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denote the similarity between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 by 𝑠𝑠𝑖𝑖𝑖𝑖; classic spectral 
clustering method creates a similarity graph 𝐺𝐺, and then 
proceed as follows: 

1. First, a similarity matrix 𝑆𝑆 is derived from 𝐺𝐺, where 
an 𝑠𝑠𝑖𝑖𝑖𝑖  element corresponds to the weight of the edge 
between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in 𝐺𝐺 (in case of not connected 
points 𝑠𝑠𝑖𝑖𝑖𝑖 = 0). 

2. Then diagonal matrix 𝐷𝐷 is calculated by summing 
the columns of 𝑆𝑆, as can be seen in Eq. 1. 

𝐷𝐷 = {𝑑𝑑𝑖𝑖𝑖𝑖};  𝑑𝑑𝑖𝑖𝑖𝑖 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖
𝑗𝑗

(1) 

3. After that the graph Laplacian matrix 𝐿𝐿 is 
determined from 𝑆𝑆 and 𝐷𝐷 [12], which is a crucial 
part of spectral clustering, since different 𝐿𝐿 lead to 
different approach. In this paper the symmetric 
normalized graph Laplacian is used, which can be 
computed as expressed in Eq. 2. 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷−1 2⁄ ∗ 𝑆𝑆 ∗ 𝐷𝐷−1 2⁄ (2) 

4. Calculate the first 𝑘𝑘 eigenvectors of 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 and then 
construct a column matrix 𝑈𝑈 from these vectors. 

5. Perform K-means clustering on the rows of 𝑈𝑈 to 
form 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘. 

Majority of authors use graph Laplacian matrix [3][26] in the 
spectral clustering method, but there is possibility to use other 
type, so called adjacency matrix [4][14][21]. The eigen 
decomposition step can be computationally intensive. 
However, with an appropriate implementation, for example 
using sparse neighborhood graphs instead of all pairwise 
similarities, the memory and computational requirements can 
be solved. Several fast and approximate methods for spectral 
clustering have been proposed [6][17][28]. The traditional 
spectral clustering does not make any assumptions about the 
cluster shapes, but in our research, we dealt with point-sets 
instead of simple points, so points in a common set are expected 
to get a common cluster as well. 

This concludes the spectral clustering and applying this 
procedure without any additional modification on a hierarchical 
dataset would result in a possible structure division. Two novel 
weight graphs were suggested, the Fully-Connected Weight 
Graph (FC-WG) and the Nearest Points of Point-sets Weight 
Graph (NPP-WG) [23]; that can influence the result of spectral 
clustering algorithms in such way that points belonging to the 
same point-set will stay together after the clustering is 
performed. To achieve this behavior the 𝐺𝐺 similarity graph in 
the original algorithm should be replaced with either FC-WG or 
NPP-WG. The former is a fully connected graph, where the 

weight of an edge (𝑤𝑤𝑖𝑖𝑖𝑖) between two points (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is calculated 
according to Eq. 3. Basically the weight is higher in case 𝑥𝑥𝑖𝑖 and 
𝑥𝑥𝑗𝑗 are part of the same point-set (xi ↔ xj), and it is lower if they 
are not ( xi ↮ xj). 

𝑤𝑤𝑖𝑖𝑖𝑖 = { 
𝑛𝑛

𝑠𝑠𝑖𝑖𝑖𝑖
 |

  xi ↔ xj
  xi ↮ xj

} (3) 

where 𝑛𝑛 denotes the number of points in the dataset. The 
NPP-WG is an incomplete graph, because connections between 
different point-sets are limited, however points that are part of 
the same point-set still form a fully connected subgraph; as can 
be seen in Eq. 4. 

𝑤𝑤𝑖𝑖𝑖𝑖 = { 
𝑛𝑛
sij
0

 | 
xi ↔ xj

xi ↮ xj & sij ≥ sit: ∀𝑥𝑥𝑡𝑡 (xj ↔ xt , 𝑥𝑥𝑗𝑗 ≠ 𝑥𝑥𝑡𝑡)
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

} (4) 

The fundamental idea behind these modifications is to 
connect any two points inside the same point-set with an 
increased edge weight that is higher than 𝑠𝑠𝑖𝑖𝑗𝑗 . Although this 
adjustment does not guarantee that the point-sets remain intact, 
it only reduces the chance to separate them. The focus of our 
research was to establish a set of conditions that the weighted 
graph creation process should satisfy in order to ensure the 
preservation of point-sets in the hierarchical dataset. In the next 
section we present the proposed condition system, then Section 
III contains the result of our experimental evaluation, and in the 
last section the conclusions of the research are summarized. 

II. SET OF CONDITIONS FOR WEIGHTED GRAPH CONSTRUCTION 
With appropriate conditions can be achieved that the points 

in the same point-set stay together, when using FC-WG and 
NPP-WG methods. For the formulas the following notations 
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The normalized spectral clustering is the relaxation of the 
normalized cut [26][27]: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝑖𝑖, 𝐶𝐶𝑖̅𝑖)
𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶𝑖𝑖)

𝑘𝑘

𝑖𝑖=1
=

= 1
2 ∑

∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖
∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖 +  ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1

(5) 
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 
Abstract—Most of the unsupervised machine learning 

algorithms focus on clustering the data based on similarity 
metrics, while ignoring other attributes, or perhaps other 
type of connections between the data points. In case of 
hierarchical datasets, groups of points (point-sets) can be 
defined according to the hierarchy system. Our goal was to 
develop such spectral clustering approach that preserves 
the structure of the dataset throughout the clustering 
procedure. The main contribution of this paper is a set of 
conditions for weighted graph construction used in spectral 
clustering. Following the requirements – given by the set of 
conditions – ensures that the hierarchical formation of the 
dataset remains unchanged, and therefore the clustering of 
data points imply the clustering of point-sets as well. The 
proposed spectral clustering algorithm was tested on three 
datasets, the results were compared to baseline methods and 
it can be concluded the algorithm with the proposed 
conditions always preserves the hierarchy structure. 
 

Index Terms—spectral clustering, hierarchical dataset, graph 
construction 

I. INTRODUCTION 
Many clustering methods have been developed, each of 

which uses a different induction principle [22][29]. Farley and 
Raftery [8] suggest dividing the clustering methods into two 
main groups: hierarchical and partitioning methods [25]; and 
other authors [10] suggest categorizing the methods into 
additional three main categories: density-based methods [5], 
model-based clustering [19] and grid-based methods [11]. 
Partitioning methods are divided into two groups: center-based 
and graph-theoretic clustering (spectral clustering). 

Clusterability for spectral clustering, i.e. the problem of 
defining what is a “good” clustering, has been studied in some 
papers [1][2]. HSC [16] algorithm was developed to cluster 
arbitrarily shaped data more efficiently and accurately by 
combining spectral and hierarchical clustering techniques. 
Francky Fouedjio suggested a novel spectral clustering 
algorithm, which integrates such similarity measure that takes 
into account the spatial dependency of data, and therefore it is 
able to discover spatially contiguous and meaningful clusters in 
multivariate geostatistical data [9]. Furthermore, Li and Huang 
proposed an effective hierarchical clustering algorithm called 
 
D. Papp and G. Szűcs are with the Department of Telecommunications and 
Media Informatics, Budapest University of Technology and Economics, 

SHC [15] that is based on the techniques of spectral clustering 
method. Although, none of the above studies focus on the case 
when the input dataset itself is a hierarchical dataset. The 
spectral clustering method is computationally expensive 
compared to e.g. center-based clustering, as it needs to store and 
manipulate similarities (or distances) between all pairs of points 
instead of only distances to centers [20].  

A regular dataset 𝑋𝑋 = {𝑥𝑥1,… , 𝑥𝑥𝑛𝑛} consists of 𝑛𝑛 data points 
and usually there is no pre-defined connection between any two 
(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) data points. Then clustering 𝑋𝑋 into 𝑘𝑘 clusters can be 
performed without any restriction on the composition of 
clusters; this process yields clusters 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘. On the other 
hand, a hierarchical dataset designates parent-child 
relationships between the points (as can be seen in Fig. 1); e.g. 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 could be the children of 𝑥𝑥𝑙𝑙 , so in this case (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) 
together form a so called point-set.  

