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Abstract: 

Sorsby Fundus Dystrophy is an inherited macular degeneration caused by pathogenic variants in 

the TIMP3 gene. In this study we describe a father and son initially diagnosed with retinitis 

pigmentosa of unknown genetic origin. More recent genetic testing of the patients, identified a 

novel c.410A>G; p.Tyr137Cys variant of uncertain clinical significance in the Tissue Inhibitor of 

Metalloproteinase-3 (TIMP3) gene. The atypical clinical findings led us to compare the 

theoretical molecular effects of this variant on the TIMP3 protein structure and interactions with 

other proteins using homology modeling and machine learning predictions.



Introduction: 

Sorsby Fundus Dystrophy is a rare, early onset autosomal dominant retinal dystrophy first 

described in 1949.1 Symptoms generally first appear in the third to fourth decade of life as 

central visual blurring, metamorphopsia, central scotomas, nyctalopia and/or reduced color 

vision, with progressive worsening over time.2-4 The slow progression of vision loss is generally 

a consequence of progressive geographic atrophy while a rapid onset of central blurring vision 

suggests choroidal neovascularization that develops in a majority of patients with this disease5-8. 

Typical clinical exam findings include drusen-like deposits between the basal lamina of the 

retinal pigment epithelium (RPE) and inner collagenous layer of Bruch’s membrane or reticular 

pseudo drusen deposits between the photoreceptor outersegments and the apical surface of the 

RPE.9,10 Histopathological examination of SFD eyes show thick, widespread, confluent lipid-

enriched amorphous deposits in the basal lamina of RPE.9,11-13 Choroidal neovascularization is a 

common occurrence in these patients and can lead to intraretinal edema, subretinal fluid 

accumulation as well as subretinal hemorrhage.14,15 Chorioretinal atrophy can often be 

widespread late in the disease. The presentation of SFD is similar to age-related macular 

degeneration (AMD), Malattia Leventinese (familial dominat drusen,or Doyne honeycomb 

retinal dystrophy), pattern dystrophy and Best disease. SFD is caused by pathogenic variants in 

the TIMP3 (Tissue Inhibitor of Metalloproteinase-3) gene that encodes a protein that inhibits 

enzymes that degrade matrix components.16,17 Simulation of retinitis pigmentosa has not been 

emphasized and could be a source of inaccurate clinical diagnosis as in the present report. 

Case 1 (Proband):



This is a 74 year-old Caucasian male patient with a clinical diagnosis of retinitis 

pigmentosa. He is of Dutch ancestry on his maternal side, and Northern Irish and English on his 

paternal side. He first became symptomatic at the age of 40 years with complaints of a blind spot 

and glare. He was evaluated by two different ophthalmologists with expertise in inherited retinal 

dystrophies, and was diagnosed with retinitis pigmentosa based on clinical examination. His 

vision loss has continued to progress with nyctolopia developing in his 50’s. He had bilateral 

cataract surgery at 60. His review of systems was negative for features consistent with a 

syndromic retinal dystrophy.  His medical history was significant for eczema, hypertension, age-

related hearing loss, a hemorrhagic stroke at the age of 71, hepatic steatosis, and a renal tumor 

newly diagnosed at his current age of 74.  

On his most recent eye exam (at age of 74), his visual acuity was hand motion in both 

eyes. His intraocular pressures were normal. Slit lamp examination revealed anterior chamber 

intraocular lenses in place in both eyes. His fundus examination displayed drusen and RPE 

changes in the macula with normal appearing vessels (no hemorrhages or exudates). Bone 

spicule pigmentation with extensive RPE dropout was observed in the fundus periphery of both 

eyes (Figure 1a).

His family history  is significant for other family members also diagnosed with retinitis 

pigmentosa. They include his son, his sister, his brother, his mother, his maternal grandmother, 

and a maternal great-uncle, consistent with autosomal dominat inheritance pattern. His sister is 

reportedly being treated for choroidal neovascularization at the age of 73. His brother, 67 years 

of age, also has glaucoma. 



The patient had prior limited genetic testing in 2012 with no pathogenic variants detected 

in the following genes: RHO, PRPH2/RDS, RP1, IMPDH1, PRPF31, PRPF, PRPF8, NR2E3, 

SNRNP200, TOPORS, KLHL7, RPGR, and RP2.  

