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Abstract. P automata are accepting computing devices combining features of classical automata
and membrane systems. In this paper we introduce P n-stack-automata, a restricted class of P au-
tomata that mimics the behaviour of n-stack automata. We show that for n = 1 these constructs
describe the context-free language class and for n = 3 the class of quasi-realtime languages.

1. Introduction

Membrane systems (also called P systems) are distributed computing devices inspired by the architecture
and functioning of living cells. The basic concept was introduced by Gheorghe Păun in [1], since then
membrane computing (P systems’ theory) has become a vivid research area [2].

The main features of a cell-like P system are the following: a structure of hierarchically embedded
membranes, each having a label and enclosing a region containing a multiset of objects and possibly
other membranes. Each region has an associated set of rules working on the objects present inside
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the region. The unique out-most membrane is called the skin membrane. During the functioning of the
membrane system, the objects inside regions may change and move across the membranes. The evolution
of the objects inside the membrane structure from an initial configuration (the initial contents of the
regions) to one or more pre-defined final configuration(s) (usually a halting configuration) corresponds
to a computation. The result of the computation is derived from some properties of configuration; usually,
it is the number of objects inside the regions (or inside a distinguished region) in the final configuration.

P systems can also be used for accepting languages; important variants of these models are P au-
tomata [3, 4, 5, 2]. These constructs are purely communicating accepting P systems which combine fea-
tures of classical automata and membrane systems being in interaction with their environments. Briefly,
a P automaton is a P system which receives input in each computation step from its environment that
influences its functioning. The input is given as a multiset of objects. During the computation, the ob-
jects do not change, thus, the P system works only with communication rules. Among the sequences of
inputs, accepted input sequences are distinguished. The language accepted by a P automaton is obtained
by mapping the accepted input sequences (accepted sequences of input multisets) to words of a language.
Notice that the choice of the mapping plays crucial role in this respect.

P automata have been used for describing language classes, among others the well-known language
classes of the Chomsky hierarchy. For example, it has been shown that the regular, the context-sensitive,
and the recursively enumerable language classes can be obtained with different variants of P automata.
The interested reader is referred to [2] for more information. A characterization of the context-free lan-
guage class was presented in [6], by simulating non-deterministic pushdown automata with a restricted
class of P automata, called P stack-automata.

In this paper we continue our study in describing language classes in terms of P automata. To do this,
we generalize the notion of P stack-automaton to P n-stack-automaton, and thus define a restricted class
of P automata that is inspired by n-stack automata. We show that for n = 3 these computing devices
describe the class of quasi-realtime languages and, obviously, for n = 1 the context-free language class.
Note that in general, automata with two stacks are able to simulate arbitrary Turing machine, thus, accept
any recursively enumerable language. In the case of P stack-automata, however, the situation is different,
because they work in realtime (they read an input symbol in each computation step).

The paper is organized as follows. After presenting the necessary definitions and notations from the
theory of computation and from membrane computing, we introduce the concept of P n-stack automaton
and present our results, namely, the description of context-free languages and quasi-realtime languages
in terms of P n-stack automata. We close the paper with conclusions.

2. Preliminaries and Definitions

We first recall the notions and the notations we use. We assume that the reader is familiar with the basics
of the theory of computation, in particular automata theory. For further information consult [7].

A finite set of symbols Σ is called alphabet; the number of elements in Σ is denoted by |Σ|. The set
of all words over Σ is denoted by Σ∗ and Σ+ = Σ∗ − {ε} where ε denotes the empty word. A language
L over alphabet Σ is a subset of Σ∗. The number of elements of a finite set V is denoted by |V |.

A context-free grammarG is denoted byG = (N,T, P, S), whereN is the alphabet of nonterminals,
T is the alphabet of terminals, P is the set of productions (or set of rules) and S is the start symbol. It
is known that for every context-free grammar G we can construct an equivalent context-free grammar in
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Greibach normal form, i.e. having rules of the form X → aα where X is a nonterminal, a is a terminal,
and α is a possibly empty string of nonterminals.

A non-deterministic pushdown automaton (a pushdown automaton, for short) M is denoted by
M = (Σ,Γ, Q, δ, q0, X1), where Σ is the input alphabet, Γ is the pushdown alphabet, Q is the set of
states, δ is the transition mapping, q0 ∈ Q is the initial state, and the initial pushdown contents is X1.
It is well-known that any context-free language L can be accepted by a non-deterministic pushdown au-
tomaton by empty pushdown, and conversely, any pushdown automaton accepts a context-free language.
Furthermore, for any non-empty context-free languageLwe can construct a so-called realtime pushdown
automaton, i.e. which consumes an input symbol in any step of the computation.

In the paper we will use the notion of language classes accepted by restricted versions of Turing
machines. These machines have an input tape which can only be read from left to right and several
worktapes where the heads can read, write, and move in any direction. Such a Turing machine accepts
a language in realtime, if it consumes one input symbol from the input tape in every computation step.
The class of languages that are accepted by these types of non-deterministic multitape Turing machines
in realtime is called the class of quasi-realtime languages. A language L can be accepted by a non-
deterministic k-tape Turing machine in linear time if and only if there exists a k-tape non-deterministic
Turing machine T and a positive integer c such that for all words w, it holds that w ∈ L if T accepts on
inputw within c·|w|many steps. The class of languages that are accepted by non-deterministic multitape
Turing machines in linear time consists of those languages that can be accepted by a non-deterministic
k-tape Turing machine in linear time for some k ≥ 1.

