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Abstract. We consider the problem of recovering the entries of diagonal
matrices {Ua}a for a = 1, . . . , t from multiple “incomplete” samples {Wa}a of
the form Wa = PUaQ, where P and Q are unknown matrices of low rank.
We devise practical algorithms for this problem depending on the ranks of P
and Q. This problem finds its motivation in cryptanalysis: we show how to
significantly improve previous algorithms for solving the approximate common
divisor problem and breaking CLT13 cryptographic multilinear maps.

1. Introduction

1.1. Problem Statement. This work considers the following computational prob-
lem from linear algebra.

Definition 1.1 (Problems A,B,C,D). Let n ≥ 2, t ≥ 2 and 2 ≤ p, q ≤ n be
integers. Let {Ua : 1 ≤ a ≤ t} be diagonal matrices in Qn×n. Let {Wa : 1 ≤ a ≤ t}
be matrices in Qp×q and W0 ∈ Qp×q such that W0 has full rank and there exist
matrices P ∈ Qp×n of full rank p and Q ∈ Qn×q of full rank q, such that W0 = P ·Q
and Wa = P · Ua ·Q for 1 ≤ a ≤ t. We distinguish the following cases:

(A) p = n and q = n (B) p = n and q < n

(C) p < n and q = n (D) p < n and q = p

In each of the four cases, the problem states as follows:

(1) Given the matrices {Wa : 0 ≤ a ≤ t}, compute {(u1,i, . . . , ut,i) : 1 ≤ i ≤ n},
where for 1 ≤ a ≤ t, ua,1, . . . , ua,n ∈ Q are the diagonal entries of matrices
{Ua : 1 ≤ a ≤ t} as above.

(2) Determine whether the solution is unique.

Problem A is straightforward for any t ≥ 1 by simultaneous diagonalization of
W−10 Wa = Q−1UaQ for every a. Problems B and C are equivalent in view of their
symmetry in p and q, and any algorithm for one solves the other upon transposing.
Therefore, we shall devise algorithms for C and D only. We refer to the matrices
{Wa}a as “incomplete”, as the low rank matrices P and/or Q “steal” information.
Of interest is the case when p is much smaller than n. We remark that Problem A
is an underlying problem in previous works [CP19, CHL+15] in cryptanalysis.

Key words and phrases. Linear Algebra, Cryptanalysis, Approximate-Common-Divisor Prob-
lem, Multilinear Maps in Cryptography.

1



2 JEAN-SÉBASTIEN CORON, LUCA NOTARNICOLA, AND GABOR WIESE

1.2. Our Contributions. Mainly, we provide efficient algorithms for Problems C
and D of Def. 1.1, and show how to minimize the parameters p and t with respect to
n. We further propose two concrete applications of our algorithms in cryptography.
We believe that our algorithms are of independent interest and hope that more
applications are to be found.

Algorithms for Problems C and D. Our approach to Problem C is to use the invert-
ibility of Q and writeWa = PUaQ = PQQ−1UaQ = W0Za with Za = Q−1UaQ, for
every 1 ≤ a ≤ t. As W0 is not invertible, we cannot recover Za directly. However
we interpret this as a system of linear equations to solve for {Za}a. This system is,
in general, underdetermined and does not yield the matrices {Za}a uniquely. How-
ever, exploiting the special feature that {Za}a commute among each other leads to
additional linear equations. This enables to recover {Za}a uniquely, and simultan-
eous diagonalization eventually yields the diagonal entries of {Ua}a. We determine
exact bounds on the parameters to ensure that we have at least as many linear
equations as variables; we obtain that p and t can be set as O(

√
n). Our algorithm

is heuristic only, but performs well in practice.
We reduce Problem D to Problem C by “augmenting” Q with extra columns so

that it becomes invertible. In this case, we show that p can be close to 2n/3. We
refer to Sec. 3 and 4 for a complete description of our algorithms and provide the
results of practical experiments in Sec. 6.

Improved algorithm for an approximate common divisor problem. Approximate com-
mon divisor problems have gained a lot of interest and different variants have been
investigated. In [CH13], Cohn and Heninger study generalizations of the approxim-
ate common divisor problem via lattices. A simple version including only a single
prime number is studied in [GGM16]. A lattice cryptanalysis of the single-prime
version is described in [VDGHV10]. In this work we consider the multi-prime
version (CRT-ACD Problem) from [CP19], which is a factorization problem with
constraints based on Chinese Remaindering.

We improve the two-step algorithm by [CP19]. Namely, we remark that [CP19]
relies on solving a certain instance of Problem A. By solving an appropriate in-
stance of Problem C instead, we obtain a quadratic improvement in the number
of input samples. Namely, letting n be the number of secret primes in the pub-
lic modulus M , we can factor M given only O(

√
n) input samples, whereas [CP19]

uses O(n). We therefore achieve complete factorization of the public modulus while
limiting the input size drastically.

Improved cryptanalysis of CLT13 Multilinear Maps. In 2013, [GGH13] described
the first construction of cryptographic multilinear maps, and since then, many im-
portant applications in cryptography were found. A similar construction over the
integers was described in [CLT13] and a third construction based on the LWE Prob-
lem was proposed [GGH15]. In the last years, many attacks against these construc-
tions appeared. The most devastating are the so-called “zeroizing attack”, exploiting
the availability of low-level encodings of zero. The algorithm [CHL+15] recovers all
secret parameters of [CLT13] in the multiparty Diffie-Hellman key exchange. Sim-
ilar attacks have been described against GGH13 and GGH15, see [HJ16, CLLT16].
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Our third contribution is therefore to improve the cryptanalysis of Cheon et al.
[CHL+15] against CLT13 when fewer encodings are public. Namely, [CHL+15] re-
lies on solving some instance of Problem A. By solving instances of Problems C
or D instead, we can lower the number of public encodings required for the crypt-
analysis. Specifically, for a composite modulus x0 of n primes, we obtain improved
algorithms using only O(

√
n) encodings of zero (compared to n in [CHL+15]), or

in total 4n/3 encodings (compared to 2n+ 2 in [CHL+15]). We confirm our results
with practical experiments in Sec. 6.

