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Abstract

MDPs with factored action spaces, i.e. where actions are de-
scribed as assignments to a set of action variables, allow
reasoning over action variables instead of action states, yet
most algorithms only consider a grounded action represen-
tation. This includes algorithms that are instantiations of the
trial-based heuristic tree search (THTS) framework, such as
AO?or UCT.
To be able to reason over factored action spaces, we propose
a generalisation of THTS where nodes that branch over all
applicable actions are replaced with subtrees that consist of
nodes that represent the decision for a single action variable.
We show that many THTS algorithms retain their theoretical
properties under the generalised framework, and show how to
approximate any state-action heuristic to a heuristic for par-
tial action assignments. This allows to guide a UCT variant
that is able to create exponentially fewer nodes than the same
algorithm that considers ground actions. An empirical eval-
uation on the benchmark set of the probabilistic track of the
latest International Planning Competition validates the bene-
fits of the approach.

Introduction
Markov decision processes (MDPs) allow to model prob-
abilistic decision making problems. Factored MDPs repre-
sent the state and action space compactly by describing the
semantics of the MDP in terms of state and action vari-
ables. Popular algorithms to solve MDPs are tree search
algorithms such as UCT (Kocsis and Szepesvári 2006) or
AlphaGo Zero (Silver et al. 2017), or heuristic search algo-
rithms such as AO?(Nilsson 1980). Trial-based heuristic tree
search (THTS) (Keller and Helmert 2013) allows to model
a broad family of algorithms under one common framework
by specifying six components. A THTS algorithm gradually
builds up the AND/OR tree that is induced by the under-
lying MDP in a sequence of trials to determine an estima-
tion of the expected value of the initial state of the MDP.
THTS algorithms are therefore well-suited for anytime opti-
mal planning, as they are able to provide a recommendation
on which decision to take at any point.

MDPs with factored action spaces have recently seen re-
newed interest, as many applications can be described within
this framework, such as satellite mission planning (Povéda
et al. 2019), conversation planning (Xue, Fern, and Sheldon

2014), or the automatic construction of operation policies for
dam management (Reyes et al. 2015). Ontañón (2013) and
Moraes et al. (2018) investigated Monte Carlo tree search
for combinatorial multi-armed bandits by dividing them into
a collection of multiple traditional multi-arm bandits. How-
ever, THTS algorithms do not explicitly consider a factored
action representation. This becomes a problem when the
number of action variables increases, as the number of ac-
tions grows exponentially and with this the branching factor
of the MDP. Moreover, many THTS algorithms, including
UCT, require to simulate each decision at least once, which
becomes infeasible when facing exponentially many actions.

In this work, we consider domain-independent THTS al-
gorithms for factored MDPs and focus on factored action
spaces. We represent decisions in the search tree as deci-
sion trees over action variables, where each outcome corre-
sponds to an assignment of an action variable. The key in-
sight is that the factored action representation allows search
algorithms to concentrate on promising assignments of ac-
tions without spending effort on unfruitful paths. To be able
to initialise decision nodes in the factored decision tree we
generalise state-action heuristics to heuristics that allow the
assignment of estimates for partial action variable assign-
ments, and show how to decompose any state-action heuris-
tic to a heuristic that can be applied to the factored action
representation. We present a theoretical evaluation which
shows that many common components of THTS preserve
their behaviour in the factored action representation. This
motivates us to extend the THTS implementation of the
PROST planning system (Keller and Eyerich 2012) with a
factored action representation. We evaluate the approach on
the benchmark set of the past probabilistic tracks of the In-
ternational Planning Competition which includes problems
that allow the concurrent application of multiple actions. In
addition, we investigate mutex detection in order to com-
bine multiple binary action variables into one finite-domain
action variable. In cases where all actions can be combined
into one finite-domain action variable our approach is equiv-
alent to the original flat action representation, so a factored
action representation is only considered when necessary.
The evaluation shows that this representation can strengthen
the current state of the art in probabilistic planning.
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Background
An MDP (Puterman 1994) is a tuple 〈S,A,P,R〉, where S
is a finite set of states, A is a finite set of actions, R : S ×
A → R is the reward function, and the transition function
P : S × A × S → [0, 1] defines the probability P(s′|s, a)
that applying action a in state s leads to state s′. We define
the set of successors of state s and action a as succ(s, a) =
{s′ ∈ S|P(s′|s, a) > 0}. We say action a is applicable in
state s iff succ(s, a) 6= ∅ and denote the set of applicable
actions in s as A(s).

We consider finite-horizon MDPs, where the number of
action applications is limited by the horizon H ∈ N, and we
augment the state space such that the number of remaining
steps is part of a state, denoted by s[h] for s ∈ S . We have
P(s′|s, a) = 0 if s[h] 6= s′[h − 1], to enforce that the num-
ber of remaining steps decreases by one in each transition.
We further assume that A(s) 6= ∅ for all s ∈ S to ensure
that there are no dead-ends. A terminal state is a state with
s[h] = 0, and sI specifies the initial state. Therefore, the
finite-horizon MDPM = 〈S,A,P,R, H, sI〉 induces a di-
rected acyclic graph.

In this work, we focus on MDPs where the action spaceA
is induced from a set of action variables, also called base ac-
tions B, where each b ∈ B is associated with a finite domain
Db = {0, . . . , |Db| − 1}. A partial action assignment is a
partial function a : B ↪→ ⋃

b∈BDb, such that a(b) ∈ Db for
all b ∈ B where a is defined. We sometimes abuse notation
and write (b, k) instead of a(b) = k, when a will be clear
from context. For binary domain values we also sometimes
write b̄ for (b, 0) and b for (b, 1). We denote the base ac-
tions for which a is defined as basis(a). If a assigns a value
to each b ∈ B we call a an action state, or simply action.
The set of all actions is A and corresponds to the previous
notion of actions in the MDP.

