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Abstract

Many organisms synthesize secondary metabolites against natural enemies. However, to which environmental factors the
production of these metabolites is adjusted to is poorly investigated in animals, especially so in vertebrates. Bufadienolides are
steroidal compounds that are present in a wide range of plants and animals and, if present in large quantities, can provide
protection against natural enemies, such as pathogens. In a correlative study involving 16 natural populations we investigated
how variation in bufadienolide content of larval common toads (Bufo bufo) is associated with the bacterial community structure
of their aquatic environment. We also evaluated pond size, macrovegetation cover, and the abundance of predators, conspecifics
and other larval amphibians. We measured toxin content of tadpoles using HPLC-MS and determined the number of
bufadienolide compounds (NBC) and the total quantity of bufadienolides (TBQ). AICc-based model selection revealed strong
relationships of NBC and TBQ with bacterial community structure of the aquatic habitat as well as with the presence of
conspecific tadpoles. The observed relationships may have arisen due to adaptation to local bacterial communities, phenotypic
plasticity, differential biotransformation of toxin compounds by different bacterial communities, or a combination of these
processes. Bacterial groups that contribute to among-population variation in toxin content remain to be pinpointed, but our study
suggesting that toxin production may be influenced by the bacterial community of the environment represents an important step
towards understanding the ecological and evolutionary processes leading to microbiota-mediated variation in skin toxin profiles
of aquatic vertebrates.
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Introduction

Many organisms are capable of synthesizing secondary me-
Electronic supplementary material The online version of this article tabolites de novo, which can act as chemical defenses against
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among sites, different levels of constitutive defenses are ex-
pected. This results in local adaptation with fixed toxin levels:
members of populations are highly toxic if encounter rates
with natural enemies are high and less toxic if the threat posed
by enemies is relatively low (Hague et al. 2016). In contrast,
environments where ecologically important factors vary un-
predictably favor the evolution of phenotypic plasticity, which
is the ability of individual genotypes to produce different phe-
notypes in different environmental conditions (DeWitt and
Scheiner 2004; Harvell 1990; West-Eberhard 1989). In case
of genetic drift, spatial variation in toxin levels can appear
among small, genetically isolated populations caused by ran-
dom processes leading to changes in allele frequencies (Nei
etal. 1975).

Steroidal bufadienolides are among the most studied
groups of biologically active compounds constituting chemi-
cal defenses. They have been isolated from both plant and
animal sources and are known to block membrane Na*/K™-
ATPases, making them cardiotoxic if present at sufficient
quantities (Daly 1995; Krenn and Kopp 1998; Steyn and
van Heerden 1998). Several toad species in the family
Bufonidae are known to synthesize bufadienolides de novo
in the serous glands of their skin already from early larval
stages on (Hayes et al. 2009a; Ujszegi et al. 2017; Uveges
etal. 2017). These skin-toxins may be effective against natural
enemies including predators (Denton and Beebee 1991,
Hantak et al. 2016; Kruse and Stone 1984; Peterson and
Blaustein 1991; Shine 2010), competitors (Bokony et al.
2018) and potential pathogens (Barnhart et al. 2017; Cunha
Filho et al. 2005; De Medeiros et al. 2019; Tempone et al.
2008). However, little is known about what evolutionary pro-
cesses and environmental factors influence bufadienolide
synthesis.

In a previous study on among-population variation in the
toxin content of larval common toads (Bufo bufo) in natural
habitats we observed that tadpole toxin content was related to
the density of conspecifics and to pond permanence, but not to
predator abundance (Bokony et al. 2016). However, in that
study, microbial communities of the studied ponds were ig-
nored. As demonstrated by Cunha Filho et al. (2005),
bufadienolide compounds synthesized in the skin of
Rhinella (=Bufo) rubescens have potent antimicrobial activity
against both Gram-positive and Gram-negative bacteria. Also,
bufadienolides can inhibit the growth of Batrachochytrium
dendrobatidis, a fungal pathogen associated with global am-
phibian declines (Barnhart et al. 2017). Although
bufadienolides are present, defensive antimicrobial peptides
(AMPs) are lacking from the skin of bufonids (Conlon
2011; Konig et al. 2015). This suggests that bufadienolides
play an important role in skin-based immune-defense, and as
such, may be highly responsive to changes in the microbial
community present in their environment. Finally, it has been
demonstrated that some microbes can biotransform

bufadienolide compounds (Hayes et al. 2009b), which may
in turn also contribute to among-population variation in toxin
content.