2. Notations and Preliminary Remarks

2.1. Notation. For n ∈ Z≥1, let [n] be the set {1, . . . , n}. For a set R and r, s ∈
Z≥1, we let Rr×s be the set of r× s matrices with entries in R. For A ∈ Rr×s and
B ∈ Rr×s′ , [A|B] ∈ Rr×(s+s′) is the matrix obtained by concatenating the columns
of A and B. We let 1n be the identity matrix in dimension n ∈ Z≥1. For a set S,
its cardinality is denoted by #S.

2.2. Remarks about Definition 1.1. We shall make some important considera-
tions about Def. 1.1.

(i) Let {Wa}a be as in Def. 1.1, π ∈ Sn be a permutation with associated matrix
Aπ ∈ {0, 1}n×n and D any invertible diagonal n × n matrix. Then P ′ = PDAπ
and Q′ = A−1π D−1Q satisfy W0 = P ′Q′ and Wa = P ′U ′aQ

′ for all a ∈ [t], where
U ′a = A−1π UaAπ is obtained from Ua by permuting its diagonal entries via π. Thus,
P ′, {U ′a}a and Q′ satisfy the same problem. For this reason, we only ask to recover
the set {(u1,i, . . . , ut,i) : 1 ≤ i ≤ n} in Def. 1.1.

(ii) If t = 1 in Problem C, then the problem is not solvable because its solution is
not unique. Namely, we write W1 = W0Z1, where Z1 = Q−1U1Q is diagonalizable
with eigenvalues the diagonal entries of U1. But also, for every v ∈ ker(W0) one
has W1 = W0(Z1 + vwT1 ) for some w1 ∈ Qn. Now, Z1 and Z1 + vwT1 likely have
different eigenvalues which means that the solution is not unique.

(iii) There are cases when the problem is clearly not solvable for p < n. For
example, if P = [1p|0p×(n−p)] then for all a the matrix PUa only involves the first
p diagonal entries of Ua and the information on the remaining n− p is lost. These
cases will not occur for "generic" or "random" instances of the problem.

(iv) If a matrix W0 = PQ is not available as input (we call it a "special in-
put" here), then one can recover ratios of diagonal entries of the matrices {Ua}a, if
t ≥ 3. Namely, defining P ′ = PU1 and assuming that U1 is invertible, one obtains
W ′0 := P ′Q = W1 and for 2 ≤ a ≤ t, W ′a := P ′(UaU

−1
1 )Q = Wa. Running the

algorithm on input {W ′a : 0 ≤ a ≤ t − 1} reveals the tuples of diagonal entries of
the matrices UaU−11 for 1 ≤ a ≤ t − 1. We will use this approach in Sec. 5.2.3 to
improve the (CLT13) multilinear map cryptanalysis.

(v) For simplicity, we have stated Def. 1.1 over Q. More generally, we can con-
sider matrices over a field K with exact linear algebra (e.g. solving linear systems,
diagonalizing matrices, etc.). Our algorithms apply to that case.
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3. An Algorithm for Problem C

We describe an algorithm to solve Problem C of Def. 1.1.

3.1. Description. Consider integers n, t ≥ 2 and 2 ≤ p < n and an instance of
Problem C. We remark that it is enough to solve the following problem.

Definition 3.1 (Problem C′). Let integers n, t ≥ 2 and 2 ≤ p < n. Given
• a matrix V ∈ Qp×n of rank p and a basis matrix E ∈ Qn×(n−p) of ker(V ),
• a set of matrices {Ya : a ∈ [t]} ⊆ Qn×n

compute matrices {Xa : a ∈ [t]} ⊆ Q(n−p)×n, such that the matrices Ya + EXa for
a ∈ [t] commute with each other.

Proposition 3.2. Let {Wa : 0 ≤ a ≤ t} as in Problem C. Let E ∈ Qn×(n−p)
be a basis matrix of the kernel of W0. Let W+

0 be a right-inverse1 of W0. Define
V = W0 and Ya = W+

0 Wa for a ∈ [t]. Assume that Problem C′ is uniquely solvable
for the input matrices V,E and {Ya : a ∈ [t]}.

Then Problem C is uniquely solvable for the input matrices {Wa : 0 ≤ a ≤ t}.
Moreover, the matrix Q in the assumption of Problem C is unique up to multiplic-
ation by a permutation matrix and an invertible diagonal matrix if at least one of
the matrices {Ua}a has pairwise distinct diagonal entries.

Proof. Write W0 = PQ and Wa = PUaQ as in Problem C. For all a ∈ [t], we write
Wa = (PQ)(Q−1UaQ) = W0Za, where Za := Q−1UaQ. The matrices {Za : a ∈ [t]}
commute and are simultaneously diagonalizable. For every a ∈ [t], Za can be
written as Za = Ya + EXa for some Xa ∈ Q(n−p)×n since W0Ya = Wa. Since the
matrices {Za}a commute, V , E and {Ya}a define a valid input for Problem C′.
By assumption, we can compute the matrices {Xa}a by solving Problem C′ and
these are unique. From the knowledge of {Xa}a, we compute Za = Ya + EXa for
a ∈ [t]. Then these matrices are also unique. Thus the set of tuples of eigenvalues
{(u1,i, . . . , ut,i) : 1 ≤ i ≤ n} is unique and can be computed by simultaneous
diagonalization.