A solution to an MDP is a policy π : S → A s.t. π(s) ∈
A(s), i.e. a mapping from states to applicable actions. The
expected reward of π is given by the state-value function
V π(M) = V π(sI) with

V π(s) =

{
0 if s is terminal
Qπ(s, π(s)) otherwise

where Qπ(s, a) = R(s, a) +
∑
s′∈S P(s′|s, a) · V π(s′) is

the action-value function. An optimal policy π∗ is a solu-
tion to the well-known Bellman optimality equation (Bell-
man 1957):

V ∗(s) =

{
0 if s is terminal
maxa∈AQ

∗(s, a) otherwise,

Q∗ = R(s, a) +
∑
s′∈S
P(s′|s, a) · V ∗(s′).

Trial-based Heuristic Tree Search
We focus on online algorithms which interleave planning
and execution. The THTS framework (Keller and Helmert
2013; Keller 2015) is a generalisation of Monte Carlo tree
search which allows to describe online algorithms by spec-
ifying different components. The core of every THTS algo-
rithm is an explicit search tree of decision and chance nodes.

A decision node is a tuple nd = 〈s, V k〉, where s ∈ S is
a state and V k ∈ R is the state-value estimate based on the
first k trials. A chance node is a tuple nc = 〈s, a,Qk〉, where
s ∈ S is a state, a ∈ A is an action andQk ∈ R is the action-
value estimate based on the first k trials. We refer to the sep-
arate components of a decision node nd as s(nd), V k(nd),
and of a chance node nc as s(nc), a(nc) and Qk(nc).

Initially the search tree only contains the root decision
node n0 for the initial state sI . As the name indicates, THTS
algorithms are trial-based, and each trial consists of multiple
phases: in the selection phase, the explicit tree is traversed by
choosing successor nodes according to action selection and
outcome selection components until a previously unvisited
decision node is reached. This initiates the expansion phase,
where for each action a child chance node is added to the
tree, initialised with a heuristic value based on the applied
initialisation function. As a result, all successor nodes of the
currently visited decision node have action-value estimates
and the selection phase starts again. The trial length com-
ponent determines when a trial ends. Then, the value of all
nodes which were visited in the current trial are updated in
reverse order, based on the backup function. A trial is com-
pleted after the backup function is called on the root node. A
new trial is initiated, unless some constraint (e.g. time limit
or limit on the number of trials) is violated. Finally, the ac-
tion recommendation function chooses which action will be
executed. Algorithm 1, adapted from Keller (2015) depicts
the skeleton of a THTS algorithm.

Algorithm 1: The THTS schema.
1 Function THTS(M, timeout-constraint):
2 n0 = getRootNode(M)
3 while moreTrials(n0) do
4 visitDecisionNode(n0)
5 return recommendAction(n0)
6 Function visitDecisionNode(nd):
7 if nd was never visited then
8 initialiseNode(nd)
9 nc = selectAction(nd)

10 visitChanceNode(nc)
11 backupDecisionNode(nd)
12 Function visitChanceNode(nc):
13 if trialEnds(nc) then
14 nd = selectOutcome(nc)
15 visitDecisionNode(nd)
16 backupChanceNode(nc)

Depending on the underlying components, search nodes
can have additional annotations. Given a node n, we denote
the number of times it has been selected at the end of the
k-th trial as Lk(n).

To motivate the next section we will look at a small MDP
and consider the UCT algorithm which aims to balance the
exploitation of known good decisions and the exploration
of potentially better actions by application of UCB1 action
selection (Auer, Cesa-Bianchi, and Fischer 2002): given a
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Figure 1: Search tree of a multi-armed bandit problem with flat-
tened action representation. Decision nodes are yellow squares,
and chance nodes are green circles. Nodes are annotated with their
value estimates, and bi1 in actions is short for (b1, i).

decision node nd, UCT chooses the successor node nc that
maximises the formula B ·

√
logLk(nd)
Lk(nc)

+ Qk(nc), where
B ∈ R+ is a bias parameter. In case there is a successor node
with Lk(nc) = 0 this node will be selected instead. UCT
performs Monte Carlo backups to update the state-value and
action-value estimates of visited nodes with the following
function:

V k(nd) =

{
0 if s(nd)[h] = 0∑

nc∈succ(nd) L
k(nc)·Qk(nc)

Lk(nd)
otherwise,

Qk(nc) =R(nc) +

∑
nd∈succ(nc) Lk(nd) · V k(nd)

Lk(nc)
,

where succ(n) is the set of successor nodes of node n and
R(nc) := R(s(nc), a(nc)).

Running Example
Consider an MDP with a single non-terminal state, horizon
1, and 20 possible action states which can be decomposed
into two base actions b0 and b1 with Db0 = {0, 1} and
Db1 = {0, ..., 9}. The reward is additively decomposable
such that any action state that contains (b0, 0) has a reward
of 10 and actions with (b0, 1) have a reward of 20. In other
words, to select the best action it is sufficient to reason over
b0, since b1 is not important for the final outcome.

Figure 1 depicts the search tree after 20 trials, i.e., after
each action has been selected exactly once (if no heuristic is
used for node initialisation, each action has to be selected at
least once). Observe that the state-value estimate of the root
node (15) is far off from the optimal value estimate (20),
since all sub-optimal children had to be selected at least
once. While additional trials will from now on only select
actions where b0 = 1, the necessary initial selection of sub-
optimal actions has a negative effect on the value estimation
of the root node: even after 1000 trials the state-value esti-
mate is only 19.9 (and each of the 10 action states containing
b0 = 1 was visited 99 times).1

The example reveals two potential pitfalls: 1) The number
of action states is exponential in the number of base actions.
Even if only a subset of base actions is relevant for achieving
good results exponentially many actions have to be selected
at least once before we can follow promising paths. 2) The

1We consider a bias parameter of B = 1 for this example.
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Figure 2: Example for a factored decision node tree. Each layer
corresponds to the assignment of a single base action.

outcome of sub-optimal actions can affect the state estimate
over a large number of visits. This is particularly impor-
tant when we have to consider anytime algorithms for large
MDPs, where the number of trials is often limited by tight
time limits and it is important to quickly discover promising
paths.

