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Summary 

 

The most severe form of malaria, caused by Plasmodium falciparum, is an enormous 

burden for the endemic countries without any commercial vaccine available 

currently. P. falciparum possesses a complex life cycle, changing from different hosts 

and environmental conditions, and hence requires intensive and essential 

mechanisms for regulation of gene expression to survive and take advantage from 

external environments. In recent years, epigenetic control of gene expression 

emerged as an important mechanism to regulate expression of genes involved in 

virulence and sexual differentiation. Among epigenetic histone marks, histone 3 lysine 

9 trimethylation (H3K9me3), which is considered the hallmark of heterochromatin 

formation, is recognized by an evolutionary conserved silencing factor called 

heterochromatin protein 1 (HP1). HP1 is a small protein consisting of three domains: 

two conserved domains at the N and C-terminus, namely the chromo domain (CD) 

and chromoshadow domain (CSD), respectively, and a variable hinge or linker 

domain in between them. The CD recognizes and binds to H3K9me3 to establish 

heterochromatin while the CSD interacts with a large number of effector proteins. HP1 

possesses a number of posttranslational modifications, among which phosphorylation 

is highly important in regulating its functions. P. falciparum encodes only one HP1 

isoform in contrast to most other eukaryotes that contain two to five HP1 paralogs. 

Although HP1 has been well studied in model eukaryotes, the detailed functions of 

each PfHP1 domain as well as PfHP1 phosphorylation in P. falciparum are poorly 

understood. My PhD project aimed to investigate PfHP1 function in detail using 

CRISPR/Cas9-based gene editing combined with the DiCre/loxP system for conditional 

mutagenesis. The two specific objectives were (1) to uncover the roles of the individual 

PfHP1 domains in PfHP1 function and (2) to understand if and how phosphorylation of 

PfHP1 regulates its function. Both objectives focused on the three known PfHP1-

dependent cellular processes: (1) the maintenance of heritable silencing and mutually 

exclusive expression of var genes, (2) mitotic progression of asexual blood stage 

parasites, and (3) sexual commitment. 

In the first project, I aimed to analyse the functional contribution and conservation of 

the CD, Hinge and CSD domains of PfHP1 using the approach mentioned above to 

generate PfHP1 truncation and hybrid mutant lines. I found that nuclear localization 

ability of PfHP1 is underlined in the N-terminal 29 amino acids (1-29) and the C-terminal 
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76 amino acids (191-266). The former polypeptide is supposed to have weak ability of 

nuclear delivery while the later one is necessary for fully targeting PfHP1 to nucleus. I 

also showed that an intact PfHP1 containing all three structural domains is required for 

heterochromatin localization and the normal asexual growth pathway of blood stage 

malaria parasites. Third, I successfully generated a PfHP1 knock out cell line with more 

pronounced phenotype that allowed massive production of more than 82% of sexual 

commitment rate once induced and suggested a PfHP1-independent regulatory 

pathway of var gene silencing during gametocytogenesis. Finally, I showed that the 

HP1 Hinge and CSD domains are functionally conserved between human – and 

rodent malaria parasites. 

In the second project, I aimed to address (1) the kinases phosphorylating PfHP1 and 

their target residues and (2) the role of selected phosphorylated residues in regulating 

PfHP1 function using similar approach mentioned above to generate conditional 

PfHP1 phosphomutant cell lines. Liquid chromatography tandem mass spectrometry 

(LC-MS/MS) analysis of immunoprecipitated native PfHP1 showed that PfHP1 is 

phosphorylated mostly in the CD and hinge domains. In vitro kinase assays revealed 

that PfHP1 is a substrate of P. falciparum CK2 (PfCK2). LC-MS/MS analysis showed that 

PfCK2 targets three clustered serine residues within the PfHP1 hinge region in vitro. By 

generating conditional PfHP1 phosphomutant cell lines using CRISPR/Cas9-mediated 

genome editing and the DiCre/LoxP system, I found that PfCK2-dependent 

phosphorylation of PfHP1, and phosphorylation of the PfHP1 hinge domain in general, 

is dispensable for proper PfHP1 localization, gene silencing, parasite growth and sexual 

conversion. 

