Uncertainty-aware Specification and Analysis for Hardware-in-the-Loop
Testing of Cyber Physical Systems

Seung Yeob Shin®*, Karim Chaouch?®, Shiva Nejati®®, Mehrdad Sabetzadeh®?®, Lionel C. Briand®P,
Frank Zimmer®

@ Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luzembourg, Luzembourg
bSchool of Electrical Engineering and Computer Science, University of Ottawa, Canada
¢SES Networks, Luzembourg

Abstract

Hardware-in-the-loop (HiL) testing is important for developing cyber physical systems (CPS). HiL test cases
manipulate hardware, are time-consuming and their behaviors are impacted by the uncertainties in the CPS
environment. To mitigate the risks associated with HiL, testing, engineers have to ensure that (1) test cases
are well-behaved, e.g., they do not damage hardware, and (2) test cases can execute within a time budget.
Leveraging the UML profile mechanism, we develop a domain-specific language, HITECS, for HiL test case
specification. Using HITECS, we provide uncertainty-aware analysis methods to check the well-behavedness
of HiL test cases. In addition, we provide a method to estimate the execution times of HiL test cases before
the actual HiL testing. We apply HITECS to an industrial case study from the satellite domain. Our results
show that: (1) HITECS helps engineers define more effective assertions to check HiL test cases, compared to
the assertions defined without any systematic guidance; (2) HITECS verifies in practical time that HiL test
cases are well-behaved; (3) HITECS is able to resolve uncertain parameters of HiLi test cases by synthesizing
conditions under which test cases are guaranteed to be well-behaved; and (4) HITECS accurately estimates
HiL test case execution times.

Keywords: Test Case Specification and Analysis, Cyber Physical Systems, UML Profile, Simulation, Model
Checking, Machine Learning

1. Introduction 2000) — typically takes place at the far end of the

system quality assurance spectrum and as part of

Cyber physical systems (CPS) are increasingly acceptance testing (Ammann and Offutt, 2016).

ubiquitous, and include many of the critical systems
used in domains such as aviation, aerospace, auto-
motive and healthcare. CPS are subject to extensive
testing. A key testing activity is Hardware-in-the-
Loop (HiL) testing, which is aimed at testing a CPS
after the integration of the system’s actual software
and hardware. HiL testing — not to be confused
with HiLL simulation, where some or all the hard-
ware components may be simulated (Jeruchim et al.,

An important characteristic of HiLL testing is that,
due to the involvement of actual hardware, HiL test
cases need to account for physical behavior of hard-
ware. Moreover, HiLL test cases have the potential
to damage the system under test (SUT) or its en-
vironment. This necessitates that engineers should
verify HiL test cases, before these test cases are ex-
ercised on the actual system, to ensure that the test
cases are well-behaved. That is, the test cases must
implement valid test scenarios and not pose undue
*Corresponding author risks to the SUT or its environment. An example

Email addresses: seungyeob.shin@uni.lu (Seung Yeob of a potentially damaging behavior is attempting to

Shin), karim.chaouch@uni.lu (Karim Chaouch), supply a voltage to a hardware component beyond
snejatiQuottawa.ca (Shiva Nejati),

m.sabetzadeh@uottawa.ca (Mehrdad Sabetzadeh), the limits that the component has been designed
lionel.briand@uni.lu (Lionel C. Briand), to support. Although such an abnormal case may
frank.zimmer@ses.com (Frank Zimmer) be useful for robustness testing of the CPS control

Preprint submitted to Elsevier August 31, 2020

software, this is not the objective during HiL testing.
It is, therefore, important to ensure that HilL test
cases are well-behaved before executing them on the
actual hardware.

A second important characteristic of HiLL testing
is that the behaviors of HiL test cases are highly
impacted by environmental factors, e.g., tempera-
ture, weather conditions, or the characteristics of
hardware interacting with the SUT. Exact environ-
ment conditions and hardware characteristics are
only known at the actual execution time of HiL test
cases. Prior to the actual HiL testing, engineers have
only partial and approximative knowledge about the
SUT environment and the hardware interacting with
the SUT. Hence, when checking well-behavedness
of HiL test cases before the actual testing, they
may not be able to conclusively determine whether,
or not, a test case is well-behaved, i.e., whether
it may incur any hardware damage. For example,
the well-behavedness of a test case supplying volt-
age to an external device depends on the voltage
range tolerated by the device. Hence, the test case
may be safe for some devices and unsafe for oth-
ers. Without knowing the exact device specification,
however, we cannot ascertain the well-behavedness
of the HiL test case. In this situation, engineers need
to identify the conditions on the environment and
hardware parameters under which HiL. test cases
are well-behaved. If the conditions are met at the
time of testing, the well-behavedness of test cases is
ensured and they can safely proceed with testing.

The third important characteristic of HiLi test-
ing is that the duration of testing is often limited.
While time budget constraints apply to virtually
all stages of system development and testing, there
is an additional major factor at play for CPS HiLL
testing. Since many CPS are deployed in harsh en-
vironments, the time spent on HilL testing can cut
directly into the service life of a CPS. For example,
once launched into orbit, a satellite has an aver-
age lifespan of 15 years. A mere two-month-long
HiL testing process — not uncommon for satellites —
would reduce the active service life of the satellite by
more than 1%. To develop HiL test plans that can
run under tight time budget constraints, engineers
need to draw up accurate a-priori estimates about
the execution time of HiL test cases. Note that
similar to the test behaviors, the execution time of
test cases is also impacted by the uncertainty in the
SUT environment and hardware. For example, a
test case may take significantly longer to run when
the hardware components of the SUT need to be

re-calibrated during test execution, e.g., to adapt to
the system’s ambient temperature.

In this article, we develop an executable language
for specifying HiL test cases and HiL platforms. Our
language aims at enabling the three tasks described
above: (1) checking well-behavedness of HiL test
cases, (2) identifying conditions on the uncertain
environment and hardware parameters under which
HiL test cases are well-behaved, and (3) estimating
the execution times of HiL test cases. These three
tasks are performed before the actual HiL testing
stage and using models of HiLi test cases and the
underlying HilL platform.

The benefits of model-based analysis for CPS are
widely acknowledged (Lee, 2008; Jensen et al., 2011;
Nguyen et al., 2017; Thacker et al., 2010; Clarke and
Zuliani, 2011; Zheng and Julien, 2015). In particular
and in the area of model-based testing, approaches
exist for automated generation of CPS test cases (Ar-
rieta et al., 2017b,a; Zhang et al., 2017). The test
cases produced by these approaches are nevertheless
partial and abstract, thus requiring considerable
manual effort before they can be used as HiLL test
cases (Wang et al., 2015). Industry standards such
as TTCN-3 (ETSI, b) and UTP (OMG, d) support
detailed specification of tests in general. These stan-
dards, however, do not specifically address CPS HiL.
testing and are, on their own, inadequate for our
analytical needs. From a conceptual standpoint, our
work is distinguished from the existing work in that
it is not motivated by the analysis of a SUT, but
rather the analysis of the test cases exercised against
a SUT. This type of analysis, which is a necessity
for CPS HiL testing and potentially beyond, has not
been sufficiently explored to date.

Contributions. The contributions of this article
are three-fold:

1) A modeling language for specifying CPS
HiL test cases. We develop the Hardware-In-the-
loop TEst Case Specification (HITECS) language.
HITECS is a textual language defined using the
UML profile mechanism (OMG, b). A key char-
acteristic of HITECS is that it has an execution
semantics, and it includes specific constructs to cap-
ture uncertain and physical behaviors of CPS HiL.
testcases. HITECS customizes the UML Testing
Profile (UTP) (OMG, d) and the UML Uncertainty
Profile (UUP) (Zhang et al., 2019b) to the HiL test-
ing context. To do so, HITECS further uses the
textual syntax of the Action Language for Founda-
tional UML (Alf) (OMG, a), adopting Alf’s execu-
tion semantics. To represent uncertainty in the SUT

environment and hardware, HITECS allows engi-
neers to declare uncertain variables and to associate
them with probabilistic distributions. For physi-
cal behaviors of HiLi testing, which are typically
captured by equations, HITECS provides mathe-
matical constructs. HITECS is a generic HilL test
case specification language which is motivated by
our work experience in collaboration with several
CPS industries (Abdessalem et al., 2018; Ul Haq
et al., 2020; Menghi et al., 2020; Nejati et al., 2019;
Liu et al., 2019; Matinnejad et al., 2019) and the
existing literature on HiL testing (Asadollah et al.,
2015; Ali and Yue, 2015; Abdessalem et al., 2018).

2) Analysis framework. Leveraging HITECS, we
develop a framework to: (i) ensure, via formal ver-
ification, that HiL test cases properly manipulate
and interact with the SUT as well as any addi-
tional instruments that provide inputs to the SUT
or monitor its outputs, (ii) identify, via simulation
and machine learning (ML), conditions on uncertain
parameters of HiLL test cases under which the test
cases are well-behaved, and (iii) estimate, via sim-
ulation, the execution times of HiL test cases and
thus improve HiL test planning. For verification, we
provide guidelines that help engineers systematically
specify assertions regarding the well-behavedness of
HiL test cases. We then apply an existing model
checker, JavaPathFinder (Visser et al., 2003), to
HITECS test specifications in order to determine
whether they satisfy their assertions. Due to the
uncertainty in the SUT environment and hardware,
however, assertions cannot always be verified conclu-
sively. For the inconclusive assertions, we provide
an uncertainty resolution approach. The approach
samples specific values from the parameters’ value
ranges and executes HITECS test cases for these
values to determine if the assertions are satisfied
or violated. An ML classification algorithm is then
used to identify conditions from the sampled data
points under which HiL test case assertions are likely
to hold. We then use model checking to provably
ensure that the assertions hold within the identi-
fied ranges. To simulate HiL test cases, HITECS
provides customizable, side-effect-free annotations
and a simulation engine, allowing engineers to ap-
proximate test case execution times based on, for
example, expert knowledge and historical data.

3) Industrial case study. We evaluate HITECS
using an industrial case study from the satellite do-
main. Our evaluation results show that: (i) HITECS
is applicable in practice and capable of capturing in-
dustry HiL test cases; (ii) HITECS enables engineers

Test instruments System Under Test (SUT)

N

A } Uplink
Source | Spectrum < g
s y A Downlink

Figure 1: A simplified and partial view of the HiL test
platform for a satellite after launch.

High Power
Amplifier (HPA)

Low Noise <_I Pilot |
Amplifier (LNA)[izer |

to define more complete and effective verification
assertions than those specified based on domain ex-
pertise alone; (iii) HITECS model checking can ver-
ify several satellite HiLi test cases in practical time;
(iv) HITECS uncertainty resolution allows engineers
to identify conditions on uncertain SUT parameters
under which HiL test cases are well-behaved; and
(v) HITECS simulation provides accurate estimates
for the execution times of satellite HiLi test cases.

This article is an extension of a previous con-
ference paper (Shin et al., 2018a) published at the
ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS 2018). This article offers important extensions
over the previous conference paper by: (1) extending
the HITECS specification language to account for
the uncertain and physical behavior of CPS testing,
(2) developing an uncertainty resolution approach
which identifies conditions on uncertain parameters
of HiLL test cases ensuring that the test cases sat-
isfy their assertions, (3) improving the evaluation
of our approach accounting for the newly added
uncertainty resolution method, and (4) describing a
more thorough discussion and comparison of related
work.

Structure. Section 2 motivates the article. Sec-
tion 3 outlines our approach. Section 4 describes
HITECS. Section 5 presents the HITECS analysis
framework. Section 6 evaluates HITECS. Section 7
compares with related work. Section 8 concludes
the article.

2. Motivating case study

We motivate our work with an industrial HiLL
testing case study from the satellite domain. Our
case study is about in-orbit testing of satellite sys-
tems. In-orbit testing, which is part of the satellite
HiLL testing process, takes place after launching a
satellite into orbit and before the satellite goes into

active service. Figure 1 shows a simplified test plat-
form for in-orbit testing of a new satellite, which
in addition to the satellite itself, involves a number
of test instruments. Test instruments generate in-
puts to be fed to the SUT and monitor the SUT
outputs. Specifically, the in-orbit test platform of a
satellite includes, among other test instruments, an
antenna for communication with the satellite and
the following devices: synthesizers to generate input
signals; spectrum analyzers to monitor and analyze
the output signals; amplifiers to boost the power of
signals being transmitted, or to filter out noise; and
mechanical and electrical switches that determine
the signal routing.

HiL test cases for in-orbit testing of a satellite typ-
ically include the following operations (Shin et al.,
2018b): setup, main, and teardown. (1) The setup
operation brings to a ready state the satellite as well
as any test instruments used. This operation may
further involve (re)calibrating the test instruments
to ensure their accuracy under the environmental
conditions at the time of testing. (2) The main
operation exercises some satellite behavior based on
the satellite’s requirements. To do so, the main op-
eration executes a sequence of steps. The following
describes example steps of a main operation: First,
signals (test inputs) with specific frequencies and
power values are generated by the source synthesizer.
The generated signals are then transferred to the
antenna to be sent to the satellite. Finally, the satel-
lite output signals are sent to the ground station and
transferred to the spectrum analyzer so that they
can be visualized and analyzed. (3) The teardown
operation brings the satellite and test instruments
to a standby state by performing cleanup operations
on them. In our case study, teardown can, for ex-
ample, result in reconfiguring certain parts of the
satellite or the test instruments to save energy, and
muting instruments to ensure that no undesirable
signal is accidentally sent to the satellite.

To illustrate, Figure 2 shows part of the main op-
eration of a HiL test case for testing a transponder
function of the satellite under test. Note that the
test case described in Figure 2 is a simplified ver-
sion of the original textual test-scenario description
from our collaborating partner, SES Networks, by
excluding some satellite-specific details. The test
case first measures environment conditions (line 8)
and computes the initial power level for a signal to
transmit to the satellite under test based on the
measured environment conditions (line 9). The test
case transmits an uplink signal to the satellite under

Description TestTransferCurve

// prev_dPLv: previous downlink power level
// dPLv: downlink power level

// uPLv: uplink power level

// default: predefined initial power level
// limit: predefined maximum power level

// n: predefined number of iterations

env = measure environment conditions

uPLv = compute uplink power level based on env
10 prev_dPLv = default

11 repeat n times

Q0O UE WN -

12 uPLv = increase uPLv

13 check assertion uPLv < limit

14 send signal of uPLv to the satellite under test
15 dPLv = measure downlink power level

16 check assertion prev_pLv - dPLv < 1dB
17 prev_dPLv = dPLv

Figure 2: A simplified and partial description of the main op-
eration of the transfer curve test case for testing a transponder
function of the satellite under test.

test by controlling its power level (lines 12-14). The
test case then measures a downlink signal gener-
ated by the satellite in response to receiving the
uplink signal (lines 15-17). The test case iterates
the transmission and measurement steps based on a
predefined number of times (lines 11-17). As shown
in Figure 2, the test case incorporates two assertion
checks (lines 13 and 16). These assertions check
the well-behavedness of the test case. Specifically,
they prevent the satellite from being damaged by
processing an overpowered signal.

