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Abstract Product Line Engineering (PLE) is a crucial practice in many software de-
velopment environments where software systems are complex and developed for mul-
tiple customers with varying needs. At the same time, many development processes
are use case-driven and this strongly influences their requirements engineering and
system testing practices. In this paper, we propose, apply, and assess an automated
system test case classification and prioritization approach specifically targeting sys-
tem testing in the context of use case-driven development of product families. Our
approach provides: (i) automated support to classify, for a new product in a product
family, relevant and valid system test cases associated with previous products, and
(ii) automated prioritization of system test cases using multiple risk factors such as
fault-proneness of requirements and requirements volatility in a product family. Our
evaluation was performed in the context of an industrial product family in the auto-
motive domain. Results provide empirical evidence that we propose a practical and
beneficial way to classify and prioritize system test cases for industrial product lines.

Keywords Product Line Engineering · Use Case Driven Development · Regression
Testing · Test Case Selection and Prioritization · Automotive · Requirements
Engineering

1 Introduction

Product Line Engineering (PLE) is a common practice in many domains such as
automotive and avionics to enhance product quality, to reduce development costs,
and to improve time-to-market [82]. In such domains, many development processes
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are use case-driven and this strongly influences their requirements engineering and
system testing practices [78, 79, 108, 109]. For example, IEE S.A. (in the follow-
ing “IEE”) [2], a leading supplier of embedded software and hardware systems in
the automotive domain and the case study supplier in this paper, develops automo-
tive sensing systems enhancing safety and comfort in vehicles for multiple major car
manufacturers worldwide. The current development and testing practice at IEE is use
case-driven, and IEE, like many other development environments, follows the com-
mon product line testing strategy referred to as opportunistic reuse of test assets [74].
A new product line is typically started with a first product from an initial customer.
Analysts elicit requirements as use case specifications and then derive system test
cases from these specifications. For each subsequent customer for that product, the
analysts start from the current use case specifications, and negotiate variabilities with
the customer to produce new specifications. They then manually choose and priori-
tize, from the existing test suite of the previous product(s), test cases that can and need
to be rerun to ensure existing, unmodified functionalities are still working correctly
in the new product. With this form of test reuse, there is no structured, automated
method that supports the activity of classifying and prioritizing test cases. It is fully
manual, error-prone and time-consuming, which leads to ad-hoc change management
for use case models (use case diagrams and specifications) and system test cases in
product lines. Therefore, product line test case classification and prioritization tech-
niques, based on a dedicated use case modeling methodology, are needed to automate
the reuse of system test cases in the context of use case-driven development.

The need for supporting PLE for the purpose of test automation has already been
acknowledged and many product line testing approaches have been proposed in the
literature [18, 28, 62, 74, 93]. Most of the existing approaches follow the product line
testing strategy design test assets for reuse [74] in which test assets, e.g., abstract
test cases or behavioral models, are created in advance for the entire product family,
including common and reusable parts. When a new product is developed, test assets
are selected to be reused, extended, and refined into product-specific test cases. Due
to deadline pressures and limited resources, many companies, including IEE, find the
upfront creation of test assets to be impractical because of the large amount of manual
effort required before there are (enough) customers to justify it.

Lity et al. [65, 66, 67] propose a test case selection approach which follows an
alternative product line testing strategy, i.e., incremental testing of product lines [74].
In this strategy, the initial product is tested individually and the following products
are tested using regression testing techniques, i.e., test case selection and prioritiza-
tion. The approach does not require the entire test suite of the product family to be
generated in advance since the test cases of the new product are selected and derived
incrementally from the test suites of the previous product(s). Its main limitation is
the need for detailed behavioral models, e.g., finite state machines and sequence dia-
grams, which rarely exist in industrial practice since software development and test-
ing are typically driven by requirements in Natural Language (NL) and behavioral
models are typically specified only for a limited set of critical system features [61].
To evaluate the applicability of behavioral modeling in practice, we asked IEE en-
gineers to specify System Sequence Diagrams (SSDs) for some of the use cases in
one of their projects, at a level of detail that was appropriate for our objectives. For
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example, the SSD for one of the mid-size use cases included 74 messages, 19 nested
blocks, and 24 references to other SSDs that had to be derived. This was considered
too complex for the engineers and required significant help from the authors of this
paper, and many iterations and meetings. The main problem with sequence diagrams
is the nested blocks (loops that cover alternative flows backwarding) for loops and
references to other sequence diagrams. With these structures, it was not feasible to
follow the execution flow visually for the engineers. Our conclusion is that the adop-
tion of behavioral modeling, at the level of detail required for automated test case
selection, is typically not practical for system test automation unless detailed behav-
ioral models are already used for other purposes, e.g., software design.

Many approaches for test case classification and prioritization require the source
code of the system under test together with code coverage information [115]. How-
ever, this information is often partially available in industrial contexts. Indeed, when
system testing is outsourced to companies or independent test teams, the source code
of the system under test is often partially or not available. For example, test teams
may have access only to the source code of a single product, not the entire product
line. In addition, structural coverage information is often unavailable in the case of
embedded systems. Indeed, traditional compiler-based methods used to collect cov-
erage data [114] cannot be applied when test cases need to be run on dedicated hard-
ware. These are the main motivations in this paper to rely on a requirements-driven
approach to test case classification and prioritization.

In our previous work [35], we proposed the Product line Use case modeling
Method (PUM), which supports variability modeling in Product Line (PL) use case
diagrams and specifications in NL, intentionally avoiding any reliance on feature
models or behavioral models such as activity and sequence diagrams. PUM relies
on the Restricted Use Case Modeling method (RUCM) [116], which introduces a
template with keywords and restriction rules to reduce ambiguity and to enable au-
tomated analysis of use case specifications. RUCM has been successfully applied in
many domains (e.g., [35, 40, 68, 69, 70, 107, 108, 117]). Based on PUM, we devel-
oped a use case-driven configuration approach [36, 39] guiding engineers in making
configuration decisions and automatically generating Product Specific (PS) use case
models. It is supported by a tool, PUMConf (Product line Use case Model Configu-
rator), integrated with IBM DOORS.

In this paper, we propose, apply and assess an approach for the definition, selec-
tion, and prioritization of test cases in product lines, based on our use case-driven
modeling and configuration techniques [35, 39]. Our goal is to rely, to the largest ex-
tent possible, on common practices, including the ones at IEE (e.g., use case model-
ing and requirements traceability), to achieve widespread applicability. Our approach
supports the incremental testing of new products of a product family where require-
ments are captured as use case specifications. Consistent with the strategy referred to
as “incremental testing of product lines”, we automate the definition of system test
cases by reusing test cases that belong to existing products. After the initial prod-
uct is tested individually, new test cases might be needed and some of the existing
test cases may need to be modified for new products, while some existing test cases
are simply reused verbatim. The definition of test cases for new products is based
on the classification and selection of existing test cases in the product line and on
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the identification of new, untested scenarios for new products under test. Test case
prioritization is based on prediction models trained using product line historical data.

To reuse the existing system test cases, our approach automatically classifies them
as obsolete, retestable, and reusable. An obsolete test case cannot be executed on the
new product as the corresponding use case scenarios are not selected for the new
product. A retestable test case is still valid but needs to be rerun to determine the
possible impact of changes whereas a reusable test case is also valid but does not
need to be rerun for the new product. We implemented a model differencing pipeline
which identifies changes in the decisions made to configure a product (e.g., selecting
a variant use case). There are two sets of decisions: (i) decisions made to generate
the PS use case specifications for the previous product(s) and (ii) decisions made to
generate the PS use case specifications for the new product. Our approach compares
the two sets to classify the decisions as new, deleted and updated, and to identify
the impacted parts of the use case models of the previous product(s). Our approach
needs traceability links between use cases and system test cases. These links can
be manually assigned by engineers, or automatically generated as a side-product of
the automated test case generation approaches (e.g., [78, 107, 108]). By using the
traceability links from the impacted parts of the use case models to the system test
cases, we automatically classify the existing system test cases to be reused for testing
the new product. In addition, we automatically identify the use case scenarios of the
new product that have not been tested before, and provide information on how to
modify existing system test cases to cover these new, untested use case scenarios,
i.e., the impact of use case changes on existing system test cases. Note that we do not
address evolving PL use case models, which need to be treated in a separate approach.

System test cases are automatically prioritized based on multiple risk factors such
as fault-proneness of requirements and requirements volatility in the product line. To
this end, we rely on prediction models; more precisely, we leverage logistic regres-
sion models that capture how likely changes in these risk factors impact the failure
likelihood of each test case. To support these activities, we extended PUMConf. We
have evaluated the effectiveness of the proposed approach by applying it to classify
and prioritize the test cases of five software products belonging to a product line in
the automotive domain. In our evaluation, we have answered the following research
questions (RQs):

– RQ1. Does the proposed approach provide correct test case classification results?
With RQ1, we have evaluated the precision and recall of the procedure adopted
to classify the test cases developed for previous products.

– RQ2. Does the proposed approach accurately identify new scenarios that are
relevant for testing a new product? With RQ2, we have evaluated the precision
and recall of the approach in identifying new scenarios to be tested for a new
product (i.e., new requirements not covered by existing test cases).

– RQ3. Does the proposed approach successfully prioritize test cases? With RQ3,
we have evaluated whether the approach is able to effectively prioritize system
test cases that trigger failures and thus can help minimize testing effort while
retaining maximum fault detection power.
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– RQ4. Can the proposed approach significantly reduce testing costs compared to
current industrial practice? With RQ4, we have evaluated to what extent the pro-
posed approach can help significantly reduce the cost of defining and executing
system test cases.

To summarize, the contributions of this paper are:

– a test case classification and prioritization approach that is specifically tailored
to the use case-driven development of product families, that does not rely on
behavioral system models, and that guides engineers in testing new products in a
product family;

– a publicly available tool1 integrated with IBM DOORS as a plug-in, which auto-
matically selects and prioritizes system test cases when a new product is config-
ured in a product family;

– an industrial case study demonstrating the applicability and benefits of our ap-
proach.

This paper is structured as follows. Section 2 provides the background on PUM
and PUMConf on which this paper builds the proposed approach. Section 3 discusses
the related work. In Section 4, we provide an overview of the approach. Sections 5
and 6 provide the details of its core technical parts. Section 7 presents an overview of
the provided tool support. Section 8 reports on our evaluation in an industrial setting,
involving an embedded system called Smart Trunk Opener (STO). In Section 9, we
conclude the paper.

2 Background

In this section we give the background regarding the elicitation of PL use case models
(see Section 2.1), and our configuration approach (see Section 2.2). We also provide
a glossary for the main terminology used in the paper (see Section 2.3).

In the rest of the paper, we use Smart Trunk Opener (STO) as a case study, to
motivate, illustrate and assess our approach. STO is a real-time automotive embedded
system developed by IEE. It provides automatic, hands-free access to a vehicle’s
trunk, in combination with a keyless entry system. In possession of the vehicle’s
electronic remote control, the user moves her leg in a forward and backward direction
at the vehicle’s rear bumper. STO recognizes the movement and transmits a signal to
the keyless entry system, which confirms that the user has the remote. This allows the
trunk controller to open the trunk automatically.

2.1 Elication of Variability in PL Use Cases with PUM

Elicitation of PL use cases is based on the Product line Use case modeling Method
(PUM) [35]. In this section, we give a brief description of the PUM artifacts.

1 For accessing the tool, see: https://sntsvv.github.io/PUMconf/.
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Fig. 1 Part of the Product Line Use Case Diagram for STO

2.1.1 Use Case Diagram with PL Extensions

For use case diagrams, we employ the PL extensions proposed by Halmans and
Pohl [16, 41] since they support explicit representation of variants, variation points,
and their dependencies (see Fig. 1).

A use case is either Essential or Variant. Variant use cases are distinguished from
essential use cases, i.e., mandatory for all the products in a product family, by using
the stereotype Variant. A variation point given as a triangle is associated to one, or
more than one use case using the relation include. A mandatory variation point in-
dicates where the customer has to make a selection (the black triangles in Fig. 1).
A ‘tree-like’ relation, containing a cardinality constraint, is used to express relations
between variants and variation points, which are called variability relations. The re-
lation uses a [min..max] notation in which min and max define the minimum and
maximum numbers of variants that can be selected in the variation point.

A variability relation is optional where (min = 0) or (min > 0 andmax < n); n
is the number of variants in a variation point. It is mandatory where (min = max =
n). Optional and mandatory relations are depicted with light-grey and black filled
circles, respectively (see Fig. 1). For instance, the essential use case Provide System
User Data has to support multiple methods of providing data where the methods of
providing data via IEE QC mode and Standard mode are mandatory. In addition, the
method of providing data via diagnostic mode can be selected. It can be decided that
the STO system should not store the errors determined during the identification of the
operating state (see the optional variation point Storing Error Status). The extensions
support the dependencies require and conflict among variation points and variant use
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Table 1 Some STO Use Cases in the extended RUCM

1 USE CASE Recognize Gesture
2 1.1 Basic Flow (BF)
3 1. The system REQUESTS move capacitance FROM the sensors.
4 2. INCLUDE USE CASE Identify System Operating Status.
5 3. The system VALIDATES THAT the operating status is valid.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 <OPTIONAL>Bounded Alternative Flow (BAF1)
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. ABORT.
12 3. ENDIF
13 1.3 Specific Alternative Flow (SAF1)
14 RFS 3
15 1. ABORT.
16 1.4 Specific Alternative Flow (SAF2)
17 RFS 4
18 1. The system increments OveruseCounter by the increment step.
19 2. ABORT.
20
21 USE CASE Identify System Operating Status
22 1.1 Basic Flow (BF)
23 1. The system VALIDATES THAT the watchdog reset is valid.
24 2. The system VALIDATES THAT the RAM is valid.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.5 Specific Alternative Flow (SAF4)
28 RFS 4
29 1. INCLUDE <VARIATION POINT: Storing Error Status>.
30 2. ABORT.
31
32 USE CASE Provide System User Data
33 1.1 Basic Flow (BF)
34 1. The tester SENDS the system user data request TO the system.
35 2. INCLUDE <VARIATION POINT : Method of Providing Data>.
36
37 <VARIANT>USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow (BF)
39 V1. <OPTIONAL>The system SENDS calibration TO the tester.
40 V2. <OPTIONAL>The system SENDS sensor data TO the tester.
41 V3. <OPTIONAL>The system SENDS trace data TO the tester.
42 V4. <OPTIONAL>The system SENDS error data TO the tester.
43 V5. <OPTIONAL>The system SENDS error trace data TO the tester.

cases [16]. With require in Fig. 1, the selection of the variant use case in Storing
Error Status implies the selection of the variant use case in Clearing Error Status.