Case 2 (Proband’s son):

This is a 49 year old Caucasian male who was diagnosed with retinitis pigmentosa based 

on eye examination at the age of 47 and early symptoms of nyctalopia. He was diagnosed with 

pigment dispersion syndrome and macular degeneration of both eyes and continues to take 

AREDS vitamins, Omega 3’s and Lutein. He reports normal peripheral vision. He has no 

systemic features consistent with a syndromic retinal dystrophy. His medical history is 

significant for congenital cataract of his left eye, eczema, and a deep vein thrombosis at age 49. 

His most recent eye exam (at age 49) measured his visual acuity to be 20/20 OD and 

20/400 OS. His visual fields were full to confrontation in both eyes. Intraocular pressures were 

normal. He had a nuclear sclerotic cataract in both eyes, and a dense posterior subcapsular 

cataract in his left eye. His dilated fundus exam showed drusen and RPE changes, normal 

vessels, and granular RPE changes in the periphery (Figure 1b). 

Results

Genetic testing was repeated using an 856 gene retinal dystrophy panel via next-

generation sequencing technology at a CLIA-certified laboratory. A sample from the proband as 

well as both his affected son (case 2) and unaffected son were also tested. The father and the 

affected son were heterozygous for a novel c.410A>G; p.Tyr137Cys variant of uncertain 

significance in the TIMP3 gene. The proband’s unaffected son did not carry this variant. This 



variant had not previously been reported as pathogenic or as benign.  It had not been detected in 

large population cohorts and results in a non-conserved amino acid substitution, which is likely 

to impact secondary and tertiary protein structure.

 

Protein Modeling of Y137CTIMP3:  Due to the absence of a crystal structure covering the 

relevant protein domains of TIMP3, we generated a homology model for the full-length TIMP3 

protein with the software SWISS-MODEL18,19, using a crystal structure for the ortholog TIMP2 

as template (PDB: 1GXD, chain D). Figure 3a is a surface representation of this homology 

model with residue 137 highlighted in red, created using the software Chimera20-22. The residue 

is exposed at the surface, with the mutant residue being smaller and more hydrophobic than the 

wild-type residue, suggesting that the mutation may result in the loss of external interactions 

with other functional molecules.

We also used the homology model to predict potential effects of the mutation on protein stability. 

Among three prediction approaches (mCSM, SDM and DUET) none predicted a destabilizing 

effect, and all predicted a slight but probably not significant stabilizing effect (with less than 0.5 

kcal/mol ΔΔG, i.e. suggesting there is no significant change in protein stability). Unless the 

mutation disrupts protein stability via the disruption of disfulfide bonds (see discussion below), 

this further suggests that the mutation affects interactions with other biomolecules, rather than 

the protein stability. Since the residue is located in a region of the protein, which mediates the 

interaction with the protein EFEMP1 (residues 105 - 188, see section "Family & Domains" on 

UniProt: https://www.uniprot.org/uniprot/P35625), this could be a potential interaction 

weakened or lost due the mutation.23 

https://protect-us.mimecast.com/s/46WVCn5XvWu8o5RRT97wBD?domain=uniprot.org


Discussion

Since many of the SFD-associated mutations introduce a new cysteine residue into the TIMP3 

protein, one hypothesis that has been out forward is that these mutations could affect disulfide 

bridges. For some of the mutated residues such as S38C, the disruption of disulfide bonds has 

been confirmed 24-31  whereas other reports suggest no effect32. However, the exact structural 

effect of altered disulfide bonding on TIMP3 function (MMP inhibition, apoptosis, anti-

angiogenesis), glycosylation status or binding to (pro)MMPs, VEGFR2 or EFEMP1 is unknown 

and is difficult to predict, the question whether this mutation results in a gain of function or loss 

of function phenotype remains open. 

While altered disulfide bonds can affect both the global and local protein structure, and 

predictions on the precise effects are impossible, non-synonymous mutations in residues exposed 

on the protein surface would at least be expected to affect interactions with other biomolecules 

known to the corresponding protein domain.

