MODELAMIENTO Y SIMULACIÓN DE UN CONTROLADOR ADAPTATIVO POR MODELO DE REFERENCIA PARA UN PROCESO DE REGULACIÓN DE pH

Por: Valentina Hernández Piedrahita Ingeniera Química

Tesis realizada para optar al título de magister en ingeniería énfasis Ingeniería Química

Director: Profesor: Fiderman Machuca Martínez. Ph. D.

> Universidad del Valle Facultad de ingeniería Escuela de Ingeniería Química Cali, Junio de 2.013

A mis padres y mi tia Leonor por su amor y apoyo incondicionales. A mi hija, motor de mi existencia, por su amor y ternura.

AGRADECIMIENTOS

La autora presenta sus más sinceros agradecimientos:

Al Doctor Fiderman Machuca, director de la tesis, por su paciencia, comprensión y apoyo.

Al Doctor Rubén Camargo, director del programa de posgrados de la Escuela de Ingeniería Química, por su comprensión y colaboración.

A Maria Eugenia Cifuentes, secretaria de la Escuela de Ingeniería Química, por su paciencia y colaboración.

A la profesora Gloria Lasso y a mis excompañeros de maestría por su apoyo.

CONTENIDO

RESUMEN INTRODUCCIÓN JUSTIFICACIÓN OBJETIVOS	
1. ANTECEDENTES	1
1.1 POTENCIAL DE HIDRÓGENO (PH)	1
1.1.1 Definición de pH	1
1.1.2 Control de pH	2
1.2 ELECCIÓN DEL MÉTODO DE CONTROL	7
2. MARCO CONCEPTUAL	9
2.1 CONTROL ADAPTATIVO	9
2.1.1 Control adaptativo por programación de ganancias	10
2.1.2 Control adaptativo por modelo de referencia	11
2.1.3 Regulador autoajustable.	
2.2 CONTROL ADAPTATIVO POR MODELO DE REFERENCIA	12
2.2.1 Modelo de referencia	13 1 <i>1</i>
2.2.2.1 Control proporcional	
2.2.2.2 Control proporcional – integral.	15
2.2.2.3 Control proporcional – derivativo.	15
2.2.2.4 Controlador proporcional – integral – derivativo.	
2.2.3 CICIO de adaptación del gradiente	16
2.2.3.2 Método de estabilidad de Lyapunov.	
3. METODOLOGÍA	20
3.1 MÉTODO DE OPTIMIZACIÓN DEL GRADIENTE	20
3.2 MÉTODO DE OPTIMIZACIÓN DE LYAPUNOViError! Marcador No	DEFINIDO.
4. MODELAMIENTO DE UN MRAS PARA UN PROCESO DE NEUTRALIZACIÓN	21
4.1 DIAGRAMA DE ELUIO DE LIN MRAS PARA LIN PROCESO DE NELITRALIZACIÓN D) ЕрН 21
4.1.1 Diagrama de fluio para el lazo de control convencional	
4.1.2 Consola eléctrica PCT – 10	21
4.1.2.1 Válvula de control	22
4.1.2.2 Electrodo:	
4.1.3 Diagrama de flujo para el lazo de control de un MRAS	22 22
4.2 DISENU DE UN MIRAS	22 22
422 Procedimiento de diseño	22 23
4.3 LAZO DE CONTROL CONVENCIONAL	23
4.3.1 Controlador convencional.	23
4.3.2 Válvula de control	24
4.3.3 Electrodo	25
4.4 PLANTA	26
4.5 MODELO DE REFERENCIA	29

4.6 LEYES DE ADAPTACIÓN	.29
4.6.1 Método de optimización del gradiente	.29
4.6.2 Método de estabilidad de Lyapunov	.31
4.7 ANÁLISIS DE CONVERGENCIA	.35
4.7.1 Conjunto planta controlador – proporcional	.35
4.7.2 Conjunto planta controlador – proporcional integral	.35
4.7.3 Conjunto planta controlador – proporcional derivativo	.36
4.7.4 Conjunto planta controlador – proporcional derivativo.	.36
5. SIMULACIÓN DE UN CONTROLADOR ADAPTATIVO POR MODELO DE REFERENCIA PARA UN PROCESO DE NEUTRALIZACIÓN DE PH. PROGRAMA MRAS EN MATLAB	.37
	~ 7
5.1 INTERFAZEN GUL	.37
5.2 ESTRUCTURA EN SIMULINK	.38
5.2.1 Acondicionamiento de las senales de entrada	.40
5.2.2 Modelo de l'elercia	.40 17
5.2.5 Controladol	.42 12
525 Planta	.43 ΔΔ
52.6 Leves de adaptación	45
6. ANALISIS DE RESULTADOS Y CONCLUSIONES	.49
6.1 CONJUNTO PLANTA – CONTROLADOR PROPORCIONAL	.49
6.2 CONJUNTO PLANTA - CONTROLADOR PROPORCIONAL INTEGRAL	.52
6.3 CONJUNTO PLANTA - CONTROLADOR PROPORCIONAL DERIVATIVO	.55
6.4 CONJUNTO PLANTA - CONTROLADOR PROPORCIONAL INTEGRAL DERIVATIVO	.58
6.5 MRAS vs. IMC	.61

LISTA DE FIGURAS

Figura 1: Posibles formas de la curva de neutralización [10]	3
Figura 2: Representación general del control adaptativo	10
Figura 3: Control adaptativo por programación de ganancias	11
Figura 4: Control adaptativo por modelo de referencia	12
Figura 5: Regulador autoajustable	12
Figura 6: Lazo de control del equipo PCT – 16 pH Control Accessory [58]	21
Figura 7: Diagrama de flujo de un controlador adaptativo por modelo de reference	cia
	22
Figura 8: Relación entre la señal de corriente del controlador (Flujo de ácido) y la	а
intensidad de corriente [58]	24
Figura 9: Curva de calibración del electrodo [58]	25
Figura 10: Relación lineal entre el voltaje y la intensidad de corriente	25
Figura 11: Ajuste de los datos. (a) Relación de flujo w = 0.8. (b) Relación de	de
flujo w = 0.933. (c) Relación de flujo w = 1.066. (d) Relación de flujo w = 1.2	27
Figura 12: Relación entre la ganancia del proceso y la relación de flujos	28
Figura 13: Relación entre la Constante de tiempo del proceso y la relación de flu	jos.
	28
Figura 14: Relación entre el tiempo muerto y la relación de flujos	28
Figura 15: Interfaz gráfica del programa MRAS	37
Figura 16: Estructura general de un Controlador adaptativo por modelo de	
referencia en SIMULINK	38
Figura 17: Algoritmo para un controlador adaptativo por modelo de referencia	39
Figura 18: Subsistema Set point: (a) Cuadro de diálogo y (b) Estructura en	
SIMULINK	40
Figura 19: Estructura en SIMULINK para el modelo de referencia: (a) Control	
convencional P y PD; (b) Control convencional PI y PID	41
Figura 20: Cuadro de diálogo de la función de inicialización del modelo	42
Figura 21: Estructura del bloque Controlador: (a) Proporcional; (b) Proporcional	-
Integral; (c) Proporcional – Derivativo; (d) Proporcional – Integral – Derivativ	vo43
Figura 22: Cuadro de diálogo del subsistema Perturbación	44
Figura 23: "Válvula de control". Estructura en SIMULINK	44
Figura 24: Cuadro de diálogo del subsistema "Ley de adaptación": (a) Regla del	
MIT; (b) Método de estabilidad de Lyapunov	46
Figura 25: Método de optimización del gradiente: (a) Controlador P; (b) Controla	dor
PI; (c) Controlador PD y (d) Controlador PID	46
Figura 26: Método de estabilidad de Lyapunov. Controlador P: (a) Estructura en	
SIMULINK. (b) Código del bloque Embedded MATLAB Function	47
Figura 27: Método de estabilidad de Lyapunov. Controlador PI: (a) Estructura en	
SIMULINK. (b) Código del bloque Embedded MATLAB Function	48

Figura 28: Método de estabilidad de Lyapunov. Controlador PD: (a) Estructura en
SIMULINK. (b) Código del bloque Embedded MATLAB Function
Figura 29: Método de estabilidad de Lyapunov. Controlador PD: (a) Estructura en
SIMULINK. (b) Código del bloque Embedded MATLAB Function
Figura 30: Método de optimización del gradiente. Control proporcional. Flujo de
base 120 cm³/min pH _{set} = 8.0 49
Figura 31: Método de estabilidad de Lyapunov. Control proporcional. Flujo de base
120 cm³/min pH _{set} = 8.0 49
Figura 32: Método de optimización del gradiente. Control proporcional – integral.
Flujo de base 120 cm ³ /min pH _{set} = 8.0 52
Figura 33: Método de estabilidad de Lyapunov. Control proporcional - integral. Flujo
de base 120 cm³/min pH _{set} = 8.0 53
Figura 34: Método de optimización del gradiente. Control proporcional – derivativo.
Flujo de base 120 cm ³ /min pH _{set} = 8.056
Figura 35: Método de estabilidad de Lyapunov. Control proporcional – derivativo.
Flujo de base 120 cm ³ /min pH _{set} = 8.0 56
Figura 36: Método de optimización del gradiente. Control proporcional – integral –
derivativo. Flujo de base 120 cm ³ /min pH _{set} = 8.0
Figura 37: Método de estabilidad de Lyapunov. Control proporcional – integral –
derivativo. Flujo de base 120 cm ³ /min pH _{set} = 8.0

LISTA DE TABLAS

Tabla 1: Funciones de transferencia de los controladores convencionales a evalua	r
	24
Tabla 2: Resultados para la ganancia, la constante de tiempo y el tiempo muerto	27
Tabla 3: Leyes de adaptación. Método de optimización del gradiente	30
Tabla 4: Leyes de adaptación. Método de estabilidad de Lyapunov	32
Tabla 5: Valores de las matrices P	34
Tabla 6: Valores para los coeficientes de la función de transferencia del modelo de	¢
referencia	41
Tabla 7: Coeficientes de la función de transferencia de la planta	45
Tabla 8: Comparación de errores. Conjunto planta – controlador proporcional	51
Tabla 9: Valores de la ganancia de adaptación. Método de optimización del	
gradiente. Control Proporcional	51
Tabla 10: Valores de la ganancia de adaptación. Método de estabilidad de Lyapunc)V.
Control Proporcional.	52
Tabla 11: Comparación de errores. Conjunto planta – controlador proporcional	
integral	54
Tabla 12: Valores de la ganancia de adaptación. Método de optimización del	
gradiente. Control Proporcional – Integral	55
Tabla 13: Valores de la ganancia de adaptación. Método estabilidad de Lyapunov.	
Control Proporcional – Integral	55
Tabla 14: Comparación de errores. Conjunto planta – controlador proporcional	
derivativo	57
Tabla 15: Valores de la ganancia de adaptación. Método de optimización del	
gradiente. Control Proporcional – Derivativo.	58
Tabla 16: Valores de la ganancia de adaptación. Método estabilidad de Lyapunov.	
Control Proporcional – Derivativo.	58
Tabla 17: Comparación de errores. Conjunto planta – controlador proporcional	
integral derivativo	60
Tabla 18: Valores de la ganancia de adaptación. Método de optimización del	
gradiente. Control Proporcional – Integral – Derivativo	61
Tabla 19: Valores de la ganancia de adaptación. Método de optimización del	
gradiente. Control Proporcional – Integral – Derivativo	61

LISTA DE ANEXOS

ANEXO A: DATOS DE LAS CURVAS FLUJO DE ACIDO vs. INTENSIDAD DE	
CORRIENTE, VOLTAJE vs. pH, INTENSIDAD DE CORRIENTE vs pH	. 64
ANEXO B: PROCESO EN LAZO ABIERTO. INTENSIDAD DE CORRIENTE vs. pH	. 65
ANEXO C: PROCEDIMIENTO PARA OBTENER LOS PARÁMETROS AJUSTABLES).
MÉTODO DE OPTIMIZACIÓN DEL GRADIENTE	. 69
ANEXO D: PROCEDIMIENTO PARA OBTENER LOS PARÁMETROS AJUSTABLES).
MÉTODO DE ESTABILIDAD DE LYAPUNOV	. 76
ANEXO E: CÓDIGOS EN MATLAB DEL PROGRAMA EN SIMULINK MRAS	. 83

RESUMEN

El pH es una variable de gran importancia en un gran número de procesos industriales, entre los cuales se encuentran la fermentación, la oxidación, la flotación, la extracción con solventes, la neutralización de aguas residuales, la manufactura de ácidos grasos y jabones, la neutralización de alimentos y la neutralización de desechos industriales. A pesar de éstas características, su control presenta varias dificultades, relacionadas con la no linealidad del proceso, la amplitud del rango de medición y la sensibilidad de la misma.

En este trabajo se evalúa el comportamiento de un proceso de regulación de pH bajo la acción de un controlador adaptativo por modelo de referencia, tras establecer un pH inicial de 7.0 y utilizar los resultados obtenidos en el trabajo de grado "Diagnóstico y simulación de un sistema de control de pH en un reactor de tanque agitado", teniendo en cuenta las siguientes variables:

- Seis valores para el set point, tres por encima del pH inicial (8.0, 9.0 y 10.0) y tres por debajo del mismo (4.0, 5.0, 6.0).
- Cuatro tipos de controladores convencionales para el lazo de regulación interno (P, PI, PD y PID).
- Dos métodos de adaptación (Método de optimización del gradiente y método de estabilidad de Lyapunov), con los cuales se encontraron las expresiones para los parámetros ajustables presentes en cada caso.

Se utilizaron las aplicaciones GUI y SIMULINK de MATLAB para realizar las simulaciones de los modelos y se obtuvieron los resultados en forma gráfica, lo que permitió comparar el desempeño de los métodos de adaptación según el controlador convencional implementado.

Tras realizar todas las simulaciones, se puede concluir que el método de estabilidad de Lyapunov arroja resultados satisfactorios en todos los casos evaluados, mientras que el método de estabilidad del gradiente solo es aplicable cuando se implementan el control proporcional y el proporcional – derivativo en el lazo de regulación convencional.

INTRODUCCIÓN

El control automático es una de las disciplinas de mayor relevancia en el desarrollo de la ciencia y la ingeniería, encontrando su mayor aplicación en los procesos industriales y de manufactura modernos debido a la complejidad de los sistemas y al gran número de variables involucradas en los procesos. Entre las ventajas de su aplicación se encuentran la reducción del costo asociado a la generación de bienes y servicios, el incremento en el volumen de producción y la obtención de productos más uniformes y de más alta calidad.

Una de las variables de mayor incidencia a nivel industrial es el pH, ya que encuentra aplicación en una variedad de procesos como en el tratamiento de aguas residuales, la industria de alimentos y los procesos bioquímicos entre otros. Sin embargo, el control de esta variable utilizando técnicas convencionales es difícil de realizar debido a la dependencia altamente no lineal entre los reactivos que ingresan al sistema y el pH que se establece. Esta característica hace necesario utilizar métodos de control avanzados como el Control por Modelo Interno (IMC), el Control Predictivo, el Control Adaptativo, El control Robusto, etc. Esto se debe a que los sistemas de control convencionales están pensados para regular procesos, casi siempre lineales, cuyos parámetros permanecen constantes y con un punto de operación fijo.

El control adaptativo por modelo de referencia ofrece una solución a éste tipo de problemas, ya que consiste en especificar, mediante un modelo y los parámetros del controlador, la respuesta deseada del sistema. Esto se logra mediante la obtención de una ley de adaptación que permita ajustar los parámetros del sistema basándose en la diferencia entre la salida del proceso y la salida del modelo.

JUSTIFICACIÓN

A pesar de que los procesos de neutralización de pH son ampliamente utilizados en la industria química, de alimentos y biotecnológica, aún no se dispone de técnicas efectivas que permitan realizar un control apropiado de este tipo de sistemas. Lo anterior se debe principalmente a que este tipo de sistemas presentan un comportamiento altamente no lineal y los controladores convencionales están diseñados para regular sistemas cuya dinámica no varía, lo cual no aplica en estos casos.

La técnica de control más utilizada a nivel industrial es la acción Proporcional – Integral – Derivativa, gracias a su sencillez. Sin embargo, en casos en los que la dinámica del proceso varía contantemente, como ocurre en los sistemas de neutralización, los resultados obtenidos en cuanto a productividad y calidad pueden no ser los mejores, siendo necesaria la implementación de controladores que permitan tener en cuenta las características del proceso mencionado.

En este sentido, el control adaptativo por modelo de referencia ofrece una alternativa llamativa, debido a que obliga al sistema a seguir el comportamiento de un modelo predeterminado, con base en datos reales del sistema a controlar.

OBJETIVOS

El objetivo general de este trabajo es modelar y la simular un controlador adaptativo por modelo de referencia para un sistema de regulación de pH.

Como objetivos específicos se plantean:

- 1. Obtener el modelo matemático de las de un controlador adaptativo por modelo de referencia para un proceso de regulación de pH, implementando dos métodos de adaptación, el método de optimización del gradiente y el de estabilidad de Lyapunov.
- 2. Simular el proceso utilizando el aplicativo SIMULINK del programa MATLAB
- **3.** Encontrar la ley de adaptación más eficiente para el control adaptativo de un proceso de regulación de pH.

1. ANTECEDENTES

1.1 POTENCIAL DE HIDRÓGENO (pH)

El pH es una variable de gran importancia en un gran número de procesos industriales, entre los cuales se encuentran la fermentación, la oxidación, la flotación, la extracción con solventes, la neutralización de aguas residuales, la manufactura de ácidos grasos y jabones, la neutralización de alimentos y la neutralización de desechos industriales [1-6]. Además las consecuencias de un pH "erróneo" pueden ser variadas, siendo la corrosión una de las más graves.

1.1.1 Definición de pH.

El potencial de hidrógeno fue definido por Sorensen y Linderstrom – Lang en 1924 como el logaritmo negativo de la actividad del ión hidrógeno:

$$pH = -log(a_{H^+})$$
(1.1)

Donde	рН	: Potencial de hidrógeno
	a _{н⁺}	: Actividad del ión hidrógeno

La actividad del ión hidrógeno, se relaciona con su correspondiente concentración por medio del coeficiente de actividad iónico del hidrógeno de la forma:

$$a_{H^+} = \gamma_{H^+} m_{H^+}$$
 (1.2)

Donde m_{H^+} : Potencial de hidrógeno

 γ_{H^+} : Actividad del ión hidrógeno

Reemplazando la definición de la actividad iónica del hidrógeno en la definición del potencial de hidrógeno, se obtiene:

$$pH = -\log(\gamma_{H^+}m_{H^+})$$
(1.3)

Cuando las soluciones se comportan como ideales, es decir, soluciones diluidas, la actividad iónica del hidrógeno se aproxima a 1, simplificando la ecuación (1.3) de la forma:

 $pH = -log(C_{H^+})$

Donde C_{μ^+} : Concentración del ión de hidrógeno

1.1.2 Control de pH.

A pesar de que muchos procesos químicos y biológicos involucran lazos de control de pH, el diseño y la implementación de éstos, genera algunas dificultades [2, 4, 6-9]. Las razones principales de dichos problemas, radican en los siguientes factores:

La no linealidad del proceso: Estos procesos exhiben un comportamiento fuertemente no lineal, causado por la naturaleza de la curva de titulación ácido – base [6] (Figura 1).

En el punto en que las concentraciones de ácido y base son iguales ([base]/[ácido]=1), llamado punto de equivalencia, la ganancia del proceso es un máximo. En la figura 1.a, se muestra la curva de titulación para un ácido y una base fuertes, presentan un cambio marcado cerca al punto de equivalencia y una ganancia bastante alta. Las figuras 1.b y 1.c, representan los sistemas ácido débil – base fuerte y ácido fuerte – base débil, respectivamente, en estos casos los cambios en el pH alrededor del punto de equivalencia son más graduales y las ganancias del proceso más bajas. Los sistemas que permiten un mejor control son los que se esquematizan en la figura1.d, donde tanto el ácido como la base son débiles, ya que la ganancia del proceso en el punto de equivalencia es baja [10-12].

La amplitud rango de medición: La escala de pH corresponde a la concentración de iones hidrógeno desde 10[°] hasta 10⁻¹⁴ moles por litro. Ninguna otra medida cubre un rango tan amplio [11-13].

La sensibilidad en la medición: Las mediciones de los electrodos pueden corresponder a cambios tan pequeños como 0.001 pH, lo que significaría variaciones en la concentración del ión hidrógeno de 2.3×10^{-10} moles por litro para pH neutro, ninguna otra variable tiene una sensibilidad tan grande alrededor de un punto de operación [11-13].

Muchos autores han realizado estudios en el campo del control de pH, con el ánimo de encontrar la estrategia que regule el proceso de la mejor manera.

En 1966 Mellichamp et al.¹, presentaron un método para aplicar la ganancia de identificación en línea. El método constaba de un pequeño tanque de identificación que

¹ Mellichamp, D.A., D.R. Coughanowr, and L.B. Koppe, *Identification and adaptation in control loops with time varying gain*. AIChE Journal, 1966. **12**(1): p. 83 - 89.

seguía al tanque de control, éste último era sometido a perturbaciones para calcular la ganancia del proceso.

Figura 1: Posibles formas de la curva de neutralización [10].

McAvoy et al.² modelaron un modelo dinámico para un proceso de neutralización de pH, con las ecuaciones del balance de materia y de equilibrio.

Gupta y Coughanowr³ presentaron un método para controlar un proceso de neutralización de pH de primer orden con ganancia variable en el tiempo y retraso en la medida de la variable de control, que involucraba la identificación en línea de la ganancia del proceso y el subsecuente ajuste de los parámetros del controlador.

 $^{^{2}}$ McAvoy, T.J., E. Hsu, and S. Lowenthal, *Dynamics of pH in Controlled Stirred Tank Reactor*. Industrial & Engineering Chemistry Process Design and Development, 1972. **11**(1): p. 68-70.

³ Gupta, S.R. and D.R. Coughanowr, *On-line gain identification of flow processes with application to adaptive pH control.* AIChE Journal, 1978. **24**(4): p. 654 - 664.