In summary, for the first time, in-depth function and functional conservation of 

PfHP1domains as well as phosphorylation of PfHP1 have been studied in detail in the 

three main PfHP1-dependent processes (var gene silencing, mitotic proliferation, 

sexual commitment). The experimental pipeline established in this study provides an 

elegant approach to interrogate function of other essential proteins. In addition, the 

study also provides a tool for robust production of gametocytes used in further studies 

on gametocyte biology or high-throughput anti-malaria gametocyte drug screen. This 

study is highly relevant to study pathogenesis and transmission as well as underlying 

epigenetic mechanisms in some other unicellular pathogenic eukaryotes since they 

also share common features such as changing living environments and mutually 

exclusive expression of surface antigens. 
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Chapter 1. Introduction  

1.1 Malaria and Plasmodium falciparum 

Malaria is a complex parasitic disease transmitted by female Anopheles mosquitoes 

through blood feeding. In 2017, 219 million cases of malaria occurred worldwide, 2 

million cases more compared with 2016 (World Health Organization – World malaria 

report 2018 at https://www.who.int/malaria/publications/world-malaria-report-

2018/report/en/).  

Five species of the Plasmodium genus infect humans, namely P. vivax, P. ovale, P. 

malaria, P. knowlesi  and P. falciparum (Cox-Singh et al., 2008). Among them, P. 

falciparum causes the most lethal and severe malaria, especially among children 

under five years old (Elliott and Beeson, 2008). The massive proliferation of intra-

erythrocytic parasites during blood stage infection is responsible for all malaria-related 

symptoms. A number of surface antigens on the infected red blood cell (RBC) 

membrane, in particular P. falciparum erythrocyte membrane protein 1 (PfEMP1), 

interact with receptors on blood endothelial cells such as ICAM-1, CD-36 and with 

uninfected RBCs (rosetting), resulting in cellular adherence and sequestration of 

infected RBC (iRBC)  (Newbold et al., 1997; Rowe et al., 2009). Hence, iRBC clearance 

from the blood stream is reduced as the parasite escapes passage through the spleen 

(Yazdani et al., 2006). Furthermore, sequestration causes severe malaria outcomes 

such as cerebral or placental malaria by blocking blood flow, damaging tissues and 

triggering inflammatory responses (Miller et al., 2013). Antigenic variation and diversity 

of PfEMP1 and many other antigens contribute significantly to immune evasion and 

hence to the establishment of chronic infection (Reeder and Brown, 1996). Although 

acquired immune responses develop gradually after repeated exposure (Marsh and 

Kinyanjui, 2006), sterile immunity is not acquired even after life-long exposure to 

malaria parasites (Ferreira et al., 2004).   

1.2 Plasmodium falciparum life cycle 

P. falciparum has a complex life cycle in two different hosts and various environments: 

the sexual reproduction in mosquitoes and several cycles of asexual proliferation and 

development in the mosquitoes and the human host (Figure 1.1). During their blood 

meal, the female Anopheles injects sporozoites which travel to the liver where they 
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first infect hepatocytes (Scherf et al., 2008). The parasites then undergo asexual 

division to produce merozoites and are released into the blood stream to invade RBCs 

(Scherf et al., 2008). Within RBCs, parasites reside in a parasitophosphorous vacuole 

and develop into the ring stage, starting to synthesise stage-specific proteins that are 

actively exported into the host cell to refurnish the erythrocyte cytosol and membrane 

(Maier et al., 2009).  Among these proteins, PfEMP1, encoded by var gene family, is 

considered the major parasite virulence factor. var gene expression is controlled 

tightly in a mutually exclusive manner that only one var gene is transcribed by a single 

parasite (Deitsch and Dzikowski, 2017; Dzikowski and Deitsch, 2009; Kyes et al., 2007; 

Scherf et al., 1998; Voss et al., 2014; 2006) in order to avoid exhausting the surface 

antigen repertoire. Once PfEMP1s is exported to the RBC membrane, the protein is 

assembled in so-called knob structures (Maier et al., 2009). The N-terminal (binding) 

region of PfEMP1 is directed on the external surface of iRBCs while the acidic C-

terminal sequence (ATS) faces the erythrocyte cytosol (Baruch et al., 1995; J. D. Smith 

et al., 1995). The extracellular part of PfEMP1 is responsible for causing cellular 

adherence and antigenic variation which is the driving force of chronic infection 

