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Abstract

Molecular Dynamics is a computational method based on classical mechanics to describe the
behavior of a molecular system. This method is used in biomolecular simulations, which are
intended to contribute to the study and advance of nanotechnology, medicine, chemistry and
biology. Software implementations of Molecular Dynamics simulations can spend most of time
computing the non-bonded interactions.

This work presents the design and implementation of an FPGA-based coprocessor that ac-
celerates MD simulations by computing in parallel the non-bonded interactions, specifically,
the van der Waals and the electrostatic interactions. These interactions are modeled as the
Lennard-Jones 6-12 potential and the direct-space Ewald summation, respectively. In addi-
tion, this work introduces a novel variable transformation of the potential energy functions,
and a novel interpolation method with pseudo-floating-point representation to compute the
short-range forces. Also, it uses a combination of fixed-point and floating-point arithmetic to
obtain the best of both representations.

The FPGA coprocessor is a memory-mapped system connected to a host by PCI Express, and
is provided with interruption capabilities to improve parallelization. Its main block is based
on a single functional pipeline, and is connected via Avalon Bus to other peripherals such as
the PCIe Hard-IP and the SG-DMA. It is implemented on an Altera’s EP2AGX125EF35C4
device, can process 16k particles, and is configured to store up to 16 different types of par-
ticles. Simulations in a custom C-application for MD that only computes non-bonded forces
become up to 12.5x faster using the FPGA coprocessor when considering 12500 atoms.
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1. Introduction

1.1 Motivation

Molecular Dynamics (MD) is a computational method used in biomolecular simulations that
is based on classical mechanics to describe the behavior of a set of particles. Such biomolecular
simulations are intended to contribute to the study and advance of nanotechnology, medicine,
chemistry, biology, and materials science.

MD simulations run for long time performing discrete integration of the Newtonian equa-
tions of motion and evaluation of force fields at a very fine time step. Software implemen-
tations of Molecular Dynamics simulations can spend the most of the time computing the
non-bonded interactions. The computational complexity of non-optimized algorithms that
compute these interactions is at least O

(
N2+). This does not represent a problem for small

systems but becomes tedious for large systems such as proteins, DNA strands and viruses.
For instance, the complete simulation of the Satellite Tobacco Mosaic virus took one month
in a 256-node supercomputer [16]. Hence, accelerating the computation of such interactions
leads to a significant reduce of time when performing long simulations.

Some approaches purpose new algorithms that reduce computational complexity, while
other techniques center their attention in technological implementations to parallelize algo-
rithms, to increase the number of processing units, to optimize memory accesses, etc. Most of
the acceleration attempts have been implemented on PC-clusters, supercomputers, GPUs, and
powerful ASICs for MD. However, these solutions are very expensive and power consuming.

As an alternative, FPGAs become very suitable for this problem of the High-Performance
Computing due to their fast reprogrammability, high density, high speed, distributed embed-
ded set of resources like memories and DSPs, as well as their high-speed IO links. Furthermore,
there are hundreds of free IPs (Intellectual Properties) and libraries that reduce the design
time. Besides standard hardware architectures, applications in FPGAs involve new program-
ming concepts such as streaming, associative computing and massive parallelism, which can
offer better solutions than software implementations for some specific problems. [21]

Taking into account the several advantages that come with the rapid prototyping in FP-
GAs, and the importance of reducing the runtime of MD simulations, this work presents the

1



1.2. CONTRIBUTION

design and implementation of an FPGA-based coprocessor that computes the short-range
part of non-bonded interactions. This coprocessor pretends accelerate the computation of the
Lennard-Jones 6-12 potential and the direct-space Ewald summation. These functions are
mapped in pipeline architecture to carry out functional parallelism. The design methodology
explores an implementation with fixed-point and floating-point representations to achieve the
desired accuracy. This hybrid arithmetic brings the best of both representations: accuracy,
low area, low latency, high throughput, and flexibility.

In order to validate performance and accuracy of the FPGA coprocessor, a C-application
to run MD simulations was also developed during this thesis. This software application
implements a simple force field that performs direct evaluation of the Lennard-Jones 6-12
potential and uses the Ewald summation method to compute the electrostatic potential in
periodic systems. The FPGA coprocessor is connected to the host via PCI Express bus to
reduce the impact of communication overhead, and is acknowledged by the host as a memory-
mapped device.

1.2 Contribution

The contribution of this work is primarily focused on the acceleration of MD applications,
which was achieved considering the fact that simulations with the FPGA coprocessor can
run up to 12.5x faster than the original software implementation, and still showing an ac-
ceptable accuracy and stability. Other contribution is about the viability of FPGAs when
dealing with High-Performance Computing. This was demonstrated in several ways such as
the implementation of functional parallelism in high-throughput pipeline architecture, the
implementation of custom arithmetic in fixed-point and floating-point representation, and
high-speed communication with the host via PCI Express, also driven by the FPGA.

The third contribution is found in the attempt to implement the short-range part of non-
bonded forces interactions in FPGA, because the novel variable transformation purposed and
implemented in this work together with the pseudo-floating-point interpolation method offer
a better mapping of those potential functions into an FPGA in comparison to others in the
literature. Finally, this works contributes to other works that may not be directly related to
MD, but that can still take advantage of the design methodology and architecture presented
here.

1.3 Thesis organization

After this brief introduction, the rest of this thesis is organized as follows. Chapter 2 presents
the theoretical background of Molecular Dynamics and the non-bonded interactions that

2



1.3. THESIS ORGANIZATION

were implemented in hardware, as well as some of the available software packages for MD
simulations. Chapter 3 provides the reader the hardware design methodology of the FPGA
coprocessor, its functional characteristics, and its architecture from the functional building
units until the top level description. Chapter 4 presents the verification methods that were
used to ensure the correct functionality of the system, as well as synthesis and timing results of
the implementation. Chapter 5 presents a C-application used for performance validation that
runs simple MD simulations assisted by the FPGA coprocessor. Chapter 6 presents previous
works mainly related to the acceleration of MD simulations using FPGAs, and summarizes
the features and characteristics of this work. Finally, chapter 7 draws some conclusions and
purposes the further work.
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2. Molecular Dynamics

This chapter presents an introduction to Molecular Dynamics (MD), and explains deeper
the time integration, force field and boundary conditions. It also presents the non-bonded
interactions that are implemented in hardware. Finally, software packages for MD simulations
are presented.

2.1 The Molecular Dynamics method

Molecular and biomolecular simulations contribute to the study and advance of nanotech-
nology, medicine, chemistry and biology. These simulations are carried out by two main
approaches: one stochastic method known as Monte Carlo and one deterministic method
called Molecular Dynamics. The Molecular Dynamics method is used in an intermediate
time-space scale between the Quantum Chemistry (e.g. solving Schrödinger’s equations) and
the Monte Carlo method. MD simulations of (bio)molecular systems are used in order to
simulate motion at an atomic level by using classical mechanics, i.e. solving the Newtonian
equations of movement. Calculation of the motion in molecules is required for many reasons
such as prediction of structures, understanding of interactions and properties, learning about
normal modes of vibration, design of bio-nano materials, experimentation on what cannot be
studied experimentally, and obtaining a movie of the interacting molecules. [29]

MD simulations provide detailed information about fluctuations and conformational changes
in proteins and in nucleic acids. This method is currently used to investigate about the struc-
ture, dynamics and thermodynamics of complex biological molecules. Some applications are
protein folding and ion transport.

MD assumes that the force F = −∂V/∂x (due to the potential energy V ) that acts upon
the N particles (atoms and molecules) of a molecular system, is the same force in the Newton’s
second law F = ma. The trajectory of a particle is found by solving the second-order ordinary
differential equation (ODE) in (2.1), where V (x (t)) = V (x1 (t) , ...,xN (t)) is the potential
energy function. This scalar function represents a 3N -dimensional system, and depends on
the position of the particles.1

1The potential energy Epot = V (x (t)) depends on the particle positions, while the kinetic energy Ekin (t) =
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2.1. THE MOLECULAR DYNAMICS METHOD

mi
d2xi (t)
dt2

= Fi ≡ −
∂V

∂xi
i = 1, . . . , N (2.1)

The analytical solution of this system becomes a very hard task, since biomolecular systems
have thousands and even millions of particles. Therefore, the solution requires numerical
methods and the discretization of the ODEs, as well as a force field that defines the potential
energy in the system.

In a general description, MD is an iterative process of finding the potential energy between
particles, and then moves them to the next state. MD simulations run for long time at very fine
steps to describe trajectories. However, MD is mathematically ill-conditioned for long-time
simulations, and generates cumulative errors due to the numerical integration that cannot be
avoided even with infinite precision. This limits the time scale of this method.

An MD simulation can be treated as an experiment. This can be described as follows:

1. System configuration: Sample selection. (number of atoms, initial conditions, force
field, boundary conditions, etc)

2. Equilibrium: Prepare the sample to reach some predefined pressure and temperature.

3. Run simulation: Execute for a certain number of steps: forces computation, integra-
tion, average of the properties to be studied.

4. Analysis of output data: Compute properties and report them.2

2.1.1 Discrete time integration

The MD method requires a discretization of the differential equations to find their solution
in some specific points through time. This is applied to the computation of the new positions
and velocities of particles from the old positions, old velocities, and corresponding forces.

Critical properties of integration methods in MD are efficiency, accuracy, and energy
conservation. Accuracy specifies how much the numerically computed trajectory deviates
from the exact trajectory after one time step. The error is usually given in powers of the
time step δt. The energy is conserved along the trajectory of the particles for Hamiltonians H
that do not explicitly depend on time. The numerical trajectory can deviate from the exact
trajectory and thereby causes a small drift in the energy. Here, it is important to distinguish
between errors caused by the finite accuracy of computer arithmetic and errors caused by the
integration method itself even if infinitely accurate arithmetic is assumed. [17]
1
2
∑N

i=1 mi |vi (t)|2 depends on the velocity of all particles. The internal energy E is defined as E ≡ Ekin +Epot

and should be conservative if the system is closed and isolated.
2The reports can be simple information on screen, storage in text files, graphs or even animations; i.e.

anything that can be useful for an appropriate analysis of simulation results.
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2.1. THE MOLECULAR DYNAMICS METHOD

Closely connected with these issues is the question whether the integration method has
the properties of time reversibility and symplecticity. First, time reversibility guarantees that,
if the sign of the velocity is changed in the differential equation, the computed trajectory is
followed exactly in inverse direction and the initial configuration is finally reached in the
absence of numerical rounding errors.

On the other hand, an integration method can be interpreted as a mapping in phase space.
If the integration method is applied to a measurable set of points in the phase space, this set
is mapped to another measurable set in the phase space. The integration method is called
symplectic if the measure of both of those sets is equal. Symplectic methods exhibit excellent
behavior with respect to energy conservation. For 1-D systems, symplecticity is even equiv-
alent to energy conservation. This is, however, not the case for higher-dimensional systems.
Numerical approximations computed by symplectic methods can be viewed as exact solutions
of slightly-perturbed Hamiltonian systems. The computed trajectory is valid if the difference
between the hamiltonian H and the slightly-perturbed hamiltonian H̃ is considerably small.

Most of the usual numerical methods, like the primitive Euler scheme and the classical
Runge-Kutta scheme, are not symplectic integrators. The Störmer-Verlet method is a time-
reversible and symplectic integration method that is used for MD.

The Störmer-Verlet integration method The standard form of the Störmer-Verlet
method for the integration of Newton’s equations is described by (2.2), where δt is the sample
time (or time step), n is the current simulation step at time tn = n δt, and xni := xi (tn)3.

xn+1
i = 2xni − xn−1

i + Fn
i

mi
(δt)2 (2.2)

This method has two disadvantages. First of all, large rounding errors can be produced
during the addition of the small (δt)2 Fn

i /mi with the large terms 2xni and xn−1
i . Second,

this method does not provide the velocity. Then, the velocity has to be approximated using
vni =

(
xni − xn−1

i

)
/2δt. [17]

There are two variants of the Störmer-Verlet that allow to obtain the velocity: the leapfrog
scheme, and the so-called Velocity-Störmer-Verlet method (a.k.a Velocity-Verlet). Both meth-
ods reduce the effect of rounding errors, but the leapfrog provides the position and velocity
at different times. The standard form of the Velocity-Verlet method is described by (2.3) and
(2.4).

xn+1
i = xni + vni δt+ 1

2
Fn
i

mi
(δt)2 (2.3)

3Analogously for vi and Fi.
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2.1. THE MOLECULAR DYNAMICS METHOD

vn+1
i = vni + 1

2
Fn
i + Fn+1

i

mi
δt (2.4)

Implementations of the Velocity-Verlet can save memory resources by reusing the vector
F. This implies that the velocity has to be computed in two different steps. Let vn+1/2

i be
the intermediate computation of the velocity, then the velocity vni is computed as:

vn+1/2
i = vni + 1

2
Fn
i

mi
δt (2.5)

vn+1
i = vn+1/2

i + 1
2

Fn+1
i

mi
δt, (2.6)

where Fn+1
i is computed in between by evaluating the force field with the particles already

moved to the position xn. After velocities and positions have been updated, the algorithm can
continue computing energies and other derivative quantities. Figure 2.1 shows the sequence
and resources used by the modified Velocity-Verlet integration scheme.

x
v
F

n-1 n+1n n-1 n+1n n-1 n+1n n-1 n+1n n-1 n+1n

Figure 2.1: Evolution and resource usage of the modified Velocity Störmer-Verlet. [17]

2.1.2 Force field

MD simulations use a force field to compute the potential energy of a system of particles.
The force field is a specific set of functions and parameters that have been obtained not only
from experimental measurements but also from theoretical calculations in quantum mechanics.
This approximation makes feasible the simulation of biological systems, since such systems
involve a big set of atoms and would demand high computational resources to solve them by
using principles of quantum mechanics. Among the most commonly used potential energy
functions are the AMBER, CHARMM, GROMOS and OPLS/AMBER force fields.

The total potential energy in an additive force field is defined by the contribution of the
bonded and non-bonded interactions. The bonded interactions are intermolecular interactions
restricted to less than three bonds between particles. Bonded interactions have three terms:
bond, angle and torsion. Some force fields may also include the hydrogen bonds. On the
other hand, non-bonded interactions are long range interactions that include many interac-
tions per atom, so it is more computational intensive. Simulations are commonly limited
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2.1. THE MOLECULAR DYNAMICS METHOD

to pairwise energies, since the computation of many-body energies are even more resource
and time demanding. Examples of pairwise energies are the van der Waals interaction and
the electrostatic interaction. Figure 2.2 shows some of the models that are used to compute
the stretching (bonds), bending (angles), dihedral (torsion), and non-bonded terms of the
potential energy.

a) b)

r

E = ∑
bonds kb (rij − r0)2 E = ∑

angles kθ (θij − θ0)2

c) d)

rij
i j

E = ∑
torsionsA (1 + cos (nτij + φ))

E =
∑
ij

−Aij
r6
ij

+ Bij

r12
ij︸ ︷︷ ︸

+
∑
ij

qiqj
rij︸ ︷︷ ︸

van derWaals Coulomb

Figure 2.2: Potential energy models: a) Bonds, b) Angles, c) Torsions, d) Non-bonded.[29]

Equation 2.7 describes the total potential V (x) due to only pairwise potentials Uij (rij)
in a set of N particles. In this case, the potential Uij (rij) is a function depending on the
distance rij between particle i and particle j. Repulsive forces between particles result from
positive potential energies, while attraction results from negative potentials. The total force
that acts over particle i is, by definition, the negative gradient of the potential energy with
respect to its position xi, as described by (2.8).

V (x) = V (x1, ...,xN ) =
N∑
i=1

N∑
j>i

Uij (rij) (2.7)

9



2.1. THE MOLECULAR DYNAMICS METHOD

Fi (x) = −∇xiV (x) =
N∑
j 6=i

(
∂

∂rij
Uij (rij) rij

)
(2.8)

The total force can be obtained from the contribution of single pairwise forces excluding
interactions with the same particle. The pairwise force is described by (2.9).

Fij = ∂

∂rij
Uij (rij) rij (2.9)

The distance vector between particle i and particle j is defined as rij := ‖xi − xj‖, and
the squared magnitude of the distance r2

ij = |rij |2 can be computed using (2.10), where xi [d]
denotes the dth component of the position of particle i.

r2
ij =

∑
d=1,2,3

(xi [d]− xj [d])2 (2.10)

r2
ij = (xi [1]− xj [1])2 + (xi [2]− xj [2])2 + (xi [3]− xj [3])2 (2.11)

2.1.3 Boundary conditions

Boundary conditions define the behavior of the system in the border of the simulation box.
There are two main groups of boundary conditions:

• Isolated Boundary Conditions (IBC) are suitable for the study of clusters and
molecules. The system with N particles is in vacuum, where particles only interact with
each other, and it is assumed that they are completely isolated in the universe, but they
only interact with an external force.