For the last part of the statement, assume that we have matrices P ′, Q′, diagonal
matrices {U ′a}a, which are necessarily of the form U ′a = A−1UaA for a permutation
matrix A, such that W0 = P ′Q′ and W ′a = P ′U ′aQ

′ for every a. By uniqueness of
the matrices {Za}a, we have

Za = Q−1UaQ = Q′−1U ′aQ
′ = Q′−1A−1UaAQ

′ , a ∈ [t]

or, equivalently Ua(QQ′−1A−1) = (QQ′
−1
A−1)Ua for a ∈ [t]. Thus,D := QQ′−1A−1

commutes with the matrices {Ua}a and so is diagonal itself, as one of {Ua}a has
pairwise distinct entries. This gives Q = DAQ′ and proves the statement. �

3.1.1. Solving Problem C′. We consider matrices V,E, {Ya}a as in Problem C′. We
want to compute matrices {Xa}a such that the matrices Za = Ya +EXa commute
for all a ∈ [t], that is, the Jacobi bracket [Za, Zb] = ZaZb−ZbZa is the zero matrix
for all a < b. Using Za = Ya + EXa, this is equivalent to

0 = YaYb − YbYa + E · Sab + YaEXb − YbEXa(3.1)

1If W0 (of full rank p) is defined over the complex numbers, one can take W+
0 = W ∗

0 (W0W ∗
0 )

−1

where W ∗
0 is the conjugate transpose of W0, and W ∗

0 = WT
0 over the real numbers.
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where Sab := XaYb + XaEXb − XbYa − XbEXa. Left multiplication by V and
V E = 0 imply V YaYb − V YbYa + V YaEXb − V YbEXa = 0, which is equivalent to

(3.2) ∆ab = V YbEXa − V YaEXb , 1 ≤ a < b ≤ t ,

where ∆ab := V YaYb−V YbYa is completely explicit in terms of the input matrices.
Eq. (3.2) describes a system of linear equations over Q in the variables given by
the entries of Xa and Xb. Since ∆ab has size p× n, this gives a system of np linear
equations in the 2(n − p)n variables given by the entries of Xa and Xb. Writing
(3.2) for every (a, b) ∈ [t]2 with a < b we obtain a system of t(t − 1)/2np linear
equations and t(n−p)n variables given by the entries of the matrices {Xa : a ∈ [t]}.

From what precedes and Prop. 3.2, we deduce the following result.

Proposition 3.3. A unique solution to Problem C is implied by the existence of a
unique solution to the explicit system of linear equations given in (3.2), which is a
system of 1

2 t(t− 1)np linear equations in t(n− p)n variables. There are at least as
many equations as variables as soon as

(3.3)
p

n
≥ 2

t+ 1
.

Since there is no obvious linear dependence in the equations of the system, we
heuristically expect, in the generic case, to find a unique solution {Xa : a ∈ [t]}
under Condition (3.3). This solves Problem C′, and therefore Problem C.

3.2. Algorithm. We refer to this algorithm as Algorithm AC in the sequel.
Input : A valid input for Problem C
Output : "Success" or "Fail"; in case of "Success", also output a solution. "Suc-
cess" means uniqueness of the solution; "Fail" means that no solution was
found.

(1) Compute a basis matrix E of ker (W0).
(2) Define W+

0 = WT
0 (W0W

T
0 )−1 and for (a, b) ∈ [t]2 with a < b, compute

the matrices ∆ab = WaW
+
0 Wb −WbW

+
0 Wa.

(3) Solve the system of linear equations described in Eq. (3.2).
(3.1) If the solution is not unique, then output "Fail" and break.
(3.2) Otherwise, denote by {Xa : a ∈ [t]} the unique solution.

(4) Perform simultaneous diagonalization of Za = W+
0 Wa+EXa for a ∈ [t].

(5) Output "Success" with the tuples of eigenvalues of the matrices {Za}a.

3.3. Optimization of the parameters. We find minimal possible (with respect
to n) values for t and p. In our applications in Sec. 5 we are led to minimize p+ t
as a function of n. Following Prop. 3.3, we set Fn(t) = pn(t) + t = 2n

t+1 + t with
t ∈ R>0 and n ∈ Z≥2. It is easy to see that Fn has a minimum at t0 =

√
2n − 1

which gives p = pn(t0) =
√

2n. This shows that minimal values for p and t are
O(
√
n). This is confirmed practically in Sec. 6.

4. An Algorithm for Problem D

We now present an algorithm to solve Problem D of Def. 1.1.
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4.1. Description. Consider integers n, t ≥ 2 and 2 ≤ p < n and an instance of
Problem D. The main idea of our algorithm is a reduction to Problem C which
can be solved using Algorithm AC. More precisely, we exhibit matrices (that are
augmentations of {Wa}a) W ′0 = PQ′ and W ′a = PUaQ

′ for a ∈ [t], for the same
diagonal matrices {Ua}a and for some n× n invertible matrix Q′.

4.1.1. Reducing Problem D to Problem C. For 1 ≤ a, b ≤ t, we define the matrices

(4.4) ∆ab = WaW
−1
0 Wb −WbW

−1
0 Wa .

Note that ∆ab = −∆ba. We have the following lemma.

Lemma 4.1. Let W0 = PQ and Wa = PUaQ for a ∈ [t] as in Problem D. Let
B = QW−10 P − 1n ∈ Qn×n and let r denote its rank. Then:

(i) r = n− p
(ii) there exist matrices Va ∈ Qp×r and Ga ∈ Qr×p for a ∈ [t] such that for all

1 ≤ a < b ≤ t, one has ∆ab = VaGb − VbGa.

Proof. (i) Let C = QW−10 P . Then CQ = Q and the column-image ofQ is contained
in the eigenspace, say E , of C for eigenvalue 1. So, E has dimension at least p.
However, the rank of C is bounded above by the rank of Q, i.e. by p. Finally, E
has dimension exactly p and the rank r of B = C − 1n equals n− p.

(ii) For every 1 ≤ a, b ≤ t, we can write

∆ab = PUa(QW−10 P − 1n)UbQ− PUb(QW−10 P − 1n)UaQ

= PUaBUbQ− PUbBUaQ(4.5)

since Ua and Ub commute. Since B has rank r, there exist matrices B1 ∈ Qn×r, B2 ∈
Qr×n with B = B1B2. Setting Va = PUaB1 and Ga = B2UaQ gives the claim. �

The following properties of the matrix B defined in Lem. 4.1 are useful.