(Bannister and Mitchell, 2003). When intra-erythrocytic parasites enter the schizont 

stage, the parasite nucleus divides multiple times and finally cytokinesis generates 16-

32 merozoites that are released into the blood circulation to reinvade RBCs and start 

another 48-hour intraerythrocytic cycle. Importantly, during each round of intra-

erythrocytic development, a small subpopulation of asexual parasites exits the cell 

cycle and undergoes sexual differentiation to form gametocytes (Ngotho et al., 2019). 

After 10-12 days of maturation, male and female stage V gametocytes are able to 

infect mosquitoes (Bruce et al., 1990; Inselburg, 1983; Silvestrini et al., 2000; T. G. Smith 

et al., 2000). Further in the mosquito, gamete egress, fertilization and sporogonic 

development occur to ultimately produce infective sporozoites ready for transmission 

to the next human.  

During progression through the life cycle, P. falciparum expresses distinct global 

transcriptomes and proteomes (Horrocks et al., 2009). For instance, inside the 

mosquito, a noticeable proportion (46%) of proteins appear to be unique for the 

ookinete stage (Patra et al., 2008). Similarly, 49% of proteins found in sporozoites are 

specific for this stage and in merozoites, trophozoites and gametocytes 20-33% of all 

detected proteins are likely specific for the corresponding stage (Florens et al., 2002). 

Only a small number (6%) of proteins have been detected in all life cycle stages 
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(Florens et al., 2002). Even during the intraerythrocytic developmental cycle (IDC), 

transcription profiles during rings, trophozoites and schizonts are also stage-specific, 

showing that gene expression regulation during the IDC is tightly regulated in P. 

falciparum (Bozdech et al., 2003).  

 

 

Figure 1.1. Life cycle of P. falciparum (Rowe et al., 2009) 

 

It has therefore been suggested that P. falciparum transcribes many genes in a “just-

in-time” manner where genes are only expressed when their protein products are 

needed (Bozdech et al., 2003). For example, genes important for the merozoite 

invasion process including ama1, eba175, msp1, msp4 or msp5 are transcribed in 

middle and late schizonts, whereas var genes and many genes required for host cell 

remodelling are expressed in ring stages, early after invasion (Bozdech et al., 2003). 

1.3 Gene regulation in Plasmodium falciparum  

As mentioned above, P. falciparum lives an extraordinarily complex life cycle during 

which morphology, function, metabolism and antigens are stage-specific. Hence, 

intensive and essential mechanisms for a tight regulation of gene expression are 

required for the parasite in order to survive and progress through vastly different 

environments (Horrocks et al., 2009; Voss et al., 2014). It is not surprising that P. 

falciparum controls gene expression at multiple levels (Horrocks et al., 2009) and 

interconnects different layers of regulation, including transcriptional regulation and 

epigenetic mechanisms to govern many important cellular processes, for example, 

the clonally variant expression of var genes to evade host immunity and sexual 
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conversion pathways in order to transform/switch from the asexual blood stage form 

to gametocytes, the transmissible form of the parasites. 

1.3.1 Transcriptional regulation and specific transcription factors 

One central mechanism of gene-specific transcriptional control in model eukaryotes 

is the fine-tuned interplay between trans-acting factors, for example transcription 

factors, and cis-regulatory elements in a sequence-specific manner at promoter 

regions (Horrocks et al., 2009).  Compared to other eukaryotes, P. falciparum possesses 

a unique small set of specific transcription factors (TFs) (Coulson et al., 2004).  

There have been few P. falciparum transcription factors (TFs) characterized so far 

including Myb1 protein (Gissot et al., 2005; Komaki-Yasuda et al., 2013) and several 

Apicomplexa apetala2 (ApiAP2) family factors (Balaji et al., 2005; Jeninga et al., 2019; 

Modrzynska et al., 2017; Painter et al., 2011).  