 

Figure 1. Structure of hierarchical dataset 

Performing a traditional clustering algorithm also produces 
the 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘 clusters, however 𝑥𝑥𝑖𝑖 could be part of 𝐶𝐶𝑔𝑔, while 𝑥𝑥𝑗𝑗 
could be assigned to 𝐶𝐶ℎ, and therefore the (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) point-set 
would be separated. This means that it is possible that clustering 
breaks the hierarchical structure of the dataset. In this paper we 
propose a set of conditions to control the weighted graph 
creation procedure in the course of spectral clustering [27] 
algorithm. Using the graph built accordingly will prevent the 
splitting of point-sets during clustering.  

There are several different techniques to build the similarity 
graph in the spectral clustering, e.g. the ε-neighborhood, k-
nearest neighbor and fully connected graphs [27]. The 
difference between them is how they determine whether two 
vertices (𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗) are connected by an edge or not. Let us 
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creation procedure in the course of spectral clustering [27] 
algorithm. Using the graph built accordingly will prevent the 
splitting of point-sets during clustering.  

There are several different techniques to build the similarity 
graph in the spectral clustering, e.g. the ε-neighborhood, k-
nearest neighbor and fully connected graphs [27]. The 
difference between them is how they determine whether two 
vertices (𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗) are connected by an edge or not. Let us 
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denote the similarity between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 by 𝑠𝑠𝑖𝑖𝑖𝑖; classic spectral 
clustering method creates a similarity graph 𝐺𝐺, and then 
proceed as follows: 

1. First, a similarity matrix 𝑆𝑆 is derived from 𝐺𝐺, where 
an 𝑠𝑠𝑖𝑖𝑖𝑖  element corresponds to the weight of the edge 
between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in 𝐺𝐺 (in case of not connected 
points 𝑠𝑠𝑖𝑖𝑖𝑖 = 0). 

2. Then diagonal matrix 𝐷𝐷 is calculated by summing 
the columns of 𝑆𝑆, as can be seen in Eq. 1. 

𝐷𝐷 = {𝑑𝑑𝑖𝑖𝑖𝑖};  𝑑𝑑𝑖𝑖𝑖𝑖 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖
𝑗𝑗

(1) 

3. After that the graph Laplacian matrix 𝐿𝐿 is 
determined from 𝑆𝑆 and 𝐷𝐷 [12], which is a crucial 
part of spectral clustering, since different 𝐿𝐿 lead to 
different approach. In this paper the symmetric 
normalized graph Laplacian is used, which can be 
computed as expressed in Eq. 2. 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷−1 2⁄ ∗ 𝑆𝑆 ∗ 𝐷𝐷−1 2⁄ (2) 

4. Calculate the first 𝑘𝑘 eigenvectors of 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 and then 
construct a column matrix 𝑈𝑈 from these vectors. 

5. Perform K-means clustering on the rows of 𝑈𝑈 to 
form 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘. 

Majority of authors use graph Laplacian matrix [3][26] in the 
spectral clustering method, but there is possibility to use other 
type, so called adjacency matrix [4][14][21]. The eigen 
decomposition step can be computationally intensive. 
However, with an appropriate implementation, for example 
using sparse neighborhood graphs instead of all pairwise 
similarities, the memory and computational requirements can 
be solved. Several fast and approximate methods for spectral 
clustering have been proposed [6][17][28]. The traditional 
spectral clustering does not make any assumptions about the 
cluster shapes, but in our research, we dealt with point-sets 
instead of simple points, so points in a common set are expected 
to get a common cluster as well. 

This concludes the spectral clustering and applying this 
procedure without any additional modification on a hierarchical 
dataset would result in a possible structure division. Two novel 
weight graphs were suggested, the Fully-Connected Weight 
Graph (FC-WG) and the Nearest Points of Point-sets Weight 
Graph (NPP-WG) [23]; that can influence the result of spectral 
clustering algorithms in such way that points belonging to the 
same point-set will stay together after the clustering is 
performed. To achieve this behavior the 𝐺𝐺 similarity graph in 
the original algorithm should be replaced with either FC-WG or 
NPP-WG. The former is a fully connected graph, where the 

weight of an edge (𝑤𝑤𝑖𝑖𝑖𝑖) between two points (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is calculated 
according to Eq. 3. Basically the weight is higher in case 𝑥𝑥𝑖𝑖 and 
𝑥𝑥𝑗𝑗 are part of the same point-set (xi ↔ xj), and it is lower if they 
are not ( xi ↮ xj). 

𝑤𝑤𝑖𝑖𝑖𝑖 = { 
𝑛𝑛

𝑠𝑠𝑖𝑖𝑖𝑖
 |

  xi ↔ xj
  xi ↮ xj

} (3) 

where 𝑛𝑛 denotes the number of points in the dataset. The 
NPP-WG is an incomplete graph, because connections between 
different point-sets are limited, however points that are part of 
the same point-set still form a fully connected subgraph; as can 
be seen in Eq. 4. 

𝑤𝑤𝑖𝑖𝑖𝑖 = { 
𝑛𝑛
sij
0

 | 
xi ↔ xj

xi ↮ xj & sij ≥ sit: ∀𝑥𝑥𝑡𝑡 (xj ↔ xt , 𝑥𝑥𝑗𝑗 ≠ 𝑥𝑥𝑡𝑡)
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

} (4) 

The fundamental idea behind these modifications is to 
connect any two points inside the same point-set with an 
increased edge weight that is higher than 𝑠𝑠𝑖𝑖𝑗𝑗 . Although this 
adjustment does not guarantee that the point-sets remain intact, 
it only reduces the chance to separate them. The focus of our 
research was to establish a set of conditions that the weighted 
graph creation process should satisfy in order to ensure the 
preservation of point-sets in the hierarchical dataset. In the next 
section we present the proposed condition system, then Section 
III contains the result of our experimental evaluation, and in the 
last section the conclusions of the research are summarized. 

II. SET OF CONDITIONS FOR WEIGHTED GRAPH CONSTRUCTION 
With appropriate conditions can be achieved that the points 

in the same point-set stay together, when using FC-WG and 
NPP-WG methods. For the formulas the following notations 
were used: 

     𝑛𝑛: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
     𝑘𝑘: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
     𝐶𝐶𝑖𝑖: 𝑖𝑖𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
     |𝐶𝐶𝑖𝑖|: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
     𝐶𝐶𝑖̅𝑖: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐶𝐶𝑖𝑖 
     𝑆𝑆𝑖𝑖: 𝑖𝑖𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
     𝐴𝐴: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
     𝐴𝐴𝑖𝑖𝑖𝑖: 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑡𝑡ℎ 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
     𝑍𝑍: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

The normalized spectral clustering is the relaxation of the 
normalized cut [26][27]: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶𝑖𝑖, 𝐶𝐶𝑖̅𝑖)
𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶𝑖𝑖)

𝑘𝑘

𝑖𝑖=1
=

= 1
2 ∑

∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖
∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖 +  ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗𝑙𝑙∈𝐶𝐶𝑖𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1

(5) 
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 
Abstract—Most of the unsupervised machine learning 

algorithms focus on clustering the data based on similarity 
metrics, while ignoring other attributes, or perhaps other 
type of connections between the data points. In case of 
hierarchical datasets, groups of points (point-sets) can be 
defined according to the hierarchy system. Our goal was to 
develop such spectral clustering approach that preserves 
the structure of the dataset throughout the clustering 
procedure. The main contribution of this paper is a set of 
conditions for weighted graph construction used in spectral 
clustering. Following the requirements – given by the set of 
conditions – ensures that the hierarchical formation of the 
dataset remains unchanged, and therefore the clustering of 
data points imply the clustering of point-sets as well. The 
proposed spectral clustering algorithm was tested on three 
datasets, the results were compared to baseline methods and 
it can be concluded the algorithm with the proposed 
conditions always preserves the hierarchy structure. 
 