In the general case, multipushdown automata with two pushdown stores can simulate the compu-
tations of Turing machines, but in the case of realtime automata, the situation is different, since the
simulation of Turing machines with multipushdown automata does not work in realtime. It is known,
however, that the following statements are equivalent for every language L: (1) L is a quasi-realtime
language, (2) L is accepted by a non-deterministic multitape Turing machine in linear time, (3) L is the
length-preserving homomorphic image of the intersection of three context-free languages [8].

Finally, we recall some notions and notations concerning multisets.
Let U be a set - the universe - of objects, and let N denote the set of natural numbers. A multiset is

a pair M = (V, f), where V ⊆ U and f : U → N is a mapping which assigns to each object a ∈ V
its multiplicity, if a 6∈ V then f(a) = 0. The support of M = (V, f) is the set supp(M) = {a ∈ V |
f(a) ≥ 1}. If supp(M) is a finite set, then M is called a finite multiset. The set of all finite multisets
over the set V is denoted by V ∗.

We say that a ∈ M = (V, f) if a ∈ supp(M). M1 = (V1, f1) ⊆ M2 = (V2, f2) if supp(M1) ⊆
supp(M2) and for all a ∈ V1, f1(a) ≤ f2(a). The union of two multisets is defined as (M1 ∪M2) =
(V1 ∪ V2, f

′) where for all a ∈ V1 ∪ V2, f ′(a) = f1(a) + f2(a), the difference is defined for M2 ⊆ M1

as (M1 −M2) = (V1 − V2, f
′′) where f ′′(a) = f1(a)− f2(a) for all a ∈ V1 − V2, and the intersection

of two multisets is (M1 ∩M2) = (V1 ∩ V2, f
′′′) where for a ∈ V1 ∩ V2, f ′′′(a) = min(f1(a), f2(a)),

min(x, y) denoting the minimum of x, y ∈ N. We say that M is empty, denoted (as in the case of sets)
by ∅, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w over the alphabet V
with |w|a = f(a) where a ∈ V and where |w|a denotes the number of occurrences of the symbol a in
the string w. Notice that any permutation of the symbols in the string represents the same multiset. In
the following, if no confusion arises, the finite multiset of objects M = (V, f) is denoted by word w,
where w is over V and represents M .
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2.1. P automata

A cell-like P system is a structure of hierarchically embedded membranes, each having a label and en-
closing a region containing a multiset of objects and possibly other membranes. The out-most membrane,
called the skin membrane, is unique and it is usually labeled with 1. If membrane i contains membrane
j, and there is no other membrane, k, such that k contains j and i contains k, then we say that membrane
i is the parent membrane of j, denoted by parent(j) = i.

The evolution of the contents of the regions of a P system is described by rules associated to the
regions. Applying the rules synchronously in each region, the system performs a computation by passing
from one configuration to some other (not necessarily different) one. The rules can be of various types,
here we consider communication rules called symport or antiport rules.

A symport rule is of the form (x, in) or (x, out), where x is a finite multiset over alphabet V , i.e.
x ∈ V ∗. If such a rule is present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, respectively. The environment is considered to be the
parent region of the skin membrane. We note that if the rules are applied in the maximally parallel way,
then symport rules of type (x, in) should be avoided inside the region enclosed by the skin membrane.
Otherwise, if the environment contains an infinite number of copies of multiset x, then an infinite number
of objects can enter the system in one step. An antiport rule is of the form (x, in; y, out), x, y ∈ V ∗. In
this case, objects of x enter from the parent region and in the same step objects of y leave to the parent
region. All types of these rules might be equipped with a promoter or inhibitor multiset, denoted as
(x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ∗, Z ∈ {z,¬z | z ∈ V ∗} in which case they can only
be applied if region i contains the objects of multiset z, or if Z = ¬z, then region i must not contain the
elements of z. (For more information consult [2].)

Now we introduce some notation that we would like to use later. If r is a symport rule (x, in) or
(y, out), or an antiport rule (x, in; y, out), then let import(r) = x, and export(r) = y. If r has a
promoter multiset z (it is of the form (x, in)|z , (y, out)|z , or (x, in; y, out)|z), then promoter(r) =
z. If r has an inhibitor multiset z (it is of the form (x, in)|¬z , (y, out)|¬z , or (x, in; y, out)|¬z), then
inhibitor(r) = z. Further, if r is a symport rule without exporting or importing any objects, then
export(r) = ε or import(r) = ε, respectively. If r does not have any promoter or inhibitor, then
promoter(r) = ε or inhibitor(r) = ε, respectively.

A P automaton is a (3n + 2)-tuple Π = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where n ≥ 1 is the
number of membranes, V is a finite set of objects, µ is a membrane structure of n membranes with
membrane 1 being the skin membrane, and for all i, 1 ≤ i ≤ n,

• wi ∈ V ∗ is the initial contents (state) of region i, that is, it is the finite multiset of all objects
contained by region i,

• Pi is a finite set of communication rules associated to membrane i, they can be symport rules or
antiport rules, with or without promoters or inhibitors, as above, and

• Fi ⊆ V ∗ is a finite set of finite multisets over V called the set of final states of region i. If Fi = ∅,
then all the states of membrane i are considered to be final.