We investigated whether the composition and quantity of
defensive skin toxins in common toad (Bufo bufo) larvae may
be influenced by the bacterial community present in the envi-
ronment. To achieve this, we conducted a field survey in 16
natural habitats of the common toad. We related bufadienolide
profiles of larval toads to bacterial community structure of
their aquatic environment, while controlling for other, poten-
tially influential biotic factors and abiotic pond parameters.
We predicted to find a positive relationship between toxin
content of tadpoles and the density of their competitors, as
well as a strong influence of the bacterial community present
in the aquatic environment. We chose to investigate the rela-
tionship between the microbial community of the aquatic en-
vironment and skin toxin content because it is the water sur-
rounding anuran larvae that serves as the source of the micro-
biota colonizing their skin. At the same time, microbes present
in the immediate environment can have a decisive influence
on the skin-based immune-defense of amphibians, such as on
the synthesis of AMP-s (Krynak et al. 2016). While it is the
microbes that get into direct contact with individuals that mat-
ter for the immune-response, the microbial community present
on the skin differs from the environmental pool (Rebollar et al.
2016; Walke et al. 2014) and is already selected by skin-
secreted chemical defenses (Vartoukian et al. 2010).

Materials and Methods

Data collection. In late May and early June 2015, we visited 16
ponds in the Pilis-Visegradi Mountains, Hungary, known to be
common toad breeding sites (Vagi et al. 2013). These ponds are
located in deciduous forests between 200 and 570 m above sea
level and are known to dry out every few years so that fishes are
not present. Surface area ranged between 66 and 3699 m?,
maximal water depth between 30 and more than 100 cm
(Table 1; Electronic supplementary material 1). We estimated
canopy cover and pond macrovegetation cover as percentage of
pond surface in 5% increments. Average water conductivity
and pH were calculated from measurements taken on 5 ran-
domly collected water samples per pond, measured by a porta-
ble electrochemistry meter (Consort C 6020 T). The above
pond parameters are related to the probability of desiccation
and are important parameters that can influence both the devel-
opment and physiological performance of tadpoles
(McDiarmid and Altig 1999), but also the community structure
of the aquatic microbiota (Krynak et al. 2015, 2016). We esti-
mated the density of predators, as well as of conspecific and
heterospecific tadpoles by performing 1 m long sweeps (ca.
0.4 m%) along the bottom of ponds with dip-nets, and subse-
quent counting of captured animals. We took 4-12 dip-net
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Table 1 Locations of sampling

sites. Sample sizes and average Pond Pond name Date of Latitude  Longitude =~ Noftadpoles =~ Mean
developmental stages (according D visit per pond Gosner
to Gosner 1960) are also shown. stage
For habitat characteristics of
sampling sites please see 1 Alsé-hosszurét 27.05.2015  47.7155 19.0227 4 35
Electronic supplementary 2 Biikkipuszta 01.06.2015  47.7013 18.9493 10 26.7
materiall 3 Felsd-hosszurét 1 08.062015  47.7266  19.0158 10 27
4 Fels6-hosszirét 3 08.06.2015  47.7268 19.0167 10 372
5 Janos-t0 27.05.2015  47.7143 19.0197 10 335
6 Mélymocsar 03.06.2015  47.7076 19.0401 3 27
7 Nagykovacsi-to 08.06.2015  47.5764  18.8686 10 36.6
8 Paprét-k6zEpsé 03.06.2015  47.7389  19.0118 5 27
9 Szarazfarkas-belsd 01.06.2015  47.7345 18.8188 10 31.1
10 Szarvasszérii 08.06.2015  47.7294  19.0069 9 26.5
11 Szarvasszérii-megallo 08.06.2015 47.7299 19.0086 10 27.5
12 Sosto 04.06.2015  47.7753 19.0042 10 34.6
13 Sosto-zsombékos 04.06.2015  47.7748 19.0044 10 33.6
14 Voros-dagonya 01.06.2015  47.7062 18.9227 10 36.1
15 Vértes-Eszak 03.06.2015  47.7411 19.0439 10 33.7
16 Zanko 03.06.2015  47.7392 19.0257 9 35