2.1.2 Restricted Use Case Modeling (RUCM) with PL Extensions

This section introduces the RUCM (Restricted Use Case Modeling) template and
its PL extensions which we proposed in our previous work [35]. RUCM is a use
case modeling method with restriction rules and keywords constraining the use of
NL [116]. Since it was not designed for PL modeling, we introduced some PL exten-
sions (see Table 1). In RUCM, use cases have basic and alternative flows (Lines 2,
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8, 13, 16, 22, 27, 33 and 38). In Table 1, we omit some alternative flows and basic
information such as actors and pre/post conditions.

A basic flow describes a main successful path that satisfies stakeholder interests
(Lines 3-7, 23-26 and 39-43). It contains use case steps and a postcondition. A step
can be a system-actor interaction: an actor sends a request or data to the system (Line
34); the system replies to an actor with a result (Line 7). In addition, the system
validates a request or data (Line 5), or it alters its internal state (Line 18). Other use
cases are included with the keyword ‘INCLUDE USE CASE’ (Line 4). The keywords
are in capital letters. ‘VALIDATES THAT’ (Line 5) indicates a condition that must be
true to take the next step, otherwise an alternative flow is taken.

An alternative flow describes other scenarios, both success and failure. It depends
on a condition in a specific step in a flow of reference, referred to as reference flow,
and that reference flow is either the basic flow or another alternative flow.

RUCM has specific, bounded and global alternative flows. A specific alternative
flow refers to a step in a reference flow (Lines 13, 16, and 27). A bounded alternative
flow refers to more than one step in a reference flow (Line 8), while a global flow
refers to any step in a reference flow. ‘RFS’ is used to refer to reference flow steps
(Lines 9, 14, 17, and 28). Bounded and global alternative flows begin with ‘IF ..
THEN’ for the conditions under which they are taken (Line 10). Specific alternative
flows do not necessarily begin with ‘IF .. THEN’ since a guard condition is already
indicated in their reference flow steps (Line 5).

PUM extensions to RUCM include (i) new keywords for modeling interactions
in embedded systems and (ii) new keywords for modeling variability. The keywords
‘SENDS .. TO’ and ‘REQUESTS .. FROM’ capture system-actor interactions (Lines
3, 7, 34, and 39-43). For instance, Step 1 (Line 3) indicates an input message from
sensors to the system. For consistency with PL use case diagrams, PUM introduces
into RUCM the notion of variation point and variant use case. Variation points can
be included in basic or alternative flows with the keyword ‘INCLUDE <VARIATION
POINT : ... >’ (Lines 29 and 35). Variant use cases are given with the keyword
‘<VARIANT >’ (Line 37). To capture variability that cannot be modeled in use case
diagrams because of their coarse granularity, PUM introduces optional steps, optional
alternative flows and a variant order of steps. Optional steps and alternative flows
begin with the keyword ‘<OPTIONAL>’ (Lines 8 and 39-43). The keyword ‘V’ is
used before step numbers to express variant step order (Lines 39-43). A variant order
occurs with optional and/or mandatory steps. For instance, the steps in the basic flow
of Provide System User Data via Standard Mode are optional, while their execution
order varies.

2.2 Configuration of PS Use Case Models

PUMConf supports users in making configuration decisions and automatically gen-
erating PS use cases from PL use cases.

The user selects (1) variant use cases in the PL use case diagram and (2) op-
tional use case elements in the PL use case specifications, to generate PS use case
diagram and specifications. For instance, the user makes decisions for the variation
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points in Fig. 1. A decision is about selecting, for the product, variant use cases in
the variation point. The user selects Store Error Status and Clear Error Status in
the variation points Storing Error Status and Clearing Error Status, respectively. She
also unselects Clear Error Status via Diagnostic Mode in the variation point Method
of Clearing Error Status, while Clear Error Status via IEE QC Mode is automati-
cally selected by PUMConf because of the mandatory variability relation. Finally,
the user unselects Provide System User Data via Diagnostic Mode in the variation
point Method of Providing Data.

STO System
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Operating 
Status

Provide System 
Operating 

Status

Tester

Provide System 
User Data

<<include>>
Store Error 

Status
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Provide System 
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Clear Error 
Status via IEE 

QC Mode
<<include>>

STO Controller
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Fig. 2 Generated Product Specific Use Case Diagram for STO

Given the configuration decisions, PUMConf automatically generates the PS use
case diagram from the PL diagram (see Fig. 2 generated from Fig. 1). For instance,
for the decision for the variation point Method of Providing Data, PUMConf creates
the use cases Provide System User Data via IEE QC Mode and Provide System User
Data via Standard Mode, and two include relations in Fig. 2.

After identifying variant use cases to be included in the PS diagram, the user
makes decisions based on the PL specifications. In Table 1, there are two variation
points (Lines 29 and 35), one variant use case (Lines 37-43), five optional steps (Lines
39-43), one optional alternative flow (Lines 8-12), and one variant order group (Lines
39-43). The decisions for the variation points are already made in the PL diagram.
Three optional steps are selected with the order V3, V1, and V5. The optional alterna-
tive flow is unselected.

PUMConf automatically generates PS use case specifications from PL specifi-
cations, diagram decisions and specification decisions. Table 2 shows a PS use case
specification generated from Table 1, where selected optional steps are generated
with the order decided in the PS specifications (Lines 39-41). For multiple variants
selected for the same variation point, PUM introduces validation checks to select the
variation point to be used, based on their preconditions. For instance, based on the
diagram decision for Method of Providing Data in Fig. 1, PUMConf creates two in-
clude statements for Provide System User Data via Standard Mode and via IEE QC
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Table 2 Some of the Generated Product Specific Use Case Specifications

1 USE CASE Recognize Gesture
2 1.1 Basic Flow (BF)
3 1. The system REQUESTS the move capacitance FROM the sensors.
4 2. INCLUDE USE CASE Identify System Operating Status.
5 3. The system VALIDATES THAT the operating status is valid.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 Specific Alternative Flow (SAF1)
9 RFS 3
10 1. ABORT.
11 1.3 Specific Alternative Flow (SAF2)
12 RFS 4
13 1. The system increments the OveruseCounter by the increment step.
14 2. ABORT.
15
16 USE CASE Identify System Operating Status
17 1.1 Basic Flow (BF)
18 1. The system VALIDATES THAT the watchdog reset is valid.
19 2. The system VALIDATES THAT the RAM is valid.
20 3. The system VALIDATES THAT the sensors are valid.
21 4. The system VALIDATES THAT there is no error detected.
22 1.5 Specific Alternative Flow (SAF4)
23 RFS 4
24 1. INCLUDE USE CASE Store Error Status.
25 2. ABORT.
26
27 USE CASE Provide System User Data
28 1.1 Basic Flow (BF)
29 1. The tester SENDS the system user data request TO the system.
30 2. The system VALIDATES THAT ‘Precondition of Provide System User

Data via Standard Mode’.
31 3. INCLUDE USE CASE Provide System User Data via Standard Mode.
32 1.2 Specific Alternative Flow (SAF1)
33 RFS 2
34 1. INCLUDE USE CASE Provide System User Data via IEE QC Mode.
35 2. ABORT.
36
37 USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow (BF)
39 1. The system SENDS the trace data TO the tester.
40 2. The system SENDS the calibration data TO the tester.
41 3. The system SENDS the error trace data TO the tester.

Mode (Lines 31 and 34 in Table 2), and a validation step (Line 30) that checks if
the precondition of Provide System User Data via Standard Mode holds. If it holds,
Provide System User Data via Standard Mode is executed in the basic flow (Line 31).
If not, Provide System User Data via IEE QC Mode is executed (Lines 32-35).

2.3 Glossary

An actor specifies a type of role played by an entity interacting with the system (e.g.,
by exchanging signals and data), but which is external to the system (see Section 2.1).
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A use case is a list of actions or event steps typically defining the interactions
between an actor and a system to achieve a goal. It is generally named with a phrase
that summarizes the story description, e.g., Recognize Gesture (see Section 2.1).

A use case specification is a textual document that captures the specific details of
a use case. Use case specifications provide a way to document the functional require-
ments of a system. They generally follow a template (see Section 2.1).

A use case scenario model is a graph representation of a use case specification
(see Section 5.2.1).

A use case flow is a sequence of interactions between actors and the system cap-
tured by a use case specification. A use case specification may include multiple alter-
native use case flows (see Section 2.1).

A use case scenario is a sequence of interactions between actors and the system.
It represents a single use case execution. It is a possible path through a use case
specification. It may include multiple use case flows (see Section 5.2.1).

A finite state machine is an abstract machine, i.e., a theoretical model of a system
used in automata theory, that can be in exactly one of a finite number of states at any
given time (see Section 3).

A sequence diagram shows interactions between objects in a sequential order,
i.e., the order in which these interactions take place (see Section 3).

A system sequence diagram (SSD) is a sequence diagram that shows, for a partic-
ular scenario of a use case, the events that actors generate, their order, and possible
inter-system events (see Section 3).

Model slicing allows for a model reduction by abstracting from model elements
not influencing a selected element, e.g., a state transition, used as a slicing criterion
(see Section 3). A reduced model is a slice that preserves the execution semantics
compared to the original model with respect to the slicing criterion.

Fault proneness of requirements allows engineers to identify the requirements
which have had reported failures (see Sections 3, 4 and 6). As the system evolves into
several versions, engineers can use the data collected from prior versions to identify
requirements that are likely to be error prone [98].

Requirements volatility is a measure of how much a system’s requirements change
during the development of the system (see Sections 3 and 4). Projects for which the
requirements change greatly have a high volatility, while projects whose requirements
are relatively stable have a low volatility [46, 71].

A single-product setting is an experiment setting where the new product is com-
pared to only one previous product in the product line at once (see Section 8). As-
sume that there are N previous products (P1 , P2 , ..., and PN ) in a product line. In a
single-product setting, the new product (Pnew ) is compared to each previous product
distinctly at N times (Pnew - P1 , Pnew - P2 , ..., Pnew - PN ).

A whole-line setting is an experiment setting where the new product is compared
to all the previous products in the product line at once (see Section 8). In a whole-line
setting, the new product (Pnew ) is compared to all the N previous products at the
same time (Pnew - {P1 , P2 , ..., PN }).

An executable test case is a sequence of executable instructions (i.e., invocations
of test driver function) that trigger the system under test, thus simulating the interac-
tions between one or more actors and the system (see Sections 3 and 5).
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3 Related Work

We cover the related work across three categories: (i) testing of product lines, (ii)
test case classification and selection, and (iii) test case prioritization. The last two
categories cover the features our approach addresses in the context of product lines.
In the first category, we present existing product line testing strategies and discuss
how our approach is related to specific testing strategies and activities such as test
case generation and execution.

3.1 Testing of Product Lines

Various product line testing strategies have been proposed in the literature [18, 28,
48, 62, 74, 80, 93, 102]. Neto et al. [74] present a comprehensive survey, including
testing product by product, opportunistic reuse of test assets, design test assets for
reuse, division of responsibilities, and incremental testing of product lines. The strat-
egy testing product by product does not attempt to reuse test cases developed for
previous products, while the strategy opportunistic reuse of test assets focuses on the
reuse of test assets across products without considering any systematic reuse method.
The strategy design test assets for reuse enforces the creation of test assets early in
product line development, under the assumption that product lines and configuration
choices are exhaustively modeled before the release of any product. This assump-
tion does not hold when product lines and configuration choices are refined during
product configuration, which is a common industry practice. The strategy division of
responsibilities is about defining testing phases that facilitate test reuse. Our approach
follows the strategy referred to as incremental testing of product lines, which relies
on regression testing techniques, i.e., test case selection and prioritization. We are the
first to support incremental testing of product lines through test case selection and
prioritization in the context of use case-driven development.

Product line testing covers two separate but closely related test engineering ac-
tivities: domain testing and application testing. Domain testing verifies and validates
reusable components in a product line while application testing does so for a specific
product in the product line. Domain test cases can be created either directly from
domain artifacts or through domain test models (derived from domain artifacts). Ap-
plication test cases can be created directly from domain test cases by using variability
binding information in products. A test case can be executed before or after variabil-
ity binding in products, and the variability binding can occur during the development
phase, at compile time, or at runtime. Our approach currently supports application
testing, but can be adapted to classify domain test cases. More specifically, the sce-
nario generation and impact analysis algorithms in Section 5.2.4 can be adapted to
identify scenarios of the variant requirements and eventually to determine test cases
examining those scenarios. For each new product, our approach can be used to clas-
sify and prioritize domain test cases derived from PL use case models.

There are various product line testing approaches that support test case generation
and execution (e.g., [9, 32, 50, 79, 86, 104, 105]). Some of them generate system test
cases from use case models in a product family. However, they require detailed be-
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havioral models (e.g., sequence or activity diagrams) which engineers tend to avoid
because of the costs related to their development and maintenance. Among these
works generating system test cases from use cases, the ScenTED approach proposed
by Reuys et al. [85,86] is a representative approach in terms of its reliance on behav-
ioral models for test case generation and execution in product lines. It is based on the
systematic refinement of PL use case scenarios to PL system and integration test sce-
narios. ScenTED requires activity diagrams capturing activities described in use case
specifications together with variants of the product family. Extensions of ScenTED
include the ScenTED-DF approach [100] which relies on data-flow analysis to avoid
redundant execution of test cases derived with ScenTED. A methodology that does
not rely on detailed behavioral models is PLUTO (Product Lines Use Case Test Op-
timization) [13]. PLUTO automatically derives test scenarios from PL use cases with
some special tags for variability, but executable system test cases need to be manually
derived from test scenarios.

This paper complements the approaches above by providing a mechanism for
selecting and prioritizing test cases, that have already been generated and executed in
previous products.

3.2 Test Case Classification and Selection

When defining a product in a product family for a new customer, the changed parts of
the new product need to be tested, as well as the other parts to detect regression faults.
In most practical contexts, given the number of test cases and their execution time, not
all of them can be rerun for regression due to limited resources. Test case selection
is a strategy commonly adopted by regression testing techniques to reduce testing
costs [24, 30, 115]. Therefore, we investigate test case classification and selection
approaches under two categories: (i) the selection of regression test cases for a single
product and (ii) the selection of test cases for each product in a product line.