The n-tuple of finite multisets of objects present in the n regions of the P automaton Π describes a
configuration of Π, the n-tuple (w1, . . . , wn) ∈ (V ∗)n is the initial configuration.
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The application of the rules can take place in a sequential (seq), or in a maximally parallel (par)
manner.

The transition mapping of a P automaton is a partial mapping δX : V ∗ × (V ∗)n → 2(V ∗)n . These
mappings are defined implicitly by the rules of the rule sets Pi, 1 ≤ i ≤ n. For a configuration
(u1, . . . , un),

(u′1, . . . , u
′
n) ∈ δX(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ∗ the automaton may enter the configuration (u′1, . . . , u
′
n) ∈

(V ∗)n, if there exist rules as follows.
If X = seq, then there exists a rule ri ∈ Pi with promoter(ri) ⊆ ui and inhibitor(ri) ∩ ui = ∅ for

all 1 ≤ i ≤ n. Let importseq(i) = import(ri), and let exportseq(i) = export(ri).
If X = par, then there exists a multiset of rules Ri = ri,1 . . . ri,mi , for all 1 ≤ i ≤ n, with

promoter(ri,j) ⊆ ui and inhibitor(ri,j) ∩ ui = ∅, 1 ≤ j ≤ mi, satisfying the conditions below.
Furthermore, there is no rule occurrence r ∈ Pj , for any j, 1 ≤ j ≤ n, such that the rule multisets
R′i with R′i = Ri for i 6= j and R′j = {r} ∪ Rj , also satisfy the conditions. Let importpar(i) =⋃

1≤j≤m1
import(r1,j), and let exportpar(i) =

⋃
1≤j≤m1

export(r1,j).
Then for X ∈ {seq, par} and for all 1 ≤ i ≤ n, the conditions that the chosen rules must satisfy are

given by

1. importX(1) = u,

2. exportX(i) ∪
⋃
parent(j)=i importX(j) ⊆ ui,

and the new configuration is obtained as

u′i = ui ∪ importX(i) ∪

 ⋃
parent(j)=i

exportX(j)

− exportX(i)−

 ⋃
parent(j)=i

importX(j)

 .

We define the sequence of multisets of objects accepted by the P automaton as the sequence of input
multisets which appear in the environment and are consumed by the skin membrane in each computation
step until the system reaches a final state, a configuration where for all j with Fj 6= ∅ it holds that
uj ∈ Fj .

We extend δX to δ̄X , X ∈ {seq, par}, a function mapping the sequences of finite multisets over V
and the configurations of Γ to new configurations. We define δ̄X as

1. δ̄X(v, (u1, . . . , un)) = δX(v, (u1, . . . , un)), v, ui ∈ V ∗, 1 ≤ i ≤ n, and

2. δ̄X((v1) . . . (vs+1), (u1, . . . , un)) =
⋃
δX(vs+1, (u

′
1, . . . , u

′
n))

for all (u′1, . . . , u
′
n) ∈ δ̄X((v1) . . . (vs), (u1, . . . , un)), vj , ui, u′i ∈ V ∗,

1 ≤ i ≤ n, 1 ≤ j ≤ s+ 1.

Note that we use brackets to separate the elements of the multiset sequence (v1) . . . (vs+1) ∈ (V ∗)∗

from each other, in order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ∗.
Let Π be a P automaton as above with initial configuration (w1, . . . , wn), let Σ be an alphabet, and

let f : V ∗ −→ Σ ∪ {ε} be a mapping with f(x) = ε if and only if x = ∅.
The language accepted by Π under mapping f and working mode X , for X ∈ {seq, par}, is defined

as
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LX(Π, f) = {f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄X((v1) . . . (vs), (w1, . . . , wn))

with uj ∈ Fj for all j with Fj 6= ∅, 1 ≤ j ≤ n, 1 ≤ s}.

Notice that the choice of mapping f is crucial. It has to be “easily” computable because the power
of the P automaton should be provided by the underlying membrane system and not by f itself. The
notion of “easiness”, however, depends on the context we are working in, so we do not provide a general
definition of this concept.

The reader might easily notice that the accepting power of P automata strongly depends both on the
working mode (the way of rule application) and on the mapping which is used for defining the accepted
language. We briefly discuss this property by using some restricted variants of P automata as examples.

If the rule application is sequential, i.e. at each computation step at most one rule is applied in every
region, then the “problem” of mapping the set of possible input multisets to a finite alphabet does not
appear since the number of possible inputs is finite. If {v1, . . . , vt}, vi ∈ V ∗ are the different multisets
appearing in rules (vi, in;ui, out) ∈ P1, 1 ≤ i ≤ t, then f(vi) = ai ∈ Σ is a natural correspondence
between the two sets.

In [9], P automata with sequential rule application were shown to describe a language class which
is strictly included in the class of languages accepted by Turing machines reading the separate input
tape one way, and using logarithmic space for additional computations on the work-tapes. This sub-
logarithmic-space language class still contains well-known non-trivial languages, {anbncn | n ≥ 1}, for
example.