Index Terms—spectral clustering, hierarchical dataset, graph 
construction 

I. INTRODUCTION 
Many clustering methods have been developed, each of 

which uses a different induction principle [22][29]. Farley and 
Raftery [8] suggest dividing the clustering methods into two 
main groups: hierarchical and partitioning methods [25]; and 
other authors [10] suggest categorizing the methods into 
additional three main categories: density-based methods [5], 
model-based clustering [19] and grid-based methods [11]. 
Partitioning methods are divided into two groups: center-based 
and graph-theoretic clustering (spectral clustering). 

Clusterability for spectral clustering, i.e. the problem of 
defining what is a “good” clustering, has been studied in some 
papers [1][2]. HSC [16] algorithm was developed to cluster 
arbitrarily shaped data more efficiently and accurately by 
combining spectral and hierarchical clustering techniques. 
Francky Fouedjio suggested a novel spectral clustering 
algorithm, which integrates such similarity measure that takes 
into account the spatial dependency of data, and therefore it is 
able to discover spatially contiguous and meaningful clusters in 
multivariate geostatistical data [9]. Furthermore, Li and Huang 
proposed an effective hierarchical clustering algorithm called 
 
D. Papp and G. Szűcs are with the Department of Telecommunications and 
Media Informatics, Budapest University of Technology and Economics, 

SHC [15] that is based on the techniques of spectral clustering 
method. Although, none of the above studies focus on the case 
when the input dataset itself is a hierarchical dataset. The 
spectral clustering method is computationally expensive 
compared to e.g. center-based clustering, as it needs to store and 
manipulate similarities (or distances) between all pairs of points 
instead of only distances to centers [20].  

A regular dataset 𝑋𝑋 = {𝑥𝑥1,… , 𝑥𝑥𝑛𝑛} consists of 𝑛𝑛 data points 
and usually there is no pre-defined connection between any two 
(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) data points. Then clustering 𝑋𝑋 into 𝑘𝑘 clusters can be 
performed without any restriction on the composition of 
clusters; this process yields clusters 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘. On the other 
hand, a hierarchical dataset designates parent-child 
relationships between the points (as can be seen in Fig. 1); e.g. 
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 could be the children of 𝑥𝑥𝑙𝑙 , so in this case (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) 
together form a so called point-set.  

 

Figure 1. Structure of hierarchical dataset 

Performing a traditional clustering algorithm also produces 
the 𝐶𝐶1, … , 𝐶𝐶𝑘𝑘 clusters, however 𝑥𝑥𝑖𝑖 could be part of 𝐶𝐶𝑔𝑔, while 𝑥𝑥𝑗𝑗 
could be assigned to 𝐶𝐶ℎ, and therefore the (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) point-set 
would be separated. This means that it is possible that clustering 
breaks the hierarchical structure of the dataset. In this paper we 
propose a set of conditions to control the weighted graph 
creation procedure in the course of spectral clustering [27] 
algorithm. Using the graph built accordingly will prevent the 
splitting of point-sets during clustering.  

There are several different techniques to build the similarity 
graph in the spectral clustering, e.g. the ε-neighborhood, k-
nearest neighbor and fully connected graphs [27]. The 
difference between them is how they determine whether two 
vertices (𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗) are connected by an edge or not. Let us 
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𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≤
≤ ∑ [𝑛𝑛2 ∗ 𝑍𝑍 + 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1]

𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

+ (𝑛𝑛 − 1) ∗ 1 + 𝑍𝑍 ≤

≤ 𝑛𝑛 ∗ [𝑛𝑛2𝑍𝑍 + 𝑛𝑛2] + 𝑛𝑛 − 1 + 𝑍𝑍 ≤
≤ 𝑛𝑛3𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(20) 

𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≤
≤ ∑ [𝑛𝑛2 ∗ 𝑍𝑍 + 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1]

𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑘𝑘

+ (𝑛𝑛 − 1) ∗ 1 ≤

≤ 𝑛𝑛 ∗ [𝑛𝑛2𝑍𝑍 + 𝑛𝑛2] + 𝑛𝑛 − 1 ≤ 𝑛𝑛3𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(21) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) ≥

≥ 0 + 𝑍𝑍
𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 + 𝑍𝑍 + 𝑍𝑍

𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 ≥

≥ 2 ∗ 𝑍𝑍
𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 + 𝑍𝑍 = 2 ∗ 𝑍𝑍

(𝑛𝑛3 + 2) ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(22) 

The value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 should be lower than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 in every 
case. Furthermore, both of them contain a multiplier of ½, and 
thus it could be eliminated in the equations. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) (23) 

𝑘𝑘 ∗ 𝑛𝑛
𝑛𝑛 + 𝑍𝑍 < 2 ∗ 𝑍𝑍

(𝑛𝑛3 + 2) ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 (24) 

0 < 2𝑍𝑍2 + (2𝑛𝑛 − 𝑘𝑘𝑛𝑛4 − 2𝑘𝑘𝑘𝑘)𝑍𝑍 − (𝑘𝑘𝑛𝑛4 + 𝑘𝑘𝑛𝑛2) (25) 

𝑌𝑌 = √𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛5 + 4𝑘𝑘2𝑛𝑛2 + 8𝑘𝑘𝑛𝑛4 − 4𝑘𝑘𝑛𝑛5 + 4𝑛𝑛2 (26) 

𝑍𝑍 < 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 − 𝑌𝑌
4  (27) 

or 

𝑍𝑍 > 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 + 𝑌𝑌
4  (28) 

Both (27) and (28) fulfills the conditions in (24) and (25), 
but the value of (27) is negative in all cases (see Eq. 29, 30 and 
31), which means that (27) can not be interpreted as a similarity 
value. 

𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 − 𝑌𝑌 < 0 (29) 

𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛2 + 4𝑛𝑛2 + 4𝑘𝑘2𝑛𝑛5 − 4𝑘𝑘𝑛𝑛5 − 8𝑘𝑘𝑛𝑛2 <
< 𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛5 + 4𝑘𝑘2𝑛𝑛2 + 8𝑘𝑘𝑛𝑛4 − 4𝑘𝑘𝑛𝑛5 + 4𝑛𝑛2 (30) 

0 < 8𝑘𝑘𝑛𝑛4 + 8𝑘𝑘𝑛𝑛2 (31) 

Based on the above, the similarity value between points in 
the same point-set should be higher than the Zthreshold (see Eq. 
32) to avoid the separation of point-sets during spectral 
clustering. This is only true if the values of the similarity 
function are between 0 and 1. 

Zthreshold = 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 + 𝑌𝑌
4 (32) 

Note that Zthreshold could be a very large number, even for 
a reasonably sized dataset, and therefore some sort of 
normalization of the edge weights is advised to prevent 
numerical limitations during the matrix manipulations. 

III. EXPERIMENTAL RESULTS 
We conducted experiments on three hierarchical datasets to 

demonstrate the efficiency of the proposed approach. The Free 
Music Analysis (FMA) audio dataset contains 106,574 tracks 
from 16,341 artists and 14,854 albums, arranged in a 
hierarchical taxonomy of 161 genres [7]. The first test dataset 
composed from the top 12 genres of the hierarchy. To form the 
second one, the artists were sorted in a decreasing order based 
on their number of corresponding tracks, and then the top 50 
artists were selected. We call the former FMA1 dataset and it 
contains 9,355 tracks from 1,829 albums, while the latter is 
called FMA2 dataset, which involves 1,171 albums consist of 
10,848 tracks (as can be seen in Table 1). Each track in the FMA 
collection is represented by a 518-long vector and we used them 
as input of the spectral clustering algorithm. In this case tracks 
are equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. 

The third test dataset is a subset of the image collection used 
in the competition of PlantCLEF 2015 [13]. A total of 91,759 
images belongs in this dataset, each of them is a photo of a plant 
taken from one of the 7 pre-defined types of viewpoint (branch, 
entire, flower, fruit, leaf, stem and leaf-scan). Images about the 
same plant are organized into so-called observations, 27,907 
plant-observations altogether. The original dataset was filtered 
in accordance with the provided contextual metadata, thus low 
quality pictures were discarded. The remaining 26,093 plant 
images from 9,989 observations form the third test dataset, 
which is called PCLEF dataset (see Table 1). Furthermore, 
observations were considered as point-sets and images as 
points. However, representations were unavailable for 
PlantCLEF images in the competition, and therefore we 
extracted visual features from the images to generate so called 
high-level descriptor vectors. 128 dimensional SIFT (Scale 
Invariant Feature Transform [18]) features were computed on 
an image and then they were encoded into 65,536 dimensional 
Fisher-Vectors [24] based on a codebook of 256 Gaussians. 