The question is how to make use of the factored action
representation and focus on the relevant part of the search
space. The original idea for our approach comes from Keller
and Eyerich (2012), who consider probabilistic planning
problems with exponentially many probabilistic outcomes,
but a transition function with the property that the transition
function can be decomposed into transition functions over
state variables. They exploit this by representing a chance
node with multiple layers of nodes, one node for each state
variable. They note that this technique can also be used for
concurrent actions, but the problems they consider have only
a low grade of concurrency and therefore only small action
spaces. In this work, we extend the THTS framework and
consider a factored action tree representation instead of sin-
gle decision nodes.

THTS for Factored Action Spaces
To be able to represent factored action states as a decision
tree we have to adapt the definition of decision nodes. The
definition of chance nodes continues to be as before. A deci-
sion node is now a tuple nd = 〈s, â, b, Qkâ〉, where s ∈ S is a
state, â is a partial action assignment, b is a base action, and
Qkâ is the value estimate of this node. We refer to the separate
components of nd as s(nd), a(nd), b(nd) and Qk(nd). We
can interpret Qkâ as the partial action-value estimate of state
swhere the assignment of base actions in basis(â) is already
fixed, but we have a choice for the assignment of the remain-
ing base actions. In the following, we assume an ordering
o : B → {0, . . . , |B| − 1} on the base actions, which deter-
mines on which base action to branch next. Given a state s,
the root node of a factored decision tree is nd = 〈s, ∅, b, Qk∅〉
where b is the base action with o(b) = 0 and Qk∅ = V k.
Consider Figure 2, where we have B = {b0, . . . , bn} with
binary domains for all bi and o(bi) = i for i = 0, . . . , n.



Algorithm 2: Visiting factored decision nodes.

1 Function visitDecisionNode(nd = 〈s, â, b, Qkâ〉):
2 if nd was never visited then
3 initialiseNode(nd)
4 a = â∪ selectAssignment(nd)
5 if |a| = |B| then
6 visitChanceNode(〈s, a,Qk〉)
7 else
8 b′ ← arg minb′∈B\basis(a) o(b′)

9 visitDecisionNode(〈s, a, b′, Qka〉)
10 backupDecisionNode(nd)

11 Function initialiseNode(nd = 〈s, â, b, Qkâ〉):
12 for d ∈ Db do
13 a = â ∪ (b, d)
14 if a is inconsistent with A(s) then
15 continue
16 if |a| = |B| then
17 addChanceNode(s, a, h(s, a))
18 else
19 b′ ← arg minb′∈B\basis(a) o(b′)

20 addDecisionNode(s, a, b′, h(s, a))

Given a decision node nd = 〈s, â, b, Qkâ〉, we refer as
before to the set of successor nodes as succ(nd), but this
can now be either a set of decision nodes or a set of
chance nodes. To explicitly denote the chance nodes result-
ing from following successors of nd we write succc(nd).
Note that the set of actions corresponding to succc(nd) is
{a ∈ A(s(nd))|â(nd) ⊂ a}, i.e. actions that are applica-
ble in the state corresponding to nd and consistent with the
partial action assignment â. From now on we write factored
representation when we consider THTS based on a decision
tree representation and flattened representation otherwise.

To be able to perform trial-based heuristic tree search with
decision trees instead of single decision nodes we have to
adapt how decision nodes are visited. Algorithm 2 shows the
adaptation of the corresponding part of the original THTS al-
gorithm. To initialise nodes (line 11) we must check whether
the base action assignment is consistent with the applicable
actionsA(s). If this is the case and the assignment results in
an action state we create a chance node with initial estimate
h(s, a). If a is only a partial action state we create a new de-
cision node with heuristic value h(s, a) for the base action
b′ according to ordering o. Heuristic functions required for
the initialisation of partial action states are described in the
next section.

If nd was already visited we require a function that al-
lows the selection of action assignments (line 4). When we
only consider an assignment to the current base action b
the selection function can be implemented as in the origi-
nal THTS, as we simply have to select one of the children of
nd. More sophisticated selection functions that assign multi-
ple base actions at once are possible, but not the focus of this
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Figure 3: Search tree of a multi-armed bandit problem based on
factored representation.

work. Once we have a complete assignment of base actions
(line 5), the next child will be a chance node and the THTS
scheme is as before. Otherwise we continue with the next
decision node, dictated by the ordering on the base actions.

The second component of THTS that has to be adapted
is the recommendation of the final action. Instead of rec-
ommending the action of the most promising decision node,
the function must now recursively select the most promising
base action assignment. The final set of base actions then
corresponds to the action that is recommended by the algo-
rithm.

Running Example
Figure 3 shows the resulting search tree with underlying
base action ordering o(bi) = i for i ∈ {0, 1} of the running
example after 11 trials. At this point action selection will se-
lect one of the actions where b0 = 1 a second time. There
are a couple of interesting observations. First, the state esti-
mate at the root node is already more informed after the first
10 trials compared to the flattened representation. When we
investigate how search performs with additional trials we see
that after already 100 trials the state estimate of the root node
reaches 19.9 (compared to 1000 trials with a flattened repre-
sentation). Second, we visit a sub-optimal action only once,
all other sub-optimal actions are not even part of the cur-
rent search tree. This is particularly important as the num-
ber of actions grows exponentially with the number of base
actions: in the case of binary base actions THTS with a flat-
tened representation is required to initialise potentially up
to 2|B| decision nodes, whereas the factored representation
only requires 2 · |B| node initialisations.