En cuanto al control adaptativo se refiere, los primeros estudios estuvieron a cargo de Gustafsson v Waller⁴, guienes propusieron un esquema para el control adaptativo de un proceso de neutralización de pH, introduciendo el concepto de invariante de reacción para incorporar la no linealidad del proceso. El modelo se dividía en dos partes, una que describía las propiedades físicas del sistema, independientes de las reacciones químicas, y la otra describía las reacciones químicas. Encontraron que para reacciones ácido - base rápidas, la invariante de la reacción era suficiente para definir el estado termodinámico del sistema. En cuanto a la reacción variante, consistía en una ecuación estática que relacionaba al pH con la invariante de la reacción. En un estudio posterior. Gustafsson⁵ reportó los resultados experimentales de un controlador de pH adaptativo no lineal utilizando el concepto de invariante de reacción. Henson y Seborg⁶ desarrollaron y evaluaron experimentalmente una estrategia de control adaptativa no lineal para un proceso de neutralización de pH, utilizando el modelo de invariante de la reacción. Lee et al propusieron un regulador autoajustable no lineal, utilizando un modelo de dos parámetros, para controlar el valor de pH de una corriente de ácido débil neutralizada con una base fuerte. Estimaron los parámetros desconocidos, la concentración y la constante de disociación de un ácido débil ficticio utilizando el método de los mínimos cuadrados con un factor de olvido variable. El controlador mostró un buen rendimiento para controlar sistemas multivariables⁷. Lee y Choi⁸ propusieron un controlador adaptativo no lineal simple para un proceso de pH utilizando un mezclador en línea, al que excitaron persistentemente para obtener una adaptación confiable del sistema de control.

Otros autores invirtieron sus estudios en el control adaptativo de procesos de neutralización; en 2001, Ali desarrolló un método PI autoajustable y comparó su comportamiento con tres tipos de controladores, el control PI convencional, el control por ganancia programada y el control globalmente linealizado (GLC), concluyendo que, aunque las cuatro estrategias exhibían un buen comportamiento, solo el primero presentaba la habilidad de autoajustarse automáticamente, obteniendo como resultado que el pH de respuesta siempre seguía el objetivo deseado⁹. Loh et al.¹⁰, en el 2001, diseñaron un control adaptativo por modelo de referencia para controlar el pH y el nivel en

⁴ Gustafsson, T.K. and K.V. Waller, *Dynamic modeling and reaction invariant control of pH*. Chemical Engineering Science, 1983. **38**(3): p. 389-398.

⁵ Gustafsson, T.K., An experimental study of a class of algorithms for adaptive pH control. Chemical Engineering Science, 1985. **40**(5): p. 827-837.

⁶ Henson, M.A. and D.E. Seborg, *Adaptive nonlinear control of a pH neutralization process*. Control Systems Technology, IEEE Transactions on, 1994. **2**(3): p. 169-182.

⁷ Lee, S.D., J. Lee, and S. Park, *Nonlinear self-tuning regulator for pH systems*. Automatica, 1994. **30**(10): p. 1579 - 1586.

⁸ Lee, J. and J.Y. Choi, *In-line mixer for feedforward control and adaptive feedback control of pH processes*. Chemical Engineering Science, 2000. **55**(7): p. 1337-1345.

⁹ Ali, E., *pH Control Using PI Control Algorithms with Automatic Tuning Method*. Chemical Engineering Research and Design, 2001. **79**(5): p. 611-620.

¹⁰ Loh, A.-P., D.S. De, and P.R. Krishnaswamy, *pH and Level Controller for a pH Neutralization Process*. Industrial & Engineering Chemistry Research, 2001. **40**(16): p. 3579-3584.

un proceso de neutralización en un reactor continuo de tanque agitado. Yoon et al.¹¹ presentaron un esquema de control no lineal adaptativo indirecto para controlar un proceso de pH basándose en el diseño de módulos paso a paso. Combinaron un controlador no lineal con un estimador de parámetros para las concentraciones de las invariantes de la reacción.

Algunos de los autores que utilizaron el concepto de invariante de la reacción, fueron Wright y Kravaris¹², quienes sugirieron una ecuación de estado de primer orden reduciendo éstas invariantes en los modelos de los procesos de pH. Probaron que un mapa de estado/salida es un tipo de curva de neutralización de la corriente de alimentación y que el proceso de pH puede ser representado completamente por una ecuación de estado de primer orden si el estado inicial es un estado estable y la composición dl alimento no varía. Utilizaron un controlador PI.

En 1990 Williams et al.¹³ desarrollaron un modelo de dos parámetros que involucraba la concentración iónica total y la constante de disociación de un solo ácido débil ficticio y diseñó un regulador para controlar el sistema de pH multicomponente donde estimaban dos parámetros inyectando una base fuerte en dos puntos en un proceso de neutralización en línea. Sung et al.¹⁴ propusieron un regulador para controlar un proceso de pH eficientemente. En este estudio, calcularon la constante de disociación y la concentración total del ión de un ácido débil ficticio para aproximar las características de equilibrio de un proceso de pH utilizando el método de los mínimos cuadrados recursivos en línea, Utilizan un controlador PI para controlar el valor del pH utilizando los parámetros de pH con un modelo de tres parámetros: la concentración total del ión, la constante de disociación de un ácido débil ficticio y la concentración total del ión de un ácido de pH con un modelo de tres parámetros: la concentración total del ión, la constante de disociación de un ácido débil ficticio y la concentración total del ión de un ácido fuerte ficticio. Utilizaron el método de realimentación de relé y Lee y Park¹⁶ diseñaron un controlador para un proceso de pH, a partir de un modelo de tres parámetros, involucrando un ácido fuerte, un ácido débil y una constante de disociación desconocida.

¹¹ Yoon, S.S., et al., *Indirect adaptive nonlinear control of a pH process*. Computers & amp; Chemical Engineering, 2002. **26**(9): p. 1223-1230.

¹² Wright, R.A. and C. Kravaris, *Nonlinear control of pH processes using the strong acid equivalent*. Industrial & Engineering Chemistry Research, 1991. **30**(7): p. 1561-1572.

¹³ Williams, G.L., R.R. Rhinehart, and J.B. Riggs, *In-line process-model-based control of wastewater pH using dual base injection*. Industrial & Engineering Chemistry Research, 1990. **29**(7): p. 1254-1259.

¹⁴ Sung, S.W., et al., *Adaptive control for pH systems*. Chemical Engineering Science, 1998. **53**(10): p. 1941-1953.

¹⁵ Lee, J., et al., *Relay Feedback Method for Tuning of Nonlinear pH Control Systems*. AIChE Journal, 1993. **39**(6): p. 1093 - 1096.

¹⁶ Lee, J. and H.C. Park, *Nonlinear pH Control Using a Three Parameter Model*. ICASE: The Institute of Control, Automation and Systems Engineers, 2000. **2**(2): p. 130 - 136.

La primera aplicación industrial de una estrategia de control adaptativa – predictiva basada en las funciones de Laguerre fue presentada en 1990 por Dumont et al.¹⁷. Los resultados demostraron la aplicabilidad de esta metodología a nivel industrial.

En 1992 Gustafsson y Waller¹⁸ discutieron los méritos relativos del control continuo lineal y no lineal de los procesos de pH por medio de simulaciones y experimentos, concluyendo que el control no lineal es superior cuando las características del proceso son bien conocidas.

Varios autores han utilizado el modelo no lineal de Wiener, entre ellos se cuentan: Pajunen¹⁹, quien propuso una estrategia de control adaptativo utilizando éste modelo, donde asumía que la parte lineal dinámica del proceso podía ser representada por una función de transferencia de pulso de orden conocido, mientras que la parte no lineal la representaba utilizando rejillas lineales y un conjunto dado de puntos de corte (Valores de pH para definir la no linaelidad). Mahmoodi et al evaluaron un modelo de Wiener – Laguerre, donde la parte lineal del sistema estaba definida por los filtros de Laguerre y polinomios simples definían parte no lineal, para evaluar un proceso de pH, utilizando el modelo obtenido en la estructura de un modelo de control predictivo basado en un algoritmo cuadrático de secuencia programada²⁰. En 2005 Kalafatis et al, examinó un proceso de control de pH basado en la estructura del modelo de Wiener, donde un elemento lineal representaba la dinámica del proceso y una parte no lineal representaba la curva de neutralización²¹.

En 1993 Lin y Yu²² modelaron el proceso de pH modificando la curva de neutralización Gulaian – Lane de modo que la curva de neutralización del proceso era una combinación lineal de dos curvas de neutralización base. Con esta estructura, las constantes de sintonización y las ganancias tabuladas (estimadas de la curva de neutralización), pueden determinarse por medio de un experimento de realimentación de relé.

Sung y Lee²³ propusieron una estrategia de control que utilizaba un cambio en el set point para superar las no linealidades y las propiedades variantes en el tiempo de los procesos

¹⁷ Dumont, G.A., C.C. Zervos, and G.L. Pageau, *Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage*. Automatica, 1990. **26**(4): p. 781-787.

¹⁸ Gustafsson, T.K. and K.V. Waller, *Nonlinear and adaptive control of pH*. Industrial & Engineering Chemistry Research, 1992. **31**(12): p. 2681-2693.

¹⁹ Pajunen, G., Adaptive control of wiener type nonlinear systems. Automatica, 1992. 28(4): p. 781-785.

²⁰ Mahmoodi, S., et al., *Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model.* Chemical Engineering Journal, 2009. **146**(3): p. 328-337.

²¹ Kalafatis, A.D., L. Wang, and W.R. Cluett, *Linearizing feedforward–feedback control of pH processes based on the Wiener model.* Journal of Process Control, 2005. **15**(1): p. 103-112.

²² Lin, J.-Y. and C.-C. Yu, Automatic tuning and gain scheduling for pH control. Chemical Engineering Science, 1993. **48**(18): p. 3159-3171.

²³ Sung, S.W. and I.-B. Lee, *pH Control Using a Simple Set Point Change*. Industrial & Engineering Chemistry Research, 1995. **34**(5): p. 1730-1734.

de neutralización de pH, aplicando el concepto de PID autoajustable dado por Yuwana y Seborg en 1982.

Galán et al.²⁴ presentaron una estrategia de control basada en modelo, implementando un conjunto de modelos lineales múltiples, estudiaron su desempeño y lo compararon con el de un controlador PI convencional. Obtuvieron el mejor comportamiento al implementar el controlador robusto H_∞.

Swati et al propusieron un controlador no lineal en cascada para simular la curva de neutralización de un sistema que cambiaba de ácido débil – base fuerte a ácido fuerte – base débil y que regresaba a ácido débil – base fuerte. La estructura del controlador consistía en un controlador P no lineal basado en el modelo de Weiner en el lazo interno y un controlador PI en el lazo externo²⁵.

Böling et al desarrollaron y evaluaron un controlador PID con múltiples modelos para un proceso de neutralización de pH²⁶.

Otro método de control aplicado a los procesos de regulación de pH, es el control generalizado predictivo. Atlinten²⁷, aplicó el GPC a una reacción de neutralización que se desarrollaba en un reactor tubular; Bagheri et al.²⁸ emplearon un algoritmo GPC multivariable, Obut y Özgen²⁹ implementaron exitosamente dos técnicas de control avanzadas a un sistema de neutralización de pH a escala de laboratorio: Control predictivo y control por lógica difusa, utilizando un reactor de identificación en la construcción de la curva de neutralización del sistema.

1.2 ELECCIÓN DEL MÉTODO DE CONTROL

Las técnicas de control clásicas se basan en regular un proceso real a partir de un modelo fijo de planta, lo que implica obtener un modelo razonablemente bueno de la misma. Para

²⁴ Galán, O., J.A. Romagnoli, and A. Palazoglu, *Real-time implementation of multi-linear model-based control strategies—an application to a bench-scale pH neutralization reactor*. Journal of Process Control, 2004. **14**(5): p. 571-579.

²⁵ Swati, D., et al., *Nonlinear Control of pH System for Change Over Titration Curve*. Chemical and Biochemical Engineering Quarterly, 2005. **19**(4): p. 341 - 349.

²⁶ Böling, J.M., D.E. Seborg, and J.P. Hespanha, *Multi-model adaptive control of a simulated pH neutralization process.* Control Engineering Practice, 2007. **15**(6): p. 663-672.

²⁷ Altinten, A., *Generalized predictive control applied to a pH neutralization process*. Computers & amp; Chemical Engineering, 2007. **31**(10): p. 1199-1204.

²⁸ Bagheri, P., A. Khaki-Sedigh, and A. Neshastehriz, *Generalized Predictive Control of a Multivariable pH Neutralization Process using Independent Model Approach*, in *Proceedings of 2009 CACS International Automatic Control Conference National Taipei University of Technology*2009: Taipei, Taiwan.

²⁹ Obut, S. and C. Özgen, *Online Identification and Control of pH in a Neutralization System*. Industrial & Engineering Chemistry Research, 2008. **47**(13): p. 4394-4404.

esto es necesario conocer, además de la estructura del modelo, todas las funciones y constantes que forman parte del mismo. Sin embargo, en muchos casos debido a la complejidad de la planta o a los cambios en los parámetros y la dinámica de la misma, es imposible obtener un modelo correcto del comportamiento del proceso a controlar. Una de las soluciones a esta dificultad es implementar una técnica de control que involucre un lazo de identificación destinado a obtener un mejor entendimiento del sistema, como el control adaptativo.

La aplicabilidad de los controladores adaptativos en los procesos químicos se ha expandido ampliamente durante los últimos años, debido a dos razones principales:

- La mayoría, sino la totalidad, de los procesos químicos son no lineales y la implementación de controladores lineales implica la linealización del modelo lo que, a su vez, conduce a operar alrededor de un estado estable o punto de operación (El utilizado al momento de la linealización). Sin embargo, los puntos de operación de los sistemas cambian y, por consiguiente, los valores de los parámetros del controlador varían también.
- La mayor parte de los procesos químicos son no estacionarios. Este tipo de cambios también implican el deterioro del desempeño del controlador convencional, el cual, normalmente, se diseña con base en ciertos valores nominales para los parámetros.

2. MARCO CONCEPTUAL

2.1 CONTROL ADAPTATIVO

El control adaptativo tuvo sus orígenes en los años 50, cuando fue necesario resolver el problema del diseño de pilotos automáticos para aeronaves que operaban en un rango amplio de velocidades y altitudes, ya que los reguladores de ganancia constante no presentaban buenos resultados. El control adaptativo por programación de ganancias demostró ser una técnica adecuada para los sistemas de control de vuelo. Sin embargo, el interés en el control adaptativo disminuyó debido a la falta de técnicas sofisticadas para su comprensión y entendimiento [16, 17].

La década de los 60's representó el periodo más importante en el desarrollo de la teoría del control, en particular para el control adaptativo, gracias a la introducción de la teoría de estabilidad y del espacio de estados. Otros aspectos que fueron cruciales en la reformulación y el rediseño del control adaptativo por esta época, fueron los desarrollos en programación dinámica, control dual, control estocástico, sistemas de identificación y estimación de parámetros. Estos avances sumados al desarrollo y progreso en el campo de la computación y la electrónica facilitaron la implementación de controladores complejos, incrementando el interés en las aplicaciones del control adaptativo [18].

El decenio de 1970 representó un renacimiento del control adaptivo, al combinarse esquemas de estimación y diversos métodos de diseño. Sin embargo, se obtuvieron resultados teóricos muy limitados. Finalizando la década de los 70 y a principios de 1980, aparecieron estudios basados en las pruebas de estabilidad de sistemas adaptativos, aunque bajo hipótesis muy restringidas [19]. Las investigaciones de finales de la década de 1980 y principios de 1990, estuvieron encaminados a estudiar la robustez de los controladores adaptativos, lo que ha hecho que esta técnica de control sea cada vez más importante en un amplio rango de aplicaciones tecnológicas.

El control adaptativo es un esquema de control no lineal, en el cual el controlador modifica su comportamiento, en forma continua y automática, en función de la dinámica del sistema y de las perturbaciones existentes, de modo que mantiene un desempeño óptimo [18, 20]. En este tipo de control el estado del proceso puede ser separado en dos escalas de tiempo que evolucionan a diferente velocidad: La lenta corresponde a la velocidad con la cual los parámetros del regulador son modificados y la rápida, a la dinámica del lazo ordinario de realimentación [21].

En la figura 2 se presenta un esquema básico de control adaptativo, compuesto por dos lazos de control: uno principal, de realimentación negativa, que actúa como un regulador convencional y un lazo de adaptación en el que se mide un índice de funcionamiento, se

comparado con el índice deseado y se procesa el error en un mecanismo de adaptación que ajusta los parámetros del regulador.

Figura 2: Representación general del control adaptativo.

Existen dos enfoques básicos para realizar la adaptación y se diferencian únicamente en la forma en que se lleva a cabo el ajuste de los parámetros:

- En el enfoque indirecto, también denominado identificación explícita. En este caso los parámetros de la planta son estimados en cada instante y los parámetros del controlador son ajustados con base en estas estimaciones. Las aplicaciones prácticas basadas en este tipo de regulación, conducen al control autoajustable.
- En el enfoque directo, o de identificación implícita, los parámetros del controlador son ajustados directamente para mejorar el índice de funcionamiento del proceso. Existen dos tipos de controladores adaptativos que responden a este esquema, los controladores adaptativos por modelo de referencia y los controladores por programación de ganancias.

2.1.1 Control adaptativo por programación de ganancias.

Consiste en la modificación de los parámetros del controlador a partir de mediciones, realizadas previamente para distintos puntos de operación, de variables auxiliares que describen de forma adecuada las características de la dinámica del proceso (Figura 3). Su objetivo es modificar los parámetros del controlador a partir de los parámetros del proceso [22].

Figura 3: Control adaptativo por programación de ganancias

La ventaja principal en su implementación es que la rapidez de cambio del controlador es directamente proporcional a la rapidez con que la variable auxiliar refleja el cambio de la dinámica del proceso, pero presenta el inconveniente de requerir un trabajo previo de preparación considerable para determinar los parámetros en todas las condiciones operativas posibles. Además, en caso de presentarse un comportamiento incorrecto del proceso controlado con el ajuste realizado, no es posible efectuar una compensación de los parámetros preprogramados, debido a que no existe una realimentación de la adaptación [19]. Este esquema de control control adaptativo presenta su mayor aplicación en los sistemas de control para aviones de alto rendimiento.

2.1.2 Control adaptativo por modelo de referencia.

Las especificaciones del diseño del controlador son dadas en términos de un modelo de referencia, es decir, la señal de salida de la planta debe seguir al modelo de referencia especificado. En la figura 4 se presenta un regulador de este tipo, formado por dos lazos: Uno interno de realimentación ordinaria, compuesto por el proceso y el regulador, y uno externo que ajusta los parámetros del regulador de tal forma que el error entre la salida de la planta y_p y la salida del modelo y_m tienda a cero, convirtiéndolo en un lazo regulador.

La clave en el buen funcionamiento del control adaptativo por modelo de referencia es determinar un mecanismo de ajuste apropiado para lograr que el sistema sea estable.

2.1.3 Regulador autoajustable.

Su funcionamiento se basa en aplicar un método de diseño válido, partiendo del conocimiento del modelo de la planta para realizar un control que se adapte a los cambios del proceso y acoplar este método con un procedimiento de identificación en línea. Con este objetivo se dispone de un "calculador" que, en paralelo al control, se encarga de

encontrar los valores óptimos de los coeficientes del regulador. Dicho "calculador" consiste en un estimador recursivo de los parámetros del sistema. Los resultados del estimador se utilizan para calcular los valores óptimos de los coeficientes del regulador.

Figura 4: Control adaptativo por modelo de referencia.

Figura 5: Regulador autoajustable.

2.2 CONTROL ADAPTATIVO POR MODELO DE REFERENCIA

El control adaptativo por modelo de referencia (MRAS), propuesto para resolver el problema del control de pilotos automáticos para aeronaves de alto desempeño, se basa en encontrar una ley de control que modifique la estructura y la dinámica de la planta, de

manera que las propiedades de entrada y de salida del sistema sean las mismas que las del modelo de referencia [23-25].

Como se muestra en la figura 4, un sistema de control por modelo de referencia se compone de tres partes: El modelo de referencia, el cual define el comportamiento deseado del proceso; el ciclo de adaptación, que utiliza las señales de entrada y de salida del proceso y la señal de salida del modelo para ajustar los parámetros del controlador, con el objetivo de minimizar el error entre las respuestas del proceso y del modelo de referencia; el lazo de control convencional, el cual es el elemento final de un controlador de este tipo.

2.2.1 Modelo de referencia

La implementación de modelos de referencia es un desarrollo que tuvo sus principios en el control de aeronaves. El modelo de referencia indica cómo la señal de salida de la planta debe, idealmente, responder a la señal de entrada. Se trata de un modelo en lazo abierto que especifica el comportamiento deseado de la planta en lazo cerrado [26, 27].

Considérese una planta que pueda ser descrita adecuadamente de la siguiente forma:

$$\dot{\mathbf{x}}_{\mathrm{p}} = \mathbf{A}_{\mathrm{P}}\mathbf{x}_{\mathrm{P}} + \mathbf{B}_{\mathrm{P}}\mathbf{u} \tag{2.1}$$

$$y_{p} = C_{P} x_{P} \tag{2.2}$$

Donde A_P , B_P y C_P son matrices constantes (n x n), (n x m) y (p x n), respectivamente y u es la señal de entrada de la planta.

Ahora, considérese un modelo de referencia de la forma:

$$\dot{\mathbf{x}}_{\mathrm{m}} = \mathbf{A}_{\mathrm{m}}\mathbf{x}_{\mathrm{m}} + \mathbf{B}_{\mathrm{m}}\mathbf{r} \tag{2.3}$$

$$y_{\rm m} = C_{\rm m} x_{\rm m} \tag{2.4}$$

Donde A_m es una matriz constante asintóticamente estable de dimensiones (n x n), B_m y C_m son matrices constantes de dimensiones apropiadas y r es una función continua por trazos uniformemente acotada. Pueden darse dos casos: **Caso 1.** Se tiene un modelo perfecto a seguir si:

 $\|y_{P}(t) - y_{m}(t)\| = 0$ $\forall t \ge t_{0}$ (2.5)

Caso 2. Se trata de un modelo asintótico a seguir cuando:

$$\lim_{\to\infty} \left\| \mathbf{y}_{\mathsf{P}}(t) - \mathbf{y}_{\mathsf{m}}(t) \right\| = 0 \tag{2.6}$$

El objetivo de utilizar un modelo como referencia, es determinar una entrada u en la ecuación (2.1), de forma que la señal de salida y_p se asemeje a la salida del modelo de referencia y_m , conforme pasa el tiempo. De acuerdo con esto y, para que la señal de salida de la planta siga asintóticamente a la referencia, es necesario elegir un modelo sensible a la dinámica del proceso.

2.2.2 Lazo de control convencional

El lazo de control convencional está integrado por el conjunto planta controlador. El controlador primario puede tener cualquiera de las configuraciones conocidas para el diseño de controladores lineales, siempre y cuando se cumplan las siguientes restricciones:

- El conjunto planta controlador debe reproducir al modelo de referencia
- La señal de control sea una función lineal de los parámetros, como lo requiere la adaptación directa.