During our collaboration with SES Networks, the
engineers described a pressing need for automated
techniques to support the following tasks in relation
to HiL test cases:

Verifying HiL test cases. Like most CPS soft-
ware, HiLL test cases are complex and critical, and
may contain faults. Faulty HiL test cases may gener-
ate invalid test results, may damage test instruments
or the SUT, or may waste energy, time and other
valuable resources. For example, a satellite may
be damaged if the power of the signal sent to it
exceeds its limits. To address this issue, in prac-
tice, engineers monitor states of HiLi test executions,
e.g., signal power level (line 13 in Figure 2), at the
time of actual HiLL testing on a satellite. However,
runtime monitoring of HiL, test cases is not able to
guarantee the well-behavedness of HiL. test cases
due to its inexhaustive and in-situ testing nature.
Hence, engineers need techniques to ensure that
HiL test cases are well-behaved and exercise valid
test scenarios prior to executing them on the actual
HiL platform. In Section 3, we precisely define the

well-behavedness requirements that HilL test cases
should meet.

Resolving uncertainty in HiL testing.
Model checking HiL. test cases to verify their as-
sertions is limited in two ways: First, HiLL test cases
may contain complex mathematics involving non-
algebraic functions (e.g., exponential or logarith-
mic computation). Such mathematical constructs
cannot be typically handled by model checkers, in
particular by JavaPathFinder (Visser et al., 2003).
Measuring environment conditions (line 8 in Fig-
ure 2) often requires complex equations. For in-
stance, spreading loss, representing the amplitude
loss of a signal, is measured by using a logarithmic
equation — log(4 - m - sDist?) where sDist refers to a
distance between a ground station and the satellite
under test — which cannot be handled by JavaP-
athFinder. Therefore, the model checker cannot
verify the assertion on line 13 since uPLv in the as-
sertion depends on env measured at line 8 using
complex non-algebraic functions. Second, as we will
discuss in Section 4.2, we represent uncertain param-
eters of HiL test cases, i.e., the parameters whose
values depend on the environment conditions or the
final SUT hardware, using parameters with prob-
abilistic value ranges instead of fixing their values.
This again leads to model checking being inconclu-
sive for HiLi test cases. Specifically, JavaPathFinder
can neither verify nor refute the assertion at line 13
in Figure 2 because the 1imit variable has a value
range of tolerable signal power which depends on
actual hardware characteristics. For some values in
the value range of this variable, the assertion may
hold, but the assertion may not hold for the other
values. Therefore, test engineers need an uncertainty
resolution technique to help them identify parameter
value ranges under which HiLL test cases conclusively
satisfy their assertions, (i.e., are well-behaved).

Estimating the execution time of HiL test
cases. In-orbit testing can take several weeks dur-
ing which a satellite does not provide any service or
revenue. The engineers thus have to carefully plan
the HiL testing process and optimize its duration,
knowing that delays can be extremely costly. To en-
able engineers to plan HiL testing effectively and to
mitigate the risk of missing deadlines, they need to
be able to accurately estimate the execution times of
individual HiL test cases. As discussed earlier, the
execution times of HiL test cases are impacted by
environmental factors. For example, the execution
times of satellite HiLi test cases depend on whether
the antenna is already pointing to the satellite under

Specification Analysis

Model ¥
§ Checking

_ { (" Uncertainty®s
i {_ Resolution

HITECS
Specifications

CPS HiL Test
Descriptions

/] ——
Specifying
Test Cases
HITECS
Profile

Simulation

Figure 3: HITECS overview.

test or not. If not, test case execution may take
longer since moving the antenna requires extra time.
An immediate implication here is that test case exe-
cution times should be estimated as ranges instead
of exact values.

The analysis tasks discussed above are not spe-
cific to in-orbit testing of satellites conducted at SES
Networks and are common in other CPS domains,
as observed in both our work in collaboration with
industry partners from other CPS domains such as
IEE (Abdessalem et al., 2018; Ul Haq et al., 2020),
LuxSpace (Menghi et al., 2020), QRA (Nejati et al.,
2019), and Delphi (Liu et al., 2019; Matinnejad et al.,
2019), as well as in the work of others (Mosterman
and Zander, 2016; Lee, 2008; Zheng and Julien,
2015). In the next sections, we provide an approach
for specifying and analyzing HiL. test cases in such
a way that the above tasks can be performed sys-
tematically and with computerized support.

3. Overview

Figure 3 shows an overview of our approach for
the specification and analysis of CPS HiL test cases.
The core component of our approach is a modeling
language, called Hardware-In-the-loop TFEst Case
Specification (HITECS), defined to specify HiL test
cases and to support effective automation of the
three analysis tasks motivated in Section 2 and
described below:

Model checking. We verify HiL test cases to
ensure their well-behavedness. We define a HiL test
case to be well-behaved if it satisfies the following
requirements:

1. The test case properly initializes (resp. cleans
up) the involved components before (resp. af-
ter) using them.

2. Before sending data to a component, the test
case ensures that the component is in a state
where it can process the data.

3. The test case ensures that any data sent to /
received from a component is within the oper-
ating ranges of the component.

To enable the verification of HiL test cases for well-
behavedness: (1) we provide guidelines for engineers
to systematically specify the above requirements in
terms of assertions inserted in HITECS test specifi-
cations, and (2) we apply model checking (Clarke, Jr.
et al., 1999) to HITECS test specifications to deter-
mine whether the assertions hold. Due to the com-
plex equation issues described in Section 2, HITECS
model checking classifies test cases into two cate-
gories: inapplicable and applicable. We say a test
case is inapplicable, if it has some behavior (i.e.,
complex mathematics) that cannot be handled by
model checking. The applicable test cases can fur-
ther be categorized as conclusive and inconclusive
by HITECS model checking. We say an assertion
is conclusive, if it can be verified or refuted within
a given time budget. In this case, the assertion is
either satisfied or violated for all the executions of
the corresponding test case. We say an assertion is
inconclusive, if neither the assertion nor its negation
can be verified by the model checker because the
assertion is satisfied by some test executions and is
violated by some other test executions. Note that
we remove the complex equations from inapplicable
test cases and replace them by symbolic parameters
whose values are unknown. This way the inapplica-
ble test cases are turned into applicable test cases
with uncertain parameters that may or may not be
conclusive.

Uncertainty resolution. HITECS uncertainty
resolution method aims to identify conditions on un-
certain parameters of a test case under which the test
case is well-behaved. HITECS uncertainty resolu-
tion combines the following two analysis tasks: sam-
pling and classification. The sampling task randomly
chooses values from the parameter value ranges of a
test case, and then executes the test case with the
sampled values. Given the execution outputs, the
sampling task collects assertion results — satisfac-
tion (true) or violation (false) — and label sampled
parameter values with either true or false. The clas-
sification task then takes a labeled sampling dataset
as an input and identifies (safe) conditions on pa-
rameter values such that the test case is likely to
be well-behaved. We then apply the model checker
to the test case augmented with the conditions on
parameter values to ensure that the test cases are
indeed well-behaved under those conditions.

Simulation. HITECS has an execution seman-
tics, enabling the simulation of HiLi test cases at an
early stage and without the involvement of hard-
ware. This in turn makes it possible to estimate the
execution times of HiL test cases without having
to exercise them against the SUT. More precisely,
HITECS allows engineers to specify the execution
time values for individual statements in a HiL test
case based on, for example, expert judgment, his-
torical data or analytical techniques. These values
are subsequently used by the HITECS simulation
engine to generate distributions that capture ranges
of the actual execution times of HiL test cases.

4. Test specification

HITECS tailors the UML Testing Profile
(UTP) (OMG, d), UML Uncertainty Profile
(UUP) (Zhang et al., 2019b), and Action Language
for Foundational UML (Alf) (OMG, a) to specify
CPS HiL test cases. In Section 4.1, we provide back-
ground on UTP, UUP, and Alf, and in Section 4.2,
we present HITECS.

4.1. Background on UTP, UUP, and Alf

UTP is a standard language based on UML for
specifying common concepts in various testing ap-
proaches. As UTP is a profile of UML, it can be
combined with other profiles and be extended or
tailored to different development practices. The
testing concepts in UTP are quite generic, and there
is no existing work on tailoring or customizing these
concepts to HiL testing. Further, UTP does not
have a formal execution semantics, and cannot read-
ily support the verification and simulation of CPS
HiL test cases.

UUP is implemented based on U-Model (Zhang
et al., 2016) which is a generic conceptual model
for capturing uncertainties in CPS. The conceptual
model of UUP, i.e., U-Model, provides a comprehen-
sive description of uncertainties, classifies them, and
can serve as a baseline for modeling uncertain be-
haviors of CPS. UUP enables the uncertainty-aware
development of CPS and provides a set of model
libraries to specify and measure various kinds of
uncertainties, e.g., probability distributions.

Alf is a textual modeling language, specifying
the UML modeling elements. Its primary goal is
to provide an executable semantics for UML mod-
els (e.g., operations of classes). Alf specification
fragments can be combined with UML models to

Table 1: HITECS contribution to UTP and UUP.
C+# Descriptions of HITECS contributions

C1 HITECS provides tailored concepts for CPS HiL testing
C2 HITECS provides quantitative means for capturing the
degree of confidence about test oracles (verdicts)
C3 HITECS provides an explicit mechanism to express the
uncertainties in the CPS environment

C4 HITECS provides an explicit means to specify physical
behaviors in CPS testing and its environment

C5 HITECS enables model checking of HiL test cases for
well-behavedness

C6 HITECS supports an uncertainty resolution method
aiming to identify conditions on uncertain parameters
of HiL test cases under which the test cases are well-
behaved

C7 HITECS provides simulation facilities for estimating
the execution time of HiL test cases

make them executable. Alternatively, Alf can be
seen as a stand-alone language since, in addition to
the UML behavior, it can textually represent the
UML structure. The execution semantics of Alf is
defined by mapping the Alf concrete syntax to the
abstract syntax of the standard Foundational Sub-
set for Executable UML Models (i.e., Foundational
UML) (OMG, c).

4.2. The HITECS language

HITECS extends UTP, UUP, and uses the tex-
tual notation and executable semantics of Alf. Since
UTP, UUP, and Alf are UML-based, HITECS can
seamlessly combine them. The execution seman-
tics of Alf provides a rich basis for verification and
simulation. Based on our experience and feedback
from practitioners, we find Alf’s textual notation
more suitable for HiLL test cases than visual nota-
tions, since HiL test cases typically contain lengthy
sequences of statements.

We identified the modeling concepts of HITECS
by studying the UTP modeling elements, the uncer-
tainty measures in UUP, the formalization of accep-
tance testing concepts in our earlier work (Shin et al.,
2018b) and the CPS testing literature (Asadollah
et al., 2015; Ali and Yue, 2015; Abdessalem et al.,
2018). Table 1 outlines the main improvements
and extensions that HITECS provides over UTP
and UUP. Overall, HITECS provides seven new
extensions that are instrumental either to specify-
ing HiLL test cases, or to analyzing them. In this
section, we introduce HITECS by describing and
illustrating the contributions outlined in Table 1.
Figure 4 shows the HITECS profile. We use the
UML profile mechanism to explicitly represent how

«UTP»

«UTP»
Testltem

TestComponent

«UML» «stereotype»
Property PhysicalBehavior

A s Iy

«stereotype» «stereotype» ‘

woeldIH

CompProperty Initialize

UTP»
TestAction

«stereotype»
HiLComponent

«stereotype»

CompOperation <

«stereotype»
Cleanup

. A
«manipulates» |

g
& «UTP» «UML» «UTP» «UTP»
'S TestCase Property TestProcedure TestAction
t t
g " tereotype:
stersotyper|, .| =stersotiper e e
#HiLTelease TestCaseProperty usesn | MeasurementFormula

1.7
{ordered} «stereotype»

Setup

«stereotype» ”
TestCaseOperation

«UTP» 1 |
by»

«stereotype»
Main

«stereotype»
o] P
i <has an instance of»

L |
«stereotpe»
TestResult

0.1 [stereotyper | 1_[confidence: eal N
Oracle |.determines» _ |Vverdict: Verdict
«UML» ‘ «
L > 4—{

«analyzes»

«UML» «UML» «UML»
Constraint Comment Activity
«stereotype» «stereotype» <! 7777777777777777 «stereotype»
Assertion Annotation «defines» | AnnotationSemantics

«schedules»
«stereotype» «UTP» «stereotype» «UTP»
HiLTestSuite TestSet Hil i

/;M"* «runs»

MAIN
TEARDOWN

SETUP ‘

i

Vi/ Arepsoun

[sgsmeuv;sal

[empeqos}sel

j'[Legend] = o = e T ome HITECS sstereotyper |

Figure 4: The HITECS profile (extension of UTP and UUP).

HITECS customizes and extends existing model-
ing concepts from UTP, UUP, and UML. As shown
by the figure, HITECS is organized into five pack-
ages, HiLPlatform, TestBehavior, Uncertainty,
TestAnalysis and TestSchedule, described below.

HiL Platform. A HiL platform is composed of
the SUT and test instruments required to execute
HiL test cases. In HITECS, these are defined by
HilLComponent which extends UTP’s TestIten (i.e,
SUT) and TestComponent (i.e., test instruments).
HITECS limits the visibility of HiLComponent to
its own properties and operations due to the black-
box nature of HiL testing. Specifically, HITECS
guides test engineers to focus on specifying how HilL
components are used by the test cases instead of
capturing how they interact with one another.

Table 2: The HiLPlatform package stereotypes.

Stereotype Description

HiLComponent A HilL component is either the SUT or
a (peripheral) test instrument required to
execute a HiL test case

CompProperty A property that characterizes a component

state

CompOperation An operation of a component that is called
by a test case

Initialize An operation to initialize a component

Act An operation performing a main function
of a component

Cleanup An operation to cleanup a component
Physical- A mathematical function capturing physi-
Behavior cal behavior of a component

Mapping (stereotype, specification): (HiLComponent,
component specification), (CompProperty, property declara-
tion), (CompOperation, operation specification), (Initialize,
operation tagged as @Initialize), (Act, operation tagged
as @Act), (Cleanup, operation tagged as @Cleanup),
(PhysicalBehavior, physicalbehavior specification).