Regression test selection techniques aim to reduce testing costs by selecting a
subset of test cases from an existing test suite [88]. Most of them are code-based and
use code changes and code coverage information to guide test selection (e.g., [14,
42, 56, 77, 83, 89, 90]). Other techniques use different artifacts such as requirements
specifications (e.g., [26, 73, 106]), architecture models (e.g., [72, 75, 76]), or UML
diagrams (e.g., [15, 19, 43]). For instance, Briand et al. [15] present an approach for
automating regression test selection based on UML diagrams and traceability infor-
mation linking UML models to test cases. They propose a formal mapping between
changes on UML diagrams (i.e., class and sequence diagrams) and a classification of
regression test cases into three categories (i.e., reusable, retestable, and obsolete).

The approaches mentioned above require detailed design artifacts (e.g., finite state
machines and sequence diagrams), rather than requirements in NL, such as use case
specifications. Further, they compare a system artifact with its modified version to
select test cases from a test suite in the context of a single system, not in the context
of a product line.

There are several product line test case selection approaches [17, 27, 52, 93, 94,
110, 111]. Wang et al. [110, 111] propose a product line test case selection method
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using feature models. The method works in three steps: (i) software engineers indicate
features that need to be tested; (ii) a toolset is used to check the consistency between
features included in a program; and (iii) test cases are automatically selected so that
all the test cases associated with a feature to be tested will be executed. The main
limitation is that all the test cases of the product family need to be derived upfront
and that the scope of the product family must be defined in advance. There are other
similar approaches suffering from the same limitation [17, 52, 94]. In contrast, our
approach requires that only test cases for the initial product be available in advance.
A test case selection approach that does not require early generation of test cases for
the product family is that of Lity et al. [65,66,67], which is based on model slicing for
incremental product line testing. Lity et al. apply incremental model slicing to deter-
mine the impact of changes on a test model, e.g., finite state machines, and to reason
about their potential retest. The approach first computes test model regression deltas
between the previous and new products. Based on a structural coverage criterion and
the computed regression deltas, a set of impacted test goals, i.e., structural test model
elements, is identified from the test model. The impacted test goals are analyzed to
identify obsolete test cases for the new product. For each product, the approach com-
putes a test model slice, which comprises test model elements influencing a test goal
based on control and data dependencies between elements. Reusable and retestable
test cases are identified based on the changes between the test model slices of the pre-
vious and new products. The approach needs detailed behavioral models, e.g., finite
state machines and message sequence diagrams, which rarely exist in contexts where
requirements are mostly captured in NL. In complex industrial systems, behavioral
models that are precise enough to enable test case selection are so complex that their
specification cost is prohibitive and the task is often perceived as overwhelming by
engineers. In contrast, our approach does not require that detailed behavioral models
be provided by engineers. With the help of NLP, it automatically extracts behavioral
information from use case specifications compliant with RUCM (see Sections 5.2.1
and 5.2.2). Lity et al. do not address how to trace from impacted test goals to their
corresponding test cases while our approach provides a detailed traceability method
required for test case classification (see Section 5.2.3). We automatically identify all
tested use case scenarios and derive new, untested scenarios from the tested scenarios
(see Sections 5.2.2 and 5.2.3). To classify test cases, we directly identify the impact of
configuration decision changes on the tested scenarios. Therefore, in contrast to the
work by Lity et al., our approach does not need model slices and a retest coverage cri-
terion, i.e., a structural coverage criterion, for the retest decision. In addition, Lity et
al. do not support the definition of test cases for new requirements while our approach
identifies use case scenarios that have not been tested before, and provides informa-
tion on how to modify existing test cases to cover those new, untested scenarios (see
Section 5.2.4). Dukaczewski et al. [26] briefly discuss how to apply the incremental
product line testing strategy to NL requirements. They do not provide any method to
model variability in requirements; it is only suggested that a requirement is split into
several requirements, one for each possible product variant. Also, there is no reported
systematic approach supported by a tool. To the best of our knowledge, our work is
the first systematic and automated approach for supporting the incremental product
line testing strategy for NL requirements.

14



3.3 Test Case Prioritization

Test case prioritization techniques schedule test cases in an order that increases their
effectiveness in meeting some performance goals (e.g., rate of fault detection and
number of test cases required to discover all the faults) [51, 91, 115]. They mostly
use information about previous executions of test cases (e.g., [29, 33, 44, 60, 63, 91]),
human knowledge (e.g., [8, 54, 96, 97, 99, 103]), or a model of the system under test
(e.g., [34, 53, 55, 101]). For instance, Shrikanth et al. [98] propose a test case pri-
oritization approach that takes into consideration customer-assigned priorities of re-
quirements, developer-perceived implementation complexity, requirements volatility,
and fault proneness of requirements. Tonella et al. [103] propose a test case priori-
tization technique using user knowledge through a machine learning algorithm (i.e.,
Case-Based Ranking). Lachmann et al. [60] propose another test case prioritization
technique for system-level regression testing based on supervised machine learning.
They consider test case history and natural language test case descriptions for pri-
oritization. Since they consider the next version of a single system, their approach
does not take into account variability and the classification of test cases in a product
line for test case prioritization. In contrast to the aforementioned approaches, we do
aim at prioritizing test cases for a new product in a product family, not for the next
version of a single system. Our approach considers multiple factors (i.e., test execu-
tion history, requirements variability, the classification of test cases and the size of
scenarios exercised by test cases) in a product line, identifies their impact on the test
case prioritization for the previous products in the product line, and prioritizes test
cases for a new product accordingly.

There are approaches that address test case prioritization in product lines (e.g., [4,
5,6,7,12,22,23,27,31,45,64,93]). For instance, to increase feature interaction cover-
age during product-by-product testing, similarity-based prioritization techniques in-
crementally select the most diverse products in terms of features to be tested [6,7,45].
Baller et al. [12] propose an approach to prioritize products in a product family based
on the selection of test suites with regard to cost/profit objectives. The aforementioned
techniques prioritize the products to be tested, which is not useful in our context since
products are seldom developed in parallel. In contrast, our approach prioritizes the
test cases of a new product to support early detection of software faults based on
multiple risk factors.

There are search-based approaches for multi-objective test case prioritization in
product lines (e.g., [10, 11, 81, 112]). For instance, Parejo et al. [81] model test case
prioritization as a multi-objective optimization problem and implement a search-
based algorithm to solve it based on the NSGA-II evolutionary algorithm. Arrieta
et al. [11] propose another approach that cost-effectively optimizes product line test
process. None of them work based on information at the level of NL requirements.

Lachmann et al. [59] introduce a test case prioritization technique for product
lines using delta-oriented architecture models. The differences between products are
captured in the form of deltas [20], which are modifications between architecture
models of products used for integration testing. The proposed approach ranks test
cases based on the number of changed elements in the architecture. The approach
first identifies the regression deltas specifying the differences between architecture
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models. For every product, it creates a delta graph, which is later used to compute the
degree of changes between the current product under test and the previously tested
products. To prioritize test cases, the approach computes the change of each archi-
tecture component using the delta graph of the current product under test. The higher
the corresponding change, the more likely is the test case to fail. The approach is
later extended using risk factors [57] and behavioral knowledge of architecture com-
ponents [58]. The approach proposed by Lachmann et al. requires access to product
architecture descriptions and information about component behavior. In contrast, we
do not require any design information but rely on NL requirements specifications,
i.e., use case specifications. Our approach does not need to identify any regression
delta between requirements of previous and current products. We, instead, rely on
logistic regression models that use variability information in PL use case models,
the classification of test cases, test execution history and test scenario characteristics.
Compared to the delta-oriented approach, we rely on textual requirements and test
case execution history without requiring detailed design models, which rarely exist
in industrial settings. For instance, IEE does not produce the detailed design mod-
els that the delta-oriented approach requires to prioritize test cases for product lines.
Therefore, we expect our approach to be more widely applicable in industrial settings.

In Table 3, based on a set of features necessary for the selection and prioritiza-
tion of system test cases in product lines, we summarize the differences between our
approach and the closest related work. For each approach, the symbol ’+’ indicates
that the approach provides a feature, the symbol ’-’ indicates that it does not do so,
and ’NA’ indicates that the feature is out of scope. For instance, the approach by
Lachmann et al. [60] automatically prioritizes system test cases, but does not clas-
sify test cases. Therefore, all the features related to the classification of system test
cases are not considered for Lachmann et al. [60] in Table 3. Some of the existing test
case selection approaches do not support product lines [14,73,76,89,90,106]. The ap-
proaches that support product lines need either detailed behavioral models [65,66,67]
or must derive upfront all the test cases of a product line [17,52,94,110,111]. On the
other hand, PL prioritization approaches either need detailed behavioral models [57,
58,59] or prioritize products in a product line, not system test cases [6,7,12,45]. Our
approach is currently the only approach that automatically classifies and prioritizes
system test cases in PL without requiring neither behavioral models nor the upfront
provision of all test cases. This is enabled by the capability of automatically analyzing
system requirements in NL in the form of use case specifications.

There is work using industrial cases studies to evaluate their PL test case classifi-
cation and prioritisation techniques. However, our work is driven by current practice
and its limitations, together with working assumptions, in a specific domain that was
not addressed by existing work: use case driven development of embedded, safety-
critical systems.

4 Overview of the Approach

The process in Fig. 3 presents an overview of our approach. In Step 1, Classify sys-
tem test cases for the new product, our approach takes as input (i) system test cases,
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PS use case models, their traceability links, and configuration decisions for previ-
ous products in the product family, and (ii) PS use case models and configuration
decisions for the new product, to classify the system test cases for the new product
as obsolete, retestable, and reusable, and to provide information on how to modify
obsolete system test cases to cover new, untested use case scenarios.

Fig. 3 Overview of the Approach
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Step 1 is fully-automated. The classi-
fication and modification information in
output of this step is for the test engi-
neer to decide which test cases to execute
for the new product and which modifica-
tions to make on the obsolete test cases to
cover untested, new use case scenarios.
We give the details of this step in Sec-
tion 5.

In Step 2, Select and modify system
test cases for the new product, by using
the classification information and modifi-
cation guidelines automatically provided
by our approach, the engineer decides
which test cases to run for the new prod-
uct and modifies obsolete test cases to
cover untested, new use case scenar-
ios. The activity is not automated be-
cause, for the selection of system test
cases, the engineer may also need to
consider implementation and hardware
changes (e.g., code refactoring and re-
placing some hardware with less expen-
sive technology) in addition to the clas-
sification information provided in Step
2, which is purely based on changes in
functional requirements. For instance, a
reusable test case might need to be rerun
because part of the source code verified
by the test case is refactored.

In Step 3, Prioritize system test cases for the new product, selected test cases are
automatically prioritized based on risk factors including fault proneness of require-
ments, and requirements volatility. We discuss this step in Section 6.

5 Classification of System Test Cases

The test case classification is implemented as a pipeline (see Fig. 4), which takes as
input the configuration decisions made for the previous products, the configuration
decisions made for the new product, and the previous product’s system test cases,
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Fig. 4 Overview of the Model Differencing and Test Case Classification Pipeline

traceability links, and PS use case models. The pipeline produces an impact report
with the list of existing test cases classified.

Configuration decisions are captured in a decision model that is automatically
generated by PUMConf during the configuration process. The decision model con-
forms to a decision metamodel described in our previous work [39]. The metamodel
includes the main use case elements for which the user makes decisions (i.e., varia-
tion points, optional steps, optional alternative flows, and variant orders). PUMConf
keeps a decision model for each configuration in the product line. Fig. 5 provides the
decision metamodel and two decision models for the PL use case models in Fig. 1
and Table 1.

The pipeline has four steps (see Fig. 4). The first three steps are executed for each
of the n previous products in the product line, where each one has a decision model
Mi with i = 1 ..n . Note that we also employ the first two steps of the pipeline in our
previous work [37, 38]. In Step 1, Matching decision model elements, our approach
automatically executes the structural differencing of Mi and Mnew by looking for
corresponding model elements representing decisions for the same variations (see
Section 5.1).

Table 4 Change Types for Config-
uration Decisions

Change Types
. Add a decision
. Delete a decision
. Update a decision
- Select some unselected
variant element(s)
- Unselect some selected
variant element(s)
- Unselect some selected
variant element(s) and
select some unselected
variant element(s)
- Change order number
of variant step order(s)

In Step 2, Change calculation, the approach de-
termines how configuration decisions of the two
products differ. Table 4 lists the types of decision
changes. A decision is represented by means of a
n-tuple of model elements in a decision model, e.g.,
<variation point VP, use case UC including VP>.
A change is of type “Add a decision” when a tuple
representing a decision in Mnew has no matching
tuple in Mi . A change is of type “Delete a deci-
sion” when a tuple representing a decision in Mi

has no matching tuple in Mnew . A change is of type
“Update a Decision” when a tuple representing a
decision in Mi has a matching tuple in Mnew with
non-identical attribute values (see the red-colored
attributes in Fig. 5(c)).

In Step 3, Test case classification, the system test cases of the previous products
are classified for the new product by using the decision changes obtained from Step
2 and the traceability links between the system test cases and the PS use case speci-
fications (see Section 5.2). A use case can describe multiple use case scenarios (i.e.,
sequences of use case steps from the start to the termination of the use case) because
of the presence of conditional steps. Each system test case is expected to exercise
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Fig. 5 (a) Decision Metamodel, (b) Part of the Example Decision Model of the Previous Product (Mi ),
and (c) Part of the Example Decision Model of the New Product (Mnew )

one use case scenario. For each use case of the new product, we identify the impact
of the decision change(s) on the use case scenarios, i.e., any change in the execution
sequence of the use case steps in the scenario.

A system test case is classified in one of three categories: obsolete, retestable and
reusable. A test case is obsolete if it exercises an invalid execution sequence of use
case steps in the new product. A test case is retestable if it exercises an execution
sequence of use case steps that has remained valid in the new product, except for
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Table 5 Matching Decisions in Mi and Mnew in Fig. 5

Decisions in Mi Decisions in Mnew

<B6, B7 > <C6, C7 >
<B18, B19 > <C18, C19 >

<B11, B12, B13 > <C11, C12, C13 >
<B11, B12, B14 > <C11, C12, C14 >
<B11, B12, B15 > <C11, C12, C15 >
<B11, B12, B16 > <C11, C12, C16 >
<B11, B12, B17 > <C11, C12, C17 >

internal steps representing internal system operations (e.g., reset of counters). A test
case is reusable if it exercises an execution sequence of use case steps that has re-
mained valid in the new product. The test case categories are mutually exclusive. Use
case scenarios of the new product that have not been tested for the previous product
are reported as new use case scenarios.