The curious reader might wonder how the algorithm per-
forms when we choose a bad ordering, i.e. the unimportant
base action b1 is considered first. In this case the first layer
consists of 10 decision nodes, one for each value of b1. Ini-
tially, all these nodes have to be selected at least once, and
for each node two successors are initialised (for the values
of b0). Thus, after 10 trials the complete tree is initialised,
consisting of 10 decision nodes and 20 chance nodes, and
the initial root estimate is 10. The behaviour for subsequent
trials depends on the tie-breaking strategy of the selection
function. In the worst case each of the 10 initial decision
nodes is selected a second time. In each case one of the chil-
dren corresponding to the values of b0 has already been se-
lected, so the other value is chosen. Thus, after 20 trials we
have visited every chance node at least once and get the same
behaviour as with flattened representation.



Factored Heuristics
Classical probabilistic planning heuristic functions assign a
numerical value to each state or to each state-action pair.
As the number of successor states of applying an action in
a state can be as high as the number of states, state-action
heuristics h : S × A → R are often preferable. However,
to initialise decision nodes in a factored representation we
must be able to compute partial action value estimates. Let
B̂ be the set of partial action states over B (including proper
action states). We extend state-action heuristics to factored
heuristics ĥ : S × Â → R which assign a value to pairs that
consist of a state s ∈ S and a possibly partial assignment
â ∈ Â to the action variables. We propose three factored
heuristics that have in common that they are parameterised
by a given state-action heuristic.

Definition 1. Let h : S × A → R be a state-action heuris-
tic, s a state and â a partial action state. The factored-max
heuristic hfm

h of h is

hfm
h (s, â) = max

{a′∈A(s)|â⊆a′}
h(s, a′)

The factored-max heuristic assigns the highest heuristic
value of an applicable action in s that is consistent with â.
When â is a full assignment â is also the only applicable
action consistent with itself, thus hfm

h corresponds to h on
full action assignments.

Theorem 1. Let s ∈ S be a state, a ∈ A(s) be an action
and h be a state-action heuristic. Then hfm

h (s, a) = h(s, a).

Proof. As a is an action it is also a full action assignment
and hence {a′ ∈ A(s) | a ⊆ a′} = {a}.

Theorem 1 allows to compare THTS configurations based
on a flattened representation with heuristic h to THTS con-
figurations based on a factored representation with heuristic
hfm
h , as full action states are initialised with the same values,

and differences between the algorithms are hence only due
to the different structures of the search space.

The second factored heuristic we consider, the decom-
posed heuristic hdc

h,a0
, exploits the factored form of action

states to invoke a given state-action heuristic h only on a
subset of the action states. The heuristic considers the base
action assignments as features of action states and computes
feature weights for all pairs (b, k) where b ∈ B and k ∈ Db

in each state. It derives a heuristic estimate for a partial ac-
tion state â by summing up all feature weights of â. This
idea has been applied before to approximate the value of
a state with factored value functions (Koller and Parr 1999;
Guestrin et al. 2003) or potential heuristics (Pommerening et
al. 2015), but, to the best of our knowledge, not in the con-
text of factored actions and with entirely different methods
to obtain feature weights.

In addition to the state-action heuristic h, the decomposed
heuristic takes a reference action a0 as input. In a state s, the
weight of feature (b, k) is computed as

w(b,k) :=
h(s, a0)

|B|

if it is a feature of a0 i.e., we assume that each feature of
a0 has the same influence on h(s, a0). While this might not
always be a reasonable assumption, we leave it for future
work to look into a better suited distribution of h(s, a0) over
the features of a0.

To obtain the weight for a feature (b, k) that is not a
feature of a0, we consider the action state a′ that is equal
to a except that (b, a0(b)) is replaced by (b, k), i.e. a′ =
a0 \ {(b, a0(b))} ∪ {(b, k)} and compute the weight as

w(b,k) := h(s, a′)− |B| − 1

|B| · h(s, a0).

The weights of |B| − 1 many features of a′, all except for
(b, k), are determined from a0. Thus, w(b,k) is chosen such
that the weights of all features in a′ sum up to h(s, a′).
Definition 2. Let h : S×A → R be a state-action heuristic,
a0 a reference action, s a state and â a partial action state.

The decomposed heuristic hdc
h,a0

of h and a0 is

hdc
h,a0(s, â) =

∑
(b,k)∈â

w(b,k),

where the weights w(b,k) are computed as described above.
The decomposed heuristic computes feature weights in a

way that hdc
h,a0

(s, a) = h(s, a) if a = a0 or if a is one of the
a′ that are used to compute feature weights. As equivalence
is not guaranteed for other action states, we cannot present a
result analogous to Theorem 1 for the decomposed heuristic.

However, an advantage of hdc is the potentially smaller
number of calls to the state-action heuristic h.
Theorem 2. Let s ∈ S be a state and â a partial action.
Computing hfm

h (s, â) requires up to exponentially more com-
putations of h than computing hdc

h,a0
(s, â).

Proof sketch. If all action assignments are applicable in s,
the number of invocations of h to compute hfm

h (s, â) is ex-
ponential in the number of unassigned base actions. If â is a
full action assignment such that â(b) 6= a0(b) for all b ∈ B,
hdc
h,a0

invokes h once with a0 and once for every base action,
i.e. a number that is linear in the number of base actions.