1 component Synthesizer { HITECS
2 private frequency:Real;

3 private power:Real;

4

5 @Initialize

6 public init(in freq:Real,in power:Real){/*...*/}
7

8 @Cleanup

9 public cleanup() {/*...*/}

10

11 QAct

12 public generateSignal() {/*...*/}
13

14 ©Act

15 public adjustPower(in degree:Real) {/*...%/}
16 3

Figure 5: HITECS specification of the synthesizer in Figure 1.

Table 2 describes the modeling concepts in
the HiLPlatform package of Figure 4. The
HiLComponent concept has CompProperty and
CompOperation for capturing a component’s at-
tributes and operations, respectively. The op-
erations of HilL components are categorized as
Initialize, Act, and Cleanup and are respectively
tagged by @Initialize, @Act, and @Cleanup anno-
tations. These operations will be invoked by HiL
test cases. Specifically, each test case specifies the
operation calls in a sequence where @Initialize
operations appear first, followed by @Act operations
and the test case ends with @Cleanup operations.
So, the order of the execution of operations is in fact
defined by the order of their invocation specified
in each test case. The Initialize operation of a

component Satellite{ HITECS
/¥ K/
QAct
public amplifySignal(in ul:Real):Real {
//minimum uplink power
x1:Real = Const::MIN_UL_POWER;
//uplink power at saturated point
x2:Real = Const::SAT_UL_POWER;
//minimum downlink power
10 y1l:Real = Const::MIN_DL_POWER;

QOO UE WN -

11 //downlink power at saturated point
12 y2:Real = Const::SAT_DL_POWER;
13

14 normUL:Real = (ul-x1) / (x2-x1);
15 normDL:Real = salehModel (normUL);
16 dl = normDL*(y2-y1) + yi1;

17 return dl;

-

Figure 6: HITECS specification of the satellite in Figure 1.

physicalbehavior HITECS
salehModel(in ul:Real) :Real {

a:Real = Const::ALPHA * ul;

b:Real = Const::BETA * pow(ul,2);

dl:Real = a / (1.0+b);

return dl;

}

NO U W

Figure 7: HITECS specification of the Saleh model (Saleh,
1981).

component sets the component into a ready state
from which it can execute its Act operations. Du-
ally, the Cleanup operation moves the component
into a standby state indicating that the component
is not in use. For instance, Figure 5 is an exam-
ple specification of a synthesizer which is used to
generate input signals for the satellite under test
(see Figure 1). The Synthesizer component has
two attributes, frequency and power, specifying
its output signals. The init() operation adjusts
frequency and power to some desired values that
can further be modified through generateSignal ()
and adjustPower() depending on the test case.
The cleanup() operation turns off the synthesizer
to ensure that it does not interfere with other com-
ponents. In this article, we use /* ... */ (e.g., line
6 in Figure 5) in HITECS specification figures to
omit irrelevant details.

In HITECS, the PhysicalBehavior concept cap-
tures the behavior of a HilL component opera-
tion by mathematical formulas. For example, Fig-
ure 6 is a (partial) specification of the satellite
under test which invokes the salehModel () phys-
ical behavior (line 15) specified in Figure 7. The
amplifySignal () in Figure 6 specifies one of the ba-

Table 3: The TestBehavior package stereotypes.

Stereotype Description

HiLTestCase A test case description specifying test prop-
erties (inputs, outputs and HiL. compo-
nents), a set of test operations, assertions,
simulation annotations and a test oracle

TestCase- Inputs, outputs, and Hil. components used

Property by a test case

TestCase- An operation consisting of a sequence of

Operation statements involving calls to Hil. compo-
nents (i.e., SUT and test instruments)

Setup A test operation that initializes a test

Main A test operation that performs the main
function of a test

Teardown A test operation that cleans up a test

Oracle A mechanism to determine whether a test
passes or fails with a confidence level (e.g.,
pass with 100% confidence or fail with 40%
confidence)

TestResult Actual test outputs

Measurement- A formula to measure a state value of test

Formula instruments, SUT, or test environments

Mapping (stereotype, specification): (HiLTestCase,
testcase specification), (TestCaseProperty, property dec-
laration), (TestCaseOperation, operation specification),
(Setup, operation tagged as @Setup), (Main, opera-
tion tagged as @Main), (Teardown, operation tagged
as @Teardown), (Oracle, operation tagged as @Oracle),
(TestResult, TestResult type), (MeasurementFormula,
measurementformula specification).

sic functions of a satellite which amplifies the power
level of a received signal, i.e., the ul parameter, to
make the signal strong enough for transferring it to a
station on the ground. This physical behavior of sig-
nal amplification by a satellite is typically modeled
by using the Saleh model (Saleh, 1981) as specified
in Figure 7. The Saleh model is a non-linear formula
to capture the behavior of an amplifier.

Test behavior. The TestBehavior package in
Figure 4 contains the HiL test case specification con-
cepts. Table 3 describes these concepts. Below, we
describe how the TestBehavior modeling concepts
capture test cases and test oracles.

Test cases. A test case is defined by HiLTest-
Case and includes TestCaseProperty, TestCase-
Operation, and Oracle. TestCaseProperty cap-
tures test data such as input and output variables
and HiLL components used by a test case. Each test
case has one Setup, one Main, and one Teardown
operation tagged by @Setup, @Main, and @Teardown
annotations, respectively. The Setup operation of
a test case contains a sequence of statements ini-
tializing the parameters and the Hil. components
used by the test case. The Main operation of a test

testcase TransferCurve { HITECS
private expTF:Real;

private meaTF:Real;

private frequency:Real;

private sat:Satellite;

private synth:Synthesizer;

private acu:ACU;

private sa:SpectrumAnalyzer;

QOO UE WN -

10 @Setup
11 public setup() {
12 VARV

13 assert acu.satLongitude == sat.longitude;
14 assert acu.satLatitude == sat.latitude;
15}

16

17 @Main

18 public measure() {
19 VAV

20 attenuation: Uniform(0,10) = Unknown; // Real type
21 VALY

22 sl:Real = spreadinglLoss(distance);

23 /% ... %/

24 //@SimTime ("synth.time.record", "uniform")

25 synth.generateSignal();

26 assert sa.PowerLevel()<sat.powerThreshold;

27 VAV

28 }

29

30 @Teardown

31 public teardown() {

32 VARV

33 assert synth.RFMode() == Synthesizer::0FF;
34}

36 @O0racle

37 public testOracle()
38 VA Y/

39 if (meaTF == expTF) {

: TestResult {

40 return new TestResult(PASS);

41 } else {

42 diff = abs(meaTF - expTF);

43 return new TestResult(diff/(1+diff), FAIL);
44 }

45 }

46)

Figure 8: (Simplified) HITECS specification for the transfer
curve test case.

case is executed after Setup and implements the test
scenario by manipulating Hil. components used by
the test case. The Teardown operation of a test case
is executed last and cleans up the HiLL components
used by the test case.

Figure 8 shows an example of a HITECS specifi-
cation for the transfer curve test case of a satellite.
The test case aims to test a transponder function
of the satellite under test. We omit satellite-specific
details for testing transponder behaviors, as they
are not pertinent to this article; we instead refer
the interested reader to the relevant literature from
the satellite communications domain (Elbert, 2008;
Saleh, 1981). The expTF and meaTF variables spec-
ify the expected and the actual outputs of the test
case, respectively; frequency is the test input; and

measurementformula HITECS
spreadingloss(in distance:Real) : Real {

area:Real = 4*PIx*pow(distance,2);

return log(area);

}

ULk W N =

Figure 9: HITECS specification of the spreading loss compu-
tation.

sat, synth, acu, and sa are the required HiL. com-
ponents. The setup() operation of the test case
moves an antenna in a ground station to point to
the satellite under test; the measure() operation
performs the signal measurement procedure to as-
sess the transfer curve function of the satellite under
test; and the teardown() operation turns off the
HiL component (e.g., synthesizer) used by the test
case.

The MeasurementFormula concept is defined to
specify formulas required to measure states of the
test instruments, SUT, or test environments while
executing test cases. For example, the measure()
operation in Figure 8 invokes the spreadingLoss()
measurement formula specified in Figure 9. Spread-
ing loss represents a decrease in the intensity of
a signal which is computed based on the distance
between a station on the ground and the satellite
under test (see distance in line 3 in Figure 9). The
spreading loss is one of many (environmental) fac-
tors required to accurately measure a level of signal
power transmitted (resp. received) to (resp. from)
the satellite under test.

Test oracles. A test oracle determines whether
a test case execution passes or fails. In HITECS,
TestResult contains a verdict from UTP and a con-
fidence level. A confidence level is an application-
specific notion capturing the degree of confidence
in test verdicts. Provided with a confidence level,
the engineers will be better positioned to decide
which failures they would like to inspect first. A
simple way to define the confidence level for numeric
values is as the deviation between the actual and
expected test outputs. Specifically, testOracle()
(simplified for exposition) in Figure 8 determines
the verdict by comparing the measured translation
frequency (meaTF) and the expected translation fre-
quency (expTF). When the two values are equal, a
PASS verdict is returned by the test oracle. Other-
wise, a FAIL verdict is returned along with a confi-
dence level capturing the normalized deviation value
between meaTF and expTF.

10

Table 4: The Uncertainty package stereotypes.

Stereotype Description

Unknown A literal constant to represent uncertainty
Probability- A probabilistic distribution of values (from
Distribution UUP)

Mapping (stereotype, specification): (Unknown,

Unknown literal), (ProbabilityDistribution, Uniform(min,
max) | Triangular(min, mode, max) | Poisson(mean)).

Uncertainty. The Uncertainty package in Fig-
ure 4 contains the modeling concepts for represent-
ing uncertainty in CPS HiL testing. Table 4 de-
scribes the concepts in this package. HITECS intro-
duces a special Unknown literal to represent a value
that can be determined only at the time of HiL test-
ing and is unknown at the time of test specification.
HITECS further allows test engineers to associate a
probability distribution to an unknown value (see
ProbabilityDistribution in Figure 4). Test engi-
neers typically use Unknown for values that depend
on uncertain environmental factors that are not a-
priori-known such as temperature. For instance, line
20 in Figure 8 shows an example of using Unknown.
The statement declares the attenuation variable
of a uniform-distribution data type from UUP (see
Figure 4) and initializes the variable to an unknown
value within the interval of [0, 10], indicating that
attenuation may get any value in [0, 10] with an
equal probability. We note that the intention of
Unknown in the statement (line 20) is to explicitly
indicate that the value of the attenuation variable
is unknown. Test engineers can omit Unknown in
such variable declarations if they favor excluding
an auxiliary keyword, i.e., Unknown, as doing so
does not change the semantics. The attenuation
variable could be specified using other distribu-
tions based on an engineer’s approximative knowl-
edge as follows: Triangular(min,mode,max) or
Poisson(mean) (see the Uncertainty package in
Figure 4). Attenuation represents the reduction of
the amplitude of signals before they reach a satellite.
Knowing the attenuation coeflicient is necessary for
calculating an appropriate level of signal power. The
exact value of the attenuation nevertheless depends
on environmental factors.

For the model checking and simulation analysis
tasks (discussed in Section 5), the Unknown literals
are, respectively, replaced with symbolic variables
and random-number generators. Specifically, for
model checking, additional constraints are added

Table 5: The TestAnalysis package stereotypes.

Table 6: Well-behavedness requirements for HiLi testing.

Stereotype Description R+# Description of well-behavedness requirement
Assertion A predicate used to verify a test case R1 A HiL component should be correctly configured during
Annotation An annotation attached to a statement and its initialization

used by the HITECS simulator (e.g., to R2 A HiL component should be in a state where they can

estimate the execution time of a test case) properly process the data that it receives from a test
Annotation- An (operational) semantics of a simulation R3 A HiL component should be cleaned up after finishing
Semantics annotation a test

R4 Inputs of a HilL component operation should be within

Mapping (stereotype, specification): (Assertion,
assert statement), (Annotation, //@identifer (arguments)
annotation), (AnnotationSemantics, annotationsemantics
specification).

along with symbolic variables to exclude out-of-
range values when [min,max] ranges are explicitly
specified, e.g., [min,max] for a uniform distribution.
For example, the attenuation variable (line 20 in
Figure 8) is replaced with a symbolic variable, e.g.,
SV,, and a feasible condition of the variable is con-
strained by 0 < SV,, < 10 as the attenuation range
is explicitly specified by Uniform(0,10). Note that
when a Poisson distribution is associated with the
Unknown literal, the literal is replaced with a sym-
bolic variable, e.g., SV}, and a feasible condition of
the variable is constrained by 0 < SV, as the mini-
mum of a Poisson distribution is always 0 whereas
its maximum value is not defined, regardless of the
mean parameter of a Poisson distribution (see Fig-
ure 4). For simulation, the random-number gen-
erators, replacing Unknown literals, yield random
numbers based on their corresponding distributions,
e.g., uniform, triangular, or Poisson. For instance,
the attenuation variable is replaced with a random
number generator that returns any value in [0,10]
with an equal probability.

Test analysis. The TestAnalysis package in
Figure 4 contains the modeling concepts used for
model checking, uncertaity resolution, and simula-
tion (Section 5). Table 5 describes the concepts in
this package. Among these concepts, Assertion
and Annotation appear inside a test case specifi-
cation, whereas AnnotationSemantics needs to be
provided as a separate routine. The TransferCurve
test specification in Figure 8 exemplifies Assertion
and Annotation. As for AnnotationSemantics, an
example is provided in Figure 10 (discussed later).
Below, we elaborate the TestAnalysis package.

Assertions. HITECS defines the Assertion
stereotype to specify the well-behavedness require-
ments of HiL test cases (see Section 3). In Table 6,
we use the HITECS terminology to restate the well-

11

valid ranges
Outputs of a HilL component operation should be within
valid ranges

R5

behavedness requirements originally described in
Section 3. Assertions capturing these requirements
can be added to any of the test case operations
(Setup, Main, and Teardown). For instance, the as-
sertions on lines 13-14 in Figure 8 are related to R1
in Table 6 and specify that an antenna must point
to the satellite under test after executing setup()
in Figure 8. The assertion on line 26 in Figure 8
is related to R5 in Table 6 and specifies that the
power of the signals sent to a satellite must be less
than a threshold to avoid any damage to the satel-
lite. Finally, the assertion on line 33 in Figure 8
is related to R3 in Table 6 and describes that the
synthesizer must be turned off after the execution
of the teardown () operation.

In general, one difficulty of applying verification
techniques (e.g., model checking) is that the formal
properties (e.g., assertions) are not available, and en-
gineers may not know how to produce them. In the
context of HITECS, engineers should transform the
well-behavedness requirements in Table 6 into formal
assertions defined based on Hil. components’ opera-
tions and properties, and HiL test case properties.
These assertions should then be inserted into proper
locations in HiL test case operations. To support
engineers in developing assertions, in Section 5.1, we
provide guidelines on how to systematically write as-
sertions based on the well-behavedness requirements
in Table 6 for HITECS test specifications.