If the rule application of the P automaton is maximally parallel, the situation is more complex. A
mapping between the possibly infinite set of input multisets and a finite alphabet has to be specified.
In [9] it was shown that if rules of the type (v, in) are not allowed in the skin membrane, and if the
mapping f : V ∗ → Σ ∪ {ε} is specified in such a way that f(x) = ε implies x = ∅ and f is linear
space computable by a Turing machine, then P automata accept exactly the class of context-sensitive
languages. Moreover, it is also shown that all context-sensitive languages can be accepted using an f
which maps an input multiset x ∈ V ∗ to some element of {a ∈ V | a ∈ supp(x)} and f(∅) = ε. That
is, it is also possible to give a characterization of context-sensitive languages in terms of P automata.
Furthermore, it is easy to verify if a given system conforms to this specification or not.

3. P multistack-automata

We introduce a restricted class of P automata called P multistack-automata. The concept is a general-
ization of the notion of a P stack-automaton, introduced in [6], to present a variant of P automata that
describes context-free languages. We show that having three ”stacks” and using the maximally parallel
working mode, these P automata variants describe the class of quasi-realtime languages, and obviously,
with one stack, the class of context-free languages can also be obtained by these constructs.

Before presenting the formal definition, we briefly describe the idea behind P multistack-automata.
The goal is to give a syntactic characterization of the rules and object alphabets that are necessary to
enable a stack-automaton-like functioning by imitating a stack type of information storage mechanism
using the P automata framework. Stacks can be simulated by multisets similarly to the way they are
simulated by counters: the multiplicity of an object represents a number, which in turn corresponds to
the contents of a stack. The correspondence is based on the positional numeral notation: stack contents
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correspond to strings, and having an alphabet Σ of k symbols, a string over Σ can naturally be interpreted
as a (k+1)-ary number. (We take k+1 as the base of the positional notation in order to exclude the zero
digit, so we do not have to deal with the problem of leading zeroes.) If the stack contents is represented
by strings where the right end of the string corresponds to the top of the stack, then a pop operation
corresponds to a division of the numerical representation by k+ 1. Similarly, a push operation pushing l
symbols to the stack corresponds to a multiplication by (k+ 1)l and the addition of a number consisting
of l digits. The goal of the following definition of P multistack-automata is to provide a minimal set of
features that are necessary to maintain such numerical stack representations in a P automaton.

Definition 3.1. A P multistack-automaton Π = (V, µ, (w1, P1, F1), (w2, P2, F2)) is a P automaton where
µ = [1[2]2]1, V can be partitioned into disjoint subsets as

V = Σ ∪B ∪ C ∪D ∪ {I},

the initial multisets are of the form

w1 = b1 . . . bm, where B = {b1, . . . , bm},
w2 = c1 . . . clIu, where u ∈ D∗, ci ∈ C, 1 ≤ i ≤ l,

the sets of final states are finite sets of finite multisets over D,

Fi ⊂ D∗ for 1 ≤ i ≤ 2,

and there is a fixed positive integer k, such that all the rules are in one of the following forms.
For P1:

• (a, out) where a ∈ Σ ∪ C,

• (bk
i
, in; bk, out)|c where i ≥ 0, b ∈ B, c ∈ C, and

• (abi11 . . . b
im
m c1, in; bj11 . . . bjmm c2, out) where a ∈ Σ, B = {b1, . . . , bm}, c1, c2 ∈ C, 1 ≤ ji < k,

1 ≤ i ≤ m, and

moreover, if for a given c2 ∈ C and bs ∈ B we have the rule (bk
j

s , in; bks , out)|c2 in a region together
with the rule (abi11 . . . b

im
m c1, in; bj11 . . . bjmm c2, out), then the multiplicity of the objects bs brought in by

the second type of rule is less than the number of objects bs brought in by one copy of the first type of
rule, that is, is < kj .

For P2:

• (bjcl, in;u, out) where j ≥ 1, b ∈ B, c ∈ C, l ≥ 0, u ∈ D+, and

• (Ic, out) where c ∈ C.

A P multistack-automaton is a P m-stack-automaton for some m ∈ N, if |B| = m, that is, if the
cardinality of the set B is m. We also call P 1-stack automata simply P stack-automata.



8 E. Csuhaj-Varjú, Gy. Vaszil / On Languages of P automata

Definition 3.2. The language accepted by the P multistack-automaton Π over the finite alphabet Σ and
in working mode X , where X ∈ {seq, par} is the language LX(Π, f) accepted by the P automaton Π
working in mode X and with a function f defined in the usual manner, i.e. the empty multiset, and only
the empty multiset is mapped to ε, and for non-empty input multisets, the image depends only on the
occurrence or non-occurrence of certain symbols, but not on their multiplicity. That is,

f : V ∗ → Σ ∪ {ε}, where for any x 6= ∅, f(x) 6= ε,

and moreover, for any x, y ∈ V ∗, supp(x) = supp(y) implies that f(x) = f(y).

As we have seen above, a P multistack-automaton is a P automaton having rules of a restricted form
and a special, very simple mapping. Initially, the skin membrane contains a number of copies of objects
from the set B, and the other membrane contain finite multisets of objects over the set D plus single
occurrences of some objects from the set C. The rules are applied until a final configuration, i.e. a
certain combination of a finite number of elements from the set D, is reached.

Now we show that P 1-stack-automata accept exactly the class of context-free languages. We note
that the proof is a revised version of the corresponding proof in [6].

Theorem 3.3. A language is context-free if and only if it is accepted by a P stack-automaton working in
the maximally parallel working mode.

Proof:
First we prove that every context-free language can be accepted by a P stack-automaton working in the
maximally parallel manner. For simplicity, we will not indicate the working mode in the sequel.