While the mechanisms that P. falciparum uses to tightly control transcription are not 

well understood, several lines of evidences imply an important role of ApiAP2 factors 

in this type of regulation. ApiAP2 is a phylum-specific family of sequence-specific DNA-

binding proteins in Apicomplexa phylum (De Silva et al., 2008). The proteins are varied 

in size but the AP2-intergrase DNA binding like domain containing 60 amino acids is 

highly conserved between ApiAP2 members (Balaji et al., 2005). Each of ApiAP2- 

family members has one to four AP2 domains (Balaji et al., 2005). Using protein binding 

microarrays (PBMs), a large number of these AP2 domains were shown to bind to 

specific DNA motifs that are also found in the promoter regions of subsets of parasite 

genes (Campbell et al., 2010; De Silva et al., 2008). As AP2 domains from particular 

ApiAp2 proteins are able to bind several DNA sequence motifs, this feature highly likely 

increases the number of genes regulated by one transcription factor (Campbell et al., 

2010).  

Most of P. falciparum apiap2 genes (22/27 genes) are expressed in a stage-specific 

manner during the 48-hour IDC (Balaji et al., 2005). As presumed master regulators of 

parasite development, ApiAP2 factors have been shown to take part in 

developmental transition processes such as ookinete formation (Yuda et al., 2009), 

sporozoite formation (Yuda et al., 2010), liver stage development (Iwanaga et al., 

2012) and gametocyte commitment within the human blood stream (Kafsack et al., 

2014; Sinha et al., 2014). Up to date, there have been a number of ApiAP2 proteins 

characterized in detail. There are some ApiAP2 proteins functioning as transcription 
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factors that mediate gene expression, including five that have been characterized in 

the rodent malaria parasite, P. berghei and three have been characterized in P. 

falciparum. They are PbAP2-O (ortholog of PF3D7_1143100) (Yuda et al., 2009), PbAP2-

L (ortholog of PF3D7_0730300) (Iwanaga et al., 2012), PbAP2-G2 (no otholog in P. 

falciparum) (Modrzynska et al., 2017; Yuda et al., 2015), PbAp2-SP (otholog of 

PF3D7_1466400 or PfAP2-exp) (Modrzynska et al., 2017; Yuda et al., 2010), PbAP2-G 

(ortholog of PfAP2-G) (Sinha et al., 2014),  PfAP2-exp (Martins et al., 2017),  PfAp2-I 

(Santos et al., 2017) and the PfAP2-G (Kafsack et al., 2014).  

In the rodent malaria parasite P. berghei, PbAP2-L has a wide range of expression 

including salivary gland sporozoites, erythrocytic trophozoites and liver stages 

(Iwanaga et al., 2012). Depletion of PbAP2-L resulted in the arrest of parasites at mid-

schizont development (36 hpi) in hepatocytes, thus decreasing the ability of liver 

infection (Iwanaga et al., 2012). Meanwhile, PbAP2-O and PbAP2-SP transcription 

factors were described to be exclusively expressed in mosquito stages (Yuda et al., 

2010; 2009). PbAP2-O is highly expressed in ookinetes, the mosquito midgut-invading 

stage and plays an essential role for the normal morphogenesis of oocyst 

development (Yuda et al., 2009). The PbAP2-SP is expressed in oocyst and salivary 

gland sporozoites and disruption of pbap2-sp caused loss of sporozoite formation in 

oocyst (Yuda et al., 2010). Orthologs of PbAP2-L, PbAP2-O and PbAP2-SP in P. 

falciparum, in contrast,  are all expressed during IDC (Balaji et al., 2005; Bozdech et 

al., 2003; Iwanaga et al., 2012; Le Roch et al., 2003; Otto et al., 2010; Yuda et al., 2009), 

suggesting that they might have IDC-related functions. To be specific, the disruption 

of pfap2-exp (ortholog of pbap2-sp) resulted in the alteration of the knob-morphology 

(rougher and larger) and an upregulation of some clonally variant gene families at 

sub-telomeric regions such as rif, stevor and Pfmc-2TM (Martins et al., 2017). Recently, 

PfAP2-I has been found to associate with the promoters of genes involved in wide 

range of functions in P. falciparum such as invasion genes (msp, rap, and rhopH gene 

families), nucleosome and chromatin-related genes, cell division/cell-cycle-related 

genes and genes related to vesicle formation and host cell remodelling (Santos et al., 

2017). 