Simulation annotations. HITECS simulation an-
notations aim to specify information about the cost
and performance of test case statements in a way
that the information can be interpreted by our simu-
lation engine (see Section 5.3). In particular, in our
case study, we use HITECS simulation annotations
to specify the execution time of calls to Hil. compo-
nent operations. OQur annotations are nevertheless
flexible and can be used for other purposes too. The
syntax of HITECS simulation annotations is rep-

1 annotationsemantics HITECS
2 SimTime(in record:String, in type:String):Real {
3 t: Real = 0;

4 /*@inline(‘Java’)

5 //... omitted

6 //list: contains time values in the record

7 if (type.equals("uniform")) {

8 Random r = new Random();

9 int size = list.size();

10 t = list.get(r.nextInt(size));

11 } else {

12 //t is determined by record and type

13 //e.g., triangular distribution

14 ¥

15 */

16 return t;

17

Figure 10: HITECS specification of @SimTime semantics.

resented as a form of //@identifier (arguments)
where identifier and arguments denote the name
and an optional list of arguments for the an-
notation. FEach annotation provides information
about the statement that immediately follows it.
We refer to the statement following an anno-
tation as the annotated statement. For exam-
ple, @SimTime ("synth.time.record","uniform")
on line 24 in Figure 8 is an annotation provid-
ing information about the execution times of its
next statement, i.e., line 25. This annotation has
SimTime and ("synth.time.record","uniform")
as its identifier and arguments, respectively.

To make the annotations interpretable by our
simulator, we require that test engineers should
provide the (operational) semantics of each an-
notation using Alf or Java routines. The
routine specifying the semantics of an annota-
tion //@identifier (arguments) must be named
identifier(arguments). For example, Figure 10
illustrates the semantic routine related to the
@SimTime annotation in Figure 8. This routine is
specified in Java since @SimTime’s semantics relies
on Java libraries for statistical analysis. In this rou-
tine, the block between lines 4-15 is nested by the
Alf statement /*@inline(‘Java’) */, indi-
cating that the block is specified in Java. @SimTime
has two arguments: record which is a list of execu-
tion time values of the annotated statement, and
type which defines how a distribution can be built
based on the values in record. According to the
@SimTime routine in Figure 10 (lines 7-10), the
@SimTime annotation in Figure 8 indicates that the
execution time of the statement synth.generate-
Signal() can take, with an equal probability, any
value from synth.time.record. In Section 5.3, we

12

scheduler ScheduleInOrbitTest() {
suite:TestSuite = new InOrbitSatTest();
for (tc in suite) { //tc: test case
tc.run();
}
}

HITECS

DU W=

Figure 11: HITECS specification of a test scheduler.

Table 7: The TestSchedule package stereotypes.

Stereotype Description

HiLTestSuite An ordered list of test cases
HiLTestSchedule A procedure that defines the execution
order of a test suite

Mapping (stereotype, specification): (HiLTestSuite,
TestSuite container), (HiLTestSchedule, scheduler speci-
fication).

will discuss how the annotation semantics are used
by our simulator. Note that, as we discuss in Sec-
tion 5.3, HITECS annotations are side-effect-free.
This is in contrast to Alf annotations in general,
which are not necessarily side-effect-free and can
modify the behavior of the annotated statements.

TestSchedule. TestSchedule enables engineers
to execute test cases in a particular order. Ta-
ble 7 describes the stereotypes in TestSchedule
of HITECS. For instance, ScheduleInOrbitTest in
Figure 11 runs the test cases in the InOrbitSatTest
test suite based on the order specified in suite.
Line 4 in Figure 11 runs each test case tc in suite
by sequentially executing the @Setup, @Main, and
@Teardown operations of tc. Note that test oracle
operations are optional in HITECS (see Figure 4);
hence, they may or may not be invoked by test
schedules.

5. Specification analysis

In this section, we describe how HITECS enables
model checking, uncertainty resolution, and simula-
tion of HiL test cases. Figure 12 shows the analysis
component of HITECS. Specifically, HITECS model
checking contains the following three steps: “con-
vert HITECS assertions”, “translate HITECS into
Java” and “run JavaPathFinder”; HITECS uncer-
tainty resolution contains the following four steps:
“translate HITECS into Java”, “simulate for sampled
values”, “learn conditions using decision trees” and
“run JavaPathFinder with conditions”; and HITECS
simulation contains the following four steps: “con-
vert HITECS Annotations”, “translate HITECS into

verification
results

Model Checking £}
- convert -
»_HITECS assertions —run JavaPathFinder >
I
«common»Y | Uncertainty Resolution £}

HITECS translate

simulate for

specifications ’ < HITECSinthava)‘I (sampled values

7 \

uncertainty
resolution

learn conditions
using decision trees

run JavaPathFinder with conditions

P results

» convert

" _HITECS annotations

Simulation £}

* simulation
execute Java analyze traces P esults

Figure 12: Overview of the analysis component in Figure 3 performing model checking, uncertainty resolution, and simulation.

Java”, “execute Java”, and “analyze traces”. The
three analysis tasks translate HITECS specifications
into Java (see the common step “translate HITECS
into Java” in Figure 12). As discussed in Section 4,
HITECS adopts the formal, operational semantics
of Alf. The translation of HITECS into Java relies
on the Alf semantics and prior translations of Alf
into object-oriented programming languages such
as Java and C+4. We omit the technical details
of the translation, which are not part of our contri-
butions, and refer the interested reader to existing
work (Buchmann and Rimer, 2016; Ciccozzi, 2016).
Below, we explain the steps of model checking, un-
certainty resolution, and simulation in HITECS.

5.1. Model checking

The goal of HITECS model checking is to show the
well-behavedness of HITECS specifications based on
the requirements in Table 6. To do so, the require-
ments must first be specified in terms of assertions.
The effectiveness of model checking highly depends
on the precision and quality of the underlying as-
sertions. However, developing assertions requires a
lot of manual effort and poses a challenge to test
engineers who are typically experts in some CPS
application domain (e.g., automotive or space engi-
neering), but not necessarily in software engineering.
To address this difficulty, we provide guidelines to
help test engineers specify precise well-behavedness
assertions for HiL. test cases and place these as-
sertions in appropriate locations within HITECS
specifications.

Table 8 presents our guidelines for specifying the
assertions induced by the requirements in Table 6.
The guidelines specify the content of assertions and
their expected locations in HITECS specifications.
For example, the guideline in the first row of Table 8
(which prescribes assertions for checking whether

13

Table 8: Guidelines prescribing assertions to be inserted into
HITECS specifications to verify the requirements in Table 6.

R# Assertion guideline related to requirement R#
R1

At the end of the Setup operation of a HiLTestCase,
an assertion may check if each CompProperty of each
HiLComponent is properly initialized

After each CompOperation invocation by a
HiLTestCase, an assertion may check if the out-
put of CompOperation is within its valid ranges;
further, an assertion may check if each CompProperty
of each HiLComponent is set correctly

Before each CompOperation invocation by a
HilLTestCase, assertions may check if the input
parameters of CompOperation are within their
valid ranges; further, an assertion may check if
HiLComponent is in state where CompOperation can be
invoked

R2
R5

R2
R4

R3 At the end of the Teardown operation of a HiLTestCase,
an assertion may check if each CompProperty of each

HiLComponent is properly cleaned up

the HiLComponent attributes are set correctly after
the test case setup operations) aims to capture re-
quirement R1 in Table 6. The two assertions on
lines 13 and 14 in Figure 8 are written based on
this guideline. Similarly, the assertion on line 26 in
Figure 8 is written based on the guideline on the
second row of Table 8. Finally, the assertion on line
33 in Figure 8 follows the guideline on the last row
of Table 8.

Regarding inapplicable HITECS specifications
(described in Section 3), HITECS model checking
replaces complex equations that cannot be analyzed
with (unconstrained) symbolic variables. As this
replacement provides conservative abstractions for
those complex equations, HITECS model check-
ing results are conservative as well. Specifically,
HITECS model checking returns a conclusive result
for an assertion verification only when the assertion
is satisfied or violated for all possible executions

1 testcase TransferCurve { HITECS
2 /x ... %/
3
4 @Setup
5 public setup() {
6 VALY
7 assert acu.satLongitude == sat.longitude;
8 assert !(acu.satLongitude == sat.longitude);
9 assert acu.satLatitude == sat.latitude;
10 assert !(acu.satLatitude == sat.latitude);
11 3
12
13 @Main
14 public measure() {
15 /x .ox/
16 assert sa.PowerLevel()<sat.powerThreshold;
17 assert !(sa.PowerLevel()<sat.powerThreshold);
18 VALY
19
20
21 @Teardown
22 public teardown() {
23 VALY
24 assert synth.RFMode() == Synthesizer::O0FF;
25 assert !(synth.RFMode() == Synthesizer::0FF);
26}
27}

Figure 13: Negated assertions for verifying the HITECS
specification of Figure 8.

of the corresponding HITECS specification. Due
to uncertainty in CPS HiL testing, HITECS model
checking also returns an inconclusive result for an
assertion when some executions of the correspond-
ing HITECS specification violate the assertion. To
determine inconclusiveness of verification results,
HITECS model checking verifies an assertion and its
negated assertion together. HITECS model check-
ing returns inconclusive for an assertion when model
checking concludes that both the assertion and its
negation hold for some executions.

Having defined our guidelines for assertion specifi-
cation, we now describe the steps of HITECS model
checking in Figure 12. To determine if a given as-
sertion can be conclusively verified, the “convert
HITECS assertions” step first inserts negated asser-
tions below the original assertions and converts both
the original and negated HITECS assertions into
Java assertions. Each assertion then can be conclu-
sively verified if either the assertion or its negation
is proven by the model checker. The former means
that the assertion is conclusively correct and the
latter means the assertion is conclusively false. If
neither the assertion nor its negation can be verified
by the model checker then we can conclude that the
assertion is inconclusive (i.e., its correctness or lack
there-of is unknown). For instance, Figure 13 shows
a modified HITECS specification after which the

14

“convert HITECS assertions” step added the negated
assertions (lines 8, 10, 17, and 25 in Figure 13) of
the respective original assertions in the HITECS
specification of Figure 8. We note that such inter-
mediate modified HITECS specifications are main-
tained by the HITECS model checking component
to keep track of the original and negated assertions.
Similarly, the “translate HITECS into Java” step
produces the Java translations of HITECS specifi-
cations. In this step, the Unknown literals in the
HITECS specifications are replaced with symbolic
variables, as explained in Section 4.2.

The “run JavaPathFinder” step applies JavaPath-
Finder (Visser et al., 2003) (using Z3 (de Moura
and Bjgrner, 2008)) — a well-known and widely-used
model checking tool — to the generated Java transla-
tions. For each assertion, applying JavaPathFinder
leads to one of the following situations: (1) JavaP-
athFinder terminates and computes inputs violat-
ing either the assertion or its negation, (2) JavaP-
athFinder terminates and reports that either the
assertion or its negation satisfies all the inputs,
(3) JavaPathFinder terminates and reports some
failure messages for handling complex equations, or
(4) JavaPathFinder fails to terminate within the
time allotted. For case (1), we say the assertion is
inconclusive. For case (2), we say the assertion is
conclusive. For case (3), JavaPathFinder is inappli-
cable of handling that assertion. Given the failure
messages containing the information of unhandled
complex equations, the “run JavaPathFinder” step
replaces the complex equations with symbolic vari-
ables, and then applies JavaPathFinder again. For
case (4), HITECS model checking is not able to
verify the Java translation.

We chose to translate HITECS specifications
into Java since Alf constructs can be easily
mapped to Java. Alternatively, we could have
translated HITECS into other programming lan-
guages (e.g., C++) and used other model checkers
(e.g., CBMC (Clarke et al., 2004)).

5.2. Uncertainty resolution

The HITECS uncertainty resolution method aims
to identify conditions on unknown parameters of a
HITECS test case specification, containing incon-
clusive assertions, under which the specification is
well-behaved. To do so, the HITECS uncertainty
resolution method combines the following three anal-
ysis tools: (1) a simulator to check assertions in the
HITECS specification for sampled parameter values,

Algorithm simulate for sampled values

Input tc: HITECS test case specification

Input ns: Number of samples

Input V‘i Vector of [min,max] ranges for unknown vars
Output D: Vector of (values, true/false) samples

D« 0O/ empty vector

for ns times do

T sample(‘v;) // vector of values

trace < run(tc, ¥) // execution trace

b < check(trace) // true if all assertions hold
S <+ (U,b) // label: b (true or false)

- e

D <« add(D,)

return D

R sl el el
B WNHFOO©OW OOk W

Figure 14: A simulation algorithm for creating labeled sam-
ples consisting: values of unknown parameters in a HITECS
specification and an assertion result of the specification de-
termined by the parameter values.

(2) an ML-based decision tree learner to infer con-
ditions, i.e., value ranges, on unknown parameters
from the sampled values and simulated assertion
results under which the HITECS specification is
likely well-behaved, and (3) a model checker to find
a subset of the conditions learned from decision
trees under which the specification is conclusively
well-behaved. As shown in Figure 12, the HITECS
uncertainty resolution method analyzes a Java trans-
lation of the HITECS specification produced by the
“translate HITECS into Java” step. The remaining
steps of the HITECS uncertainty resolution method
are the following steps: “simulate for sampled val-
ues“, “learn conditions using decision trees”, and
“run JavaPathFinder with conditions”.

The “simulate for sampled values” step in Fig-
ure 12 executes a Java translation of a HITECS
specification tc to create a labeled dataset contain-
ing tuples (U,b) where ¥ is a value assignment
to uncertain parameters of tc, and b is a binary
label indicating whether or not tc executed with
T satisfies its assertions. Figure 14 describes an
algorithm executed at the “simulate for sampled
values” step. Given the vector V' of the initial value
ranges for n number of unknown parameters in a
HITECS test case specification tc, let V; be a range
of 4th unknown parameter in tc where ¢ = 1,2, ..., n.
We denote by min(V;) and maz(V;), respectively,
the minimum and maximum values in the V; range.
When the minimum or maximum of V; is not defined,
min(V;) or max(V;) returns, respectively, negative
or positive infinity. Note that the implementation
of the HITECS tool — a Java program — is not ca-
pable of supporting true infinity; hence, predefined

15

Algorithm learn conditions using decision trees

Input tc: HITECS test case specification

Input ns: Number of samples

Input V': Vector of [min,max] ranges for unknown vars
Input nd: Number of decision trees to build // budget
Output T': Set of vectors of [min,max] value ranges

T « {} // empty set

R« {V}

cnt < 0

while cnt < nd and R # {} do

T « findLargestRegion(R) // value ranges

R « R\ {L}

D <+ simulate tc with ns and L // see Figure 14
if for all (¥,b) in D: b = true

T « T U {L}

else

t « createTree(D) // learning decision tree
N <« narrowRanges (¢, T) // incl. true samples

I e e e el e e el
OO 00O Ui WNHOOOWTOU R WN =

R+ RUN
21 cnt < cnt + 1
22 return T

Figure 15: A classification algorithm for learning value ranges,
i.e., conditions, of unknown parameters in a HITECS specifi-
cation under which the specification is likely well-behaved.