• Periodic Boundary Conditions (PBC) is normally used to study liquids and solids.
The set of particles are grouped in a super cell that is surrounded by the images of
the same super cell. It means that particles inside the super cell not only interact with
others in the super cell but also with those in the neighbor cells. A particle leaving the
super cell will appear in the opposite side of the simulation box.

The simulation domain is often assumed rectangular Ω = [0, L [1]]× [0, L [2]]× [0, L [3]].

Minimum Image Convention in periodic systems In periodic systems, the use of
replicated images leads to increase the complexity, because the new system is theoretically
infinite, and the particles in the simulation box has to interact not only with those in its box,
but also with all others in the images. To simplify the search of interacting pairs, the minimum
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2.2. NON-BONDED INTERACTIONS

image convention assumes that interactions at a distance greater than half the simulation box
are neglected.

Equation 2.12 describes the condition used to compute the components of the distance
vector rij . Figure 2.3 shows a set of particles moving in a 2-D periodic system with PBC,
and a subset of particles that are selected by the minimum image convention. Note that the
particles wrap in the simulation box when going outside.

rij [d] =


xi[d]− xj [d]− L if (xi[d]− xj [d]) > L/2

xi[d]− xj [d] + L if (xi[d]− xj [d]) < −L/2

xi[d]− xj [d] otherwise

(2.12)

a) b)
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Figure 2.3: Particles in a 2-D periodic system. a) Moving and wrapping. b) The minimum image
convention.

2.2 Non-bonded interactions

2.2.1 Van der Waals interactions

The van der Waals interaction describes the effects of polarization by defining the attractive
and repulsive forces due to instantaneous induced dipoles between atoms, molecules and
surfaces. These instantaneous dipoles are caused by a shortly redistribution of electrons in
the electronic cloud of non-polar molecules. The redistribution is a consequence of quantum
mechanics, which makes these interactions probabilistic. The short-range attraction and
repulsion between non-polar molecules are not as strong as the chemical bonds, but play a
fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer
science, nanotechnology, surface science, and condensed matter physics. This phenomenon is
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2.2. NON-BONDED INTERACTIONS

the only intermolecular force present between non-polar species such as helium, nitrogen, or
methane as a few examples. Without the van der Waals force, there would be no attractive
force between these molecules and they could not be obtained in liquid form.

The van der Waals interactions are mainly modeled by the Lennard-Jones potential, but
there also exists the Exponential-6 potential. Figure 2.4 shows the plot of these potentials
with normalized parameters.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
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r [A]

U
 [k

ca
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]

Van der Waals interactions

 

 
Lennard−Jones 6−12
Exponential−6

Figure 2.4: Van der Waals interactions: Lennard-Jones 6-12 and Exponential-6 potentials with
normalized parameters (εij = 1 and σij = 1).

2.2.1.1 Lennard-Jones 6-12 potential

The Lennard-Jones (LJ) potential energy is used to model van der Waals interactions. The 6-
12 configuration is mostly used for intermolecular interactions, whereas others like the LJ 1-4
is mostly used for intramolecular interactions. The potential and force functions are described
by (2.13) and (2.14), respectively.

ULJij = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 (2.13)

FLJ
ij = 24εij

2
(
σij
rij

)12

−
(
σij
rij

)6
 1
r2
ij

rij (2.14)

The parameter εij is the minimum of the potential or the depth of the potential well, and
σij is the zero-crossing of the potential function. Both parameters are determined by the type
of each particle and can be calculated from the interatomic parameters εii and σii applying
the Lorentz-Berthelot mixing rule, which states that σij = 1

2 (σii + σjj) and εij = √εiiεjj .
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The Lennard-Jones potential has a strongly attractive term r−12 that decays quickly at
short distances, and a smoother repulsive term with less magnitude −r−6 that decays slower
and dominates the middle and long range.

2.2.1.2 Exponential-6 potential

The modified-Buckingham or Exponential-6 (Exp-6) potential energy function has the advan-
tage over Lennard-Jones and others like the Kihara potential, in that the exponential repulsive
potential seems more realistic than a simple power law [10]. However, it is not usually im-
plemented to describe van der Waals interactions because of its higher computational cost.
Besides the parameters εij and σij , the Exp-6 function also has an extra parameter ς, which
is the repulsive-wall steepness parameter. For ς = 12, the Exp-6 potential approximates the
LJ 6-12 potential at long distances. The Exp-6 potential is described by (2.15).

UExp6
ij = εij

 6
ς − 6 exp

(
ς

(
1− rij

σij

))
− ς

ς − 6

(
σij
rij

)6
 (2.15)

2.2.2 Electrostatic interactions

Polar molecules are permanent dipoles with positive and negative charges on their ends,
which produce a strong intermolecular interaction called electrostatic interaction. The charged
particles (ions) are modeled in MD as punctual charges centered in a spherical rigid body.
The repulsion or attraction is determined if the sign of the charges is the same or opposite,
respectively. This phenomenon is mathematically represented by the Coulomb potential in
(2.16) and the Coulomb force in (2.17), where ke = 1/4πεo = 8.987551 · 109N ·m2/C2 is the
Coulomb constant and εo ≈ 8.854187 · 10−12 F ·m−1 is the vacuum permittivity.

UCij = ke
qiqj
rij

(2.16)

FC
ij = 1

4πεo
qiqj
r3
ij

rij (2.17)

In contrast to the Lennard-Jones 6-12 potential that decays at a rate of –r−6, the r−1

term indicates that the electrostatic potential is a long-range intermolecular potential. This
potential has a computational complexity of O

(
N2) for isolated systems, but is much higher

for periodic systems because of its slow convergence. The complexity of long-range potentials
can be reduced using mesh-based methods, tree methods, or the classical Ewald summation.
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2.2.2.1 Ewald summation for electrostatic potential

The charge distributions are described by delta functions in the electric field, but the Ewald
summation method adds and subtracts diffuse charge distributions in the form of Gaussians
around those punctual charges in order to decompose the Coulomb potential into summations
that converge not only rapidly but also absolutely [25]. The general idea of Ewald summation
is: sum screened particle interactions in direct space for the short-range part, and subtract
compensating potential in reciprocal space for the long-range part. This method only applies
to periodic systems that are electrically neutral. Equation 2.18 describes the three terms
involved in the Ewald summation

V Ew = V o + V d + V r, (2.18)

where V o is the self potential, V d is the direct-space potential, and V r the reciprocal-space
potential.

Self potential The self potential V o described by (2.19) is computed only once during the
simulation if and only if the number of particles, the charge of each particle, and the parameter
α remains constant. If V o remains constant, then the force Fo

ij is null.

V o =
N∑
j=1

−α√
π
q2
j (2.19)

The parameter α ≡ 1/
√

2σ, where σ is the standard deviation of the Gaussian distribution,
can be chosen to reduce the computational complexity to O

(
N1.5) by balancing the load

between the short-range and long-range parts.

Direct-space potential The direct-space potential presented in (2.20) represents the short-
range part of the Coulomb potential, and converges quickly in the direct space. The pair force
is given by (2.21).

V d =
N∑
i=1

N∑
j>i

Udij (rij) =
N∑
i=1

N∑
j>i

qiqj
rij

erfc (αrij) (2.20)

Fd
ij = qiqj

r3
ij

( 2α√
π
rij exp

(
−α2r2

ij

)
+ erfc (αrij)

)
rij (2.21)

The function erfc (x) is the complementary error function defined as erfc (x) := 1 −
erf (x), and erf (x) = 2√

π

´
e−u

2
du is the error function.

14



2.2. NON-BONDED INTERACTIONS

Reciprocal-space potential The reciprocal-space potential is the long-range part of the
Coulomb potential. The long-range potential and force converge quickly in the reciprocal
space and are described by (2.22) and (2.23), respectively.

V r = 1
2πV ol

∑
m 6=0

exp
(
−π2m2α−2)
m2 |Sj (m)|2 (2.22)

Fr
ij =

 1
2πV ol

∑
m 6=0

exp
(
−π2m2/α2)
m2

m (2.23)

The variable V ol is the volume of the simulation box, the vector m is the reciprocal-space
vector, and the vectors Sj (m) are defined as

Sj (m) =
N∑
j=1

qj exp (2πim · rj) =
N∑
j=1

qj exp (2πi (m [1] rj [1] + m [2] rj [2] + m [3] rj [3])) .

The Particle Mesh Ewald (PME) is a grid method that reduces the complexity of the
Ewald summation to O (N log (N)) using a 3-D Fast Fourier Transform (FFT) over a regular
grid in the reciprocal space. The charge of each particle is interpolated to its surrounding
grid points using splines to build the potential surface. The resulting force over each point is
interpolated to each particle. The Smooth Particle Mesh Ewald (SPME) method is a variant
of the PME that uses B-splines for the interpolation. The PME method is more efficient
for systems with “smooth” variations in density, or continuous potential functions. Localized
systems or those with large fluctuations in density may be treated more efficiently with the
fast multipole method of Greengard and Rokhlin. [17]

2.2.3 Truncation of the potential energy function

The cutoff radius rcut is a very simple method to reduce computational complexity by skip-
ping particles located outside the cutoff sphere centered at the current particle, i.e. only
compute forces for those particles with a separation distance less than the cutoff radius. The
computational complexity is O

(
N2) for isolated systems, but it tends to infinite for peri-

odic systems. This method results especially useful for the short-range pair interactions like
the Lennard-Jones potential and the direct-space Ewald summation because they converge
quickly in direct space. The cutoff radius is the base of other successful methods like the
Linked Cell method for spacial decomposition.

Equation 2.24 describes the redefinition of the pairwise Lennard-Jones 6-12 potential,
which has been truncated using the cutoff radius. Likewise, the total Lennard-Jones potential
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energy and force are redefined by (2.25) and (2.26), respectively.

U(rij) ≈


4εij

[(
σij

rij

)12
−
(
σij

rij

)6
]

if 0 < rij ≤ rcut

0 otherwise
(2.24)

V LJ (x1, ...,xN ) ≈
N∑
i=1

N∑
j = i+ 1
rij < rcut

4εij

(σij
rij

)12

−
(
σij
rij

)6
 (2.25)

FLJ
i ≈

N∑
j = 1, j 6= i

rij < rcut

24εij

2
(
σij
rij

)12

−
(
σij
rij

)6
 1
r2
ij

rij . (2.26)

The value of parameters like σ and α determine how quickly these functions converge. A
simulation using only the Lennard-Jones potential can define rcut > 2.5σmax,4 but this could
not be appropriate for other potentials. However, it is still valid for the direct-space Ewald
summation if the value ofα makes it converge more quickly than the Lennard-Jones potential.

The truncation of the potential function has the disadvantage that it introduces noise into
the system. To reduce this undesirable effect, a shift5 function S (rij) can be defined to softly
decrease the function from some specific distance until reaching zero at distance rcut.

2.3 Software packages for Molecular Dynamics simulations

There are several software packages in the market for molecular simulations using the MD
method. Most of them are written in high-level programming languages, are optimized to
perform parallelization in clusters and supercomputers, and provide interfaces for quantum-
mechanics packages and for visualization tools. Free software for visualization of the resulting
dynamics can be downloaded for free from the Internet. Software such as VMD (Visual Molec-
ular Dynamics [23]), which is fully compatible with NAMD. Other software for visualization
and modeling can be found in the Linux repository. Here there is a short list and description
of some of the most used software:

NAMD The Not (just) Another Molecular Dynamics program was developed by the The-
oretical and Computational Biophysics Group in the Beckman Institute for Advanced
Science and Technology at the University of Illinois at Urbana-Champaign. It can be

4Assuming that values below ULJ
ij (2.5σij) ≈ −ε/6 can be neglected

5The shift function is the addition to the original function. A switch function multiplies the original function,
is a special case of the shift function. [39]
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integrated with VMD [23]. It uses a combination of spatial decomposition and force
decomposition techniques to generate a high degree of parallelism. (See [34])

GROMACS The Groningen Machine for Chemical Simulation is written in ANSI C and
can be easily recompiled to work with single or double precision. (See [40])

LAMMPS The Large-scale Atomic/Molecular Massively Parallel Simulator is a classical MD
code and uses spatial decomposition techniques by partitioning the simulation domain
into small 3-D subdomains.

PROTOMOL is a high-performance object-oriented framework written in C++ for the
rapid prototyping of novel algorithms for MD and related algorithms. (See [27])

MMTK The Molecular Modeling Toolkit is a Python library that implements common
molecular simulation techniques, with an emphasis on biomolecular simulations. (See
[22])
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3. Hardware Design of the FPGA coprocessor

This chapter describes the methodology followed to design the FPGA coprocessor that com-
putes the Lennard-Jones 6-12 and direct-space Ewald forces and potentials.

3.1 Design methodology

FPGAs have become a very powerful platform for rapid prototyping due mainly to their repro-
grammability. They also have increased considerably the speed and the density of resources
with the time. Current FPGAs dispose of embedded, distributed, resizable, true dual-port
memories; embedded multipliers and DSP blocks with rounding and saturation blocks; high-
speed links for Rapid-IO, Ethernet and PCI Express; PLLs, and so on. They also result less
power consuming than clusters and supercomputers.

Furthermore, new programming models are presented for FPGAs in [21] to implement
massive parallelism and distributed processing. For this and more reasons, FPGAs are suitable
to face many of the problems in the High Performance Computing that used to be dominated
by PC-clusters, multi-core ASIC microprocessors, GPUs, mainframes, custom ASICs, and
so on. For instance, recent reports about suitable floating-point computation in FPGAs
([31, 30, 32, 6]) demonstrate that they can achieve Tera FLOPS.

According to the general methodology for designs with FPGAs [5], the design starts with
an RTL (Register-Transfer Level) description for a functional solution of the problem. The
hardware design is then simulated to verify its correct functionality. Next, it is synthesized
and fitted in an FPGA to know how many resources it demands. Timing analysis is also
performed to identify bottlenecks and to analyze performance. Finally, the whole design is
validated in the application. These steps are executed in such a way that design meets every
time better the requirements of the application.

The RTL descriptions are written in VHDL and Verilog, and are simulated using ModelSim-
Altera. Matlab generates stimuli files that are read by the testbench in ModelSim to stimulate
the design. Matlab also reads simulation results, carries out comparisons with mathematical
models, and generates text and graphical reports. Altera’s Quartus II software is used for
synthesis, fitting and timing analysis. Validation of the application uses MD simulations that
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were run in a C-application also developed during this work. This application uses a simple
force field that only computes the Lennard-Jones 6-12 potential for the van der Waals inter-
actions, and the Ewald summation for the Coulomb interactions, i.e. it does not compute
bonded interactions. Figure 3.1 shows how tasks are divided between software (SW) and
hardware (HW).

Host* Initialize MD
* Initialize FPGA coprocessor
* Initialize DMA
* Update positions and velocities

* Particle positions & types
* Parameters of particle types
* Simulation parameters

* Lennard-Jones 6-12 potential
* Direct-space Ewald potential
* Force over particles

FPGA

* Compute derivative quantities
* Compute reciprocal-space Ewald
* Visualize molecular dynamics
* Write reports and plot

* Compute Lennard-Jones 6-12
* Compute direct-space Ewald Summation

Figure 3.1: HW/SW task division of the MD application.

After a study of the problem and of previous hardware implementations, the design started
with the following requirements:

• Computation of van der Waals interactions using the Lennard-Jones 6-12 force and
potential.

• Computation of the short-range part of electrostatic interactions using the direct-space
Ewald summation.

• Use of the basic O
(
N2) algorithm.

• 3-D simulation box with maximum size of 256 Å, where each coordinate can be in range
±128 Å.

• Capacity to store and process more than 1000 particles and more than 10 elements.

• Periodic refolding using the minimum image convention.

• Store separately each potential V LJ and V d.

• The system should be connected to a computer through a high-speed IO link (e.g. USB,
PCI, PCI Express) to reduce communication overhead.

• Accuracy comparable with software simulations using single-precision data.

• Operating frequency greater than 100 MHz.

20



3.2. VARIABLE TRANSFORMATION OF THE POTENTIAL AND FORCE
FUNCTIONS

• Acceleration of MD simulations is desired, but optional.