In 2014, whole genome sequencing of gametocyte non-producer lines in both P. 

falciparum and P. berghei has discovered mutations in ap2-g, a conserved member 

of the ApiAp2 family among all species in Apicomplexa phylum (Sinha et al., 2014), 

connected to this phenotype (Kafsack et al., 2014; Sinha et al., 2014). Knock out of 
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ap2-g in the two parasites resulted in the complete loss of gametocyte producibility 

(Kafsack et al., 2014; Sinha et al., 2014). The correction of AP2-G mutations or 

complementation of an ap2-g deletion mutant in P. berghei restores gametocyte 

reducibility to that of wildtype parasites (Sinha et al., 2014). A number of gametocyte-

specific genes have been found to be deregulated in the gametocyte non-producer 

ap2-g mutant lines by qRT-PCR and microarray (Kafsack et al., 2014; Sinha et al., 2014). 

Both of PfAP2-G and PbAP2-G DNA binding domain binds to a 6-mer palindrome 

motifs (GxGTAC and GTACxC) which occur frequently within promoters of genes 

upregulated in gametocytes (Kafsack et al., 2014; Sinha et al., 2014). These binding 

motifs are also found in the upstream region of the pfap2-g and pbap2-g genes, 

suggesting that the expression of AP2-G might follow an auto feedback regulatory 

mechanism (Kafsack et al., 2014; Sinha et al., 2014). In addition, pfap2-g locus was 

found associated with histone silencing marker (H3K9me3) (Kafsack et al., 2014; Lopez-

Rubio et al., 2009) and is the only PfHP1-regulated member of the apiap2 family 

(Brancucci et al., 2014; Flueck et al., 2009), implying that pfap2-g expression is also 

controlled by epigenetic mechanisms.  

PbAP2-G2 (PBANKA_103430, no ortholog in P. falciparum) was first addressed as a 

transcription factor that is significantly associated with sexual commitment but acts 

downstream of this irreversible commitment point to rather modulate gametocyte 

maturation (Kafsack et al., 2014). PbAP2-G2 was later shown to bind to 5-mer motifs in 

the promoters of a series of genes that are required for asexual proliferation (Yuda et 

al., 2015). Many of these genes were found to be upregulated in PbAP2-G2 depleted 

cell line (Yuda et al., 2015), suggesting that PbAP2-G2 plays as a suppressor of genes 

important for asexual stages in gametocytes. Further, in a pure asexual population 

due to pbap2-g depletion, an upregulation in gene transcription and protein 

translation of gametocyte-specific and ookinete-specific genes was found upon 

pbap2-g2 depletion (double knockout) (Modrzynska et al., 2017). The later study 

suggested that PbAP2-G2 plays as a suppressor of transmission genes in asexual 

parasites (Modrzynska et al., 2017). Together, these studies revealed PbAP2-G2 as a 

transcriptional repressor in both asexual and sexual blood stages in the rodent malaria 

parasites (Modrzynska et al., 2017; Yuda et al., 2015).  

In addition to the transcription factors above, there are also ApiAp2 members that 

play other general functions, of which two have been characterized in P. falciparum, 

PfSIP2 (Flueck et al., 2010) and PfAP2-Tel (Sierra-Miranda et al., 2017). PfSIP2 
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(Plasmodium falciparum SPE2-interacting protein) was shown to interact preferentially 

with SPE2 motifs located in telomere-associated repetitive elements (TAREs) 2/3 

regions and directly upstream of upsB-type var genes (Flueck et al., 2010; Voss et al., 

2003). While orthologs of PfSIP2 were found in other sequenced Plasmodium species, 

sub-telomeric SPE2 elements were exclusively found in P. falciparum (Flueck et al., 