MIN_VALUE and MAX VALUE constants in Java
are used accordingly.

The algorithm in_Figure 14 first creates value
assignments ¥ for V such that min(V;) < v; <
maz(V;) for all value v; in ¥ and V; in v (line 9).
We use an adaptive random search technique (Luke,
2013) to sample values within ranges. The adaptive
random search extends the naive random search
by maximizing the Euclidean distance between the
sampled points. The algorithm then executes the
java translation of tc with the ¥ vector of sampled
values (line 10) and determines whether or not all
the assertions of tc hold under the sampled values
(line 11). An assertion result b is true only if all the
assertions of tc are satisfied; otherwise, the sampled
values are labeled with false. We refer to a tuple of
(U, true) as a true-labeled sample and (¥, false) as
a false-labeled sample. The algorithm records the
sampled values and the assertion result (lines 12—
13). Last, the algorithm repeats the above process
to collect ms number of labeled samples in the D
dataset (lines 8-13).

Given a dataset D obtained by executing the al-
gorithm in Figure 14, the “learn conditions using
decision trees” step in Figure 12 builds a set of de-
cision trees and identifies conditions on unknown
parameters under which the HITECS specification
tc likely satisfies all its assertions. Figure 15 shows
an algorithm that describes the (iterative) interac-
tions between the “learn conditions using decision

(0<2<200) A (0<y<160)

count: 1000
false: 88.8%
true: 11.2%

1st iteration

2<125.36 1 2>125.36
[1
count: 779 count: 221
false: 99.1% false: 52.5%
true: 0.9% true: 47.5%
y<96.14 y>96.14 y<63.18 | y>63.18
count: 716 count: 63 count: 118 count: 103
false: 100% false: 88.88% false: 98.3% false: 0%
true: 0% true: 11.12% true: 1.7% true: 100%

2nd iteration (125.36<2<200) A (63.18<y<160)

count: 1000 same condition»
false: 34% | <--mrmrmmrmemen e
true: 66
y<79.92 2 A yar092
[1
count: 378 count: 622
false: 84.1% false: 3.6%

true: 15.9% true: 96.4%

£<140.48 r>140.48 2<127.11 l r>127.11

count: 320 count: 58 count: 27 count: 595
false: 96.88% false: 13.8% false: 81.49% false: 0%
true: 3.12% true: 86.2% true: 18.51% true: 100%

(127.11<2<200) A (79.92<z<160)

count: 1000
false: 0%
true: 100%

3rd iteration

«same condition»

Figure 16: Example decision trees generated by the learning
algorithm described in Figure 15.

trees” and “simulate for sampled values” steps. The
algorithm first simulates the tc specification with a
vector L of parameter ranges to obtain a dataset D
containing ns number of labeled samples (line 14).
At the first iteration of the algorithm, T is equal
to the input vector V' of the initial value ranges of
unknown parameters of the tc specification. If the
obtained dataset D contains only true-labeled sam-
ples, the algorithm record L to be returned since
the tc specification holds all the assertions under I
(lines 15-16). In the other case, the algorithm builds
a decision tree based on the D dataset (line 18) and
then uses the tree to restrict the value regions, i.e.,
strengthen its condition, which would likely satisfy
all the assertions in the next iteration (lines 19-21).
The set R of candidate value regions obtained at
lines 19-20 are decided by selecting leaves in the ¢
tree (line 18). Engineers set the rules to choose such
leaves to be analyzed in the next iteration, based on
a set minimum percentage of true-labeled samples
(e.g., 100%, 95%) and then by prioritizing candidate
regions based on their size, i.e., analyzing the ones
with the largest region size first (line 12). As we
discuss below, Figure 16 illustrates the manipulation
of decision trees by the algorithm in Figure 15.

16

The algorithm in Figure 15 relies on decision tree
learning which is a supervised learning technique,
using a labeled dataset (Witten et al., 2011). In
the algorithm, the labeled dataset D is created by
executing the simulation algorithm presented in Fig-
ure 14 (see lines 14 and 18 in Figure 15). The
learning algorithm in Figure 15 uses an ML-based
binary decision tree learner to classify the two (true
or false) labels in the D dataset. A decision tree is
composed of decision nodes, leaves, and edges. A
decision node is linked via edges to its child nodes.
An edge represents a condition on a parameter to
be evaluated which determines a decision path to
descend from a parent node to an appropriate child
node. Note that a decision node has only disjoint
(deterministic) conditions associated with its edges.
A leaf node represents a true or false assertion result
determined by a conjunction of edge predicates from
the root to the leaf.

For example, Figure 16 shows three decision trees
generated by executing a decision tree learner (line
18) in Figure 15 for an artificial HITECS test case
specification ¢c with two unknown parameters x and
y. We set initial value ranges of the two parame-
ters z and y to [0,200] and [0,160], respectively. As
shown in the root node of the “1st iteration” part
in Figure 16, the tree is constructed by the dataset
containing 1000 samples — 88.8% of the samples
violate some assertions in the HITECS specification,
whereas 11.2% of them satisfy all the assertions in
the specification. Given the decision tree, the al-
gorithm identifies a set of conditions under which
they likely satisfy all the assertions in the specifi-
cation (line 19 in Figure 15). At the “1st iteration”
part in Figure 16, the algorithm identifies that the
specification likely holds its assertions under the
condition ¢; = (125.36<2<200) A (63.18<y<160)
as all the 103 out of 1000 samples satisfying c;
are true-labeled. In this example, the algorithm
chose a condition yielding 100% true-labeled sam-
ples. However, an engineer can easily relax this
and allow some small percentages of false-labeled
samples, e.g., false: 5% and true: 95%. At the “2nd
iteration” part in Figure 16, the algorithm further
restricts the condition ¢; as 34% of the newly cre-
ated 1000 samples satisfying ¢; are false-labeled. At
the “3rd iteration”, the algorithm returns the con-
dition ¢ = (127.11<2<200) A (79.92<y<160) since
all the new 1000 samples are true. Note that in
this example, we happen to have only one condition
yielding 100% true-labeled samples. Otherwise, if

there are multiple such conditions, the algorithm
attempts to strengthen all of them by constructing
and analyzing the corresponding decision trees.
Note that the algorithm in Figure 15 analyzes
and restricts all the candidate value regions, i.e.,
conditions, in priority order of their region sizes,
i.e., analyzing the largest one first (line 12), unless
it runs out of its search budget nd. Let V be the
input space containing value ranges of n number
of unknown parameters in a HITECS specification.
Let R be the set of candidate regions obtamed at
lines 9, 13, and 20 in Figure 15. Let W be an
element in R, and Wj be an e element range in W

such that V; in V and WJ in W are different ranges
for the same parameter. We then define the size of

Wj in R as follows:

We note that unknown parameters in a HITECS
spec1ﬁcat10n may have different scales. Hence in
the szze(W V) function, for all W/ in W and V;
in V, the range distance of maz(W}) — mm(WJ)
is divided by the original input range distance of
maz(V;) — min(V;) to normalize the differences.

Last, the “run JavaPathFinder with conditions
step in Figure 12 uses model checking to ensure a
given HITECS specification constrained by the con-
ditions synthesized by the algorithm in Figure 15
conclusively satisfies all its assertions. Specifically,
for each HITECS specification tc and each condition
c computed by the algorithm in Figure 15, we check
whether tc satisfies all its assertions after its uncer-
tain parameters being restricted based on c. The
HITECS uncertainty resolution approach reports
conditions ¢ only if they lead to conclusive satisfac-
tion of the assertions as determined by an exhaustive
model checker. Note that if a HITECS specifica-
tion is inapplicable, the “run JavaPathFinder with
conditions” step replaces complex equations with
symbolic variables in a conservative manner as the

HITECS model checking method does.

7

5.3. Simulation

In Section 4.2, we described the general syntax of
HITECS simulation annotations and how engineers
can specify their semantic routines. In this section,
we describe the steps of the HITECS simulation
in Figure 12. We further show how the simulation
annotations can be used for estimating HITECS
specification execution times.

17

Function Sum

Input traces: execution traces

Input 1$ annotation’s identifier of interest
Output t: vector of values

T+ 0 //empty vector

for each trace in traces do

tmp < O;

call_list < grep id in trace

//call_list: call stmts to the id semantic routine
11 for each call_stmt in call_list

O 00O Utk W =

12 ret < execute call_stmt
13 _tmp < tmp + ret
14 T <« add(f, tmp)

Figure 17: A pre-defined aggregator function of the “analyze
traces” step in Figure 12.

The “translate HITECS into Java” step produces
Java translations of HITECS specifications, exclud-
ing their simulation annotations. The simulation
annotations are handled separately by the “con-
vert HITECS annotations” step, which creates a
log statement corresponding to each annotation
and inserts the statement into the Java trans-
lations. Every time we execute a Java transla-
tion of a HITECS specification (using the “exe-
cute Java” step), each log statement correspond-
ing to the //@identifier (arguments) annotation
inserts into the output trace an invocation to the
identifier(arguments) semantic routine.

The last step, “analyze traces”, computes the sim-
ulation results based on the output traces generated
by the “execute Java” step. This last step scans
all the traces and executes the semantic routine for
each annotation whenever it encounters a call to
that routine in the traces. The outputs obtained
from individual semantic routines should be aggre-
gated to generate simulation results. To do so, the

“analyze traces” step provides some pre-defined func-

tions aggregating these outputs. Specifically, for
each annotation in the input HITECS specifications,
engineers need to either select an aggregator function
from the pre-defined ones or define their own ag-
gregator function. Figure 17 shows (in pseudo-code
form) an example aggregator function, pre-defined
by the “analyze traces” step. This function com-
putes a vector 7 such that every element of T is
related to one trace in traces and is the sum of the
outputs of the semantic routine of the id annotation
appearing on that trace.

For example, Figure 18 shows how the HITECS
simulation is used to compute the execution time
estimations for HiLL test cases. Recall that for this
purpose engineers need to annotate statements using

(Execute Java »_Analyze traces)

v «generates»
Output traces

. \V «provides»
«are inputs of»

Aggregator functiorD
e.g., Sum ¢ «invokes»
SimTime semantic routine

SimTime(“acu.time.record”, “uniform”)

SimTime(“synth.time.record”, “uniform”)

Figure 18: Estimating the execution times of HiL. test cases
using the HITECS simulation in Figure 12.

@SimTime and provide a SimTime semantic routine
(e.g., Figure 10). We use the Sum aggregator func-
tion in Figure 17 to combine the execution times of
individual statements. The HITECS simulation first
simulates the HiL test case under analysis a number
of times based on different inputs and randomly-
generated numbers conforming to associated proba-
bilistic distributions for the Unknown literals. This
accounts for the randomness of the Unknown literal
and generates a set of traces corresponding to dif-
ferent inputs. As shown in Figure 18, the output
traces, which contain calls to the SimTime routine,
are passed to the Sum function. For each trace, the
Sum function computes the sum of the execution
times generated by calls to the SimTime routine and
stores the sum in the vector £. At the end, this vec-
tor represents a distribution of the execution time
values of the HiLL test case under analysis obtained
based on several runs of the test case.

Note that as mentioned in Section 4.2, our an-
notations are side-effect-free because our simulator
executes the annotation routines after executing the
HITECS specifications and only to interpret their
output traces.

6. Evaluation

This section describes our evaluation of the
HITECS specification and analysis framework
through an industrial case study from the satellite
domain. Our (sanitized) case study data is available
online (Shin et al., 2019).

6.1. Research questions (RQs)

RQ1 (assertion guidelines): Are our guide-
lines for defining well-behavedness assertions useful?
HITECS model checking relies on the guidelines that
we provide to assist test engineers with defining well-
behavedness assertions (see Section 5.1). In RQ1, we

18

investigate whether our guidelines lead to more ef-
fective and complete well-behavedness assertions for
HiL test cases, compared to when these assertions
are defined without systematic guidance.

RQ2 (model checking): Can HITECS verify
HiL test case assertions in practical time? HITECS
uses JavaPathFinder to verify the assertions in HiL
test cases. Although JavaPathFinder has been suc-
cessfully applied in some application domains (Visser
et al., 2004; van der Merwe et al., 2012; Lindstrom
et al., 2005), it has not been previously evaluated
for CPS test cases. In RQ2, we investigate whether
JavaPathFinder is able to verify well-behavedness
assertions of industry HiL test cases in practical time
(see the definition of conclusiveness in Section 5.1).

RQ3 (uncertainty resolution): Can HITECS
identify conditions on unknown parameters of HiL
test cases under which HiL test cases are conclusively
well-behaved? The HITECS uncertainty resolution
combines the following three compute-intensive tech-
niques: simulation, learning decision trees, and
model checking. In RQ3, we investigate whether the
HITECS uncertainty resolution approach identifies,
in practical time, conditions on unknown parame-
ters of industry HiL test cases, under which they
are conclusively well-behaved. We further examine
the impact on the identification of such conditions
by varying ML-based decision tree learners (i.e.,
J48 (Quinlan, 1993), SimpleCart (Breiman et al.,
1984), and REPTree (Quinlan, 1987)) which have
been applied in many studies (Abdessalem et al.,
2018; Bettaieb et al., 2019; Safavian and Landgrebe,
1991).

RQ4 (simulation): Can HITECS accurately es-
timate the execution times of HiL test cases via
simulation? The HITECS simulation generates in
a randomized way a large number of HiL test case
traces and analyzes them based on the @SimTime
annotation semantics (see Section 5.3). To answer
RQ3, we evaluate whether the randomized HITECS
simulation is able to accurately estimate the execu-
tion times of industry HiL test cases.

6.2. Industrial study subjects

We have evaluated our approach by applying it
to a real in-orbit-testing case study from the satel-
lite domain. The case study context was described
earlier in Section 2. Our evaluation is based on
seven representative HiLl test scenarios from SES
Networks. Using textual documents describing in-
orbit testing procedures, we created HITECS spec-
ifications for these seven scenarios. The resulting

HITECS test case specifications contain between
821 to 1123 statements each. In total, these test
case specifications use 16 different Hil. components.
Each component has between zero to 25 attributes,
between two to 27 operations, and between two to
nine physical behaviors. Each test case specifica-
tion has between eight to ten known parameters,
between seven to eleven unknown parameters, and
between one and two measurement formulas and
interacts with between 13 to 15 components. The
initial value ranges of unknown parameters are also
provided by SES Networks.