Lemma 4.2. Let W0 = PQ and Wa = PUaQ for a ∈ [t] as in Problem D. Let
B ∈ Qn×n be the matrix of Lem. 4.1 with respect to P and Q and let r = n − p.
Let B1 ∈ Qn×r and B2 ∈ Qr×n be such that B = B1B2. Then:

(i) PB1 = 0p×r
(ii) The matrix Q′ := [Q|B1] is an n× n invertible matrix.

Proof. (i) The matrix B2 defines a surjection B2 : Qn → Qr. Thus for every x ∈ Qr,
we write x = B2y for some y ∈ Qn and obtain PB1x = PB1(B2y) = (PB)y = 0.

(ii) Since r = n − p, Q′ has size n × n. To show its invertibility, we show that
im(Q) ∩ im(B1) = {0}. Since B2 is surjective, the images of B1 and B1B2 = B
coincide. Let Qx = By ∈ im(Q) ∩ im(B1), with x ∈ Qp and y ∈ Qn. This gives
Qx = (QW−10 P − 1n)y = QW−10 Py − y. Thus y = QW−10 Py − Qx = Qz with
z = W−10 Py − x. Therefore, Qx = By = B(Qz) = 0 because BQ = 0. �

We now show that finding matrices {Va}a such that there exist {Ga}a satisfying
∆ab = VaGb − VbGa for every a, b is sufficient to solve Problem D. We view these
matrices as being complementary to {Wa}a because they define themselves an in-
stance of Problem D with the same solution as {Wa}a (see the proof of Lem. 4.1).
This allows us to increase the rank of Q. We thus now formulate Problem D′.
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Definition 4.3 (Problem D′). Let n, t ≥ 2 and 2 ≤ p < n be integers. For every
1 ≤ a, b ≤ t, let ∆ab ∈ Qp×p be such that ∆ab = VaGb− VbGa for Va ∈ Qp×(n−p) of
rank n− p and Ga ∈ Q(n−p)×p. The problem states as follows: Given the matrices
∆ab for all 1 ≤ a, b ≤ t, compute such matrices Va for a ∈ [t].

The following proposition links Problem D and Problem C.

Proposition 4.4. Let W0 = PQ and Wa = PUaQ for a ∈ [t] be as in Problem D.
For 1 ≤ a, b ≤ t, let ∆ab be the matrices defined in (4.4). Moreover, assume that

(i) Problem D′ is uniquely solvable for the input matrices {∆ab : 1 ≤ a < b ≤ t}
and denote by {Va : a ∈ [t]} the unique solution.

(ii) Problem C is uniquely solvable for the input matricesW ′0 = [W0|0p×(n−p)] ∈
Qp×n and W ′a = [Wa|Va] ∈ Qp×n for a ∈ [t].

Then Problem D is uniquely solvable on input {Wa : 0 ≤ a ≤ t} and the unique
solution is given by the unique solution to Problem C on input {W ′a : 0 ≤ a ≤ t}.

Proof. By Lem. 4.1 there exist Va ∈ Qp×r and Ga ∈ Qr×p for a ∈ [t] such that
∆ab = VaGb − VbGa for all 1 ≤ a < b ≤ t. Therefore the matrices {∆ab}a,b define
an instance of Problem D′. By assumption (i), we compute the unique solution
{Va}a for this problem.

Now, let W ′0 = [W0|0p×(n−p)] ∈ Qp×n and W ′a = [Wa|Va] ∈ Qp×n for a ∈ [t]. Let
B = QW−10 P −1n as in Lem. 4.1 of rank r = n−p. Let B1 ∈ Qn×r and B2 ∈ Qr×n
be a rank factorization of B; i.e. B = B1B2. Letting Q′ := [Q|B1] ∈ Qn×n, we
have PQ′ = P [Q|B1] = [W0|0p×r] = W ′0 and, by uniqueness of {Va}a (see proof of
Lem. 4.1),

PUaQ
′ = PUa[Q|B1] = [Wa|Va] = W ′a

for a ∈ [t], as PB1 = 0n×r by Lem. 4.2 (i). The matrix Q′ is invertible by Lem. 4.2
(ii). Therefore, W ′0 and {W ′a}a define a valid input for Problem C. By assumption
(ii), this problem is uniquely solvable and the solution must be the tuples of diagonal
entries of the matrices {Ua}a. This is also a solution to Problem D since the matrices
{Ua}a are the same for the input matrices {Wa}a for Problem D and {W ′a}a for
Problem C. �

4.1.2. Solving Problem D′. In view of Prop. 4.4, it remains to compute matrices
{Va}a from {∆ab}a,b. We achieve this by standard linear algebra, and combining
with Algorithm AC describes a full algorithm for Problem D.

From now on we assume t ≥ 3. Let ∆ab = VaGb − VbGa for 1 ≤ a, b ≤ t as in
Problem D′. Let r = n − p and rab be the rank of ∆ab; clearly, rab ≤ min(2r, p).
We further assume p > 2n/3 (equivalently 2r < p), which is a necessary condition
as otherwise the matrices ∆ab likely have full rank and thus cannot reveal any
information. We define Kab := im(∆ab) = Kba ⊆ Qp and

Ka =
⋂

b∈[t],b6=a

Kab , a ∈ [t].

Let Va be the image of the matrix Va for a ∈ [t]. We first argue that, heuristically,
Va ⊆ Kab for every b 6= a. Let v ∈ Va. If there exists x ∈ Qp such that v = VaGbx
and VbGax = 0 then v = ∆abx, i.e. v ∈ Kab. Such an element x must therefore lie
in (x0+ker(VaGb))∩ker(VbGa), where x0 ∈ Qp is any vector such that v = VaGbx0.
It is easy to see that this intersection is non-empty if ker(VaGb) + ker(VbGa) = Qp.
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Heuristically, as {Va}a have rank r, ker(VaGb) + ker(VbGa) has dimension at least
2(p− r); accordingly we can heuristically expect that ker(VaGb) + ker(VbGa) = Qp
as soon as 2(p− r) > p, i.e. p > 2n/3.