samples depending on pond size, while taking care to represent
microhabitats according to their share of pond area.
Subsequently, for each pond we calculated the density of ani-
mal taxa as the average number of captured individuals across
all dip-net samples. For the analysis of the bacterial communi-
ties of ponds, we collected 2 L composite water samples into
autoclave-sterilized glass bottles from 10 locations within each
pond where tadpoles were present (from water depths ranging
between 10 and 45 cm). Water samples were transported on ice
to the Department of Microbiology, E6tvos Lorand University,
Budapest, Hungary, and stored at 4 °C until further analysis.

Mean developmental stage (Gosner, 1960) of collected
toad tadpoles varied among ponds between 26+ 1 and 37.2
+ 1.2 (mean + SD). Common toad tadpoles are known to pro-
duce toxins de novo (Uveges et al. 2017) and contain analyz-
able quantities of toxins at these stages in natural populations
(Bokony et al. 2016). We sampled tadpoles by dip netting at
several locations within ponds and haphazardly selecting from
among the captured specimens ten individuals per pond. We
fixed tadpoles in 1 ml absolute HPLC grade methanol, and
stored samples at —20 °C.

Bacterial community analysis based on terminal restriction
fragment length polymorphism. We filtered 700 mL aliquots
of each water sample through a 0.45 um pore-sized cellulose
nitrate membrane filter (Millipore, Billerica, MA, USA).
Environmental DNA was extracted from the filters using the
PowerSoil® DNA Isolation Kit (MoBio Laboratories,
Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions, with the exception that cell disruption was achieved by
shaking at 25 Hz for 2 min using a Mixer Mill MM301
(Retsch, Haan, Germany).

@ Springer

For PCR amplification we used HEX-labelled 27F (5'-AGA
GTT TGA TCM TGG CTC AG-3’) and 534R (5'-ATT ACC
GGG GCT GCT-3") 16S rDNA-specific primers (Lane 1991).
The PCR mixture contained 2.5 U DreamTaq™ DNA
Polymerase (Thermo Fisher Scientific, Waltham, MA, USA),
1% DreamTaq™ Buffer (Thermo Fisher Scientific), 0.2 uL of
each ANTP, 0.3 uM of each primer, 20 pg BSA (Thermo Fisher
Scientific), and 1 pL of template DNA in a final volume of
50 upL. Thermal profile consisted of an initial denaturation at
98 °C for 5 min, followed by 32 amplification cycles (94 °C
for 30 s, 52 °C for 30 s and 72 °C for 30 s), and a final extension
step at 72 °C for 10 min. Aliquots of the labelled PCR products
(13 pL) were digested in a final volume of 20 pL with 1.5 U
restriction endonucleases Alul and Bsh1236I (Thermo Fisher
Scientific), separately for 3 h at 37 °C. The purification of enzy-
matic digests and electrophoresis of labelled fragments were car-
ried out as described previously (Sipos et al. 2007).

Analysis of bufadienolides. We homogenized tadpoles with
a VWR VDI 12 blender and attached IKA S12N-7S dispers-
ing tool. We dried samples under vacuum at 45 °C using a
rotary evaporator (Biichi Rotavapor R-134), and measured dry
mass to the nearest 0.1 mg using an analytical balance
(Sartorius Entris 224i-1S). We redissolved the dried samples
in 1 ml absolute HPLC grade methanol, which was aided by
brief exposure to ultrasound in a bath sonicator (Tesla
UC005AJ1). Finally, we filtered samples with 0.22 pm pore
sized FilterBio nylon syringe filters and stored them at —20 °C
until further analysis.