Following sections present the bottom-up design flow starting from the functional building
units and finishing with a system level description. The first idea is to design an IP core called
LJEwDir core that computes the short-range part of non-bonded interactions in direct space.
This core consists of a datapath, a controller and interfaces for communication with master
devices. The top level description is the final implementation of the design on an FPGA that,
in this case, integrates an Avalon memory-mapped system that instantiates the LJEwDir core.
Before the explicit hardware design, some mathematical treatments are presented in order to
obtain an optimal implementation of the potential energy functions.

3.2 Variable transformation of the potential and force func-
tions

Direct evaluation of the potential and force functions in hardware is found very difficult
because of their complexity. Moreover, each operation in an FPGA represents area, and the
problem grows when some functions like the power function and trigonometric functions use
recurrence in software to bring results. For this reason, the functions should be reorganized
in something more convenient that lets use polynomial interpolation to simplify the hardware
implementation while still keeping accuracy.

This work purposes a novel method to simplify the computation in hardware of the short-
range part of non-bonded interactions. The method consists in applying variable transforma-
tions to reduce the number of variables in the function, in such a way that a family of curves
depending of two variables is reduced to a single curve.

Sections 3.2.1 and 3.2.2 present the transformations applied to the potential function
U (r) and the force function F (r) (scalar part of F (r)). In general, the transforming variable
w is computed operating the squared distance between pairs of particles with some other
parameter. It is followed by the definition of the functions u (w) and f (w) that are part
of the functions U (r) and F (r), respectively. The new U (w) and F (w) are left as simple
multiplications of u (w) and f (w) with other parameters.

This method brings several advantages:

• The remaining expression for U (w) and F (w) requires only multiplications between
some constants and the interpolated functions u (w) and f (w). It is especially conve-
nient for floating-point arithmetic, since the multiplication is not so expensive as the
addition/subtraction is, only if the FPGA disposes of available embedded multipliers or
DSP blocks.
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• It uses only one interpolant per function, which is different to other reported meth-
ods that interpolate several powers of r−1 for further use in the force or the potential
functions.

• It uses a simple multiplication with r2, and so avoiding inverses, squared roots and other
complex functions.

• The main advantage comes with the fact that the evaluation u (w) and f (w) does not
depend anymore on r2. It lets trace a curve that can be bounded in the relevant interval,
which can be split in several subintervals to optimize interpolations.

3.2.1 Transformation of Lennard-Jones 6-12

The LJ functions are transformed using wLJij = σ−2
ij r

2
ij , leading to the definition of the functions

uLJij

(
wLJij

)
and fLJij

(
wLJij

)
as described by (3.1) and (3.2), respectively.

uLJij

(
wLJij

)
= 4

[(
wLJij

)−6
−
(
wLJij

)−3
]

(3.1)

fLJij

(
wLJij

)
= 24

[
2
(
wLJij

)−7
−
(
wLJij

)−4
]

(3.2)

Replacing (3.1) and (3.2) within the potential and force function results in (3.3) and (3.4),
respectively.

ULJij (rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
→ ULJij

(
wLJij

)
= εij u

LJ
ij

(
wLJij

)
(3.3)

FLJij (rij) = 24εij

2
(
σij
rij

)12

−
(
σij
rij

)6
 1
r2
ij

→ FLJij

(
wLJij

)
= εijσ

−2
ij fLJij

(
wLJij

)
(3.4)

Hence, the system will only require the values εij and σ−2
ij to compute the functions per-

forming multiplications with r2
ij and with the interpolated functions uLJij and fLJij . These

parameters are particle type dependent and can be easily computed by the host at the begin-
ning of the simulation, and then loaded to system’s memory.

3.2.2 Transformation of the direct-space Ewald summation

Similarly to the transformation of the Lennard-Jones 6-12 potential, the direct-space Ewald
functions are transformed using wdij = α2r2

ij . Equations 3.5 and 3.6 describe the functions
udij

(
wdij

)
and fdij

(
wdij

)
.
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udij

(
wdij

)
=
erfc

(√
wdij

)
√
wdij

(3.5)

fdij

(
wdij

)
=
( 2√

π

√
wdij exp

(
−wdij

)
+ erfc

(√
wdij

))(
wdij

)−3/2
(3.6)

Replacing (3.5) and (3.6) within the potential and force function results in (3.7) and (3.8),
respectively.

Udij (rij) = qiqj
rij

erfc (αrij)→ Udij

(
wdij

)
= qiqjαu

d
ij

(
wdij

)
(3.7)

F dij (rij) = qiqj
r3
ij

( 2α√
π
rije

−α2r2
ij + erfc (αrij)

)
→ F dij

(
wdij

)
= qiqjα

3 fdij

(
wdij

)
(3.8)

In this case, the system will only require the value of qiqjα and α2. In some simulations,
the value of α may change, so it will require that the host recomputes the values of qiqjα and
loads them again into system’s memory.

3.3 Polynomial interpolation using pseudo-floating-point rep-
resentation

The computation of some functions such as erfc (x), x−12, or exp
(
−x2) /x is very expensive

in hardware. In order to save hardware and increase performance and accuracy, it is pur-
posed the use of polynomial interpolations using pseudo-floating-point representation1. This
representation is used to perform fixed-point arithmetic with normalized variables that keep
their values in a tight range while keeping apart a reference exponent that denormalizes the
variables for the respective range.

The idea behind this method is to fit intervals of a function y (x) by using polynomials
pn (x), where n is the order. The polynomial pn (x) has n + 1 coefficients ck with k ∈ [0, n].
Evaluating the polynomial using the factorization presented for the third-order polynomial in
(3.9) reduces rounding errors that can be produced due to high-order powers.

p (x) = ((c3x+ c2)x+ c1)x+ c0 (3.9)

The following methodology was used to fit the target functions u (w) and f (w) for the LJ
and the direct-space Ewald summation:

1Other interpolation methods for these energy functions are found in [15, 18].

23
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1. Evaluate the target function y (x).

2. Define logarithmic intervals2 in powers of two3, e.g. setting the logarithmic break points
at
[
2−3, 2−2, 2−1, 20, 21]. If the range is defined as

[
2expmin, 2expmax

)
then the total

number of logarithmic intervals Plog is given by Plog = expmax− expmin.

3. Define linear intervals inside each logarithmic interval. The number of inner linear
intervals Plin should be a power of two to simplify the search in hardware; thus, Plin =
2llin corresponds to the number of linear intervals using llin bits. The total number of
partitions P is then given by

P = Plog ∗ Plin = (expmax− expmin) ∗ 2llin .

4. Select a set of training points yt (xt) per partition, whicht will be used by the algorithm
for polynomial fitting.

5. Normalize the target function at the training points in such a way that the normalized
values yt (xt) span the range [−2, 2). This requires that all points in the range are
divided by the next power of two 2expy with respect to the maximum absolute value of
y (x) in the current partition. The exponent expy of the normalizing power of two is
stored separately for further denormalization.

6. To improve numerical properties of both the polynomial and the fitting algorithm, the
input points xt are transformed into x̄t by centering and scaling from the range

[
2a, 2a+1)

in the current partition to the range [0, 2) as described by (3.10). This process produces
well-conditioned polynomials that require less order than the ill-conditioned, and are
more accurate.

xt = (xt − 2a) ∗ 21−a, xt ∈
[
2a, 2a+1

)
(3.10)

7. Select the order for all polynomials, and perform polynomial fitting of yt (xt) in all
partitions.

8. Finally, implement the fixed-point model and evaluate precision. The fixed-point model
is built converting the coefficients ck of all polynomials and the transformed input points
x̄t to a signed fixed-point representation. The conversion requires a rounding method
and a word length corresponding to the hardware capabilities. The model should operate
like the target hardware does.

2Logarithmic intervals are used here because all target functions decay exponentially. Other functions such
are sin (x) can be interpolated using only linear intervals.

3The powers of two are friendly with binary arithmetic.
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Figure 3.2 shows an example of how a function evaluated in the range [2−3, 21) is divided into
logarithmic partitions, and likewise each logarithmic partition is divided into four inner linear
intervals.

20 212-12-22-3
x

y(x)

Figure 3.2: Example of logarithmic and inner linear partitions in range [2−3, 21).

The above steps where performed in Matlab using the function polyfit for polynomial
fitting, which uses an algorithm based on least squares. Matlab also has an embedded toolbox
for fixed-point modeling called Fixed Point Toolbox. This toolbox has all the necessary
functions and data types to play with the fixed-point representation, and even with the
floating-point representation. Here some features of the toolbox:

• Data types support up to 65536 bits.

• Rounding and overflow methods. For rounding: ceil, floor, fix, round, nearest and
convergent.

• Binary-point and bias-scale representations.

• Built-in single- and double-precision data types.

• Conversion between binary, hex, double and built-in integer representations.

• Relational, logical and bit-wise operators.

• Logging of minimum, maximums, overflows and underflows.

• Matrix and statistical functions. Many other Matlab functions support the fixed-point
data type (e.g. plot).

• Compatible with the Matlab’s Simulink tool.

In order to avoid overdimensioning of the interpolating system while still keeping accuracy,
a parametric analysis was performed evaluating accuracy for all the u (w) and f (w) target
functions with respect to the interpolation order, word length, number of linear partitions and
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rounding method. Each parameter represents some cost in hardware: “the main cost for finer
intervals is in block RAMs, while the main cost for higher order interpolation is in hardware
multipliers and registers”. [20]

The simplest rounding method in hardware is truncation, which is equivalent to the
method floor in Matlab. Other methods require extra hardware. It is very important to
mention that the FPGA used in this work contains 18-bit DSP blocks that implement the
rounding-to-nearest (equivalent to nearest) and rounding-to-even (equivalent to convergent)
methods for words of maximum 18 bits.

Figure 3.3 shows results of one of these parametric analysis using 1000 training points
per partition to interpolate fLJ

(
wLJ

)
using the convergent rounding method and 8 linear

partitions. Here, the mean and variance of the relative error are plotted with respect to the
polynomial order and the word length. The acceptable region corresponds to all combina-
tions with mean below 10−4 and variance below 10−5. These values were chosen arbitrarily
considering error propagation.
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Figure 3.3: Relative error for the interpolation of fLJ
(
wLJ

)
with respect to the interpolation order

and the word length for 8 linear partitions and convergent rounding. a) Mean, b) Variance.

Note that increasing the word length after certain point does not improve precision for
a given polynomial order. Note also that increasing the polynomial order tends to improve
precision exponentially, but it is not totally valid for short words. During the polynomial
evaluation, all partial values stayed in the range [−4, 4), which means that a 3-bit integer
part is enough to represent such partial variables.

After this exhaustive task, the parameters presented in table 3.1 were chosen to continue
with the design. The selected range was

[
2−7, 24), i.e. expmin = −7, expmax = 4 and 11

logarithmic partitions. The lower limit of this interval satisfies simulations with e.g. σmax =
2.5 and rmin = 0.25. The upper limit is chosen where all functions tend to be less than the
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error bound ε = 10−3. For a lower error bound, expmax has to be increased.

Table 3.1: Final interpolation parameters.

Parameter Value Parameter Value
Word length 18 Order 3
Fractional length 15 Range 2[−7,4)

Exponent length 7 Logarithmic partitions 11
Signedness Signed Inner linear partitions 8 (3 bits)
Rounding Convergent Total number of partitions 88

Figure 3.4 shows the denormalizing exponents and the coefficients of each of the 88 poly-
nomials used to interpolate the function fLJ

(
wLJ

)
. Note that the value of all coefficients

are constraint to [−2, 2), and that the coefficient c0 is mostly the biggest. Figure 3.5 shows
how looks the target function after normalization, as well as how those values are moved to
the range of the normalized input xt. An histogram of errors shows that most errors are less
than 10−4.
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Figure 3.4: Polynomial coefficients and exponents for the interpolation of fLJ
(
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)
. a) Coefficients,

b) Exponents.

3.4 Datapath of the LJEwDir core

This section presents the datapath of the LJEwDir core and its functional building units. The
datapath shown in figure 3.6 is basically a deep functional pipeline with distributed memory
that computes in parallel forces and potentials of Lennard-Jones 6-12 and direct-space Ewald
summation taking into account the variable transformation method presented in section 3.2,
and implementing the interpolation method seen in section 3.3.
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Figure 3.6: Overview of the functional pipeline.

One of the main advantages that pipeline architectures bring is their very high throughput.
On the other hand, a little disadvantage is its latency4. The efficiency of the pipeline is given
by (3.11). The more the number of cycles of computation, the higher the efficiency.

4However, the latency has in this case a very low impact in the efficiency because this system is made to
compute many more cycles than the fixed latency. For instance, a pipeline with 100 cycles of latency that
needs to perform 10000 computations has an efficiency of 99.0099%.
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E = #computations
latency + #computations ∗ 100% (3.11)

The datapath is divided into three stages:

1. The first stage computes the squared distance after applying the minimum image con-
vention to the coordinates of the current pair of particles. The Particle Memory stores
the position and the type of all particles in the simulation.

2. The interpolation engines are located in the heart of the datapath. Around the inter-
polation engines, several floating-point multipliers and Particle Memories are connected
to perform the variable transformations and to complete the computation of the pair
potentials and forces from the interpolated functions.

3. The last stage is the accumulation of the pair potentials and the accumulation of the
resulting force over each particle. This stage has a floating-point adder to reduce the
scalar forces FLJij and F dij , and then multiplies the result by the components of rij to
get the components of Fij . The resulting force Fi is finally stored in the Force Memory,
while the potentials are stored in their respective registers.

The datapath uses hybrid arithmetic, i.e. it uses not only floating-point arithmetic, but also
different fixed-point representations. From now on, when talking about floating-point data
representation it refers to the 32-bit single-precision representation in the IEEE-754 standard,
which is compatible with most computers.

The datapath has two different clock domains: an internal clock for the Functional
Pipeline, and an external clock to read/write from/to the dual-port memories and regis-
ters for variables and parameters. This technique pretends to improve timing by reducing the
load on the internal clock, and so the pipeline achieves higher operating frequencies.

3.4.1 Interpolation engines

The interpolation engines are the hardware responsible for the interpolation of the potential
and force functions. They are implemented considering the values presented in table 3.1. The
Interpolation Engine (IE) is a pipelined arrangement of Multiplier-Adders (MAD) to evaluate
the polynomial p (x) according to the coefficients ck of each polynomial. These coefficients are
stored in separate ROMs called CkROMs, while the denormalizing exponent expy is stored
in the ExpROM. At the end of the pipeline, the Interpolation Engine converts from fixed
point to floating point taking the value of p (x) and expy. This fixed-point processing with
a separate exponent is denominated in this work as pseudo-floating-point representation.
This representation avoids the use of shifting operations to align data, while still keeping
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high accuracy. Figure 3.7 shows the block diagram of the third-order Interpolation Engine
connected to the Interpolation Input decoder.
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Figure 3.7: Block diagram of the Interpolation Engine connected to Interpolation Input decoder.

The size of the memories is given by the polynomial order, number of partitions, and word
length of the coefficients and exponents. Let P be the number of partitions, n the order of
the polynomial, lcoeff the number of bits of each coefficient, and lexp the number of bits of the
exponent, then the total number of bits that the Interpolation Engine implements in its ROM
memories is P ∗ ((n+ 1) ∗ lcoeff + lexp). The total number of MADs in each Interpolation
Engine is n. The fix_multround units in the MADs are implemented using slices of 18-bit
DSPs, which contain integer multipliers and rounding units. Increasing P and n improves
accuracy but has an impact in memory and DSPs.

Interpolation Input decoder The Interpolation Engine uses the integer variable px to
select the polynomial that matches the partition containing the real input x. However, the
IE evaluates the centered and scaled fixed-point x. To perform this transformation, the
Interpolation Input (II) unit in figure 3.7 is located before the Interpolation Engine to provide
it with the values of px and x from a given input x. The Interpolation Input is not an integral
part of the Interpolation Engine, because px and x can be used by other Interpolation Engines.
In this work, there are two Interpolation Input units that process wLJ and wd, and four
Interpolation Engines for uLJ

(
wLJ

)
, fLJ

(
wLJ

)
, ud

(
wd
)
and fd

(
wd
)
.

Since the input x is in floating-point representation with a biased exponent E [7 : 0] and
a normalized mantissa M [22 : 0], the Interpolation Input takes advantage of this normalized
representation to simplify the decoding of the logarithmic partitions, and does not require
shift operations. It also performs saturation of out-of-range values by assigning the first and
last polynomial to px, as well as the minimum and maximum value of x (zero and approx. two,
respectively). Equations 3.12 and 3.13 describe the operations performed by the Interpolation
Input.
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px [7 : 0]


0 UE < 0

P − 1 E > expmax+Bias

{UE [3 : 0] , M [22 : 20]} otherwise

(3.12)

x [17 : 0]


000.000000000000000 UE < 0

001.111111111111111 E > ExpMax+Bias

{00, M [19 : 4]} otherwise

(3.13)

Here, UE = E − (expmin+Bias) is the unbiased exponent, Bias5 is the bias of the
exponent field in the IEEE-754 standard, and expmin is the lower exponent in the input
range. Note that the number of MSBs taken from the mantissa M to build px corresponds
to the number of bits llin assigned to the linear partitions.