Let L be a context-free language and M = (Σ,Γ, Q, δ, q,X1) be a (non-deterministic) pushdown
automaton with input alphabet Σ, pushdown alphabet Γ, set of statesQ, transition mapping δ, initial state
q ∈ Q, and initial pushdown contents X1, accepting L\{ε} with empty pushdown. Let k = |Γ|+ 1, and
let us assume, without the loss of generality, that Γ = {X1, X2, . . . , Xk−1},Q = {q}, and the transitions
of M are of the form

(q, α) ∈ δ(q, a,X) where q ∈ Q, α ∈ Γ∗, a ∈ Σ, X ∈ Γ.

(Such a pushdown automaton can be obtained from a context-free grammar in Greibach normal form,
i.e. having rules X → aα where X is a nonterminal, a is a terminal, and α is a possibly empty string of
nonterminals.)

Before turning to the details of the proof, we provide an auxiliary notations. For a string w, where w
is considered as an integer given in the k-ary notation, val(w) denotes the numerical value of w.

We construct a P stack-automaton Π accepting L. Π simulates M and if ε ∈ L, then it accepts ε as
well. Let

Π = (V, [1 [2 ]2]1, (w1, P1, {E}), (w2, P2, ∅))

be a P stack-automaton with

V = Σ ∪B ∪ C ∪D ∪ {I},
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where B = {b}, C = {(a,X, α) | (q, α) ∈ δ(q, a,X) is a transition of M}, and D = {T,E}. Let

w1 = b,

P1 = {(bk|α| , in; bk, out)|(a,X,α) | (a,X, α) ∈ C} ∪

{(a(a′, X ′, α′)bval(α), in; bi(a,Xi, α), out) | (a,Xi, α), (a′, X ′, α′) ∈ C} ∪
{(a, out) | a ∈ Σ} ∪ {(I, out)},

w2 = TEI ∪ {(a,X1, α) | a ∈ Σ, α ∈ Γ∗},
P2 = {(b, in;T, out)} ∪ {(c, in;E, out), (Ic, out) | c ∈ C} ∪ P ′2.

where

P ′2 =

{
{(b ∪ {(a,X1, α) | a ∈ Σ, α ∈ Γ∗}, in;E, out)} if ε ∈ L,
∅ otherwise.

A configuration (w, γ) of M corresponds to the configuration (u1, u2) where the k-ary notation of |u1|b
is the string i1i2 . . . is where Xi1Xi2 . . . Xis = γ, Xis being the topmost symbol. In the following,
stringk(n) will denote the sequence of pushdown symbols corresponding to integer n.

Let us assume that
u1 = a′(a,Xi, α)bn (1)

where a′ ∈ Σ, (a,Xi, α) ∈ C, and bn corresponds to the string γ ∈ Γ∗, string(n) = γ. Since only one
occurrence of an object from C is present, the rules which could be used in the skin region are of the
form

(bk
|α|
, in; bk, out)|(a,Xiα) and (a(a′, X ′, α′)bval(α), in; bi(a,Xi, α), out) (2)

where there exists a transition among the transitions of the pushdown automaton M

(q, α) ∈ δ(q, a,Xi).

If the application of two such rules consumes all the objects b of the skin region, then string(n) =
γ = γ′Xi, and after the application of the rules we obtain a configuration (u′1, u2) where u′1 = acbp for
some c ∈ C with p = ((n − i)/k)k|α|+1 + val(α), that is, an object a ∈ Σ (and a number of b-s) has
entered the system, the new string corresponding to the new number of objects b is string(p) = γ′α,
where γ′α is the new contents of the pushdown of M after executing the transition above.

If no rule-pair of the form (2) can be applied in the skin region or a rule-pair is applied in a way
which does not consume all b objects, that is, when no transition of M is simulated, then, due to the
maximal parallelism of rule application, a rule (b, in;T, out) is applied in the second region sending the
trap object T to the skin region which makes it impossible for Π to reach the final configuration.

As we have seen, a configuration cf = (u1, u2) with u1 of the form (1) of Π corresponds to a
configuration of M , and any configuration of Π following cf is either corresponding to a possible next
configuration of M , or the computation of Π cannot produce any result.

Now we explain how the computation of Π is started and finished. The initial configuration of Π is

(b, TEI ∪ {(a,X1, α) | a ∈ Σ, α ∈ Γ∗}).
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In the first computation step of Π, an object from C and the symbol I move from the second region to
the first one, and then the initial transition of M , (q, α) ∈ δ(q, a,X1) is simulated by the rules

(bk
|α|
, in; bk, out)|(a,X1,α) and (a(a′, X ′, α′)bval(α), in; b(a,X1, α), out).

Besides these rules, we also have in the first region the rule (I, out), thus, after the first two computation
steps, we either obtain a configuration with the trap symbol in the first region, or we get

(bval(α)c, TE) for some c ∈ C.

This is a configuration corresponding to a configuration of M after the initial transition.
Let us assume now that Π is in a configuration

(vbn(a,Xm, ε), u2)

where string(n) = Xm and a possible transition of M is

(q, ε) ∈ δ(q, a,Xm)

which finishes the computation by emptying the pushdown. This implies that out of the rule pair

(bk
0
, in; bk, out)|(a,Xm,ε) and (a(a′, X ′, α), in; bn(a,Xm, ε), out),

associated to the first region, only (a(a′, X ′, α), in; bn(a,Xm, ε), out) is applicable (since Xm denotes
a positive integer less than k). The new configuration will be of the form

(a(a′, X ′, α), u2).