The linear dependency on the number of action fluents is
an important advantage of hdc, in particular in planning tasks
with a large number of applicable actions. To assess the im-
pact of this property empirically, we propose a third heuris-
tic. The factored-random heuristic hfr

h is a variant of hfm that
samples a random applicable action state a that is consis-
tent with â and computes hfr

h(s, â) as h(s, a). Like hfm, hfr

computes a heuristic solely by considering (one) consistent
and applicable action state(s), and like hdc, the number of
invocations of h is subexponential in the number of action
fluents.
Definition 3. Let h : S×A → R be a state-action heuristic,
s a state and â a partial action state.

The factored-random heuristic hfr
h of h is

hfr
h(s, â) = h(s, a),

where a is sampled uniformly at random from the set of full
action assignments that are applicable in s and consistent
with â.



Theoretical Evaluation
In the following, we show that many component instanti-
ations of the original THTS framework are preserved un-
der the factored representation, i.e. their behaviour does not
change. We will discuss backup functions, their properties
in relation to UCB1 action selection, and recommendation
functions. Outcome selection components require no adap-
tation, as the definition of chance nodes does not change.
Trial length components that condition on decision nodes
only require a small adaptation, such that these conditions
now only trigger on decision nodes where â = ∅.

In the following we assume w.l.o.g that base actions have
binary domains and the ordering on base actions is o(bi) = i
for B = {b1, . . . , bn}.

Backup Functions
We start our theoretical evaluation with the backup func-
tion component. Recall the definition of Monte Carlo back-
ups. With a factored representation we slightly have to adapt
the backup function of a decision node. Instead of updating
state-value estimates V k, we now update partial action-value
estimates Qkâ and assume that Qk∅ = V k. Since successors
of decision nodes can now be chance nodes (if â is a full
assignment) or other decision nodes (otherwise), the backup
function for decision nodes needs to be adapted in the lat-
ter case by using decision node successors instead of chance
node successors on the right hand side of the equation.

In the following we show that the backup function leads
to the same state value estimate V k, regardless of whether
we consider a factored or a flattened representation, with the
condition that the chance nodes of which we backup values
have the same annotations (i.e. selection count and action-
value estimate).
Theorem 3. LetM be an MDP with factored action space
base action set B, s a state, nd = 〈s, V k〉 a decision node in
the flattened representation, and n′d = 〈s, ∅, b, Qk∅〉 a node
in the factored representation. If succ(nd) = succc(n

′
d) then

Monte Carlo backup guarantees V k(nd) = Qk∅(n
′
d).

Proof Sketch. The proof is by induction over |B|. In the
base case there is only a single base action, and therefore
succc(n

′
d) = succ(n′d) = succ(nd), i.e. both decision nodes

have the same successors and therefore backup assigns the
same value estimate. For the inductive case we consider n′d
and there are two successors, one for each value of b1: n′

b̄1
and nb1 , and we have

Qk∅(n
′
d) =

Lk(n′
b̄1

) ·Qk
b̄1

+ Lk(n′b1) ·Qkb1
Lk(n′

b̄1
) + Lk(n′b1)

.

The key insight is that Lk(n′
b̄1

) is the annihilator for the
denominator in

Qkb̄1 =
Lk(n′

b̄1b̄2
) ·Qk

b̄1b̄2
+ Lk(n′

b̄1b2
) ·Qk

b̄1b2

Lk(n′
b̄1b̄2

) + Lk(n′
b̄1b2

)
,

since Lk(n′
b̄1

) = Lk(n′
b̄1b̄2

) + Lk(n′
b̄1b2

). With a similar

argument for n′b1 we then get Qk∅(n
′
d) =

∑
a∈B̂ L

k(n′a)·Qk
a

Lkn′d
,

where B̂ = {b̄1b̄2, b1b̄2, b̄1b2, b1b2}. Thus, the value es-
timation of n′d sums over all chance nodes, and the result
is exactly the same as in the case of flattened representa-
tion.

Theorem 3 guarantees that the value estimate of the root
decision node in the factored representation is equal to the
root decision node in the flattened representation, but only
if corresponding chance nodes have been visited an equal
amount of times and were assigned the same value estimates.
We therefore also consider a second backup function which
does not count how often a node has been selected and in-
stead exploits the declarative model of the MDP.

Partial Bellman backups (Keller and Helmert 2013) are a
variation of Full Bellman backups and consider the proba-
bilities of outcomes when computing action value estimates.
In their original form they are given as

V k(nd) =

{
0 if s is terminal
maxnc∈succ(nd)Q

k(nc) otherwise,

Qk(nc) =R(nc) +

∑
nd∈succ(nc) P(nd|nc) · V k(nd)

Pk(nc)
.

Here, P(nd|nc) = P(s(nd)|s(nc), a(nc)), and Pk(nc) is
the sum of probabilities of all outcomes that are explicit in
the k-th trial, i.e. Pk(nc) =

∑
nd∈succ(nc) P(nd|nc).

Partial Bellman backups allow to label nodes as solved,
which indicates that the optimal value of the corresponding
state (resp. action) is known. This can be exploited by algo-
rithms, since subtrees of such nodes do not have to be visited
again.

When considering a factored representation we have to
make the same adaptation as we had to with Monte Carlo
backups: successors of decision nodes can be decision nodes
again, and we update partial action-value estimates. Then,
this backup function behaves identically as in the case of
flattened representation.
Theorem 4. Let M be an MDP with factored action
space with base action set B, s a state, nd = 〈s, V k〉 a
decision node in the flattened representation, and n′d =
〈s, ∅, b, Qk∅〉 a node in the factored representation. If
succ(nd) = succc(n

′
d) then Partial Bellman backup guar-

antees V k(nd) = Qk∅(n
′
d).