3.4.2 Storage elements

The system needs to access simulation parameters and input variables to start computing the
forces and energies. The low-latency nature of this information requires that its storage is
preferable in on-chip RAM or in an external SRAM. Hence, this system uses dedicated logic
registers and on-chip 2- and 3-port memories (see figure 3.8) to store such information.

a) b)

wrdata[]
wren
wrclk

wraddress[]

rdaddress[] rddata[]
rdclk

wrdata[]
wren
wrclk

wraddress[]

rdaddress_a[] rddata_a[]
rdaddress_b[]
rdclk

rddata_b[]

Figure 3.8: Block diagram of the memories. a) 2-port memory, b) 3-port memory.

These memories are not only dual-port, but also dual-clock memories. This allows to
improve the overall performance of the datapath by establishing two asynchronous clock
domains. Information coming from and going to the Functional Pipeline works with the
denominated internal clock, while the external clock is the one used by the core’s IO bus to
write inputs and read results6. A short description of the datapath memories is presented in
the following.

5The bias for single-precision IEEE-754 data is 127.
6IO interfacing will be shown later in section 3.6
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Particle Memory The Particle Memory stores information about the position x and the
type of each particle using two internal memories called Type Memory and Coordinate Mem-
ory. This memory has three ports, because the memory is written from the external IO bus,
and the Functional Pipeline requires a pair of particles at the time. There are two different
ways to implement in hardware this kind of memory.

The first implementation utilizes two instances of the same dual-port memory, which have
a common write port, and use separate read ports. The second implementation is using just
one dual-port memory, but the read access is done using a clock 2x faster than the pipeline
clock. This work implements the first method, but with the disadvantage that it uses two
times more memory bits.

The depth of this memory depends on the maximum number of particles. The width de-
pends on the word length of each coordinate, and the maximum number of elements (number
of bits of the field type). The coordinates are stored in 32-bit fixed-point format with 8-bit inte-
ger part. The total number of bits is max (Natoms)∗ (length (type) + 3 ∗ length (coordinate)).
The length (type) was configured to 4, i.e. the system supports up to 16 different elements or
particle types.

Force Memory The Force Memory is a two-port memory located at the end of the Func-
tional Pipeline. The depth of this memory matches the depth of the particle memory to
support the same number of particles, but with the difference that the width only depends on
the format chosen for the components F [d] of the force. The size of this memory in number
of bits is max (N)∗3∗ length (force), where length (force) = 32 because of the floating-point
representation.

Parameter Memories There are three instances of the Parameter Memory spread along
the Functional Pipeline to store the values of epsilon (εij), sigma (σ−2

ij ) and charge (qiqjα).
These values are particle type dependent representing a squared 2-D memory. In order to
simplify addressing in a 1-D implementation, the maximum number of elements was chosen
to be a power of two.

The read address is driven by the signal typeij , which is no more than the concatenation
of the signals representing the type of the particle i and j. The size of this memory is
(length (type))2 ∗ length(parameter), where length(parameter) = 32 because each parameter
is stored in floating-point representation.

Registers The following parameters and variables are stored in registers: the box size (L [1],
L [2], L [3]), the cutoff radius (rcut), alpha (α2), the number of atoms (N), and the resulting
potentials (V LJ , V d).
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3.4.3 Computation of the squared distance

The computation of the Euclidian distance between pairs of particles is performed by the
Squared Distance unit. This is preceeded by the MIC unit to implement the minimum image
convention for periodic molecular systems. These units are explained in detail as follows.

3.4.3.1 Minimum Image Convention - MIC

Based on the Minimum Image Convention method presented in section 2.1.3, and recalling
(2.12):

rij [d] =


xi[d]− xj [d]− L if (xi[d]− xj [d]) > L/2

xi[d]− xj [d] + L if (xi[d]− xj [d]) < −L/2

xi[d]− xj [d] otherwise,

the MIC unit computes a single component of the distance vector rij . There are three MICs,
one for each dimension. Each MIC requires the coordinates of each particle and the box
size in the corresponding axis. According to the requirements presented in section 3.1, the
effective range of these variables allows the computation to be perfectly done in fixed-point
representation without significant loss of precision, which results very convenient because
additions, subtractions and comparisons in floating point are very hardware expensive. The
format for this representation is 8-bit integer part due to the range of ±128 Å, and 24-bit
fractional part that offers the same resolution than single-point representation for numbers
out of the range ±0.5 Å.

Figure 3.9 shows the block diagram of the MIC unit. It is built from a subtractor to
compute the difference between the coordinates, a comparator to compare with the half
length of the box, a mux to select the compensation, and an adder to apply the possible
compensation by ±L. The components of the distance are given in fixed-point representation
to the Squared Distance unit, and are further converted to floating point to compute the
components of the pair force.

MIC

xi[d] a

b

+

mux

xj[d]

abs
a>b

0
1

+

+

sign

L[d]
0

r[d]

L/2[d]

33

33

33
33

33

33

33

33

32

L[d]

33

Figure 3.9: Block diagram of the MIC unit.
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3.4.3.2 Squared Distance

The Squared Distance unit computes the squared magnitude r2
ij of the distance vector rij

based on its components and indicates if this is inside the cutoff radius with the flag inside_cutoff .
The inputs r [d] coming from the MIC block are squared using DSP blocks and then are
summed up using a parallel adder.

The cutoff radius rcut (also in fixed point) is also squared using DSPs and then is compared
with the squared distance r2

ij by an unsigned comparator. The signal inside_cutoff comes
from this comparator, and is high for pairs inside the cutoff radius. This flag enables the
computation and accumulation of potentials and forces further in the Functional Pipeline.
Finally, the squared distance is converted to floating point from its full-resolution fixed-point
representation, because this variable is going to be multiplied with floating-point data. Figure
3.10 shows the block diagram of the Squared Distance unit.

SquaredDistance

X2
r[1]

X2
r[2]

X2
r[3]

r[1]2

r[2]2

r[3]2

X2rcut rcut2

+

+

+
uns, w=64, f=48

r2

fix2single

a>b
a
b

r2

inside_cutoff

32

32

32 64

64

64

64

64

32

32

Figure 3.10: Block diagram of the Squared Distance unit.

3.4.4 Floating-point units

The floating-point arithmetic used in the FPGA coprocessor requires only three basic opera-
tions: multiplications, additions and accumulations. This are implemented using the FPSin-
gleMult, FPSingleAdder and FPSingleAcc units.

3.4.4.1 Single-precision floating-point multiplier and adder

Figure 3.11 shows the block diagram of the FPSingleMult unit and the FPSingleAdder unit.
They are based on Altera’s IPs for floating-point arithmetic (altfp_mult and altfp_addsub),
which are optimized to offer high performance, implement exception handling, and can be
parameterized to fit the design requirements in terms of latency and precision.

3.4.4.2 Single-precision floating-point accumulator

Although Altera has a wide catalog of IPs for floating-point, it does not have one for accu-
mulation. Therefore, it has been built by using the components shown in figure 3.12, which
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b[31:0]
clk

a[31:0]
result[31:0]

FPSingle(Mult/Adder)

Figure 3.11: Block diagram of the floating-point units for multiplication and addition.

are two format converters (single2fix and fix2single) and the Altera’s altaccumulate for the
pipelined accumulation. The internal fixed-point representation uses 128-bit words with 64-
bit fractional part. This allows to accumulate full-resolution single-precision data in the range
±
(
2−41, 263).

FPSingleAcc

altaccumulate
data result

signed
w=128
f=64

signed
w=128
f=64

resultdata

accen

sload0
1
mux

zero

sload

fix2single
128

single2fix
3232

32

128

Figure 3.12: Block diagram of the FPSingleAcc unit.

This unit is relative big in comparison to others in the design, because of its internal
128-bit accumulator. There are five accumulator in the Functional Pipeline: two of them
accumulate pair potentials Uij to compute the total potential V ; and other three accumulate
pair forces Fij [d] to obtain the resulting force Fi [d].

The block has two control signals: sload loads data in the internal accumulator to restart
the accumulation; and accen enables accumulation of new data by selecting between the input
data and zero.

According to the dataflow in the Functional Pipeline, data are initially loaded using the
sload signal, and then new data are accumulated continuously in fixed-point representation.
The floating-point value in the accumulator can be stored at any moment in a separate
register/memory. The accumulation process by adding floating-point data leads to loss of
precision when small values are added between big values. That does not happen in this
accumulator and becomes its strongest advantage, because data are aligned only before their
final storage. Other advantage is that the system does not have to bear with the latency
produced by FP adders when data are brought back from memory.

3.4.5 Floating point/Fixed point conversion

Since the system performs computations using floating-point data and different fixed-point
formats, it is necessary to carry out conversions between both formats along the datapath.
Although Altera provides IP cores for these conversions that simplify the design and that
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offer exception handling, they were not implemented here because they use many resources
and do not support all the required conversions7.

These custom converters designed in this work are not fully parameterized, and were
written specifically to solve the requested conversions to/from single-precision IEEE-754 data.
By now, only the ZERO exception is handled. Further work will be oriented to optimization,
full parameterization, and extension of exception handling. The following subsections present
the set of converters used in the LJEwDir core and their architecture.

3.4.5.1 Fixed point to Floating point converters

Four converters are used to change from two’s complement fixed-point representation to float-
ing point. The notation of the name of these converters uses sig/uns for signed/unsigned
data, w# for the word length, f# for the length of the fractional part.

fix2single_sig_w32_f24 converts rij [d] between the MIC units and the FP multipliers
that operate with Fij to obtain Fij [d].

fix2single_uns_w64_f48 converts r2
ij for further FP multiplication with σ−2

ij and α2 to
obtain the transforming variables wLJ and wd, respectively.

fix2single_sig_w18_f15 converts the resulting p (x) together with expy in the Interpola-
tion Engines to obtain y (x) in floating point.

fix2single_sig_w128_f64 converts accumulated data in the FPSingleAcc.

Figure 3.13 shows the block diagram of the generic architecture of a 32-bit fix2single convert-
ers. The idea is to get the absolute value of the input data and normalized it by aligning it
using a series of barrel shifters-to-the-left. The number of places to shift is given from priority
encoders that identify the most significant ’1’. At the end, the aligned data is part of the
mantissa; and the sign was already extracted at the beginning. The output exponent is the
result of summing the bias in the IEEE-754 standard, the input exponent expin, the total
number of shifts, and a number that depends on the relationship between the integer and
fractional part.

3.4.5.2 Floating point to Fixed point converters

Two converters from floating point to fixed point are used in the system. The name of each
converter follows the notation presented above for fix2single converters.

7128-bit conversion is not supported by Altera floating-point IPs
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Figure 3.13: Generic architecture of the fix2single converter for 32-bit fixed-point data.

single2fix_sig_w33_f24 converts data coming from the IO bus that represent the cutoff
radius rcut, and the box size L [d] and the components x [d] of the position. Only L is
unsigned data with 8-bit integer part, while the others are signed data. For this reason
it converts to 33 bits instead of 32 bits, i.e. to treat L as signed data, but ignoring the
extra bit of sign.

single2fix_sig_w128_f64 converts incoming data in the FPSingleAcc that go to the in-
ternal fixed-point accumulator.

Figure 3.14 shows the block diagram of the generic architecture of the single2fix converters.
Initially, the converter checks for the ZERO exception to addition ’1’ or not to the mantissa.
Next, it unbiases the exponent and uses the sign to represent the mantissa in two’s comple-
ment. It is then followed by a barrel shifter-to-the-right that uses arithmetic shifting to keep
the integrity of the two’s complement representation.

Single2Fix
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data fixdata
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32 8
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width

dir: right

Figure 3.14: Generic architecture of the single2fix converters.

3.5 Controller of the LJEwDir core

The control of the datapath in the LJEwDir core is done by the Pair Controller (PC). It
controls the flow in the Functional Pipeline, and addresses the particle memory to extract all
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permitted pairs according to the given number of particles. ForN particles it needsN∗(N − 1)
cycles to read all pairs skipping those pairs between one particle and itself. Figure 3.15 shows
the block diagram of the Pair Controller.

run

natoms_1[] Pi[]

rdclk

Pj[]
Uen

Uload
Usave
Fload
Fsave

ie_completed
clear_ints

reset

busy
completed

irq

Figure 3.15: Block diagram of the Pair Controller.

The Pair Controller receives the signals reset, run, ie_completed and clear_ints from a
master controller. Outputs to the master are the signals busy, completed, and irq. This con-
troller can generate interruptions at the irq port when completed is high and the interruptions
are enabled by setting ie_completed. The PC drives several control signals of the Functional
Pipeline. Two of them are the addresses Pi and Pj of the current pair of particles. Other
five signals are single-bit signals that control accumulation and storage of the potentials and
forces. The state of the control signals at cycle n is described by the following conditions:

Unen ← Pni < Pnj (3.14)

Unload ← n = 0 (3.15)

Unsave ← (Pni = N − 2) ∧
(
Pnj = N − 1

)
(3.16)

Fnload ← (n = 0) ∨
(
Pnj = Pni − 1

)
(3.17)

Fnsave ←
(
Pnj = Pi + 1

)
∧
(
Pnj = N − 1 ∧ Pni = 0

)
(3.18)

The PC simplifies the implementation of these expressions by reusing shared and delayed
signals according to the sequence that it performs to search for pairs. This sequence starts
with Pi = 0 and Pj = N − 1 and finishes with Pi = N − 1 and Pj = 0. Figure 3.16 shows an
example of this sequence for N = 5 particles. The accumulators of pair potentials controlled
by Uen have a maximum efficiency of 50% in normal operation. This efficiency decreases when
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more pairs are out of the cutoff radius.
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Figure 3.16: State of the signals controlled by the Pair Controller for N = 5. a) Particle counters,
b) Fload, c) Fsave, d) Uen, e) Uload, f) Usave.

The Pair Controller uses the same clock than the Functional Pipeline, i.e. it works with
the so-called internal clock. Once the Pair Controller starts, the number of cycles τ that
are necessary for completion is given by τ=N (N − 1) + maxlatency, where maxlatency is
the maximum latency of the Functional Pipeline. Two separate Moore FSMs (Finite State
Machines) control the behavior of the Pair Controller: The Pair FSM and the Interruption
FSM.

Pair FSM The Pair FSM has five states to control the search of pairs as shown in the state
diagram of figure 3.17. It basically waits for run to start the computation, then generates
all N (N − 1) pairs, and finally uses the endcomputing signal to know when all data have
already been processed by the Functional Pipeline.

Idle Count
Wait
Comp1

Wait
Comp0

Wait
Run0

run=1 lastpair=1 endcomputing=1 endcomputing=0

run=0

Figure 3.17: State diagram of the Pair FSM.
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Interruption FSM This simple two-state FSM is used to hold the irq signal when an in-
terruption is generated until the interruption is properly acknowledged by setting clear_ints.
The FSM enters in IDLE state after reset, and changes to INTERRUPTED when both signals
completed and ie_completed are active in the same cycle. The FSM returns to IDLE when
clear_ints is 1. Figure 3.18 shows the state diagram of the Interruption FSM.

Idle Interrupt

completed=1 and 
ie_completed=1

clear_int=1

Figure 3.18: State diagram of the Interruption FSM.

3.6 Memory-Mapped LJEwDir Core

The LJEwDir core is the memory-mapped IP core designed in this work that integrates not
only the datapath and the Pair Controller, but also an IO Bus, an address decoder, and a
Control & Status Register (CSR). The core can be part of a bigger system with other MD
accelerators, and work as a 32-bit slave capable to generate interruptions. Figure 3.19 shows
the block diagram of the core and indicates the two asynchronous clock domains: one for the
Pair Controller and the Datapath, and other for the IO Bus.

Pair
Controller

rcut
L[1]
L[2]
L[3]

LJEwDir
pipeline

single

N-1
CSR

Particle
Memory

wr-port

rd-port1

rd-port2

xtype

Pi

Pj

Uen, save, load

Fsave, load

Epsilon
Memory

wr-port

rd-port

Sigma
Memory

wr-port

rd-port

Charge
Memory

wr-port

rd-port

Force
Memory

rd-port

wr-port VLJ

Vd

si
ng

le
2f

ix

fix

ex
t c

lk
in

t c
lk

IO Bus

irq

LJEwDir core

Figure 3.19: Overview of the memory-mapped LJEwDir core.