Figure 3b depicts the location of the majority of TIMP3 mutations (highlighted in red) associated 

with SFD that result in amino acid substitutions: p.(Ser38Cys)33, p.(Glu162Lys) 29, 

p.(Tyr151Cys) 4, p.(Asp167Asn) 34, p.(Tyr177Cys) 4, p.(Ser179Cys) 35, p.(His181Arg) 36, 

p.(Tyr182Cys)  4, p.(Gly189Cys) 3, p.(Gly190Cys) 37. p.(Tyr191Cys)  38, p.(Ser193Cys)  39, 

p.(Tyr195Cys)  40, and p.(Ser204Cys) 38. Most of them are exposed on the surface, and most of 

them are located in a region between the positions 160 to 200. The residue at position 137 lies on 

the same side of the protein, but not adjacent to most of the other mutated residues.

The protein region that mediates the interaction with EFEMP1 is annotated for the positions 105 

to 188, according to UniProt41,42 (Figure 3c, highlighted in green). This domain only partially 



overlaps with the region that contains most of the mutated residues, but most of the other 

mutated residues, between positions 189 to 195, are still located in close proximity to the 

EFEMP1 domain and could therefore affect a molecular interaction in this region via altered 

steric or electrostatic properties. Overall, in-silico analyses, including homology modeling and 

evolutionary conservation support a deleterious effect of this novel variant.

The present cases illustrate the importance of genetic testing for the accurate diagnosis of 

patients diagnosed with an inherited retinal disease.  The phenotype of these patients, at least at 

one point in time simulated that of retinitis pigmentosa. Prior studies have demonstrated the 

importance of monitoring SFD patients for choroidal neovascularization and the use of 

intravitreal anti-VEGF therapy as effective treatment.4 Other studies have also investigated the 

use of vitamin A 50,000 IU per day as a treatment to improve night blindness in early disease 

stages of SFD. 37,43 We also emphasize the importance of genetic counseling and further 

investigation into variants of uncertain clinical significance, especially when detected in a gene 

that is clinically consistent with the patient’s phenotype.

Figure Legends

Figure 1: Fundus photographs of a) Proband and b) Proband’s son . Fundus of the proband (a) 
displays drusen and RPE changes in the macula with normal appearing vessels (no hemorrhages 
or exudates). Bone spicule pigmentation with extensive RPE dropout can be seen in the fundus 
periphery of both eyes. Fundus of the Proband’s son (b) shows drusen and RPE changes, normal 
vessels, and granular RPE changes in the periphery. 

Figure 2: Pedigree chart of Proband’s family. Squares and circles depict males and females 
respectively. Filled symbols represent affected individuals, and symbols with lines through them 
depict deceased individuals.



Figure 3: Molecular surface representations of the homology model for TIMP3, derived from the 
template crystal structure for the ortholog TIMP2 (PDB: 1GXD, chain D). a) Molecular surface 
with internal ribbon representation of the secondary structure, and the residue 137 highlighted in 
red; b) Molecular surface representation highlighting the location of the majority of known 
TIMP3 mutations (amino acid substitutions) in red; c) Molecular surface representation 
highlighting the protein domain that mediates the protein interaction with EFEMP1 (positions 
105 to 188, green color).
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Figure 1: Fundus photographs of a) Proband and b) Proband’s son . Fundus of the proband (a) displays 
drusen and RPE changes in the macula with normal appearing vessels (no hemorrhages or exudates). Bone 
spicule pigmentation with extensive RPE dropout can be seen in the fundus periphery of both eyes. Fundus 
of the Proband’s son (b) shows drusen and RPE changes, normal vessels, and granular RPE changes in the 

periphery. 
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Figure 2: Pedigree chart of Proband’s family. Squares and circles depict males and females respectively. 
Filled symbols represent affected individuals, and symbols with lines through them depict deceased 

individuals. 
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Figure 3: Molecular surface representations of the homology model for TIMP3, derived from the template 
crystal structure for the ortholog TIMP2 (PDB: 1GXD, chain D). a) Molecular surface with internal ribbon 
representation of the secondary structure, and the residue 137 highlighted in red; b) Molecular surface 

representation highlighting the location of the majority of known TIMP3 mutations (amino acid substitutions) 
in red; c) Molecular surface representation highlighting the protein domain that mediates the protein 

interaction with EFEMP1 (positions 105 to 188, green color). 
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