2010; Voss et al., 2003). The protein was proposed to play multiple functional roles 

including var gene silencing, heterochromatin formation and organization, genome 

integrity, chromosome replication and segregation (Flueck et al., 2010) but the exact 

function of PfSIP2 remains unknown. Recently, in 2017, Sierra-Miranda M. and 

colleagues have reported PfAP2-Tel as a component of a telomere-binding complex 

in P. falciparum (Sierra-Miranda et al., 2017). The protein was identified with one 

canonical DNA-binding domain and conserved among all Plasmodium spp. (Sierra-

Miranda et al., 2017). PfAP2-Tel localizes to telomeric clusters throughout all parasite 

stages in the IDC (Sierra-Miranda et al., 2017). Genome-wide profiling using ChIP-Seq 

revealed its predominant distribution at 14 telomere ends and protein binding assays 

revealed its direct binding to the GGGTT(T/C)A conserved telomeric tandem repeat 

(Mancio-Silva et al., 2008; Sierra-Miranda et al., 2017). It is interesting that this telomere 

repeat-binding factor (TRF) does not contain a sequence-specific MYB-type DNA-

binding domain as all known TRFs have in other model eukaryotes (Giraud-Panis et al., 

2010), but uses AP2 binding domain instead, thus opening a new insight into telomere 

biology in P. falciparum as well as set a novel function of ApiAP2 members. 

Up to date, only two transcription factors outside the ApiAp2 family have been 

characterized in detail, namely PfMyb1 (Gissot et al., 2005) and PfPREBP (Kornberg, 

2007). The PfMyb1 protein contains three Myb domains with DNA binding ability at the 

C-terminal region (Boschet et al., 2004). PfMyb1 protein was shown to be an essential 

transcription factor for the erythrocytic cycle of P. falciparum and for regulating key 

genes, such as pfpk5 and PFL1285c, a homologue of proliferating cell nuclear antigen 

(PCNA) which is involved in cell cycle regulation and progression (Gissot et al., 2005). 

In addition, the transcription factor PREBP in P. falciparum was discovered as a novel 

and unique transcription factor by possessing four K-homology (KH) domains that are 

usually found in RNA- and single-stranded DNA-binding proteins (Valverde et al., 

2008). The binding of PREBP to a 102 bp-cis enhancer region of the pf1-cys-prx gene 

regulates the expression timing of this antioxidant protein exclusively in trophozoites 

and schizont stages (Komaki-Yasuda et al., 2013).  
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1.3.2 Epigenetic regulation 

Another alternative primary mode of transcriptional regulation is epigenetic control, 

which P. falciparum utilizes to govern nutrient uptake, clonally variant gene expression 

of virulence genes in blood stage parasites and sexual differentiation (Voss et al., 

2014). Epigenetics is a biological term referring to the heritable, reversible change in 

phenotype occurring through changes in chromatin structure without changes in the 

underlying DNA sequence (Berger et al., 2009). The two major states of chromatin are 

known as euchromatin and heterochromatin. Euchromatin is rather loosely packed 

chromatin, allowing transcriptional activation of genes located in these regions. In 

contrast, heterochromatin consists of a more condensed chromatin structure related 

to gene inactivation/heritable silencing (Woodcock and Ghosh, 2010). In eukaryotes, 

DNA methylation, non-coding RNA and chromatin modifications are favourable 

processes involved in epigenetic regulation of gene expression (A. D. Goldberg et al., 

2007; Handy et al., 2011).  

In Plasmodium falciparum, DNA methylation is still an enigma. It has been reported 

that only a small proportion of the cytosines was asymmetrically methylated and non-

CG methylations also occurs in the P. falciparum genome during its IDC (Ponts et al., 

2013). While a potentially putative C5 DNA methytransferase gene (PF3D7_0727300, 

encoding for PfTRDMT1) was detected computationally (Ponts et al., 2013), the DNA 

methyltransferase activity of this protein was still controversial as a recent study has 

shown that PfTRDMT1 only methylated endogenous aspartic acid tRNA at cytosine 

position 38 but not DNA (Govindaraju et al., 2017). These results, together with an 

extreme A+T richness (80.6%) in the genome (Gardner et al., 2002)  suggest that the 

parasite has lost its DNA methylation machinery during evolution, just like the other 

apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum (Gissot et 

al., 2008).  