En este trabajo se implementan las siguientes configuraciones:

2.2.2.1 Control proporcional.

Se trata de un controlador de ganancia ajustable que genera una señal de salida proporcional al error entre el punto de control y la señal que se controla. Esta proporcionalidad viene dada por la ganancia del controlador, la cual determina cuánto se modifica la salida del controlador con un cierto cambio de error. Un aumento en la ganancia proporcional resulta en una reducción del error en estado estacionario, ya que cuanto más grande es la ganancia mayor es la señal de control generada para un mismo valor de señal de error. Su funcionamiento está descrito por siguiente ecuación:

$$m(t) = \overline{m} + K_c e(t)$$

Donde m(t) es la señal de salida del controlador, \overline{m} es el bias del controlador, K_c es la ganancia del controlador, r(t) es el set point, c(t) es la variable controlada y e(t) es la señal del error

Reordenando aplicando la transformada de Laplace:

$$M(s) = K_{c}E(s)$$
(2.7)

2.2.2.2 Control proporcional – integral.

La acción de control integral genera una señal proporcional a la integral de la señal del error.

La acción integral permite obtener un error estacionario nulo en un sistema de control, mediante la introducción de un integrador en la función de transferencia en lazo abierto, sin embargo, esta acción de control empeora la estabilidad del sistema sustancialmente y aumenta el sobreimpulso de la respuesta transitoria, posibilitando así la obtención de sistemas inestables [28].

En un controlador PI, la acción de control integral disminuye el error en estado estacionario provocado por la acción proporcional, mientras que la acción de control proporcional reduce el riesgo de inestabilidad que añade la acción integral.

La ecuación que describe el control PI está dada por la expresión:

$$M(s) = K_{C}\left(1 + \frac{1}{T_{I}s}\right)E(s)$$
(2.8)

Donde T₁ es el tiempo integral

2.2.2.3 Control proporcional – derivativo.

La acción de control derivativa genera una señal proporcional a la velocidad de cambio de la señal del error. Este tipo de control añade sensibilidad al sistema y tiene un efecto de estabilidad relativa, ya produce una corrección antes que la señal del error se haga excesiva, esto significa que la acción derivativa se anticipa al error actuante. En este controlador, la acción proporcional ayuda a incrementar la velocidad de respuesta, mientras que la parte derivativa hace más amortiguado y estable al sistema, lo que permite el uso de valores de ganancias proporcionales más elevados, mejorando la exactitud del estado de régimen. La ecuación descriptiva de un controlador PD está representada por:

$$M(s) = K_{c}(1 + T_{D}s)E(s)$$
 (2.9)

Donde T_D es el tiempo derivativo

2.2.2.4 Controlador proporcional – integral – derivativo.

Genera una señal de control resultante de la combinación de la acción proporcional, la acción integral y la acción derivativa. Está determinado por la expresión:

$$U(s) = K_{C}\left(1 + \frac{1}{T_{I}s} + T_{D}s\right)E(s)$$
(2.10)

La acción de control PID permite eliminar el error de estado estacionario y conseguir una buena estabilidad relativa del sistema de control.

2.2.3 Ciclo de adaptación

La ley de adaptación es la señal que debe recibir el sistema para ajustar los parámetros de la planta de modo que ésta siga al modelo de referencia. Existen dos mecanismos para el ajuste de los parámetros: Usando el método del gradiente o mediante la aplicación de la teoría de estabilidad.

2.2.3.1 Método de optimización del gradiente.

Los sistemas adaptativos por modelo de referencia fueron diseñados, en 1958 por Whitaker y sus colaboradores en el Laboratorio de Instrumentación del Instituto de Tecnología, para sistemas continuos por minimización de un índice de actuación. Esta es la llamada regla del MIT [29].

El método se basa en adaptar los parámetros ajustables (θ) de un sistema en lazo cerrado, con el objeto de minimizar el índice de funcionamiento dado por la ecuación:

$$J(\theta) = \frac{1}{2}e^2$$
(2.11)

Con:
$$e = y_P - y_m$$
 (2.12)

Donde J(θ) es la Función de costo a minimizar, θ es el Parámetro ajustable del controlador, e es la Señal del error, y_P es la Señal de salida del sistema en lazo cerrado y y_m es la Señal de salida del modelo de referencia.

La minimización de la función de costo de la ecuación (2.11) se realiza cambiando los parámetros en la dirección del gradiente negativo de J, de acuerdo con la regla del MIT:

$$\frac{d\theta}{dt} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma e \frac{\partial e}{\partial \theta}$$
(2.13)

Donde γ es la Ganancia de adaptación y $\frac{\partial e}{\partial \theta}$ es la Función de sensibilidad del sistema, la cual indica la influencia que ejerce el parámetro del controlador sobre el error.

La regla del MIT presenta la ventaja de ser muy simple, razón por la cual ha sido muy utilizada; sin embargo, presenta algunos inconvenientes:

- En el caso de ajuste de varios parámetros se requiere la misma cantidad de funciones de estabilidad.
- La ganancia de adaptación gobierna la velocidad de respuesta, si ésta es muy grande el sistema puede llegar a ser inestable y si, por el contrario, es muy pequeña la velocidad será muy lenta.
- El método no cuenta con un criterio que garantice la estabilidad del sistema de control

2.2.3.2 Método de estabilidad de Lyapunov.

La teoría clásica de la mecánica establece que un sistema es estable si su energía total, una función definida positiva, es decreciente de forma continua hasta alcanzar un estado de equilibrio. Como en un sistema no lineal no es posible definir una función de energía de forma simple, se utiliza el método de estabilidad de Lyapunov para introducir una función de energía ficticia, denominada función de Lyapunov [26, 29, 30].

Debido al carácter no lineal y variante en el tiempo de los MRAS, puede utilizarse este método como mecanismo de ajuste de los parámetros, el cual presenta la ventaja de que asegura la estabilidad global para cualquier valor de la ganancia de adaptación y para cualquier tipo de entrada [31]. La idea básica del método es averiguar si un subsistema es estable o no sin resolver las ecuaciones del mismo y se basa en la posibilidad de hallar una función (llamada "función de Lypunov") que se pueda utilizar para establecer si el subsistema es estable o no.

Considérese un sistema descrito por la ecuación:

x(k+1) = f(x(k)), f(x=0) = 0 para todo k (2.14)

Donde x(k) es un vector de n x 1 y f(\cdot) es una función vectorial de n x 1. El método se basa en la determinación de una función escalar V(x) de signo definido (Definida positiva o definida negativa), que verifica V(0) = 0, llamada función de Lyapunov, y cuyas propiedades determinan la estabilidad o inestabilidad del sistema.

Teorema de estabilidad. Se dice que un estado de equilibrio x_{eq} es estable, en el sentido de Lypunov, si dado un número real $\rho > 0$, existe otro número real $\delta > 0$, de forma que para todo estado inicial $x(t_0)$ se cumpla:

$$\|\mathbf{x}(t_0) - \mathbf{x}_{eq}\| < \delta$$

$$\|\mathbf{x}(t) - \mathbf{x}_{eq}\| < \rho, \quad \forall t > t_0$$
(2.15)

Otra forma de verificar la estabilidad de x_{eq} es que exista una función escalar V(x) continua en la solución x(k) de (2.14) tal que se cumpla:

1.
$$V(x(k) = 0) = V(0) = 0$$

2.
$$V(x(k)) = V(x) > 0$$
 para $x \neq 0$

3.
$$V(x) \rightarrow \infty$$
 si $x \rightarrow \infty$

4.
$$\Delta V(\mathbf{x}) = \Delta V(\mathbf{x}(\mathbf{k})) = V(\mathbf{x}(\mathbf{k}+1)) - V(\mathbf{x}(\mathbf{k})) \le 0$$
 para $\mathbf{x} \neq 0$

La estabilidad en el sentido de Lyapunov no suele ser una condición suficiente para los sistemas de control, por lo que se hace necesario utilizar el concepto de estabilidad asintótica.

Teorema de estabilidad asintótica. Un estado de equilibrio x_{eq} es asintóticamente estable, si es estable en el sentido de Lyapunov y toda trayectoria que comience dentro de la región S(δ), converge hacia x_{eq} sin abandonar S(ρ), en ningún momento. Es decir, se dice que x_{eq} es asintóticamente estable, si dados dos números reales $\rho > \eta > 0$, existe un número real $\delta > 0$ y un instante de tiempo t_f, de forma que se cumplan las condiciones dadas en (2.15) y (2.17).

$$\|\mathbf{x}(t) - \mathbf{x}_{eq}\| < \eta, \quad \forall t > t_{f}$$
(2.17)

Si el estado de equilibrio es estable y toda solución converge hacia x_{eq} al incrementar el tiempo indefinidamente, se dice que se trata de un estado de equilibrio es asintóticamente

(2.16)

estable de forma global, es decir, si la región $S(\delta)$ es todo el espacio de estado. La condición para que exista estabilidad asintótica global debe haber solo un estado de equilibrio en todo el espacio de estado.

En este caso, la cuarta condición de (2.16) se convierte en:

$$V(x) = V(x(k+1)) - V(x(k)) < 0$$
(2.18)

Teorema de inestabilidad. Un estado de equilibrio x_{eq} es inestable si dado dos números reales $\rho > 0$ y $\delta > 0$, existe un estado $x(t_0)$ en la vecindad de x_{eq} que satisface las condiciones dadas en (1) y (2), para el que las trayectorias que parten de $x(t_0)$ cumplen:

$$\left\|\mathbf{x}(t) - \mathbf{x}_{eq}\right\| > \rho \tag{2.19}$$

Para este caso debe cumplirse:

$$\Delta V(\mathbf{x}) = \Delta V(\mathbf{x}(\mathbf{k})) = V(\mathbf{x}(\mathbf{k}+1)) - V(\mathbf{x}(\mathbf{k})) < 0$$
(2.20)

Ecuación de Lyapunov. Considérese el sistema descrito por la ecuación (2.1), y la señal de control de la ecuación (2.21):

$$\dot{x}_{P} = A_{P}x_{P} + B_{P}u$$

$$u = -kx_{P}$$
(2.21)

Obteniendo el siguiente sistema en lazo cerrado:

$$\dot{\mathbf{x}}_{\mathsf{P}} = \mathsf{A}_{\mathsf{m}}\mathbf{x}_{\mathsf{P}} \qquad \qquad \mathsf{A}_{\mathsf{m}} = \mathsf{A}_{\mathsf{P}} - \mathsf{B}_{\mathsf{P}}\mathbf{k} \tag{2.22}$$

El sistema de la ecuación (2.22) es asintóticamente estable si y solo si, dada una matriz **Q** simétrica definida positiva, existe una matriz **P** simétrica definida positiva, la cual es la única solución de la ecuación:

$$\mathsf{PA}_{\mathsf{m}} + \mathsf{A}_{\mathsf{m}}^{\mathsf{T}}\mathsf{P} = -\mathsf{Q} \tag{2.23}$$

3. METODOLOGÍA

Cada uno de los métodos de diseño de controladores adaptativos por modelo de referencia expuestos en el capítulo anterior, presentan una metodología de diseño diferente, la cual se explica a continuación.

La etapa inicial de ambos métodos consiste en definir la ecuación de la planta y la ecuación del modelo de referencia. El modelo de la planta se selecciona de acuerdo a los datos experimentales de que se disponga o, en su defecto, de la bibliografía. Por otro lado, como se explicó anteriormente, el modelo de referencia se escoge de tal manera que éste sea sensible a la dinámica de la planta.

3.1 MÉTODO DE OPTIMIZACIÓN DEL GRADIENTE

Una vez definidos el modelo de referencia y la ecuación de la planta, el procedimiento a seguir para obtener la ley de adaptación aplicando la regla del MIT es el siguiente:

Paso 1. Encontrar la función del error definida por la ecuación (2.12).

Paso 2. Derivar parcialmente la ecuación del error, obtenida en del paso 1, con respecto al (los) parámetro(s) ajustable(s) θ .

Paso 3. Obtener las funciones de sensibilidad reemplazando, en la ecuación (2.13), las obtenidas en los dos pasos anteriores.

3.2 MÉTODO DE ESTABILIDAD DE LYAPUNOV

El procedimiento para el diseño de sistemas adaptativos por medio de éste criterio se resume a continuación:

Paso 1. Encontrar y derivar la ecuación del error a la salida del sistema, dada por la ecuación (2.12).

Paso 2. Encontrar una función de Lyapunov que dependa del error entre las señales de salida de la planta y del modelo de referencia y del error entre los parámetros del proceso y del modelo.

Paso 3. Calcular la derivada de la función de Lyapunov, la cual debe ser definida negativa.

Paso 4. Obtener la ley de adaptación.

4. MODELAMIENTO DE UN MRAS PARA UN PROCESO DE NEUTRALIZACIÓN

4.1 DIAGRAMA DE FLUJO DE UN MRAS PARA UN PROCESO DE NEUTRALIZACIÓN DE pH

4.1.1 Diagrama de flujo para el lazo de control convencional

En este trabajo se utilizan los resultados experimentales reportados por Hernández [32] en su trabajo de grado "Diagnóstico y simulación de un sistema de control de pH en un reactor de tanque agitado", los cuales fueron obtenidos en el equipo de laboratorio PCT – 16 pH Control Accessory, ubicado en las instalaciones de la Escuela de Ingeniería Eléctrica y Electrónica de la Universidad del Valle. El diagrama de flujo del lazo de control del equipo se esquematiza en la figura 6.

Figura 6: Lazo de control del equipo PCT – 16 pH Control Accessory [32].

4.1.2 Consola eléctrica PCT – 10.

Sus funciones principales son:

Como acondicionador de señales: El equipo PCT – 10 posee los siguientes dispositivos para el acondicionamiento de señales

- Módulo acondicionador de la señal del electrodo: Transforma la señal del electrodo de un rango de 0 – 1 V a a – 20 mA.
- Controlador del proceso: Toma la señal de control del módulo acondicionador y determina la señal de control saliente en un rango de 4 – 20 mA.
- Posicionador del motor de la válvula: Toma la señal del controlador de 4 20 mA y la transforma en una señal de 5 – 12 V con la cual actúa la válvula de control.

Como controlador: La consola eléctrica permite que el usuario escoja la estrategia de control convencional para regular el proceso.

4.1.2.1 Válvula de control.

Se trata de una válvula isoporcentual tipo aguja, en la cual ambos, vástago y cuerpo, están hechos de acero inoxidable. Funciona a través de un motor eléctrico que se activa con la señal que recibe de la consola eléctrica.

4.1.2.2 Electrodo:

Este elemento determina el valor de pH a partir del voltaje existente entre los iones positivos y negativos que hay en el medio.

4.1.3 Diagrama de flujo para el lazo de control de un MRAS

En la figura 7 se esquematiza el diagrama de flujo de un MRAS para un proceso de control de pH. $C(\Theta)$ representa el lazo de control convencional de la gráfica 6.

Figura 7: Diagrama de flujo de un controlador adaptativo por modelo de referencia

4.2 DISEÑO DE UN MRAS

4.2.1 Planteamiento del problema.

Sean **P** una planta lineal invariante en el tiempo (LTI), con una entrada **u** y una salida **pH**, y **M** un modelo de referencia LTI con una entrada **pH**_{set} y una salida **pH**_m, como se muestra en la figura 7, donde $pH_{set} : \mathfrak{R}^+ \mapsto \mathfrak{R}^m$ es una función acotada continua por tramos.

Entonces, el problema del control adaptativo por modelo de referencia puede plantearse de la siguiente manera:

 Determinar el modelo de referencia M, con una entrada pH_{set} y una salida pH_m, tal que exista una entrada de control u acotada para todo t ≥ t₀ que satisfaga el límite de la ecuación (2.6):

 $\lim_{t \to \infty} \left\| p H(t) - p H_m(t) \right\| = 0$

- Encontrar un controlador C(Θ), parametrizado por un vector Θ : ℜ⁺ → ℜ^m, tal que para todos los valores constantes de Θ ∈ ℜ^m, C es LTI. El controlador C debe generar una señal de salida u, tal que Θ ≡ Θ^{*} ∈ ℜ^m, para el cual la señal de salida del conjunto planta controlador pH, coincida con la señal de salida del modelo pH_m.
- Determinar una ley de adaptación para **O(t)** tal que se cumpla la ecuación (2.6).

4.2.2 Procedimiento de diseño.

De acuerdo con el planteamiento anterior, el diseño de un controlador adaptativo por modelo de referencia se puede resumir en el siguiente procedimiento:

- Definir la ecuación de la señal de salida del modelo de referencia, pH_m.
- Determinar la ecuación de la señal de salida del conjunto planta controlador, pH.
- Obtener la ley de adaptación.

4.3 LAZO DE CONTROL CONVENCIONAL

4.3.1 Controlador convencional.

Se pretende implementar cuatro tipos de controladores lineales, con el fin de evaluar su comportamiento y definir cuál presenta el mejor desempeño. De acuerdo con la sección anterior, los controladores convencionales están dados por las siguientes ecuaciones:
CONTROLADOR	FUNCIÓN DE TRANSFERENCIA U(s)
Proporcional	K _c E(s)
Proporcional – Integral	$K_{C}\left(1+\frac{1}{T_{I}s}\right)E(s)$
Proporcional – Derivativo	$K_{c}(1+T_{D}s)E(s)$
Proporcional – Integral – Derivativo	$K_{C}\left(1+\frac{1}{T_{I}s}+T_{D}s\right)E(s)$

Definiendo E(s) como la diferencia entre la señal de salida de la planta y el set point:

$$\mathsf{E}(\mathsf{s}) = \mathsf{I}_{\mathsf{set}} - \mathsf{I}(\mathsf{s}) \tag{3.1}$$

Donde I_{set} es el set point (mA) e I(s) es la señal de salida (mA)

4.3.2 Válvula de control.

Según el trabajo de Hernández [32], la señal de salida del controlador presenta una dependencia lineal con respecto a la intensidad de corriente la cual se muestra en la gráfica 8 y en la ecuación (3.2).

$$F_{A} = 15.5I - 30$$
 (3.2)

Donde F_A es el Flujo de ácido (cm³/min).

Figura 8: Relación entre la señal de corriente del controlador (Flujo de ácido) y la intensidad de corriente [32].

4.3.3 Electrodo.

La curva de calibración del electrodo se presenta a continuación.

Figura 9: Curva de calibración del electrodo [32]

$$Vol = 0.0711pH + 0.0026 \qquad R^2 = 0.9999 \qquad (3.3)$$

Donde Vol es el Voltaje (V).

Adicionalmente, la relación entre el voltaje y la intensidad de corriente se presenta en siguiente figura.

Figura 10: Relación lineal entre el voltaje y la intensidad de corriente

I = 16Vol + 4

(3.4)

4.4 PLANTA

Ingresando los datos reportados por Hernández [32], en el Anexo C de su trabajo, en el programa Control Station V3.7, se obtiene la siguiente ecuación de segundo orden con tiempo muerto para el proceso:

$$\tau^{2} \frac{d^{2}I(t)}{dt^{2}} + 2\tau \frac{dI(t)}{dt} + I(t) = Ku(t - t_{0})$$
(3.5)

Donde I es la Intensidad de corriente (mA), τ es la Constante de tiempo del proceso, K es la Ganancia del proceso, u es la Señal de control, t es el Tiempo y t₀ es el Tiempo de retardo.

Se realiza el cambio de variable de pH a intensidad de corriente (I), ya que, como se explicó en la sección 3.1.1.1, la consola eléctrica convierte las señales en voltaje del electrodo a mA.

Dividiendo ambos lados de la ecuación (3.5) por τ^2 se obtiene:

$$\frac{d^{2}I(t)}{dt^{2}} + \frac{2}{\tau}\frac{dI(t)}{dt} + \frac{1}{\tau^{2}}I(t) = \frac{K}{\tau^{2}}u(t-t_{0})$$
(3.6)

Suponiendo que el retardo en la señal de control \mathbf{u} es debido únicamente al proceso y conociendo la magnitud del tiempo muerto, la función de transferencia de la ecuación anterior puede escribirse como una de segundo orden puro y su retardo, de la forma:

$$G_{P}(s) = \frac{I(s)}{U(s)} = \frac{\frac{K}{\tau^{2}}}{s^{2} + \frac{2}{\tau}s + \frac{1}{\tau^{2}}} \exp(-t_{0}s)$$
(3.7)

$$I(s) = \frac{\frac{K}{\tau^2}}{s^2 + \frac{2}{\tau}s + \frac{1}{\tau^2}} U(s) \exp(-t_0 s)$$
(3.8)

En la figura 11 se presentan los ajustes de los datos experimentales a la ecuación de segundo orden con tiempo muerto, obtenidas con el programa Control Station V3.7, para relaciones de flujo (Flujo de base/Flujo de ácido) de 0.8, 0.933, 1.066 y 1.2, respectivamente.

Figura 11: Ajuste de los datos. (a) Relación de flujo w = 0.8. (b) Relación de flujo w = 0.933. (c) Relación de flujo w = 1.066. (d) Relación de flujo w = 1.2

Los resultados obtenidos para la ganancia, la constante de tiempo y el tiempo muerto se presentan en la tabla 2 y en las gráficas 12 a 14, respectivamente.

Flujo de base	Ganancia	Constante de tiempo	Tiempo muerto
(cm³/min)	K	τ	to
120	29.84	38.66	141.94
140	78.24	45.44	123.78
160	81.08	42.57	97.62
180	27.79	36.81	83.82

Tabla 2: Resultados para la ganancia, la constante de tiempo y el tiempo muerto

 $K = -728.24W^3 + 755.5W^2 + 697.71W - 638.99$ (3.9)

$$\tau = 475.07 W^3 - 1601.6 W^2 + 1754.3 W - 583.02 \tag{3.10}$$

 $t_0 = 1429W^3 - 4225.6W^2 + 3961.9W - 1054.8$ (3.11)

Figura 12: Relación entre la ganancia del proceso y la relación de flujos

Figura 13: Relación entre la Constante de tiempo del proceso y la relación de flujos.

Figura 14: Relación entre el tiempo muerto y la relación de flujos

Para todos los casos, la relación de flujos es una cantidad adimensional que viene dada por la expresión:

 $W = \frac{Flujo \ de \ base \ (cm^3 \ / \ min)}{Flujo \ de \ ácido \ (cm^3 \ / \ min)}$

4.5 MODELO DE REFERENCIA

Con el fin de garantizar que el modelo de referencia represente correctamente la dinámica del proceso, se elige, para representarlo, una ecuación de segundo orden:

$$\frac{d^{2}I_{m}}{dt^{2}}(t) + 2\xi\omega_{n}\frac{dI_{m}}{dt}(t) + \omega_{n}^{2}I_{m}(t) = \omega_{n}^{2}I_{set}$$
(3.12)

$$\xi = -\frac{\ln(M_{P})}{\sqrt{\pi^{2} + (\ln(M_{P}))^{2}}}$$
 y $\omega_{n} = \frac{4}{\xi t_{s}}$ (3.13)

Donde I_m es la Señal de salida del modelo de referencia, ξ es el Factor de amortiguamiento, ω_n es la Frecuencia propia no amortiguada, I_{set} es el Set point, M_P es el Máximo sobreimpulso ($M_P \le 5\%$) y t_s y es el Tiempo de establecimiento (2 s $\le t_s \le 5$ s).

