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ABSTRACT
The instability of the car-trailer systems very often leads to

the snaking and/or rocking motions of trailers. In order to reduce
the safety risk of these unwanted vibrations, stability control can
be applied. In this paper, we use a spatial trailer model to ana-
lyze the effect of a possible control algorithm, which actuates by
means of braking. For the sake of simplicity, the dynamics of the
towing vehicle is modeled by the lateral displacement of the tow
hitch that is supported laterally by a spring and damper. The lon-
gitudinal speed of the vehicle is kept constant. The effect of the
braking forces are emulated in our study via a control torque,
which is proportional to the yaw angle and the yaw rate. The
time delay of the controller is also considered. Linear stability
charts are constructed in the plane of the different system pa-
rameters. Linearly stable and unstable parameter domains are
identified both for the vertical position of the center of gravity
and the control gains. Numerical simulations are used to vali-
date the theoretical results.

INTRODUCTION
The lateral stability problems of vehicles are in focus in

the literature long time ago. Mechanical models with differ-
ent complexity are constructed and widely used to analyze dif-
ferent phenomena in vehicle dynamics. The shimmy motion
of steered wheels [1, 2], wobble motion of motorbikes [3] and
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snaking/rocking motion of trailers [4–7] are also current topics
even nowadays.

Unfortunately, no universal solutions exist for the above
mentioned vibration problems. Usually the geometrical param-
eters that would be beneficial to avoid these vibrations are not
optimal from other viewpoints. Thus, the development of stabil-
ity control algorithms came to the forefront. Several studies in-
vestigated active control methods [8–10] to improve the stability
of vehicle-trailer combinations, but these are based on in-plane
vehicle models. It is also shown in this study, that the linear sta-
bility of the straight motion of the trailer is not affected by the
pitch motion of the trailer. But a recent result [11] identified a
relevant effect on local bifurcations at the stability boundaries.

In this paper, the stability of trailers is analyzed via a spatial
four degree-of-freedom mechanical model. All the yaw, pitch
and roll motions of the trailer are considered, while the motion of
the towing car is imitated by the lateral displacement of the king
pin. The model was already used in [11], where the nonlinear
vibrations were investigated also taking into account the non-
smooth nature of the tire characteristics.

Here, we focus on the linear stability only, but we try to
give some hints about the effect of a possible stability control
algorithm. A linear feedback control is used to enhance the sta-
bility properties of the straight line motion of the trailer. For-
mer studies often use similar or more sophisticated control algo-
rithms, but suppose that the sampling time of the implemented
electronic units is small, and the effect of the caused time delay
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is negligible. If the stability control is based on conventional in-
ertial sensors (e.g. accelerometers), this assumption can be valid.
When the stability control is based on the new features of an au-
tonomous vehicle (e.g. GPS localization and image processing),
the sensor systems can have more relevant time delay although
the performance of stability control can be better, see [12]. In
our study, this increased time delay of the controller is taken into
account, and linear stability charts are constructed ot check its
effect on the stability.

The contents of the paper is the following. First, the me-
chanical model of the trailer is introduced. Then the system
is linearised about the straight line motion, for which we also
present the equations of motion. Linear stability charts are pre-
sented in the plane of the parameters of trailer and the controller.
For a specific parameter setup, the effect of the time delay is also
shown. Finally, numerical simulation results are presented.

MECHANICAL MODEL
The spatial, 4 degrees-of-freedom (DoF) mechanical model

of towed two-wheeled trailers is shown in Fig. 1. Two coordinate
systems are differentiated: the ground-fixed coordinate system is
denoted by (X ,Y,Z), while the (x,y,z) coordinate system is fixed
to the trailer itself.
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FIGURE 1. THE MECHANICAL MODEL OF TOWED TWO-
WHEELED TRAILERS.

The trailer is towed at the king pin A with a constant longi-
tudinal speed v. The mass and the mass moment of inertia is de-
noted by m and JC, respectively. The center of mass is positioned
at point C, its horizontal and vertical position can be described
with parameters e and f . The vertical distance between the king
pin A and the ground is h, the track width is 2b and the caster
length is l. Points R and L are the center points of the right and
the left wheels, respectively. The contact points between the tires
and the ground are marked by TR and TL. The stiffness and the

damping of the wheel suspensions and the tires are taken into ac-
count as an overall stiffness k and an overall damping c. A spring
of stiffness kl and damper of damping cl are applied to support
laterally the king pin at point A, as a representation of the effect
of the towing vehicle.