We analyzed bufadienolide compounds using high-
performance liquid chromatography coupled with diode-
array detector and mass spectrometry (HPLC-DAD-MS) on
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a Shimadzu LC-MS 2020 instrument (Shimadzu, Kyoto,
Japan) that consists of a binary gradient solvent pump, a vac-
uum degasser, a thermostated autosampler, a column oven, a
diode array detector and a single-quadrupole mass analyzer
with electrospray ionization (ESI-MS) We identified the chro-
matographic peaks as bufadienolides based on their UV spec-
trum (Hayes et al. 2009a) and by comparing their retention
time and mass spectrum to commercially available standards
of bufalin, bufotalin, resibufogenin, gamabufotalin, areno-
and telocinobufagin (Biopurify Phytochemicals, Chengdu,
China), cinobufagin (Chembest, Shanghai, China),
cinobufotalin (Quality Phytochemicals, New Jersey, USA),
digitoxigenin (Santa Cruz Biotechnology, Dallas, TX, USA)
and marinobufotoxin (kindly provided by Prof. Rob Capon,
Institute for Molecular Bioscience, University of Queensland,
Australia). We also compared results to those obtained on a
sample we took from an adult male common toad by gently
massaging the parotoid glands. As UV spectra are more char-
acteristic in adults (clean and concentrated) than homogenized
tadpoles, this helps in detecting unidentified compounds (if
molecular standards are absent) comparing retention time
and m/z values. Chromatographic separations were carried
out at 35 °C on a Kinetex C18 2.6 um column (100 mm X

3 mm i.d.) in series with a C18 guard column (4 mm x 3 mm
i.d.) using 10 pL injections. Eluent A was 5% aqueous aceto-
nitrile with 0.05% formic acid and eluent B was acetonitrile
with 0.05% formic acid. The flow rate was 0.8 mL / min and
the gradient was as follows: 0-2 min, 10.5-21.1% B; 2—
15 min, 21.1-26.3% B; 15-24 min, 26.3-47.4% B; 24—
25 min, 47.4-100% B; 25-30 min 100% B; 30-31 min
100-10.5% B; 31-35 min 10.5% B. ESI conditions were as
follows: desolvation line (DL) temperature: 250 °C; heat
block temperature: 400 °C; drying N2 gas flow: 15 L / min;
nebulizer N2 gas flow: 1.5 L / min; positive ionization mode.
Data was acquired and processed using the software
LabSolutions 5.42v (Shimadzu Corp., Kyoto, Japan).

Statistical analyzes. To avoid redundancy by entering
closely related predictor variables into statistical analyzes,
we first checked for possible correlations between habitat
characteristics using non-parametric correlations
(Spearman’s tho) and only used variables whose pairwise cor-
relation coefficients did not exceed 0.5. Consequently, we had
to ignore water depth, shade, pH and conductivity (Table OR
1 in Electronic supplementary material 2).

TRFLP chromatograms were analyzed with the
GeneMapper® Software v3.7 (Applied Biosystems, Foster
City, CA, USA). Only TRFs longer than 50 bps were used.
Further data processing was carried out according to an up-
dated script of Abdo and colleagues (Abdo et al. 2006; the R
script is available upon request). We applied the following
parameters: noise filtration based on standard deviation (mul-
tiplier = 3) of peak area, TRF alignment with 1 bp clustering
threshold. The resulting alignment was compared to the raw

chromatograms and corrected manually if necessary. For nor-
malization the relative abundance of each detected TRFs with-
in a given TRFLP profile was calculated. In order to get a
more robust result, we combined the data matrix obtained
using the Alul and Bsh12361 enzymes.

The bacterial community structure based on the TRFLP
data was visualized with nonmetric multi-dimensional scaling
(NMDS) with 3 dimensions (stress = 0.0997) using the vegan
package (Oksanen et al. 2016) in R (R Development Core
Team 2016; http://www.r-project.org/). The 3D NMDS was
preferred over the 2D NMDS because the former had a lower
stress value and differed more significantly from simulated
randomized data matrices generated using the ‘oecosimu’
function in the vegan package.

