c1, α1, β1), else we can set (δ10, δ11, δ12) = (1, 1,
1).

We show in Figure 9 our instantiation of relation Renc over
bilinear groups. Renc involves a disjunction of two relations.
One of them is R3. The other relation involves showing that the
commitment Z in the public key is a commitment to 0, which
we represent as 1 ∈ G. As described in Section E-A, the public
key Pk ← (Γ, E .Pk1, . . . , E .Pk4, Z) contains a commitment
Z to the bit 1 (not to be confused with the identity of the
group), which we represent as g ∈ G. (We recall that this
part of the disjunction is the “trapdoor mode”.) Z is a DLIN
ciphertext (a4, b4, c4) computed on input a DLIN public key
E .Pk4 = (Γ, g4, f4, h4).

We introduce the variables ∆2 and ∆3. If ∆2 6= 1, we are in
the real mode, where we prove relation R3, i.e., that the three
ciphertexts encrypt the same message and that the message is
in 1, g ∈ G. When ∆2 6= 1, the variables [δ20l, δ21l, δ22l]

3
l=1

must equal [al, bl, cl]
3
l=1 and the variable δ2 must equal g. If

∆3 6= 1, we are in the trapdoor mode, where we prove that
the commitment (a4, b4, c4) is a commitment to 1 ∈ G. When

∆3 6= 1, the variables (δ30, δ31, δ32) must equal (a4, b4, c4).
Groth-Sahai NIWI Proofs for Rdec. We describe an in-
stantiation of the relation Rdec as a set of pairing product
equations over bilinear groups. Groth-Sahai NIWI proofs for
this instantiation exist. For clarity of exposition, we describe
first a simple relation, which we augment step by step until
showing the instantiation of relation Rdec.

Consider the DLIN public key encryption scheme. Let Γ =
(p,G,Gt, e, g) be a paring product setup. Let E .Pk← (Γ, g,
f, h) be the public key and E .Sk ← (x, y) be the secret key
such that f = g1/x and h = g1/y. Let C = (a, b, c) = (fr,
hs, gr+s ·m) be a DLIN ciphertext, which can be decrypted
by computing m← c/(axby).

Consider the following relation R1 in Fig. 14. The witness
is w = (α, β,m) for α = ax and β = by, and the instance is
x = (Γ, g, f, h, a, b, c). This relation is fulfilled by the message
m obtained by decrypting the ciphertext (a, b, c).

In Rdec, we need to prove that the encrypted message is in the
message spaceM. We consider here the message space {0, 1},
which we represent as {1, g} ∈ G. Consider the following
relation R2 in Fig. 15. The witness is w = (α, β,m,∆0,∆1,
δ00, δ01, δ02, δ10, δ11, δ12) and the instance is x = (Γ, g, f, h,
a, b, c). We introduce two variables ∆0 and ∆1. When ∆0 6= 1,
relation R2 is satisfied if m = 1, while if ∆1 6= 1, relation R2

is satisfied if m = g. If ∆0 6= 1, the variables (δ00, δ01, δ02)
must equal (c1, α1, β1), else we can set (δ00, δ01, δ02) = (1,
1, 1). Similarly, if ∆1 6= 1, the variables (δ10, δ11, δ12) must
equal (g−1c1, α1, β1), else we can set (δ10, δ11, δ12) = (1, 1,
1).

In Rdec, the authority needs to prove that, given three
ciphertexts (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3), it decrypts
two of them without revealing which two ciphertexts are
decrypted. For l = 1 to 3, each of the ciphertexts (al, bl,
cl) is computed on input a different public key E .Pkl = (Γ,
gl, fl, hl). To compute this proof, we use an OR relation.
The OR relation shows that either the first and the second
ciphertexts are decrypted (case x), or that the first and the
third ciphertexts are decrypted (case y), or that the second
and the third ciphertexts are decrypted (case z). Consider the
following relation R3 in Fig. 16. Let Lx = {1, 2}, Ly = {1,
3} and Lz = {2, 3}. The witness is w = (∆x,∆y,∆z, [∆t,l,0,
∆t,l,1, δt,l,1, δt,l,2, δt,l,3, δt,l,4, αt,l, βt,l,mt,l, δt,l,00, δt,l,01,
δt,l,02, δt,l,10, δt,l,11, δt,l,12]t∈{x,y,z},l∈Lt