The motion of the trailer can be described with the yaw an-
gle ψ(t), the pitch angle ϑ(t), the roll angle ϕ(t) and the lateral
displacement of the king pin u(t). Thus the system has n = 4
degrees of freedom, the vector of the generalized coordinates is

q(t) =
[
ψ(t) ϑ(t) ϕ(t) u(t)

]T
. (1)

GOVERNING EQUATIONS
Since the system is holonomic, that is there are only geo-

metrical constraints, the equations of motion can be derived with
the Lagrange equation of the second kind [13]. For details of
the derivation of the governing equations, see [11]. Here, we ex-
tend the model of [11] by the effect of the braking forces that are
generated by the stability control.

The active forces acting on the trailer are shown in Fig. 2,
where G is the gravitational force; FRtyre and FLtyre are the tire
forces acting at points TR and TL; FRsusp and FLsusp are the sus-
pension forces acting on the chassis of the trailer at points R and
L; FAlat is the lateral force acting at point A; FRbrake and FLbrake
are the braking forces.
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FIGURE 2. THE ACTIVE FORCES ACTING ON THE TRAILER.

The magnitude of the lateral component of the tire forces
can be calculated with the help of the so-called Pacejka’s Magic
Formula [2]. The mass of the wheels is not taken into account,
therefore the vertical load on the tires can be calculated from the
suspension forces.

For the sake of simplicity, the effect of the braking forces is
emulated in our study with the control moment Mc acting in the
z direction, see Fig. 3. The use of this control moment does not
consider all of the effect of the braking forces, namely it does
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not influence the pitch motion of the trailer, and it neglects the
non-smooth characteristics of the forces that would emerge in
the equations of motion. The more precise consideration of these
effects will be the tasks of future studies.
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FIGURE 3. THE ACTIVE FORCES ACTING ON THE TRAILER,
WHERE THE BRAKING FORCES ARE EMULATED WITH CON-
TROL MOMENT Mc.

Thus, the control moment is based on the linear feedback:

Mc =

 0
0

Mc


(x,y,z)

=

 0
0

−Pψ(t− τ)−Dψ̇(t− τ)


(x,y,z)

, (2)

where τ is the time delay of the control system. The equations
of motion can be linearised around the rectilinear motion which
corresponds to q0 = 0, namely

ψ(t)≡ ψ0 = 0 ,
ϑ(t)≡ ϑ0 = 0 ,
ϕ(t)≡ ϕ0 = 0 ,
u(t)≡ u0 = 0 .

(3)

The linearised equations of motion can be written as

Mlinq̈(t)+Clinq̇(t)+Klinq(t) =Plinq(t−τ)+Dlinq̇(t−τ) , (4)

where Mlin is the mass matrix, Clin is the damping matrix and
Klin is the stiffness matrix of the linearised system:

Mlin =


JA,z 0 m f (l− e) −m(l− e)

0 JA,y 0 0
m f (l− e) 0 JA,x −m f
−m(l− e) 0 −m f m

 , (5)

Clin =


C1l 0 −C1h −C1
0 2cl2 0 0
−C1h 0 2b2c+ C1h2

l −C1h
l

−C1 0 −C1h
l cl +

C1h2

l

 , (6)

Klin =


CFαC0 0 −C0 0

0 2kl2−mg f 0 0
−CFαC0h

l 0 2kb2−mg f 0
−CFαC0h

l 0 −C0
l kl

 , (7)

where

CFα = BmCmDm (8)

is the so-called cornering stiffness, where Bm,Cm and Dm are the
stiffness, shape and peak factors of the Magic Formula. We also
introduce

C0 = mg(l− e) and C1 =
CFαC0

v
(9)

in order to shorten the formulas. The matrices corresponding to
the control moment are the following:

Plin =


−P 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Dlin =


−D 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (10)

As it can be seen, the linearised system can be separated into two
subsystems: one differential equation can be disjointed, namely
the pitch motion can be analyzed alone (1 DoF subsystem), while
the remaining equations are coupled (3 DoF subsystem).