From three ponds we were only able to collect 5, 4, and 3
tadpoles, and during sample preparation we lost one sample
each from 2 further ponds. This resulted in a total of 140
samples on bufadienolide content of tadpoles (Table 1). We
described chemical defenses with two variables: we deter-
mined the number of bufadienolide compounds (NBC) and
calculated total bufadienolide quantity (TBQ) for each ani-
mal. We assumed a compound to be present when its signal
was at least three-times higher than random noise in the
chromatogram (when the area below the curve was larger
than 4000). Second, we estimated the quantity of each
bufadienolide compound from the area values of chromato-
gram peaks based on the calibration curve of the bufotalin
standard, and summed up these bufotalin-equivalent values
to obtain an estimate of total bufadienolide quantity (TBQ)
per individual. The use of the calibration curve of the
bufotalin standard to obtain approximate estimates of
bufadienolide quantities has been successfully used before
in similar studies (Bokony et al. 2016; Hagman et al.
2009; Ujszegi et al. 2017). We analyzed NBC with cumu-
lative link mixed modeling procedures (CLMM) with a logit
link function and equidistant threshold using the ordinal R-
package (Christensen 2015). We entered log;(-transformed
values of TBQ to enhance normality of model residuals and
homogeneity of variances and used linear mixed modeling
procedures (LMM). We performed model selection relying
on Akaike’s information criterion corrected for sample sizes
(AICc).

Full models included pond ID as a random factor, and the
following covariates as fixed factors: developmental stage of
toad tadpoles; the three NMDS axes created from TRFLP data
(NMDS 1, 2 and 3) describing the bacterial community of
ponds, density of conspecific larvae, density of other amphib-
ian larvae and density of predators (biotic factors), pond sur-
face area and vegetation cover (abiotic pond parameters). As
we were predominantly interested in effects of the bacterial
community on toxin variables, we created the following
models a priori: 1. null model, containing only pond ID as a
random factor; 2. pond ID + developmental stage of toad
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tadpoles; 3. pond ID + developmental stage of toad tadpoles +
NMDS axes describing bacterial community; 4. pond ID +
developmental stage of toad tadpoles + NMDS axes describ-
ing bacterial community + biotic factors; 5. pond ID + devel-
opmental stage of toad tadpoles + NMDS axes describing
bacterial community + abiotic pond parameters; 6. pond ID
+ developmental stage of toad tadpoles + NMDS axes describ-
ing bacterial community + biotic factors + abiotic pond pa-
rameters. We used the maximum likelihood method for esti-
mations and compared models using the MuMIn package
(Barton 2017) in R. We entered log;(-transformed values of
pond surface, density of conspecific larvae and density of
predators. We checked the homogeneity of variances using
diagnostic plots. We calculated variance inflation factors
(VIF) for each variable to detect multicollinearity, which
was not found. Models were considered significantly different
from each other in case of difference by more than four AICc
values. In case of more than one best-supported model, effects
were estimated using model averaged coefficients (MuMin
package, conditional average matrix). We also compared
models containing all the measured abiotic parameters (regard-
less of correlations between them) or using the mass corrected
TBQ with the same methods described above, which results
can be seen in Electronic supplementary material 2. We ran
all analyses in R 3.4.0.

Results

In total, we identified 12 compounds as bufadienolides based
on their UV spectra, but only one of these was found to be
identical with one of the standards (marinobufotoxin). The
number of bufadienolide compounds present in individual
tadpoles ranged between 8 and 12 compounds. The frequency
of occurrence of some compounds varied largely between
ponds (i. e. compound 2, 3, marinobufotoxin, 5 and 10),
whereas other compounds were consistently present in most
sampled tadpoles in all ponds (Table 2).