We now justify that, heuristically under a suitable parameter selection, Ka =
Va for every a ∈ [t]. For fixed a ∈ [t], we compute Ka modulo Va and con-
sider Kab := Kab/Va ⊆ Qp−r for b 6= a. Then Ka = Va if and only if Ka :=⋂
b6=aKab = {0}. Since Va has dimension r, Kab has dimension rab − r. For every

b 6= a, we view Kab as the kernel of Qp−r → Qp−r/Kab, represented by a matrix
Aab ∈ Q(p−rab)×(p−r). Therefore Ka is represented by an augmented matrix Aa =
[Aa1| . . . |Aa,a−1|Aa,a+1| . . . |Aat] describing the kernel of Qp−r →

⊕
b6=aQp−r/Kab.

The matrix Aa has
∑
b∈[t],b6=a(p − rab) rows and p − r columns. Now, Ka = Va if

and only if Aa has full rank; and heuristically, we expect this to be the case as soon
as
∑
b∈[t],b 6=a(p− rab) ≥ p− r.

Remark 4.5. (i) In fact, we expect that rab = 2r for every a, b. Then, from what
precedes, we expect, heuristically that Ka = Va for every a, if (t−1)(p−2r) ≥ p−r,
i.e.

(4.6)
p

n
≥ 2t− 3

3t− 5
or, equivalently, t ≥ 2p− n

3p− 2n
+ 1 .

(ii) We assumed t ≥ 3 so that the intersections {Ka}a are well-defined. If t = 2,
K1 coincides with the image of ∆12, which will not reveal V1 and V2.

We compute bases of {Ka}a by standard linear algebra. For the rest of this
section, assume Ka = Va for every a, and let Ca be a basis matrix for Ka. Thus,
there exists Ma ∈ GLr(Q) such that Va = CaMa. This gives for a < b:

(4.7) ∆ab = VaGb − VbGa = Ca(MaGb)− Cb(MbGa) = CaNab − CbNba

with Nab = MaGb. In (4.7), ∆ab and Ca, Cb are known, which allows to compute
N (ab) = [Nab|Nba]T as a solution to ∆ab = [Ca| − Cb] · N (ab). Once {Nab}a,b are
computed, we obtain a system of linear equations over Q, given by

(4.8) M−1a ·Nab = Gb , 1 ≤ a < b ≤ t .

It has 1
2 t(t − 1)rp equations (there are 1

2 t(t − 1) choices for pairs (a, b) and for
each pair the matrix equality gives rp equations) and tr2 + trp = trn variables,
given by the tr2 entries of the matrices {M−1a : a ∈ [t]} and the trp entries of the
matrices {Gb : b ∈ [t]}. Heuristically, if trn ≤ 1

2 t(t − 1)rp, i.e. 2n ≤ (t − 1)p, the
system is expected to have a unique solution. This bound is automatically satisfied
if (4.6) holds. This reveals {Ma : a ∈ [t]} and thus {Va : a ∈ [t]} by computing
Va = CaMa.

Proposition 4.6. Assume that Ka = Va for every a ∈ [t] (see Rem. 4.5 (i)).
Then, a unique solution to Problem D′ is implied by the existence of a unique
solution to the explicit system of linear equations given in (4.8), which is a system
of 1

2 t(t − 1)(n − p)p linear equations in t(n − p)n variables. There are at least as
many equations as variables as soon as p(t− 1) ≥ 2n.

4.2. Algorithm. We refer to this Algorithm as Algorithm AD in the sequel.
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Input : A valid input for Problem D.
Output : "Success" or "Fail", and in case of "Success", additionally output a
solution. "Success" means that the computed solution is unique; "Fail" means
that a solution was not found.

(1) Compute ∆ab = WaW
−1
0 Wb −WbW

−1
0 Wa for 1 ≤ a 6= b ≤ t

(2) For a ∈ [t], compute a basis matrix Ca of Ka :=
⋂
b∈[t],b 6=a im(∆ab)

(3)(3.1) If dim(Ka) 6= n− p for all a ∈ [t], then output "Fail" and break
(3.2) Otherwise, for every a < b compute Nab as solutions to ∆ab =

[Ca| − Cb] · [Nab|Nba]T

(4) Solve for {Ma}a the system of linear equations M−1a Nab = Gb for
(a, b) ∈ [t]2, a < b.
(4.1) If a unique solution is not found, then output "Fail" and break

(5) Compute the matrices {Va : a ∈ [t]} as Va = Ca ·Ma

(6) Run Algorithm AC on the matrices W ′0 = [W0|0] and W ′a = [Wa|Va] for
a ∈ [t] and return its output.

Remark 4.7. Problem D of Def. 1.1 is symmetric in the sense that P and Q have
the same rank. An asymmetric variant consists in having P and Q of ranks p 6= q.
Our algorithm adapts to that case: if p < q, then "cutting" the last q−p columns of
{Wa}a means "cutting" the last q−p columns of Q, which reduces to the symmetric
case. This approach is however not very genuine, as it "cuts" information instead
of possibly exploiting it. We leave it open to find a better algorithm.

4.3. Optimization of the parameters. We find minimal possible values for t and
p with respect to a given n. In Sec. 5.2.1 we will see that it is of interest to minimize
2p+ t in order to minimize the number of public encodings in [CLT13]. According
to (4.6), the main (heuristic) condition to be ensured is p ≥ 2t−3

3t−5n. We set Fn(t) =

2pn(t) + t = 2t−3
3t−5n + t for t ∈ R>0\{5/3} and n ≥ 2. Then Fn has a minimum at

t0 = 1
3 (
√

2n + 5), with pn(t0) = 2
3n + 1

3
√
2

√
n and Fn(t0) = 4

3n + 2
3

√
2n + 5

3 . In
conclusion, we expect Algorithm AD to succeed for p = dpn(t0)e and t = dt0e.

5. Applications

We describe two applications for our algorithms and obtain significant improve-
ments on previous works.