The textual descriptions from SES Networks en-
visaged a number of well-behavedness checks for
each of the test scenarios in our study. These checks
were placed into the test scenarios based solely on
the domain knowledge of the engineers, and with-
out following a systematic process. We converted
these checks into HITECS assertions and inserted
them into our HITECS specifications. On aver-
age, we had 53.4 assertions per specification. As
we will discuss in Section 6.3, to answer RQ1, we
compare these assertions, which are rather ad-hoc
and defined without systematic guidance, with the
well-behavedness assertions that we derive based on
our guidelines in Table 8.

In addition, for each of the seven test cases in our
study, we obtained historical data files from real-
world executions of the tests in previous in-orbit
testing campaigns performed on satellites and HiLL
platforms similar to ours. Specifically, the data files
were obtained based on components that were iden-
tical or near-identical to our case study components,
the same satellite orbital characteristics, and the
same ground station for communicating with the
satellite. In general, such usable historical data is
obtainable for many CPS, since these systems often
share a lot of common components with previous
systems. Furthermore, new CPS components typi-
cally come with detailed technical specifications and
performance data from the manufacturers. In our
case study, we extracted from the available histor-
ical data execution time values for the component
operation calls as well as the whole HiL. test cases.
We use these values to answer RQ4.

6.3. Experiment design

To answer RQ1 and RQ2, we rely on mutation
analysis (Jia and Harman, 2011) of test cases. Specif-
ically, we created faulty test cases using an auto-
mated fault injection method. To do so, we designed
a number of mutation operators to capture common

19

faults in this domain. The operators were designed
based on our discussions with domain experts as
well as our analysis of the in-orbit test scenario doc-
uments. We implemented three mutation operators:
(1) deleting an operation call, (2) modifying the
return value of an operation and (3) modifying the
input parameter value of an operation. For muta-
tion operators (2) and (3), we negate the value if it
is boolean, replace it with the next/previous value if
it is from an enumeration, add a constant to it if it
is numeric, and replace it with null if it is a string.

Our fault seeding program generated 781 candi-
date mutants based on our seven HITECS specifica-
tions. Each mutant contained one fault seeded by
one mutation operator. Some of these mutants were
not faulty as they were behaviorally equivalent to the
unmutated HITECS specifications (i.e., equivalent
mutants). For example, in our context, equivalent
mutants were created because there were some dupli-
cated component operation calls in the original test
scenarios that carried over to our HITECS specifica-
tions. Removing the redundant statements does not
introduce a fault. Following the procedure proposed
by Yao et al. (2014), we identified the equivalent
mutants by manually inspecting all the candidates.
In our study, 172 out of the 781 generated mutants
turned out to be equivalent. We used the remaining
609 non-equivalent mutants in our experiment.

To answer RQ1, we added to our seven HITECS
specifications the assertions prescribed by our guide-
lines in Table 8. On average, per specification, we
had 110.7 assertions prescribed by our guidelines.
Recall from Section 6.2 that our HITECS specifi-
cations also include some assertions based on the
ad-hoc checks in the textual test scenario descrip-
tions. We put the ad-hoc assertions and the ones
based on guidelines in separate copies so as to com-
pare them. Note that the mutation operators do
not change the assertions.

We consider two metrics to answer RQ1 and RQ2:
(1) mutation coverage and (2) execution time. We
say a HITECS mutant is killed if JavaPathFinder
reports that the mutant violates at least one of
its assertions. For each test case tc, we compute
the mutation coverage cov(tc) as the proportion of
the number of killed mutants of tc over the total
number of non-equivalent mutants of ftc. For the
second metric, we measure the execution time of
each run of JavaPathFinder on each mutant. We
note that inconclusive assertions are excluded in the
experiments for RQ1 and RQ2. This is because in-
conclusive assertions cannot be used to detect faults

injected in mutants. We address the issues regarding
inconclusive assertions by the HITECS uncertainty
resolution method and evaluate the method by an-
swering RQ3.

To answer RQ3, we apply the HITECS uncer-
tainty resolution method to the seven HITECS spec-
ifications with the guideline-based assertions and
consider two metrics: (1) ezecution time and (2) re-
gion size. For the first metric, we measure the exe-
cution time of the HITECS uncertainty resolution
method. In addition, as inferred conditions depend
on a decision tree learning techniques (e.g., J48, Sim-
pleCart, or REPTree), we examine different hyper-
parameter configurations of these techniques, which
have been successfully applied in many applica-
tions (Abdessalem et al., 2018; Bettaieb et al., 2019;
Safavian and Landgrebe, 1991). To compare the
performance of those combinations, we measure the
region size (see size() equation in Section 5.2) deter-
mined by the conditions on unknown parameters of a
HiL test case returned by the uncertainty resolution
method. The larger the region size, the more options
to choose parameter values. Test engineers typically
prefer to have a higher number of options regarding
unknown parameter values, assuming all the options
guarantee the well-behavedness of HiLi testing.

We conducted initial experiments (1) to confirm
the use of the adaptive random search instead of
the naive random search for sampling values of un-
known parameters and (2) to identify, among all
hyper-parameters of ML-based decision tree learn-
ers, which ones have a large impact on the resulting
region sizes. The initial experiments confirmed that
the adaptive random search produces a larger re-
gion size than the naive random search. Regarding
hyper-parameters, we found that tuning the hyper-
parameters which control tree pruning and node
splitting has a significant impact on the region sizes,
while tuning the other parameters does not lead
to notable differences. Therefore, we compare the
three decision tree learners, i.e., J48, SimpleCart,
and REPTree, by using optimal values of the tree
pruning and node splitting parameters.

To answer RQ4, for each component operation
call statement in our HITECS specifications, we
inserted a @SimTime to annotate that statement.
Recall from Section 4.2 that @SimTime has two pa-
rameters record and type. For the record pa-
rameter, we analyzed historical data files from past
real-world in-orbit testing campaigns as described
in Section 6.2 and obtained a vector of execution
time values for each component operation call. We

20

Table 9: Mutation analysis results for the seven HITECS
specifications.

‘e # non-equivalent # killed mutants cou(tc)
tant
foutants ad-hoc guideline ad-hoc guideline

tel 90 56 90 0.62 1.00
tc2 63 51 63 0.81 1.00
tc3 57 49 57 0.86 1.00
tcq 99 57 99 0.58 1.00
tcd 97 56 97 0.58 1.00
tc6 91 57 91 0.63 1.00
te7 112 56 112 0.50 1.00

specified the type parameter as uniform (see the
example in Figure 8).

We ran the experiments on a computer
equipped with a 2.8 GHz Intel Core i7 CPU
and 16 GB of memory.

6.4. Results

RQ1 (assertion guidelines). We applied Java-
PathFinder to the 609 mutants containing ad-hoc
assertions and to the 609 mutants containing asser-
tions prescribed by our guidelines. Table 9 shows
the mutation coverage values, cov, for ad-hoc and
guideline-based assertions for each test case in our
study. As shown in the table, the number of killed
mutants containing ad-hoc assertions is less than
the number of killed mutants containing assertions
based on our guidelines. Specifically, for all the test
cases, while all of the mutants with guideline-based
assertions are killed by JavaPathFinder, only 50%
to 86% of the mutants with ad-hoc assertions are
killed by JavaPathFinder.

We note that the results are valid under our exper-
iment design described in Section 6.3. Specifically,
mutants created by the three mutation operators
(see Section 6.3) are subject to be killed by the
ad-hoc and guideline-based assertions in our ex-
periments. To create realistic and representative
fault-seeded mutants, we relied on our collaborating
partner’s inputs, i.e., discussions and real in-orbit
test scenarios. Systematically creating effective mu-
tants is still challenging (Andrews et al., 2005; Petro-
vic et al., 2018), but lies outside the scope of this
article.

The answer to RQ1 is that our guidelines help
engineers develop more effective and complete
well-behavedness assertions for HiL. test cases com-
pared to when engineers develop assertions with-
out any systematic guidance.

Killed mutants{ H
Live mutants1 ==

k d
0 5 10 15 20 25
Verification time (second)

Figure 19: HITECS verification time for the live mutants
and killed mutants. Box plot: Min-25%-50%-75%-Max.

Table 10: Number of guideline-based assertions for each HiLL
test case in our case study (see the definitions of conclusive
and inconclusive assertions described in Section 5.1).

assertions

type

tcl tc2 tcs tcq tch tcb tc7
conclusive 110 67 60 119 123 126 149
inconclusive 4 1 2 4 4 2 4

RQ2 (model checking). JavaPathFinder was
able to verify all the mutants in our experiments by
terminating in less than 25.2s, and either reporting
assertion violations or concluding that no assertion
is violated. Figure 19 shows the execution times
of JavaPathFinder for the killed and live mutants
separately. On average, it took JavaPathFinder 1s to
show assertion violations for killed mutants, and 19s
to conclude no assertion is violated for live mutants.
Further, it took JavaPathFinder 1.35h and 0.20h to
verify the mutants containing ad-hoc and guideline-
based assertions, respectively. The mutants with
guideline-based assertions required significantly less
verification time compared to those with ad-hoc
assertions because they included significantly more
killed mutants.

We note that the practical efficiency of JavaP-
athFinder in our context is partly due to the simple
structure of HiLi test cases. In particular, HiL test
cases are mainly sequential, typically contain few
branches and their loops are often bounded with con-
stant values. Otherwise, the performance of model
checkers (such as JavaPathFinder) may diminish
both in terms of execution time and memory us-
age when they are applied to concurrent code with
unbounded loops and highly branching structures.

The answer to RQ2 is that, for any one of the HiL
test cases in our study, JavaPathFinder verified
all the well-behavedness assertions in less than
25.2s.

RQ3 (uncertainty resolution). Table 10
shows the number of guideline-based assertions that
can be either conclusively or inconclusively veri-
fied by the HITECS model checking method. Note
that all the seven HITECS test specifications have
complex equations, e.g., containing logarithmic func-

21

Table 11: The number of identified conditions via the
HITECS uncertainty resolution method and the measured ex-
ecution time for identifying the conditions. The uncertainty
resolution algorithm in Figure 15 is configured as follows:
ns = 10000 and nd = 10000 , using J48 with the minimum
number of instances per leaf = one and no pruning.

execution time

tc # conds.

simulation learning model total

checking

tcl 6167 2.11h 3.02h 1.48h 6.61h
tc2 5009 1.95h 2.84h 1.35h 6.14h
tc3 5375 2.05h 2.82h 1.42h 6.29h
tcs 6050 2.17h 3.05h 1.53h 6.75h
tch 6163 2.03h 3.03h 1.42h 6.48h
tc6 5117 1.78h 2.91h 1.32h 6.01h
te7 5954 1.95h 3.05h 1.45h 6.45h
mean 5691 2.01h 2.96h 1.42h 6.39h

tions, that cannot be handled by model checking.
Therefore, the numbers of conclusive and inconclu-
sive assertions presented in the table are computed
after replacing the complex equations with symbolic
variables (see Section 5.1). Recall from Section 5.2
that the HITECS uncertainty resolution method
takes an original HITECS specification as an in-
put. For the inconclusive assertions, the uncertainty
resolution method synthesizes conditions on the un-
known parameters of the seven HiL test cases in
our study under which they are guaranteed to be
well-behaved.

For each HITECS test specification, Table 11
shows the number of synthesized conditions and the
execution time of the uncertainty resolution method.
A condition in the table means a conjunction of pred-
icates with the following form: (min < var < max)
where var is an unknown parameter (see example
conditions in decision trees of Figure 16). Specifi-
cally, the number of synthesized conditions for tc1
is 6167, meaning that the HITECS uncertainty reso-
lution method generated 6167 distinct decision tree
leaf nodes. These conditions are defined over the 11
unknown parameters of tcl, and tc! is guaranteed
to be well-behaved under each of these conditions.

Note that test engineers in practice do not need
to inspect individual conditions. At the actual
time of Hili testing, they often have narrowed
down the value ranges of unknown parameters into
more restricted ranges compared to the initial and
widely-estimated ranges they typically provide at the
design-time testing. If the narrowed-down ranges
are subsumed by some of the synthesized conditions,
they can conclude that their HiLi testing is going to

14
2- ""f"f'*'f'* T TTETS "'-H-*q-*
s x T e *_._* e x x x Y Parameters
3- R 1 R
M:1 P:F
’g,f _ best best best best best best best : M PT
7 M B M3 PF
ERS W B3 M3PiT
X B3 M5 PF
67 B3 M:5P:T
74
84
t(‘:l h‘:‘Z t(“,ﬁi t(‘-L t<‘:5 h‘:ﬁ t(“ 7
(a) J48
14
94
N Parameters
- B3 M:1PF
T Fesemne . W e s T R eSS g A PT
a B M3 PiF
R B3 M3PT
‘ * B3 M5 PF
a ** - B3 M:5P:T
] e
-8
t(“l t(‘:2 ‘r,(‘:li t(‘:4 r(‘:ﬁ t(“h’ h‘:/
(b) SimpleCart
14
924
N Parameters
B - ES M1 PF
T e g LR T e SemS E§ M PT
® : ! B M3 PiF
&5 B3 M3PT
. * B3 M5 PF
1 ****# E3 M5 PT
-7 .
-8
t(“l f(‘:‘Z t(‘:?} t(“'l r<‘:5 t(“b’ f<‘:7
(¢) REPTree

Figure 20: Region size distributions resulting from hyper parameter optimization for J48, SimpleCart, and REPTree. M: Minimal
number of instances per leaf (1,3, or 5) and P: Pruned tree (T-pruned or F-unpruned).

22

be safe. Otherwise, they either need to find ways to
further narrow down the ranges (e.g., by modifying
hardware or by further restricting operating ranges
of some devices) or they do not proceed with HiL
testing due to high chances of hardware damage.

In addition, we measured the execution times of
the HITECS uncertainty resolution procedure (see
Figure 12). In this experiment, we set ns = 10000
and nd = 10000 in Figure 15. As shown in Ta-
ble 11, one run of the HITECS uncertainty resolution
method took, on average, 6.39h — 2.01h for simula-
tion, 2.96h for decision tree learning, and 1.42h for
model checking. The execution time is acceptable
in practice as the HITECS uncertainty resolution
method can be executed offline at design-time.