The best-fitting model describing among-population varia-
tion in NBC (range of population mean NBC: 9.33—12 com-
pounds / tadpole, see Table 2) included bacterial community
structure, biotic parameters and developmental stage of toad
tadpoles as explanatory variables. This model was clearly
more supported by the data than the second best model or
the null model (AAICc=4.22 and 5.13, respectively;
Table OR 2a in Electronic supplementary material2).
Further, the 95% confidence intervals computed for the pa-
rameter estimate of the NMDS 3 axis and for the density of
conspecific larvae did not include zero (see Table OR 3a in
Electronic supplementary material 2; Fig. 1), indicating that
the number of bufadienolide compounds present in toad tad-
poles covaried with some aspects of bacterial community
structure, and that the number of compounds increased in
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parallel with an increasing density of conspecifics.
Parameter estimate of the NMDS 2 was also relatively large,
but its 95% CI included zero, so that we consider its relation-
ship with NBC to be non-significant (Table OR 3a in
Electronic supplementary material 2; Fig. 1).

Total bufadienolide quantity varied widely among ponds
(range of population mean TBQ: 1915-9239 ng / tadpole, see
Table 2). The model containing bacterial community data and
biotic factors with developmental stages as explanatory vari-
ables, followed by the full model containing all predictors
were the best-supported models: however, they differed by
3.64 AICc values from each other, and more than eight
AICc values from the third best model (Table OR 2b in
Electronic supplementary material 2). The 95% confidence
intervals for the model-averaged parameter estimates of
NMDS 1 axis and the density of conspecific larvae did not
include zero, indicating that TBQ was related to bacterial
community structure in the aquatic environment and was in
a positive relationship with the density of conspecific larvae
(Table OR 3b in Electronic supplementary material 2; Fig. 2).
Model selection procedures including all measured pond pa-
rameters (regardless of correlations between them), and mass
corrected TBQ values gave very similar results (Electronic
supplementary material 2).

Discussion

Our results are the first to suggest that toxin content of tad-
poles is related to the bacterial community structure of their
environment. Both NBC and TBQ were correlated with one or
two NMDS axes describing the bacterial community of larval
habitats. This may be a cause-effect relationship, because
bufadienolides can have antipathogenic and antiparasitic ef-
fects (Barnhart et al. 2017; Cunha Filho et al. 2005; Tempone
et al. 2008), and Bufonid toads lack AMP-s (Conlon 2011;
Konig et al. 2015), therefore the involvement of
bufadienolides in skin-based immune-defense is probable,
and their synthesis may be adjusted to the presence or absence
of particular pathogens or specific members of bacterial com-
munities. The presence of certain bacteria and changes in the
natural microbiota can induce responses in chemical defenses
(up- or down-regulation of AMP synthesis) in adult frogs
(Mangoni et al. 2001; Miele et al. 1998; Simmaco et al.
1998). Nonetheless, the correlation between toxin content
and individual NMDS axes does not inform us about which
bacterial taxa are responsible for this relationship because
NMDS axes describing bacterial community structure are de-
rived from the visualization of the TRFLP data matrix for the
sake of dimension reduction. Physical and chemical parame-
ters were highly variable among habitats (Electronic
supplementary material 1), contributing to a distinct bacterial
community in each one of the studied ponds (Electronic
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Fig. 1 Parameter estimates (black squares) for explanatory variables
obtained from the best fitting model describing the pattern of number of
bufadienolide compounds (NBC) found in common toad tadpoles in the
16 studied ponds. Vertical lines depict 95% confidence intervals.
Abbreviations: Dev. Stage developmental stage, NMDS nonmetric
multi-dimensional scaling, tads tadpoles

supplementary material 3, Fig. 3). Therefore, local adapta-
tion to the local microbiota at the level of chemical de-
fenses may contribute to the observed variance in toxicity
of common toad tadpoles. Although we did not find a di-
rect effect of abiotic environmental factors on toxin con-
tent, these factors can also influence skin associated chem-
ical defenses (Krynak et al. 2015, 2016), thus we cannot
completely exclude the possibility that the relationship be-
tween bacterial community structure and toxin content

1.07

o
9

+.+*F

Parameter estimates
o o
s e

-1.07

Dev. NMDS NMDS NMDS Pond veg. Bufo predators other
stage axis 1 axis2 axis3 size tads tads