The address decoder enables write operations to registers and memories according to the
address space presented in table 3.2. This 32-bit address space is for maximum 16k particles
and 16 elements. The IO Bus is connected to all registers and memories that store simulation
parameters and variables. There is a single2fix converter that converts data from the IO Bus
to the registers L [d] and rcut, and to the Coordinate Memories that are part of the Particle
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Memory. The wren signals associated to the these data are properly synchronized with the
single2fix converter.

Table 3.2: 32-bit address space of the LJEwDir core for up to 16k particles and 16 elements.

Base Address [17] [16] [15] [14] [13:8] [7:0] Name Access
0x0000 0 0 0 0 x[1] W

F[1] R
0x0400 0 0 0 1 x[2] W

F[2] R
0x0800 0 0 1 0 x[3] W

F[3] R
0xC00 0 0 1 1 type W
0x1000 0 1 0 0 xxxx εij W
0x1400 0 1 0 1 xxxx σ−2

ij W
0x1800 0 1 1 0 xxxx qiqjα W
0x1C00 0 1 1 1 xxxx xxxx α2 W
0x2000 1 0 0 0 xxxx xxxx L [1] W
0x2400 1 0 0 1 xxxx xxxx L [2] W
0x2800 1 0 1 0 xxxx xxxx L [3] W
0x2C00 1 0 1 1 xxxx xxxx rcut W
0x3000 1 1 0 0 xxxx xxxx V LJ R
0x3400 1 1 0 1 xxxx xxxx V d R
0x3800 1 1 1 0 xxxx xxxx Natoms − 1 RW
0x3C00 1 1 1 1 xxxx xxxx CSR RW

The CSR can be addressed by an external master to control the Pair Controller and to
check its status. A short description of the fields in the CSR is presented in table 3.3.

3.7 Top Level and the Avalon Memory-Mapped System

The memory-mapped system integrates the memory-mapped LJEwDir core presented in the
last section with other peripherals, such as the PCI Express (PCIe) core. This system is
finally instantiated in the top level entity, which includes other modules such as PLLs, IPs for
the high-speed links, and connection to pins of the FPGA for clock sourcing and IO. Figure
3.20 shows an overview of the whole system in the FPGA and development board.

The design of the memory-mapped system was carried out using QSys, an embedded tool
in the Quartus II 11.0 software that is very useful to automatically generate systems based
on memory-mapped (MM) and streaming (ST) interfaces. The Avalon Interconnect Fabric
manages transfers between the masters and slaves in the system, i.e. it does all arbitration,
address alignment, data alignment, and more. This interconnection fabric is based on a
Network on Chip (NoC) architecture that can improve performance up to 2x with respect to
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Table 3.3: CSR of the LJEwDir core.

Bit Name Access Description
[0] RUN RW Set this bit to start the force and potential

computation. It must be cleared before
starting a new computation.

[1] IE_COMPLETED RW Enables interruption requests (IRQ). When
this bit is 1, the core generates an IRQ
when the status bit COMPLETED is 1.

[13:2] reserved
[14] SWRESET RW Set this bit to reset the core.
[15] CLEAR_INTS RW Writing 1 to this bit clear all pending

interruptions.
[16] BUSY R This bit is 1 when a computation of

non-bonded interaction is in progress.
[17] COMPLETED R This bit is 1 when the core has completed a

computation. An interruption is generated
if the bit IE_COMPLETED is set.

[31:18] reserved
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Figure 3.20: System overview.

the older Altera’s SOPC Builder.
The embedded peripherals that were integrated in the memory-mapped system are pre-

sented in the following.8

PCI Express Endpoint The PCIe endpoint allows high-speed transfers with the host to
minimize loss of performance due to communication overhead. Using the PCIe IP Compiler
[7], the PCIe Hard-IP in the Arria II GX was configured as following:

8More information about the Avalon Interface and the embedded peripherals are found in [4, 3].
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• Generation 1 Link with four lanes (Gen1 x4) that works @ 2.5 Gbps. It achieves a
theoretical maximum performance of approx. 850 MB/s. This result is computed from
the number of lanes, the operating frequency, the maximum payload, and the overhead
produced by the encoding 8/10 in the Data-Link Layer and the additional frame bits in
the PHY layer.

• 32-bit non-bursting CRA Avalon-MM slave to access internal control and status regis-
ters. Using this slave, the host is able to modify the address translation table and to
enable/check PCIe interruptions.

• 64-bit bursting TX Avalon-MM slave to execute upstream requests.

• Dynamic Address Translation table with two entries of 20 bits. Each entry allows to
address 1 MB of physical memory in the host.

• Two Base Address Registers (BAR) were configured to access the Avalon system from
the host. The BAR[1:0] is a 64-bit prefetchable master, which is only connected to the
LJEwDir core. The BAR[2] is a 32-bit non-prefetchable master connected to the CRA
of the PCIe core, to the CSR of the SG-DMA core, to the descriptor memory, and to
the PIO core.

• PCIe interruptions to the host coming from the Avalon bus, which are generated by the
LJEwDir core or by the SG-DMA core.

• Maximum payload of 256 Bytes.

Scatter-Gather Direct Memory Access (SG-DMA) This core implements high-speed
data transfer between two components. The transfer mode can be memory-to-memory,
stream-to-memory, and memory-to-stream. It is provided with four Avalon interfaces:

• The descriptor master is connected to the Descriptor Processor. This processor reads a
descriptor chain stored in a memory, and starts a single DMA transfer according to the
parameters given by each descriptor. The processor pushes commands into an internal
command FIFO that can be accessed by the read and write blocks.

• The read and write masters are connected to the Read and Write blocks, whose imple-
mentation depends on the transfer mode, i.e. the interface can be either an Avalon-MM
or an Avalon-ST interface. The read and write blocks are connected to each other by
an internal data FIFO.

• The CSR is a slave used to control the SG-DMA core.
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The SG-DMA core is included in the system to perform memory-to-memory transfers be-
tween the on-chip memories in the LJEwDir core and the host’s main memory. Both master
interfaces create a bridge between the TX interface of the PCIe core and the slave port of the
LJEwDire core. Bursting transfers for up to 256 Bytes are configured to match the maximum
payload of the PCIe core. The SG-DMA sends an interruption to the PCIe core when the
last descriptor is processed.

Descriptor Memory The descriptor memory is a small on-chip RAM to allocate the de-
scriptor chain that is processed by the SG-DMA core when transferring data to/from the
host’s main memory. In this work, this memory can store up to 32 descriptors. Each de-
scriptor uses 1024 bits that are organized as a set of 32 registers of 4 Bytes. These registers
contain the source address, the destination address, the number of bytes to be transferred,
the pointer to the next descriptor, and an embedded control and status register.

PIO The PIO (Parallel Input/Output) core is used by the system to interact with user IOs
such as leds, dip switches and push buttons for configuration and status.
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4. Hardware Verification and Synthesis of the
FPGA coprocessor

This chapter describes the verification methods used for the functional verification of the
RTL design, as well as the resource usage and timing analysis of the design when it was
implemented on a real FPGA.

4.1 Simulation of the LJEwDir core in ModelSim and Matlab

Functional simulations were run in ModelSim-Altera for the LJEwDir core and most of its
functional building units. Moreover, by using Matlab and its embedded Fixed Point Toolbox
(see section 3.3), several units were studied more deeply when comparing with their fixed-
point and floating-point models in software. The use of this mathematical software enhances
the verification, because it allows to create more complex stimuli and generate more complex
reports, such as 1-D plots, 2-D plots, statistical analysis, etc. The testbenches written in
VHDL to be run in Modelsim read the stimuli generated as text files in Matlab. During
simulation, the testbenches write the results of interest also in text files that are further read
by Matlab. Most of these units have a latency associated due to their pipeline architecture,
so it is very important to keep in mind this time shift when reading the time series. These
functional simulations do not give any information about resource usage and timing, but are
useful to detect error sources, loss of precision, and connectivity problems.

4.1.1 Simulation of the functional building units

4.1.1.1 Minimum Image Convention - MIC

The MIC unit receives three signals corresponding to the same axis: two coordinates and the
box size. These signals and the output are all fixed-point data. To verify that this unit works
correctly, it was necessary to perform a constrained-random verification, because a formal
verification is very difficult taking into account that generating all possible combinations
results very exhaustive and unnecessary. This method generates random values for the input
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4.1. SIMULATION OF THE LJEWDIR CORE IN MODELSIM AND MATLAB

coordinates distributed in a random range, which starts at a random starting point and that
spans according to the random box size. The values are converted to fixed point considering
the convergent rounding method.

Figure 4.1 shows the simulation results of the MIC unit. First, it shows the input param-
eters of the simulation that are distributed in several ranges. Then, the software ouput of
Matlab (ref ) and the hardware output Modelsim (out) are plotted. The binary logarithm of
the difference shows that only the −24th bit is different, and it corresponds to the LSB in the
fixed-point representation of these variables, which is 8-bit integer part and 24-bit fractional
part.
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Figure 4.1: Constrained-random verification of the MIC. a) Inputs, b) Software and hardware out-
puts, c) Error bits.

4.1.1.2 Squared Distance

The Squared Distance unit also uses constrained-random verification to generate a set of
inputs limited by a random range. Figure 4.2 shows the verification results of the Squared
Distance unit.
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Figure 4.2: Constrained-random verification of the SquaredDistance unit. a) Coordinates of the
input position, b) SW and HW outputs, c) Relative error.

Values of the three components of rij are shown first. The cutoff radius rcut does not
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change during simulation. The floating-point outputs of the software and hardware models
differ between the −23th and the −24th bit. This is due to the conversion to single-precision
representation that may lose precision, since the rounding method of the conversion in hard-
ware is simple truncation. The flag inside_cutoff was also verified but is not shown in the
figure.

4.1.1.3 Interpolation Engine

Although section 3.3 presented the methodology oriented to ensure that interpolation method
suits the design requirements, it does not mean that its hardware implementation works fine.
The verification of the Interpolation Engine and the Interpolation Input was done separately,
and then these units were tested together.
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Figure 4.3: Verification of the Interpolation Engine together with the Interpolation Input for the
function uLJ

(
wLJ

)
. a) SW and HW outputs, b) Error, c) Relative error.

The verification process starts generating several points xt in each partition and uses direct
evaluation to obtain yt (xt). The values xt are read by the Interpolation Input unit and are
decoded to px and x for the use of the Interpolation Engine. The floating-point outputs of
the hardware implementation are compared with the values yt (xt). Simulation results for the
function uLJ

(
wLJ

)
when using both II and IE units are shown in figure 4.3. Here, values

of xt = wLJ out of the considered range
[
2expmin, 2expmax

)
were also generated to test the

saturation. The values in the range of interest present a relative error below 10−4, except for
some points where uLJ

(
wLJ

)
approximates zero1.

4.1.1.4 Floating-point units

The verification of the floating-point units uses the Matlab’s built-in data type single to
compare results. All units were tested with random values, also including the exception
ZERO.

1The Lennard-Jones potential and force presents high relative errors around the zero-crossing in comparison
to the rest of values. This does not happen for the direct-space Ewald potential and force, since they do not
cross zero.
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According to the simulation results in figure 4.4, the FPSingleUnit works perfectly and
throws the same results than Matlab. On the other hand, results of the FPSingleAdder in
figure 4.5 present a relative error of 10−7, i.e. in the LSB, which suggests that is an error due
to rounding.

0 500 1000
−1

−0.5

0

0.5

1
x 10

19 a)

in
pu

t

 

 

0 500 1000
−1

−0.5

0

0.5

1
x 10

38 c)

re
su

lt

 

 

0 500 1000
−1

−0.5

0

0.5

1
c)

er
ro

r

a b ref out

Figure 4.4: Random verification of the FPSingleMult unit. a) Inputs, b) SW and HW outputs, c)
Error.
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Figure 4.5: Random verification of the FPSingleAdder unit. a) Inputs, b) SW and HW outputs, c)
Error, d) Relative error.

Simulation results for the FPSingleAcc unit are shown in figure 4.6. Results show that
most of the relative errors are below 10−4 and above 10−7 (again, the LSB)2. For some
simulations with input values near to 1019 (≈ 263), the accumulator wraps due to overflow of
the internal fixed-point accumulator.

2However, since the hardware accumulator does not lose information with continuous rounding as software
does, these errors are considered errors of the software implementation.
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Figure 4.6: Random verification of the FPSingleAcc unit. a) Inputs, b) SW and HW outputs, c)
Error, d) Relative error.

4.1.1.5 Pair Controller

Simulations of the Pair Controller verify the integrity of the sequence performed by the con-
troller, as well as the correct state of the control signals. Simulations were run for a low
number of atoms (5 atoms to 100 atoms), reflecting the importance of the WAIT_COMP*
states to ensure that the Functional Pipeline has really completed its task. Figure 4.7 shows a
simulation for 15 atoms, where the maximum latency of the Functional Pipeline is 83 cycles3.
This simulation does not show the signals related to interruption generation.

4.1.2 Simulation of the Datapath

Simulation of the Datapath required scripts in Matlab to perform some tasks of the MD
software, such as read positions and parameters from configuration files, and compute forces
and potentials from this information. Matlab generates all the data and address for the
memories and registers in the core, and performs conversions when required. On the other
hand, the testbench stores the data in the corresponding memory space.

The verification of the Datapath was divided into three stages. The following verification
results are presented considering a set of 100 atoms.

Stage 1 The first stage includes the Particle Memory, the MICs, and the SquaredDistance.
This stage only processes the positions of the particles. The particle type is not relevant for
this computation. Figure 4.8 shows verification results of the first stage of the datapath for

3This is the maximum latency of the synthesized design.
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Figure 4.7: Simulation results of the Pair Controller for 15 atoms.

the computation of the squared distance between one particle and the rest in the simulation
box. Again, the relative error is around 10−7 due to LSB rounding.
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Figure 4.8: Verification results of the distance between one particle and the rest of particles. a) SW
and HW outputs, b) Error, c) Relative error.

Stage 2 The second stage is more complex than the first stage. It includes the FPSin-
gleMults and the Interpolation Engines. The squared distance r2

ij and the parameters εij ,
σ−2
ij , qiqjα and α2 are computed in double precision in Matlab, and are converted to single

precision for storage. The pair potentials and functions are computed by direct evaluation in
Matlab and are compared with the hardware results.

Figure 4.9 and 4.10 show verification results of the second stage of the datapath. Figure 4.9
shows that the potential ULJij (rij) has a relative error between 10−4 and 10−5 that increases
for long distances. This phenomenon is better appreciated for Udij (rij) in figure 4.10. This
happens when the transforming variables wLJ = σ−2

ij r
2
ij and wd = α2r2

ij exceed the upper
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limit of the range for interpolations given by expmax. However, values of these functions are
still very small in comparison to the others in the range of interest.
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SW and HW outputs, b) Error, c) Relative error.

Stage 3 The third and last stage of the Datapath is conformed by one FPSingleAdder
and several instances of FPSingleMult and FPSingleAcc. There is also a Force Memory
and a couple of registers for the total potentials. The components rij [d] of the distance are
introduced in floating-point representation. Matlab evaluates all the pair potentials and forces
for the given atomistic configuration and creates stimuli for the testbench. Matlab also writes
the control signals, which are easily computed from the matrix representation of (Pi, Pj) like
in figure 3.16. Figure 4.11 shows simulation results for the second component of the resulting
force over each particle (Fi [2]), that presents a relative error below 10−5. In this case, relative
errors of the total potentials V LJ and V d are 2.78 ∗ 10−2 and 3.14 ∗ 10−5, respectively.
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Figure 4.11: Verification results of the accumulation of F [2] for all 100 particles. a) SW and HW
outputs, b) Error, c) Relative error.

4.1.3 LJEwDir Core

Simulation of the core requires that all data are passed through the IO Bus. Matlab generates
the proper address for each parameter/value, and the finishes writing the CSR to starts
computation. The testbench running in Modelsim reads these stimuli and applies them to
the LJEwDir core. After the data streaming finishes, the testbench polls the CSR waiting for
completion. Then it writes the results in a separate text file.

Figure 4.12 shows simulation results for a complete execution of the core. In this case, the
relative error of F [3] is mainly found below 10−4. The relative errors of the total potentials
V LJ and V d are 5.60 ∗ 10−6 and 1.17 ∗ 10−4, respectively.