In Step 4, Impact report generation, we automatically generate an impact report
from the classified test cases of each previous product to enable engineers to select
test cases from more than one test suite (see Section 5.3). Steps 1, 2 and 3 are the
pairwise comparison of each previous product with the new product. If there are
multiple previous products (n > 1 in Fig. 4), test cases of each product are classified
separately in n reports in Step 3. The generated impact report compares these n
separate reports and lists sets of new scenarios and reusable and retestable test cases
for the n previous products.

5.1 Steps 1 and 2: Model Matching and Change Calculation

For the first two pipeline steps in Fig. 4, we rely on a model matching and change cal-
culation algorithm we devised in our prior work [37, 38]. In this section, we provide
a brief overview of the two steps and their output for the example decision models in
Fig. 5(b) and (c).

In Step 1, we identify pairs of decisions in Mi and Mnew that are made for the
same variants. The decision metamodel in Fig. 5(a) includes the main use case ele-
ments for which the user makes decisions (i.e., variation point, optional step, optional
alternative flow, and variant order). In a variation point included by a use case2, the
user selects variant use cases to be included for the product. For PL use case speci-
fications, the user selects optional steps and alternative flows to be included and de-
termines the order of steps (variant order). Therefore, the matching decisions in Step
1 are (i) the pairs of variation points and use cases including the variation points,
(ii) the pairs of use cases and optional alternative flows in the use cases, and (iii)
the triples of use cases, flows in the use cases, and optional steps in the flows. Ta-
ble 5 shows some decisions in Fig. 5(b) and (c). For example, the pairs 〈B6, B7〉 and
〈C6, C7〉 represent two decisions for the variation point Method of Providing Data
included in the use case Provide System User Data. The triples 〈B11, B12, B13〉

2 In PL use case diagrams, use cases are connected to variation points with an include dependency.
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and 〈C11, C12, C13〉 represent two decisions for an optional step in the basic flow
of the use case Provide System User Data via Standard Mode (i.e., for V2 in Line 40
in Table 1).

In Step 2, Change Calculation, we first identify deleted and added configuration
decisions by checking tuples of model elements in one input decision model (Mi )
which do not have any matching tuples of model elements in another input decision
model (Mnew ). To identify updated decisions, we check tuples of model elements
in Mi that have matching tuples of model elements in Mnew with non-identical at-
tribute values. The matching pairs of variation points and their including use cases
represent decisions for the same variation point (e.g., 〈B6, B7〉 and 〈C6, C7〉 in
Table 5). If the selected variant use cases for the same variation point are not the
same in Mi and Mnew , the decision in Mi is considered as updated in Mnew . We
have similar checks for optional steps, optional alternative flows and variant or-
der of steps. For instance, an optional step is selected in the decision represented
by the triple 〈B11, B12, B15〉 in Mi , while the same optional step is unselected
in the decision represented by the matching triple 〈C11, C12, C15〉 in Mnew . For
the decision models in Fig. 5, the decisions represented by 〈B6, B7〉, 〈B18, B19〉,
〈B11, B12, B14〉, 〈B11, B12B15〉, 〈B11, B12, B16〉, and 〈B11, B12, B17〉 are
identified as updated. There are no deleted or added decisions for the models in Fig. 5.

5.2 Step 3: Test Case Classification

System test cases of the previous product are automatically classified based on the
identified changes (Step 3 in Fig. 4). To this end, we devise an algorithm (see Fig. 6)
which takes as input a set of use cases (UC), the test suite of the previous product (ts),
and a triple of the sets of configuration changes (dc) detected in Step 2. It classifies
the test cases and reports use case scenarios of the new product that are not present
in the previous product.

For each use case in the previous product, we check whether it is impacted by
some configuration changes (Lines 6-7 in Fig. 6). If there is no impact, all the system
test cases of the use case are classified as reusable (Lines 15-17); otherwise, we rely
on the function generateUseCaseModel (Line 8) to generate a use case model, i.e., a
model that captures the control flow in the use case. This model is used to identify
scenarios that have been tested by one or more test cases (identifyTestedScenarios
in Line 10). For each scenario verified by a test case (retrieveTestCases in Line 12),
we rely on the function analyzeImpact (Line 13) to determine how decision changes
affect the behaviour of the scenario.

In Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4, we give the details of the functions gen-
erateUseCaseModel, identifyTestedScenarios, retrieveTestCases and analyzeImpact,
respectively.

5.2.1 Use Case Model Generation

To generate a use case scenario model from a PS use case specification, we rely on a
Natural Language Processing (NLP) solution proposed by Wang et al. [108]. It relies
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Input: Set of use case specifications of the previous product UC ,
Test suite of the previous product ts ,
Triple of sets of decision-level changes dc
(ADD, DELETE, UPDATE)

Output: Quadruple of sets of classified test cases classified

1. Let OBSOLETE be the empty set for obsolete test cases
2. Let REUSE be the empty set for reusable test cases
3. Let RETEST be the empty set for retestable test cases
4. Let NEW be the empty set for new use case scenarios
5. Let classified be the quadruple (OBSOLETE, REUSE, RETEST, NEW)
6. foreach (u ∈ UC ) do
7. if (there is a change in dc for u) then
8. model ← generateUseCaseModel(u)
9. Let unew be a new version of u after the changes in dc
10. Scenarios ←identifyTestedScenarios(model , ts)
11. foreach (s ∈ Scenarios) do
12. T ← retrieveTestCases(s , ts , Scenarios)
13. classified ← classified ∪ analyzeImpact(s , T , unew , dc)
14. end foreach
15. else
16. REUSE ← REUSE ∪ retrieveTestCases(u , ts)
17. end if
18. end foreach
19. NEW ← filterNewScenarios(NEW )
20. return classified

Fig. 6 Test Case Classification Algorithm
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Fig. 7 Metamodel for Use Case Scenario Models

on the RUCM keywords and part-of-speech tagging to extract information required to
build a use case model. In this section, we briefly describe the metamodel for use case
scenario models, shown in Fig. 7, and provide an overview of the model generation
process. UseCaseStart represents the beginning of a use case with a precondition
and is linked to the first Step (i.e., next in Fig. 7). There are two Step subtypes, i.e.,
Sequence and Condition. Sequence has a single successor, while Condition has two
successors (i.e., true and false in Fig. 7).

Interaction indicates the invocation of an input/output operation between the sys-
tem and an actor. Internal indicates that the system alters its internal state. Exit repre-
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Fig. 8 Use Case Scenario Models for the Use Case Specifications in Table 2

sents the end of a use case flow, while Abort represents the termination of an anoma-
lous execution flow. Fig. 8 shows the models generated from the use cases in Table 2.
For each Interaction, Include, Internal, Condition and Exit step, a Step instance is
generated and linked to the previous Step instance.

For each alternative flow, a Condition instance is created and linked to the Step
instance of the first step of the alternative flow (e.g., a4 and a5 in Fig. 8(a)). For
multiple alternative flows on the same condition, Condition instances are linked to
each other in the order they follow in the specification. For alternative flows that
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return back to the reference flow, an Exit instance is linked to the Step instance that
represents the reference flow step (e.g., next between b8 and b3 in Fig. 8(b)).

For alternative flows that abort, an Abort instance is created and linked to the Step
instance of the previous step (e.g., a8, a10, b15 and c7 in Fig. 8). For the end of the
basic flow, there is always an Exit instance (e.g., a7, b6, c5 and d5 in Fig. 8).

5.2.2 Identification of Tested Use Case Scenarios

We automatically identify tested use case scenarios in a use case specification. A
scenario is a sequence of steps that begins with a UseCaseStart instance and ends
with an Exit instance in the use case model. Each use case scenario captures a set of
interactions that should be exercised during the execution of a test case. The function
identifyTestedScenarios (see Line 12 in Fig. 6) implements a depth-first traversal of
use case models to identify tested scenarios. It visits alternative flows which are tested
together with previously visited alternative flows by the same test case.

Fig. 9 shows three tested scenarios extracted from the scenario models in Fig. 8(a)
and (c). The scenario in Fig. 9(a) executes the true branch of the Condition instance
a5 in Fig. 8(a), while the scenario in Fig. 9(b) executes the false branch of the same
instance. The scenario in Fig. 9(c) executes the basic flows in Fig. 8(c) and (d).

5.2.3 Identification of Test Cases for Use Case Scenarios

We use traceability links between test cases and use case specifications to retrieve test
cases for a given scenario. The accuracy of test case retrieval depends on the granu-
larity of traceability links. Companies may follow various traceability strategies [84],
and generate links in a broad range of granularity (e.g., to use cases, to use case flows
or to use case steps). We implement a traceability metamodel which enables the user
to generate traceability links at different levels of granularity (see Fig. 10(a)).

Fig. 10 (b) gives part of the traceability model for traceability links, assigned by
engineers, between two test cases and the use cases Recognize Gesture and Identify
System Operating Status in Table 2. Test case t1 is traced to the basic flows of Rec-
ognize Gesture and Identify System Operating Status (i.e., (t1 tl1−→ f1) and (t1 tl3−→ f3)),
while t2 is traced to the specific alternative flow SAF2 of Recognize Gesture (i.e., (t2
tl2−→ f2)).

We retrieve, using the traceability links in Fig. 10(b), t1 for the scenario in Fig. 9(a)
since it is the only scenario executing the basic flows of Recognize Gesture and Iden-
tify System Operating Status. The scenario in Fig. 9(b) executes the alternative flow
SAF2 of Recognize Gesture (see a9 and a10 in Fig. 9(b)). Therefore, t2 is retrieved
for Fig. 9(b).

Our approach often requires traceability links from test cases to only basic and
alternative flows without indicating the execution order of the flows. There are few
cases where finer-grained traceability links are needed to retrieve test cases. First,
when multiple scenarios take the same alternative flows with different orders, these
orders are needed to match test cases and scenarios (the attribute order in Fig. 10(a)).

Second, we need finer-grained traceability links when there are more than one
scenario taking the same bounded or global alternative flow. Those alternative flows
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Fig. 9 Some Tested Use Case Scenarios

refer to more than one step in a reference flow. Hence, a scenario can take a bounded
or global alternative flow from different reference flow steps; we need traceability
links indicating the reference flow step in which the flow is taken (see “to” from
TraceLink to Step in Fig. 10(a)). If we do not have traceability at the right level of
granularity in these cases, we ask the user to match use case scenarios and test cases.

The two cases above, which represent the most expensive cases of traceability, are
expected to happen very rarely. For instance, in our case study (see Section 8), we did
not encounter them at all and there was no need to manually match use case scenarios
and system test cases. Overall, the additional effort entailed by our approach depends
on the traceability practice in place. For instance, companies in safety-critical do-
mains must follow guidelines enforced by the international safety standards regarding
traceability and introducing our approach would not entail any additional overhead.
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Fig. 10 (a)Traceability Metamodel and (b) Example Model

5.2.4 Impact Identification

We analyze the impact of configuration changes on use case scenarios to identify
new scenarios and classify retrieved test cases as obsolete, retestable and reusable.
To this end, we devise an algorithm (see Fig. 11) which takes as input a use case
scenario to be analyzed (sold ), a set of test cases verifying the scenario (T ), a use
case specification for the new product (u), and a triple of the sets of configuration
changes (dc) produced in Step 2. If there is no change impacting the scenario, test
cases verifying the scenario are classified as reusable (Line 8 in Fig. 11). For any
change in the scenario (e.g., removing a use case step), the test cases are classified
as either retestable or obsolete (Line 5) as shown in Table 6, which describes how
test cases are classified based on the types of changes affecting the variant elements
covered by a scenario. A test case is classified as retestable when it does not need to be
modified to cover the corresponding scenario. Changes impacting a use case scenario
may lead to modifications in source code. Since modifications in the source code may
introduce faults, retestable test cases are expected to be re-executed to ensure that the
system behaves correctly. A reusable test case exercises use case steps that remains
valid in the new product, while this is not the case for internal steps exercised by
retestable test cases. A test case is classified as obsolete if its sequence of inputs may
no longer enable the execution of the corresponding scenario or when the oracles are
no longer correct. Obsolete test cases cannot be reused as is to retest the system but
need to be modified.

For the example configuration changes identified in Section 5.1, the scenarios in
Fig. 9(a) and (b) are classified as retestable while the scenario in Fig. 9(c) is clas-
sified as obsolete. The tuple 〈B18 ,B19 〉 represents an updated decision; the uns-
elected optional bounded alternative flow of the use case Recognize Gesture is se-
lected in the new product (see Section 5.1). The selected optional flow contains a
condition, i.e., “voltage fluctuation is detected” in Line 10 in Table 1, which does not
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Inputs: Old use case scenario sold , Set of test cases T ,
New use case specification u , Decision changes dc,

Output: Quadruple of sets of classified test cases classified
(OBSOLETE, REUSE, RETEST, NEW)

1. model ← generateScenarioModel(u)
2. Let inst be the UseCaseStart instance in model
3. Let snew be an empty scenario
4. if (there is at least one change in dc for sold ) then
5. classified ← analyzeChangesOnScenario(sold , dc, T )
6. NEW ← identifyNewScenarios(model , sold , snew , inst)
7. else
8. REUSE ← T
9. end if
10. return classified

Fig. 11 Algorithm for analyzeImpact

refer to any entity in the input steps. Since the condition step is added in the scenar-
ios in Fig. 9(a) and (b), these two scenarios are classified as retestable. The triples
〈B11 ,B12 ,B14 〉, 〈B11 ,B12 ,B15 〉, 〈B11 ,B12 ,B16 〉, and 〈B11 ,B12 ,B17 〉 in
Fig. 5 represent updated decisions for the use case Provide System User Data (see
Section 5.1). Some of the unselected output steps are selected while one selected out-
put step is unselected and the order of the output steps are updated in the basic flow of
Provide System User Data (see Fig. 5). Therefore, the test case verifying the scenario
in Fig. 9(c) for the basic flow of Provide System User Data is classified as obsolete
(see rules R6, R7 and R9 in Table 6).

We process scenarios impacted by the configuration changes to identify new sce-
narios for the new product (Line 6 in Fig. 11). Furthermore, for each new scenario,
we provide guidance to support the engineers in the implementation of test case(s).
To this end, we devise an algorithm (Fig. 12) which takes as input a use case model
of the new product (sm), a use case step in the model (inst), a use case scenario of the
previous product (sold ) that has been exercised by either an obsolete or retestable test
case, and a new scenario (snew ) which is initially empty. The algorithm generates a
set of triples 〈 snew , sold , G 〉, where snew is the new scenario, sold is the old scenario
of the previous product, and G is the guidance, a list of suggestions indicating how
to modify test cases covering sold to generate test cases covering snew .