Fig. 2 Parameter estimates (black squares) for explanatory variables
obtained from model averaging procedures describing the pattern of
total bufadienolide quantity (TBQ) found in common toad tadpoles in
the 16 studied ponds. Vertical lines depict 95% confidence intervals.
Abbreviations: Dev. Stage developmental stage, NMDS nonmetric
multi-dimensional scaling, veg. macro-vegetation cover, tads tadpoles
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resulted from correlations with a non-measured back-
ground variable. For example, anthropogenic pollution
can influence both toxin content (Bdkony et al. 2019;
Zhou et al. 2019) and microbial community (Aguinaga
et al. 2018; Widenfalk et al. 2008). Finally, some bacteria
inhabiting the skin of toads are able to transform
bufadienolide compounds (Hayes et al. 2009b;
Kamalakkannan et al. 2017), which may have contributed
to the observed relationship between NBC and bacterial
community structure in our study. This mechanism, how-
ever, is unlikely to explain the observed patterns in TBQ.

The positive relationship between both NBC and TBQ and
the density of conspecific tadpoles is in line with results of a
previous correlative study (Bokony et al. 2016) that was con-
ducted one year earlier on a partly overlapping suite of ponds
(10 ponds overlapped between the former and the current
study). The similarity between results suggests that the ob-
served pattern may be generalized over time and populations,
at least within the study area, and suggests that the synthesis of
bufadienolides is boosted in response to elevated conspecific
density. Experimental studies confirmed these results
(Bokony et al. 2018) in our study species. Similarly, AMP
synthesis in leopard frogs (Lithobates pipiens) was increased
after metamorphosis in individuals that had faced strong com-
petition during the larval stage (Groner et al. 2014). These
changes in chemical defenses may be interpreted as adaptive
plasticity manifesting in the form of responsive immune de-
fense, because the chance of pathogen transmission grows if
the density of similar hosts increases (Briggs et al. 2010),
which is likely to render enhanced investment into immune-
defenses beneficial at high conspecific densities. Presence of
predators did not influence skin toxin production, most prob-
ably because fishes, which excite the strongest antipredatory
responses in chemical defenses (Hettyey et al. 2019), are ab-
sent from the sampled ponds, and because the weaker effects
of invertebrate predators were masked by those of widely
varying densities of conspecific tadpoles.

We observed large variation in tadpoles’ developmental
stages among the studied ponds (Table 1). Even though previous
laboratory-based experiments showed that toxin quantity of
B. bufo tadpoles can vary according to developmental stage
(Ujszegi et al. 2017; Uveges et al. 2017), we could not avoid
such differences among ponds, because natural habitats inherent-
ly vary in environmental factors affecting tadpole development
(McDiarmid and Altig 1999). However, this variation in devel-
opmental stage did not have an effect either on NBC or on TBQ
in the present study (Figs. 1 and 2) and the models containing
only developmental stage were weakly supported (Table OR 2 in
Electronic supplementary material 2). This was likely caused by
the fact that the majority of the analyzed tadpoles reached, or
passed the middle of their larval development, when toxin pro-
duction already reached a plateau and does not change much
until metamorphosis (Ujszegi et al. 2017; Uveges et al. 2017).
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Fig. 3 Bacterial community
structure in the studied ponds
visualized from results of TRFLP.
Height of each rectangle in the
columns refers to the abundance 08 -
of the given fragment in the
sample. Isochromatic rectangles
close to each other between the
samples indicate the same
fragments. Note that colour
palette is vertically repeating,
because of the high number of
fragments. Numbers are in
accordance with the Pond ID 04 7
column in Table 1
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In summary, by investigating correlations between bacteri-
al community structure of aquatic habitats and skin-based
chemical defenses of toad tadpoles we demonstrated that
chemical defenses of tadpoles are related to the bacterial com-
munity structure of their natural aquatic habitats. Furthermore,
in accordance with previous findings (Bokony et al. 2016), the
toxin content of larval toads was also related to the density of
conspecific tadpoles. Revealing the most important bacterial
groups that are related to temporal or spatial variation in skin-
borne chemical defenses of tadpoles, and perhaps induce these
changes, would be an important step towards understanding
the processes shaping interactions between environmental mi-
crobiota and amphibian chemical defenses.
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