Table 1. Number of points, number of point-sets and number of 
clusters in FMA1, FMA2 and PCLEF test datasets 

 #points #point-sets #clusters 

FMA1 9,355 1,829 12 

FMA2 10,848 1,171 50 

PCLEF 26,093 9,989 988 

Four different graph construction approaches were tested, 
and their results were evaluated during our experiments. In each 
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We investigate two cases of cluster design, and express the 
formula presented by Eq. 5 in these situations. In the first case 
we assume that all points in the same point-set is assigned to the 
same cluster by the clustering algorithm. The second case is 
when a point (and only one point) was assigned into a different 
cluster than all other points of the point-set where this particular 
point belongs to. Note that in the second situation there is only 
one specific point that is separated from its point-set in the 
entire dataset. 

Let 𝐼𝐼𝐼𝐼𝐼𝐼1 (inter cluster) be the sum of the edge weights 
between the clusters, and let 𝑊𝑊𝑊𝑊𝑊𝑊1 (within cluster) be the sum 
of the edge weights inside the clusters; in the first investigated 
situation, which is denoted by “1” in the superscripts (as can be 
seen in Eq. 6 and Eq. 7). 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

(6) 

𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖) = ∑ (∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑖𝑖∖𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

)
𝑗𝑗 | 𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

(7) 

According to Eq. 6 and Eq. 7, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 of first case (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1) 
can be written as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = 1
2 ∑ 𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖)

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) + 𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖)

𝑘𝑘

𝑖𝑖=1
(8) 

Now let 𝑢𝑢 be the separated point in the second case and 𝐶𝐶𝑘𝑘 
its assigned cluster, furthermore denote the cluster which 
contains all the other points from 𝑢𝑢’s point-set by 𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ . In this 
second situation two different inter cluster and two different 
within cluster aggregates are examined, and the corresponding 
sub-cases are denoted in the superscripts; e.g. “2,1” refers for 
the first sub-case of the second situation. Define 𝐼𝐼𝐼𝐼𝐼𝐼2,1 as the 
sum of edge weights between cluster 𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅  and any other cluster, 
while 𝑊𝑊𝑊𝑊𝑊𝑊2,1 represents the sum of the edge weights within 
𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ; as expressed in Eq. 9 and Eq. 10. 

𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ∪𝑆𝑆𝑡𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ∪𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(9) 

𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ [∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗 𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑖𝑖\𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

]
𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑙𝑙∈𝐶𝐶𝑖𝑖

+ 𝑍𝑍(10) 

For the summarized outer and inner edge weights of cluster 
𝐶𝐶𝑘𝑘 we introduce 𝐼𝐼𝐼𝐼𝐼𝐼2,2 and 𝑊𝑊𝑊𝑊𝑊𝑊2,2, respectively; as can be seen 
in Eq. 11-12. 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑖𝑖∪𝑆𝑆𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅

(11) 

𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ [∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗 𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑘𝑘\𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

]
𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑘𝑘

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝐶𝐶𝑘𝑘∖𝑢𝑢

(12) 

Based on the above equations 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 of second case (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2) 
can be expressed as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = 1
2

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖)
𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) + 𝑊𝑊𝑖𝑖𝑖𝑖1(𝐶𝐶𝑖𝑖)

+

+ 1
2

𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢)
𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢) + 𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢) +

+ 1
2

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢)
𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) + 𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢)

(13) 

We will define the value of 𝑍𝑍 so that it satisfies the condition 
that 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 should be lower than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2. To achieve this, we 
estimated the value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 from above, and estimate the 
value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 from below. 

In order to estimate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 from above (see Eq. 16), we 
substituted 𝐼𝐼𝐼𝐼𝐼𝐼1 with a larger and replaced the value of 𝑊𝑊𝑊𝑊𝑊𝑊1 
with a smaller quantity. The substitution in case of 𝐼𝐼𝐼𝐼𝐼𝐼1 was 
accomplished by setting the elements of 𝐴𝐴 to 1, and maximizing 
the number of point-sets, while during the calculation of 𝑊𝑊𝑊𝑊𝑊𝑊1 
the values of the elements of 𝐴𝐴 were changed to 0, and the 
number of point-sets was minimized; as can be seen in Eq. 14 
and Eq. 15, respectively. 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) ≤ 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1 = 𝑛𝑛2 (14) 

𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖) ≥ ∑ (12 ∗ 𝑍𝑍 + |𝑆𝑆𝑗𝑗|(|𝐶𝐶𝑖𝑖| − |𝑆𝑆𝑗𝑗|) ∗ 0) ≥
𝑗𝑗 | 𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

≥ 𝑛𝑛 ∗ 𝑍𝑍

(15) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) ≤ 1
2 ∑ 𝑛𝑛2

𝑛𝑛2 + 𝑛𝑛 ∗ 𝑍𝑍

𝑘𝑘

𝑖𝑖=1
=

= 𝑘𝑘 ∗ 𝑛𝑛2

𝑛𝑛2 + 𝑛𝑛 ∗ 𝑍𝑍 = 𝑘𝑘 ∗ 𝑛𝑛
𝑛𝑛 + 𝑍𝑍

(16) 

To estimate the value of 𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢2 from below, the previously 
defined substitutions were reversed, thus when computing the 
sum of inner edge weights (𝐼𝐼𝐼𝐼𝐼𝐼2,1 and 𝐼𝐼𝐼𝐼𝐼𝐼2,2) the matrix 𝐴𝐴 
contained only 0 elements, and the number of point-sets was 
minimized. In accordance with this, the elements of 𝐴𝐴 was set 
to 1, and the number of point-sets was maximized when 𝑊𝑊𝑊𝑊𝑊𝑊2,1 
and 𝑊𝑊𝑊𝑊𝑊𝑊2,2 were calculated. 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) ≥ ∑ ∑ 0
𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

= 0 (17) 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≥
≥ ∑ ∑ 0

𝑙𝑙∈𝐶𝐶𝑘𝑘−1∪𝑆𝑆𝑡𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑘𝑘−1

+ 1 ∗ 𝑍𝑍 + ∑ 0
𝑗𝑗∈𝐶𝐶𝑘𝑘−1∪𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑍𝑍 (18) 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≥
≥ ∑ ∑ 0

𝑙𝑙∈𝐶𝐶𝑖𝑖∪𝑆𝑆𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 0
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅

= 𝑍𝑍 (19) 
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𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≤
≤ ∑ [𝑛𝑛2 ∗ 𝑍𝑍 + 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1]

𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

+ (𝑛𝑛 − 1) ∗ 1 + 𝑍𝑍 ≤

≤ 𝑛𝑛 ∗ [𝑛𝑛2𝑍𝑍 + 𝑛𝑛2] + 𝑛𝑛 − 1 + 𝑍𝑍 ≤
≤ 𝑛𝑛3𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(20) 

𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≤
≤ ∑ [𝑛𝑛2 ∗ 𝑍𝑍 + 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1]

𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑘𝑘

+ (𝑛𝑛 − 1) ∗ 1 ≤

≤ 𝑛𝑛 ∗ [𝑛𝑛2𝑍𝑍 + 𝑛𝑛2] + 𝑛𝑛 − 1 ≤ 𝑛𝑛3𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(21) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) ≥

≥ 0 + 𝑍𝑍
𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 + 𝑍𝑍 + 𝑍𝑍

𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 ≥

≥ 2 ∗ 𝑍𝑍
𝑍𝑍 + 𝑛𝑛3 ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 + 𝑍𝑍 = 2 ∗ 𝑍𝑍

(𝑛𝑛3 + 2) ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛

(22) 

The value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 should be lower than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 in every 
case. Furthermore, both of them contain a multiplier of ½, and 
thus it could be eliminated in the equations. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) (23) 

𝑘𝑘 ∗ 𝑛𝑛
𝑛𝑛 + 𝑍𝑍 < 2 ∗ 𝑍𝑍

(𝑛𝑛3 + 2) ∗ 𝑍𝑍 + 𝑛𝑛3 + 𝑛𝑛 (24) 

0 < 2𝑍𝑍2 + (2𝑛𝑛 − 𝑘𝑘𝑛𝑛4 − 2𝑘𝑘𝑘𝑘)𝑍𝑍 − (𝑘𝑘𝑛𝑛4 + 𝑘𝑘𝑛𝑛2) (25) 

𝑌𝑌 = √𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛5 + 4𝑘𝑘2𝑛𝑛2 + 8𝑘𝑘𝑛𝑛4 − 4𝑘𝑘𝑛𝑛5 + 4𝑛𝑛2 (26) 

𝑍𝑍 < 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 − 𝑌𝑌
4  (27) 

or 

𝑍𝑍 > 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 + 𝑌𝑌
4  (28) 

Both (27) and (28) fulfills the conditions in (24) and (25), 
but the value of (27) is negative in all cases (see Eq. 29, 30 and 
31), which means that (27) can not be interpreted as a similarity 
value. 

𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 − 𝑌𝑌 < 0 (29) 

𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛2 + 4𝑛𝑛2 + 4𝑘𝑘2𝑛𝑛5 − 4𝑘𝑘𝑛𝑛5 − 8𝑘𝑘𝑛𝑛2 <
< 𝑘𝑘2𝑛𝑛8 + 4𝑘𝑘2𝑛𝑛5 + 4𝑘𝑘2𝑛𝑛2 + 8𝑘𝑘𝑛𝑛4 − 4𝑘𝑘𝑛𝑛5 + 4𝑛𝑛2 (30) 

0 < 8𝑘𝑘𝑛𝑛4 + 8𝑘𝑘𝑛𝑛2 (31) 

Based on the above, the similarity value between points in 
the same point-set should be higher than the Zthreshold (see Eq. 
32) to avoid the separation of point-sets during spectral 
clustering. This is only true if the values of the similarity 
function are between 0 and 1. 

Zthreshold = 𝑘𝑘𝑛𝑛4 + 2𝑘𝑘𝑘𝑘 − 2𝑛𝑛 + 𝑌𝑌
4 (32) 

Note that Zthreshold could be a very large number, even for 
a reasonably sized dataset, and therefore some sort of 
normalization of the edge weights is advised to prevent 
numerical limitations during the matrix manipulations. 

III. EXPERIMENTAL RESULTS 
We conducted experiments on three hierarchical datasets to 

demonstrate the efficiency of the proposed approach. The Free 
Music Analysis (FMA) audio dataset contains 106,574 tracks 
from 16,341 artists and 14,854 albums, arranged in a 
hierarchical taxonomy of 161 genres [7]. The first test dataset 
composed from the top 12 genres of the hierarchy. To form the 
second one, the artists were sorted in a decreasing order based 
on their number of corresponding tracks, and then the top 50 
artists were selected. We call the former FMA1 dataset and it 
contains 9,355 tracks from 1,829 albums, while the latter is 
called FMA2 dataset, which involves 1,171 albums consist of 
10,848 tracks (as can be seen in Table 1). Each track in the FMA 
collection is represented by a 518-long vector and we used them 
as input of the spectral clustering algorithm. In this case tracks 
are equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. 

The third test dataset is a subset of the image collection used 
in the competition of PlantCLEF 2015 [13]. A total of 91,759 
images belongs in this dataset, each of them is a photo of a plant 
taken from one of the 7 pre-defined types of viewpoint (branch, 
entire, flower, fruit, leaf, stem and leaf-scan). Images about the 
same plant are organized into so-called observations, 27,907 
plant-observations altogether. The original dataset was filtered 
in accordance with the provided contextual metadata, thus low 
quality pictures were discarded. The remaining 26,093 plant 
images from 9,989 observations form the third test dataset, 
which is called PCLEF dataset (see Table 1). Furthermore, 
observations were considered as point-sets and images as 
points. However, representations were unavailable for 
PlantCLEF images in the competition, and therefore we 
extracted visual features from the images to generate so called 
high-level descriptor vectors. 128 dimensional SIFT (Scale 
Invariant Feature Transform [18]) features were computed on 
an image and then they were encoded into 65,536 dimensional 
Fisher-Vectors [24] based on a codebook of 256 Gaussians. 

Table 1. Number of points, number of point-sets and number of 
clusters in FMA1, FMA2 and PCLEF test datasets 

 #points #point-sets #clusters 

FMA1 9,355 1,829 12 

FMA2 10,848 1,171 50 

PCLEF 26,093 9,989 988 

Four different graph construction approaches were tested, 
and their results were evaluated during our experiments. In each 
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We investigate two cases of cluster design, and express the 
formula presented by Eq. 5 in these situations. In the first case 
we assume that all points in the same point-set is assigned to the 
same cluster by the clustering algorithm. The second case is 
when a point (and only one point) was assigned into a different 
cluster than all other points of the point-set where this particular 
point belongs to. Note that in the second situation there is only 
one specific point that is separated from its point-set in the 
entire dataset. 

Let 𝐼𝐼𝐼𝐼𝐼𝐼1 (inter cluster) be the sum of the edge weights 
between the clusters, and let 𝑊𝑊𝑊𝑊𝑊𝑊1 (within cluster) be the sum 
of the edge weights inside the clusters; in the first investigated 
situation, which is denoted by “1” in the superscripts (as can be 
seen in Eq. 6 and Eq. 7). 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

(6) 

𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖) = ∑ (∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑖𝑖∖𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

)
𝑗𝑗 | 𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

(7) 

According to Eq. 6 and Eq. 7, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 of first case (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1) 
can be written as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = 1
2 ∑ 𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖)

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) + 𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖)

𝑘𝑘

𝑖𝑖=1
(8) 

Now let 𝑢𝑢 be the separated point in the second case and 𝐶𝐶𝑘𝑘 
its assigned cluster, furthermore denote the cluster which 
contains all the other points from 𝑢𝑢’s point-set by 𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ . In this 
second situation two different inter cluster and two different 
within cluster aggregates are examined, and the corresponding 
sub-cases are denoted in the superscripts; e.g. “2,1” refers for 
the first sub-case of the second situation. Define 𝐼𝐼𝐼𝐼𝐼𝐼2,1 as the 
sum of edge weights between cluster 𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅  and any other cluster, 
while 𝑊𝑊𝑊𝑊𝑊𝑊2,1 represents the sum of the edge weights within 
𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ; as expressed in Eq. 9 and Eq. 10. 

𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ∪𝑆𝑆𝑡𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ ∪𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(9) 

𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ [∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗 𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑖𝑖\𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

]
𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑙𝑙∈𝐶𝐶𝑖𝑖

+ 𝑍𝑍(10) 

For the summarized outer and inner edge weights of cluster 
𝐶𝐶𝑘𝑘 we introduce 𝐼𝐼𝐼𝐼𝐼𝐼2,2 and 𝑊𝑊𝑊𝑊𝑊𝑊2,2, respectively; as can be seen 
in Eq. 11-12. 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ ∑ 𝐴𝐴𝑗𝑗𝑗𝑗
𝑙𝑙∈𝐶𝐶𝑖𝑖∪𝑆𝑆𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅

(11) 

𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) = ∑ [∑ ∑ 𝑍𝑍
𝑚𝑚∈𝑆𝑆𝑗𝑗 𝑙𝑙∈𝑆𝑆𝑗𝑗

+ ∑ ∑ 𝐴𝐴𝑙𝑙𝑙𝑙
𝑚𝑚∈𝐶𝐶𝑘𝑘\𝑆𝑆𝑗𝑗𝑙𝑙∈𝑆𝑆𝑗𝑗

]
𝑗𝑗≠𝑡𝑡|𝑆𝑆𝑗𝑗∈𝐶𝐶𝑘𝑘

+ ∑ 𝐴𝐴𝑢𝑢𝑢𝑢
𝑗𝑗∈𝐶𝐶𝑘𝑘∖𝑢𝑢

(12) 

Based on the above equations 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 of second case (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2) 
can be expressed as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) = 1
2

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖)
𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) + 𝑊𝑊𝑖𝑖𝑖𝑖1(𝐶𝐶𝑖𝑖)

+

+ 1
2

𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢)
𝐼𝐼𝐼𝐼𝐼𝐼2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢) + 𝑊𝑊𝑊𝑊𝑊𝑊2,1(𝐶𝐶𝑘𝑘𝑢𝑢̅̅ ̅̅ , 𝑆𝑆𝑡𝑡, 𝑢𝑢) +

+ 1
2

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢)
𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) + 𝑊𝑊𝑊𝑊𝑊𝑊2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢)

(13) 

We will define the value of 𝑍𝑍 so that it satisfies the condition 
that 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 should be lower than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2. To achieve this, we 
estimated the value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 from above, and estimate the 
value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 from below. 