Cuya función de transferencia es:

$$G_{m}(s) = \frac{I_{m}(s)}{I_{set}} = \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}$$
(3.14)

$$I_{m}(s) = \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}I_{set}$$
(3.15)

Para obtener el valor del factor de amortiguamiento (ξ), se escoge un valor de 5% para el máximo sobreimpulso. En cuando al cálculo de la frecuencia natural, se escoge un valor de t₀+5 s para el tiempo de establecimiento, siendo t₀ el tiempo muerto.

4.6 LEYES DE ADAPTACIÓN

4.6.1 Método de optimización del gradiente

El procedimiento para encontrar la ley de control de un regulador adaptativo por modelo de referencia utilizando el método del gradiente, se describió en la sección anterior y consta de tres pasos:

- Encontrar la función del error.
- Derivar parcialmente la ecuación del error con respecto a los parámetros ajustables.

- Obtener la función de sensibilidad.
- Obtener la ley de adaptación

El procedimiento de diseño se encuentra consignado en el Anexo C. Las expresiones de los parámetros ajustables obtenidos para los cuatro controladores convencionales considerados, se encuentran en la tabla 3.

Controlador		Parámetros (θ)	
Ρ	Planta	$I(s) = \frac{\frac{K}{\tau^2}K_c}{s^2 + \frac{2}{\tau}s + \frac{1}{\tau^2} + \frac{K}{\tau^2}K_c}I_{set}$	(3.16)
	Modelo de referencia	$I_{m}(s) = \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}I_{set}$	
	Ley de adaptación	$\mathbf{K}_{C} = -\frac{\gamma}{\mathbf{s}(\mathbf{s}^{2} + 2\xi\omega_{n}\mathbf{s} + \omega_{n}^{2})}\mathbf{E}_{1}(\mathbf{s})\mathbf{E}(\mathbf{s})$	(3.17)
PI	Planta	$I(s) = \frac{\frac{K}{\tau^{2}}(K_{c}s + K_{1})}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{c})s + \frac{K}{\tau^{2}}K_{1}}I_{set}$	(3.18)
	Modelo de referencia	$I_{m}(s) = \frac{\omega_{n}^{2}s}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}I_{set}$	(3.19)
	Leyes de	$K_{C}(s) = -\frac{\gamma}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}E_{1}(s)E(s)$	(3.20)
	adaptación	$K_{I}(s) = -\frac{\gamma}{s(s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s)}E_{1}(s)E(s)$	(3.21)

Tabla 3: Leyes de adaptación. Método de optimización del gradiente.

Tabla 3: Continuación

Controlador		Parámetros (θ)	
	Planta	$I(s) = \frac{\frac{K}{\tau^2}(K_c + K_D s)}{s^2 + \frac{1}{\tau}\left(2 + \frac{K}{\tau}K_D\right)s + \frac{1}{\tau^2}(1 + KK_C)}I_{set}$	(3.22)
PD	Modelo de referencia	$I_{m}(s) = \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}I_{set}$	
	Leyes de	$K_{c}(s) = -\frac{\gamma}{s(s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2})}E_{1}(s)E(s)$	(3.23)
	adaptación	$K_{D}(s) = -\frac{\gamma}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}E_{1}(s)E(s)$	(3.24)
	Planta	$I(s) = \frac{\frac{K}{\tau^{2}}(K_{D}s^{2} + K_{C}s + K_{I})}{s^{3} + \frac{1}{\tau}(2 + \frac{K}{\tau}K_{D})s^{2} + \frac{1}{\tau^{2}}(1 + KK_{C})s + \frac{K}{\tau^{2}}K_{I}}I_{set}$	(3.25)
	Modelo de referencia	$I_{m}(s) = \frac{\omega_{n}^{2}s}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}I_{set}$	
PID		$K_{c}(s) = -\frac{\gamma}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}E_{1}(s)E(s)$	(3.26)
	Leyes de adaptación	$K_{1}(s) = -\frac{\gamma}{s(s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s)}E_{1}(s)E(s)$	(3.27)

$$K_{D}(s) = -\frac{\gamma s}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}E_{1}(s)E(s)$$
(3.28)

Donde $E_1(s) = I_{set}(s) - I(s) y E_1(s) = I(s) - I_m(s)$.

4.6.2 Método de estabilidad de Lyapunov

De acuerdo con la sección anterior, el procedimiento de diseño del método de estabilidad de Lyapunov se divide en los siguientes pasos:

- Encontrar y derivar la ecuación del error
- Proponer una función de Lyapunov
- Calcular la derivada de la función de Lyapunov
- Obtener la ley de adaptación

El procedimiento para obtener las expresiones de los parámetros ajustables utilizando éste método se encuentra en Anexo D. Las ecuaciones están consignadas en la tabla 4.

	Controlador proporcional	
Planta	$\begin{bmatrix} sI(s) \\ s^{2}I(s) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{\tau^{2}}(1 + KK_{c}) & -\frac{2}{\tau} \end{bmatrix} \begin{bmatrix} I(s) \\ sI(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K}{\tau^{2}}K_{c} \end{bmatrix} I_{set}$	
Modelo de referencia	$\begin{bmatrix} \mathbf{s} \mathbf{I}_{m}(\mathbf{s}) \\ \mathbf{s}^{2} \mathbf{I}_{m}(\mathbf{s}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \\ -\omega_{n}^{2} & -2\xi\omega_{n} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{m}(\mathbf{s}) \\ \mathbf{s} \mathbf{I}_{m}(\mathbf{s}) \end{bmatrix} + \begin{bmatrix} 0 \\ \\ \\ \omega_{n}^{2} \end{bmatrix} \mathbf{I}_{set}$	
Ley de adaptación	$K_{C}(s) = -\frac{\gamma}{s} (p_{2,1}E_{1}(s) + p_{2,2}sE_{1}(s))I_{set}$	(3.29)
	$\gamma = \frac{\tau^2}{K} \gamma_B$	

Tabla 4: Leyes de adaptación. Método de estabilidad de Lyapunov

Controlador proporcional – integral

	「sI(s) ┐ 「	0 1	0	0 0	
Planta	$ s^2I(s) =$	0 0	1 sI(s) +	0 0	
	$\left[s^{3}I(s) \right] \left[-\frac{1}{2} \right]$	$\frac{K}{\tau^2}K_1 - \frac{1}{\tau^2}(1+K)$	K_{c}) $-\frac{2}{\tau} \left[s^{2}I(s) \right]$	$\left[\frac{K}{\tau^2}K_{I} \frac{K}{\tau^2}K_{C}\right]^{SI_{set}}$:]
	$\left[sI_{m}(s) \right] \left[0 \right]$	1 0	∏ I _m (s)dt] [0 0]		
Modelo de referencia	$\left \mathbf{s}^{2} \mathbf{I}_{m}(\mathbf{s}) \right = \left 0 \right $	0 1	$ sI_m(s) + 0 - 0 $	I _{set}	
	$\left[s^{3}I_{m}(s) \right] \left[0 \right]$	$-\omega_n^2$ $-2\xi\omega_n$	$\begin{bmatrix} s^2 I_m(s) \end{bmatrix} \begin{bmatrix} 0 & \omega_n^2 \end{bmatrix}$	_orset_	

	Controlador proporcional – integral	
	$K_{C}(s) = \frac{\gamma_{1}}{s} \left(p_{3,1} E_{1}(s) + p_{3,2} s E_{1}(s) + p_{3,3} s^{2} E_{1}(s) \right) s I$	(3.30)
Leyes de adaptación	$K_{I}(s) = -\frac{\gamma_{2}}{s} \left(p_{3,1}E_{1}(s) + p_{3,2}sE_{1}(s) + p_{3,3}s^{2}E_{1}(s) \right) I_{set}$	(3.31)
	$\gamma_1 = \frac{\tau^2}{K} \gamma_A, \ \gamma_2 = \frac{\tau^2}{K} \gamma_B$	

Controlador proporcional - derivativo

Planta	$\begin{bmatrix} sI(s) \\ s^{2}I(s) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{\tau^{2}}(1 + KK_{c}) & -\frac{1}{\tau}\left(2 + \frac{K}{\tau}K_{D}\right) \end{bmatrix} \begin{bmatrix} I(s) \\ sI(s) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K}{\tau^{2}}K_{c} \end{bmatrix} I_{set}$	
Modelo de referencia	$\begin{bmatrix} \mathbf{s} \mathbf{I}_{m}(\mathbf{s}) \\ \mathbf{s}^{2} \mathbf{I}_{m}(\mathbf{s}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ & \\ -\omega_{n}^{2} & -2\xi\omega_{n} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{m}(\mathbf{s}) \\ \mathbf{s} \mathbf{I}_{m}(\mathbf{s}) \end{bmatrix} + \begin{bmatrix} 0 \\ \\ \omega_{n}^{2} \end{bmatrix} \mathbf{I}_{set}$	
	$K_{c}(s) = -\frac{\gamma_{1}}{s} (p_{2,1}E_{1}(s) + p_{2,2}sE_{1}(s))I_{aet}$	(3.32)
Leyes de adaptación	$K_{D}(s) = \frac{\gamma_{2}}{s} (p_{2,1}E_{1}(s) + p_{2,2}sE_{1}(s))sI(s)$	(3.33)
-	$\gamma_1 = \frac{\tau^2}{K} \gamma_B$, $\gamma_2 = \frac{\tau^2}{K} \gamma_A$	

Controlador proporcional – integral – derivativo

	$\left\lceil sI(s) \right\rceil$	0	1	0	☐ I(s)]	0	0	
Planta	$ s^2I(s) =$	0	0	1	sI(s) +	0	0	I _{set}
	s ³ I(s)	$-\frac{K}{\tau^2}K_1$	$-\frac{1}{\tau^2} \big(1 + KK_c \big)$	$-\frac{1}{\tau} \left(1 + \frac{K}{\tau} K_D \right) $	s²I(s)	$\left[\frac{K}{\tau^2}K\right]$	$\frac{K}{\tau^2}K_{C}$	_sI _{set} _

Controlador proporcional – integral – derivativo					
	$\begin{bmatrix} sI_{m}(s) \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ & & \end{bmatrix} \begin{bmatrix} I_{m}(s)dt \end{bmatrix} \begin{bmatrix} 0 & 0 \\ & & \end{bmatrix} \begin{bmatrix} I_{set} \end{bmatrix}$				
Modelo de referencia	$\begin{vmatrix} s^{2}I_{m}(s) \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ sI_{m}(s) \end{vmatrix} + \begin{vmatrix} 0 & 0 \\ sI_{set} \end{vmatrix}$				
	$\begin{bmatrix} s^{3}I_{m}(s) \end{bmatrix} \begin{bmatrix} 0 & -\omega_{n}^{2} & -2\xi\omega_{n} \end{bmatrix} \begin{bmatrix} s^{2}I_{m}(s) \end{bmatrix} \begin{bmatrix} 0 & \omega_{n}^{2} \end{bmatrix}$				
Leyes de adaptación	$K_{C}(s) = -\frac{\gamma_{1}}{s} \left(p_{3,1}E_{1}(s) + p_{3,2}sE_{1}(s) + p_{3,3}s^{2}E_{1}(s) \right) sI(s)$	(3.34)			
	$K_{I}(s) = -\frac{\gamma_{2}}{s} \left(p_{3,1}E_{1}(s) + p_{3,2}sE_{1}(s) + p_{3,3}s^{2}E_{1}(s) \right) I_{set}$	(3.35)			
	$K_{D}(s) = -\frac{\gamma_{1}}{s} \left(p_{3,1}E_{1}(s) + p_{3,2}sE_{1}(s) + p_{3,3}s^{2}E_{1}(s) \right) s^{2}I(s)$	(3.36)			
	$\gamma_1 = \frac{\tau^2}{K} \gamma_A , \ \gamma_2 = \frac{\tau^2}{K} \gamma_B$				

Donde $p_{2,1}$, $p_{2,2}$, $p_{3,1}$, $p_{3,2}$, $p_{3,3}$ corresponden a los coeficientes de la matriz P (Tabla 5).

Relación de flujos	Controlador					
(W)	P y PD			PI y PID		
	1	0.0002	∏1	0	0]	
0.800			0	2	0.0003	
0.000	0.0002	2.0059	0	0.0003	3.0089	
	_	_	_		_	
	∫ 1	0.0003	∏ 1	0	0]	
0.022			0	2	0.0004	
0.933	0.0003	2.0077	0	0.0004	3.0116	
	-	_	-		_	
	□	0.0005]	∏1	0	0]	
1 067			0	2	0.0007	
	0.0005	2.0121	0	0.0007	3.0182	
	L	-	L		L	

Tabla 5: Valores de las matrices l	: Valores de las matrices	sΡ
------------------------------------	---------------------------	----

Tabla 5: Continuación

Relación de flujos	Controlador					
(W)	P y PD			PI y PI)	
	∏ 1	0.0008	[1	0	0]	
1.200			0	2.0001	0.0012	
	0.0008	2.0162	lo	0.0012	3.0243	

4.7 ANÁLISIS DE CONVERGENCIA

Existe la posibilidad que un número indeterminado de valores de la(s) ganancia(s) de adaptación hagan que la señal de salida de la planta se ajuste a la señal de salida del modelo, permitiendo que se cumpla el límite de la ecuación:

$$\lim_{t \to \infty} \left\| \mathbf{e}_{1}(t) \right\| = \lim_{t \to \infty} \left\| \mathbf{I}(t) - \mathbf{I}_{m}(t) \right\|$$
(3.37)

Sin embargo, dicha convergencia no garantiza que los parámetros ajustables K_C , $K_I y K_D$, según sea el caso, converjan a los valores reales. Por lo tanto, deben compararse los coeficientes de la función de transferencia de la planta, calculados a partir de los parámetros obtenidos con los coeficientes de la función de transferencia del modelo y verificar que el error generado tienda a cero:

4.7.1 Conjunto planta controlador – proporcional.

En este caso debe cumplirse el siguiente límite:

$$\lim_{t \to \infty} \left\| \frac{\mathbf{K}}{\tau^2} \mathbf{K}_{\mathrm{C}}(t) - \omega_{\mathrm{n}}^2 \right\| = 0$$
(3.38)

4.7.2 Conjunto planta controlador – proporcional integral.

De acuerdo con el modelo de referencia obtenido, ecuación (3.19), es necesario que se cumplan las siguientes igualdades:

$$\underset{t\rightarrow\infty}{\text{lim}}\left\|\frac{K}{\tau^{2}}K_{C}\left(t\right)\!-\omega_{n}^{2}\right\|=0$$

$$\lim_{t \to \infty} \left\| \frac{\mathsf{K}}{\tau^2} \mathsf{K}_1(t) \right\| = 0 \tag{3.39}$$

4.7.3 Conjunto planta controlador – proporcional derivativo.

Comparando las funciones de transferencia del modelo y de la planta, se observa que se deben cumplir las siguientes condiciones:

$$\lim_{t \to \infty} \left\| \frac{K}{\tau^2} K_{\rm C}(t) - \omega_{\rm n}^2 \right\| = 0$$

$$\lim_{t \to \infty} \left\| \frac{1}{\tau} \left(2 + \frac{K}{\tau} K_{\rm D}(t) \right) - 2\xi \omega_{\rm n} \right\| = 0$$
(3.40)

4.7.4 Conjunto planta controlador – proporcional derivativo.

De acuerdo con el modelo de referencia, es necesario evaluar las siguientes 3 expresiones:

$$\begin{split} &\lim_{t \to \infty} \left\| \frac{K}{\tau^2} K_{\rm C}(t) - \omega_{\rm n}^2 \right\| = 0 \\ &\lim_{t \to \infty} \left\| \frac{K}{\tau^2} K_{\rm I}(t) \right\| = 0 \\ &\lim_{t \to \infty} \left\| \frac{1}{\tau} \left(2 + \frac{K}{\tau} K_{\rm D}(t) \right) - 2\xi \omega_{\rm n} \right\| = 0 \end{split}$$

5. SIMULACIÓN DE UN CONTROLADOR ADAPTATIVO POR MODELO DE REFERENCIA PARA UN PROCESO DE NEUTRALIZACIÓN DE Ph. PROGRAMA MRAS EN MATLAB

5.1 INTERFAZ EN GUI

En la figura 24 se presenta la interfaz gráfica del programa MRAS, editado utilizando dos herramientas visuales del lenguaje de programación de MATLAB: GUIDE y SIMULINK.

Figura 15: Interfaz gráfica del programa MRAS

En la interfaz se muestra un diagrama de bloques de un controlador adaptativo por modelo de referencia y permite escoger el tipo de controlador convencional a implementar en el bloque Conjunto Planta – Controlador y el método de adaptación a utilizar en el bloque Ley de adaptación. El menú desplegable de la izquierda, ofrece cuatro opciones para el tipo de controlador: Proporcional (P), Proporcional – Integral (PI), Proporcional – Derivativo (PD) y Proporcional – Integral – Derivativo (PID). En cuanto al menú desplegable correspondiente al Método de adaptación, ofrece dos vías: Regla del MIT y Método de estabilidad de Lyapunov. El botón Continuar de la derecha conduce al usuario a un archivo de SIMULINK, cuya estructura depende de las opciones activadas en los menús desplegables de la figura 15.

5.2 ESTRUCTURA EN SIMULINK

En la figura 16 se presenta la estructura general de un controlador adaptativo por modelo de referencia creado con la herramienta visual SIMULINK.

Figura 16: Estructura general de un Controlador adaptativo por modelo de referencia en SIMULINK.

La estructura encerrada en verde representa el ciclo de adaptación convencional del controlador, el recuadro azul encierra el ciclo de adaptación adaptativo, en amarillo se presenta el modelo de referencia y en rojo el método de análisis de convergencia. El subsistema denominado Controlador, cambia de acuerdo con la o las acciones de control

utilizadas en el conjunto planta controlador (Menú desplegable Tipo de controlador). Mientras que la estructura del subsistema denominado Ley de adaptación depende, además del tipo de controlador utilizado, de si se utiliza el método de optimización del gradiente o el de estabilidad de Lyapunov (Menù desplegable Método de adaptación).

Figura 17: Algoritmo para un controlador adaptativo por modelo de referencia

5.2.1 Acondicionamiento de las señales de entrada

Figura 18: Subsistema Set point: (a) Cuadro de diálogo y (b) Estructura en SIMULINK.

El programa le permite al usuario definir el valor del pH inicial y del set point dando doble click en el bloque "Set point" de la figura 25. Las simulaciones presentadas en este trabajo se han realizado con un pH inicial de 7.0 y con 4 valores de referencia, tres por encima del valor inicial, 8.0, 9.0 y 10.0, y tres más por debajo del mismo, 4.0, 5.0 y 6.0.

Este subsistema recibe los datos de entrada en unidades de pH e internamente los convierte a unidades de intensidad de corriente, mediante las ecuaciones (3.3) y (3.4).

5.2.2 Modelo de referencia

En los casos en los que se implementan los controladores proporcional y proporcional derivativo, la función de transferencia del modelo de referencia está dada por la ecuación (3.19) (Figura 19.a), para los dos casos restantes, proporcional integral y proporcional integral derivativo, el modelo de referencia viene dado por la función de transferencia de la expresión (3.28) (Figura 19.b). Como se explicó en el capítulo 2, se trata de un modelo en lazo abierto que especifica el comportamiento deseado de la planta.

Los valores de los coeficientes a_m , b_m y c_m dependen de la relación de flujos, es decir del flujo de base (Perturbación). En este trabajo se realizarán simulaciones en los mismos cuatro valores de flujo de base evaluados por Hernández [32] en su desarrollo experimental.

Figura 19: Estructura en SIMULINK para el modelo de referencia: (a) Control convencional P y PD; (b) Control convencional PI y PID.

En la tabla 6 se presentan los posibles valores para los coeficientes de la función de transferencia del modelo de referencia.

Flujo de base (cm ³ /min)	a _m	$\mathbf{b}_{\mathrm{m}} = \mathbf{c}_{\mathrm{m}}$	Flujo de base (cm ³ /min)	a _m	$\mathbf{b}_{\mathrm{m}} = \mathbf{c}_{\mathrm{m}}$
120	0.0544	0.0016	160	0.0779	0.0032
140	0.0621	0.0020	180	0.0900	0.0042

Tabla 6: Valores para los coeficientes de la función de transferencia del modelo de referencia.

Los parámetros de la planta se obtienen mediante una función de inicialización del modelo, soportada en el lenguaje de programación de MATLAB y cuyo código se presenta en el Anexo E. A continuación se presenta el cuadro de diálogo para

Model Properties
Main Callbacks History Description
Model pre-load function:
Madela Weberland Constraint
[am,bm,cm,tu]=parametros(rb),
J Simulation start function:
Simulation stop function:
J
Model pre-save function:
Model close function:
QK <u>C</u> ancel <u>H</u> elp <u>Apply</u>

Figura 20: Cuadro de diálogo de la función de inicialización del modelo

5.2.3 Controlador

El bloque controlador cuenta con 4 estructuras diferentes, dependiendo del tipo de controlador a implementar. En la figura 21 se muestran las posibles configuraciones en SIMULINK.

Figura 21: Estructura del bloque Controlador: (a) Proporcional; (b) Proporcional – Integral; (c) Proporcional – Derivativo; (d) Proporcional – Integral – Derivativo

5.2.4 Válvula de control

El bloque "Relación de flujos" utiliza las variables de salida del bloque "Válvula de control" y "Perturbación" para calcular W.

Block Parameters: Perturbación	x
Subsystem (mask)	
Parameters	
Fb [180]	
<u>QK</u> <u>Cancel</u> <u>H</u> elp <u>Ap</u>	ply

Figura 22: Cuadro de diálogo del subsistema Perturbación

El bloque "Perturbación" (Figura 22) permite editar el valor del flujo de base en cm³/min. Como ya se ha expuesto, se tendrán en cuenta 4 valores para el flujo de base, 120, 140, 160 y 180 cm³/min. Para todos los casos, el flujo inicial tanto de ácido como de base es de 150 cm³/min.

El resultante del bloque "Válvula de control" (Figura 23) es el valor del flujo de ácido calculado a partir de la ecuación (3.2).