Proof. Bellman backups calculate Qk∅(n
′
d) by recursively

selecting the maximum of all children, until a chance node
is selected. Thus, Qk∅(n

′
d) = maxnc∈succc(n′d)Q

k(nc) =

maxnc∈succ(nd)Q
k(nc) = V k(nd).

If the underlying selection strategy explores the whole
tree, Partial Bellman backups converge towards the Bellman
optimality equation (Keller and Helmert 2013). With a flat-
tened representation Monte Carlo backups converge towards
the optimal value function if for a node nd the outcome se-
lection component guarantees that L

k(nd)
Lk(nc)

→ P(nd|nc) for
k → ∞ and the action selection strategy guarantees that
Lk(n∗c)
Lk(nd)

→ 1 for k → ∞, where n∗c = 〈s, π∗(s), Qk〉 is



the successor of nd in the optimal policy π∗ (Keller and
Helmert 2013).2 This is the case for UCB1 action selection
and, with a similar argument to that of Keller and Helmert
(2013), holds also in the factored representation, as all out-
comes will be sampled proportional to their probability, and
UCB1 never stops exploring.

While we do not discuss other backup functions in de-
tail we mention that Theorem 4 also holds if we consider
Max-Monte-Carlo backups (Keller and Helmert 2013) or
Full Bellman backups.

Recommendation Function
Formally, a recommendation function maps the search tree
resulting from k trials to a probability distribution over
A(sI), the applicable actions of the initial state. Keller
(2015) considers the following functions: 1) The max child
recommendation (Chaslot et al. 2008; Bubeck, Munos, and
Stoltz 2009), also known as expected best arm recommenda-
tion (EBA) which recommends the action with the highest
value estimate, and 2) The most played arm recommenda-
tion (Chaslot et al. 2008; Bubeck, Munos, and Stoltz 2009)
that recommends the action that was selected most often. In
both cases ties are broken uniformly at random. Since both
functions aggregate the maximum over all children they re-
sult in the same action recommendation when we consider a
factored representation. The proof is analogous to the proof
of Theorem 4.

Empirical Evaluation
While the theoretical evaluation shows that the factored
representation preserves many properties of THTS compo-
nents it does not reveal whether the representation results
in stronger algorithms. We therefore evaluate our approach
on the benchmark set of the probabilistic track of the previ-
ous three international planning competitions (IPPC). While
benchmarks of the IPPC 2011 and 2014 rarely contain con-
currently applicable actions, a recent analysis indicates that
the problems with factored action spaces and large sets of
concurrently applicable actions that can be found among
the IPPC 2018 domains pose a major challenge for current
planners (Geißer, Speck, and Keller 2019). Such actions can
be understood as base actions b with binary domain, where
a(b) = 1 corresponds to the application of b.

Our implementation is based on the PROST planning sys-
tem (Keller and Eyerich 2012), which was the winner of the
IPPC 2011 and 2014 and serves as the baseline for PROST-
DD (Geißer and Speck 2018), the winner of the IPPC 2018.
All algorithms we consider share the following component
configuration: a trial stops at the end of the horizon, ac-
tion selection is based on UCB1, outcome selection per-
forms Monte Carlo sampling, the backup function applies
partial Bellman backups, EBA is the recommendation func-
tion and the state-action heuristic is the iterative deepening
search (IDS) component of PROST. We allow a time win-
dow of 1 second per planning step. In each step, the plan-
ner submits an action for the current state and receives a
successor state from the rddlsim simulator (Sanner 2010).

2Assuming w.l.o.g. that there exists only one optimal policy.

A planning round is finished once the end of the horizon
is reached. To obtain statistically significant results we per-
form 100 planning rounds and average the accumulated re-
ward. All experiments have a memory limit of 4GB and
share a cluster of Intel Xeon Silver 4114 2.2 GHz machines.
We measure the quality of each configuration with the IPC
score, which assigns a score of 1 to the best configura-
tion, a score of 0 to a very simple baseline policy or ev-
ery configuration that is worse than this policy, and a lin-
early interpolated value in between these extremes to the
remaining configurations. In cases where the expected re-
ward of an optimal policy is unknown, the IPC score is
not an optimal measure of performance (Geißer, Speck, and
Keller 2019), but it still indicates relative planner perfor-
mance and is easier to represent than absolute average re-
wards. The code, benchmarks and data set are available at
https://doi.org/10.5281/zenodo.3749869.

Mutex Invariants Since the IPPC benchmark sets of 2011
and 2014 only rarely contain concurrently applicable actions
the implementation of a factored representation may intro-
duce unnecessary overhead in such cases. To alleviate this,
we compute mutual exclusion (mutex) invariants as known
from classical planning (Helmert 2009). Two binary action
variables are called mutex if there exists no applicable ac-
tion state that assigns the value 1 to two base actions. Action
variables b1, . . . , bn that are pairwise mutex can be trans-
formed into a single common action variable b with domain
Db = {0, 1, . . . , n}, where a(b) = 0 encodes a state where
all bi for 1 ≤ i ≤ n are assigned a value of 0 and a(b) = i
corresponds to the action state only containing (bi, 1). As
a consequence, we can perform a mutex detection algorithm
in a precomputation step that allows us to transform base ac-
tions that are not concurrently applicable into a single base
action. Note that in cases where all original base actions can
be transformed into a single base action, the factored repre-
sentation corresponds to the flattened representation, as we
have a single action variable with one domain value per ac-
tion state. Of the 280 instances in our benchmark set, 120
fall in this category.

In the following, we investigate two questions: 1) To what
extent can the ordering on base actions influence planning
performance, and 2) How does the factored representation
compare to the flattened representation under the same con-
figuration setting.