) and the instance is
x = (Γ, [gl, fl, hl, al, bl, cl]

3
l=1). We introduce three variables

∆x, ∆y and ∆z . If ∆t 6= 1 for t ∈ {x, y, z}, we are in case
t. When ∆t 6= 1 for t ∈ {x, y, z}, the variables [δt,l,1, δt,l,2,
δt,l,3]l∈Lt must equal (al, bl, cl)l∈Lt and δt,l,4 must equal g.
Additionally, when ∆t 6= 1 for t ∈ {x, y, z}, because then
δt,l,4 must equal g, at least one of the variables ∆t,l,0 or ∆t,l,1

does not equal 1, so the proof that the encrypted message is
in 1, g ∈ G is computed as shown in relation R2.

In Rdec, the relation R3 must be proven N times, one for each
of the ballots. Additionally, the authority must prove that the
tally y is computed following the tally function F . We use as F
the sum of the encrypted votes in {0, 1}. Because we represent
{0, 1} as 1, g ∈ G, the tally function is F =

∏N
i=jmj , where

Witness: w = (∆x,∆y,∆z, δx, δy, δz, [∆
j
t,l,0,∆

j
t,l,1, δ

j
t,l,1, δ

j
t,l,2, δ

j
t,l,3, δ

j
t,l,4, α

j
t,l, β

j
t,l,m

j
t,l, δ

j
t,l,00, δ

j
t,l,01, δ

j
t,l,02, δ

j
t,l,10,

δjt,l,11, δ
j
t,l,12]t∈{x,y,z},l∈Lt,j∈[N]|Bltj 6=⊥)

Instance: x = (Γ, [gl, fl, hl]l∈[3], [a
j
l , b

j
l , c

j
l]l∈[3],j∈[1,N]|Bltj 6=⊥, y)

Rdec ={(w , x) :

e(∆x, g) · e(∆y, g) · e(∆z, g) = e(g, g) ∧∧
t∈{x,y,z}

[

e(∆t, δt) · e(∆−1
t , y) = 1 ∧∧

l∈Lt

[
∧

j∈[N]|Bltj 6=⊥

[

e(∆t, δ
j
t,l,1) · e(∆−1

t , ajl) = 1 ∧ e(∆t, δ
j
t,l,2) · e(∆−1

t , bjl) = 1 ∧
e(∆t, δ

j
t,l,3) · e(∆−1

t , cjl) = 1 ∧ e(∆t, δ
j
t,l,4) · e(∆−1

t , g) = 1 ∧
e(αjt,l, gl) = e(δjt,l,1, fl) ∧ e(βjt,l, gl) = e(δjt,l,2, hl) ∧ e(g,mj

t,l) · e(g, αjt,l) · e(g, βjt,l) = e(g, δjt,l,3) ∧
e(∆j

t,l,0, g) · e(∆j
t,l,1, g) = e(δjt,l,4, g) ∧ e((∆j

t,l,0)−1, δjt,l,00) · e(∆j
t,l,0, cl) = 1 ∧

e((∆j
t,l,0)−1, δjt,l,01) · e(∆j

t,l,0, α
j
t,l) = 1 ∧ e((∆j

t,l,0)−1, δjt,l,02) · e(∆j
t,l,0, β

j
t,l) = 1 ∧

e(g, δjt,l,01) · e(g, δjt,l,02) = e(δjt,l,00, g) ∧ e((∆j
t,l,1)−1, δjt,l,10) · e(∆j

t,l,1, g
−1cl) = 1 ∧

e((∆j
t,l,1)−1, δjt,l,11) · e(∆j

t,l,1, α
j
t,l) = 1 ∧ e((∆j

t,l,1)−1, δjt,l,12) · e(∆j
t,l,1, β

j
t,l) = 1 ∧

e(g, δjt,l,11) · e(g, δjt,l,12) = e(δjt,l,10, g)] ∧
N∏
i=1

e(mj
t,l, g) = e(δt, g)]]}

Fig. 13. Relation Rdec

R1 ={(w , x) :

e(α, f) = e(a, g) ∧ e(β, h) = e(b, g) ∧
e(g,m) · e(g, α) · e(g, β) = e(g, c)}

Fig. 14. Relation R1.