Figura 23: "Válvula de control". Estructura en SIMULINK.

5.2.5 Planta

La estructura de este bloque es similar a la presentada en la figura 19.a, con la diferencia que la variable de entrada es la señal de control U(s) y la variable de salida es el pH.

Hernández [32], en el trabajo de grado "Diagnóstico y simulación de un sistema de control de pH en un reactor de tanque agitado", realizó ensayos experimentales para cuatro puntos de operación en lazo abierto y presentó los resultados en el anexo C del documento. Con base en estos datos experimentales y utilizando los resultados de la tabla 2 de este documento, se han obtenido los coeficientes de la ecuación de la planta y, por lo tanto, de la función de transferencia de la misma. Los resultados se presentan en la tabla 7.

Flujo de base (cm³/min)	$a = \frac{2}{\tau}$	$b=\frac{1}{\tau^2}$	$c=\frac{K}{\tau^2}$
120	5.1733E–2	6.6908E-4	1.9965E–2
140	4.4014E-2	4.8431E-4	3.7892E-2
160	4.6981E-2	5.5181E–4	4.4702E-2
180	5.4333E-2	7.3802E-4	2.0509E-2

Tabla 7: Coeficientes de la función de transferencia de la planta

Las constantes a, b y c de la tabla anterior, se expresan de forma polinómica, en función de la relación de flujos W, así:

$$a = \frac{2}{\tau} = -0.001W^3 + 0.0116W^2 - 0.0352W + 0.0764$$
(4.1)

$$b = \frac{1}{\tau^2} = -2E - 5W^3 + 0.0003W^2 - 0.0008W + 0.0012$$
(4.2)

$$c = \frac{K}{\tau^2} = -0.0029W^3 + 0.0126W^2 - 0.0018W + 0.0096$$
(4.3)

5.2.6 Leyes de adaptación

En el subsistema Ley de adaptación se ingresa(n) el(los) valor(es) de la(s) ganancias(s) de adaptación (Figura 24). Cuando la ley de adaptación se obtiene mediante la aplicación del método de optimización del gradiente, el bloque solo requiere como entrada el valor de la ganancia de adaptación. Por otro lado, cuando se emplea el método de estabilidad de Lyapunov como estrategia de adaptación, el usuario debe ingresar, además del(los) valor(es) de la(s) ganancia(s) de adaptación, el valor del flujo de base.

	Uey de adaptación
Block Parameters: Ley de adaptación	Subsystem (mask)
Parameters Gamma 0.00002	Parameters Gamma [-0.041] Fb Fb
QK <u>Cancel</u> <u>H</u> elp <u>Apply</u>	<u>QK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>
(a)	(b)

Figura 24: Cuadro de diálogo del subsistema "Ley de adaptación": (a) Regla del MIT; (b) Método de estabilidad de Lyapunov.

Figura 25: Método de optimización del gradiente: (a) Controlador P; (b) Controlador PI; (c) Controlador PD y (d) Controlador PID

La estructura interna del subsistema "Ley de adaptación" depende de dos factores: el método de adaptación empleado para encontrar la(s) expresión(es) de los parámetros ajustables y el tipo de controlador implementado en el lazo de control convencional. En la figura 25 se presentan las estructuras de este subsistema cuando se emplea el método de optimización del gradiente para hallar las leyes de adaptación. El diagrama (a) de la figura anterior, corresponde a la ecuación (3.17), el (b) a las ecuaciones (3.20) y (3.21), el (c) a las ecuaciones (3.23) y (3.24), y el (d) a las ecuaciones (3.26), (3.27) y (3.28).

Las posibles configuraciones internas del subsistema "Leyes de adaptación" cuando se utiliza el método de estabilidad de Lyapunov, se presentan en las figuras 26 a 29.

El diagrama de la figura 26 representa el comportamiento de la ecuación (3.29).

Las ecuaciones (3.30) y (3.31) se ven representadas en la gráfica (27).

Las figuras 28 y 29 representan los comportamientos de las ecuaciones (3.32) y (3.33) y de las ecuaciones (3.34), (3.35) y (3.36), respectivamente.

Figura 26: Método de estabilidad de Lyapunov. Controlador P: (a) Estructura en SIMULINK. (b) Código del bloque Embedded MATLAB Function.

Figura 27: Método de estabilidad de Lyapunov. Controlador PI: (a) Estructura en SIMULINK. (b) Código del bloque Embedded MATLAB Function.

Figura 28: Método de estabilidad de Lyapunov. Controlador PD: (a) Estructura en SIMULINK. (b) Código del bloque Embedded MATLAB Function.

Figura 29: Método de estabilidad de Lyapunov. Controlador PD: (a) Estructura en SIMULINK. (b) Código del bloque Embedded MATLAB Function.

6. ANÁLISIS DE RESULTADOS Y CONCLUSIONES

6.1 CONJUNTO PLANTA - CONTROLADOR PROPORCIONAL

Figura 30: Método de optimización del gradiente. Control proporcional. Flujo de base 120 cm³/min $pH_{set} = 8.0$

Figura 31: Método de estabilidad de Lyapunov. Control proporcional. Flujo de base 120 cm³/min $pH_{set} = 8.0$

Para las figuras 30 y 31:

- Esquina superior izquierda: La comparación entre señal de salida del modelo pH_m (Línea azul) y la del proceso pH (Línea magenta). En la figura 30, correspondiente a la aplicación de la regla del MIT como ley de adaptación, la respuesta de la planta converge, casi perfectamente, a la respuesta del modelo entre los 300 y 400 segundos. Para la gráfica 31, en la cual se implementa el segundo método de Lyapunov, la convergencia no es tan perfecta, sin embargo, la señal se estabiliza entre los 200 y 300 segundos, además el overshoot para estos casos es menor que el que se presenta en la gráfica 30.
- Esquina superior derecha: Se presenta la variación del parámetro ajustable K_c con el tiempo. En el caso en el que se implementa la regla del MIT, el valor de la ganancia proporcional alcanza un valor máximo, donde se estabiliza, aproximadamente entre los 200 y 300 segundos. Para el método de estabilidad de Lyapunov, el comportamiento es muy distinto, la ganancia adquiere un valor máximo, luego desciende y se estabiliza en un rango de valores, no en un valor dado como sucede en la figura 30.
- Esquina inferior izquierda: Se ilustra la relación entre el error entre las señales de salida del modelo de referencia y la planta. En las figuras 30, este se estabiliza en un valor del orden de 1E–3, mientras que para el segundo método de Lyapunov lo hace en valores del orden de 1E–2 (Ver tabla 8).
- Esquina inferior derecha: Esta gráfica ayuda a determinar si el valor encontrado para la ganancia de adaptación es el adecuado, ya que existen varios valores de la ganancia de adaptación que arrojan un error cercano a cero entre las señales de salida; se trata de la relación error entre los parámetros de la función de transferencia de la planta y la del modelo vs. tiempo de simulación, en este caso dado por:

$$\mathbf{c} - \mathbf{c}_{m} = \frac{\mathbf{K}}{\tau^{2}} \mathbf{K}_{c}(\mathbf{t}) - \omega_{n}^{2}$$
(5.1)

La regla del MIT permite obtener una ilustración donde este error converge a 0.09 aproximadamente, mientras que en la figura 31, este error es del orden de 0.02, valor menor (Ver tabla 8).

A partir de los resultados obtenidos en estas figuras, se puede concluir que la implementación de un controlador proporcional dentro del ciclo de control convencional de un controlador adaptativo por modelo de referencia, para el caso en estudio, permite que tanto el método de optimización del gradiente como el de estabilidad de Lyapunov, arrojen resultados adecuados para el ajuste del parámetro ganancia proporcional, sin embargo, el error entre los parámetros es mucho menor para el segundo método de Lyapunov.

Fb	рН _{set}	Error	Error (Ec	uación (5.1))	Fb	рН _{set}	Error	Error (Ec	uación (5.1))
	8.0		9 00e-2	2 20e-2		8.0		9 50e-2	1 90e-2
	9.0		6 250-2	2.200-2		9.0		0.500-2 0.500-2	2 500-2
	10.0		0.23 0 -2	2.206-2		10.0		9.506-2	2.506-2
120	10.0		0.078-2	2.208-2	160	10.0		0.30e-2	1.000-2
	4.0		7.50e-2	2.20e-2		4.0		8.70e-2	6.00e-2
	5.0		7.00e-2	2.20e-2		5.0		9.50e-2	9.00e-2
	6.0		8.40e-2	2.20e-2		6.0		9.50e-2	9.00e-2
	8.0		9.00e-2	2.20e-2		8.0		3.20e-2	2.20e-2
	9.0		9.50e-2	2.20e-2		9.0		1.60e-2	2.20e-2
140	10.0		8.50e-2	2.20e-2	100	10.0		1.50e-2	1.90e-2
140	4.0		8.50e-2	0.0600	100	4.0		-	-
	5.0		9.70e-2	0.0600		5.0		-	-
	6.0		9.30e-2	0.0180		6.0		-	-

Tabla 8: Comparación de errores. Conjunto planta – controlador proporcional

En las tablas 9 y 10 se presentan los valores de la ganancia de adaptación obtenidos implementando como método de adaptación la regla del MIT y el método de estabilidad de Lyapunov para la aplicación del controlador proporcional como regulador convencional. Estos valores se obtuvieron después de múltiples corridas con el programa MRAS, teniendo en cuenta que el valor escogido, debe permitir un buen ajuste tanto para el error entre las señales de salida de la planta y del modelo como los errores entre los parámetros de las funciones de transferencia de los mismos.

Tabla 9: Valores de la ganancia de adaptación. Método de optimización del gradiente. Control

 Proporcional.

Fb	\textbf{pH}_{set}	γ	Fb	\textbf{pH}_{set}	γ
	8.0	7.0E–4		8.0	4.0E-4
	9.0	1.0E–4		9.0	1.0E–4
120	10.0	7.0E–5	160	10.0	4.0E–5
120	4.0	4.0E–5		4.0	4.0E–5
	5.0	9.0E–5		5.0	1.0E–4
	6.0	5.0E–4		6.0	4.0E–4
	8.0	3.0E–4		8.0	1.2E–5
	9.0	8.0E–5		9.0	2.0E–5
140	10.0	3.0E–5	180	10.0	8.0E–6
140	4.0	3.0E–5		4.0	-
	5.0	8.0E–5		5.0	-
	6.0	3.0E–4		6.0	-

Fb	\textbf{pH}_{set}	γ	Fb	\textbf{pH}_{set}	γ
	8.0	1.290		8.0	0.320
	9.0	0.680		9.0	0.220
120	10.0	0.480	160	10.0	0.090
120	4.0	4.0 -0.480	100	4.0	-0.530
	5.0	-0.670		5.0	-0.890
	6.0	-1.290		6.0	-1.200
	8.0	0.570		8.0	0.800
	9.0 0.190		9.0	0.291	
140	10.0	0.120	100	10.0	0.130
140	4.0	-0.200	100	4.0	-
	5.0	-0.470		5.0	-
	6.0	-0.470		6.0	-

Tabla 10: Valores de la ganancia de adaptación. Método de estabilidad de Lyapunov. Control Proporcional.

6.2 CONJUNTO PLANTA - CONTROLADOR PROPORCIONAL INTEGRAL

Figura 32: Método de optimización del gradiente. Control proporcional – integral. Flujo de base 120 cm^3 /min pH_{set} = 8.0

Figura 33: Método de estabilidad de Lyapunov. Control proporcional – integral. Flujo de base 120 $cm^3/min pH_{set} = 8.0$

- Fila superior, primera columna: Se presentan la señal de salida del modelo (Azul) y la del proceso. La gráfica obtenida mediante la aplicación de la regla del MIT como ley de adaptación, muestra que la respuesta de la planta iguala a la señal de salida del modelo de referencia solo después de 200 segundos, mientras que con el método de estabilidad de Lyapunov, la señal de salida de la planta converge a la del modelo a t = t₀, donde t₀ es el tiempo muerto (Menor a 200 segundos).
- Fila inferior, primera columna: Representa el error entre las señales de salida del modelo y del proceso. Para ambas gráficas, el error se estabiliza en un valor del orden de 1E–3 (Ver tabla 11).
- Fila superior, segunda columna: Se presenta la relación entre el parámetro ajustable Kc y el tiempo. En la primera figura, se observa como la ganancia proporcional alcanza un valor máximo donde se estabiliza, mientras que en la figura 33 éste parámetro alcanza un valor pico, de donde luego desciende para estabilizarse.
- Fila superior, tercera columna: Se muestra la relación entre el parámetro ajustable K₁ y el tiempo. Con la implementación del método de optimización del gradiente (Figura 32) no se logra que el parámetro se estabilice, sino que asciende constantemente, mientras que con el método de Lyapunov la ganancia integral presenta un comportamiento similar al descrito para la ganancia proporcional, toma un valor pico, luego desciende y se estabiliza.
- Fila inferior, columnas dos y tres: Se presentan los errores paramétricos dados por las ecuaciones (5.1) y (5.2), respectivamente:

$$d = \frac{K}{\tau^2} K_1(t) = 0$$
(5.2)

En este caso, la última gráfica es la que determina cual de los dos métodos ajusta de mejor manera el valor de los parámetros ajustables, ya que en todos los casos el error paramétrico $c - c_m$ se aproxima a cero con una tolerancia aceptable. En la figura 33, el primer el error aumenta en vez de disminuir, lo que indica que este método no ofrece un control adecuado para este caso. De otro lado, el método de estabilidad de Lyapunov, permite que ambos errores paramétricos presenten resultados aceptables, con lo que se concluye que cuando se implementa un regulador PI en el ciclo de control convencional de un MRAS, el método de adaptación a utilizar, para obtener buenos resultados, debe ser el segundo o de estabilidad de Lyapunov.

Fh	nH	Error	Error (Ec	uación (5.1))	Error (Ec	uación (5.2))
	Priset	LIIU	MIT	Lyapunov	MIT	Lyapunov
	8.0		1.60e-2	1.50e-3	3.50e-2	0
	9.0		1.60e-2	0	3.50e-2	0
120	10.0		1.60e-2	0	3.50e-2	0
120	4.0		1.60e-2	0	1.90e-2	0
	5.0		1.60e-2	1.50e-3	2.20e-2	2.50e-4
	6.0		1.60e-2	1.50e-3	8.00e-3	4.00e-3
	8.0		2.00e-3	1.93e-3	2.70e-3	2.20e-4
	9.0		2.00e-3	3.00e-3	8.00e-3	2.50e-3
140	10.0		2.00e-3	1.60e-3	1.50e-2	8.00e-4
140	4.0		2.00e-3	2.02e-3	1.40e-2	4.00e-3
	5.0		2.00e-3	2.02e-3	8.00e-3	2.00e-4
	6.0		2.00e-3	2.02e-3	2.50e-3	1.50e-4
	8.0		3.20e-3	3.20e-3	2.40e-3	3.00e-4
	9.0		3.20e-3	3.20e-3	5.90e-3	1.90e-3
160	10.0		3.20e-3	3.20e-3	4.50e.3	8.00e-4
100	4.0		3.20e-3	3.20e-3	4.50e-3	9.90e-4
	5.0		3.20e-3	3.20e-3	6.00e-3	2.50e-5
	6.0		3.20e-3	3.20e-3	2.50e-3	2.00e-4
	8.0		4.20e-3	424e-3	1.25e-3	2.00e-4
180	9.0		4.20e-3	4.21e-3	2.20e-3	4.90e-4
	10.0			3.90e-3		1.00e-4

Tabla 11: Comparación de errores. Conjunto planta – controlador proporcional integral

En la tabla 12 se presentan los valores obtenidos para la ganancia de adaptación después de implementar como el método de optimización del gradiente como método de adaptación para el conjunto planta – controlador proporcional integral. Por su parte, la tabla 13 contiene las ganancias de adaptación calculadas mediante la implementación del método de estabilidad de Lyapunov.

Fb	\textbf{pH}_{set}	γ	Fb	\textbf{pH}_{set}	γ
	8.0	6.0E-7		8.0	4.0E-8
	9.0	1.0E–7		9.0	3.0E–8
120	10.0	6.0E–8	160	10.0	1.0E–8
120	4.0	3.0E–7	160	4.0	1.0E–8
	5.0	9.0E–8		5.0	8.0E–8
	6.0	8.0E–8		6.0	8.0E–8
	8.0	3.0E–8		8.0	2.0E-8
	9.0	3.0E–8		9.0	1.0E–8
140	10.0	3.0E–8	100	10.0	3.0E–9
140	4.0	3.0E–8	180	4.0	-
	5.0	3.0E–8		5.0	-
	6.0	3.0E–8		6.0	-

Tabla 12: Valores de la ganancia de adaptación. Método de optimización del gradiente. Control Proporcional – Integral.

Tabla 13: Valores de la ganancia de adaptación. Método estabilidad de Lyapunov. Control Proporcional – Integral.

Fb	\textbf{pH}_{set}	γ_1	γ ₂	Fb	\textbf{pH}_{set}	γ_1	γ ₂
	8.0	0.1	0.6101		8.0	0.1	0.05000
	9.0	0.1	0.2350	140	9.0	0.1	0.08221
120	10.0	0.1	0.1025		10.0	0.2	0.03410
	4.0	0.1	-0.6100		4.0	0.1	-0.03000
	5.0	0.2	-0.1000		5.0	0.1	-0.08000
160	8.0	0.1	0.00490		8.0	0.1	0.01062
	9.0	0.1	0.00640	180	9.0	0.1	0.00140
	10.0	0.1	0.00800		10.0	0.2	0.03410
	4.0	0.1	-0.03100		4.0	-	-
	5.0	0.1	-0.05301		5.0	-	-
	6.0	0.2	-0.13000		6.0	-	-

6.3 CONJUNTO PLANTA – CONTROLADOR PROPORCIONAL DERIVATIVO

 Las dos figuras de la primera columna representan las mismas relaciones que para el caso anterior, la comparación de la señal de salida del modelo con la de la planta y el error entre las mismas. En ambos casos la señal de respuesta del proceso muestra un buen seguimiento con respecto a la señal de salida del modelo, lo cual se evidencia también en la gráfica del error, ya que en las dos figuras converge a valores por debajo de 0.1. Inclusive, se observa una mejor convergencia en el caso en que se implementa la regla del MIT como ley de adaptación.

Figura 34: Método de optimización del gradiente. Control proporcional – derivativo. Flujo de base $120 \text{ cm}^3/\text{min pH}_{set} = 8.0$

Figura 35: Método de estabilidad de Lyapunov. Control proporcional – derivativo. Flujo de base $120 \text{ cm}^3/\text{min pH}_{set} = 8.0$

 En las dos figuras restantes de la fila superior se presentan las relaciones ganancia proporcional K_C vs. tiempo y ganancia derivativa K_D vs. tiempo. Para la figura 34, el parámetro ajustable K_C presenta el mismo comportamiento que en los casos anteriores, llega a un valor máximo donde se estabiliza. Por otro lado, el parámetro ajustable K_D se estabiliza, después de alcanzar un valor mínimo, en valores muy cercanos a cero, del orden de 1E–5, lo que implicaría que el componente derivativo del controlador convencional es prácticamente nulo.

En la segunda gráficas, se puede observar lo siguiente: El parámetro K_C se estabiliza después de alcanzar su valor máximo y descender. El parámetro K_D toma un valor máximo, del orden donde se estabiliza, el orden de la ganancia derivativa en estos casos es un poco mayor que para los casos anteriores, del orden de 1E–2 a 1E–4.

 En las últimas dos figuras de la fila inferior se muestran los errores paramétricos dados por las ecuaciones (5.1) y (5.3):

$$\mathbf{a} - \mathbf{a}_{m} = \frac{1}{\tau} \left(2 + \frac{K}{\tau} K_{D}(t) \right) - 2\xi \omega_{n}$$
(5.3)

El error paramétrico, dado por la ecuación (5.1), para ambos métodos, es del orden de 1E-2 a 1E-3, lo que representa un buen ajuste del parámetro calculado con el de la función de transferencia del modelo. Para el caso de la ganancia derivativa, se encuentra que el segundo conjunto de ecuaciones (Método de Lyapunov), arroja errores ligeramente menores que los obtenidos con la regla del MIT. De aquí se puede concluir que, aunque ambos métodos proporcionan un buen control, el de Lyapunov ajusta un poco mejor el parámetro ajustable K_D (Ver tabla 14).

Fb	рН _{set}	Error	Error (Ec	uación (5.1))	Error (Ecuación (5.3))		
			MIT	Lyapunov	MIT	Lyapunov	
120	8.0		2.50e-2	4.00e-2	5.78e-2	2.00e-3	
	9.0		2.20e-2	1.00e-2	5.78e-2	0	
	10.0		2.00e-2	0	5.78e-2	0	
120	4.0		2.00e-2	2.20e-2	5.78e-2	4.00e-3	
	5.0		2.40e-2	2.00e-2	5.78e-2	3.50e-3	
	6.0		2.60e-2	5.00e-2	5.78e-2	3.00e-3	
	8.0		1.70e-2	4.00e-2	6.55e-2	1.80e-2	
	9.0		2.80e-2	4.00e-2	6.55e-2	1.80e-2	
140	10.0		1.75e-2	5.00e-2	6.55e-2	1.79e-2	
140	4.0		1.90e-2	1.00e-1	6.55e-2	1.70e-2	
	5.0		3.40e-2	1.00e-2	6.55e-2	1.70e-2	
	6.0		1.90e-2	5.00e-2	6.55e-2	1.80e-2	
160	8.0		3.00e-2	4.00e-2	8.13e-2	3.10e-2	
	9.0		9.90e-3	8.00e-2	8.13e-2	3.10e-2	
	10.0		1.20e-2	8.00e-2	8.13e-2	3.10e-2	
	4.0		1.10e-2	8.00e-2	8.13e-2	3.10e-2	
	5.0		1.40e-2	8.00e-2	8.13e-2	3.10e-2	
	6.0		3.00e-2	8.00e-2	8.13e-2	3.10e-2	
	8.0		9.00e-3	6.00e-2	9.33e-2	3.60e-2	
180	9.0		6.80e-3	4.00e-2	9.34e-2	3.60e-2	
	10.0		6.80e-3	4.00e-2	9.34e-2	3.60e-2	
	6.0		8.00e-3		9.34e-2		

Tabla 14: Comparación de errores. Conjunto planta – controlador proporcional derivativo

Las tablas 15 y 16 condensan los resultados de las ganancias de adaptación para el sistema planta – controlador proporcional adaptativo, utilizando como método de adaptación la regla del MIT y el segundo método de Lyapunov, respectivamente.