Base Action Orderings
In our first experiment we want to see how different order-
ings affect the accumulated average reward. For this, we
consider hdc as underlying heuristic and compare 25 random
variable orderings3 on the ACADEMIC ADVISING 2018 do-
main, which is the domain that has the highest number of
concurrently applicable actions among all domains.

Figure 4 depicts the Gaussian Distributions of the average
rewards. We only report problems where a non-trivial policy

3We performed a second experiment with 100 random order-
ings, but on a different machine. The outcome of the experiment
did not change, so we do not include this in our final report.
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Figure 4: Density Functions of the Gaussian Distributions repre-
senting the accumulated average rewards for different problems of
ACADEMIC ADVISING 2018 for configurations based on random
variable orders without mutex precomputation.

is executed. The remaining cases are too hard for our con-
figurations, which therefore execute a policy that is no better
than the simple baseline policy independent of the ordering.
While the impact of the ordering is negligible in p05, it has
a strong impact in p01, p03 and p04, and a still significant
impact on p02, indicating that a good ordering plays an im-
portant role to perform well in this domain.

While sophisticated ordering schemes are out of scope of
this work, we additionally evaluate a simple approach that
orders action variables based on the name of the variable
in either increasing (INC) or decreasing (DEC) order. The
first two configurations in Table 1 show the results of the
different orderings with hdc as initialisation heuristic. On
most domains the two orderings perform similarly; an in-
creasing ordering is beneficial on ACADEMIC ADVISING,
CHROMATIC DICE, EARTH OBSERVATION and WILDFIRE,
while the decreasing ordering favours COOPERATIVE RE-
CON, MANUFACTURER and RED-FINNED BLUE-EYE. We
want to emphasise that the purpose of this experiment is to
show that different orderings can have different impact, not
that one of these arbitrary orderings is better than the other.

Finally, we evaluate the impact of mutex detection. The
third algorithm in Table 1 is again based on an increasing
ordering, but we perform mutex detection beforehand. It can
be seen that mutex precomputation is almost always benefi-
cial and increases the total IPC score by more than 20 points,
since it has less overhead in the case where actions are not
concurrently applicable.

Factored and Flattened Action Representation
In our second suite of experiments we compare the flat-
tened representation to the factored representation with the
factored-max heuristic hfm, the decomposition heuristic hdc,
and the factored-random heuristic hfr. The factored configu-
rations precompute mutexes and order variables in increas-
ing order; the reference action for hdc is the action where
0 is assigned to all base actions. The four last columns of
Table 1 show the IPC scores among all configurations over

Domain INC DEC hdc hfm hfr flat
AA’14 (10) 2.93 1.65 2.95 2.95 2.82 3.98
AA’18 (20) 2.42 2.63 4.23 4.87 5.27 5.52
CHROM. (20) 19.15 17.46 19.32 18.18 19.20 16.99
COOP. RECON (20) 5.59 9.66 12.07 11.38 11.21 12.00
CROSS. (10) 9.90 9.45 9.34 9.42 6.47 9.44
EARTH (20) 13.85 18.17 17.83 18.00 19.19 17.64
ELEVATORS (10) 8.96 9.03 9.60 9.57 8.72 9.80
GAME (10) 8.22 8.18 9.81 9.73 9.68 9.81
LUCK (20) 12.26 12.58 13.05 16.66 14.40 17.40
MAN. (20) 3.72 5.43 5.93 4.43 8.24 4.11
NAV. (10) 9.04 9.44 9.63 9.22 8.65 9.42
RECON (10) 8.78 9.75 9.73 9.74 7.72 9.93
RFBE (20) 9.66 11.42 12.19 12.31 11.35 12.82
SKILL (10) 9.17 8.88 9.86 9.72 9.37 9.66
SYSADMIN (10) 6.82 6.75 8.01 7.74 7.88 9.93
TAMARISK (10) 8.58 7.69 9.57 9.69 8.06 9.80
TRAFFIC (10) 9.59 9.54 9.72 9.40 9.56 9.85
TRIANGLE (10) 4.33 4.05 6.10 4.19 2.27 7.42
WILDFIRE (10) 6.51 3.73 7.69 7.70 5.49 7.45
WILDLIFE (20) 12.43 11.81 15.41 15.05 17.26 10.89

Sum (280) 171.90 177.30 202.02 199.95 192.81 203.85

Table 1: IPC scores over all problem instances and configurations.
Number of instances is denoted in brackets. The first two columns
show the incremental and decremental action variable ordering
without mutex detection and based on hdc. The remaining columns
show the result of the different heuristics with activated mutex de-
tection against the flattened representation.

all domains and instances. In total, no configuration com-
pletely outperforms the baseline, although hdc is almost as
strong and the factored representation works quite well in
CHROMATIC DICE. However, looking at the results among
all instances is not necessarily an indicator for the perfor-
mance of the factored representation, as this also includes
instances where a factored representation is not particularly
useful.

We therefore also report the results for problems that do
not allow for concurrent actions, presented in the first two
configurations in Table 2. In this case the factored repre-
sentation with either heuristic represents the same algorithm
as the flattened configuration does, and differences are only
due to differences in the implementation. The difference in
ACADEMIC ADVISING 2018 is traced back to a single in-
stance where flat performs significantly better (avg. reward
of −39.30 compared to −69.05 for hfm) due to the IDS
heuristic having a slightly higher search depth (3 instead of
2). This is also the case in MANUFACTURER, but here the
increased depth harms search. In SYSADMIN there are expo-
nentially many probabilistic outcomes. Our implementation
performs less total trials, therefore the original implementa-
tion is more informed. In TRIANGLE TIREWORLD the mu-
tex detection algorithm, which has quadratic run-time in the
number of action variables, takes most of the total planning
time.