In Fig. 12, the algorithm follows a depth-first traversal of sm by following use
case steps in sm that have corresponding steps in sold . To this end, when traversing
condition steps, the algorithm follows alternative flows taken in sold (Lines 8-11).
Whenever a Condition instance is encountered, the algorithm checks if the Condition
instance exists also in sold (Line 8). If so, the algorithm proceeds with the condition
branch taken in sold , i.e., the step following the Condition instance in sold (Line 11);
otherwise, it takes the condition branch(es) which have not yet been taken in snew
(Lines 12-30).

Alternative flows may lead to execution loops; this happens when alternative
flows resume the execution of steps belonging to the originating flows. In our cur-
rent implementation we generate scenarios that cover each loop body once. To this
end, when processing condition steps, the algorithm checks if the branches that may

28



Table 6 Changes in Use Case Scenarios and Classification of System Test Cases

Rule
ID

Change in
the Scenario

Test Case
Classifi-
cation

Rationale

R1 Add or re-
move an in-
ternal step

Retestable Internal use case steps represent internal system operations (e.g., reset of
counters) and do not directly affect system-actor interactions. Therefore, a
test case does not need to be modified to exercise a scenario including added
or deleted internal steps (e.g., a new internal step does not imply an addi-
tional test input or an update in the test oracle). The test case can be executed
against the new product without any change; however, the system may not
behave as expected (e.g., because of a faulty implementation of a new inter-
nal use case step) and thus the test case is classified as retestable.

R2 Update the
order of an
internal step

Retestable Since internal use case steps do not directly affect system-actor interactions, a
test case does not need to be modified in the presence of a change in the order
of internal steps (i.e., a different sequence of internal steps does not imply an
update in test inputs or oracles). However, the system may not behave as
expected (e.g., because of a faulty implementation of the new order of an
internal step) and thus the test case is classified as retestable.

R3 Add or
remove a
condition
step where
the condi-
tion refers
exclusively
to state
variables

Retestable Condition steps are used to verify properties of input entities and/or state
variables. A condition step, in practice, restricts the execution of a use case
scenario to a subset of the values assigned to the input entities and/or state
variables verified by the condition. State variables are used to model the sys-
tem state, while input entities describe system inputs provided by actors. The
addition and removal of condition steps that verify the properties of state
variables reflect changes in the internal behaviour of the system but not in
the system-actor interactions. Therefore, a test case is not modified in the
presence of added/removed condition steps that only verify the properties
of state variables (e.g., such a new condition step does not imply an update
in test inputs and oracle). However, the system may not behave as expected
(e.g., because of a faulty implementation of the changed state variables) and
thus the test case is classified as retestable.

R4 Add or
remove a
condition
step where
the condition
refers to an
input entity

Obsolete Adding or removing a condition step referring to input entities may imply
an update in the test inputs if the test input values do not satisfy the changed
condition. Since we do not inspect executable test cases in our analysis, it
is not possible to determine if the test cases of the previous product already
provide the values that fulfill the changed condition. To be conservative, we
consider test cases of scenarios impacted by such changes as obsolete thus
forcing engineers to verify if the test input values exercise the scenario.

R5 Update the
order of a
condition
step

Obsolete When old and new scenarios differ regarding the order in which condition
steps appear, then the behaviour triggered by the test case of the previous
product might not be the same in the new product (e.g., if the steps that
define the variables verified by the condition are between the condition steps
that have been changed). Therefore, we consider a test case that exercises an
old scenario affected by such changes as obsolete.

R6 Add or
remove an
input/output
step

Obsolete Input and output use case steps represent system-actor interactions. There-
fore, the implementation of the test case needs to be modified to exercise the
targeted scenario when input and output steps are added or removed (e.g., a
new input step implies an additional test input in the test case).

R7 Update the
order of an
input/output
step

Obsolete Since input and output use case steps represent system-actor interactions, the
implementation of the test case needs to be modified to exercise the targeted
scenario when the order of input and output steps is updated (e.g., a new
order of input steps implies an update in the sequence of test inputs).

R8 Remove an
alternative
flow

Obsolete Alternative flows capture sequences of interactions taking place under certain
execution conditions. If a use case scenario of the previous product covers an
alternative flow that does not exist in the new product, the corresponding test
case should be considered as obsolete because the interactions verified by the
test case cannot take place with the new product.

R9 Multiple
changes in
the use case
scenario

Obsolete
or
Retestable

A test case is classified as obsolete if there is at least one change in the sce-
nario that makes the test case obsolete. A test case is classified as retestable
if there are no changes in the scenario that make the test case obsolete and if
there is at least one change in the scenario that makes the test case retestable.

lead to cycles have already been traversed (i.e., Lines 14 and 22). If it is the case, the
traversal of the scenario is directed towards the branch that brings the scenario out of
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Input: New scenario model sm , old scenario sold , new scenario snew ,
model instance inst ,
Output: Set of triples of new scenario, old scenario and guidance S

1. Let S be the empty set for triples of old scenario, new scenario and
guidance

2. if (inst is a UseCaseStart , Interaction or Internal instance) then
3. addToScenario(inst , snew )
4. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .next)
5. end if
6. if (inst is a Condition instance) then
7. addToScenario(inst , snew )
8. if (inst exist in sold ) then
9. Let t be the instance after inst in the branch taken in sold
10. Let tnew be the instance corresponding to t in sm
11. S ← S ∪ identifyNewScenarios(sm , sold , snew , tnew )
12. else
13. if (inst represents a condition leading to a specific alternative flow) then
14. if (inst and inst .false exist together in snew ) then
15. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .true)
16. else
17. scpy ← clone(snew)
18. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .true)
19. S ← S ∪ identifyNewScenarios(sm , sold , scpy , inst .false)
20. end if
21. else
22. if (inst and inst .true exist together in snew ) then
23. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .false)
24. else
25. scpy ← clone(snew)
26. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .false)
27. S ← S ∪ identifyNewScenarios(sm , sold , scpy , inst .true)
28. end if
29. end if
30. end if
31. end if
32. if (inst is an Exit or Abort instance) then
33. if (inst is an Exit instance for the included use case) then
34. S ← S ∪ identifyNewScenarios(sm , sold , snew , inst .next)
35. else
36. addToScenario(inst , snew )
37. G ← generateGuidance(sold , snew )
38. S ← S ∪ {< snew, sold, G >}
39. end if
40. end if
41. return S

Fig. 12 Algorithm for identifyNewScenarios

the cycles (i.e, the true branch for specific alternative flows and the false branch for
bounded or global alternative flows as shown in Lines 15 and 23, respectively).

The algorithm in Fig. 12 always terminates since (1) the same alternative flow
is covered only once and (2) the recursive traversal of the scenario model sm stops
when an Exit or Abort step is reached (Line 32). The only exception is that of Exit
steps of included use cases, which lead to the step that follows the Include step (Line
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Fig. 13 Two New Scenarios Derived from the Scenarios in Fig. 9

33). This Exit step belongs to the use case containing the Include step; therefore, the
traversal will eventually reach an Exit or Abort step terminating the recursion. Before
stopping the recursive traversal, the algorithm automatically compares sold and snew ,
and determines their differences to generate guidance for new test cases (G in Line
37). We provide a set of suggestions for adding, removing and updating test case
steps corresponding to added, removed and updated use case steps in sold and snew .
Finally, the algorithm adds snew , sold and G to the result tuple (Line 38).

Fig. 13 gives two new scenarios derived from the scenarios in Fig. 9. Fig. 13(a) is
derived from Fig. 9(a) and (b); Fig. 13(b) is derived from Fig. 9(c). The new scenario
in Fig. 13(a) executes the new selected optional bounded alternative flow in which
the use case Recognize Gesture aborts due to the voltage fluctuation (see Lines 8-12
in Table 1). While traversing sm for sold in Fig. 9(a), the new Condition instance
anew1 and the new Abort instance anew2 (green-colored in Fig. 13(a)) are added in
snew to execute the bounded alternative flow. snew in Fig. 13(b) executes the basic
flow of the use case Provide System User Data of the new product where the order of
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Use Case: Recognize Gesture
Guidance for building a test case covering 
“BAF1” of the new product from scenario
 "TCS57” of the previous product

Please	update	the	exis.ng	test	case	"TCS57”	to	
account	for	the	fact	that:	(1)	the	steps	in	green	were	
added,	and	(2)	the	steps	in	red	were	deleted	from	
the	use	case	specifica.ons	of	the	previous	product.

Start	Instruc+on	[Precondi+on:	the	system	is	
in	opera+on]

1.	The	System	REQUESTS	the	move	
capacitance	FROM	the	sensors

2.	The	system	VALIDATES	THAT	the	watchdog	reset	is	valid

3.	The	system	VALIDATES	THAT	the	RAM	is	valid

4.	The	system	VALIDATES	THAT	the	sensors	are	valid

5.	The	system	VALIDATES	THAT	there	is	no	error	detected

6.	The	System	VALIDATES	THAT	the	opera+ng	status	is	valid

7.	The	system	VALIDATES	THAT	the	voltage	fluctua+on	is	
detected

8.	Abort

 Sequence Instruction

Legend

Condition Instruction

7.	The	System	VALIDATES	THAT	the	movement	is	a	valid	
kick

8.	The	System	SENDS	the	valid	kick	status	TO	
the	STO	Controller

Fig. 14 PUMConf’s User Interface for Guidance

one step is updated (blue-colored in Fig. 13(b)) and some new steps are introduced
(green-colored) while some others are removed.

Fig. 14 shows the generated guideline to modify the test case verifying the retestable
scenario in Fig. 9(a) for the new scenario in Fig. 13(a). The red and green colors, with
a legend, on the scenario explains impacted parts of the corresponding test case. The
red steps are deleted while the green ones are added to the scenario. Using this infor-
mation, the engineer adds and deletes test case steps to cover the new scenario.

Fig. 15 shows the header of the test case verifying the new scenario in Fig. 13(a)
with the description of the functions under test. For simplification, we omit the im-
plementations of the executable test case. We use the guidance to derive the new test
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case from the test case in Fig. 16 verifying the scenario in Fig. 9(a). The bold lines
in Fig. 15 are the new objectives and methods of the test case that correspond to the
new use case steps in Fig. 13(a) (i.e., anew1 and anew2).

A new scenario might be derived separately from multiple old scenarios. After
all the new scenarios are identified for the new product, we automatically detect such
new scenarios and provide guidance for only the test cases of the old scenarios from
which the engineer generates the new test cases with the least possible changes (Line
19 in Fig. 6). We rank those old scenarios according to the number of changes. If
the number of changes are the same, we give priority to scenarios with more changes
removing test case steps. We assume that removing test case steps is more convenient
than adding new steps. For instance, the new scenario in Fig. 13(a) is derived from
two scenarios in Fig. 9(a) and (b). To generate a test case verifying the new scenario
in Fig. 13(a), the engineer can modify one of the test cases verifying the scenarios
in Fig. 9(a) and (b). In Fig. 13(a), our approach provides guidance for both scenarios
because the number of changes and the number of removed and added test case steps
are the same for the two scenarios.

Fig. 15 System Test Case derived from the System Test Case in Fig. 16

Fig. 16 System Test Case for the Scenario in Fig. 9(a)
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5.3 Step 4: Impact Report Generation

We automatically generate an impact report from the classified test cases of each
previous product in a product line (Step 4 in Fig. 4). To enable engineers to select
test cases from more than one test suite and thus maximize the number of test cases
that can be inherited from previous products, we compare all the test suites in the
product line. We then identify sets of new scenarios and reusable and retestable test
cases for the product line. Assume that there are N previous products in a product
line. Snew1 , Snew2 , ..., and SnewN are the sets of new scenarios we identify when we
compare a new product with each previous product. To minimize the number of new
test cases the engineer needs to generate, we compute the intersection of the sets of
new scenarios (Snew = Snew1 ∩ Snew2 ∩ ... ∩ SnewN ). In other words, a scenario
is considered as new only if has not been exercised in any of the previous products.
Indeed, the scenarios which are not in the intersection of the sets are covered by at
least one reusable or retestable test case in one of the previous products. If a scenario
is exercised only by reusable test cases, we select the test case belonging to the most
recent product, based on the date of creation of the product. Our rationale is that
recent test case implementations are more likely to be reusable (e.g., they do not
require updated setup instructions). We do the same when a scenario is exercised
only by retestable test cases. Instead, if a scenario is exercised by both reusable and
retestable test cases, we list the previous products in which the test case is identified
as either retestable or reusable. Engineers then should decide from which previous
product to take the test case.

Based on the system under test, engineers decide whether to select test cases
from a single test suite or from multiple test suites in the product line. For example, if
multiple products include different setup procedures (e.g., due to different hardware
architecture or library versions being used) that need to be executed at the beginning
of each test case, it is more practical to select test cases from a single test suite.

6 Prioritization of System Test Cases

Test case prioritization is implemented as a pipeline (see Fig. 17). The pipeline takes
as input the test suite of the new product, the test execution history of the previous
products (i.e., the outcome of each test case of the product test suite, for each previous
product and version), the size of the use case scenarios exercised by the test cases, the
classification of the test cases (i.e., reusable or retestable), and the PL use case. A new
version of a product is deployed after the previous version has been tested and fixed.
Requirements remain identical from version to version of the same product. When
requirements evolve, they are considered to characterize a different, new product in
the product line. Based on a prediction model using these factors, the test cases of the
given test suite are sorted to maximize the likelihood of executing failing test cases
first.

The prioritization pipeline gives the highest priority to test cases covering new
scenarios (i.e., scenarios not available for previous products) since they exercise fea-
tures that have never been tested before. The prioritization of retestable and reusable

34



Identifying 
Significant 

Factors 

Test Execution History, 
Variability Information, 

Classification of Test Cases, 
and Size of Use Case Scenarios

List of 
Significant Factors

•• •• •• •• •• •• •• •• Prioritizing Test 
Cased based on 

Significant Factors

Selected and 
Modified Test Cases

1 2

Start Prioritized 
Test Suite

Fig. 17 Overview of the Test Case Prioritization Pipeline

test cases is instead driven by a set of factors typically correlated with the triggering
of failures, according to the relevant literature (e.g., [29,63,91,98,113]): the number
of previous products in which the test case failed, the number of previous products’
versions in which the test case failed, the size of the scenario exercised by the test
case, the degree of variability in the use case scenario exercised by the test case, and
the classification of the test case (i.e., reusable or retestable). Note that different ver-
sions of a product share the same test suite because functional requirements do not
vary across the versions of the same product. Since this test suite does not contain
obsolete test cases, they are not considered to build the regression model. The num-
ber of previous products in which the test case failed and the number of versions in
which the test case failed capture the fault proneness of the test cases, a factor typi-
cally considered by other test case prioritization approaches [29, 98]. The size of the
use case scenario exercised by a test case is measured in terms of the number of use
case steps it contains. The scenario size captures the complexity of the operations per-
formed by the system during the execution of the test case, under the assumption that
longer scenarios require more complex software implementations. Implementation
complexity is one of the factors considered in other requirements-based prioritization
approaches [98]. The degree of variability in the use case scenario exercised by a
test case is measured by counting the number of decision elements included in the
scenario. In the presence of high variability, it is more likely that some of the sys-
tem properties verified by the test case are not implemented properly. Finally, the
classification of a test case as retestable is considered for prioritization since, by def-
inition, the scenario exercised by a retestable test case might be affected by changes
in behaviour and thus may trigger a failure.