4.2 In-System hardware verification of the FPGA coprocessor

Not only functional simulations were run to verify the design. The use of in-system hardware
verification methods was also necessary during the first attempts to integrate the FPGA
coprocessor with the software application. The FPGA can be debugged via JTAG using
the SignalTap II embedded logic analyzer and the In-system Memory Content Editor. The
Quartus II software presents snapshots of waveforms obtained from the target signals. The
in-system verification is very appropriate for this stage of the design, where the design is very
dense and starts to depend on many things from the real world.

This verification method helped specifically to find that the system was not correctly
performing DMA because the software in the host had an wrong DMA configuration. It
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Figure 4.12: Verification results of F [3] for 100 particles in the core. a) SW and HW outputs, b)
Error, c) Relative error.

also helped to find that the address of the particle-dependent parameters was not properly
generated by the software. After correcting these two problems, the FPGA coprocessor was
ready to compute non-bonded forces and potentials with the MD application.

4.3 Resource usage and Timing analysis

This section presents implementation results about synthesis and timing of the FPGA copro-
cessor on the Arria II GX EP2AGX125EF35C4 device.

Using the Altera’s Quartus II 11.0, a normal compilation flow performs the following steps:
Analysis & Synthesis, Fitter (Place & Route), Timing Analysis, and Assembler. Additionally,
incremental compilations using LogicLock regions and Design Partitions were also performed
to reduce compilation time by executing an extra step in the compilation flow called Partition
Merge. This kind of compilation is especially useful when the whole system is completely
routed and will be tested using an embedded logic analyzer like the SignalTap II, because it
keeps untouched the final routing of design without affecting the timing, and also because it
reduces substantially the total compilation time.

Following with the design flow, units were separately compiled when they passed their
functional verification. At the same time, a parametrical analysis was performed to estimate
resource usage and maximum operating frequency with respect to latency and other parame-
ters, and also to explore advantages of other RTL descriptions. The objective was to facilitate
optimization when the units are instantiated inside their parent entities.
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4.3.1 Resource usage

Table 4.1 presents the resource usage of some units in the hierarchy according to compilation
reports generated by the Quartus II software. It shows that the critical resource is the on-
chip memory, where 76% of the total memory bits are in use. Currently, the three Coordinate
Memories represent 46.76% of the available memory and 61.52% of the system memory. Pur-
posed optimization of these memories is intended to save 50% memory bits per Coordinate
Memory. With this change, the system uses only 52.62% of the available memory. However,
it is probably not enough to duplicate the maximum number of particles supported.

Other resources in table 4.1 such as adaptive lookup tables (ALUTs), dedicated logic
registers, and DSPs are not in critical state. The LJEwDir core currently uses 9.6% of
ALUTs, 13.8% of registers, and 14.6% of DSPs, which suggests that there is still space for
more Functional Pipelines, or for parts of it. The system also uses one of the four PLLs, 4
of the 12 GXBs, and uses the only one PCIe Hard-IP in the Arria II GX. Implementations
in more powerful FPGAs like the Stratix IV GX in the DE4 Development Board offer a
technological improvement that may lead to a faster system with more capabilities.

4.3.2 Timing analysis

The designed was properly constrained by declaring the penalty operating frequency, the
setup/hold times and the uncertainty for all base clocks and known derived clocks, as well
as by specifying the asynchronous clock domains and signals. This description of timing
constrains is used during fitting to increase compilation effort with the purpose of meeting
timing requirements. The timing analysis is run by the TimeQuest Timing Analyzer, which
was also used to identify potential bottlenecks. [8]

All RAM and ROMmemories have a read latency of two cycles with an operating frequency
over 750 MHz. The Pair Controller showed a maximum operating frequency of 315 MHz. In
general, most of the functional building units can run over 300 MHz. The three stages of the
Datapath can operate at 300 MHz, 270 MHZ, and 230 MHz, respectively. The total latency of
the Functional Pipeline is 83 cycles with a maximum operating frequency of 230 MHz for the
internal clock and 320 MHz for the external clock. However, the whole system presents lower
operating frequencies, with 137 MHz for the external clock4 and 215 MHz for the internal
clock.

4Note that this clock is now the Avalon clock and is driven by the PCI Express core (See figure 3.20 on
page 42).
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5. Software Application for Molecular Dynamics
Simulations

In order to validate performance and accuracy of the FPGA coprocessor, a C-application to
run simple MD simulations was also developed during this work. This software application
implements the basic MD algorithm and uses a reduced force field. This force field performs
direct evaluation of the Lennard-Jones 6-12 potential for van der Waals interactions, and
uses the Ewald summation method to compute the electrostatic interactions in a periodic
system. This chapter presents more details of this application, and also presents accuracy
and performance analysis of the application when it is assisted by the FPGA coprocessor.

5.1 Description of the software application

5.1.1 Molecular Dynamics algorithm

The C-code developed for the MD algorithm is based on the code found in [41] that is used
for visualization and parallelization of MD simulations. This code was chosen for this work
because it implements part of the functions that are computed in hardware, and also because
of its simplicity and programming language. The code has been strongly modified for better
processing by creating new data structures and optimizing some operations. Moreover, it has
been adapted to run with the FPGA coprocessor, which required the development of a Linux
driver for the PCIe bus and for DMA. This driver was written using the Jungo WinDriver
library. Algorithm 1 presents an overview of the MD application.

The application starts receiving simulation options from command console (see section
5.1.3). The TPF file is the topology file that contains the values of mass, sigma, epsilon and
charge of each particle type. The PDB file contains the configuration of the set of particles,
and specifies the number of particles, their positions (and possibly initial velocities), and the
name of the particle type. Next, it computes some derived parameters such as α and uses the
Lorentz-Berthelot mixing rule (see section 2.2.1.1) for εij and σij . Then, it reassigns initial
velocities using a Maxwell-Boltzmann distribution1 according to the initial temperature T0.

1All simulations run with the same seed for the sake of simplicity in the comparisons.
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5.1. DESCRIPTION OF THE SOFTWARE APPLICATION

Algorithm 1 Overview of the MD algorithm considering the FPGA coprocessor.

1 function mdsim ( )
2 ( dt , rcut , L , T0 , nsteps , . . . ) := ass ignOpt ions ( ) ;
3 ( sigma , eps i l on , charge , mass ) := readTpfFi l e ( ) ;
4 (x , v ) := readPdbFile ( ) ;
5 ( alpha , . . . ) := computeParameters ( ) ;
6 v := v + i n i t i a l V e l o c i t i e s (T0) ;
7 (x , v ) := removeCenterOfMassAndRotation (x , v ) ;
8 in i t i a l i z eHW () ;
9 toFPGA( sigma , eps i l on , charge , alpha , type , L , r cut ) ;
10 Vo := computeSel fEwaldPotent ia l ( ) ;
11 kvec := construct_mVectors ( ) ;
12 computeEnergiesAndForces ( ) ;
13 for n := 1 to nsteps do
14 i n t e g r a t eVe l o c i t yVe r l e t ( ) ;
15 computePropert ies ( ) ;
16 end for
17 closeHW () ;
18 summary ( ) ;
19 end function

After that, it removes the center of mass and rotation of the system2.
Initialization of the FPGA coprocessor involves the following actions: search and open

the FPGA board, open DMA, create DMA descriptors and write them into the FPGA, and
enable interruptions. After that, the coprocessor is ready to receive and process information.
The simulation parameters are the first information that is downloaded into the FPGA.

If the hardware is successfully initialized, then the system continues computing the self
Ewald potential V o, and is followed by the construction of the m-vectors in reciprocal space,
which are used to compute the reciprocal-space Ewald summation. These vectors are selected
according to the value of the cutoff rcut in reciprocal space.

Before entering in the integration loop, the total energy is computed and reported for the
initial state of the particles. Integration is done using the Velocity-Verlet scheme presented
in section 2.1.1 on page 6. After completing each integration step, physical properties of
the materials under simulation and other derivative quantities are computed and reported.
Examples of such variables are energies, volume, temperature, pressure, diffusion, elasticity,
conductivity, hardness, and so on. Besides these values, the positions and velocities are written
in text files for further processing and analysis of the MD simulation.

Once the integration loop is finished, the FPGA coprocessor is properly closed by disabling
interruptions, releasing DMA resources, and closing the connection to the board. Finally, the
application presents the summary of the simulation, plot results using GNU Plot and show

2This is a recommended practice in MD simulations.
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atomic trajectories using VMD.

Algorithm 2 Integration method of Velocity-Störmer-Verlet.

1 function i n t eg ra t e_Ve l o c i t yVe r l e t ( )
2 x := updatePos i t i ons (x , v , F) ;
3 v := upda t eVe l o c i t i e s (v , F) ;
4 (Vsr , Fsr ) := computeShortRangeForce (x ) ;
5 ( Vlr , F l r ) := computeLongRangeForce (x ) ;
6 F := Fsr + Flr ;
7 v := upda t eVe l o c i t i e s (v , F) ;
8 end function

Algorithm 2 presents the sequence of statements of the Velocity-Verlet integrator. The
function updatePositions() moves the particles from their current position using the current
velocity and resulting force of each particle. This function also applies the boundary con-
ditions that, for this case, are periodic. The function updateVelocities() appears two times
in the algorithm in order to save memory by reusing the force vector (see figure 2.1). The
computation of the force and potential energy only considers non-bonded interactions, which
are divided into short and long range. The long range is always computed by the software
through the reciprocal-space Ewald summation, while the short range can be computed ei-
ther by software or by hardware. The parallel execution of these interactions in this MD
application is only available when the hardware is enabled3.

5.1.2 Computation of non-bonded interactions

In this MD application, the user can configure if the short-range interactions are computed
either by software or by hardware. Likewise, short- and long-range interactions can be com-
puted either sequentially or in parallel. Computation of long-range interactions4 is always
done in software. Software computation of short-range interactions is presented in the second
part of algorithm 3. It uses an O

(
0.5N2) algorithm to compute the Lennard-Jones 6-12

potential and force, as well as the direct-space Ewald summation. It basically computes the
separation distance between one particle and the rest in the simulation box, and continues
with the force computation of those particles if and only if the distance is less than the cutoff
radius. On the other hand, hardware computation of short-range interactions carries out an
O (N (N − 1)) algorithm using the method described in chapter 3.

There are two different ways to interact with the FPGA coprocessor, and both differ in
the CPU usage. The first method (see first part of algorithm 3) uses the CPU to send data of

3Only-software force computations can be run in parallel as child processes using thread programming and
multiprocessor parallelization. Nevertheless, this MD application does not make use of these techniques.

4Specifically the long-range part of electrostatic interactions.
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Algorithm 3 Sequential compuation of the short-range potential and force with the
O
(
0.5N2) algorithm in software.

1 function shortRangeForce_sequent ia l ( )
2 i f useHW then
3 toFPGA(x ) ;
4 toFPGA( s ta r t_Pa i rCont ro l l e r ) ;
5 while fromFPGA( completed ) != true do
6 wait ;
7 end while
8 ( Vlj , Vd, Fsr ) := fromFPGA(read_VF) ;
9 else
10 Vl j := 0 . 0 ; Vd := 0 . 0 ;
11 for i := 0 to NATOM−1 do
12 for j := i+1 to NATOM do
13 ( r [ 1 ] , r [ 2 ] , r [ 3 ] , r2 ) := mic (x [ i ] , x [ j ] , L)
14 i f r2 < rcut2 then
15 Vl j := Vl j + computeUlj ( ) ;
16 F l j := computeFlj ( ) ;
17 Vd := Vd + computeUlj ( ) ;
18 Fd := computeFd ( ) ;
19 for d := 1 to 3 do
20 Fsr [ i ] [ d ] := Fsr [ i ] [ d ] + r [ d ] ∗ ( F l j + Fd) ;
21 end for
22 end i f
23 end for
24 end for
25 end i f
26 Vsr := Vlj + Vd;
27 end function

each particle to the hardware. Then, it starts the Pair Controller and waits until completion
by polling the CSR register. Finally, this method uses the CPU to send downstream read
requests to the hardware in order to obtain forces and potentials.

The second method uses DMA and PCIe interruptions to reduce CPU overhead. An
FSM in software runs in a separate thread for the management of interruptions generated
by the SG-DMA and the Pair Controller. The flow in this FSM starts when the CPU starts
transferring particle positions with a Host-to-Device SG-DMA transfer via PCIe. When the
interruption by SG-DMA completion is generated, the FSM starts the Pair Controller. Once
the Pair Controller has sent its interruption due to completion, the FSM starts the Device-
to-Host SG-DMA transfer to store forces in main memory. When this transfer finishes and
generates an interruption, the FSM reads the two potentials stored in hardware with simple
downstream read requests.
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5.1.3 Configuration options

The user can select among several options when the application starts from command console.
These options are listed and described in table 5.1. The option -argon selects predefined sim-
ulation sets (see table 5.2) that were used as testbenches for validation. In these testbenches,
the value of α is always given by α = π/rcut, and the default initial temperature T0 is 120 K.

Table 5.1: Options of the MD application.

Option Argument Description Default
-dt [real] Time step in seconds. 1 fs
-nstep [integer] Number of integration steps. 10
-tpf [string] Topology file (.tpf file) argon.tpf
-pdb [string] Initial configuration (.pdb files). orig100.pdb
-rcut [real] Cutoff radius in Å. 100
-T0 [real] Initial temperature in Kelvin. 120
-fs [integer] Subsampling interval to write output files. 1
-argon [integer 1:5] Execute predefined simulations of Argon. 1
-plot Execute GNUplot script after simulation to

plot energies, temperature and energy drift.
-vmd Open VMD animation after simulation to

observe trajectories.
-printvel Include velocities in the XYZ output file.
-hw Enable the use of the hardware coprocessor.
-dma Enable DMA transfers to/from the FPGA

coprocessor.
-par Enable parallel computation of forces. This

option is only available if the option -hw is
present.

Table 5.2: Preset values of some parameters for each testbench.

Argument of option -argon
1 2 3 4 5

PDB argon100 argon800 argon2700 argon6400 argon12500
N 100 800 2700 6400 12500
L 18.0 36.0 72.0 90.0 108.0
rcut 9.0 18.0 36.0 45.0 54.0
δt 1e-15 0.5e-15 0.5e-15 0.1e-15 0.1e-15

nsteps 10000 1000 100 100 10
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5.2 Accuracy and Speed up

The following results presented in this section correspond to the final implementation of the
FPGA coprocessor on the Altera’s Arria II GX development kit, using the EP2AGX125EF35C4
device (see appendix C). The board was inserted in one of the PCIe slots of a Dell Optiplex
780 (Intel Core i7 @ 3.4 GHz, 16 GB RAM) running the custom C-application. Some simu-
lations were also run on a Toshiba Satellite A305 (Intel Core2Duo T6400 @ 2.00 GHz, 3GB
RAM). However, the Toshiba only runs pure software simulations because the board can-
not be inserted in that laptop. Both computers have the 64-bit Ubuntu 10.4 distribution as
operating system.

The testcases are a small set of preconfigured simulations for 100, 800, 2700, 6400 and
12500 Argon atoms distributed in cubic boxes of lattice 18.0, 36.0, 54.0, 72.0 and 90.0 Å,
respectively. Figure 5.1 shows snapshots in VMD of each simulated set of particles. The list
of elements is build from two different variants of Argon. Table 5.3 presents the parameters
of the two variants of Argon simulated in the testcases.

a) b) c)

d) e)

Figure 5.1: Snapshots of the testcases. a) 100 atoms b) 800 atoms c) 2700 atoms d) 6400 atoms e)
12500 atoms. This images were generated with VMD [23].
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Table 5.3: Parameter values of the elements in the topology file for the simulation.

Argon 1 Argon 2 Unit
εii 0.9980 0.9980 kJ/mol

σii 3.4050 3.4050 Å
qi +3.7274e-4 -3.7274e-4

√
kJ/mol ∗m

mi 39.9480 39.9480 a.m.u.

5.2.1 Accuracy

There are two quantities that are commonly used to measure the accuracy of an MD simu-
lation. The first one is the Mean Squared Fluctuation (MSF) or RMS fluctuation that gives
time-average information about the position of a particle. Equation 5.1 describes the MSF,
where T is the integration time, xi (tj) is the position of particle i at time tj , and x̃i is a
reference position that is normally the mean position xi. Well-conditioned MD simulations
have an MSF below 10−5.

MSF = 1
T

T∑
tj=1

(xi (tj)− x̃i)2 (5.1)

The second quantity is the energy drift. According to the principle of energy conservation,
the total energy of a system should be constant. Nevertheless, it is not fulfilled due to errors
coming from rounding and numerical integration. The energy drift indicates the relative
change of the total energy, which should be zero. The energy drift is calculated using (5.2).

drift = 1
T

T∑
n=1

∣∣∣∣∣En − En−1

En

∣∣∣∣∣ (5.2)

This work uses the energy drift as a measure of simulation accuracy. The testbenches
were run using double- and single-precision data. Differences between the single-precision
and the double-precision simulations resulted acceptable, since both show trajectories with
similar energy drifts and with similar energy profiles. In the same way, the trajectories using
the FPGA coprocessor resulted comparable to those using double precision in software.