In order to estimate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 from above (see Eq. 16), we 
substituted 𝐼𝐼𝐼𝐼𝐼𝐼1 with a larger and replaced the value of 𝑊𝑊𝑊𝑊𝑊𝑊1 
with a smaller quantity. The substitution in case of 𝐼𝐼𝐼𝐼𝐼𝐼1 was 
accomplished by setting the elements of 𝐴𝐴 to 1, and maximizing 
the number of point-sets, while during the calculation of 𝑊𝑊𝑊𝑊𝑊𝑊1 
the values of the elements of 𝐴𝐴 were changed to 0, and the 
number of point-sets was minimized; as can be seen in Eq. 14 
and Eq. 15, respectively. 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) ≤ 𝑛𝑛 ∗ 𝑛𝑛 ∗ 1 = 𝑛𝑛2 (14) 

𝑊𝑊𝑊𝑊𝑊𝑊1(𝐶𝐶𝑖𝑖) ≥ ∑ (12 ∗ 𝑍𝑍 + |𝑆𝑆𝑗𝑗|(|𝐶𝐶𝑖𝑖| − |𝑆𝑆𝑗𝑗|) ∗ 0) ≥
𝑗𝑗 | 𝑆𝑆𝑗𝑗∈𝐶𝐶𝑖𝑖

≥ 𝑛𝑛 ∗ 𝑍𝑍

(15) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1(𝐶𝐶1, … , 𝐶𝐶𝑘𝑘) ≤ 1
2 ∑ 𝑛𝑛2

𝑛𝑛2 + 𝑛𝑛 ∗ 𝑍𝑍

𝑘𝑘

𝑖𝑖=1
=

= 𝑘𝑘 ∗ 𝑛𝑛2

𝑛𝑛2 + 𝑛𝑛 ∗ 𝑍𝑍 = 𝑘𝑘 ∗ 𝑛𝑛
𝑛𝑛 + 𝑍𝑍

(16) 

To estimate the value of 𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢2 from below, the previously 
defined substitutions were reversed, thus when computing the 
sum of inner edge weights (𝐼𝐼𝐼𝐼𝐼𝐼2,1 and 𝐼𝐼𝐼𝐼𝐼𝐼2,2) the matrix 𝐴𝐴 
contained only 0 elements, and the number of point-sets was 
minimized. In accordance with this, the elements of 𝐴𝐴 was set 
to 1, and the number of point-sets was maximized when 𝑊𝑊𝑊𝑊𝑊𝑊2,1 
and 𝑊𝑊𝑊𝑊𝑊𝑊2,2 were calculated. 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝐶𝐶𝑖𝑖) ≥ ∑ ∑ 0
𝑙𝑙∈𝐶𝐶𝑖̅𝑖𝑗𝑗∈𝐶𝐶𝑖𝑖

= 0 (17) 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≥
≥ ∑ ∑ 0

𝑙𝑙∈𝐶𝐶𝑘𝑘−1∪𝑆𝑆𝑡𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑘𝑘−1

+ 1 ∗ 𝑍𝑍 + ∑ 0
𝑗𝑗∈𝐶𝐶𝑘𝑘−1∪𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑍𝑍 (18) 

𝐼𝐼𝐼𝐼𝐼𝐼2,2(𝐶𝐶𝑖𝑖, 𝑆𝑆𝑡𝑡, 𝑢𝑢) ≥
≥ ∑ ∑ 0

𝑙𝑙∈𝐶𝐶𝑖𝑖∪𝑆𝑆𝑢𝑢̅̅ ̅̅ ̅̅ ̅̅𝑗𝑗∈𝐶𝐶𝑖𝑖

+ ∑ 𝑍𝑍
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢

+ ∑ 0
𝑗𝑗∈𝑆𝑆𝑡𝑡\𝑢𝑢̅̅ ̅̅ ̅̅

= 𝑍𝑍 (19) 
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throughout the spectral clustering. Based on these results we 
conclude that the condition of setting the weights (inside point-
sets) to at least the value of Zthreshold guarantees that clustering 
the points on the lowest level of the hierarchy implies the 
clustering of the point-sets as well, without breaking them apart. 

The developed method is restricted to disjunct point-sets 
where the point-sets are not overlapping; in the future there is a 
plan to extend this method to hierarchical datasets with multiple 
class inheritance as well. The 𝑍𝑍 value influences the clustering 
result, as can be seen in the comparison with a previous work 
[23], where 𝑍𝑍 was equal to number of points; further thorough 
sensitivity analysis of 𝑍𝑍 value is a possible further development 
in the research. 
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case, other steps of the spectral clustering were identical and 
only the appropriate graphs were changed, which are the 
following: 

 Fully-Connected Weight Graph using n as edge 
weights inside the point-sets (FC-WG) [23], where 
n is the number of the points, 

 Nearest Points of Point-sets Weight Graph using n 
as edge weights inside the point-sets (NPP-WG) 
[23], where n is the number of the points, 

 Fully-Connected Weight Graph using 𝑍𝑍 as edge 
weights inside the point-sets (FC-WG(Z)), 

 Nearest Points of Point-sets Weight Graph using 𝑍𝑍 
as edge weights inside the point-sets (NPP-WG(Z)). 

Table 3 shows the result got on all three test datasets using 
each of the four different weighted graphs (note that “#ps” 
stands for “number of point-sets” in the second column). As can 
be seen, by satisfying the proposed condition, both FC-WG(Z) 
and NPP-WG(Z) were able to retain all of the point-sets 
throughout the spectral clustering. On the other hand, FC-WG 
and NPP-WG methods were unable to preserve the hierarchical 
structure in each case. Based on these results we conclude that 
the condition of setting the weights (inside point-sets) to at least 
the value of 𝑍𝑍𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 guarantees that clustering the points on 
the lowest level of the hierarchy implies the clustering of the 
point-sets as well, without breaking them apart. 

Table 2. The result of the number of separated point-sets during the 
spectral clustering of FMA1, FMA2 and PCLEF datasets 

  #separated point-sets 

 #ps FC-WG NPP-WG FC-WG(Z) NPP-WG(Z) 

FMA1 1,829 2 0 0 0 

FMA2 1,171 43 34 0 0 

PCLEF 9,989 11 0 0 0 

IV. DISCUSSION 
The known clustering methods can group the points in 

multidimensional space (where the dimensions of the space are 
the features of the original items, so a point in this space 
represent the corresponding item in the original reality), but 
majority of them is not able to group point-sets. In this paper 
we focused on point-sets (points that are related to each other) 
instead of only points, where the point-sets can be grouped into 
larger groups, so a hierarchical structure describes this grouping 
of data, resulting a hierarchical dataset. We investigated 
spectral clustering methods in the clustering literature. Our goal 
was to develop such spectral clustering approach that preserves 
the structure of the dataset throughout the clustering procedure. 
The main contribution of this paper was a set of conditions for 
weight graph construction used in spectral clustering. 
Following the requirements – given by the conditions – ensures 
that the hierarchical formation of the dataset remains 
unchanged, and therefore the clustering of data points imply the 
clustering of point-sets as well.  