5.1. Improved algorithm for the CRT-ACD Problem. We consider the fol-
lowing "multi-prime" version of the Approximate Common Divisor Problem [CP19]
based on Chinese Remaindering:

Definition 5.1 (CRT-ACD Problem). Let n, η, ρ ∈ Z≥1. Let p1, . . . , pn be distinct
η-bit prime numbers and M =

∏n
i=1 pi. Consider a non-empty finite set S of

integers in Z ∩ [0,M) such that for every x ∈ S:

x ≡ xi (mod pi) , 1 ≤ i ≤ n

for uniformly distributed integers xi ∈ Z satisfying |xi| ≤ 2ρ.
The CRT-ACD problem states as follows: given the set S, the integers η, ρ and

M , factor M completely (i.e. find the prime numbers p1, . . . , pn).

Clearly, the larger the set S, the more information one can exploit to factor M .
Our interest is therefore to minimize the cardinality of the set S with respect to n.
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5.1.1. The algorithm of [CP19]. Coron and Pereira propose an algorithm for the
case #S = n+ 1. They proceed in two steps called the "orthogonal lattice attack"
following [NS99] and the "algebraic attack" following [CHL+15]. We briefly review
their algorithm; for a complete description we refer to [CP19, Se. 4.3].

Let S = {x1, . . . , xn, y} and x = (x1, . . . , xn) ∈ Sn. Then, the vector b =
(x, y · x) ∈ Z2n is public, and by the Chinese Remainder Theorem, letting x ≡ x(i)
(mod pi) and y ≡ y(i) (mod pi) for all i ∈ [n], one has b ≡

∑n
i=1 ci(x

(i), y(i)x(i)) =:∑n
i=1 cib

(i) (mod M), for some integers c1, . . . , cn. If the vectors {x(i)}i are R-
linearly independent, then so are {b(i)}i and generate a 2n-dimensional lattice L of
rank n. Importantly, by Def. 5.1, the vectors {b(i)}i are reasonably short vectors
(of `2-norm approximately 22ρ; and ρ is considered much smaller than η).

The "orthogonal lattice attack" is an algorithm, which on input b, outputs a
basis of the completion L = L⊗ZQ of L, performing lattice reduction on the lattice
〈b〉⊥M of vectors v ∈ Zm such that 〈v, b〉 ≡ 0 (mod M). The parameters are chosen
accordingly, and one essentially requires 2ρ < η.

Upon finding a basis {b′(i)}i of L, Coron and Pereira proceed with the "algeb-
raic attack". The bases {b′(i)}i of L and {b(i)}i of L are related via an unknown
invertible base change matrix Q ∈ Qn×n. Letting P = [x(1)| . . . |x(n)] ∈ Zn×n with
columns {x(i)}i, one obtains matrix relations

(5.9) W0 = P ·Q , W1 = P · U1 ·Q

where U1 is n× n diagonal with entries {y(i)}i. The matrix W0 is invertible (over
Q) and one computes the eigenvalues {y(i)}i of W1W

−1
0 = PU1P

−1. Using y ≡ y(i)
(mod pi), one factors M by computing greatest common divisors.

5.1.2. A naive improvement. There is a naive generalization of [CP19] using only
O(
√
n) public instances in S. However, we argue that this approach gives a worse

range of parameters when combined with [CP19].
For integers p ≥ 2 and t ≥ 1 of size O(

√
n), let x = (y1 · z, . . . , yt · z) ∈ Ztp of

dimension O(n) for y1, . . . , yt ∈ S and z ∈ Sp. This variant reduces #S consider-
ably, as #S = p + t = O(

√
n). However, [CP19] requires to construct the vector

b = (x, y · x) for y ∈ S. This gives rise to residue vectors {b(i)}i of approximate
`2-norm 23ρ instead of 22ρ as in [CP19]. Therefore the stronger condition 3ρ < η
will be required for the orthogonal lattice attack to succeed. In our improvement,
we would like to lower #S while continuing to use 2ρ < η, as in [CP19].

5.1.3. Our improved algorithm. We recognize that (5.9) defines an instance of Prob-
lem A of Def. 1.1 with t = 1 because P and Q have rank n. Our improvement lies
in generalizing the vector b as to obtain an instance of Problem C.

We consider #S < n + 1 and write for convenience S = {x1, . . . , xp, y1, . . . , yt}
with integers 2 ≤ p < n and 2 ≤ t < n satisfying 2n ≤ (t + 1)p. We let x =
(x1, . . . , xp) ∈ Sp and b = (x, y1 · x, . . . , yt · x) ∈ Z(t+1)p. As previously, let {b(i)}i
denote the short residue vectors modulo the primes {pi}i and x ≡ x(i) (mod pi),
ya ≡ y

(i)
a (mod pi) for a ∈ [t] and i ∈ [n]. By the Chinese Remainder Theorem,

we observe that b lies in the lattice L =
⊕n

i=1 Zb(i) modulo M . Namely, there are
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integers c1, . . . , cn such that

b ≡
n∑
i=1

ci


xi

y
(i)
1 · x(i)

...
y
(i)
t · x(i)

 =:

n∑
i=1

cib
(i) (mod M)

As in [CP19], the orthogonal lattice algorithm reveals a basis {b′(i)}i of L and the
`2-norm of {b(i)}i is still approximately 2ρ.

Contrary to (5.9), we now derive matrix equations

(5.10) W0 = P ·Q , Wa = P · Ua ·Q , a ∈ [t]

where P ∈ Zp×n has columns {x(i)}i and {Ua}a are n × n diagonal with entries
{y(i)a }a,i. The matrix Q is a base change matrix from {b′(i)}i to {b(i)}i. If W0 has
rank p, Eq. (5.10) now defines a valid input for Problem C of Def. 1.1 and Algorithm
AC from Sec. 3 reveals the diagonal entries {y(i)a }a,i of the matrices {Ua}a. One
can then factor M by computing gcd(ya − y(i)a ,M).