Fb	\textbf{pH}_{set}	γ	Fb pH _{set}		γ
	8.0	3.0E–3		8.0	1.0E–3
	9.0	9.0 2.0E–4	9.0	5.0E–4	
120	10.0	7.0E–5	140	10.0	1.0E–4
120	4.0	7.0E–4		4.0	1.0E–4
	5.0	2.0E–4		5.0	5.0E–4
	6.0	1.0E–3		6.0	1.0E–3
	8.0	3.0E–3		8.0	2.0E-4
	9.0	1.0E–4		9.0	2.0E–5
160	10.0	6.0E–5	100	10.0	8.0E–6
100	4.0	5.0E–5	100	4.0	-
	5.0	2.0E–4		5.0	-
	6.0	3.0E–3		6.0	1.0E–4

Tabla 15: Valores de la ganancia de adaptación. Método de optimización del gradiente. Control Proporcional – Derivativo.

Tabla 16: Valores de la ganancia de adaptación. Método estabilidad de Lyapunov. Control Proporcional – Derivativo.

Fb	\textbf{pH}_{set}	γ_1	γ ₂	Fb	\textbf{pH}_{set}	γ_1	γ ₂
120	8.0	0.1	4.10340		8.0	0.1	1.02777
	9.0	0.1	2.03390	160	9.0	0.1	1.01004
	10.0	0.1	1.53900		10.0	0.1	0.64107
	4.0	0.1	-0.56700		4.0	0.1	-1.10500
	5.0	0.1	-0.56100		5.0	0.1	-1.70000
	6.0	0.1	-4.72000		6.0	0.1	-2.30000
140	8.0	0.1	1.08016	180	8.0	0.1	3.06205
	9.0	0.1	0.65357		9.0	0.1	0.69552
	10.0	0.1	0.63401		10.0	0.1	0.32265
	4.0	0.1	-0.90000		4.0	-	-
	5.0	0.1	-1.80000		5.0	-	-
	6.0	0.1	-1.96000		6.0	-	-

6.4 CONJUNTO PLANTA – CONTROLADOR PROPORCIONAL INTEGRAL DERIVATIVO

• Para ambos métodos de adaptación se obtienen resultados semejantes para el ajuste de la señal de salida del proceso a la del modelo y, por lo tanto, la gráfica del error con respecto al tiempo converge a valores muy cercanos a cero en ambos los casos.

Figura 36: Método de optimización del gradiente. Control proporcional – integral – derivativo. Flujo de base 120 cm 3 /min pH_{set} = 8.0

Figura 37: Método de estabilidad de Lyapunov. Control proporcional – integral – derivativo. Flujo de base 120 cm³/min $pH_{set} = 8.0$

 Los resultados obtenidos para las ganancias proporcional y derivativa también son semejantes para ambos métodos de adaptación, siendo estos valores muy cercanos a cero, Lo mismo ocurre con los errores para los dos parámetros.
Sin embargo, los valores de la ganancia integral presentan diferencias, ya que para el primer método evaluado, este parámetro adquiere valores de 1.2 aproximadamente, mientras que para el segundo, es del orden de 1E–3. En cuanto al error paramétrico asociado a K_I se refiere, se obtienen mejores resultados (Más cercanos a cero), con el método de Lyapunov. De acuerdo con esto, el segundo método evaluado ofrece un mejor control en este caso (Ver tabla 17).

Fb	рН _{set}	Error	Error (Ec	uación (5.1))	Error (Ec	uación (5.2))	Error (Ecuación (5.3))		
			MIT	Lyapunov	MIT	Lyapunov	MIT	Lyapunov	
	8.0		1.51e-3	1.51e-3	5.90e-2	2.10e-3	5.90e-2	2.10e-3	
	9.0		1.51e-3	1.55e-3	Error (Ecuación (5.2))Error (Ecu (5.3))MITLyapunovMITLy $5.90e-2$ $2.10e-3$ $5.90e-2$ 2 $5.90e-2$ $1.50e-3$ $5.90e-2$ 1 $5.90e-2$ $1.00e-3$ $5.90e-2$ 1 $5.90e-2$ $ 5.90e-2$ 1 $6.50e-2$ $ 5.90e-2$ 1 $6.50e-2$ $1.80e-2$ $6.50e-2$ 1 $6.50e-2$ $1.80e-2$ $6.50e-2$ 1 $6.50e-2$ $ 6.50e-2$ 1 $6.50e-2$ $ 6.50e-2$ 1 $6.60e-2$ $3.10e-2$ $6.60e-2$ 3 $6.60e-2$ $ 6.60e-2$ 3 $9.00e-2$ $3.60e-2$ $9.00e-2$ 3 $9.00e-2$ $3.60e-2$ $9.00e-2$ 3 $9.00e-2$ $3.60e-2$ $9.00e-2$ 3	1.50e-3			
100	10.0		IrrorError (Ecuación (5.1))Error (Ecuación (5.2))Error (Ecuación (5.2))MITLyapunovMITLyapunovMIT $1.51e-3$ $1.51e-3$ $5.90e-2$ $2.10e-3$ $5.90e-2$ $1.51e-3$ $1.55e-3$ $5.90e-2$ $1.50e-3$ $5.90e-2$ $1.51e-3$ $1.55e-3$ $5.90e-2$ $1.00e-3$ $5.90e-2$ $1.51e-3$ $ 5.90e-2$ $ 5.90e-2$ $2.00e-3$ $2.02e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ $2.02e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ $ 6.50e-2$ $ 6.50e-2$ $2.00e-3$ $ 6.50e-2$ $ 6.50e-2$ $2.00e-3$ $ 6.60e-2$ $3.10e-2$ $6.60e-2$ $3.20e-3$ $3.18e-3$ $6.60e-2$ $3.10e-2$ $6.60e-2$ $3.20e-3$ $ 6.60e-2$ $ 6.60e-2$ $3.20e-3$ <t< td=""><td>1.00e-3</td></t<>	1.00e-3					
120	4.0	H _{set} Error Error (Ecual MIT 3.0 1.51e-3 3.0 1.51e-3 3.0 1.51e-3 3.0 1.51e-3 3.0 1.51e-3 5.0 1.51e-3 5.0 1.51e-3 3.0 2.00e-3 3.0 3.20e-3 3.0 4.20e-3 3.0 4.20e-3 3.0 4.20e-3	-	5.90e-2	-	5.90e-2	-		
	5.0		1.51e-3	-	5.90e-2	-	5.90e-2	-	
	6.0		1.51e-3	-	5.90e-2	-	5.90e-2	-	
	8.0		2.00e-3	2.02e-3	6.50e-2	1.80e-2	6.50e-2	1.80e-2	
140	9.0		2.00e-3	2.02e-3	6.50e-2	1.80e-2	6.50e-2	1.80e-2	
	10.0		2.00e-3	2.03e-3	6.50e-2	1.80e-2	6.50e-2	1.80e-2	
	4.0		2.00e-3	-	6.50e-2	-	6.50e-2	-	
	5.0		2.00e-3	-	6.50e-2	-	6.50e-2	-	
	6.0		2.00e-3	-	6.50e-2	-	6.50e-2	-	
	8.0		3.20e-3	3.18e-3	6.60e-2	3.10e-2	6.60e-2	3.10e-2	
	9.0		3.20e-3	3.10e-3	6.60e-2	3.10e-2	6.60e-2	3.10e-2	
160	10.0		3.20e-3	3.20e-3	6.60e-2	3.10e-2	6.60e-2	3.10e-2	
160	4.0		1.51e-3 $1.55e-3$ $5.90e-2$ $1.00e-3$ $5.90e-2$ $1.51e-3$ - $5.90e-2$ - $5.90e-2$ $1.51e-3$ - $5.90e-2$ - $5.90e-2$ $1.51e-3$ - $5.90e-2$ - $5.90e-2$ $2.00e-3$ $2.02e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ $2.02e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ $2.02e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ $2.03e-3$ $6.50e-2$ $1.80e-2$ $6.50e-2$ $2.00e-3$ - $6.50e-2$ $ 6.50e-2$ $2.00e-3$ - $6.50e-2$ - $6.50e-2$ $2.00e-3$ - $6.50e-2$ - $6.50e-2$ $2.00e-3$ - $6.50e-2$ - $6.50e-2$ $2.00e-3$ - $6.60e-2$ $3.10e-2$ $6.60e-2$ $3.20e-3$ $3.18e-3$ $6.60e-2$ $3.10e-2$ $6.60e-2$ $3.20e-3$ $3.10e-3$ $6.60e-2$ $3.10e-2$ $6.60e-2$ $3.20e-3$ - $6.60e-2$ $ 6.60e-2$ $3.20e-3$ - $6.60e-2$ - $6.60e-2$ $4.20e-3$ $4.20e-2$ $9.00e-2$ $3.60e-2$ $9.00e-$	-					
	5.0		3.20e-3	-	6.60e-2	-	6.60e-2	-	
	6.0		3.20e-3	-	6.60e-2	-	6.60e-2	-	
	8.0		4.20e-3	4.20e-2	9.00e-2	3.60e-2	9.00e-2	3.60e-2	
100	9.0		4.20e-3	4.20e-2	9.00e-2	3.60e-2	9.00e-2	3.60e-2	
120 140 160 180	10.0		4.20e-3	4.20e-2	9.00e-2	3.60e-2	9.00e-2	3.60e-2	
	6.0		4.20e-3	-	9.00e-2	-	9.00e-2	-	

Tabla 17: Comparación de errores. Conjunto planta - controlador proporcional integral derivativo

Los valores de las ganancias de adaptación obtenidas para el conjunto planta – controlador proporcional integral derivativo, se encuentran en las tablas 18 y 19 para el método de optimización del gradiente y el método de estabilidad de Lyapunov, respectivamente.

Fb	\textbf{pH}_{set}	γ	Fb	\textbf{pH}_{set}	γ
	8.0	2.0E–4		8.0	7.0E–5
	9.0	8.0E–5		9.0	5.0E–6
120	10.0	1.0E–5	160	10.0	1.0E–6
120	4.0	6.0E–6	100	4.0	1.0E–6
	5.0	5.0E–5		5.0	5.0E–5
	6.0	5.0E–3		6.0	7.0E–5
	8.0	3.0E–4		8.0	5.0E–6
	9.0	2.0E–5		9.0	5.0E–7
140	10.0	5.0E–6	100	10.0	1.0E–7
140	4.0	3.0E–6	100	4.0	-
	5.0	1.0E–5		5.0	-
	6.0	2.0E–4		6.0	3.0E–6

Tabla 18: Valores de la ganancia de adaptación. Método de optimización del gradiente. Control Proporcional – Integral – Derivativo.

Tabla 19: Valores de la ganancia de adaptación. Método de optimización del gradiente. Control Proporcional – Integral – Derivativo.

Fb	\textbf{pH}_{set}	γ_1	γ ₂	Fb	\textbf{pH}_{set}	γ_1	γ ₂
	8.0	0.01	-0.00370		8.0	0.01	-0.00042
120	9.0	0.01	-0.00347	160	9.0	0.01	-0.00050
	10.0	-0.01	-0.00120		10.0	-0.01	-0.00017
	8.0	0.01	-0.00090		8.0	0.01	-0.00620
140	9.0	0.01	-0.00092	180	9.0	0.01	-0.00060
	10.0	-0.01	-0.00830		10.0	-0.01	-0.00028

6.5 MRAS vs. IMC

El desempeño del controlador adaptativo por modelo de referencia, se compara con los resultados de validación de la simulación presentados por Hernández [32] en su trabajo de grado.

Como puede observarse en los análisis presentados, el método de control estudiado en este documento permite un buen ajuste del proceso al modelo. En cuanto al control por modelo interno implementado, el lazo de regulación no funciona de manera adecuada debido a la diferencia de comportamientos entre el modelo y el proceso [32]. Esto indica que el MRAS, teóricamente, controla mejor el proceso estudiado.

BIBLIOGRAFÍA

- 1. Faanes, A. and S. Skogestad, *pH-neutralization: integrated process and control design*. Computers & Chemical Engineering, 2004. **28**(8): p. 1475-1487.
- 2. Mwembeshi, M.M., C.A. Kent, and S. Salhi, *A genetic algorithm based approach to intelligent modelling and control of pH in reactors*. Computers & Chemical Engineering, 2004. **28**(9): p. 1743-1757.
- 3. Menzl, S., M. Stühler, and R. Benz, A self adaptive computer-based pH measurement and fuzzy-control system. Water Research, 1996. **30**(4): p. 981-991.
- 4. Balasubramanian, G., N. Sivakumaran, and T.K. Radhakrishnan, *Adaptive Control* of Neutralization Process using Neural Networks. Instrumentation Science and Technology, 2008. **36**: p. 146-160.
- 5. Wan, F., H. Shang, and L.X. Wang, *Adaptive Fuzzy Control of A pH Process*, in *IEEE International Conference on Fuzzy Systems*2006: Vancouver, BC, Canada.
- 6. Regunath, S. and V. Kadirkamanathan, *Design of a pH control system using fuzzy non-uniform grid scheduling and evolutionary programming*. Applied Soft Computing, 2001. **1**(1): p. 91-104.
- 7. McMillan, G.K. and M.S. Sowell, *Advances in pH modeling and control*, 2008, ISA.
- 8. Lakshmi Narayanan, N.R., P.R. Krishnaswamy, and G.P. Rangaiah, *An adaptive internal model control strategy for pH neutralization*. Chemical Engineering Science, 1997. **52**(18): p. 3067-3074.
- 9. Venkateswarlu, C. and R. Anuradha, *Dynamic Fuzzy Adaptive Controller for pH*. Chemical Engineering Communications, 2004. **191**: p. 1564-1588.
- 10. Doherty, S.K., *Control of pH in chemical processes using artificial neural networks*, 1999, Liverpool John Moores University.
- 11. Sergeevich, A., *In-Line pH Control*, 1999, Texas Tech University.
- 12. Swati, D., et al., *Nonlinear Control of pH System for Change Over Titration Curve*. Chemical and Biochemical Engineering Quarterly, 2005. **19**(4): p. 341 - 349.
- 13. McMillan, G.K., *A Funny thing happened on the way to the control room*, ed. I.S.o. America1999.
- 14. Bagheri, P., A. Khaki-Sedigh, and A. Neshastehriz, *Generalized Predictive Control* of a Multivariable pH Neutralization Process using Independent Model Approach, in Proceedings of 2009 CACS International Automatic Control Conference National Taipei University of Technology2009: Taipei, Taiwan.
- 15. Obut, S. and C. Özgen, *Online Identification and Control of pH in a Neutralization System.* Industrial & Engineering Chemistry Research, 2008. **47**(13): p. 4394-4404.
- 16. Sastry, S. and M. Bodson, *Adaptive Control. Stability, Convergence and Robustness*, 1989, Prentice Hall.
- 17. Ioannou, P. and B. Fidan, *Adaptive control tutorial. Advances in Design and Control*, 2006, Society for Industrial and applied mathematics.
- 18. Barlw, J.S., *The cerebellum and adaptive control*, 2002, Cambridge University Press.

- 19. González, M., Aplicaciones de un método de un método de control adaptativo por realimentación de salida en la regulación de algunos procesos biológicos, 2008, Universidad de Loa Andes Mérida.
- 20. Kamnik, R., D. Matko, and T. Bajd, *Application of Model Reference Adaptive Control to Industrial Robot Impedance Control.* Journal of Intelligent and Robotic Systems, 1998. **22**(2): p. 153-163.
- 21. Rubio, F.R. and M.J. López, *Control adaptativo y robusto*, 1966, Universidad de Sevilla.
- 22. O'Shaughnessy, E. and A. O'Dwyer, *The gain scheduled piece-wise adaptive digital* control of a pH process, in Proceedings of the International Postgraduate Student Research Conference1998: Dublin, Ireland.
- 23. Ioannou, P. and J. Sun, *Robust adaptive control*, 1996, Prentice Hall.
- 24. Nestorović Trajkov, T., H. Köppe, and U. Gabbert, *Direct model reference adaptive control (MRAC) design and simulation for the vibration suppression of piezoelectric smart structures.* Communications in Nonlinear Science and Numerical Simulation, 2008. **13**(9): p. 1896-1909.
- 25. Mahyuddin, M.N.B., Direct Model Reference Adaptive Vontrol of Coupled Tank Liquid Level Control System, in Mechatronics and Automatic Control2005, Universiti Teknologi Malaysia.
- 26. Montoro, G., Contribucion al Estudio y Desarrollo de las Técnicas de Control Aplicadas a la Linealización de Sistemas, in Departament de Teoria del Senyal i Comunicacions1996, Universitat Politecnica de Catalunya.
- 27. Cartes, D. and L. Wu, *Experimental evaluation of adaptive three-tank level control*. ISA Transactions, 2005. **44**(2): p. 283-293.
- 28. Manuel, A., et al., *Instrumentación virtual. Adquisición, procesado y análisis de señales*, 2001, Ediciones de la Universidad Politécnica de Catalunya.
- 29. Pankaj, S., J.S. Kumar, and R.K. Nema, *Comparative Analysis of MIT Rule and Lyapunov Rule in Model Reference Adaptive Control Scheme*. Innovative Systems Design and Engineering, 2011. **2**(4).
- 30. Mirkin, B., E.L. Mirkin, and P.O. Gutman. *Model reference adaptive control of nonlinear plant with dead time*. in 47th IEEE Conference on Decision and Control. 2008. Cancun, Mexico.
- Cârjă, O. and D. Motreanu, *Characterization of Lyapunov pairs in the nonlinear case and applications*. Nonlinear Analysis: Theory, Methods & Applications, 2009. 70(1): p. 352-363.
- 32. Hernández, A.F., *Diagnóstico y simulación de un sistema de control de pH en un reactor de tanque agitado*, 2005, Univesidad del Valle.
- 33. Baturone, A.O., *Control por computador. Descripción interna y diseño óptimo*, 1991, Marcombo S.A.

ANEXOS

ANEXO A: DATOS DE LAS CURVAS FLUJO DE ACIDO vs. INTENSIDAD DE CORRIENTE, VOLTAJE vs. pH, INTENSIDAD DE CORRIENTE vs pH.

Tabla 14: Datos de la curva Flujo de ácido vs. Intensidad de corriente

Flujo de ácido	Intensidad de				
(cm³/min)	corriente				
	(mA)				
32	4				
280	20				

Tabla 15: Datos de la curva Voltaje vs. pH

Voltaje	рН
4	0.288
7	0.498
9	0.644

Tabla 16: Datos de la curva Intensidad de corriente vs. Voltaje

Intensidad de corriente (mA)	Voltaje
4	0
20	1

ANEXO B: PROCESO EN LAZO ABIERTO. INTENSIDAD DE CORRIENTE vs. pH

t	Ι	t	Ι	t	Ι	t	Ι	t	Ι
(seg)	(mA)	(seg)	(mA)	(seg)	(mA)	(seg)	(mA)	(seg)	(mA)
0	12.19089	87	11.91891	174	11.13497	261	7.27926	345	6.46331
3	12.15890	90	12.01490	177	10.97498	264	7.27926	348	6.44732
6	12.15890	93	11.90292	180	10.87899	267	7.13527	351	6.47932
9	12.14289	96	11.75892	183	10.79899	270	7.10327	354	7.10327
12	12.06290	99	11.72693	186	10.63901	273	7.03928	357	6.43132
15	12.11089	102	11.85492	189	10.41503	276	7.02327	360	6.51131
18	12.11089	105	11.83892	192	10.30303	279	6.99127	363	6.46331
21	12.07890	108	11.79092	195	10.04705	282	6.81528	366	6.49531

Tabla A.1: Proceso en lazo abierto, flujo de base 120 cm³/min

12.01490	111	11.71092	198	9.90306	285	6.70330	369	6.43132
12.04690	114	11.80691	201	9.58309	288	6.70330	372	6.46331
12.19089	117	11.82292	204	9.51909	291	6.73530	375	6.49417
12.07890	120	11.74292	207	9.32711	294	6.60731	378	6.46331
11.93491	123	11.79092	210	9.15112	297	6.57531	381	6.43132
12.09490	126	11.72693	213	9.08712	300	6.47932	384	6.38333
12.12690	129	11.72693	216	8.87914	303	6.49531	387	6.47932
12.15890	132	11.77493	219	8.71915	306	6.52731	390	6.41532
12.04690	135	11.82292	222	8.63915	309	6.47932	393	6.38333
12.03091	138	11.77493	225	8.60715	312	6.59130	396	6.38333
11.98290	141	11.72869	228	8.49517	315	6.46331	399	6.30333
11.96691	144	11.69493	231	8.23918	318	6.51131	402	6.33532
11.91891	147	11.67893	234	8.01520	321	6.49531	405	6.38333
11.88691	150	11.66293	237	8.01520	321	6.54331	408	6.35133
11.85492	153	11.59894	240	7.90321	324	6.47932	411	6.28732
11.95091	156	11.53494	243	7.80722	327	6.46331	414	6.31933
11.95091	159	11.43895	246	7.71122	330	6.56000	417	6.33532
11.85492	162	11.34296	249	7.67922	333	6.41532	420	6.30333
11.88691	165	11.36578	252	7.61523	336	6.49531		
11.90292	168	11.24697	255	7.45524	339	6.52731		
11.88691	171	11.27895	258	7.37525	342	6.48546		
	12.01490 12.04690 12.19089 12.07890 11.93491 12.09490 12.12690 12.15890 12.03091 12.03091 11.98290 11.96691 11.98691 11.85691 11.95091 11.95091 11.85691 11.88691 11.90292 11.88691	12.0149011112.0469011412.1908911712.0789012011.9349112312.0949012612.1269012912.1589013212.0469013512.0309113811.9829014111.9669114411.9189114711.8869115011.9509115611.9509115911.8549216211.8869116511.9029216811.88691171	12.0149011111.7109212.0469011411.8069112.1908911711.8229212.0789012011.7429211.9349112311.7909212.0949012611.7269312.1269012911.7269312.1589013211.7749312.0469013511.8229212.0309113811.7749311.9829014111.7286911.9669114411.6949311.9869115011.6629311.8869115011.6629311.8549215311.5349411.9509115911.4389511.8869116211.3429611.8869116511.3657811.9029216811.2469711.8869117111.27895	12.0149011111.7109219812.0469011411.8069120112.1908911711.8229220412.0789012011.7429220711.9349112311.7909221012.0949012611.7269321312.1269012911.7269321612.1589013211.7749321912.0469013511.8229222212.0309113811.7749322511.9829014111.7286922811.9869114411.6949323111.9189114711.6789323411.9509115611.5349424011.9509115911.4389524611.8549216211.3429624911.8869116511.3657825211.9029216811.2469725511.8869117111.27895258	12.0149011111.710921989.9030612.0469011411.806912019.5830912.1908911711.822922049.5190912.0789012011.742922079.3271111.9349112311.790922109.1511212.0949012611.726932139.0871212.1269012911.726932168.8791412.1589013211.774932198.7191512.0469013511.822922228.6391512.0309113811.774932258.6071511.9829014111.728692288.4951711.9669114411.694932318.2391811.9189114711.678932348.0152011.8869115011.662932378.0152011.8549215311.534942407.9032111.9509115911.438952467.7112211.8549216211.342962497.6792211.8869116511.365782527.4552411.9029216811.246972557.4552411.8869117111.278952587.37525	12.0149011111.710921989.9030628512.0469011411.806912019.5830928812.1908911711.822922049.5190929112.0789012011.742922079.3271129411.9349112311.790922109.1511229712.0949012611.726932139.0871230012.1269012911.726932168.8791430312.1589013211.774932198.7191530612.0469013511.822922228.6391530912.0309113811.774932258.6071531211.9829014111.694932318.2391831811.9189114711.678932348.0152032111.8869115011.662932378.0152032111.8549215311.598942407.9032132411.9509115611.534942437.8072232711.9509115911.438952467.7112233011.8549216211.342962497.6792233311.8869116511.365782527.6152333611.9029216811.246972557.4552433911.8869117111.278952587.37525342	12.0149011111.710921989.903062856.7033012.0469011411.806912019.583092886.7033012.1908911711.822922049.519092916.7353012.0789012011.742922079.327112946.6073111.9349112311.790922109.151122976.5753112.0949012611.726932139.087123006.4793212.1269012911.726932168.879143036.4953112.1589013211.774932198.719153066.5273112.0469013511.822922228.639153096.4793212.0309113811.774932258.607153126.5913011.9829014111.678932348.015203216.4633111.9189114711.678932348.015203216.5433111.8669115011.662932378.015203216.5433111.8549215311.598942407.903213246.4793211.9509115911.438952467.711223306.5600011.8549216211.342962497.679223336.4153211.869116511.365782527.615233366.4953111.9029216811.246972557.455243396.5273111.8669117111.2	12.01490 111 11.71092 198 9.90306 285 6.70330 369 12.04690 114 11.80691 201 9.58309 288 6.70330 372 12.19089 117 11.82292 204 9.51909 291 6.73530 375 12.07890 120 11.74292 207 9.32711 294 6.60731 378 11.93491 123 11.79092 210 9.15112 297 6.57531 381 12.09490 126 11.72693 213 9.08712 300 6.47932 384 12.12690 129 11.72693 216 8.87914 303 6.49531 387 12.15890 132 11.77493 219 8.71915 306 6.52731 390 12.04690 135 11.82292 222 8.63915 309 6.47932 393 12.03091 138 11.77493 225 8.60715 312 6.59130 396 11.98290 141 11.69493 231 8.23918 318 6.51131 402 11.91891 147 11.67893 234 8.01520 321 6.49531 408 11.85492 153 11.53494 243 7.80722 327 6.46331 414 11.95091 156 11.34296 249 7.67922 333 6.41532 420 11.8691 165 11.36578 252 7.61523