All these factors mentioned above may have varying importance for test case
prioritization in different product lines due to technical and organizational factors.
Some factors may even not significantly affect test case prioritization for some prod-
uct lines. To account for the varying importance of risk factors, the pipeline identifies
factors significantly correlated with the presence of failures. Test cases are then pri-
oritized based on a prediction model relying on the correlated factors.

The prioritization pipeline includes two steps. In Step 1, Identifying significant
factors, our approach automatically identifies significant factors for prioritizing the
test cases of a new product. To this end, we employ logistic regression [49], i.e., a
predictive analysis to determine the relationship between one dependent binary vari-
able (i.e., the failure of a test case) and one or more independent variables, which
might be either numeric (e.g., the number of the products in which the test case failed
in the past) or binary (e.g., the fact that a test case has been classified as retestable).
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Table 7 Excerpt of the Training Data Set used for Logistic Regression

Product
ID

Version
ID

Test
Case
ID

Fails Retestable
(R)

Size of the
Use Case
Scenario
(S)

Degree of
Variabil-
ity of the
Scenario
(V)

# of Pre-
vious
Products
in which it
Fails (FP)

# of Pre-
vious
Versions
in which it
Fails (FV)

P1 V1 TC1 1 0 8 2 0 0
P1 V1 TC2 0 0 4 1 0 0
P1 V2 TC1 1 0 8 2 0 1
P1 V2 TC2 0 0 4 1 0 0
P1 V3 TC1 0 0 8 2 0 2
P1 V3 TC2 0 0 4 1 0 0
P1 V4 TC1 0 0 8 2 0 2
P1 V4 TC2 0 0 4 1 0 0

P2 V1 TC1 1 1 9 3 1 2
P2 V1 TC2 0 0 4 1 0 0
P2 V1 TC3 0 0 4 1 0 0
P2 V2 TC1 0 1 9 3 1 3
P2 V2 TC2 1 0 4 1 0 0
P2 V2 TC3 0 0 4 1 0 0
P2 V3 TC1 0 1 9 3 1 3
P2 V3 TC2 0 0 4 1 0 1
P2 V3 TC3 0 0 4 1 0 0

P3 V1 TC1 1 1 9 3 2 3
P3 V1 TC2 1 1 5 2 1 1
P3 V1 TC3 0 0 4 1 0 0
P3 V2 TC1 1 1 9 3 2 4
P3 V2 TC2 0 1 5 2 1 2
P3 V2 TC3 0 0 4 1 0 0

In our context, the logistic regression model estimates the logarithm of the odds
that a test case fails. The logistic regression model is trained using variability infor-
mation, the size of the use case scenarios exercised by the test cases, the classification
of the test cases, and the execution history of the test cases for previous products. The
logistic regression model has the following form:

ln
(

p(TCx)
1−p(TCx)

)
= β0 + β1 ∗V + β2 ∗ S + β3 ∗ FP + β4 ∗ FV + β5 ∗ R

where p(TC x) is the probability that test case TC x fails, V is the degree of
variability of the scenario exercised by the test case (i.e., the number of decision
elements in the scenario), S is the size of the use case scenario exercised by the test
case (i.e., the number of steps), FP is the number of failing products, FV is the
number of failing versions, and R indicates whether the test case has been classified
as retestable. β0 is the intercept, while β1...β5 are coefficients which are derived,
using the iteratively reweighted least squares approach [21], to estimate the effect
size on the failure probability.

We rely on the R environment [3] to derive the logistic regression model. Our
toolset automatically generates from the available data the training data set to be
processed by the R environment. Table 7 shows an excerpt of an example training
data set generated by our toolset.

Table 7 includes the failure history of products P1, P2 and P3 to be used to pri-
oritize the test cases for P4. Each row in Table 7 reports the information belonging
to a single test case executed against a version of a product. The first and second
columns represent the product and its version, respectively. The third column reports
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the test case identifier, while the fourth column indicates whether the test case fails
(i.e., the dependent variable). The rest of the columns in Table 7 represent indepen-
dent variables used to predict failure. The fifth column indicates if the test case has
been classified as retestable. The sixth column reports the size of the use case sce-
nario exercised by the test case. The seventh column reports the degree of variability
of the scenario exercised by the test case. Table 7, for instance, shows that test case
TC1 executed against P2 covers nine use case steps while the same test case covers
eight use case steps when executed against P1; this is due to the covered use case
scenario in P2 including one additional variant element than the use case scenario
covered in P1 (see column Degree of Variability). Test case TC3 has been intro-
duced in P2 to cover one additional use case scenario not present in P1. The eighth
and ninth columns report the number of products and the number of versions in which
the test case fails, respectively.

To identify the significant factors for test case prioritization, we apply the p-value
method of hypothesis testing based on Wald test [87]. The method relies on the failure
probability predicted by the regression model to determine whether there is evidence
to reject the null hypothesis that there is no relationship between the two variables.
The p-value indicates the likelihood of observing the data points when the null hy-
pothesis is true. Therefore, if the p-value is smaller than a given threshold (we use
0.05) then it is unlikely that the dataset has been generated by chance and, conse-
quently, the null hypothesis can be rejected (i.e., there is a relationship between the
factor and the dependent variable). In the model, we keep the given factors whose
p-value is smaller than the threshold. To automatically determine significant factors,
we rely on the p-value computed by the Wald test on the logistic regression model
trained by including all the factors. Finally, we derive a new, multivariate logistic
regression model that includes only the significant factors. For example, the logistic
regression model derived for one of the products used in our empirical evaluation (see
P4 in Section 8) is the following:

ln
(

p(TCx)
1−p(TCx)

)
= −1.50− 0.25 ∗V + 0.04 ∗ S + 0.53 ∗ FV − 1.01 ∗ R

This model, for example, does not include the number of failing products (FP )
since it is not significant according to the computed p-value.

The generated logistic regression model is a predictive model that returns, based
on the significant factors, the probability that a test case fails. In Step 2, Prioritize
test cases, we prioritize test cases by relying on the probability calculated by the
regression model. The test cases are sorted in descending order of probability and
presented to engineers.

7 Tool Support

We have implemented our test case selection and prioritization approach as an exten-
sion of PUMConf. For accessing the tool and some representative models, see: https:
//sites.google.com/site/pumconf/.

Fig. 18 shows the layered architecture of our tool PUMConf. It is composed of
three layers: (i) the User Interface (UI) layer, (ii) the Application layer, and (iii) the
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Data layer. We briefly introduce each layer and explain the new components, i.e., the
gray boxes in Fig. 18.
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Fig. 18 Layered Architecture of PUMConf

User Interface (UI) Layer supports creating and viewing PL and PS use case
models (i.e., use case diagrams and specifications) and system test cases, and display-
ing the generated impact reports. We employ Papyrus (https://www.eclipse.org/
papyrus/) for use case diagrams and IBM Doors (www.ibm.com/software/products/
ca/en/ratidoor/) for use case specifications and system test cases. The impact
reports are visualized as part of IBM Doors output using JGraph (https://www.
jgraph.com/), Microsoft Excel (https://products.office.com/en/excel/) and html.

Application Layer supports, with the new components, the main activities of our
approach in Fig. 3. The Configurator component coordinates the other components
in the application layer. The Artifact Consistency Checker and Decision Consistency
Checker components were introduced in our previous work [38, 39]. The Artifact
Consistency Checker employs NLP to check the consistency of the PL use case di-
agram and the PL use case specifications complying with the RUCM template. To
perform NLP, our tool employs the GATE workbench (http://gate.ac.uk/), an
open source NLP framework. The Decision Consistency Checker supports inferring
decision restrictions and checking their consistency. The PL-PS Transformer compo-
nent annotates the use case specifications using NLP to automatically generate PS use
case specifications. It uses scripts written in the Doors eXtension Language (DXL)
to automatically (re)configure PS use case specifications.

We further implemented some new components: Test Case Classification and Pri-
oritization Engine and Use Case Scenario Generator. The Use Case Scenario Gen-
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erator also employs the GATE workbench to extract control flow information, i.e.,
the order of alternative flows and their conditions, from use case specifications. With
the extracted control flow information, it identifies the new and already tested use
case scenarios. These scenarios are used by the Test Case Classification and Prior-
itization Engine component to classify system test cases and to provide guidance to
modify system test cases for new use case scenarios that have not been tested before.
To prioritize system test cases, the Test Case Classification and Prioritization Engine
employs R scripts (https://www.rdocumentation.org/) that implement logistic re-
gression.

Data Layer. The PL and PS use case specifications are stored in the native IBM
DOORS format while the PL and PS use case diagrams are stored as UML mod-
els. The decision models are saved in Ecore [1]. We generate the impact reports as
Microsoft Excel spreadsheets and html pages. Depending on industrial practice, the
traceability links between use case specifications and system test cases can be saved
in Excel spreadsheets or in IBM DOORS link database.

8 Evaluation

Our objective is to assess, in an industrial context, whether our approach could im-
prove test case reuse and reduce testing effort. This empirical evaluation aims to
answer the following research questions (RQs):

– RQ1. Does the proposed approach provide correct test case classification results?
This research question aims to evaluate the precision and recall of the procedure
adopted to classify the test cases developed for previous products.

– RQ2. Does the proposed approach accurately identify new scenarios that are
relevant for testing a new product? This research question aims to evaluate the
precision and recall of the approach in identifying the new scenarios to be tested
for a new product (i.e., new requirements not covered by existing test cases).

– RQ3. Does the proposed approach successfully prioritize test cases? This re-
search question aims to determine whether the approach is able to effectively
prioritize system test cases that trigger failures and thus can help minimize test-
ing effort while retaining maximum fault detection power.

– RQ4. Can the proposed approach significantly reduce testing costs compared to
current industrial practice? This research question aims to determine to what
extent the proposed approach can help significantly reduce the cost of defining
and executing system test cases.

8.1 Subject of the Study

The subject of our study is the Smart Trunk Opener (STO) system developed by our
industry partner IEE. STO has been selected for the assessment of our approach since
it is one of the newest IEE products involving multiple customers requiring varying
features. The development history of the STO product line includes five products
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delivered to different car manufacturers. STO customers include major car manufac-
turers working in the European, Asian and US markets, with 2017 sales ranging from
200,000 to 3 million vehicles. For each product, IEE engineers developed multiple
versions, each sharing the same functional requirements but differing with respect to
non-functional requirements (e.g., hardware selection or performance optimizations).
In total, STO includes 54 versions.

Table 8 Overview of the STO Product Line Use Cases

# of Use
Cases

# of
Variation
Points

# of Basic
Flows

# of
Altern.
Flows

# of
Steps

# of Op-
tional Altern.
Flows

# of Optional
Steps

Essential UCs 15 5 15 70 269 5 14
Variant UCs 14 3 14 132 479 8 13
Total 29 8 29 202 748 13 27

To develop the STO system, IEE engineers elicited requirements as use cases
from an initial customer. For each new customer, they cloned the current use cases
and identified differences to produce new use cases. IEE provided their initial STO
documentation, which contained a use case diagram, use case specifications, and sup-
plementary requirements specifications describing nonfunctional requirements and
domain concepts. The initial documentation was the output of their current clone-
and-own reuse practice. That documentation contains variability information only in
the form of some brief textual notes attached to the relevant use case specifications.
To model the STO requirements according to our product line use case modeling
method, PUM [35, 39], we first examined the initial STO documentation. Since the
initial documentation contains almost no structured variability information, we had
to work together with two IEE engineers (one software development manager and
one embedded software engineer) to build and iteratively refine our models. When
we started to study the STO documentation, the STO project was in its initial phase
and there was only one prototype implementation to discuss with some potential cus-
tomers. One may argue that it is not always easy to identify variations in requirements
when a new project starts. However, the IEE engineers stated that, most of the time in
their domain of applications, requirements and their variability can be identified with
the first customer.

After studying the initial STO documentation and meeting with the IEE engi-
neers, we built the PL use case diagram and specifications for STO. Table 8 provides
an overview of the STO product line. The data in Table 8 shows that the system imple-
ments 29 use cases, each one being fairly complex since the use cases in total include
202 alternative flows (i.e., alternative cases to be considered when implementing the
use case). The STO product line is highly configurable, with 14 variant use cases, 8
variation points, 13 optional alternative flows and 27 optional steps. Except for the
conflict relationship between use cases and the variant order group, we used all the
PUM features in the STO PL use case diagram and specifications. STO has the size
and characteristics of typical embedded product line systems managing automotive
components.
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When discussions start with a customer regarding a specific product, IEE en-
gineers need to make decisions on variability aspects documented in PL use case
models. At a later stage, when IEE had already developed various STO products for
different car manufacturers, we used PUMConf, together with engineers, to configure
the PS use case models for five STO products. Configuration decisions were made on
the PL use case models using the guidance provided by PUMConf. IEE also provided
the test suites of the products.

All the generated PS use case models were confirmed by the IEE engineers to
be correct and complete. The PL use case models that we derived from the initial
STO documentation were sufficient to make all the configuration decisions needed in
PUMConf and to generate the correct and complete PS use case models for the five
STO products.

Table 9 reports information about the STO products including the number of ver-
sions for each product. In Table 9, the products are sorted according to their delivery
date, with P1 being the first product of the product line, and P5 being the last.

Table 9 Details of the Configured Products in the STO Product Line

Product ID # of Versions # of Use Case Elements # of Test Cases
Use Cases Use Case

Flows
Use Case Steps

P1 22 28 236 689 110
P2 8 25 169 568 86
P3 10 28 234 685 96
P4 5 26 212 618 83
P5 9 28 238 695 113

The different STO products are characterized by different test suites of different
sizes while the same test suite is shared by all the versions of the same product since
their functional requirements do not vary. The test cases have been traced to the use
case specifications by IEE engineers. Note that requirements traceability is a system-
atic practice at IEE since it is enforced by automotive functional safety standards
such as ISO-26262 [47]. Column # Test Cases in Table 9 shows, for every product,
the number of test cases belonging to the functional test suite of the product.