mj is a vote. We show in Figure 13 our instantiation of relation
Rdec over bilinear groups. We introduce the variables δt for
t ∈ {x, y, z}, which equal the tally y if ∆t 6= 1.

G. Efficiency of Our Instantiation of EVOTE

In this section, we analyze the communication and com-
putational cost of our instantiation of EVOTE described in
Section E-A. For a paring group setup Γ = (p,G,Gt, e, g)←
G(1λ), let |G|, |Gt| and |Zp| denote the bit size of elements
of G, Gt and Zp respectively. We denote by |exp|, |mul| and
|map| the time in seconds needed to compute an exponentiation,

R2 ={(w , x) :

e(α, g) = e(a, f) ∧ e(β, g) = e(b, h) ∧
e(g,m) · e(g, α) · e(g, β) = e(g, c) ∧
e(∆0, g) · e(∆1, g) = e(g, g) ∧
e(∆−1

0 , δ00) · e(∆0, c) = 1 ∧
e(∆−1

0 , δ01) · e(∆0, α) = 1 ∧
e(∆−1

0 , δ02) · e(∆0, β) = 1 ∧
e(g, δ01) · e(g, δ02) = e(δ00, g) ∧
e(∆−1

1 , δ10) · e(∆1, g
−1c) = 1 ∧

e(∆−1
1 , δ11) · e(∆1, α) = 1 ∧

e(∆−1
1 , δ12) · e(∆1, β) = 1 ∧

e(g, δ11) · e(g, δ12) = e(δ10, g)}

Fig. 15. Relation R2.

R3 = {(w , x) :

e(∆x, g) · e(∆y, g) · e(∆z, g) = e(g, g) ∧∧
t∈{x,y,z}

∧
l∈Lt

[

e(∆t, δt,l,1) · e(∆−1
t , al) = 1 ∧

e(∆t, δt,l,2) · e(∆−1
t , bl) = 1 ∧

e(∆t, δt,l,3) · e(∆−1
t , cl) = 1 ∧

e(∆t, δt,l,4) · e(∆−1
t , g) = 1 ∧

e(αt,l, gl) = e(δt,l,1, fl) ∧
e(βt,l, gl) = e(δt,l,2, hl) ∧
e(g,mt,l) · e(g, αt,l) · e(g, βt,l) = e(g, δt,l,3) ∧
e(∆t,l,0, g) · e(∆t,l,1, g) = e(δt,l,4, g) ∧
e(∆−1

t,l,0, δt,l,00) · e(∆t,l,0, cl) = 1 ∧
e(∆−1

t,l,0, δt,l,01) · e(∆t,l,0, αt,l) = 1 ∧
e(∆−1

t,l,0, δt,l,02) · e(∆t,l,0, βt,l) = 1 ∧
e(g, δt,l,01) · e(g, δt,l,02) = e(δt,l,00, g) ∧
e(∆−1

t,l,1, δt,l,10) · e(∆t,l,1, g
−1cl) = 1 ∧

e(∆−1
t,l,1, δt,l,11) · e(∆t,l,1, αt,l) = 1 ∧

e(∆−1
t,l,1, δt,l,12) · e(∆t,l,1, βt,l) = 1 ∧

e(g, δt,l,11) · e(g, δt,l,12) = e(δt,l,10, g)]}

Fig. 16. Relation R3.

a multi-exponentiation and a bilinear map respectively. We
omit faster operations such as multiplication. In Table II, we
summarize the communication cost, and, in Table III, we
summarize the computational cost. We note that the tables
show the size of one ballot Bltj and the execution time of
Cast and VerifyBallot on input one ballot. Additionally, the
execution time of EvalTally and VerifyTally does not include
the N executions of VerifyBallot required to verify the ballots,
where N is the number of ballots that do not equal ⊥.