Tabla A.2: Proceso en lazo abierto, flujo de base 140 cm³/min

t	Ι	t	l (mA)	t	Ι	t	Ι	t	Ι
(seg)	(mA)	(seg)		(seg)	(mA)	(seg)	(mA)	(seg)	(mA)
0	11.91891	78	11.79092	159	11.03898	240	8.07919	321	7.11926
1	11.90292	81	11.72693	162	10.95898	243	7.95120	324	7.07127
3	11.87092	84	11.72693	165	10.95898	246	7.85521	327	6.95928
6	11.83892	87	11.77493	168	10.75099	249	7.82321	330	7.08727
9	11.95091	90	11.69493	171	10.57501	252	7.69523	333	6.99127
12	11.96691	93	11.74190	174	10.41503	255	7.75922	336	7.07127
15	11.90292	96	11.82292	177	10.36703	258	7.75922	339	7.00728
18	11.87092	99	11.66293	180	10.31902	261	7.58323	342	6.89528
21	11.91891	102	11.67893	183	10.25503	264	7.63123	345	6.97528

24	11.88691	105	11.69493	186	10.06305	267	7.53524	348	6.99127
27	11.83892	108	11.64693	189	10.06305	270	7.51923	351	6.92728
30	11.85492	111	11.63093	192	9.80707	273	7.50324	354	6.89528
33	11.87092	114	11.48694	195	9.71108	276	7.43925	357	6.91129
36	11.90292	117	11.59894	198	9.67908	279	7.47124	360	6.86328
39	11.75892	120	11.58293	201	9.50309	282	7.48724	363	6.87929
42	11.72693	123	11.69493	204	9.27911	285	7.59923	366	6.92728
45	11.79092	126	11.55094	207	9.10312	288	7.42324	369	6.89528
48	11.69493	129	11.56694	210	8.94313	291	7.40725	372	6.86328
51	11.77493	132	11.66293	213	8.84714	294	7.34325	375	6.91129
54	11.85492	135	11.43895	216	8.78314	297	7.18326	378	6.97528
57	11.87092	138	11.35895	219	8.63915	300	7.27926	381	6.92728
60	11.72693	141	11.34296	222	8.57516	303	7.27926	384	6.87929
63	11.83892	144	11.35895	225	8.39918	306	7.23126	387	6.84729
66	11.80691	147	11.27895	228	8.38317	309	7.18326	390	6.86328
69	11.75892	150	11.32696	231	8.39918	312	7.05527		
72	11.80691	153	11.18296	234	8.15919	315	7.15126		
75	11.79092	156	11.11897	237	8.12719	318	7.18326		

Tabla A.3: Proceso en lazo abierto, flujo de base 160 cm³/min

t	I	t	Ι	t	Ι	t	Ι	t	Ι
(seg)	(mA)								
0	11.95091	72	12.20689	147	13.55079	222	16.23859	297	17.08653
1	11.96691	75	12.17489	150	13.61479	225	16.38258	300	17.00653
3	11.98290	78	12.23888	153	13.77477	228	16.54257	303	17.05453
6	11.93491	81	12.35088	156	13.85477	231	16.51057	306	16.97454
9	12.03091	84	12.30289	159	14.04676	234	16.65456	309	17.13452
12	12.07890	87	12.36688	162	14.09475	237	16.65456	312	16.97454
15	12.01490	90	12.38288	165	14.22274	240	16.67056	315	17.11853
18	12.06290	93	12.38285	168	14.31874	243	16.71856	318	17.15053
21	12.11089	96	12.35088	171	14.47873	246	16.81455	321	17.00653
24	12.01490	99	12.41487	174	14.71870	249	16.78255	324	17.08653

27	12.07890	102	12.46287	177	14.79870	252	16.84655	327	17.05453
30	12.15890	105	12.30289	180	14.92669	255	16.86255	330	16.99054
33	12.12690	108	12.36688	183	15.00669	258	16.84655	333	17.15053
36	12.15890	111	12.55887	186	15.13468	261	16.81455	336	17.16652
39	12.09490	114	12.51087	189	15.26266	264	16.97454	339	17.07053
42	12.07890	117	12.55887	192	15.43865	267	16.84655	342	17.13452
45	12.19089	120	12.65486	195	15.51864	270	16.92654	345	17.10253
48	12.14289	123	12.63885	198	15.63064	273	16.99054	348	17.16652
51	12.19089	126	12.78285	201	15.79063	276	16.95854	351	17.11853
54	12.20689	129	12.92684	204	15.75863	279	17.03853	354	17.11853
57	12.27088	132	12.91084	207	15.83863	282	17.07053	357	17.15053
60	12.19089	135	12.99084	210	15.99861	285	16.81455	360	17.13452
63	12.17489	138	13.11165	213	16.07860	288	17.02254		
66	12.28688	141	13.21482	216	16.12660	291	17.03853	1	
69	12.25489	144	13.37480	219	16.22259	294	17.11853		

Tabla A.4: Proceso en lazo abierto, flujo de base 180 cm³/min

t	Ι	t	Ι	t	Ι	t	Ι	t	Ι
(seg)	(mA)								
0	12.12690	66	12.23888	135	14.22274	204	16.75055	273	17.40650
1	12.12690	69	12.15890	138	14.36673	207	16.83054	276	17.40650
3	12.11089	72	12.25489	141	14.55871	210	16.81455	279	17.45451
6	12.09490	75	12.33489	144	14.84670	213	16.97454	282	17.45451
9	12.03091	78	12.23888	147	14.91069	216	17.00653	285	17.47050
12	12.12690	81	12.22289	150	15.02268	219	17.03853	288	17.51850
15	12.03091	84	12.23888	153	15.05468	222	17.13452	291	17.40650
18	12.01490	87	12.33489	156	15.26266	225	17.13452	294	17.47050
21	12.15890	90	12.43088	159	15.43865	228	17.07053	297	17.56649
24	12.09490	93	12.39888	162	15.53465	231	17.13452	300	17.51850

27	12.07890	96	12.39888	165	15.66264	234	17.18252	303	17.42251
30	12.15890	99	12.59086	168	15.85462	237	17.23051	306	17.59849
33	12.11089	102	12.65486	171	15.91861	240	17.16652	309	17.59849
36	12.23888	105	12.87884	174	15.93462	243	17.25114	312	17.53449
39	12.14289	108	12.81485	177	16.07860	246	17.32652	315	17.58249
42	12.20689	111	13.03883	180	16.27058	249	17.35850	318	17.59849
45	12.17489	114	13.19881	183	16.30258	252	17.43850	321	17.63049
48	12.23888	117	13.29480	186	16.33459	255	17.35850	324	17.64649
51	12.14289	120	13.50279	189	16.47857	258	17.43850	327	17.66248
54	12.04690	123	13.51880	192	16.55857	261	17.42251	330	17.67849
57	12.19089	126	13.77477	195	16.71856	264	17.35850		
60	12.14289	129	13.93476	198	16.63856	267	17.43850		
63	12.22289	132	14.15874	201	16.65456	270	17.50250		

ANEXO C: PROCEDIMIENTO PARA OBTENER LOS PARÁMETROS AJUSTABLES. MÉTODO DE OPTIMIZACIÓN DEL GRADIENTE

Conjunto Planta – Controlador proporcional

Paso 1. Encontrar la ecuación del error, E_1 , definido como la diferencia entre la señal de salida de la planta y la señal de salida del modelo de referencia, así:

$$\mathsf{E}_{1}(\mathsf{s}) = \mathsf{I}(\mathsf{s}) - \mathsf{I}_{\mathsf{m}}(\mathsf{s})$$

(C.1)

En primera instancia, debe se debe obtener la función de transferencia de segundo orden puro (Sin tener en cuenta el tiempo muerto) que represente el conjunto planta - controlador. Reemplazando la ecuación (2.7) en la ecuación (3.8) y reordenando:

$$I(s) = \frac{\frac{K}{\tau^{2}}K_{c}}{s^{2} + \frac{2}{\tau}s + \frac{1}{\tau^{2}} + \frac{K}{\tau^{2}}K_{c}}I_{set}$$
(C.2)

Como puede observarse en la ecuación (C.2), el uso de un controlador proporcional da como resultado un sistema con un solo parámetro ajustable, la ganancia proporcional K_c .

Como se ha considerado que la función de transferencia contiene dos partes, una ecuación de segundo de orden dos puro y el tiempo muerto,

Reemplazando las ecuaciones (3.15) y (C.2) en la ecuación (C.1), se encuentra la función que describe el error en este caso:

$$E_{1}(s) = \left(\frac{\frac{K}{\tau^{2}}K_{C}}{s^{2} + \frac{2}{\tau}s + \frac{1}{\tau^{2}} + \frac{K}{\tau^{2}}K_{C}} - \frac{\omega_{n}^{2}}{s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}}\right)I_{set}$$
(C.3)

Paso 2. Encontrar la derivada parcial de la función del error con respecto al parámetro ajustable K_c .

$$\frac{\partial \mathsf{E}_{1}(\mathsf{s})}{\partial \mathsf{K}_{\mathsf{C}}} = \frac{\partial}{\partial \mathsf{K}_{\mathsf{C}}} \left[\left(\frac{\frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{\mathsf{C}}}{\mathsf{s}^{2} + \frac{2}{\tau} \mathsf{s} + \frac{1}{\tau^{2}} + \frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{\mathsf{C}}} - \frac{\omega_{\mathsf{n}}^{2}}{\mathsf{s}^{2} + 2\zeta\omega_{\mathsf{n}}\mathsf{s} + \omega_{\mathsf{n}}^{2}} \right] \mathsf{I}_{\mathsf{set}} \right]$$
(C.4)

Como el segundo término del paréntesis, es decir la salida del modelo de referencia, no depende de la ganancia proporcional, su derivada con respecto a K_c es igual a cero, reduciendo la expresión anterior a:

$$\frac{\partial \mathsf{E}_{1}(\mathsf{s})}{\partial \mathsf{K}_{\mathsf{C}}} = \frac{\partial}{\partial \mathsf{K}_{\mathsf{C}}} \left(\frac{\frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{\mathsf{C}}}{\mathsf{s}^{2} + \frac{2}{\tau} \mathsf{s} + \frac{1}{\tau^{2}} + \frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{\mathsf{C}}} \right) \mathsf{I}_{\mathsf{set}}$$

Derivando y reorganizando:

$$\frac{\partial \mathsf{E}_{1}(\mathsf{s})}{\partial \mathsf{K}_{\mathsf{C}}} = \frac{\frac{\mathsf{K}}{\tau^{2}}}{\mathsf{s}^{2} + \frac{2}{\tau}\mathsf{s} + \frac{1}{\tau^{2}} + \frac{\mathsf{K}}{\tau^{2}}\mathsf{K}_{\mathsf{C}}}\mathsf{E}(\mathsf{s})$$
(C.5)

Paso 3. Obtener la función de sensibilidad, definida por la ecuación (2.13):

Sin embargo, la ecuación para la salida de la planta I se encuentra en función de la variable s, por lo tanto y aplicando la transformada de Laplace al término de la izquierda en la ecuación (2.13), se obtiene:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \mathrm{s}\theta(\mathrm{s}) \tag{C.6}$$

Reemplazando la ecuación (C.6) en la expresión (2.13):

$$\theta(\mathbf{s}) = -\gamma \frac{\mathsf{E}_{1}(\mathbf{s})}{\mathbf{s}} \frac{\partial \mathsf{E}_{1}(\mathbf{s})}{\partial \theta} \tag{C.7}$$

Reemplazando la ecuación (C.5) en la ecuación (C.7) y teniendo en cuenta que el parámetro $\theta(s)$ en este caso es K_c:

$$K_{c}(s) = \theta_{1}(s) = -\gamma \frac{E_{1}(s)}{s} \frac{\partial E_{1}(s)}{\partial K_{c}}$$
(C.8)

$$K_{c}(s) = -\frac{\gamma \frac{K}{\tau^{2}}}{s\left(s^{2} + \frac{2}{\tau}s + \frac{1}{\tau^{2}} + \frac{K}{\tau^{2}}K_{c}\right)}E_{1}(s)E(s)$$
(C.9)

La expresión (C.9) no se puede utilizar ya que la magnitud del parámetro ajustable, en este caso la ganancia proporcional, no se conoce. Sin embargo, como la dinámica del

modelo de referencia es similar a la del proceso, las características de la planta pueden sustituirse por las del modelo de referencia, así:

$$s^2 + \frac{2}{\tau}s + \frac{1}{\tau^2} + \frac{K}{\tau^2}K_C \cong s^2 + 2\xi\omega_n s + \omega_n^2$$

Además, el término $\frac{K}{\tau^2}$, en la ecuación (C.9) puede incluirse en la ganancia de adaptación γ . De esta forma, se transforma en:

$$K_{\rm C} = -\frac{\gamma}{s(s^2 + 2\xi\omega_{\rm n}s + \omega_{\rm n}^2)}E_1(s)E(s)$$
(C.10)

Conjunto Planta – Controlador proporcional integral

Paso 1. Encontrar la ecuación del error:

La función de transferencia de este conjunto se encuentra reemplazando la ecuación (2.8) en la (3.8).

$$I(s) = \frac{\frac{K}{\tau^{2}}}{s^{2} + \frac{2}{\tau}s + \frac{1}{\tau^{2}}}K_{c}\left(1 + \frac{1}{T_{I}s}\right)E(s)$$

Realizando el siguiente cambio de variables: $K_1 = \frac{K_C}{T_1}$, donde K_1 es la ganancia integral.

$$I(s) = \frac{\frac{K}{\tau^{2}}(K_{c}s + K_{I})}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{c})s + \frac{K}{\tau^{2}}K_{I}}I_{set}$$
(C.11)

En este caso, se cuenta con dos parámetros ajustables las ganancias proporcional K_c e integral K_l .

Reemplazando la ecuación (C.11) en la ecuación (C.1), se encuentra la función que describe el error en este caso:

$$E_{1}(s) = \frac{\frac{K}{\tau^{2}}(K_{C}s + K_{I})}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{C})s + \frac{K}{\tau^{2}}K_{I}}I_{set} - I_{m}(s)$$
(C.12)

Como el orden de esta función de transferencia es 3 y es necesario que el orden de la función de transferencia del modelo de referencia sea mayor o igual al de la planta, se realiza la siguiente operación matemática:

$$I_{m}(s) = \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}I_{set}(s) * \frac{s}{s}$$

Obteniendo el siguiente resultado:

$$I_{m}(s) = \frac{\omega_{n}^{2}s}{s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s}I_{set}$$
(C.13)

Paso 2. Encontrar la derivada parcial de la ecuación (C.12) con respecto a K_C y K_I.

Derivando la ecuación (C.12) con respecto a K_c se obtiene:

$$\frac{\partial \mathsf{E}_{1}(s)}{\partial \mathsf{K}_{C}} = \frac{\partial}{\partial \mathsf{K}_{C}} \left[\frac{\frac{\mathsf{K}}{\tau^{2}} (\mathsf{K}_{C} s + \mathsf{K}_{I})}{s^{3} + \frac{2}{\tau} s^{2} + \frac{1}{\tau^{2}} (1 + \mathsf{K}\mathsf{K}_{C}) s + \frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{I}} \mathsf{I}_{set} - \mathsf{I}_{m}(s) \right]$$

Pero $\frac{\partial I_m(s)}{\partial K_c} = 0$, por lo tanto:

$$\frac{\partial \mathsf{E}_{1}(s)}{\partial \mathsf{K}_{C}} = \frac{\partial}{\partial \mathsf{K}_{C}} \left(\frac{\frac{\mathsf{K}}{\tau^{2}} (\mathsf{K}_{C}s + \mathsf{K}_{I})}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}} (1 + \mathsf{K}\mathsf{K}_{C})s + \frac{\mathsf{K}}{\tau^{2}}\mathsf{K}_{I}} \right) \mathbf{I}_{set}$$

Derivando y teniendo en cuenta que $I_{set} - I(s) = E(s)$,

$$\frac{\partial E_{1}(s)}{\partial K_{C}} = \frac{\frac{K}{\tau^{2}}s}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{C1})s + \frac{K}{\tau^{2}}K_{1}}E(s)$$
(C.14)

Ahora, derivando la expresión (C.12) con respecto al parámetro K_I:

$$\frac{\partial \mathsf{E}_{1}(s)}{\partial \mathsf{K}_{1}} = \frac{\partial}{\partial \mathsf{K}_{1}} \left[\frac{\frac{\mathsf{K}}{\tau^{2}} (\mathsf{K}_{c} s + \mathsf{K}_{1})}{s^{3} + \frac{2}{\tau} s^{2} + \frac{1}{\tau^{2}} (1 + \mathsf{K}\mathsf{K}_{c}) s + \frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{1}} \mathsf{I}_{set} - \mathsf{I}_{m}(s) \right]$$

Sabiendo que $\frac{\partial pH_m(s)}{\partial K_l} = 0$ la ecuación anterior se transforma en:

$$\frac{\partial \mathsf{E}_{1}(\mathsf{s})}{\partial \mathsf{K}_{1}} = \frac{\partial}{\partial \mathsf{K}_{1}} \left(\frac{\frac{\mathsf{K}}{\tau^{2}} (\mathsf{K}_{\mathsf{c}}\mathsf{s} + \mathsf{K}_{1})}{\mathsf{s}^{3} + \frac{2}{\tau} \mathsf{s}^{2} + \frac{1}{\tau^{2}} (1 + \mathsf{K}\mathsf{K}_{\mathsf{c}}) \mathsf{s} + \frac{\mathsf{K}}{\tau^{2}} \mathsf{K}_{1}} \right) \mathsf{I}_{\mathsf{set}}$$

Derivando y reordenando:

$$\frac{\partial \mathsf{E}_{1}(s)}{\partial \mathsf{K}_{1}} = \frac{\frac{\mathsf{K}}{\tau^{2}}}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + \mathsf{K}\mathsf{K}_{C})s + \frac{\mathsf{K}}{\tau^{2}}\mathsf{K}_{1}}\mathsf{E}(s)$$
(C.15)

Paso 3. Obtener las funciones de sensibilidad:

La ecuación (C.7) se transforma en las siguientes expresiones:

$$\begin{aligned} & \kappa_{\rm c}({\rm s}) - \gamma \frac{{\rm E}_1({\rm s})}{{\rm s}} \frac{\partial {\rm E}_1({\rm s})}{\partial {\rm K}_{\rm c}} \\ & \kappa_{\rm I}({\rm s}) - \gamma \frac{{\rm E}_1({\rm s})}{{\rm s}} \frac{\partial {\rm E}_1({\rm s})}{\partial {\rm K}_{\rm I}} \end{aligned} \tag{C.16}$$

Reemplazando la ecuación (C.14) en la (C.8) se obtiene la ley de adaptación para la ganancia de adaptación:

$$K_{c}(s) = -\frac{\gamma \frac{K}{\tau^{2}}}{s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{c_{1}})s + \frac{K}{\tau^{2}}K_{1}}E_{1}(s)E(s)$$
(C.17)

Para obtener la función de sensibilidad para la ganancia integral, K_I , se reemplaza la ecuación (C.15) en la (C.16):

$$K_{1}(s) = -\frac{\gamma \frac{K}{\tau^{2}}}{s \left[s^{3} + \frac{2}{\tau}s^{2} + \frac{1}{\tau^{2}}(1 + KK_{c})s + \frac{K}{\tau^{2}}K_{1}\right]}E_{1}(s)E(s)$$
(C.18)

Los parámetros K_C y K_I de las ecuaciones (C.17) y (C.18) no son conocidos. Procediendo de la misma forma que en el caso anterior, se sustituyen las características de la planta por las del modelo de referencia de la ecuación (C.13) y se incluye el término $\frac{K}{\tau^2}$ en la ganancia de adaptación, obteniendo las siguientes expresiones:

$$K_{\rm C}(s) = -\frac{\gamma}{s^3 + 2\xi\omega_{\rm n}s^2 + \omega_{\rm n}^2s} E_1(s)E(s)$$
(C.19)

$$K_{1}(s) = -\frac{\gamma}{s(s^{3} + 2\xi\omega_{n}s^{2} + \omega_{n}^{2}s)}E_{1}(s)E(s)$$
(C.20)

El procedimiento es el mismo para los otros dos controladores. En la tabla 3 de la sección 3.6.1 se presentan los reultados.