By using exponential trial function

q(t) = Aeλ t (11)

in Eqn. (4), we obtain:

(
Mlinλ

2 +Clinλ +Klin
)

Aeλ t = (Plin +Dlinλ )Aeλ (t−τ) . (12)

This can be rearranged as

(
Mlinλ

2 +Clinλ +Klin− (Plin +Dlinλ )eλ (−τ)
)

A = 0 . (13)
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TABLE 1. PARAMETER VALUES OF THE TRAILER.

Notation Parameter Value

l caster length 3 m

b half of the track width 0.8 m

h height of the king pin 0.5 m

e horizontal position of CG 0.9 m

f vertical position of CG 1 m

m mass of the trailer 3000 kg

k stiffness of the suspension 60 kN/m

c damping of suspension 6 kNs/m

kl lateral stiffness 10 kN/m

cl lateral damping 100 Ns/m

Bm stiffness factor 10

Cm shape factor 1.9

Dm peak factor 1

Em curvature factor 0.97

The characteristic function of the system can be calculated as the
determinant of the coefficient matrix, namely:

Dchar(λ ) := det
(

Mlinλ
2 +Clinλ +Klin− (Plin +Dlinλ )eλ (−τ)

)
(14)

Due to the presence of the time delay, the characteristic
equation Dchar(λ ) = 0 is transcendental, but the stability bound-
aries can be determined, where pure complex characteristic roots
exist. Here, we use the D-subdivision method, namely λ = iω
is substituted into Eqn. (14) and the real and imaginary parts are
separated:

Re(Dchar(iω)) = 0 ,
Im(Dchar(iω)) = 0 .

(15)

In case of our system, the boundaries cannot be calculated
analytically, but it can be analyzed numerically. The Eqns. (15)
can be solved for example with the help of the Multidimensional
Bisection Method [14] for a specific range of two system param-
eters meantime the angular frequency ω is swept.

THE EFFECT OF TIME DELAY ON LINEAR STABILITY
The effects of the stability control are investigated for a spe-

cific parameter setup shown in Tab. 1. In Fig. 4, linear stability

charts are plotted in the plane of the vertical position f of the cen-
ter of gravity and the towing speed for different time delays. The
panels of each figures are plotted for different P and D control
parameter values. The thick black, blue and grey lines corre-
spond to the linear stability boundaries. The linearly stable (S)
and unstable (U) regions are also marked.

For the case when there is no time delay τ = 0 (see the con-
tinuous black line in Fig. 4), it can be seen, the linearly unsta-
ble region decreases when the values of the control gains are in-
creased.

Having even small time delay in the system τ = 0.05 s, the
linearly unstable region increases relative to the zero time de-
lay case, see the continuous blue line in Fig. 4. But the use of
the stability control is beneficial, namely linearly unstable region
shrinks as the control gains are increased.

When the time delay is greater, namely when τ = 0.1 s is set,
and the proportional gain P is increased, the linearly unstable
region grows, see the grey line in Fig. 4. On the contrary, the
increase of the derivative gain in the investigated parameter range
remains advantageous with respect to the stability properties.
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FIGURE 4. THE STABILITY CHARTS FOR DIFFERENT P AND
D CONTROL PARAMETER VALUES AND FOR τ = 0 s (BLACK
LINE), τ = 0.05 s (BLUE LINE) AND τ = 0.1 s (GREY LINE).

To analyze the stability of the control, one can also deter-
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mine the critical values for the control gains for a specific setup
of the trailer. Figure 5 shows the stability boundaries of the lin-
earised system in the plane of the proportional P and the deriva-
tive D gains for τ = 0.1 s. In the figure, we use the parameters
f = 1 m and v = 20 m/s. The stability boundary is plotted for
ω ∈ [0,100] rad/s. One can observe the static stability bound-
ary (ω = 0) at approximately P = −92000 Nm, see the vertical
line in the figure. Below this proportional gain value a positive
real characteristic root exists. To determine the stability prop-
erties of the different regions of the stability chart one can use
the semi-discretization [15], for example. This is a future task
of our study. However, the stability properties can be checked
with numerical simulations, too. In the figure, the light grey and
white areas correspond to linearly unstable and stable domains,
respectively.

S U

P1

FIGURE 5. THE STABILITY BOUNDARIES IN THE PLANE OF
THE CONTROL GAINS FOR f = 1 m, v = 20 m/s AND τ = 0.1 s.