From Sec. 3.3 we see that #S = p + t is minimized for p = d
√

2ne and t + 1 =

d
√

2ne. Thus, #S = 2d
√

2ne = O(
√
n). In summary, letting n be the number of

secret primes in the public modulus M , we can factor M given only O(
√
n) input

samples, whereas [CP19] uses O(n).

Remark 5.2. We remark that we do not impact the security of the key-exchange
from [CP19], as it uses certain encodings of matrices. However, the product of
matrices does not commute, so our techniques do not apply to that case.

5.2. Improved Cryptanalysis of CLT13 Multilinear Maps. We consider the
CLT13 Multilinear Map Scheme by Coron et al., [CLT13]. Cheon et al. [CHL+15]
described a polynomial-time attack against the Diffie-Hellman key exchange based
on CLT13 when enough encodings of zero are public. Such encodings are for in-
stance public in the rerandomization procedure. It is of interest to investigate this
cryptanalysis when only a limited number of such encodings is available. Namely,
not every CLT13-based construction necessarily reveals enough such encodings and
the attack of Cheon et al. is prevented.

5.2.1. CLT13 Multilinear Maps. The CLT13 Multilinear Map is a construction over
the integers based on the notion of graded encoding scheme [GGH13]. Its hardness
relies on Chinese Remainder-representations and factorization. We fix an integer
n ≥ 2, thought of as a dimension for CLT13. The message space is

⊕n
i=1 Z/giZ

for some small secret primes {gi}i. The encoding space has a graded structure and
supports homomorphic addition and multiplication. It is defined over

⊕n
i=1 Z/piZ

for large secret primes {pi}i with public product x0 =
∏
i pi. More precisely, an

encoding of a message m = (mi)i ∈
⊕n

i=1 Z/giZ at level k ∈ [κ] (where κ denotes
the multilinearity degree) is an integer c such that c ≡ (rigi+mi) ·z−k (mod pi) for
all i ∈ [n] where z ∈ (Z/x0Z)× and ri is a random "small" noise. By the Chinese
Remainder Theorem c is computed modulo x0. For encodings c at the last level κ, a
public zero-testing procedure allows to test if c encodes zero. This procedure works
by computing ω(c) := pzt · c for a public parameter pzt ∈ Z/x0Z. Then c encodes
the zero message if ω is ”small” compared to x0. In [CLT13], one actually defines
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a vector of n zero-test parameters {pzt,i : i ∈ [n]} to define a proper zero-testing.
For the precise parameter setting, we refer to [CLT13, Sec. 3.1].

5.2.2. Cryptanalysis. The algorithm from [CHL+15] reveals all secret parameters
given sufficiently many encodings of zero. We briefly recall the attack here, and
for simplicity of exposition, assume κ = 3. Consider sets A = {αj : j ∈ [n]},
B = {β1, β2} and C = {γk : k ∈ [n]} of encodings at level 1 and where all encodings
in A encode zero. Therefore, there are #A = n public encodings of zero and
#(A∪B ∪ C) = 2n+ 2 encodings in total. In the previous notation, we write αj ≡
αji/z (mod pi), βa ≡ βai/z (mod pi) and γk ≡ γki/z (mod pi) for all i, j, k ∈ [n]
and a ∈ [2]. Because the products αjβaγk encode zero at level 3, correct zero-testing
ensures that the zero-test equations ω(a)

jk = pzt(αjβaγk), given by

ω
(a)
jk =

n∑
i=1

pzt,iαjiβaiγki =
[
αj1 · · ·αjn

] βa1pzt,1 . . .
βanpzt,n


γk1...
γkn


for certain explicit integers pzt,i for i ∈ [n] defining the zero-test parameter, hold
over Z instead of Z/x0Z. Writing these relations out for all indices (j, k) ∈ [n]2,
the n× n matrices Wa := (ω

(a)
jk )j,k∈[n] for a = 1, 2 satisfy

(5.11) Wa = P · Ua ·Q

for secret matrices P,Q of full rank n (corresponding to encodings of A and C,
respectively) and diagonal matrices {Ua}a containing the elements {βai : i ∈ [n]}.
If at least one of W1,W2 is invertible over Q (say W2), the attacker computes the
eigenvalues {β1i/β2i : i ∈ [n]} of W1W

−1
2 . These ratios are enough to factor x0.

Indeed, letting β1i/β2i = xi/yi for coprime integers xi, yi and using βa ≡ βai/z
(mod pi), we deduce xiβ2 − yiβ1 ≡ (xiβ2i − yiβ1i)/z ≡ 0 (mod pi) for i ∈ [n] and
therefore gcd(xiβ2 − yiβ1, x0) = pi with high probability.

In summary, the Cheon et al. attack recovers all secret primes {pi}i in polyno-
mial time given the set A of level-one encodings of zero and the sets B and C.

5.2.3. Attacking CLT13 with fewer encodings. We consider the following CLT13-
based problem.

Definition 5.3 (CLT13 Problem). Let n ≥ 2 be the dimension of CLT13 and
x0 =

∏n
i=1 pi. Let E be a finite non-empty set of encodings at level 1 and E0 ⊆ E a

non-empty subset such that every element of E0 is an encoding of zero. The CLT13
Problem is as follows: Given the sets E and E0, factor x0.

We refer to E and E0 as the sets of "available encodings" and "available encodings
of zero", respectively. It is not a loss of generality to consider level-one encodings.
As in [CHL+15], we write E = A∪B∪C with A ⊆ E0. As recalled above, [CHL+15]
requires #E0 ≥ n to factor x0, and a total number of public encodings #E = 2n+2.

We aim at reducing the number of encodings needed for the factorization of x0
and treat the following questions independently:

(i) Factor x0 with fewer available encodings of zero, i.e. #E0 < n
(ii) Factor x0 with fewer available encodings, i.e. #E < 2n+ 2
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A naive improvement. As for the CRT-ACD Problem, there is a naive improve-
ment using fewer encodings, but assuming κ = 4. One can form product encodings
αjβaγkδ` at level 4, where every encoding is at level 1. These can be partitioned into
sets A,B and C such that A corresponds to encodings of zero with #A = O(

√
n).