Communication Cost of EVOTE. Algorithm Setup(1λ)
outputs a public key Pk ← (Γ, E .Pk1, . . . , E .Pk4, Z) and a
secret key Sk ← (E .Sk1, E .Sk2). The pairing group setup Γ
contains 1 group element. Each public key E .Pkl (for l = 1 to
4) consists of 2 group elements (note that they share the group
element g in Γ), the commitment Z also consists of 3 group
elements, and each secret key E .Skl (for l = 1 to 2) consists
of 2 elements of Zp. The total size of the public key Pk is
12 · |G| bits. The size of the secret key Sk is 4 · |Zp| bits.

Algorithm Cast(Pk, j, v) outputs a ballot Bltj = (Ctj,1, . . . ,
Ctj,3, πj). The size of each ciphertext Ctj,l (for l = 1 to 3)
is 3 group elements. The proof πj consists of two correlated
common references strings and two Groth-Sahai NIWI proofs
for the relation Renc. The size of the two correlated common

TABLE II
COMMUNICATION COST OF EVOTE

Public key Pk 12 · |G|
Secret key Sk 4 · |Zp|
Ballot Bltj 670 · |G|
Proof γ (139 + 1836 ·N) · |G|

reference strings is 7 · |G|. The witness of Renc consists of
m = 34 elements of G. Renc consists of K1 = 18 linear
pairing product equations and K2 = 19 quadratic pairing
product equations. Therefore, the size of one proof is 327 · |G|.
The total size of πj is 661 · |G|. The size of a ballot is 670 ·
|G|.

Algorithm EvalTally(Pk,Sk,Blt1, . . . ,BltN) outputs the
tally y and the proof γ. The proof γ consists of two correlated
common references strings and two Groth-Sahai NIWI proofs
for the relation Rdec. The size of the two correlated common
reference strings is 7 · |G|. The witness of Rdec consists of
m = 6 + 90 · N elements of G, where N is the number of
ballots that do not equal ⊥. Rdec consists of K1 = 7 + 36 ·N
linear pairing product equations and K2 = 3+60 ·N quadratic
pairing product equations. Therefore, the size of one proof is
(66+918 ·N) · |G|. The total size of γ is (139+1836 ·N) · |G|.

Algorithms VerifyBallot and VerifyTally output one bit.
Computational Cost of EVOTE. Algorithm Setup(1λ) com-
putes a pairing group setup, four key pairs of the DLIN
encryption scheme and one DLIN ciphertext. Each key pair
computation requires 2 exponentiations. The DLIN ciphertext
computation requires 3 exponentiations. Therefore, the execu-
tion time is 11 · |exp| plus the execution time of G(1λ).

Algorithm Cast(Pk, j, v) outputs a ballot Bltj = (Ctj,1,
. . . ,Ctj,3, πj). The computation time of a ciphertext Ctj,l (for
l = 1 to 3) is 3 · |exp|. The proof πj consists of two correlated
common references strings and two Groth-Sahai NIWI proofs
for the relation Renc. The computation time of two correlated
common reference strings is 5 · |exp|. The witness of Renc

consists of m = 34 elements of G. Therefore, the computation
time of the commitments d̄ of each of the Groth-Sahai NIWI
proofs is 102 · |mul|. Renc consists of K1 = 18 linear pairing
product equations and K2 = 19 quadratic pairing product
equations. The computation time of φ̄ for each linear equation
is 3 · |mul| and thus the time for 18 equations is 54 · |mul|. The
computation time of φ̄ for each quadratic equation is 24 · |mul|
and thus the time for 19 equations is 456 · |mul|. In total, the
computation time of a ballot Bltj is 14 · |exp|+ 1224 · |mul|.