Now the computation can be finished by applying the rule (a, out) in the first region, and the rule
((a′, X ′, α), in;E, out) in the second region, producing the final configuration

(E, (a′, X ′, α)u′2)

where Eu′2 = u2.
As we have seen, Π either simulates a computation of M (or accepts the empty word, if ε ∈ L), or

does not reach the final configuration.
To show that all languages accepted by P stack-automata are context-free, we present the following,

rather informal argument.
Looking at the restrictions which define a P stack-automaton, we can notice that the region other than

the skin region, can only contain a limited number of objects which means that they can be in a finite
number of different configurations. The skin region can also contain a finite number of objects other than
b, thus, to record a configuration of the P stack-automaton, we need to record the potentially unbounded
number of b-s in the skin membrane, plus a finite set of states to record the distribution of the objects in
the two regions.

If we look at the rules of the skin region, we can also notice that the number of b-s can be recorded
with a pushdown, thus, that a usual pushdown automaton is able to simulate the work of the P stack-
automaton. To see this, consider the rules

(bk
i
, in; bk, out)|c where i ≥ 0, c ∈ C, (3)
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and
(ablc1, in; bmc2, out) where a ∈ Σ, c1, c2 ∈ C, l,m ≥ 0. (4)

Since at most one occurrence of one object from C is present in the skin region, the rules of type (3)
multiply the number of b-s by ki−1, thus, if we consider the k-ary number denoting the number of b-s,
the rules of type (3) append i− 1 zeroes to the end of the string of k-ary digits (or, if i = 0 add the value
expressed by the last digit to the value obtained by erasing it from the end of the string). Since the length
of the manipulated suffix of the digit string is bounded, the string of digits can be stored in a pushdown
by introducing k − 1 symbols to denote the digits. Moreover, since only one copy of a rule of type (4)
can be used (since at most one copy of c ∈ C is present), the changes of the number of b-s caused by
these rules can be simulated using the finite control by modifying a bounded number of topmost symbols
of the pushdown. ut

Before we continue, we demonstrate the above construction with an example.

Example 3.4. Let G = ({a, b}, {X2, X3}, X2, P ) be a context-free grammar where the set of produc-
tions is P = {X2 → aX2X3, X2 → aX3, X3 → c}. Note that G is in Greibach normal form, and it
generates the language L(G) = {ancn | n ≥ 1}.

Let us consider the pushdown automatonM = ({a, c}, {X1, X2, X3}, {q}, δ, q,X1) acceptingL(G),
with δ : Q× Σ× Γ→ 2{q}×Γ∗ defined as

δ(q, a,X1) = {(q,X2X3), (q,X3)}, δ(q, a,X2) = {(q,X2X3), (q,X3)}, δ(q, c,X3) = {(q, ε)}.

Since |Γ| = 3, let k = 4, and construct Π = (V, [ [ ]2 ]1, )(w1, P1, F1), (w2, P2, F2)), the P stack-
automaton corresponding to M . Let

V = {a, c} ∪ {b} ∪ {(a,X1, X2X3), (a,X1, X3), (a,X2, X2X3), (a,X2, X3), (c,X3, ε)} ∪
{T,E} ∪ {I},

and let

w1 = ∅,
P1 = {(bk2 , in; bk, out)|(a,X2,X2X3), (b

k, in; bk, out)|(a,X2,X3), (b
k, out)|(c,X3,ε)} ∪

{(ab3k+2(a,X2, X2X3), in; b(a,X1, X2X3), out),

(ab3(c,X3, ε), in; b(a,X1, X3), out),

(ab3k+2(a,X2, X2X3), in; b2(a,X2, X2X3), out),

(ab3(c,X3, ε), in; b2(a,X2, X3), out),

(c(c,X3, ε), in; b3(c,X3, ε), out)} ∪
{(a, out), (c, out)} ∪ {(I, out)},

F1 = {E},

w2 = {b, T, E, I, (a,X1, X3), (a,X1, X2X3)},
P2 = {(b, in;T, out), ((c,X3, ε), in;E, out), (bI(a,X1, X2X3), out), (bI(a,X1, X3), out)},
F2 = ∅.
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Notice that for the sake of brevity, we indicated only those rules which can actually used by the P stack-
automaton. By rigorously following the construction of the previous theorem, we also obtain a few
additional rules that can never be applied in a successful computation.

To see how the P stack-automaton Π works, consider the following. After the initial configuration

(∅, bTEI(a,X1, X2X3)),

we get
(u1bI, u2TE)

with either u1 = (a,X1, X3) and u2 = (a,X1, X2X3), or u1 = (a,X1, X2X3) and u2 = (a,X1, X3),
the single b in first region corresponds to the fact that the pushdown automaton has symbol X1 in its
stack. In the first case, we must proceed with

(bI(a,X1, X3), u2TE)⇒ (ab3(c,X3, ε), u2TE),

simulating the exchange of X1 to X3 in the stack, while reading an input letter a, and indicating that
the transition corresponding to the object (c,X3, ε) will be simulated in the next step, and then the
computation will be finished as

(ab3(c,X3, ε), u2TE)⇒ (c(c,X3, ε), u2TE)⇒ (E, u2(c,X3, ε)T ).