Figure 5.2 shows the kinetic, potential and total energy for a simulation considering 100
atoms during 1000 steps with an integration step of 1 fs. Figure 5.3 shows the energy drift of
a simulation that computes the short-range forces in software using double precision, and the
energy drift of the same simulation using the FPGA coprocessor. Both simulations present
similar energy drifts with values below 10−4. All simulations with the FPGA coprocessor
keep stability even for long simulations5. Such stability together with the energy drift and

5The longest simulation run for 10000 steps.
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the similar trajectories validate the accuracy of the coprocessor.
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Figure 5.2: Energy profile for a simulation of 100 Argon atoms during 1000 steps at 1 fs/step. a)
Kinetic, potential and total energy, b) Potential energies.
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Figure 5.3: Energy drift for a simulation of 100 Argon atoms for 1000 steps at 1 fs/step. a) Only
software in double precision, b) With hardware.

5.2.2 Speedup

The main purpose of this work is the acceleration of MD simulations; however, acceleration
of this C-application in particular is open for discussion, since this application is neither fully
optimized nor parallelized in software. Nevertheless, this platform can be used for more than
accuracy analysis, and can also be used for performance analysis.

Speedup was evaluated for two different kind of execution times: the total simulation
time, and the average execution time of short-range interactions. The last one is expected to
be directly accelerated by the FPGA coprocessor. The total simulation time, however, has
an upper bound given by that part of the process that must be executed sequentially; no
matter how short is the parallelizable part of the process. This upper bound is calculated
using Amdahls’s law, which is described by

S (A) = tT
T (A) = tT

β · tT + γ · tT /A
, (5.3)
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5.2. ACCURACY AND SPEED UP

where β is the portion of the total execution time tT in the algorithm that must be sequential,
and the remainder γ = 1 − β can be perfectly parallelized and accelerated in a factor A.
Therefore, the total execution time of the parallelized process is T (A) = β · tT + γ · tT /A.
Thus, the maximum speedup occurs when A → ∞, and is bounded by the portion β of the
algorithm that cannot be parallelized6.

Figures 5.4 and 5.5 show the total execution time and the average time in direct (td) and
reciprocal (tr) space for different configurations. Here, times are also presented for different
options: sw refers to the Dell Optiplex 780, sw2 refers to the Toshiba Satellite A305, hw refers
to the FPGA coprocessor using CPU for transfers, hw+dma refers to the FPGA coprocessor
with DMA and interruptions, and par refers to parallel execution7.
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Figure 5.4: Simulation time with rcut = L/2 for 100, 800, 2700, 6400 and 12500 particles. a) Total
simulation time, c) Average time in direct space, c) Average time in reciprocal space. Lower plots show
time in logarithmic scale.

Figure 5.4 shows the simulation times for different number of atoms using rcut = L/2.
Figure 5.5 shows how the simulation time of 12500 atoms is influenced by the cutoff radius.
Note that the cutoff radius moves the computational load between the short-range and long-
range interactions. This can be used to minimize total runtime by proper load balance.

In general, sw2 is approx. 1.7 times slower than sw, and there is no remarkable difference
6This serious limitation has long been used as an argument against massively parallelization that may

represent an extra effort. However, for large problems is the parallelization the only way to achieve successful
simulations [17]. For instance, if only 1% of the algorithm cannot be parallelized, then only a speedup of 100x
can be obtained.

7Detailed values of the simulation time for each configuration can be found in appendix B.
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Figure 5.5: Simulation time varying rcut between 18 Å and 45 Å for 12500 atoms. a) Total simulation
time, c) Average time in direct space, c) Average time in reciprocal space. Lower plots show time in
logarithmic scale.

between hw and hw+dma. Furthermore, hw takes the same time, no matter the value of rcut,
while the simulation time in reciprocal space shows a quadratic growth when rcut decreases
linearly. The maximum acceleration of the total runtime achieved with the FPGA coprocessor
is 12.5x and that happened for a simulation considering 12500 atoms. Results show that the
bigger the system, the higher the acceleration.
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6. Comparison with Previous Works

This chapter presents previous works related to the implementation of MD algorithms in
hardware, as well as some of the characteristics of this work that are comparable to other
works.

6.1 Previous works

One of the most notable advances about the acceleration of MD simulations is the successful
architecture created by the company PetaChem [33, 38]. Here, simulations are run over
an arrangement of four NVIDIA’s GPGPUs. They have reported accelerations up to 650x,
reducing so a simulation time from 3.4 hours to 19.1 seconds. So far, GPUs are the best
solution due to their programmability, performance and relative low cost. Nevertheless, GPUs
are specific-purpose multiprocessors for video processing that could still be optimized for MD
simulations.

Example of such optimization is the successful special-purpose machine for MD called
Anton [36], which is built from 512 identical MD-specific ASICs that interact with each other
using a specialized high-speed communication network. Anton uses novel parallel algorithms
and special-purpose logic, and runs millisecond-scale MD simulations. Comparison of execu-
tion time of a long-range time step for a 512-node Anton machine and a single Xeon processor
running GROMACS shows an overall acceleration of 9000x with respect to the entire long-
range time step, and 50000x over the calculation of range-limited forces. [24]

From this sight, the development of solutions based on high-performance reconfigurable
architectures (e.g. FPGAs) could offer acceptable results, reducing the cost and improving
the performance. In [1], biomolecular simulations are accelerated by using FPGAs by just
using high-level programming languages. They reported a speedup of 3x over an Intel 2.8 GHz
Xeon and ensure that the bigger the problem, the more the speedup, overcoming cluster-based
supercomputing platforms. A state-of-art until 2008 of the acceleration of MD simulations
with reconfigurable computers is presented in [19].

Since 2003, the University of Toronto has published several works about MD simulations
on FPGAs. In [9] an MD simulator is completely implemented on the Transmogrifier 3 (TM3),
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a multi-FPGA system. The design is scalable and parallelizable. It performs calculations on
an 8192 particle system in 37 s @ 26 MHz. This long processing time is mainly due to
communication overhead, because the connection is done via RS-232.

A second work is [15], where two separate computational engines compute the Lennard-
Jones 6-12 potential and the direct-space Ewald summation. The communication is also via
RS-232. The design runs on a Virtex-II XC-2V2000 with computational engines running at
approx. 80 MHz. One of the disadvantages of this design is that the interpolation method
uses 1st-order polynomials, which demands high memory resources to store the polynomials
for the fine partitioning of the interpolation range.

A third work is [26], which presents a computational engine to compute the reciprocal-
space Ewald summation using the Smooth Particle Mesh Ewald (SPME) method. This
method requires 3-D FFTs, as well as B-Spline interpolations to the grid points. The de-
sign runs at 40 MHz on a Xilinx Multimedia Board, and is integrated with NAMD2 to run
simulations considering 66 particles.

Since 2005, the CAAD laboratory of the Boston University has published several works
about MD acceleration using FPGAs. In [28], Discrete MD simulations are accelerated by
using FPGAs. In [18], a novel interpolation method using the so-called semi-floating-point
arithmetic1 simplifies the interpolation of the Lennard-Jones 6-12 and short-range part of
the Coulomb potential. The long-range part of the Coulomb potential is computed using
the Multigrid method, which fits better on FPGAs than FFTs. This work implements the
cell-list method for the short-range part of non-bonded interactions. It reports 5x and 10x
accelerations of MD simulations, and can run large models of up to 256k particles using off-
chip memory. The target hardware is a generic PC connected to a PCI plug-in board with
two Xilinx VP70s. The target software is ProtoMol and NAMD.

The work in [37] presents the acceleration of molecular docking and binding using FPGAs
and GPUs, with speedup between 6x and 42x depending of the algorithm and device. In
[13, 12], there is a comparison between direct evaluation using floating-point IPs running at
250 MHz, and the interpolation method with table lookup, both for the computation of short-
range pair forces and potentials. Also, it considers a smoothing function to reduce noise caused
by the cutoff radius. Additionally in [11, 14], several methods for pair filtering are purposed to
accelerate MD simulations based on neighbor lists. These methods are implemented as filter
banks that queue particles to the force pipelines. The system is implemented on a Stratix
III EP3SE260, and is tested with a NAMD benchmark containing 92224 particles, computing
short-range forces in less than 22 ms.

1This concept was previously published in [20] by the same author, and was tested reporting a total speedup
of 5.5x for a 8192-atom simulation with 26 atom types.

The number of atoms in that simulation was limited to 11200 because all storage was done on chip.
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In [35], the Lennard-Jones 6-12 potential is directly evaluated by double-precision floating-
point units in a deep functional pipeline with 119 stages running at 122 MHz . It reports
an overall throughput of 3.9 GFLOPS with two parallel pipelines. However, this pipeline is
integrated with no MD simulation, and only computes the scalar part of the pairwise force,
not its components.

Finally, appendix A presents prior work to the one presented in this thesis. In that work,
direct evaluation of the Lennard-Jones 6-12 force and potential is executed only by single-
precision floating-point IPs distributed in a functional pipeline running at 300 MHz. Although
the design of that system required shorter time and showed high throughput, it is still limited
by conventional operators (e.g. addition, multiplication, division, inverse, etc.). The high cost
in hardware resources of these blocks motivated to a migration towards a hybrid arithmetic
that uses the best of the floating- and fixed-point arithmetic in hardware architectures.

6.2 Characteristics of this work

This work presents an FPGA coprocessor that computes the potential and forces of the
Lennard-Jones 6-12 potential and the direct-space Ewald summation. The coprocessor was
implemented on an Arria II GX Development Board, and is connected via PCI Express to a
custom application for MD simulations. It takes less than 800 ms to compute the short-range
part of the non-bonded interactions in a system with 12500 particles, achieving a maximum
speedup of 12.5x over the single-core of an Intel Core i7 @ 3.4 GHz. The system processes up
to 16 particle types and up to 16538 particles. The number of particles is limited by on-chip
memory.

This works introduces and implements a novel variable transformation of the potential
energy functions. This transformation is supported by a novel interpolation method that
implements pseudo-floating-point arithmetic, and that uses scaling/centering transformation
to improve polynomial fitting. It implements a single force/potential pipeline that runs at
200 MHz, and that uses floating-point and fixed-point arithmetic to obtain the best of both
representations.
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7. Conclusions and Future Work

7.1 Conclusions

The design, development, verification and validation of an FPGA coprocessor and its integra-
tion with an MD software has been presented in this thesis. This FPGA-based coprocessor
has been designed to compute the short-range part of two non-bonded interactions modeled
as the Lennard-Jones 6-12 potential and direct-space Ewald summation.

The RTL description of the core was written in VHDL and is highly parameterized.
System-level design was done using the Qsys tool that comes with the Quartus II software.
Analysis of the tradeoff between maximum operating frequency, latency, resource usage and
accuracy, was based on resource usage analysis, timing analysis, and functional simulations.
The design runs in an Arria II GX Development Board and fits in the EP2AGX125EF35C4,
a high-end Altera’s FPGA.

Several verification methods were used along the design to ensure its correct operation.
VHDL testbenches in ModelSim-Altera run functional simulations of the RTL hardware de-
scriptions. The Matlab’s Fixed Point Toolbox was used to create fixed-point models of the
system. Matlab was also used to create complex stimuli for the testbenches in Modelsim,
and to carry out comparisons of results between software and hardware implementations. In-
system hardware debugging using SignalTap II and the In-system Memory Content Editor
were used for logic analyzing of the system when it was running in the FPGA.

The system implements interruption generation and a SG-DMA to reduce CPU overhead
and to improve parallelization. The communication overhead has been reduced by using a
PCI Express Gen1 x4 link between the host and the FPGA. This link under this configuration
has a theoretical throughput of 850 MB/s, and makes use of the embedded PCIe Hard IP of
the Arria II GX to save hardware resources.

The design has been successfully integrated within MD simulations. The coprocessor can
process up to 16k particles that are stored in on-chip memory. It currently supports up to 16
elements, but can easily be configured to support more. The simulations with/without FPGA
coprocessor considering from 100 until 12500 Argon atoms showed similar trajectories with
energy drifts less than 10−5, indicating that there is no problem about precision. Simulations
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assisted by the FPGA can compute in parallel the long-range part of the non-bonded inter-
actions in the host and the short-range part in the FPGA, achieving a maximum speedup
of 12.5x in comparison to those simulations with a sequential computation of the forces that
runs purely in software.

This work purposed and implemented a novel variable transformation of the potential and
force functions that has still not been published in the literature. This transformation makes
easier and more accurate the interpolation of those functions in hardware in comparison to
previous reports. The interpolation method presented in this work uses pseudo-floating-point
representation and has been carefully studied by considering the effect that the polynomial
order, the partitioning of the range of interest, the rounding method, and the word length, has
over accuracy and hardware resources. The force and potential computation has been mapped
into a functional pipeline that runs at 200 MHz. Floating-point and fixed-point arithmetic
were used along the functional pipeline to obtain the best of both representations.

7.2 Future work

This work has been finished leaving satisfactory results. However, there are still some opti-
mizations and additional features that can be applied to the current design. The following
list presents some of them:

1. Reduce the size of the replicated Particle Memory by reading it using a clock two-times
faster than the so-called internal clock. This is possible because the synthesized memory
reported a maximum operating frequency around 750 MHz, which is at least three times
faster than the current operating frequency of the internal clock. This method also allows
the use of more pipelines in parallel, since more pairs can be generated in the same cycle
without increasing the size of the memory. However, more pipelines only reduce linearly
a problem based on an O

(
N2) algorithm.

2. Use two or more external SRAM memories to increase the maximum number of particles
supported.

3. In this moment, the pipeline is not 100% efficient for certain cutoff radii because some
computed potentials and forces are discarded when the distance overcomes the cutoff
radius. To solve this, a FIFO can be located between the Squared Distance unit and
the multipliers for variable transformation. This is justified because the first stage of
the Datapath (from Particle Memory to Squared Distance) can run faster than the
further stages. This increases the probability that the slower stages are computing only
the necessary pairs. This improvement requires a deep study about the probability
distribution of the particles in order to not overdimension the FIFO.
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4. Integrate the FPGA coprocessor with free software in the market such as GROMACS,
LAMMPS or NAMD, in order to compare with software used in real-world scientific
projects.

5. Adapt the system (especially the Pair Controller) to work with linked cells for simula-
tions using the Linked-Cell method for the short-range part of non-bonded interactions.
The use of this method reduces dramatically the computational complexity in software
and in hardware. The reason is that the system does not have to look for pairs in the
whole simulation box, but only in a smaller area defined by the cutoff radius.

6. Add a flag to indicate if the boundary condition is IBC or PBC. This prevents the MIC
unit about performing the periodic refolding.1

7. If the software application does not require the separate value of each potential, then
they can be summed up into a single register in hardware. It saves one of the expensive
FPSingleAcc units but still requires an extra FPSingleAdder for reduction of potentials.

8. Add flags in the core’s CSR to indicate possible error sources, e.g. overflow in the
converters and accumulators. These flags can be used to break the current computation
and generate interruptions to inform the host about such inconsistencies.

9. Optimize and parameterize the fix2single and single2fix units.

10. Migrate to a more powerful FPGA like the Stratix IV GX in the Altera’s DE4 Devel-
opment Board. The design in the Stratix IV GX can be forwarded to the HardCopy IV
GX for power saving and for a possible enhancement of performance. This technological
improvement can make the design run faster and give it more capacity, but much better
are the solutions oriented to improve the algorithm and the architecture.

Beyond the scope of this thesis, there are still many more things to do in this field, and they
can now be considered thanks to the experience and knowledge gained during this work.

1Keep in mind that the Ewald summation is only for periodic systems.
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A. Lennard-Jones 6-12 Engine with Floating-Point
Arithmetic

This chapter presents prior work to the final design presented in this document. This first
attempt was inspired in the fact that Altera’s floating-point IPs were presented in [6, 32, 30]
as very suitable devices for High-Performance Reconfigurable Computing. Furthermore, a
previous work about the floating-point implementation of a Lennard-Jones 6-12 engine was
presented in [35]. Part of the knowledge collected in this experience was used to better
understand pipelined architectures, how much area is demanded by the floating-point units,
and how efficient these units result.