We further compared the impacts of using differ-
ent ML-based decision tree learners on the HITECS
uncertainty resolution method with different hyper-
parameter values. Due to random variation in the
uncertainty resolution method, we repeated our ex-
periments 20 times. Figure 20 shows boxplots that
compare J48, SimpleCart, and REPTree with dif-
ferent configurations of the minimum number of
instances per leaf (M) and the boolean tree prun-
ing flag (P). As shown in Figure 20, the HITECS
uncertainty resolution method with J48, by setting
M = 1 and P = false, produces the largest re-
gion size yielded by the synthesized conditions. We
omit the corresponding statistical testing results of
Figure 20 as the boxplots show visually significant
differences between the best J48 configuration and
the other configurations.

We note that the larger the region size, the more
options to choose values for unknown parameters of
HiL test cases. A small region size indicates that the
test case is well-behaved only under restricted envi-
ronment conditions and parameters. Engineers may
choose to not execute test cases within such restric-
tions when they do not match their usual standards
and normal situations. Alternatively, such test cases
may be scheduled to run during hours when more
test operators are available to fully observe test ex-
ecutions and act quickly if any risk of damage is
present.

The answer to RQ3 is that the HITECS uncer-
tainty resolution method provides conditions on
unknown parameters of HiL test cases under which
the test cases are guaranteed to be well-behaved.
Furthermore, we found the optimal configuration
that leads to largest region sizes (hence, yielding

23

most relaxed conditions on unknown parameters
of HiL test cases). Using the optimal configura-
tion, the uncertainty resolution method took, on
average, 6.39h which is acceptable in general since
our approach is an offline analysis that can be
performed at design time and long before starting
the actual HiL testing.

RQ4 (simulation). To estimate the execution
time values of HiL test cases in our study, we ran
each HITECS specification 3000 times, and created
3000 traces to be used by our simulation algorithm
(see Section 5.3). We selected the number of sim-
ulation traces to be 3000 for two reasons: (1) The
shapes and the ranges of execution-time distribu-
tions for all of our HITECS specifications started to
stabilize when we used about 3000 simulation runs,
and (2) the 95% confidence interval (CI) (Fisher,
1959) of the estimated execution time distributions
obtained based on 3000 simulation runs is very small,
i.e., less than +1.5% of the mean estimated time, for
all of our HITECS specifications. For example, the
estimated execution time distribution of test case
4 in our study is as follows: the mean is 1924.96s,
the standard deviation is 289.18, the minimum is
1037s, the 1st quartile is 1766.5s, the median is
2037s, the 3rd quartile is 2089s, and the maximum
is 2718s. The 95% CI of test case 4 is thus 1924.96
(mean) £10.35. The interval of 10.35 is computed
by 1.96-289.18/4/3000, where 1.96 is the Z-value for
95% confidence, 289.18 is the standard deviation,
and 3000 is the number of simulation traces (Fisher,
1959).

Figure 21 compares the estimated execution time
distributions computed by the HITECS simulation
framework with some actual execution time samples
for each HITECS specification in our study. Note
that, in the figure, the actual execution time samples
are shown as (red) dots around each distribution.
Recall from Section 6.2 that the sample execution
times are extracted from historical data files pro-
vided by SES Networks. We note that due to the
confidentiality of most satellite operation informa-
tion, we were provided with only a few historical
data files from which at most seven sample exe-
cution times could be extracted for each test case.
As shown in Figure 21, the actual execution time
values are within the min-max ranges of their cor-
responding estimated distributions. Further, our
domain experts validated the estimated distribu-
tions for each test case specification in our study.

= ——e

E B3 Estimated time
S .

8 s ® Actual time

& 2000 =

E

3 [=_a==]

S 1000 —_—

P

33

g all
g =ks —

2] 0 } }

tel tc2 tes ted tes tc6 te7

Figure 21: Comparing the estimated execution time distri-
butions and the actual execution time samples of the seven
HITECS specifications. Box plot: Min-25%-50%-75%-Max.

The answer to RQ4 is that the HITECS simula-
tion framework provides accurate execution time
estimates for HiLL test cases. Specifically, all the
actual execution time samples of the HiL test
cases in our study are within the min-max ranges
computed by our simulation approach.

6.5. Threats to validity

This section discusses the validity considerations
which are most relevant to our work, i.e., internal
and external validity.

Internal validity. We mitigate potential biases
and errors in our experiment data by using actual
CPS HiL test data from SES Networks. First of
all, we specified real satellite test procedures using
HITECS. For HITECS model checking, HITECS
assertion guideline was evaluated by comparing the
effectiveness of two sets of assertions (1) prescribed
by the guideline and (2) described in the real test pro-
cedures. For HITECS uncertainty resolution, initial
value ranges of unknown parameters are determined
by SES Networks. We also compared different ML-
algorithms by controlling their hyper-parameters.
For HITECS simulation, we used real historical data
from SES Networks to estimate execution times of
HiL test cases.

External validity. HITECS tailors existing gen-
erally applicable UML profiles, i.e., UTP, UUP, and
Alf, for specifying and analyzing HiL testing in the
context of CPS and is evaluated by applying it to
a single industry case study in the satellite domain.
Even though the case study system is a representa-
tive HiLl testing of CPS in an actual industry set-
ting, additional case studies are essential to validate
our approach in different domains. In particular,
our experiment results show that both HITECS
model checking and HITECS uncertainty resolution
spent practically acceptable time to execute. How-
ever, this finding requires further investigation as

24

the performance of the underlying model checking
technique of HITECS highly depends on system
characteristics.

7. Related work

This section compares HITECS with different
strands of related work in the area of (1) standards,
(2) model checking and simulation in the context
of verifying test cases and estimating their execu-
tion time, respectively, and (3) uncertainty-aware
specification and analysis.

The standards that HITECS builds on, namely
UTP and Alf, have been used in many research
strands (Baker et al., 2007; Schieferdecker et al.,
2003; Iber et al., 2015; Bagnato et al., 2013; Elaasar
and Badreddin, 2016; Ciccozzi, 2016; Buchmann
and Rimer, 2016; Seidewitz and Tatibouet, 2015;
Seidewitz, 2017). For instance, UTP has been used
as a base language to specify tests (e.g., Ubtl (Iber
et al., 2015)), and Alf has been integrated into main-
stream MDE tools (e.g., Papyrus (Seidewitz and
Tatibouet, 2015) and MagicDraw (Seidewitz, 2017))
as an action language. To the best of our knowledge,
HITECS is the first attempt at tailoring and extend-
ing UTP and Alf for specifying and analyzing CPS
HiL, test cases. More specifically, the extensions
and improvements that HITECS offers over UTP
(see Table 1) have not appeared in any prior work.
The same can be said about how we utilize Alf for
creating executable HiL test case specifications.

The European Telecommunications Standards In-
stitute (ETSI) is responsible for developing stan-
dard languages for test specification. For exam-
ple, the Testing and Test Control Notation (TTCN-
3) (ETSI, b) and the Test Description Language
(TDL) (ETSI, a) are standard languages developed
by ETSI. TTCN-3 is a test specification language
that has been applied in a variety of application
domains such as telecommunication, transportation,
and automotive. TDL is a language for describing
test scenarios to fill the gap between informally-
described test purposes and formally-defined test
case specifications. UTP, which is the basis for
HITECS, has been influenced by the concepts in
ETSI standards, particularly those in TTCN-3.
TTCN-3 and TDL, while being industry standards,
are both generic test specification languages. In
contrast, we have designed HITECS by following
the paradigm of domain-specific modeling, with a
specialized focus on CPS HiL testing.

Model checking and simulation have been
widely used in a variety of application do-
mains (Biere et al., 2003; Lindstrom et al., 2005;
Grumberg and Veith, 2008; Enoiu et al., 2016;
Adiego et al., 2015). However, verifying CPS HiL
test cases and estimating their execution times have
not been studied much in the existing work. Naik
and Sarikaya (Naik and Sarikaya, 1993) use model
checking to verify test cases developed for testing
protocols. In their work, test case behaviors are ex-
pressed using extended state machines, and verified
against safety and liveness properties formalized in
temporal logic. Our work, in contrast, focuses on en-
suring test case well-behavedness (see Table 6). To
this end, we provide systematic guidelines to help en-
gineers insert well-behavedness assertions into their
test case specifications. Further, unlike Naik and
Sarikaya, we demonstrate the effectiveness of our
approach by empirically evaluating it on an indus-
trial case study. Aranha and Borba (Aranha and
Borba, 2007) propose an estimation model for test
execution times. Their approach specifies test cases
using a controlled natural language (CNL (Schwit-
ter, 2002)), and estimates the execution times of
test cases based on the size of CNL test case speci-
fications and historical test execution data. As we
argued earlier, estimating test execution times in
the context of HiL testing involves uncertainty due
to environmental factors. Hence, unlike the work of
Aranha and Borba, we estimate test execution times
as distributions (rather than point values) in order
to account for such uncertainty. Further, our simu-
lation annotations are flexible and can be used for
estimating measures other than test execution times,
e.g., the hardware wearout that may result from HiL
testing. Finally, none of the above approaches pro-
vides a language to make test case specifications
amenable to verification and simulation analysis.

Uncertainty has drawn a lot of attention in the
software engineering research for supporting a va-
riety of tasks, e.g., uncertainty modeling (Whit-
tle et al., 2010; Zhang et al., 2016, 2019b), model
checking in the presence of uncertainty (Bruns and
Godefroid, 1999; Legay et al., 2010; Kwiatkowska
et al., 2002), uncertainty-aware testing (Zhang
et al., 2019a), and analyzing probabilistic asser-
tions (Sampson et al., 2014). Whittle et al. (2010)
propose RELAX, a requirements language for self-
adaptive systems. RELAX provides a declarative
language for specifying uncertainty in the context
of adaptive systems and a formal semantics based
on temporal fuzzy logic. Zhang et al. (2016) present

25

U-Model, a conceptual model to understand uncer-
tainty in the context of CPS. U-Model provides a
systematic approach to identify, classify, and spec-
ify uncertainty at various development phases of
CPS. Recently, Zhang et al. (2019b) introduce the
UML Uncertainty Profile (UUP) which is based on
the conceptual uncertainty model for CPS, i.e., U-
Model. HITECS tailors UUP to capture uncertainty
in the context of CPS testing. These prior model-
ing research strands aim at accounting for uncer-
tainty concerns faced in various system development
phases. In contrast to the above work, HITECS is
specifically designed to capture the uncertainty in
the context of CPS testing. HITECS specifications
can be further analyzed through the following three
uncertainty-aware analysis tasks: model checking,
uncertainty resolution and simulation.

Some model checking research strands have been
developed to account for uncertainty, represented
either as unknown or random behavior, in their rea-
soning frameworks. For example, three-valued state
abstraction has been used to deal with unknown
systems’ state spaces (Bruns and Godefroid, 1999).
Three-valued model checking aims at determining
conclusive or inconclusive verification results for sys-
tem properties based on partially-known behaviors
of a system. With respect to random behavior of a
system, statistical or probabilistic model checking
techniques have been proposed to verify stochastic
systems that exhibit probabilistic behaviors (Legay
et al., 2010; Kwiatkowska et al., 2002). HITECS
model checking objectives align with those of the
three-valued model checking in terms of identify-
ing conclusive and inconclusive properties. Unlike
statistical or probabilistic model checking, HITECS
model checking does not provide quantitative anal-
ysis results (or probability estimations). Instead,
HITECS provides an automated analysis method
to identify conditions on uncertain parameters un-
der which test cases are guaranteed to satisfy their
assertions.

Zhang et al. (2019a) propose uncertainty-wise test
case generation and minimization methods for CPS.
Their test case generation approach is a model-based
testing framework which requires an explicit model
of system behavior in the presence of uncertainty
in its operating environment. Their test case min-
imization technique is based on a multi-objective
search optimizing cost, uncertainty, and effective-
ness objectives. Unlike the prior research, HITECS
is developed to directly specify and analyze CPS
test cases which do not necessarily require detailed

behavioral models of the SUT. This enables test
engineers to focus on specifying how the SUT is to
be tested instead of its internal behavior.

Sampson et al. (2014) present an approach to
specify probabilistic assertions and to verify these
assertions. A probabilistic assertion states that the
probability that a Boolean expression e holds in a
given program execution is at least p with a con-
fidence level c¢. Their assertion analysis workflow
combines (1) Bayesian network for optimization and
(2) sampling and hypothesis testing for verification.
In contrast, HITECS model checking analyzes as-
sertions and divides them into conclusive and incon-
clusive ones. For inconclusive assertions, HITECS
uncertainty resolution uses sampling and ML tech-
niques to identify specific conditions on uncertain
parameters of test cases under which test cases are
guaranteed to satisfy their inconclusive assertions.

8. Conclusions

This article studied for the first time the problem
of specifying and analyzing CPS HiL test cases. HilL
testing is a complex and time-consuming process.
To minimize the risks associated with HiL testing,
engineers have to ensure that: (1) HiL test cases
are well-behaved, i.e., they implement valid test sce-
narios and do not accidentally damage hardware,
as verified by assertions. (2) When the assertion
checking of HiL test cases is inconclusive due to
uncertainties in their behavior, we provide an un-
certainty resolution strategy to identify conditions
on uncertain parameters of HiL test cases under
which they are guaranteed to satisfy their assertions.
(3) The test cases execute within the time budget
allotted to testing. We presented the HITECS speci-
fication and analysis framework, consisting of (1) an
executable, uncertainty-aware modeling language for
specifying HiL test cases and HiL, platforms, (2) a
verification method to ensure the well-behavedness
of HiL test cases, (3) a strategy to resolve uncer-
tainties by identifying conditions on parameters of
HiL test cases under which they are guaranteed to
satisfy their well-behavedness assertions, and (4) a
simulation method to estimate the execution times
of HiLi test cases. We evaluated HITECS on an
industrial case study in the satellite domain, which
shares many of the common characteristics among
Cyber-physical systems. Our evaluation showed that
HITECS helps engineers define complete and effec-
tive assertions for checking the well-behavedness of
HiL test cases, verify the well-behavedness of these

26

test cases in practical time, resolve uncertainties by
identifying conditions under which test cases can be
conclusively verified, and accurately estimate the
execution times of these test cases.

In the future, we would like to incorporate fur-
ther analytical capabilities into our approach and
extend the HITECS specification language to facili-
tate such new analysis tasks. For instance, emerging
network technologies enable developing intelligent
distributed CPS such as IoT-enabled emergency
management systems (Shin et al., 2020) and smart
manufacturing systems for Industry 4.0 (Lee et al.,
2015). Testing such distributed CPS requires ac-
counting for the underlying communication networks
of the systems. We plan to extend HITECS to spec-
ify and analyze communication behaviors for testing
intelligent distributed CPS. Another important di-
rection for future work is to perform additional case
studies in different application domains in order
to more conclusively assess the applicability and
usefulness of HITECS.