All the faults considered in our evaluation are real faults previously identified
by IEE during testing. Because of the confidentiality agreement we signed with our
industry partner, we cannot share fault data.

8.2 Experiment Setup

Our approach for test case classification can be applied using single-product settings
(i.e., to classify and prioritize test cases that belong to a previous product) and whole-
line settings (i.e., to classify test cases of multiple previous products). To evaluate our
approach for test case classification and to spot differences in terms of classification
results with the two configurations (e.g., number of test cases that can be reused),
we applied the approach using both settings. To evaluate test case prioritization, we
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Table 10 Test Case Classification Results for Single-Product Settings

Classified Test
Suite

Product to be
Tested

# of
Reusable

# of
Retestable

# of Obso-
lete

Precision Recall

P1 P2 94 2 14 1.0 1.0
P1 P3 105 2 3 1.0 1.0
P1 P4 102 2 6 1.0 1.0
P1 P5 84 22 4 1.0 1.0
P2 P3 85 0 1 1.0 1.0
P2 P4 83 0 3 1.0 1.0
P2 P5 67 16 3 1.0 1.0
P3 P4 91 0 5 1.0 1.0
P3 P5 77 17 2 1.0 1.0
P4 P5 77 5 1 1.0 1.0

Table 11 Test Case Classification Results for Whole-Line Settings

Classified
Test Suites

Product to be
Tested

Reusable Retestable Obsolete Precision Recall

P1 P2 94 2 14 1.0 1.0
P1, P2 P3 107 0 2 1.0 1.0
P1, P2, P3 P4 102 0 12 1.0 1.0
P1, P2, P3, P4 P5 93 15 1 1.0 1.0

prioritized test suites developed to test different STO products. We applied test case
prioritization to the entire test suite since its execution is required by safety standards
for every product being released.

8.3 Results

This section discusses the results of our case study, addressing in turn each of the
research questions.

8.3.1 RQ1: Does the proposed approach provide correct test case classification
results?

To answer RQ1, we, together with two IEE engineers, inspected the classification
results produced by the approach. We chose these engineers for their complementary
roles and extensive experience. One was an embedded software engineer of the STO
team and the other was in charge of managing STO development. We evaluated the
approach in terms of the average precision and recall we computed over the three
different classes according to standard formulas [95]. In our context, a true positive
is a test case correctly classified according to the expected class (e.g., a reusable test
case classified as reusable). A false positive is a test case incorrectly classified as
being part of a given class (e.g., a retestable test case classified as reusable). A false
negative is a test case that belongs to a given class but has not been classified as such
(e.g., a reusable test case not classified as reusable).

Tables 10 and 11 provide the results for the single-product and whole-line set-
tings, respectively. The first two columns report the ID of the product(s) whose test
suite(s) have been considered for classification and the ID of the product being tested,
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respectively. The next three columns provide the number of test cases belonging to
the three classes. The last two columns indicate precision and recall. We observe
that the approach has perfect precision and recall. This is the result of meticulous
requirements modeling and system testing practices in place at IEE where functional
requirements are documented by means of use cases together with proper traceability
to test cases. These practices enable a precise identification of impacted scenarios
and consequently the correct classification of test cases. It is typical practice for com-
panies developing embedded, safety-critical systems, since requirements need to be
traced and tested to comply with international safety standards (e.g., ISO 26262 [47]
and DO178C [92]). At IEE, functional requirements are elicited in the form of use
case specifications, and system test cases are manually derived from the use case
specifications. IEE engineers manually analyze use case specifications and write sys-
tem test cases for use case scenarios to be tested. In our case study, each system test
case exercises a use case scenario described in the use case specifications. There-
fore, our approach is perfectly accurate, i.e., perfect precision and recall for RQ1. In
general, our approach is expected to work well in industrial contexts where there is
traceability, at the appropriate level of granularity, between requirements and system
test cases.

As we stated in Section 5.2.3, there are few cases (i.e., multiple scenarios taking
the same alternative flows with different orders and more than one scenario taking
the same bounded or global alternative flow) where finer-grained traceability links
are needed to retrieve test cases. However, in our case study, we did not encounter the
two cases we mentioned above, which are expected to be rare.

8.3.2 RQ2: Does the proposed approach accurately identify new scenarios that are
relevant for testing a new product?

To answer RQ2, we checked if the new scenarios were exercised by the test cases
in the manually implemented test suites of the new products. If so, we considered
those new scenarios relevant. In addition, we, together with IEE engineers, checked
whether the new scenarios that were not exercised were relevant for testing these new
products. Based on their domain knowledge, engineers described irrelevant scenarios
as scenarios having various errors which are unlikely to happen at the same time
during system execution (e.g., having temperature and voltage errors at the same
time). These scenarios were not considered worth testing.

We classified the new scenarios as true positive (i.e., a scenario identified by our
approach and relevant for testing), false positive (i.e., a scenario identified by our
approach but not relevant for testing), and false negative (i.e., a scenario tested by IEE
but not identified by our approach). We computed precision and recall accordingly.

Tables 12 and 13 report the results obtained using the single-product and whole-
line settings, respectively. The third, fourth, and fifth columns provide the number
of relevant scenarios identified by our approach, and, among these, the number of
scenarios tested and not tested by IEE engineers. The sixth column (Not Relevant)
indicates the number of irrelevant scenarios. The columns named New Scenarios Not
Identified provide the number of scenarios tested by IEE engineers but not identi-
fied by our approach. The last two columns report precision and recall. All the new
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Table 12 Relevance of Scenarios Identified using Single-Product Settings

Classified Product New Scenarios Identified New Sce-
narios

Precision Recall

Test
Suite

to be
Tested

Relevant
(TP)

Tested
by En-
gineers

Not
Tested

Not Rele-
vant (FP)

Not Iden-
tified (FN)

P1 P2 3 3 0 0 0 1.0 1.0
P1 P3 3 3 0 0 0 1.0 1.0
P1 P4 2 1 1 0 0 1.0 1.0
P1 P5 27 23 4 0 0 1.0 1.0
P2 P3 1 1 0 0 0 1.0 1.0
P2 P4 1 1 0 0 0 1.0 1.0
P2 P5 22 22 0 0 0 1.0 1.0
P3 P4 1 1 0 0 0 1.0 1.0
P3 P5 26 23 3 0 0 1.0 1.0
P4 P5 10 10 0 0 0 1.0 1.0

Table 13 Relevance of Scenarios Identified using Whole-Line Settings

Classified Product New Scenarios Identified New Sce-
narios

Precision Recall

Test Suites to be
Tested

Relevant
(TP)

Tested
by En-
gineers

Not
Tested

Not
Rele-
vant
(FP)

Not Iden-
tified
(FN)

P1 P2 3 3 0 0 0 1.0 1.0
P1, P2 P3 1 1 0 0 0 1.0 1.0
P1, P2, P3 P4 0 0 0 0 0 1.0 1.0
P1, P2, P3, P4 P5 14 9 5 0 0 1.0 1.0

scenarios identified by our approach are relevant; they are covered by the test cases
produced by IEE engineers. Consequently, the approach has perfect precision and
recall.

In addition, we observe from Table 13 that the availability of additional products
in the whole-line settings enables the identification of additional new scenarios, and
consequently more accurate testing. This is what happens for product P5, in which the
whole-line settings lead to the identification of 14 new scenarios. Five of these new
scenarios have not been tested by engineers in any of the existing products. More pre-
cisely, the test suites of P1 and P3 enable the identification of four and three scenarios
not tested in the test suite of P5, respectively; only two of these scenarios are tested
by both for a total of five new scenarios identified. This difference between existing
test suites is explained by the fact that certain test teams have defined more complete
test suites (i.e., the test team for P1 and P3). Since new scenarios are identified based
on existing test cases (see Section 5.2.4), for products with more complete test suites,
the availability of more test cases may lead to the identification of additional new
scenarios.

8.3.3 RQ3: Does the proposed approach successfully prioritize test cases?

To answer RQ3 in a realistic fashion, we applied our test case prioritization approach
to sort test cases in the test suites of four STO products (i.e., P2, P3, P4 and P5). In
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Table 14 Analysis of Significant Factors identified by Logistic Regression

Classified
Test Suites

Product to
be Tested

Significant
Factors

Odds Ratio

P1 P2 V; S; FV 0.35; 1.08; 2.09
P1, P2 P3 V; S; FV 0.35; 1.06; 1.85
P1, P2, P3 P4 V; S; FV; R 0.78; 1.04; 1.71; 0.36
P1, P2, P3, P4 P5 V; S; FP; FV; R 0.36; 1.04; 0.92; 1.87; 1.95

Legend: V=Degree of Variability, S=Size, FP=Failing Products, FV=Failing Versions, R=Retestable.

Table 15 Test Case Prioritization Results

Classified Test Product
to be

AUC Ratio %Test Cases Executed to Cover %Failing Test
Cases Covered

Suites Tested (Observed/Ideal) All the Failing
Test Cases

80% of
the Failing
Test Cases

with 50% of the
Test Cases

P1 P2 0.98 (65.46/66.48) 72.09% 38.37% 97.43%
P1, P2 P3 0.99 (82/82.48) 41.66% 22.91% 100%
P1, P2, P3 P4 0.97 (71.02/72.97) 51.80% 22.89% 95%
P1, P2, P3, P4 P5 0.95 (101.32/105.97) 26.54% 18.58% 100%

total, we built four logistic regression models, one for each STO product. To evaluate
the quality of the predictions, we relied on historical data. To maximize the real-
ism of results, we prioritized the test cases that belonged to the test suites originally
developed by IEE engineers and ignored the new test scenarios we had identified
(Section 5). This did not introduce bias in the evaluation since test cases exercising
new scenarios are always on top of the prioritized test suite and their execution is
always necessary independently from their predicted likelihood to trigger failures. In
the following, we discuss our results including the identification of significant factors
and the effectiveness of prioritizing failing test cases for each product. Finally, we
evaluate to what extent the availability of additional historical data positively affects
test cases prioritization.

Table 14 provides detailed information about the statistically significant factors
identified by our approach based on logistic regression results (see Section 6).

Column Significant factors lists the significant factors identified for each product.
In our analysis, we emulate past development by following the chronology of the
products, in order to obtain realistic results that would have been obtained in prac-
tice. As expected, when more historical information is available, more factors tend
to significantly correlate with observed failures. For example, we observe that the
classification of a test case as retestable becomes significant after three products are
included in the development history of the product line. This can be explained by the
fact that updated configuration decisions impact a limited number of scenarios (i.e.,
the number of retestable test cases is usually low) and thus, this factor only becomes
significant when enough examples of retestable test cases have occurred in previous
products. As expected, the number of failing products also becomes significant after
a sufficient number of products in the product line.

Column Odds Ratio presents the odds ratio of each significant factor. The odds
ratio captures the effect size of the factor on the outcome of the regression model (i.e.,
the probability of observing a failing test case). A value above one indicates that the
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factor positively contributes to the outcome; otherwise it negatively contributes to the
outcome. Note, however, that a statistical interaction with another factor may affect
the odds ratio. The results show that the number of failing versions is the factor that
impacts most positively the probability of failure. It is highly likely that a test case
that failed in the past will fail again, which is in line with previous research results.
The odds ratio for the number of failing versions varies between 1.71 and 2.09. We
observe that, as expected, the number of failing products statistically interacts with
the number of failing versions. This has been determined by running logistic regres-
sion on each factor separately. Certain factors show a positive regression parameters
when considered alone but become negative when interacting with other factors in
the multivariate regression model. In this case, this is probably due to the two factors
being correlated.

To evaluate the effectiveness of test case prioritization, we measured (1) the per-
centage of failing test cases in the first half of the prioritized test cases, which provides
insights regarding the effectiveness of the approach with half of the test budget, (2)
the percentage of test cases that must be executed to cover 80% of the failing test
cases, which determines the cost of running most of the failing test cases, and (3)
the percentage of test cases that must be executed to exercise all failing test cases,
to indicate the cost of achieving optimal fault detection. Finally, we compared our
approach with the ideal case that executes all the failing test cases first. Table 15 and
Fig. 19 summarize our findings.

Table 15 shows that, for all the products in our evaluation, our approach cov-
ers more than 80% of the failing test cases by executing less than 50% of the test
cases (see Columns %Failing test cases covered with 50% of the test cases and %Test
cases executed to cover 80% of the failing test cases). We notice that the number of
test cases required to cover all the failing test cases drops below 55% when the test
execution history of at least two products becomes available (see Column %TCs exe-
cuted to cover all the failing test cases). In the case of P5, for example, the execution
of 27% of the test cases is sufficient to cover all the failing test cases. This is explained
by the fact that newer products are more mature (i.e., they tend to fail less frequently)
but is also due to logistic regression models improving over time. Indeed, for newer
products, though there are fewer failing test cases, our approach remains accurate at
giving higher priority to failing test cases. This capability is particularly relevant for
industry since the early identification of failures enables early maintenance activities
and, consequently, speeds up the product release.

To compare our approach with the ideal case, we computed the Area Under Curve
(AUC) for the cumulative percentage of failing test cases in the executed test cases
for both the ideal case and our prioritization approach, and computed the AUC ratio
of the two. AUC is similar to Average Percentage of Faults Detected (APFD) [25],
a standard measure to assess regression test prioritization. The difference is that our
y-axis is the percentage of failing test cases, not the percentage of detected faults.
Since each test case in our methodology exercises a distinct use case scenario, in a
safety context, engineers told us this is more relevant than the number of faults as
the number of failing test cases captures more accurately the level of risk. Fig. 19
shows the two curves for all products after the initial one. As for APFD, the best
result is achieved when the AUC ratio is equal to one (i.e., the AUC for the observed
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Fig. 19 Prioritization results: percentage of failing test cases after running x prioritized test cases.

data matches the ideal AUC). The results show that the proposed approach achieves
impressive results since the AUC ratio is always greater than or equal to 0.95.

Finally, we checked if the logistic regression models improve over time due to
the increase in available historical data. To this end, we compare the identification of
significant factors and the effectiveness of prioritizing failing test cases when having
historical data for a different number of past products. We focused on the prioriti-
zation of the test suite for P5, as it is the last product with the most historical data
available. We therefore inspected and compared the P5 results obtained with data
from (1) P1, (2) P1+P2, (3) P1+P2+P3, and (4) P1+P2+P3+P4. We also compared
these results for P5 with the results obtained for earlier products (i.e., Tables 14 and
15).