The stability charts can be shown for a more relevant con-
trol parameter ranges, see Fig. 6. In the panels, the light grey
and white areas correspond to linearly unstable and stable do-
main, respectively. For the time delay free case τ = 0, the stabil-
ity properties of the different regions were determined. For the
non-zero delay case, we assume that the presence of a small time
delay does not change the pattern of the stability regions. There-
fore, the linearly stable and unstable domains are also shown for
τ = 0.05 s and τ = 0.1 s, see the middle and bottom panel of
Fig. 6. As can be seen, the linearly unstable domain is much
greater in the examined region for larger time delay, as was ex-
pected.
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FIGURE 6. THE STABILITY CHARTS FOR τ = 0 s, τ = 0.05 s
AND τ = 0.1 s.

NUMERICAL SIMULATIONS
The stability properties of certain points can be checked by

means of numerical simulations. The equations of motion are
rewritten in first order form:

[
q̇(t)
q̈(t)

]
=

[
0 I

−Mlin
−1Klin −Mlin

−1Clin

][
q(t)
q̇(t)

]
+

[
0 0

Mlin
−1Plin Mlin

−1Dlin

][
q(t− τ)
q̇(t− τ)

]
,

(16)

which can be written as

ẏ(t) = Ay(t)+By(t− τ) . (17)

DDE23 was used with the initial condition y(t) = 0 for t ∈
[−τ,0) and y(0) =

[
0 0 0 0 Ω0 0 0 0

]T, where ψ̇(0) = Ω0 =
0.1 rad/s was applied as an impact-like perturbation. The time
graphs of the generalized coordinates can be seen in Fig. 7, 8
and 9 for f = 1 m, v = 20 m/s and τ = 0.1 s. In the figures
ϑ(t) ≡ 0 since the linearized governing equations are simulated
in which the pitch motion is decoupled (see Eqn. (4)).

Static loss of stability can be seen in Fig. 7, which corre-
sponds to parameter point P1 in Fig. 5. That is, the trailer loses
its stability without oscillations due to the fact that the system
has a positive real characteristic root.
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FIGURE 7. THE TIME GRAPHS OF THE GENERALIZED CO-
ORDINATES FOR τ = 0.1 s, P = −100000 Nm AND D = 1000 Nms
(STATIC LOSS OF STABILITY).

The trailer loses its stability via oscillations if the control
gains are P = 20000 Nm and D = 1000 Nms, see the black con-
tinuous lines in Fig. 8, which corresponds to parameter point P2
in Fig. 6. The oscillations without control can be seen with blue
continuous lines. The effect of the impact-like initial perturba-
tion in the yaw rate ψ̇(t) excites all the vibration modes of the
system that can be observed in the first half of the time graphs.
As can be seen, the oscillations are reduced by introducing the
control.

By increasing the value of the proportional gain P for fixed
D = 1000 Nms, the motion becomes stable above a certain value.
An example for a stable motion is shown with black continuous
lines in Fig. 9, which corresponds to parameter point P3 in Fig. 6.
The oscillations without control can be seen with blue continuous
lines. As can be seen, the otherwise unstable motion is stabilized
with the help of the control.

CONCLUSIONS
A spatial model of two-wheeled trailers was introduced to

analyze the stability of car-trailer systems. The effect of a pos-
sible stability control was emulated by a control torque that is
generated by the braking forces. Our approach only considers
the effect of the control on the yaw dynamics, and do not take

FIGURE 8. THE TIME GRAPHS OF THE GENERALIZED CO-
ORDINATES FOR τ = 0.1 s, WITH CONTROL (P = 20000 Nm AND
D = 1000 Nms) AND WITHOUT CONTROL (DYNAMIC LOSS OF
STABILITY).

into account the direct effect of the braking forces on the pitch
motion. Moreover, in real case, the non-smooth characteristics of
the braking forces can be relevant when the nonlinear oscillations
are investigated.

However, some stability charts were shown and used to give
some impression about the effect of the controller and the time
delay. For a specific parameter setup, we showed that detailed
analysis of the linear stability is necessary to determine the ap-
propriate control gains when the time delay is large. More de-
tailed and precise analysis is the task of our future work.
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FIGURE 9. THE TIME GRAPHS OF THE GENERALIZED CO-
ORDINATES FOR τ = 0.1 s, WITH CONTROL (P = 20000 Nm AND
D = 2500 Nms) AND WITHOUT CONTROL (STABLE MOTION).
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