A.1 Implementation with floating-point units

The following sections present the implementation of two cores to compute the Lennard-Jones
6-12 potential and forces for a single pair of particles using only floating-point arithmetic. Both
cores basically differ in how the potential

ULJij = 4εij

(σij
rij

)12

−
(
σij
rij

)6


and the dth component of the force

FLJ
ij [d] = 24εij

2
(
σij
rij

)12

−
(
σij
rij

)6
 1
r2
ij

rij [d]

are factorized in order to save resources by reusing intermediate variables.
For a 3-D simulation box without applying the minimum image convention, the squared

distance is calculated as the Euclidian distance given by r2
ij = ∑

d=1,2,3 (xi [d]− xj [d])2 . Figure
A.1 shows the block diagram of the Calculate Distance block based on the floating-point IPs
for squaring and addition/subtraction. This unit provides the squared magnitude r2

ij and the
components rij [d] of the distance vector. Its inputs are the positions xi and xj of the current
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pair of particles described by their components. This figure also shows the possible range of
latencies (in clock cycles) in that every IP can be parameterized, as well as the resulting range
of the total latency. Black rectangles represent synchronization registers.
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Figure A.1: Block diagram of the CalculateDistance unit.

A.1.1 FP_LJ Model 1

The FP_LJ Model 1 reorganizes the potential and force functions in terms of powers of r−1

as

1
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))
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To compute them, this model requires three constants that depend on the particle type:
εijσ

12
ij , 2εijσ12

ij , and εijσ6
ij . These constants are supposed to be already stored in RAM. The

target is now to compute four powers of r−1 (r−6, r−8, r−12 and r−14) by direct evaluation
from r2, i.e. without interpolations.

Figure A.2 shows the block diagram of the FP_LJ1. The first stage computes the powers
of r−1 starting with an inverse and followed by squaring and multiplications. The second
stage computes in parallel the potential and the force using multiplications and additions.
The total latency of this model is minimum 42 cycles and maximum 89 cycles.

A.1.2 FP_LJ Model 2

The FP_LJ Model 2 reorganizes the potential and force functions as
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Figure A.2: Block diagram of the FP_LJ1 core.
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)
. This time, the target is to compute

Aij and Bij , which are half the number of target variables needed in FP_LJ1.
Figure A.3 shows the block diagram of the FP_LJ2. This block uses fewer units in the first

stage than the FP_LJ1, and computes Aij and Bij starting with a divider and followed by
multiplications and squaring operations. The second stage is similar in structure to FP_LJ1,
but swapping a couple of adders with multipliers.

A.2 Comparison between the FP_LJ Model 1 and 2

Simulation results of these cores show that they have the same accuracy than single-precision
results in software. Synthesis and timing results are presented in this section for the top
level entity called LJ_Engine, which contains the following building units: CalculateDistance,
GenerateRPowers, CalculatePotentialLJ and CalculateForceLJ. The last three units represent
the FP_LJ1 and FP_LJ2 cores presented in the last sections. Additionally, four instances
of the LJ_Engine were grouped in the LJ_Engine_x4 entity that includes 12 floating-point
adders to reduce the resulting vector of potentials and forces.

Table A.1 presents compilation results for both LJ_Engine models that were implemented
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Figure A.3: Block diagram of the FP_LJ2 core.

on the Stratix III EP3SE50F780C2. The table presents the area as a function of the number
of ALUTs, dedicated logic registers, block memory bits, and 18-bit DSPs. The maximum
operating frequency of the clock is presented by the TimeQuest Timing Analyzer for the slow
model of the FPGA at 85°C. Results for each unit of each model are presented with respect
to the minimum, intermediate, and maximum allowed latency. The intermediate latency is
not the optimal value, but offers a satisfactory tradeoff between area and throughput.

In general, floating-point additions/subtractions consume more ALUTs than multiplica-
tions, but multiplications require four DSP blocks. The division and the inverse are more
expensive in hardware that additions and multiplications. Both use 16 DSPs, but the division
uses approx. 5000 memory bits, while the inverse uses approx. 400 of them.

The inverse has a fixed latency of 20 cycles and is the highest in comparison to the others,
which have from 5 to 14 cycles. When these floating-point IPs are compiled separately, their
operating frequencies are between 142 MHz and 440 MHz.

Both FP_LJ1 and FP_LJ2 can operate over 250 MHz, but the FP_LJ2 demands less
resources and has lower latency. This demonstrates that FP_LJ2 benefits from the reorga-
nization of the force and potential functions. Using four of these pipelines in LJ_Engine_x4
reduces the operating frequency in approx. 20%, but increases throughput to more than
300%.

A.3 Conclusions

The direct evaluation of the Lennard-Jones 6-12 potential and force using floating-point units
works satisfactorily in terms of speed and accuracy; however, the core presented in this chapter
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does not solve the big problem. Moreover, this core includes neither the implementation of
the direct-space Ewald summation, nor the accumulation, storage and management, and it
still consumes high resources in comparison to the synthesis results presented in section 4.3.1
for the whole FPGA coprocessor.

This experience left the following advantages and disadvantages when working with Al-
tera’s floating-point IPs to compute the LJ potential:

Pros

• Short design time due to the easy mapping of classical arithmetic operators.1

• High precision.

• High throughput.

• Exception handling.

Cons

• Big size.

• High latency.

• Simple additions and subtractions become very hardware consuming. The same happens
for simple logical operations.

• It does not allowed the implementation of functions like erfc (x).

1These models were designed and tested in just a couple of weeks.
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Table A.1: Compilation results for the FP_LJ1 and FP_LJ2 cores on the Stratix III
EP3SE50F780C2.

Unit Model Latency ALUTs
(38000)

Ded. registers
(38000)

Mem. bits
(5455872)

DSPs
(384)

Freq. @ 85°C

26 3094 1756 526 202.63
CalculateDistance 1, 2 42 2905 3238 1172 12 260.28

53 3311 3317 2630 327.65
35 1011 1050 860 248.69

1 38 1031 1061 1022 36 306.28
GenerateRPowers 53 1082 1618 2121 375.09

16 626 640 5021 147.47
2 24 733 685 5768 28 324.68

36 796 979 6526 326.80
12 823 632 0 210.57

1 18 772 912 144 8 325.20
CalculatePotentialLJ 25 919 1069 636 414.25

13 778 678 96 250.75
2 18 796 833 242 8 298.42

25 881 1049 605 386.25
17 1156 1055 0 214.73

1 24 1125 1335 189 20 320.72
CalculateForceLJ 36 1392 1740 1158 363.24

18 1130 1102 96 245.52
2 24 1167 1228 323 20 303.40

36 1358 1705 1149 337.04
78 6075 4252 15486 207.56

1 104 5725 6362 20917 76 290.19
LJ_Engine 142 6666 7459 31467 315.96

60 5498 3933 13277 147.67
2 92 5366 5812 19227 68 292.48

125 6159 6841 26590 294.38
92 28177 19514 62389 178.95

1 124 27056 28430 84606 304 235.90
LJ_Engine x4 170 30233 32777 127265 271.67

74 26078 18420 53481 143.25
2 112 25640 26972 77914 272 215.10

153 28519 29850 108887 264.14
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B. Tables of Execution Time

Tables B.1, B.2, B.3, B.4 and B.5 contain execution times of the simulation for 100, 800,
2700, 6400 and 12500 atoms respectively. The total simulation time tT also includes tasks
such as file I/O, computation of properties, initialization, etc. The average execution times
avg-td and avg-tr are calculated from the total execution time total-td and total-tr spent to
compute all forces and potentials in the direct and reciprocal space, respectively, divided by
the number of steps to simulate. Each table specifies the number of atoms N , the size of the
cubic simulation box L, and the number of integration steps nsteps. Different cutoff radii
have been selected in the range [2.5σmax, L/2], where σmax = 3.4050 Å.

The notation sw1 represents the Dell Optiplex 768 (Intel Core i7 3.4 GHz, 16 GB RAM),
while sw2 states for the Toshiba Satellite A-305 (Intel Core2 Duo 2.0 GHz, 3 GB RAM).
Only sw1 is assisted by the FPGA coprocessor (hw). dma represents the DMA capability
with interruption handling. par indicates simulations that compute in parallel the short- and
long-range part of the non-bonded interactions.

All speedup factors SU are calculated with respect to times in sw1.

Table B.1: Execution time with N = 100, L = 18.0 Å, nsteps = 1000.

rcut Mode tT total-td total-tr avg-td avg-tr SU (tT ) SU (td)
9.0 sw1 34.70 6.40 27.00 0.00064 0.00270 1.0000 1.0000

sw1+hw 40.56 12.60 26.40 0.00126 0.00264 0.8555 0.5079
sw1+hw+dma 46.63 11.80 33.10 0.00118 0.00331 0.7442 0.5424
sw1+par+hw 39.77 38.40 0.00384 0.8725
sw1+par+hw+dma 38.79 37.10 0.00371 0.8946
sw2 83.77 2.65 33.86 0.00027 0.00339 0.4142 2.4151
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Table B.2: Execution time for different cutoff radii with N = 800, L = 36.0 Å, nsteps = 1000.

rcut Mode tT total-td total-tr avg-td avg-tr SU (tT ) SU (td)
18.0 sw1 63.60 42.19 20.11 0.04219 0.02011 1.0000 1.0000

sw1+hw 28.87 7.21 20.46 0.00721 0.02046 2.2030 5.8516
sw1+hw+dma 26.55 4.49 20.86 0.00449 0.02086 2.3955 9.3964
sw1+par+hw 25.60 24.50 0.02450 2.4844
sw1+par+hw+dma 22.33 21.16 0.02116 2.8482
sw2 114.19 72.70 35.62 0.07270 0.03562 0.5570 0.5803

9.0 sw1 177.62 13.74 162.59 0.01374 0.16259 1.0000 1.0000
sw1+hw 172.38 6.98 164.01 0.00698 0.16401 1.0304 1.9685
sw1+hw+dma 169.98 7.48 161.28 0.00748 0.16128 1.0449 1.8369
sw1+par+hw 168.85 167.66 0.16766 1.0519
sw1+par+hw+dma 165.91 164.46 0.16446 1.0706
sw2 316.55 20.51 289.48 0.02051 0.28948 0.5611 0.6699

Table B.3: Execution time for different cutoff radii with N = 2700, L = 54.0 Å, nsteps = 100.

rcut Mode tT total-td total-tr avg-td avg-tr SU (tT ) SU (td)
27.0 sw1 52.67 45.40 6.81 0.45400 0.06810 1.0000 1.0000

sw1+hw 12.30 4.96 6.94 0.04960 0.06940 4.2821 9.1532
sw1+hw+dma 10.89 3.78 6.75 0.03780 0.06750 4.8365 12.0106
sw1+par+hw 8.52 8.09 0.08090 6.1819
sw1+par+hw+dma 7.26 6.79 0.06790 7.2548
sw2 96.73 83.64 11.97 0.83640 0.11970 0.5445 0.5428

18.0 sw1 43.23 20.09 22.88 0.20090 0.22880 1.0000 1.0000
sw1+hw 28.29 4.94 22.93 0.04940 0.22930 1.5281 4.0668
sw1+hw+dma 26.99 3.77 22.84 0.03770 0.22840 1.6017 5.3289
sw1+par+hw 24.75 24.27 0.24270 1.7467
sw1+par+hw+dma 23.21 22.73 0.22730 1.8626
sw2 78.63 37.29 40.30 0.37290 0.40300 0.5498 0.5388

9.0 sw1 198.95 10.26 188.15 0.10260 1.88150 1.0000 1.0000
sw2 350.06 17.92 331.00 0.17920 3.31000 0.5683 0.5725
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Table B.4: Execution time for different cutoff radii with N = 6400, L = 72.0 Å, nsteps = 100.

rcut Mode tT total-td total-tr avg-td avg-tr SU (tT ) SU (td)
36.0 sw1 268.12 250.87 16.13 2.50870 0.16130 1.0000 1.0000

sw1+hw 40.69 23.45 16.12 0.23450 0.16120 6.5893 10.6981
sw1+hw+dma 37.73 20.48 16.13 0.20480 0.16130 7.1063 12.2495
sw1+par+hw 24.52 23.46 0.23460 10.9347
sw1+par+hw+dma 21.61 20.53 0.20530 12.4072
sw2 494.12 462.60 29.37 4.62600 0.29370 0.5426 0.5423

27.0 sw1 174.32 133.42 39.79 1.33420 0.39790 1.0000 1.0000
sw1+hw 64.29 23.48 39.72 0.23480 0.39720 2.7115 5.6823
sw1+hw+dma 61.51 20.73 39.73 0.20730 0.39730 2.8340 6.4361
sw1+par+hw 43.71 42.65 0.42650 3.9881
sw1+par+hw+dma 40.74 39.67 0.39670 4.2788
sw2 319.63 244.75 72.76 2.44750 0.72760 0.5454 0.5451

18.0 sw1 203.31 71.50 130.75 0.71500 1.30750 1.0000 1.0000
sw1+hw 155.19 23.43 130.62 0.23430 1.30620 1.3101 3.0516
sw1+hw+dma 152.05 20.48 130.44 0.20480 1.30440 1.3371 3.4912
sw1+par+hw 134.82 133.76 1.33760 1.5080
sw1+par+hw+dma 131.47 130.34 1.30340 1.5464
sw2 372.43 130.77 239.49 1.30770 2.39490 0.5459 0.5468

Table B.5: Execution time for different cutoff radii with N = 12500, L = 90.0 Å, nsteps = 10.

rcut Mode tT total-td total-tr avg-td avg-tr SU (tT ) SU (td)
45.0 sw1 99.71 96.40 3.11 9.64000 0.31100 1.0000 1.0000

sw1+hw 11.75 8.38 3.14 0.83800 0.31400 8.4860 11.5036
sw1+hw+dma 11.15 7.80 3.12 0.78000 0.31200 8.9426 12.3590
sw1+par+hw 8.59 8.38 0.83800 11.6077
sw1+par+hw+dma 8.02 7.81 0.78100 12.4327
sw2 182.11 176.20 5.60 17.62000 0.56000 0.5475 0.5471

36.0 sw1 63.96 57.60 6.15 5.76000 0.61500 1.0000 1.0000
sw1+hw 14.81 8.38 6.20 0.83800 0.62000 4.3187 6.8735
sw1+hw+dma 14.14 7.82 6.12 0.78200 0.61200 4.5233 7.3657
sw1+par+hw 8.59 8.40 0.84000 7.4459
sw1+par+hw+dma 7.99 7.80 0.78000 8.0050
sw2 118.12 106.73 11.02 10.67300 1.10200 0.5415 0.5397

27.0 sw1 48.95 33.90 14.81 3.39000 1.48100 1.0000 1.0000
sw1+hw 23.67 8.39 15.06 0.83900 1.50600 2.0680 4.0405
sw1+hw+dma 22.77 7.87 14.69 0.78700 1.46900 2.1498 4.3075
sw1+par+hw 15.81 15.61 1.56100 3.0961
sw1+par+hw+dma 15.12 14.89 1.48900 3.2374
sw2 89.53 62.79 26.37 6.27900 2.63700 0.5467 0.5399

18.0 sw1 72.04 21.79 50.02 2.17900 5.00200 1.0000 1.0000
sw1+hw 58.82 8.39 50.23 0.83900 5.02300 1.2248 2.5971
sw1+hw+dma 58.29 7.85 50.23 0.78500 5.02300 1.2359 2.7758
sw1+par+hw 50.72 50.50 5.05000 1.4203
sw1+par+hw+dma 50.15 49.92 4.99200 1.4365
sw2 129.82 40.43 89.03 4.04300 8.90300 0.5549 0.5390

83



84



C. Arria II GX Development Board

Figure C.1: Arria II GX development board. [2]

Table C.1: Characteristics of the EP2AGX125EF35 FPGA.

Characteristic Value
Package 1152-pin fine pitch BGA
Logic elements (LEs) 124100
Adaptive logic modules (ALMs) 49640
On-chip memory 8121 kb
High-speed transceivers 12
Phase-locked loops (PLLs) 6
18x18 DSP blocks 288
Core power 0.9V
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Table C.2: Characteristics of the Arria II GX board.

FPGA EP2AGX125EF35
On-board ports 1 Gigabit Ethernet ports

1 HSMC expansion ports
On-board memory 128-MB 16-bit DDR3

1-GB 64-bit DDR2 SODIMM
2-MB SSRAM
64-MB flash

On-board clocking circuitry 4 On-board oscilators
100 MHz
155.52 MHz
Programmable oscillator (100 MHz)
Programmable oscillator (125 MHz)

Mechanical SMA connector for external LVPECL clock input
SMA connector for clock output
PCI Express full-length standard-height
PCI Express chassis or bench-top operation
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