Finally, the most interesting part of the benchmark set are
problem instances which allow for concurrency and where a
factored representation can potentially pay off. Table 3 de-
picts the IPC score of the different configurations for prob-
lems which allow for concurrency.

The total result as well as the results in CHROMATIC
DICE, WILDLIFE PRESERVE and MANUFACTURER show



weight 0.5 weight 2
Domain hdc flat hdc flat
AA’14 (5) 1.99 1.98 1.98 1.98
AA’18 (5) 3.49 4.65 3.69 4.59
CROSS. (10) 9.34 9.44 7.69 7.70
ELEVATORS (4) 3.82 3.90 3.87 3.83
GAME (10) 9.81 9.81 9.61 9.74
LUCK (6) 5.48 5.51 5.82 5.94
MAN. (3) 2.47 1.70 1.96 1.24
NAV. (10) 9.63 9.42 7.58 7.54
RECON (10) 9.73 9.93 9.97 6.68
SKILL (10) 9.86 9.66 9.73 9.70
SYSADMIN (10) 8.01 9.93 8.54 9.92
TAMARISK (10) 9.57 9.80 9.43 9.72
TRIANGLE (10) 6.10 7.42 3.92 5.78
WILDFIRE (10) 7.69 7.45 6.25 6.76
WILDLIFE (7) 6.92 6.98 8.68 8.16

Sum (120) 103.91 107.58 98.71 99.28

Table 2: IPC scores for problems that do not allow concurrent
actions for two different heuristic weights. Note that in this case
hdc = hfm = hfr.

Domain hdc hfm hfr flat
AA’14 (5) 0.97 0.98 0.83 2.00
AA’18 (15) 0.73 1.00 0.92 0.87
CHROM. (20) 19.32 18.18 19.20 16.99
COOP. RECON (20) 12.07 11.38 11.21 12.00
EARTH (20) 17.83 18.00 19.19 17.64
ELEVATORS (6) 5.78 5.85 5.09 5.90
LUCK (14) 7.57 10.98 8.99 11.89
MAN. (17) 3.45 2.67 5.40 2.41
RFBE (20) 12.19 12.31 11.35 12.82
TRAFFIC (10) 9.72 9.40 9.56 9.85
WILDLIFE (13) 8.49 8.09 10.47 3.91

Sum (160) 98.11 98.82 102.20 96.27

Table 3: IPC scores for problems that do allow for concurrent ac-
tions with a heuristic weight of 0.5.

Domain hdc hfm hfr flat
AA’14 (5) 4.82 4.99 0.72 1.00
AA’18 (15) 1.44 3.00 0.92 1.46
CHROM. (20) 19.17 18.57 17.76 15.54
COOP. RECON (20) 11.74 14.18 11.46 12.86
EARTH (20) 18.91 17.99 18.54 17.73
ELEVATORS (6) 5.49 5.37 5.80 5.41
LUCK (14) 8.58 9.72 9.22 11.40
MAN. (17) 3.14 1.48 2.00 0.65
RFBE (20) 10.39 10.32 11.14 12.27
TRAFFIC (10) 9.58 9.48 9.59 9.91
WILDLIFE (13) 7.64 7.68 10.07 3.50

Sum (160) 100.90 102.80 97.21 91.72

Table 4: IPC scores for problems that do allow for concurrent ac-
tions with a heuristic weight of 2.0.

that our heuristics successfully guide the factored THTS ap-
proach into relevant parts of the search space, and that the
resulting planner is able to outperform a planner that works
on the flat representation. Inspecting the results of ACA-
DEMIC ADVISING’14 reveals that the difference is due to
a single instance where the factored representation performs
slightly worse than the default policy (-203 vs. -200) and the
flattened configuration performs slightly better (-197.99 vs
-200) and therefore the flattened representation gets a IPC
score of 1, while the other configurations get a IPC score
of 0 for this instance. In PUSH YOUR LUCK, the flattened
representation significantly outperforms every factored con-
figuration. We believe that this is partially due to the vari-
able ordering, as a minor experiment that compares order-
ings based on the size of Db indicates that such an ordering
is more beneficial for this domain (results of other domains
were not significantly different).

Comparing the different heuristics of the factored repre-
sentation among each other shows that the factored-random
heuristic, which is the fastest to compute, performs slightly
better than the other two. However, the differences are small,
and the number of applicable actions is rarely large enough
that the theoretical advantage of the decomposed heuristic
pays off in practice. However, if we slightly increase the
weight the planner uses for the heuristic to 2 (the default
configuration of the PROST planner multiplies the heuristic
value with 0.5), we can already get a glimpse at the poten-
tial of the guidance of our new heuristics. Table 4 shows that
both the decomposed heuristic and the factored-max heuris-
tic achieve much better results in the 5 hard concurrent ACA-
DEMIC ADVISING’14 instances than the flat representation
does.

Conclusion
The presented theoretical and empirical evaluation shows
that a factored representation can be beneficial for THTS
algorithms and is an important first step towards efficient
anytime optimal domain-independent algorithms for MDPs
with exponentially many actions. However, more sophisti-
cated approaches are required to tackle problems with expo-
nentially large action spaces, as it is not feasible to iterate
over all applicable actions anymore. The work of Raghavan
(2017) who represents the action space as a decision diagram
might be a promising idea. Our evaluation on action order-
ings only considered static orderings; dynamically adapting
the ordering might be a beneficial alternative for many do-
mains, as a good action ordering most likely depends on the
current state, and an interesting future direction is to base
the ordering on initial heuristic estimates.

We believe that the presented framework of factored ac-
tion spaces coupled with dynamic variable orderings and
fast and efficient consistency checks can be the key to solv-
ing even the most challenging problems of the IPPC 2018
benchmarks, and will thus be beneficial for a broad range of
application domains as well.
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