ANEXO D: PROCEDIMIENTO PARA OBTENER LOS PARÁMETROS AJUSTABLES. MÉTODO DE ESTABILIDAD DE LYAPUNOV

Paso 1. Encontrar la ecuación del error y su correspondiente derivada.

El error de estado se define como:

$$\mathbf{e}_{1}(t) = \mathbf{I}(t) - \mathbf{I}_{m}(t)$$

Cuya derivada es:

$$\frac{de_{1}(t)}{dt} = \frac{dI(t)}{dt} - \frac{dI_{m}(t)}{dt}$$
(D.1)

Reordenando la ecuación (C.2), se obtiene:

$$s^{2}I(s) + \frac{2}{\tau}sI(s) + \frac{1}{\tau^{2}}(1 + KK_{C})I(s) = \frac{K}{\tau^{2}}K_{C}I_{set}$$

Reordenando se obtiene:

$$s^{2}I(s) = -\frac{2}{\tau}sI(s) - \frac{1}{\tau^{2}}(1 + KK_{c})I(s) + \frac{K}{\tau^{2}}K_{c}I_{set}$$
(D.2)

Expresando en forma matricial la ecuación (D.2):

$$\begin{bmatrix} \mathbf{sI}(\mathbf{s}) \\ \mathbf{s}^{2}\mathbf{I}(\mathbf{s}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{\tau^{2}}(1 + \mathbf{K}\mathbf{K}_{c}) & -\frac{2}{\tau} \end{bmatrix} \begin{bmatrix} \mathbf{I}(\mathbf{s}) \\ \mathbf{sI}(\mathbf{t}) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{\mathbf{K}}{\tau^{2}}\mathbf{K}_{c} \end{bmatrix} \mathbf{I}_{set}$$

$$sI(s) = A_{P}(t)I(s) + B_{P}(t)I_{set} \qquad O \qquad \frac{dI(t)}{dt} = A_{P}(t)I(t) + B_{P}(t)I_{set}$$
(D.3)

Donde: $\begin{aligned} A_{\mathsf{P}}(t) \, \in \, \mathfrak{R}^{nxn} \,, \, \text{es asintóticamente estable} \\ B_{\mathsf{P}}(t) \, \in \, \mathfrak{R}^{m} \end{aligned}$

Ahora, el modelo de referencia viene dado por la ecuación (3.15):

$$s^{2}I_{m}(s)+2\xi\omega_{n}sI_{m}(s)+\omega_{n}^{2}I_{m}(s)=\omega_{n}^{2}I_{set}$$

Reordenando:

$$\mathbf{s}^{2}\mathbf{I}_{m}(\mathbf{s}) = -2\xi\omega_{n}\mathbf{s}\mathbf{I}_{m}(\mathbf{s}) - \omega_{n}^{2}\mathbf{I}_{m}(\mathbf{s}) + \omega_{n}^{2}\mathbf{I}_{set}$$
(D.4)

Y en forma matricial:

$$\begin{bmatrix} sI_{m}(s) \\ s^{2}I_{m}(s) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_{n}^{2} & -2\xi\omega_{n} \end{bmatrix} \begin{bmatrix} I_{m}(s) \\ sI_{m}(s) \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_{n}^{2} \end{bmatrix} I_{set}$$

$$sI_{m}(s) = A_{P}(t)I_{m}(s) + B_{P}(t)I_{set} \quad O \qquad \frac{dI_{m}(t)}{dt} = A_{P}(t)I_{m}(t) + B_{P}(t)I_{set}$$

$$Donde: \qquad A_{m} \in \mathfrak{R}^{n\times n}, \text{ es asintóticamente estable}$$

$$B_{m} \in \mathfrak{R}^{m}$$

$$w \text{ es acotada}$$

$$(D.5)$$

Reemplazando las ecuaciones (D.3) y (D.4) en la (D.1):

$$\frac{de_1}{dt}(t) = A_P(t)I(s) + B_P(t)I_{set} - [A_mI_m(s) + B_mI_{set}]$$

$$\frac{de_1}{dt}(t) = A_P(t)I(s) - A_mI_m(s) + [B_P(t) - B_m]I_{set}$$
(D.6)

Sumando y restando $A_mI(t)$ al lado derecho de la ecuación (D.6):

$$\frac{de_{1}}{dt}(t) = A_{P}(t)I(s) - A_{m}I_{m}(s) + [B_{P}(t) - B_{m}]I_{set} + A_{m}I(s) - A_{m}I(s)$$

$$\frac{de_{1}}{dt}(t) = [A_{P}(t) - A_{m}]I(s) + A_{m}[I(s) - I_{m}(s)] + [B_{P}(t) - B_{m}]I_{set}$$

$$\frac{de_{1}}{dt}(t) = A_{m}E(s) + [A_{P}(t) - A_{m}]I(s) + [B_{P}(t) - B_{m}]I_{set}$$
(D.7)

Definiendo los errores de los parámetros como $\alpha(t) = A_P(t) - A_m y \beta(t) = B_P(t) - B_m$:

$$\frac{de_1}{dt}(t) = A_m E(s) + \alpha(t)I(s) + \beta(t)I_{set}$$
(D.8)

Paso 2. Encontrar una función V de Lyapunov.

En este punto el problema es ajustar los elementos de las matrices $A_P(t)$ y $B_P(t)$, de tal forma que se cumplan las siguientes condiciones:

$$\lim_{t \to \infty} \left\| \mathbf{e}_{1}(t) \right\| = \lim_{t \to \infty} \left\| \mathbf{I}(t) - \mathbf{I}_{m}(t) \right\|$$
(D.9)

$$\lim_{t \to \infty} \|\alpha(t)\| = \lim_{t \to \infty} \|A_{\mathsf{P}}(t) - A_{\mathsf{m}}(t)\|$$
(D.10)

$$\lim_{t \to \infty} \left\| \boldsymbol{\beta}(t) \right\| = \lim_{t \to \infty} \left\| \boldsymbol{B}_{\mathsf{P}}(t) - \boldsymbol{B}_{\mathsf{m}}(t) \right\| \tag{D.11}$$

Considérese la siguiente función de Lyapunov:

$$V(\mathbf{e}_{1},\alpha,\beta) = \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \alpha^{\mathsf{T}} \gamma_{\mathsf{A}}^{-1} \alpha + \beta^{\mathsf{T}} \gamma_{\mathsf{B}}^{-1} \beta$$
(D.12)

Donde: P : Matriz n x n simétrica definida positiva (P > 0), que depende de $A_m(t)$ γ_A, γ_B : Ganancias de adaptación

Paso 3. Obtener la derivada de la función V de Lyapunov.

Si **P** es una matriz simétrica definida positiva, entonces V(e,α,β) también es definida positiva. La derivada de la función de Lypunov V(e,α,β), ecuación (D.12), a lo largo de las trayectorias solución de la ecuación (D.8), está dada por:

 $\dot{V}(e_1,\alpha,\beta) = 0$

$$\dot{V}(\mathbf{e}_{1},\alpha,\beta) = \dot{\mathbf{e}}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \dot{\mathbf{e}}_{1} + \dot{\alpha}^{\mathsf{T}} \gamma_{\mathsf{A}}^{-1} \alpha + \alpha^{\mathsf{T}} \gamma_{\mathsf{A}}^{-1} \dot{\alpha} + \dot{\beta}^{\mathsf{T}} \gamma_{\mathsf{B}}^{-1} \beta + \beta^{\mathsf{T}} \gamma_{\mathsf{B}}^{-1} \dot{\beta}$$
(D.13)

Con:

$$\dot{e}_1^{\ T} P e_1 + e_1^{\ T} P \dot{e}_1 = \left(A_m e_1 + \alpha I + \beta I_{set}\right)^T P e_1 + e_1^{\ T} P \left(A_m e_1 + \alpha I + \beta I_{set}\right)$$

$$\dot{\mathbf{e}}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \dot{\mathbf{e}}_{1} = \mathbf{A}_{m}^{\mathsf{T}} \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \alpha^{\mathsf{T}} \mathbf{I}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \beta^{\mathsf{T}} \mathbf{I}_{\mathsf{set}}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{A}_{m} \mathbf{e}_{1} + \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1}$$

Como:

$$\mathbf{e}_1^{\mathsf{T}} \mathbf{P} \alpha \mathbf{I} \in \mathfrak{R}^{1 \times 1}$$
 \therefore $\mathbf{e}_1^{\mathsf{T}} \mathbf{P} \alpha \mathbf{I} = \left(\mathbf{e}_1^{\mathsf{T}} \mathbf{P} \alpha \mathbf{I} \right)^{\mathsf{T}} = \alpha^{\mathsf{T}} \mathbf{I}^{\mathsf{T}} \mathbf{P} \mathbf{e}_1$

Y procediendo de la misma manera:

$$\mathbf{e_1}^{\mathsf{T}} \mathbf{P} \beta \mathbf{I}_{\mathsf{set}} \qquad \in \mathfrak{R}^{\mathsf{1}\mathsf{x}\mathsf{1}} \qquad \therefore \qquad \mathbf{e_1}^{\mathsf{T}} \mathbf{P} \beta \mathbf{I}_{\mathsf{set}} = \left(\mathbf{e_1}^{\mathsf{T}} \mathbf{P} \beta \mathbf{I}_{\mathsf{set}} \right)^{\mathsf{T}} = \beta^{\mathsf{T}} \mathbf{I}_{\mathsf{set}}^{\mathsf{T}} \mathbf{P} \mathbf{e_1}$$

La ecuación (D.14) se simplifica de la forma:

$$\dot{\mathbf{e}}_{1}^{\mathsf{T}} \mathbf{P} \mathbf{e}_{1} + \mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \dot{\mathbf{e}}_{1} = \mathbf{e}_{1}^{\mathsf{T}} \left(\mathbf{A}_{m}^{\mathsf{T}} \mathbf{P} + \mathbf{P} \mathbf{A}_{m} \right) \mathbf{e}_{1} + 2\mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \alpha \mathbf{I} + 2\mathbf{e}_{1}^{\mathsf{T}} \mathbf{P} \beta \mathbf{I}$$
 (D.15)

Como A_m(t) es una matriz asintóticamente estable:

$$\mathbf{A}_{\mathrm{m}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\mathbf{A}_{\mathrm{m}} = -\mathbf{Q} < \mathbf{0} \tag{D.16}$$

Para que el punto 4 del conjunto de ecuaciones (2.16) se cumpla, es necesario que **Q** sea definida positiva, de forma que se cumpla la condición de estabilidad de Lyapunov: Un sistema lineal e invariante en el tiempo es asintóticamente estable si y sólo si dada una matriz de coeficientes reales simétrica y definida positiva **Q**, existe una matriz de coeficientes reales simétrica y definida positiva **P**, tal que se cumpla la ecuación (D.16). Normalmente, se elige **Q** como la matriz unidad (definida positiva) y se determina **P** resolviendo la ecuación anterior. Si la matriz **P** obtenida mediante este procedimiento es definida positiva, entonces el sistema es asintóticamente estable [33]. Para este caso:

$$\begin{bmatrix} 0 & 1 \\ & \\ -\omega_n^2 & -2\xi\omega_n \end{bmatrix}^T P + P \begin{bmatrix} 0 & 1 \\ & \\ -\omega_n^2 & -2\xi\omega_n \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ & \\ 0 & 1 \end{bmatrix}$$

Flujo de base (cm³/min)	Frecuencia Natural ^ω n	Factor de amortiguamiento ξ	Matriz P	
120	0.0394		1	0.0002
		0.6901	0.0002	2.0059
140	0.0450	0.0450	1	0.0003
			0.0003	2.0077
160	0.0564		1	0.0005
		0 6901	0.0005	2.0121
180	0.0652		1	0.0008
			0.0008	2.0162

Tabla D.1: Valores para la frecuencia natural, el factor de amortiguamiento del modelo de referencia y la matriz P.

Como lo muestran los resultados de la última columna de la tabla 3, en todos los casos la matriz P es definida positiva, indicando que el sistema es asintóticamente estable.

Entonces, reemplazando la igualdad de la ecuación (D.16) en la ecuación (D.15):

$$\dot{\mathbf{e}}_{1}^{T} P \mathbf{e}_{1} + \mathbf{e}_{1}^{T} P \dot{\mathbf{e}}_{1} = -\mathbf{e}_{1}^{T} Q \mathbf{e}_{1} + 2\alpha^{T} \mathbf{I}^{T} P \mathbf{e}_{1} + 2\beta^{T} \mathbf{I}_{set}^{T} P \mathbf{e}_{1}$$
 (D.17)

Teniendo en cuenta que:

Reemplazando en la ecuación (D.13) y reordenando se obtiene:

$$\dot{V}(\mathbf{e}_{1},\alpha,\beta) = -\mathbf{e}_{1}^{\mathsf{T}}\mathbf{Q}\mathbf{e}_{1} + 2\left(\alpha^{\mathsf{T}}\mathbf{I}^{\mathsf{T}}\mathbf{P}\mathbf{e}_{1} + \alpha^{\mathsf{T}}\gamma_{\mathsf{A}}^{-1}\dot{\alpha} + \beta^{\mathsf{T}}\mathbf{I}_{\mathsf{set}}^{\mathsf{T}}\mathbf{P}\mathbf{e}_{1} + \beta^{\mathsf{T}}\gamma_{\mathsf{B}}^{-1}\dot{\beta}\right)$$
(D.18)

Paso 4. Obtener la ley de adaptación

El sistema de la ecuación (D.18) es asintóticamente estable para **e**, siempre y cuando el término del paréntesis sea nulo, condición que se cumple así:

$$\alpha^{\mathsf{T}}\gamma_{\mathsf{A}}^{-1}\dot{\alpha} = -\alpha^{\mathsf{T}}\mathbf{I}^{\mathsf{T}}\mathbf{P}\mathbf{e}_{1} \quad \therefore \quad \dot{\alpha} = -\gamma_{\mathsf{A}}\mathbf{P}\mathbf{e}_{1}\mathbf{I}^{\mathsf{T}} \tag{D.19}$$

$$\beta^{\mathsf{T}}\gamma_{\mathsf{B}}^{-1}\dot{\beta} = -\beta^{\mathsf{T}}\mathrm{I}_{\mathsf{set}}^{\mathsf{T}}\mathrm{P}\mathbf{e}_{1} \quad \therefore \quad \dot{\beta} = -\gamma_{\mathsf{B}}\mathrm{P}\mathbf{e}_{1}\mathrm{I}_{\mathsf{set}}^{\mathsf{T}} \tag{D.20}$$

Tomando la ecuación (D.20) se puede obtener la expresión para la ley de adaptación del parámetro ajustable K_C :

$$\dot{\beta} = \dot{B}_{P}(t) - \dot{B}_{m}$$

Pero $\dot{B}_m = 0$, ya que no depende del tiempo, por lo tanto:

$$\dot{\beta} = \dot{B}_{P}(t) = \begin{bmatrix} 0 \\ \\ \frac{K}{\tau^{2}} \dot{K}_{C} \end{bmatrix}$$
(D.21)

Al igualar las ecuaciones (D.20) y (D.21) es posible obtener la ley de adaptación mencionada:

$$\begin{bmatrix} 0 \\ \frac{K}{\tau^{2}} \dot{K}_{C} \end{bmatrix} = -\gamma_{B} \begin{bmatrix} p_{1,1} & p_{1,2} \\ p_{2,1} & p_{2,2} \end{bmatrix} \begin{bmatrix} e_{1}(t) \\ \dot{e}_{1}(t) \end{bmatrix} I_{set}^{T}$$

O en el plano s y, teniendo en cuenta que $I_{set}^{T} \in \mathfrak{R}^{1 \times 1}$, lo que implica que $I_{set} = I_{set}^{T}$,

$$\begin{bmatrix} 0 \\ \frac{K}{\tau^{2}}\dot{K}_{c} \end{bmatrix} = -\gamma_{B} \begin{bmatrix} p_{1,1} & p_{1,2} \\ p_{2,1} & p_{2,2} \end{bmatrix} \begin{bmatrix} e_{1}(t) \\ \dot{e}_{1}(t) \end{bmatrix} I_{set}$$

Obteniendo la siguiente expresión para la ganancia proporcional:

$$K_{C}(s) = -\frac{\gamma}{s} (p_{2,1}E_{1}(s) + p_{2,2}sE_{1}(s))I_{set}$$
(D.22)

Donde
$$\gamma = \frac{\tau^2}{K} \gamma_B \text{ y } E_1(s) = I(s) - I_m(s)$$

El procedimiento es igual para todos los controladores convencionales analizados, los resultados se presentan en la tabla 4 de la sección 3.6.2.

ANEXO E: CÓDIGOS EN MATLAB DEL PROGRAMA EN SIMULINK MRAS

	Edito	r - C:\MATLAB7\work\parametros.m	J					
File	Edi	t Text Cell Tools Debug Desktop Window Help						
D	2	🖩 🐰 ங 🛍 🗠 🖙 🚭 🏘 🖍 🖍 🛃 🔽 🗐 🛍 🗊 📭 🌆 Base 🛛 🖃 🖽 🗖 🗖						
1	1 function [am, bm, cm, t0] = parametros (Fb)							
2			L					
3	-	Wo=Fb/150; % Relación de flujos inicial	h					
4								
5		% Parámetro del tiempo muerto						
6	-	tO=1429*Wo^3-4225.6*Wo^2+3961.9*Wo-1054.8;						
7								
8		% Parámetros del modelo de referencia						
9	-	MP=5/100; % Máximo sobreimpulso (5%)						
10	-	ts=t0+5; % Tiempo de establecimiento (seg)						
11								
12	-	E=-log(MP)/((pi^2+(log(MP))^2)^(1/2)); % Factor de amortiguamiento						
13	-	wn=4/(E*ts); % Frecuencia natural						
14								
15	-	am=2 *E *wn;						
16	-	bm=wn^2;						
17	-	cm=wn^2;						
		parametros In 1 Col 1 OVR						

Figura E.1: Código del programa de inicialización en Matlab

🚸 Embedded MATLAB Editor - Block: Iyapp/Ley de adaptación/Embedded MATLAB Function						
File Edit Text Debug Tools Window Help						
🗅 😅	▋ ※ ☜ ጫ ∽ ~ ぬ 回 ĵ ⑳ ⑳ ► ■ 월 ≵ ☜ ■ ☜ 単 ـ					
1 2	function dKc=fcn(e,wn,E,dE,Iset)					
3	% E : pH(s) - pHm(s)					
4 5	% wn : Frecuencia natural % e : Factor de amortiguamiento					
6						
7	% Calculo de la matriz P					
8 -	Am=[0 1; -wn^2 -2*e*wn];					
9 -	Q=eye(2); % Matriz identidad 2x2					
10						
11 -	P=eye(2); % P es una matriz cuadrada de 2x2					
12 -	P=feval('dlyap',Am',Q); % Solución de la ecuación de Lyapunov					
13						
14 -	dKc=0; % dKc es un escalar					
15 -	dKc=(P(2,1)*E+P(2,2)*dE)*Iset; % Calculo de dKc					
Ready	Ln 6 Col 1					

Figura E.2: Código del bloque Embedded MATLAB Function. Método de estabilidad de Lyapunov. Controlador P.

```
- - X
Embedded MATLAB Editor - Block: lyappi/Subsystem/Embedded MATLAB Function
File Edit Text Debug Tools Window Help
                                                                            🗅 😅 🖬 | 🐰 🐚 🛍 🖙 🖙 | 🚧 💷 🏠 👹 💌 | 🕨 🔳 🏙 🛄
      function [dKc,dKi]=fcn(e,wn,dI,E,dE,ddE,Iset)
 1
 2
 3
      * E
           : pH(s) - pHm(s)
 4
 5
      % Calculo de la matriz P
 6 -
      Am=[0 1 0; 0 0 1; 0 -wn^2 -2*e*wn];
 7 -
      Q=eye(3);
                                              % Matriz identidad 3x3
 8
 9 -
      P=eye(3);
                                              % P es una matriz cuadrada de 3x3
 10 -
     P=feval('dlyap',Am',Q);
11
12 -
      dKc=0;
                                              % dKc es un escalar
13 -
      dKc=(P(3,1)*E+P(3,2)*dE+P(3,3)*ddE)*dI;
                                              % Cálculo de dKc
14
15 -
      dKi=0:
                                              % dKi es un escalar
      dKi=(P(3,1)*E+P(3,2)*dE+P(3,3)*ddE)*Iset;
16 -
                                              💲 Cálculo de dKi
      •
                                                                             b.
                      III
                            Ln 16 Col 45
Ready
```

Figura E.3: Código del bloque Embedded MATLAB Function. Método de estabilidad de Lyapunov. Controlador PI.

📣 Embedded MATLAB Editor - Block: Iyappd/Subsystem/Embedded MATLAB Function					
File Edit	t Text Debug Tools Window Help	35	<		
🗅 🖻	📕 🕹 🐚 🏝 🗠 🗠 🖊 🔲 😚 📓	≝│►≡€ <mark>≵</mark> ª¶∎́⊫ ⊞□⊟₽[ן		
1	function [dKc,dKd]=fcn(e,wn,dI,E	,dE,Iset)			
2					
3	E = pH(s) - pHm(s)				
4					
5	% Calculo de la matriz P				
6 -	Am=[0 1; -wn^2 -2*e*wn];				
7 -	Q=eye(2);	% Matriz Q 2x2			
8					
9-	P=eye(2);	% P es una matriz cuadrada de 2x2			
10 -	<pre>P=feval('dlyap',Am',Q);</pre>				
11					
12 -	dKc=0;	% dKc es un escalar			
13 -	dKc=(P(2,1)*E+P(2,2)*dE)*Iset;	% Cálculo de dKc			
14					
15 -	dKd=0;	% dKd es un escalar			
16 -	dKd=(P(2,1)*E+P(2,2)*dE)*dI;	% Cálculo de dKd			
			4		
Ready	Ln 14 0	Col 1			

Figura E.3: Código del bloque Embedded MATLAB Function. Método de estabilidad de Lyapunov. Controlador PD.

Figura E.3: Código del bloque Embedded MATLAB Function. Método de estabilidad de Lyapunov. Controlador PID.