In the other case, we have

(bI(a,X1, X2X3), u2TE)⇒ (ab3k+2u3, u2TE),

where u3 is either (a,X2, X2X3) or (a,X2, X3) depending on how the computation will continue. The
number of bs, 3k + 2 corresponds to the fact that the simulated pushdown automaton has X2X3 in its
stack. Now, if u3 = (a,X2, X3), then we get

(ab3k+2(a,X2, X3), TE)⇒ (ab3k+3(c,X3, ε), u2TE),

and then
(ab3k+3(c,X3, ε), u2TE)⇒ (cb3(c,X3, ε), u2TE)⇒ (c(c,X3, ε), u2TE).

Now, the number of bs in the first region is zero, corresponding to the empty stack of the simulated
pushdown automaton. The computation can be finished by

(c(c,X3, ε), u2TE)⇒ (E, u2T (c,X3, ε))

reaching a final configuration.
If in the configuration

(ab3k+2u3, u2TE)

we have u3 = (a,X2, X2X3), then we get

(ab3k+2(a,X2, X2X3), u2TE)⇒ (ab3k
2+3k+2u3, u2TE)
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where u3 is again either (a,X2, X2X3) or (a,X2, X3) depending on how the computation will continue.
The number of bs, 3k2 + 3k + 2 corresponds to the fact that the simulated pushdown automaton has
X2X3X3 in its stack. Now, if u3 = (a,X2, X3), then computation finishes by emptying the X3 symbols
from the stack and reading a c in each step, as we have seen above, or if u3 = (a,X2, X2X3), then we
put on more X2X3 pair on the pushdown as

(ab3k
2+3k+2(a,X2, X3), u2TE)⇒ (aB3k3+3k2+3k+2u3, u2TE),

where u3 ia again the same as above.

Note that {a}i{c}i, i ≥ 1 are the sequences of multisets entering Π during its computations, so
having f({x}) = x as the input function, Π accepts strings of the form aici, i ≥ 1.

In the following we show that (with a suitable mapping f and using the maximally parallel working
mode) any quasi-realtime language can be accepted by a P 3-stack- automaton and conversely. The proof
is based on the fact that any quasi-realtime language is the length-preserving homomorphic image of the
intersection of three context-free languages, and that any quasi-realtime language can be accepted by a
non-deterministic multitape Turing machine working in linear time [8].

Theorem 3.5. A language is quasi-realtime if and only if it is accepted by a P 3-stack-automaton work-
ing in the maximally parallel working mode.

Proof:
We first prove that for arbitrary context-free languages L1, L2, and L3 it holds that their intersection,
L = L1 ∩ L2 ∩ L3, can be accepted by a P 3-stack-automaton. Let us consider the non-deterministic
pushdown automata Mi = (Σ,Γi, Q, q,Xi,1, δi) accepting languages Li, 1 ≤ i ≤ 3. Without the loss of
generality we assume that Q = {q}, δi : Q×Σ×Γi → Q×Γ∗i , 1 ≤ i ≤ 3, i.e., the pushdown automata
have one internal state, and they read one symbol of the input string in each computational step.

Let us also assume that the three pushdown alphabets contain the same number of symbols, and let
k be a natural number such that |Γ1| = |Γ2| = |Γ3| = k − 1. (If |Γi| < |Γj | for some 1 ≤ i, j ≤ 3, we
add “dummy” elements to Γi to make the cardinality of the two alphabets equal.) Now the pushdown
symbols can be denoted as Γi = {Xi,1, Xi,2, . . . , Xi,k−1}, 1 ≤ i ≤ 3 (with Xi,1 being the initial
pushdown symbol). (Recall that for αi ∈ Γ∗i , val(αi) denotes the numerical value of the string αi when
it is considered as an integer given in k-ary notation with Xi,j denoting digit j, 1 ≤ j ≤ k − 1.)

We construct the following P 3-stack automaton. Π = (V, [ [ ]2 ]1, (w1, P1, F1), (w2, P2, F2)) with
V = Σ ∪B ∪ C ∪D ∪ {I}, where B = {b1, b2, b3}, D = {T,E}, and

C = {(a,X1, X2, X3, α1, α2, α3) | (q, αi) ∈ δi(q, a,Xi) is a transition of Mi}.



14 E. Csuhaj-Varjú, Gy. Vaszil / On Languages of P automata

Let

w1 = b1b2b3,

P1 = {(bk|αi|i , in; bki , out)|(a,X1,X2,X3,α1,α2,α3) | (a,X1, X2, X3, α1, α2, α3) ∈ C, 1 ≤ i ≤ 3} ∪

{(acbval(α1)
1 b

val(α2)
2 b

val(α3)
3 , in; bi11 b

i2
2 b

i3
3 (a,X1,i1X2,i2X3,i3 , α1, α2, α3), out) |

where (a,X1,i1X2,i2X3,i3 , α1, α2, α3), c ∈ C} ∪
{(a, out), (c, out) | a ∈ Σ, c ∈ C},

w2 = TEI ∪ {(a,X1,1, X2,1, X3,1, α1, α2, α3) | a ∈ Σ, αi ∈ Γ∗i , 1 ≤ i ≤ 3},
P2 = {(bi, in;T, out) | 1 ≤ i ≤ 3} ∪ {(c, in;E, out), (Ic, out) | c ∈ C} ∪ P ′2.

where

P ′2 =

{
{(b1b2b3c, in;E, out) | c ∈ C} if ε ∈ L,
∅ otherwise.