The proposed spectral clustering algorithm with graph 
construction was tested on three datasets and the results were 
compared to baseline methods. On the first and second datasets, 
albums with songs (tracks) were clustered, where tracks are 
equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. The third dataset 
consists of pictures of plants. Here the images of plants 
represent the points, and the species are the point-sets in the 
hierarchical dataset. On the obtained clusters, we examined the 
relationships between the points from the point of view of how 
they reflect the expected structure, thus it was possible to 
compare different clustering algorithms with different graph 
construction approaches. 

We demonstrated the clustering in hierarchical datasets with 
two levels, however our method is able to operate in more levels 
as well. In general, the point-sets should be constructed based 
on dendrogram (hierarchical tree) of the multi-level dataset. 
The user selects the required level (the user can choose any 
level) in this dendrogram, as can be seen in the Fig 2., and the 
crossing lines determine the point-sets (5 point-sets in the 
example) with the corresponding leaves of the tree as points. 

 

Figure 2. Determination the point-sets in hierarchical dataset 

We investigated two clustering algorithms: FC-WG (Fully-
Connected Weight Graph) and NPP-WG (Nearest Points of 
Point-sets Weight Graph), where these baseline methods used 
number of the points (n) as edge weights inside the point-sets, 
during the graph construction. From similarity matrix there are 
other possibilities to construct a graph, and we elaborated a 
condition for minimal weight among the points in a common 
point-set, while other weights come from directly the similarity 
matrix. So, two graph constructions (a baseline, and the 
elaborated one with Zthreshold value) were investigated in both 
clustering algorithms, thus four different spectral clustering 
solutions were in the test: FC-WG, NPP-WG, FC-WG(Z), NPP-
WG(Z). 

The baseline algorithms using weighted graph approaches, 
where 𝑛𝑛 values were in the edges, the points in a common point-
set did not get into a common cluster; i.e. FC-WG and NPP-
WG methods were unable to preserve the hierarchical structure. 
In the tests, by satisfying the proposed condition, both FC-
WG(Z) and NPP-WG(Z) were able to retain all of the point-sets 
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construction was tested on three datasets and the results were 
compared to baseline methods. On the first and second datasets, 
albums with songs (tracks) were clustered, where tracks are 
equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. The third dataset 
consists of pictures of plants. Here the images of plants 
represent the points, and the species are the point-sets in the 
hierarchical dataset. On the obtained clusters, we examined the 
relationships between the points from the point of view of how 
they reflect the expected structure, thus it was possible to 
compare different clustering algorithms with different graph 
construction approaches. 

We demonstrated the clustering in hierarchical datasets with 
two levels, however our method is able to operate in more levels 
as well. In general, the point-sets should be constructed based 
on dendrogram (hierarchical tree) of the multi-level dataset. 
The user selects the required level (the user can choose any 
level) in this dendrogram, as can be seen in the Fig 2., and the 
crossing lines determine the point-sets (5 point-sets in the 
example) with the corresponding leaves of the tree as points. 
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We investigated two clustering algorithms: FC-WG (Fully-
Connected Weight Graph) and NPP-WG (Nearest Points of 
Point-sets Weight Graph), where these baseline methods used 
number of the points (n) as edge weights inside the point-sets, 
during the graph construction. From similarity matrix there are 
other possibilities to construct a graph, and we elaborated a 
condition for minimal weight among the points in a common 
point-set, while other weights come from directly the similarity 
matrix. So, two graph constructions (a baseline, and the 
elaborated one with Zthreshold value) were investigated in both 
clustering algorithms, thus four different spectral clustering 
solutions were in the test: FC-WG, NPP-WG, FC-WG(Z), NPP-
WG(Z). 

The baseline algorithms using weighted graph approaches, 
where 𝑛𝑛 values were in the edges, the points in a common point-
set did not get into a common cluster; i.e. FC-WG and NPP-
WG methods were unable to preserve the hierarchical structure. 
In the tests, by satisfying the proposed condition, both FC-
WG(Z) and NPP-WG(Z) were able to retain all of the point-sets 
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throughout the spectral clustering. Based on these results we 
conclude that the condition of setting the weights (inside point-
sets) to at least the value of Zthreshold guarantees that clustering 
the points on the lowest level of the hierarchy implies the 
clustering of the point-sets as well, without breaking them apart. 

The developed method is restricted to disjunct point-sets 
where the point-sets are not overlapping; in the future there is a 
plan to extend this method to hierarchical datasets with multiple 
class inheritance as well. The 𝑍𝑍 value influences the clustering 
result, as can be seen in the comparison with a previous work 
[23], where 𝑍𝑍 was equal to number of points; further thorough 
sensitivity analysis of 𝑍𝑍 value is a possible further development 
in the research. 
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case, other steps of the spectral clustering were identical and 
only the appropriate graphs were changed, which are the 
following: 

 Fully-Connected Weight Graph using n as edge 
weights inside the point-sets (FC-WG) [23], where 
n is the number of the points, 

 Nearest Points of Point-sets Weight Graph using n 
as edge weights inside the point-sets (NPP-WG) 
[23], where n is the number of the points, 

 Fully-Connected Weight Graph using 𝑍𝑍 as edge 
weights inside the point-sets (FC-WG(Z)), 

 Nearest Points of Point-sets Weight Graph using 𝑍𝑍 
as edge weights inside the point-sets (NPP-WG(Z)). 

Table 3 shows the result got on all three test datasets using 
each of the four different weighted graphs (note that “#ps” 
stands for “number of point-sets” in the second column). As can 
be seen, by satisfying the proposed condition, both FC-WG(Z) 
and NPP-WG(Z) were able to retain all of the point-sets 
throughout the spectral clustering. On the other hand, FC-WG 
and NPP-WG methods were unable to preserve the hierarchical 
structure in each case. Based on these results we conclude that 
the condition of setting the weights (inside point-sets) to at least 
the value of 𝑍𝑍𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 guarantees that clustering the points on 
the lowest level of the hierarchy implies the clustering of the 
point-sets as well, without breaking them apart. 

Table 2. The result of the number of separated point-sets during the 
spectral clustering of FMA1, FMA2 and PCLEF datasets 

  #separated point-sets 

 #ps FC-WG NPP-WG FC-WG(Z) NPP-WG(Z) 

FMA1 1,829 2 0 0 0 

FMA2 1,171 43 34 0 0 

PCLEF 9,989 11 0 0 0 

IV. DISCUSSION 
The known clustering methods can group the points in 

multidimensional space (where the dimensions of the space are 
the features of the original items, so a point in this space 
represent the corresponding item in the original reality), but 
majority of them is not able to group point-sets. In this paper 
we focused on point-sets (points that are related to each other) 
instead of only points, where the point-sets can be grouped into 
larger groups, so a hierarchical structure describes this grouping 
of data, resulting a hierarchical dataset. We investigated 
spectral clustering methods in the clustering literature. Our goal 
was to develop such spectral clustering approach that preserves 
the structure of the dataset throughout the clustering procedure. 
The main contribution of this paper was a set of conditions for 
weight graph construction used in spectral clustering. 
Following the requirements – given by the conditions – ensures 
that the hierarchical formation of the dataset remains 
unchanged, and therefore the clustering of data points imply the 
clustering of point-sets as well.  

The proposed spectral clustering algorithm with graph 
construction was tested on three datasets and the results were 
compared to baseline methods. On the first and second datasets, 
albums with songs (tracks) were clustered, where tracks are 
equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. The third dataset 
consists of pictures of plants. Here the images of plants 
represent the points, and the species are the point-sets in the 
hierarchical dataset. On the obtained clusters, we examined the 
relationships between the points from the point of view of how 
they reflect the expected structure, thus it was possible to 
compare different clustering algorithms with different graph 
construction approaches. 

We demonstrated the clustering in hierarchical datasets with 
two levels, however our method is able to operate in more levels 
as well. In general, the point-sets should be constructed based 
on dendrogram (hierarchical tree) of the multi-level dataset. 
The user selects the required level (the user can choose any 
level) in this dendrogram, as can be seen in the Fig 2., and the 
crossing lines determine the point-sets (5 point-sets in the 
example) with the corresponding leaves of the tree as points. 
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We investigated two clustering algorithms: FC-WG (Fully-
Connected Weight Graph) and NPP-WG (Nearest Points of 
Point-sets Weight Graph), where these baseline methods used 
number of the points (n) as edge weights inside the point-sets, 
during the graph construction. From similarity matrix there are 
other possibilities to construct a graph, and we elaborated a 
condition for minimal weight among the points in a common 
point-set, while other weights come from directly the similarity 
matrix. So, two graph constructions (a baseline, and the 
elaborated one with Zthreshold value) were investigated in both 
clustering algorithms, thus four different spectral clustering 
solutions were in the test: FC-WG, NPP-WG, FC-WG(Z), NPP-
WG(Z). 