Algorithm VerifyBallot(Pk, j,Blt) verifies the proof πj for
relation Renc in the ballot. This implies verifying two Groth-
Sahai NIWI proofs for relation Renc. Renc consists of K1 = 18
linear pairing product equations and K2 = 19 quadratic pairing
product equations. The verification time for a linear equation
is (3m+ 9) · |map|, where m is the number of variables in the
equation. From those 18 linear equations, 11 equations contain
2 variables, 4 equations contain 3 variables, and 3 equations
contain 4 variables. Therefore, the total verification time for
the linear equations is 300 · |map|. The verification time for

TABLE III
COMPUTATIONAL COST OF EVOTE

Setup(1λ) Pk 11 · |exp|
Cast(Pk, j, v) 14 · |exp|+ 1224 · |mul|
VerifyBallot(Pk, j,Blt) 2130 · |map|
EvalTally(Pk, Sk,Blt1, . . . ,BltN) (5 + 4 ·N) · |exp|+ (222 + 3636 ·N) · |mul|
VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) (414 + 6264 ·N) · |map|

a quadratic equation is (3m + 9n + 27) · |map|, where m is
the number of linear pairings and n the number of quadratic
pairings. From the 19 quadratic equations, 15 equations have
m = 1 and n = 1 and 4 equations have m = 0 and n = 4.
Therefore, the verification time for the quadratic equations is
765 · |map|. In total, the verification time of the proof πj is
2130 · |map|.

Algorithm EvalTally(Pk,Sk,Blt1, . . . ,BltN) computes the
tally y and a proof γ for relation Rdec. The computation of y
requires decrypting 2N ciphertexts. Each ciphertext involves
2 exponentiations. The computation of γ involves computing
two correlated common references strings and two Groth-Sahai
NIWI proofs for the relation Rdec. The computation time of two
correlated common reference strings is 5 · |exp|. The witness of
Rdec consists of m = 6 + 90 ·N elements of G. Therefore, the
computation time of the commitments d̄ of each of the Groth-
Sahai NIWI proofs is (18 + 270 · N) · |mul|. Rdec consists
of K1 = 7 + 36 · N linear pairing product equations and
K2 = 3 + 60 · N quadratic pairing product equations. The
computation time of φ̄ for each linear equation is 3 · |mul|
and thus the time for 7 + 36 ·N equations is (21 + 108 ·N) ·
|mul|. The computation time of φ̄ for each quadratic equation
is 24 · |mul| and thus the time for 3 + 60 · N equations is
(72 + 1440 · N) · |mul|. In total, the computation time for a
proof γ is 5·|exp|+(111+1818·N)·|mul| and the computation
time of EvalTally(Pk,Sk,Blt1, . . . ,BltN) is (5+4 ·N) · |exp|+
(222 + 3636 ·N) · |mul|.

Algorithm VerifyTally(Pk,Blt1, . . . ,BltN , y, γ) verifies a
proof γ. This implies verifying two Groth-Sahai NIWI proofs
for relation Rdec. Rdec consists of K1 = 7 + 36 · N linear
pairing product equations and K2 = 3 + 60 · N quadratic
pairing product equations. The verification time for a linear
equation is (3m+9)·|map|, where m is the number of variables
in the equation. From those 7 + 36 ·N linear equations, 12 ·N
equations contain 2 variables, 1 + 18 ·N equations contain 3
variables, 6 ·N equations contain 4 variables, and 6 equations
contain N + 1 variables. Therefore, the total verification time
for the linear equations is (90+648·N)·|map|. The verification
time for a quadratic equation is (3m+9n+27)·|map|, where m
is the number of linear pairings and n the number of quadratic
pairings. From those 3 + 60 ·N quadratic equations, 3 + 36 ·N
equations have m = 1 and n = 1, and 24 ·N equations have
m = 0 and n = 2. Therefore, the verification time for the
quadratic equations is (117 + 2484 ·N) · |map|. In total, the
verification time of the proof γ is (414 + 6264 ·N) · |map|.