The three pushdown automata are realtime, so if they are started with the same input string, then
after a given number of computation steps, their configurations can be denoted by (w, γ1), (w, γ2), and
(w, γ3), or by (w, γ1, γ2, γ3) in short. This corresponds to the configuration (u1, u2) of the P automaton
where the k-ary notation of |u1|bi is the string i1i2 . . . isi where Xi,i1Xi,i2 . . . Xi,isi

= γi, Xi,si being
the topmost symbol, 1 ≤ i ≤ 3.

Now, using similar considerations as in the proof of the previous theorem, we can see that the P
3-stack-automaton works by simultaneously executing the computation steps of the three pushdown au-
tomata when they all read the same input symbol. Since the pushdown automata are realtime, their
computations have the same length when started with the same input, so an input string belongs to the
intersection of their accepted languages if they all enter an accepting configuration (they all empty their
pushdown store) in the same computation step, right after reading the last symbol of the string. If such
a configuration can be reached by the three pushdown automata, the simulating P 3-stack automaton
can also reach an accepting configuration by sending all terminal symbols out to the environment, and
exchanging the symbol c ∈ C from the first region to the symbol E from the second region, entering the
accepting configuration (E, cT ) for some c ∈ C.

Now, since in each step of the computation exactly one symbol from Σ enters the P automaton, we
can define f : V ∗ → Σ for an u ∈ V ∗ as f(u) = a, a ∈ Σ for |u|a 6= 0, thus, with such an f , we
have L(Π, f) = L1 ∩ L2 ∩ L3 = L. To accept the length preserving homomorphic image h(L) of the
intersection, we can modify the input mapping by f ′(u) = h(f(u)), and consider the language L(Π, f ′)
of the P 3-stack-automaton.

To see that languages of P 3-stack-automata are quasi-realtime, that is, that they can be accepted by
non-deterministic Turing machines in linear time, consider the following.

Looking at the construction of the P 3-stack-automaton, we can notice that the region other than
the skin region can only contain a limited number of objects which means that they can be in a finite
number of different configurations. The skin region can also contain a finite number of objects other
than b1, b2, b3, thus, to record a configuration of the P stack-automaton, we need to record the potentially
unbounded number of b1, b2, b3 in the skin membrane, plus a finite set of states to record the distribution
of the objects in the other region.
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If we look at the rules of the skin region, we can also notice that a record of the number of b1, b2, b3
can be easily maintained. The number of bis are changed by the rules

(bk
m1

1 , in; bk1, out)|c2 , (bk
m2

2 , in; bk2, out)|c2 , (bk
m3

3 , in; bk3, out)|c2 (5)

and

(abi11 b
i2
2 b

i3
3 c1, in; bj11 b

j2
2 b

j3
3 c2, out) (6)

where 0 ≤ j ≤ t, a ∈ Σ, c1, c2 ∈ C, 0 ≤ il, jl ≤ kt, 1 ≤ l ≤ 3, for some t ∈ N, and mj =
logk ij , 1 ≤ j ≤ 3.

Since at most one occurrence of one object from C is present in the skin region, the rules of type
(5) multiply the number of bis by at most kt, thus, if we consider the k-ary number denoting the number
of bis, the rules of type (5) append at most t zeros to the end of the string of k-ary digits (or, if j = 0,
then they erase the last digit from the end of the string). Moreover, since only one copy of a rule of type
(6) can be used (because there is at most one copy of c ∈ C present), the changes of the number of bis
caused by these rules can be recorded by replacing the zeros at the end of the number strings by non-zero
digits. Since the length of the manipulated suffix of the digit string is bounded by t, the strings can be
modified in a constant number of Turing machine steps, which means that computations of the P 3-stack
automaton can be simulated by a non-deterministic Turing machine in linear time. ut

4. Conclusion

In this paper we introduced the notion of a P n-stack-automaton, a generalization of P stack-automaton,
introduced in [6] for describing the class of context-free languages in terms of symport/antiport P sys-
tems. Just like P stack-automaton was inspired by the concept of pushdown automaton, P n-stack-
automata are motivated by classical automata having n, possibly more than one stack or pushdown store.
Pushdown automata have crucial importance in automata theory since these machines accept exactly the
class of context-free languages. Context-free languages are widely used in computer science, both in
theory and in practical applications, but they do not have all properties which the applications need (for
example, modelling natural languages non-context-free structures are needed as well). One possible way
for having larger, more complex language classes is to extend the concept of a pushdown automaton. In
the literature, we find several machine models with possibly more than one pushdown stores or stacks,
like multi-pushdown automata, multi-stack automata and their variants, which have a significantly in-
creased the accepting capability, even computational completeness can be obtained with these types of
constructs. For example, interesting variants are the so-called shrinking multi-pushdown automata that
with two pushdown stores describe the class of growing context-sensitive languages and with three push-
down stores the class of quasi-realtime languages [10]. (We note that in the case of these multi-pushdown
automata models there is no separate one-way input tape, the input is provided as the initial contents of
the first pushdown store.) Notice that P n-stack automata for n = 3 describe the class of quasi-realtime
languages.

One challenging research direction for the future is to find restricted P automata classes that pro-
vide descriptions of language classes of other well-known machine models with possibly more than one
pushdown stores.
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