Acknowledgements

This project has received funding from SES, the
Luxembourg National Research Fund under the
grant C-16PPP/IS/11270448, the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant agreement No 694277) and NSERC of Canada
under the Discovery, Discovery Accelerator, and
CRC programs.

References

Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T., 2018.
Testing vision-based control systems using learnable evo-
lutionary algorithms, in: Proceedings of the 40th Interna-
tional Conference on Software Engineering (ICSE’18), pp.
1016-1026.

Adiego, B.F., Darvas, D., nuela, E.B.V., Tournier, J., Bli-
udze, S., Blech, J.O., Sudrez, V.M.G., 2015. Applying
model checking to industrial-sized PLC programs. IEEE
Transactions on Industrial Informatics 11, 1400-1410.

Ali, S., Yue, T., 2015. U-Test: Evolving, modelling and
testing realistic uncertain behaviours of cyber-physical
systems, in: Proceedings of the 8th IEEE International
Conference on Software Testing, Verification and Valida-
tion (ICST’15), pp. 1-2.

Ammann, P., Offutt, J., 2016. Introduction to Software
Testing. 2 ed., Cambridge University Press.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation
an appropriate tool for testing experiments?, in: Proceed-
ings of the 27th International Conference on Software
Engineering (ICSE’05), pp. 402-411.

Aranha, E., Borba, P., 2007. An estimation model for test
execution effort, in: Proceedings of the 1st International
Symposium on Empirical Software Engineering and Mea-
surement (ESEM’07), pp. 107-116.

Arrieta, A., Sagardui, G., Etxeberria, L., Zander, J., 2017a.
Automatic generation of test system instances for config-
urable cyber-physical systems. Software Quality Journal
25, 1041-1083.

Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxe-
berria, L., 2017b. Search-based test case generation for
cyber-physical systems, in: Proceedings of the 2017 IEEE
Congress on Evolutionary Computation (CEC’17), pp.
688-697.

Asadollah, S.A., Inam, R., Hansson, H., 2015. A survey on
testing for cyber physical system, in: Proceedings of the
27th IFIP WG 6.1 International Conference on Testing
Software and Systems (ICTSS’15), pp. 194-207.

Bagnato, A., Sadovykh, A., Brosse, E., Vos, T.E., 2013. The
OMG UML testing profile in use—an industrial case study
for the future internet testing, in: Proceedings of the
17th European Conference on Software Maintenance and
Reengineering (CSMR’13), pp. 457-460.

Baker, P., Dai, Z.R., Grabowski, J., Haugen, @., Schiefer-
decker, 1., Williams, C., 2007. Model-Driven Testing: Us-
ing the UML Testing Profile. Springer-Verlag New York,
Inc.

Bettaieb, S., Shin, S.Y., Sabetzadeh, M., Briand, L.C., Nou,
G., Garceau, M., 2019. Decision support for security-
control identification using machine learning, in: Pro-
ceedings of the 25th International Working Conference
on Requirements Engineering: Foundation for Software
Quality (REFSQ’19), pp. 3—20.

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.,
2003. Bounded model checking. Advances in Computers
58, 117-148.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.,
1984. Classification and Regression Trees. Wadsworth
International Group.

Bruns, G., Godefroid, P., 1999. Model checking partial state
spaces with 3-valued temporal logics, in: Proceedings of
the 11th International Conference on Computer Aided
Verification (CAV’99), pp. 274-287.

Buchmann, T., Rimer, A., 2016. Unifying modeling and
programming with ALF, in: Proceedings of the 2nd Inter-
national Conference on Advances and Trends in Software
Engineering (SOFTENG’16), pp. 10-15.

Ciccozzi, F., 2016. On the automated translational execution
of the action language for foundational UML. Software
and Systems Modeling , 1-27.

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking
ANSI-C programs, in: Proceedings of the International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’04), pp. 168-176.

Clarke, E.M., Zuliani, P., 2011. Statistical model checking
for cyber-physical systems, in: Proceedings of the 9th
International Conference on Automated Technology for
Verification and Analysis (ATVA’11), pp. 1-12.

Clarke, Jr., E.M., Grumberg, O., Peled, D.A., 1999. Model
Checking. MIT Press.

Elaasar, M., Badreddin, O., 2016. Modeling meets program-
ming: A comparative study in model driven engineering
action languages, in: Proceedings of the International Sym-
posium on Leveraging Applications of Formal Methods

(ISoLA’16), pp. 50-67.
Elbert, B.R., 2008. Introduction to Satellite Communication.

3 ed., Artech House.

27

Enoiu, E.P., Causevié¢, A., Ostrand, T.J., Weyuker, E.J.,
Sundmark, D., Pettersson, P., 2016. Automated test gen-
eration using model checking: An industrial evaluation.
International Journal on Software Tools for Technology
Transfer (ICTSS’16) 18, 335-353.

ETSI, 2017b. Testing and Test Control Notation version 3.
ETSI Standard.

ETSI, 2018a. Test Description Language. ETSI Standard.

Fisher, R.A., 1959. Statistical Methods and Scientific Infer-
ence. Oliver & Boyd.

Grumberg, O., Veith, H. (Eds.), 2008. 25 Years of Model
Checking: History, Achievements, Perspectives. Springer-
Verlag.

Iber, J., Kajtazovié, N., Holler, A., 2015. Ubtl UML testing
profile based testing language, in: Proceedings of the 3rd
International Conference on Model-Driven Engineering
and Software Development, pp. 1-12.

Jensen, J.C., Chang, D.H., Lee, E.A., 2011. A model-based
design methodology for cyber-physical systems, in: Pro-
ceedings of the 7th International Wireless Communications
and Mobile Computing Conference (IWCMC’11), pp. 1666—
1671.

Jeruchim, M.C., Balaban, P., Shanmugan, K.S. (Eds.), 2000.
Simulation of Communication Systems: Modeling, Method-
ology and Techniques. 2nd ed., Kluwer Academic Publish-
ers.

Jia, Y., Harman, M., 2011. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering 37, 649-678.

Kwiatkowska, M.Z., Norman, G., Parker, D., 2002. PRISM:
probabilistic symbolic model checker, in: Proceedings
of the 12th International Conference on Computer Per-
formance Evaluation, Modelling Techniques and Tools
(TOOLS’02), pp. 200—204.

Lee, E.A., 2008. Cyber physical systems: Design challenges,
in: Proceedings of the 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing (ISORC’08),
pp. 363-369.

Lee, J., Bagheri, B., Kao, H., 2015. A cyber-physical systems
architecture for industry 4.0-based manufacturing systems.
Manufacturing Letters 3, 18-23.

Legay, A., Delahaye, B., Bensalem, S., 2010. Statistical
model checking: An overview, in: Proceedings of the 1st
International Conference on Runtime Verification (RV’10),
pp. 122-135.

Lindstrom, G., Mehlitz, P.C., Visser, W., 2005. Model check-
ing real time Java using Java Pathfinder, in: Proceedings
of the 3rd International Conference on Automated Technol-
ogy for Verification and Analysis (ATVA’05), pp. 444-456.

Liu, B., Nejati, S., Lucia, L., Briand, L.C., 2019. Effective
fault localization of automotive Simulink models: Achiev-
ing the trade-off between test oracle effort and fault local-
ization accuracy. Empirical Software Engineering (EMSE)
24, 444-490.

Luke, S., 2013. Essentials of Metaheuris-
tics. second ed., Lulu. Available for free at
http://cs.gmu.edu/~sean/book/metaheuristics/.

Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.,
2019. Test generation and test prioritization for Simulink
models with dynamic behavior. IEEE Transactions on
Software Engineering (TSE) 45, 919-944.

Menghi, C., Nejati, S., Briand, L.C., Isasi Parache, Y., 2020.
Approximation-refinement testing of compute-intensive
cyber-physical models: An approach based on system

identification, in: Proceedings of the 42nd International
Conference on Software Engineering (ICSE’20), pp. 1-13.
van der Merwe, H., van der Merwe, B., Visser, W., 2012. Ver-
ifying android applications using Java PathFinder. ACM
SIGSOFT Software Engineering Notes 37, 1-5.

Mosterman, P.J., Zander, J., 2016. Cyber-physical systems
challenges: A needs analysis for collaborating embed-
ded software systems. Software and Systems Modeling
(SoSyM’16) 15, 5-16.

de Moura, L.M., Bjgrner, N., 2008. Z3: an efficient SMT
solver, in: Proceedings of the 14th International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08), pp. 337-340.

Naik, K., Sarikaya, B., 1993. Test case verification by model
checking. Formal Methods in System Design 2, 277-321.

Nejati, S., Gaaloul, K., Menghi, C., Briand, L.C., Foster,
S., Wolfe, D., 2019. Evaluating model testing and model
checking for finding requirements violations in simulink
models, in: Proceedings of the 27th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE’19), pp. 1015-1025.

Nguyen, P.H., Ali, S., Yue, T., 2017. Model-based secu-
rity engineering for cyber-physical systems: A systematic
mapping study. Information and Software Technology 83,
116-135.

OMG, 2011b. OMG Unified Modeling Language (OMG
UML), Superstructure. OMG Specification.

OMG, 2017a. Action Language for Foundational UML (Alf).
OMG Specification.

OMG, 2017c. Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML). OMG Specification.

OMG, 2017d. UML Testing Profile (UTP) Version 2.0 - Beta.
OMG Specification.

Petrovic, G., Ivankovic, M., Kurtz, B., Ammann, P., Just,
R., 2018. An industrial application of mutation testing:
Lessons, challenges, and research directions, in: Proceed-
ings of the 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops, (ICST
Workshops’18), pp. 47-53.

Quinlan, J.R., 1987. Simplifying decision trees. International
Journal of Man-Machine Studies 27, 221-234.

Quinlan, J.R.; 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.

Safavian, S.R., Landgrebe, D.A., 1991. A survey of decision
tree classifier methodology. IEEE Transactions on Systems,
Man, and Cybernetics (TSMC) 21, 660-674.

Saleh, A.A.M., 1981. Frequency-independent and frequency-
dependent nonlinear models of TWT amplifiers. IEEE
Transactions on Communications 29, 1715-1720.

Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S.,
Grossman, D., Ceze, L., 2014. Expressing and verifying
probabilistic assertions, in: Proceedings of the 2014 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’'14), pp. 112-122.

Schieferdecker, 1., Dai, Z.R., Grabowski, J., Rennoch, A.,
2003. The UML 2.0 testing profile and its relation to
TTCN-3, in: Proceedings of the 15th IFIP International
Conference on Testing of Communicating Systems (Test-
Com’03), pp. 79-94.

Schwitter, R., 2002. English as a formal specification language,
in: Proceedings of the 13th International Workshop on
Database and Expert Systems Applications (DEXA’02),

pp. 228-232.
Seidewitz, E., 2017. A development environment for the Alf

language within the MagicDraw UML tool (tool demo),

28

in: Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17),
pp. 217-220.

Seidewitz, E., Tatibouet, J., 2015. Tool paper: Combining
Alf and UML in modeling tools - an example with Papyrus,
in: Proceedings of the 15th International Workshop on
OCL and Textual Modeling (OCL’15), pp. 105-119.

Shin, S.Y., Chaouch, K., Nejati, S., Sabetzadeh, M., Briand,
L.C., Zimmer, F., 2018a. HITECS: A UML profile and anal-
ysis framework for hardware-in-the-loop testing of cyber
physical systems, in: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems (MODELS’18), pp. 357-367.

Shin, S.Y., Chaouch, K., Nejati, S., Sabetzadeh, M.,
Briand, L.C., Zimmer, F. 2019. [case study
data] uncertainty-aware specification and analysis for
hardware-in-the-loop testing of cyber physical systems.
https://gitlab.uni.lu/ChaouchKarim/hitecs.

Shin, S.Y., Nejati, S., Sabetzadeh, M., Briand, L.C., Arora,
C., Zimmer, F., 2020. Dynamic adaptation of software-
defined networks for iot systems: A search-based approach,
in: Proceedings of the 15th International Symposium on
Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS’20), pp. 1-12.

Shin, S.Y., Nejati, S., Sabetzadeh, M., Briand, L.C., Zimmer,
F., 2018b. Test case prioritization for acceptance testing
of cyber physical systems: A multi-objective search-based
approach, in: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA’18), pp. 49-60.

Thacker, R.A., Jones, K.R., Myers, C.J., Zheng, H., 2010.
Automatic abstraction for verification of cyber-physical
systems, in: Proceedings of the 1st ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS’10),
pp. 12-21.

Ul Haq, F., Shin, D., Nejati, S., Briand, L.C., 2020. Com-
paring offline and online testing of deep neural networks:
An autonomous car case study, in: Proceedings of the
13th IEEE International Conference on Software Testing,
Verification and Validation (ICST’20), pp. 1-11.

Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.,
2003. Model checking programs. Automated Software
Engineering (ASE) 10, 203-232.

Visser, W., Pasareanu, C.S., Khurshid, S., 2004. Test in-
put generation with Java PathFinder, in: Proceedings of
the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’04), pp. 97-107.

Wang, C., Pastore, F., Goknil, A., Briand, L., Igbal, Z., 2015.
Automatic generation of system test cases from use case
specifications, in: Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA’15),
pp. 385-396.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel,
J., 2010. RELAX: A language to address uncertainty in self-
adaptive systems requirement. Requirements Engineering
(RE) 15, 177-196.

Witten, I.H., Frank, E., Hall, M.A., 2011. Data Mining:
Practical Machine Learning Tools and Techniques. 3rd
ed., Morgan Kaufmann Publishers Inc.

Yao, X., Harman, M., Jia, Y., 2014. A study of equivalent
and stubborn mutation operators using human analysis
of equivalence, in: Proceedings of the 36th International
Conference on Software Engineering (ICSE’14), pp. 919—
930.

Zhang, M., Ali, S., Yue, T., 2017. Uncertainty-wise Test Case

Generation and Minimization for Cyber-Physical Systems.

Technical Report 2016-13. Simula Research Laboratory.
Zhang, M., Ali,; S., Yue, T., 2019a. Uncertainty-wise test case

generation and minimization for cyber-physical systems.

Journal of Systems and Software (JSS) 153, 1-21.

Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O., 2019b.
Uncertainty-wise cyber-physical system test modeling.

Software and Systems Modeling (SoSyM) 18, 1379-1418.

29

Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.,
2016. Understanding uncertainty in cyber-physical systems:
A conceptual model, in: Proceedings of the 12th European
Conference on Modelling Foundations and Applications
(ECMFA’16), pp. 247-264.

Zheng, X., Julien, C., 2015. Verification and validation in
cyber physical systems: Research challenges and a way
forward, in: Proceedings of the 1st International Workshop
on Software Engineering for Smart Cyber-Physical Systems
(SEsCPS’15), pp. 15-18.