However, this approach has the inconvenience of using κ = 4 and our improved
attack aims at lowering the number of public encodings while κ = 3.

Minimizing the number of encodings of zero. We explain how to use Algorithm AC
to factor x0 using only #E0 = O(

√
n) level-one encodings of zero.

We fix integers 2 ≤ p < n and 3 ≤ t < n and assume again κ = 3. As in
[CHL+15], we write E = A ∪ B ∪ C with A ⊆ E0. We let #A = p, #B = t and
#C = n; and claim p = O(

√
n).

Every product encoding c = αjβaγk with (αj , βa, γk) ∈ A×B×C is an encoding
of zero and by correct zero-testing we obtain integer matrix relations

(5.12) Wa = P · Ua ·Q , a ∈ [t]

for P ∈ Zp×n, Q ∈ Zn×n corresponding to encodings in A and C, respectively, and
diagonal matrices {Ua}a corresponding to B. Exactly as in [CHL+15], the matrices
{Ua}a contain integers βai such that βa ≡ βai (mod pi) for i ∈ [n]. With high
probability the ranks of P and Q are p and n, respectively. Defining W ′0 = W1 and
W ′a = Wa−1 for 2 ≤ a ≤ t we obtain an instance similar to Problem C of Def. 1.1,
but without a "special input matrix" PQ (see Sec. 2.2). Using Algorithm AC, we
reveal eigenvalues (the diagonal entries) of the matrices {UaU−11 }a as it is likely
that U1 be invertible. We finally deduce the prime factorization of x0 by taking
greatest common divisors, as in [CHL+15].

By the optimization in Sec. 3.3, we choose t = d
√

2ne and #A = p = d
√

2ne.

Minimizing the total number of encodings. We now explain how to use Algorithm
AD to factor x0 using #E = 4

3n+O(
√
n) instead of #E = 2n+ 2 as in [CHL+15].

Contrary to the previous case, we now use a set C with #C = p; so #E = 2p+ t.
It is now direct to see that upon correct zero-testing we derive equations as in (5.12)
but with Q ∈ Zn×p instead. Thus, if both P and Q have rank p, we obtain Problem
D of Def. 1.1 without "special input matrix"W0. Then Algorithm AD reveals ratios
of diagonal entries of {UaU−11 } and we consequently factor x0.

Following Sec. 4.3, we are led to minimize #E(n) = 2p + t as a function of n.
We can let p = d 23n+ 1

3
√
2

√
ne and t = d 13

√
2n+ 5

3e and obtain

#E(n) = 2
⌈2

3
n+

1

3
√

2

√
n
⌉

+
⌈1

3

√
2n+

5

3

⌉
=

4

3
n+O(

√
n) .

Cryptanalysis with independent slots. In [CN19], Coron and Notarnicola cryptana-
lyze CLT13 when no encodings of zero are available beforehand, but instead only
"partial-zero" encodings. Messages are non-zero modulo a product of several primes
g1 · · · gθ for some integer θ ∈ [n]. We can improve this cryptanalysis following the
same techniques as above. Let ` the number of partial-zero encodings. Since [CN19]
is based on the algorithm of Cheon et al. to factor x0, we can now replace it by
Algorithm AC once ` encodings of zero are created. This means that we can set
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` = O(
√
n), which brings a twofold improvement: first, lattice reduction (in the or-

thogonal lattice attack [CN19, Sec. 4]) is only run on a lattice of dimension O(
√
n);

and second, the number of partial-zero encodings is reduced to O(
√
n).

6. Computational Aspects and Practical Results

We describe practical parameters for algorithms AC and AD. We have im-
plemented our algorithms in SageMath [S+17]; our source code is provided in
https://pastebin.com/Yg6QgZTh. Our experiments are done on a standard 3, 3
GHz Intel Core i7 processor.

6.1. Instance Generation of Problems C and D. As is the case for applications
in cryptanalysis, we consider matrices with integer entries. To generate instances of
Problems C and D, given fixed parameters n, t, p, we uniformly at random generate
matrices P,Q and {Ua}a with entries in [−k, k]∩Z for some k ∈ Z≥1 as in Def. 1.1.
We set W0 = PQ and Wa = PUaQ for a ∈ [t] to obtain instances of Problems C or
D.

We perform the linear algebra over Z/`Z for a large prime `, instead of over
Q. It suffices to choose ` slightly larger than the diagonal entries of {Ua}a (e.g.
` = O(maxa,i |uai|), where uai for i ∈ [n] denote the diagonal entries of Ua). The
running time depends on the entry size of the generated matrices. The overall
computational cost of our algorithms AC and AD is dominated by the cost of solving
systems of linear equations and performing simultaneous diagonalization, which can
be done by standard algorithms for non-sparse linear algebra.

6.2. Practical Experiments. We gather practical parameters for problems C and
D, and for our applications of Sec. 5. We compare p, t with the theoretical values
p0(n), t0(n) obtained in Sec. 3 and 4. For Table 1, p0(n) = d

√
2ne and t0(n) =

d
√

2n − 1e. For Table 2, p0(n) = d 23n +
√
n

3
√
2
e and t0(n) = d 13 (

√
2n + 5)e. Here

"entry size" is an approximation of the bit-size of the max-norm of each input
matrix.

In Table 3, we compare our work with [CP19] for the CRT-ACD Problem and
with [CHL+15] for the cryptanalysis of CLT13. We give parameters for obtaining
a complete factorization of M (in CRT-ACD) and x0 (in CLT13) of approximate
bit-size nη. For CRT-ACD, the column "this work" equals #S = p + t (Series 1).
For CLT13, "this work" shows #E = 2p + t (Series 2) and #E0 = p (Series 3).
For example, for n = 50, our algorithm factors M (in CRT-ACD) using only 19
public samples, whereas [CP19] requires 51 samples; and similarly breaks CLT13
with only 10 public encodings of zero, while [CHL+15] uses 50.

In conclusion, these practical experiments overall confirm our theory, as well as
the quadratic improvement over [CP19] and [CHL+15].
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