Table 16 shows the significant factors identified. Similarly to Table 14, the num-
ber of significant factors increases with the number of available product versions.
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Table 16 Impact of Historical Data on Logistic Regression Results

Classified
Test Suites

Product to
be Tested

Significant
Factors

Odds Ratio

P1 P5 V; S; FV; R 0.47; 1.09; 1.97; 2.11
P1, P2 P5 V; S; FV; R 0.37; 1.06; 1.87; 1.78
P1, P2, P3 P5 V; S; FP; FV; R 0.38; 1.04; 0.83; 1.95; 2.08
P1, P2, P3, P4 P5 V; S; FP; FV; R 0.36; 1.04; 0.92; 1.87; 1.95

Legend: V=Degree of Variability, S=Size, FP=Failing Products, FV=Failing Versions, R=Retestable.

Table 17 Impact of Historical Data on Test Case Prioritization Results

Prioritized
Test

Product
to be

AUC Ratio %Test Cases Executed to Cover %Failing Test
Cases Covered

Suites Tested (Observed/Ideal) All the Failing
Test Cases

80% of
the Failing
Test Cases

with 50% of the
Test Cases

P1 P5 0.89 (94.32/105.97) 45.13% 33.62% 100%
P1, P2 P5 0.91 (96.68/105.97) 40.70% 26.54% 100%
P1, P2, P3 P5 0.92 (98.46/106.46) 33.62% 25.66% 100%
P1, P2, P3, P4 P5 0.95 (101.32/105.97) 26.54% 18.58% 100%

Notably, the number of failing products becomes significant after a sufficient num-
ber of products is present in the product line. Different from Table 14, in Table 16
the classification of a test case as retestable is always significant, which is due to the
fact that, in P5, updated configuration decisions impact a higher number of scenarios
than in the other cases. The numbers of retestable test cases for the different config-
urations in Table 16 are 22, 20, 20, and 15, respectively. Concerning Odds Ratios,
we see values that are close to the ones in Table 14. Further, similar to Table 14, the
number of failing products statistically interacts with the number of failing versions.
However, different from Table 14, the classification of a test case as retestable has
always an odds ratio above 1. This is due to a larger and different set of retestable
test cases selected for P5 when compared to P4 (because of obsolete test cases, the
set of test cases selected to build the regression model varies, see Section 6); P4 is
the other product in Table 14 for which the classification of a test case as retestable is
significant.

Concerning the test case prioritization results, Table 17 shows that an increasing
number of available product versions leads to better results, i.e., a higher number of
failing test cases detected for the same subset of the test suite. More precisely, the
percentage of test cases executed to cover all the failing test cases decreases from
43.15%, when only one product is available, to 26.54%, when all the four products
are available. A similar trend can also be observed for the percentage of test cases ex-
ecuted to cover 80% of the failing test cases. All the failing test cases can be covered
by executing half of the test suite.

Finally, in Fig. 20, we compared the results of the ideal case for P5 with the results
achieved when relying on the different sets of product versions. Unsurprisingly, the
curves obtained by relying on more products are closer to the ideal one, i.e., better
results are achieved when an increasing number of products is available.
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Fig. 20 Prioritization results for P5: percentage of failing test cases observed after running x prioritized
test cases, for different sets of product versions used to train the regression model.

Table 18 Test Development Costs Savings

Product to be tested Test Cases To Be Implemented using the Proposed Approach
Single-Product Settings Whole-Line Settings

P2 3/99 (3%) 3/99 (3%)
P3 1/86 (1%) 1/108 (1%)
P4 1/92 (1%) 0/102 (0%)
P5 10/92 (11%) 14/122 (11%)

Table 19 Development Process Savings

Product Test Suite Number of Test cases to be Executed to Cover all the Failing Test Cases
to be tested Size Failing Test Cases Current Practice Proposed Approach
P2 86 39 84 (97.67%) 62 (72.09%)
P3 96 27 80 (83.33%) 40 (41.66%)
P4 83 20 77 (92.77%) 43 (51.80%)
P5 113 14 69 (61.06%) 30 (26.54%)

8.3.4 RQ4: Can the proposed approach significantly reduce testing costs compared
to current industrial practice?

Our test case classification and prioritization approach may reduce both (i) test case
development costs (i.e., the number of test cases that need to be designed and imple-
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Table 20 Execution Times of Our Approach for Test Case Classification with Whole-line Settings (in
seconds)

Classified
Test Suites

Product to be
Tested

1st Run 2nd Run 3rd Run 4th Run 5th Run Average

P1 P2 21 16 13 12 13 15
P1, P2 P3 22 18 17 17 18 18.4
P1, P2, P3 P4 27 16 17 16 17 18.6
P1, P2, P3, P4 P5 29 16 17 17 16 19

mented by engineers to test the software) and (ii) software development time (e.g.,
by executing more failing test cases at early stages of testing).

As a surrogate metric to measure the savings, for each product of the STO product
line, we report the number and percentage of test cases that can be reused when
adopting the proposed approach (see Table 18). Columns Single-Product Settings
and Whole-Line Settings report the results achieved by the approach when reusing
only the test cases inherited from one previous product and from the test suites of all
the previous products in the product line, respectively. As seen in these two columns,
the effort required to implement test cases is very limited since, with the proposed
approach, engineers need to implement only the test cases required to cover new
scenarios. For instance, in the whole-line settings for product P4, engineers do not
need to implement any test case at all. Instead, testing teams at IEE currently do
not rely on approaches that support systematic reuse of test cases, a practice which
often leads to re-implementing most of the test cases from scratch. Finally, one benefit
provided by the whole-line settings is the identification of new scenarios, as discussed
in Section 8.3.2; this is the case of product P5 where the whole-line configuration
settings lead to the identification of four additional scenarios not identified with the
single-product settings.

To evaluate the impact of our approach on software development time, we mea-
sured the percentage of test cases that need to be executed in order to cover all the
failing test cases in a product. Column Current Practice in Table 19 reports the per-
centage of test cases that need to be executed when considering the order followed by
IEE engineers, which is based on domain knowledge. Column Proposed Approach
reports the results we obtained. For all the products, our approach covers all the fail-
ing test cases with less test cases than the current practice. This is particularly true
for product P5 where our approach requires the execution of less than half of the test
cases prioritized by engineers. By using our approach, IEE can detect and fix failures
earlier and thus speed up their software development.

We evaluated the run-time performance of our approach with the whole-line set-
tings. We executed the test case classification and prioritization five times for each
new product. The execution times are shown in Tables 20 and 21. Our tool was exe-
cuted on an Intel quad-core i7 processor (2.40 GHz) with 6 MB Intel Smart Cache,
and 8 GB of memory, running Windows 7.

According to the results, our approach requires less than 30 seconds to classify
test cases in our case study, and less than 50 seconds to prioritize the same test cases.
These results suggest that our selection and prioritization strategies are fast enough
to be used in practical settings.
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Table 21 Execution Times of Our Approach for Test Case Prioritization with Whole-line Settings (in
seconds)

Prioritized
Test Suites

Product to be
Tested

1st Run 2nd Run 3rd Run 4th Run 5th Run Average

P1 P2 15 13 15 13 12 13.6
P1, P2 P3 27 21 22 21 21 22.4
P1, P2, P3 P4 38 30 33 32 31 32.8
P1, P2, P3, P4 P5 49 40 41 39 38 41.4

8.4 Reflections on Industrial Adoption

In addition to the research questions discussed above, we further reflect on the chal-
lenges for our approach to be widely transferable to industry. Based on our obser-
vations in the course of our efforts to get it adopted within IEE, we identified three
challenges: modeling effort, degree of automation, and tool integration.

8.4.1 Modeling Effort

In the current practice at IEE, like in many other environments, there is no systematic
way to model variability information in use case specifications and diagrams. IEE
engineers attach brief notes to use case specifications to indicate what may vary in
the specification. They are reluctant to use feature models traced to use case spec-
ifications because having feature models requires considerable additional modeling
effort with manual assignment of traceability links at a very low level of granular-
ity, e.g., sequences of use case steps. Therefore, in our approach, we employ the PL
use case extensions presented in Section 2.1 that enable engineers to model variabil-
ity directly in use cases without any feature modeling. In our discussions with IEE
engineers, they stated that the effort required to apply the extensions for modeling
variability was reasonable. They considered the extensions to be sufficiently simple
to enable communication between engineers and customers.

IEE engineers discuss variability with the customer to decide what to include in
each product. In order to employ our test case classification and prioritisation ap-
proach in such an industrial setting, each customer should also be trained about the
modeling method. IEE engineers mentioned that training customers about the mod-
eling method may be more of a challenge since the company may need customers’
consent and effort in modeling variability the way we suggest.

8.4.2 Degree of Automation

Based on our observations at IEE, we noticed that: (i) the current practice has no sys-
tematic way and automated tool support to decide which test cases from the previous
products to execute and in which order for a new product; (ii) typically, multiple engi-
neers from both the customer and supplier sides are involved in the decision-making
process; (iii) engineers have to spend several days to manually review the entire set of
system test cases from the previous products; and (iv) the intended updates of system
test cases to cover new scenarios are manually identified and carried out by engineers.
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On the other hand, PUMConf supports test case classification and prioritisation activ-
ities in the context of product lines. The decision making process is automated in the
sense that engineers are guided through the configuration decisions for classifying,
prioritizing and modifying system test cases. Using PUMConf, for a new product,
engineers select reusable and retestable system test cases to be run in the proposed
order.

At this current stage, our approach does not support the evolution of PL use case
models. We still need to address and manage changes in variability aspects of PL use
case specifications and diagrams, such as adding a new variation point in the PL use
case diagram. Engineers need to be automatically guided to classify and prioritize
system test cases for such changes. As future work, we plan to provide an automated
regression test selection approach addressing changes in PL use cases. Our approach
currently supports only one objective for test case prioritization, i.e., prioritizing test
cases with higher failure likelihood. But multiple objectives may be required such
as minimum execution time and maximum severity fault identification. Therefore,
we also plan to extend our automated test case prioritization approach with multi-
objective search.

8.4.3 Tool Integration

PUMConf is currently implemented as a plugin in IBM DOORS, in combination with
commercial modeling tools used at IEE, i.e., IBM Rhapsody and Papyrus. PUMConf
highly depends on the outputs of these tools. In another company, these tools might
be replaced with other tools or the newer versions of the same tools. Future changes
in the tool chain from one company to another will need to fulfill the following con-
straints: (i) a new requirements management tool for PL use cases should be exten-
sible in such a way that we can implement the PL use case extensions, (ii) a new
tool for establishing traceability links should be extensible in such a way that we can
assign traceability links conforming to our traceability metamodel, and (iii) a new
tool for system test cases should be extensible in such a way that our approach takes
inputs from the other tools to classify and prioritize system test cases.

8.5 Threats to Validity

Internal validity. To limit threats to internal validity, we considered the test cases de-
veloped by IEE engineers and the historical information collected over the years of
system development. To avoid bias in the results, we considered the use case spec-
ifications written by IEE engineers and simply reformulated them according to the
PUM methodology [35, 39].

We used all the PUM features in the PL use case diagram and specifications for
STO, with the exception of the conflict relationship between use cases and the variant
order group. These two features are not needed in STO, and they do not lead to worse
results as long as the input PL use case models are correct and complete. Indeed, the
effect that a conflict relationship has on the writing of use case specifications is that,
when a conflicting use case is selected for a variation point, then another use case
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(i.e., the conflicting one) should be excluded from the use case specifications. This
results in the removal of use case scenarios and the addition of new, untested use case
scenarios. Concerning the classification of system test cases, based on the validation
of our algorithm, conflict relationships should not introduce errors in our results,
once again as long as the input models are correct and complete. Concerning test
case prioritization, since the products considered in our evaluation differ with respect
to previous products in terms of both removal and addition of scenarios, we do not
expect deviations from our findings, even in the presence of conflict relations in PL
models. Similar conclusions can be drawn for the case of variant order groups. All
our use case models were confirmed by the IEE engineers to be correct and complete.

External validity. To mitigate the threat to generalizability, we considered a soft-
ware product line that includes nontrivial use cases, with multiple customers and
many sources of variability, in an application domain where product lines are the
norm. The fact that STO has been installed on cars developed by major car manufac-
turers all over the world guarantees that the configuration decisions for STO cover a
wide spectrum of possible configurations.

In our experiments, we relied on test suites that exhaustively exercise the require-
ments for previous product versions. The testing process put in place by IEE aims to
verify every use case scenario. It therefore ensures that the software under test con-
forms with its use case specifications and thus adheres to expected quality standards,
which is mandatory for safety-critical systems. For this reason, we believe the IEE
test suites to be representative of what is typically found in other types of safety-
critical systems.

To achieve widespread applicability, we decided to rely on common requirements
engineering practices (i.e., use case modeling and requirements traceability). There-
fore, companies which already employ use cases for requirements elicitation only
need to employ our extensions for product lines and restricted use case modeling.
Based on our experience with various companies, we expect this transition to entail
reasonable effort in safety-critical domains where these common practices are already
in place to ensure compliance with standards. However, for organizations having less
systematic and meticulous requirements and traceability practices, we expect more
effort to be required for adoption as this represents a fundamental change in practices
and skills.

9 Conclusion

This paper presents an automated test case classification and prioritization approach
that supports use case-driven testing in product lines. For new products in a product
line, it automatically classifies and prioritizes system test cases of previous prod-
uct(s), and provides guidance in modifying existing system test cases to cover new
use case scenarios that have not been tested in the product line before.

We improve the testing process in product lines by informing engineers about
the impact of requirements changes on system test cases in a product family and by
automatically and incrementally classifying and prioritizing system test cases. Such
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classification attempts to determine what test cases need to be rerun or modified,
whereas prioritization helps ensure failing test cases are executed as soon as possible.

Our test case classification and prioritization approach is built on top of our previ-
ous work (i.e., Product line Use case Modeling method and the Product line Use case
Model Configurator), and supported by a tool integrated into IBM DOORS. The key
characteristics of our tool support are (1) the automated identification of the impact
of requirements changes on existing system test cases, possibly leading to their se-
lection or modification for a new product, (2) the automated identification of new use
case scenarios in the new product that have not been tested in the product line, (3) the
automated generation of guidance for modifying existing system test cases to cover
those new scenarios, and (4) the automated prioritization of the selected system test
cases for the new product. We performed an industrial case study in the automotive
domain, whose results suggest that our approach is practical and beneficial in indus-
trial settings. More specifically, it provides an effective way to classify and prioritize
system test cases in industrial product lines and to provide guidance for modifying
existing system test cases for new products.
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