The baseline algorithms using weighted graph approaches, 
where 𝑛𝑛 values were in the edges, the points in a common point-
set did not get into a common cluster; i.e. FC-WG and NPP-
WG methods were unable to preserve the hierarchical structure. 
In the tests, by satisfying the proposed condition, both FC-
WG(Z) and NPP-WG(Z) were able to retain all of the point-sets 
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case, other steps of the spectral clustering were identical and 
only the appropriate graphs were changed, which are the 
following: 

 Fully-Connected Weight Graph using n as edge 
weights inside the point-sets (FC-WG) [23], where 
n is the number of the points, 

 Nearest Points of Point-sets Weight Graph using n 
as edge weights inside the point-sets (NPP-WG) 
[23], where n is the number of the points, 

 Fully-Connected Weight Graph using 𝑍𝑍 as edge 
weights inside the point-sets (FC-WG(Z)), 

 Nearest Points of Point-sets Weight Graph using 𝑍𝑍 
as edge weights inside the point-sets (NPP-WG(Z)). 

Table 3 shows the result got on all three test datasets using 
each of the four different weighted graphs (note that “#ps” 
stands for “number of point-sets” in the second column). As can 
be seen, by satisfying the proposed condition, both FC-WG(Z) 
and NPP-WG(Z) were able to retain all of the point-sets 
throughout the spectral clustering. On the other hand, FC-WG 
and NPP-WG methods were unable to preserve the hierarchical 
structure in each case. Based on these results we conclude that 
the condition of setting the weights (inside point-sets) to at least 
the value of 𝑍𝑍𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 guarantees that clustering the points on 
the lowest level of the hierarchy implies the clustering of the 
point-sets as well, without breaking them apart. 

Table 2. The result of the number of separated point-sets during the 
spectral clustering of FMA1, FMA2 and PCLEF datasets 

  #separated point-sets 

 #ps FC-WG NPP-WG FC-WG(Z) NPP-WG(Z) 

FMA1 1,829 2 0 0 0 

FMA2 1,171 43 34 0 0 

PCLEF 9,989 11 0 0 0 

IV. DISCUSSION 
The known clustering methods can group the points in 

multidimensional space (where the dimensions of the space are 
the features of the original items, so a point in this space 
represent the corresponding item in the original reality), but 
majority of them is not able to group point-sets. In this paper 
we focused on point-sets (points that are related to each other) 
instead of only points, where the point-sets can be grouped into 
larger groups, so a hierarchical structure describes this grouping 
of data, resulting a hierarchical dataset. We investigated 
spectral clustering methods in the clustering literature. Our goal 
was to develop such spectral clustering approach that preserves 
the structure of the dataset throughout the clustering procedure. 
The main contribution of this paper was a set of conditions for 
weight graph construction used in spectral clustering. 
Following the requirements – given by the conditions – ensures 
that the hierarchical formation of the dataset remains 
unchanged, and therefore the clustering of data points imply the 
clustering of point-sets as well.  

The proposed spectral clustering algorithm with graph 
construction was tested on three datasets and the results were 
compared to baseline methods. On the first and second datasets, 
albums with songs (tracks) were clustered, where tracks are 
equivalent to the points on the lowest level of the hierarchy, 
while albums are analogous to point-sets. The third dataset 
consists of pictures of plants. Here the images of plants 
represent the points, and the species are the point-sets in the 
hierarchical dataset. On the obtained clusters, we examined the 
relationships between the points from the point of view of how 
they reflect the expected structure, thus it was possible to 
compare different clustering algorithms with different graph 
construction approaches. 

We demonstrated the clustering in hierarchical datasets with 
two levels, however our method is able to operate in more levels 
as well. In general, the point-sets should be constructed based 
on dendrogram (hierarchical tree) of the multi-level dataset. 
The user selects the required level (the user can choose any 
level) in this dendrogram, as can be seen in the Fig 2., and the 
crossing lines determine the point-sets (5 point-sets in the 
example) with the corresponding leaves of the tree as points. 
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Abstract—Hierarchical Temporal Memory (HTM) is a special
type of artificial neural network (ANN), that differs from the
widely used approaches. It is suited to efficiently model sequential
data (including time series). The network implements a variable
order sequence memory, it is trained by Hebbian learning and all
of the network’s activations are binary and sparse. The network
consists of four separable units. First, the encoder layer translates
the numerical input into sparse binary vectors. The Spatial Pooler
performs normalization and models the spatial features of the
encoded input. The Temporal Memory is responsible for learning
the Spatial Pooler’s normalized output sequence. Finally, the
decoder takes the Temporal Memory’s outputs and translates
it to the target. The connections in the network are also sparse,
which requires prudent design and implementation. In this paper
a sparse matrix implementation is elaborated, it is compared to
the dense implementation. Furthermore, the HTM’s performance
is evaluated in terms of accuracy, speed and memory complexity
and compared to the deep neural network-based LSTM (Long
Short-Term Memory).

Index Terms—neural network, Hierarchical Temporal Mem-
ory, time series analysis, artificial intelligence, explainable AI,
performance optimization

I. INTRODUCTION

Nowadays, data-driven artificial intelligence is the source of
better and more flexible solutions for complex tasks compared
to expert systems. Deep learning is one of the most focused
research area, which utilizes artificial neural networks. The
complexity and capability of these networks are increasing
rapidly. However, these networks are still ’just’ black (or at
the best grey) box approximators for nonlinear processes.

Artificial neural networks are loosely inspired by neurons
and there are fundamental differences [1], that should be
implemented to achieve Artificial General Intelligence (AGI),
according to Numenta [2], [3]. 1 They are certain that AGI can
only be achieved by mimicking the neocortex and implement-
ing those fundamental differences in a new neural network
model.

Artificial neural networks require massive amount of com-
putational performance to train the models through many
epochs. Also, the result of a neural network training is not,

1Numenta is a nonprofit research group dedicated to developing the
Hierarchical Temporal Memory.

or only partly understandable, it remains a black (or at best a
grey) box system. There is a need to produce explainable AI
solutions, that can be understood. Understanding and modeling
the human brain should deliver a better understanding of the
decisions of the neural networks.

Sequence learning is a domain of machine learning that aims
to learn sequential and temporal data, and time series. Through
the years there were several approaches to solve sequence
learning. The state of the art deep learning solutions use
one-dimensional convolutional neural networks [4], recurrent
neural networks with LSTM type cells [5], [6] and dense
layers with attention [7]. Despite the improvements over other
solutions these algorithms still lack some of the preferable
properties, that would make them ideal for sequence learning
[1]. The HTM network utilizes a different approach.

Since the HTM network is sparse by nature, it is desirable
to implement it in such a way that exploits the sparse structure.
Since other neural networks work using optimized matrix
implementations, a sparse matrix version is a viable solution
to that. This porting should be a two-step process: first a
matrix implementation of the HTM network, then a transition
to sparse variables inside the network. These ideas are partially
present in other experiments, still, this approach remains a
unique way of executing HTM training steps. Our goal is to
realize and evaluate an end-to-end sparse solution of the HTM
network, which utilizes optimized (in terms of memory and
speed) sparse matrix operations.

The contributions of this paper are the following:
• Collection of present HTM solutions and their specifics
• Proposed matrix solution for the HTM network
• Proposed sparse matrix solution for the HTM network
• Evaluation of training times for every part of the HTM

network
• Evaluation of training times compared to LSTM network
• Evaluation of training and testing accuracy compared to

LSTM network

II. BACKGROUND

There have been a number of works on different sequence
learning methods (e.g., Hidden Markov Models [8], Autore-
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