Another epigenetic mode to control gene expression in P. falciparum is the non-

coding RNA machinery. As its name suggests, such RNAs are transcribed but not 

translated into proteins. Although P. falciparum lacks functional small RNA-

interference machinery (RNAi) (Baum et al., 2009), long non-coding (lncRNAs) and 

antisense long non-coding RNAs (aslncRNAs) are observed in the parasite during its 

IDC (Gunasekera et al., 2004; López-Barragán et al., 2011; Patankar et al., 2001; Siegel 

et al., 2014; Vembar et al., 2014; Wei et al., 2014). lncRNAs have been controversially 
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shown to associate with either inactive or active var genes (Epp et al., 2009; Jiang et 

al., 2013; Ralph et al., 2005). To date, there have been more and more evidences 

revealing the association of aslncRNAs with the active var gene in a sequence-

specific and dose-dependent manner (Amit-Avraham et al., 2015; Jing et al., 2018). 

Interestingly, while Voss and colleagues revealed an exogenous var promoter is 

sufficient to repress endogenous var gene transcription, thus controlling the singular 

choice of var gene expression (Voss et al., 2006), Q Jing and colleagues in contrast 

showed the co-transcription of both dominant endogenous and the newly induced 

var genes by an exogenous aslncRNA in one single parasite, thus breaking var gene 

mutually exclusive expression in short-term culture of parasites (Jing et al., 2018). 

Therefore, the var gene activation by aslncRNA is considered as a relative 

independent intermediary step of the regulation of singular var gene expression (Jing 

et al., 2018). Currently, antisense RNA transcript has been indicated as negative 

regulator for the expression of the gametocyte development 1 gene (Pfgdv1) which 

plays an important role in regulating sexual commitment (Filarsky et al., 2018). Deletion 

of pfgdv1 aslncRNAs resulted in the expression of GDV1 and consequently the 

upregulation of pfap2-g, which in turns triggers sexual commitment and 

gametocytogenesis (Filarsky et al., 2018). The AP2-G, encoded by pfap2-g, is a 

conserved member of the ApiAp2 family and was previously discovered as a master 

regulator of gametocytogenesis in both P. falciparum and P. berghei (Kafsack et al., 

2014; Sinha et al., 2014). The activation of ap2-g resulted in subsequent expression of 

genes encoding earliest known gametocyte markers, for example Pfs16, Pfg27/25, 

Pfg14.744 (Kafsack et al., 2014) and genes required for early gametocyte 

development such as several members of the PHIST family (Eksi et al., 2005). 

Furthermore, chromatin modification is a well-known mode of chromatin-based 

epigenetic mechanisms mediating gene expression in a wide range of organisms from 

yeast to human. Because of the lack of apparent DNA methylation and a functional 

RNAi pathway, the malaria parasite seems to largely exploit the pool of histone 

posttranslational modifications (PTMs) and histone variants to modulate chromatin 

accessibility. Beside the four canonical histone components (H2A, H2B, H3.1 and H4) 

making up nucleosomes as in other eukaryotes, four histone variants have been 

identified so far in P. falciparum (H3.3, centromere-specific H3 (cenH3), H2A.Z, H2B.Z 

(H2B.v)) (Miao et al., 2006). While H2A.Z was found at promoters and transcription 

starting sites (TSSs) of euchromatic genes in other eukaryotic models (Raisner et al., 
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2005; Schones et al., 2008), PfH2A.Z was constantly found at 5’and 3’ flanking regions, 

marking its presence at the intergenic regions throughout the IDC, especially with the 

colocalization of some particular histone PTMs such as H3K4me3 and H3K9ac (Bartfai 

et al., 2010). The double variant PfH2A.Z/H2B.Z was found at the same nucleosomes 

with H3K4me3 that occupied most 5’ flanking regions (Petter et al., 2013). The 

enrichment of the double variant Pf H2A.Z/Pf H2B.Z at A-T rich intergenic and promoter 

regions of the actively transcribed var gene (Hoeijmakers et al., 2013; Petter et al., 

2013) was shown to be correlated with var gene transcription and developmentally 

regulated (Petter et al., 2013). As the euchromatic intergenic region is especially rich 

in AT content (~90%) (Gardner et al., 2002), which is considered relative rigid and not 

easy to wrap around histone core, it seems the parasite has taken advantage of 

histone variants H2A.Z and H2B.Z to bind AT-rich DNA more effectively (Batugedara et 

al., 2017). Meanwhile, the PfH3.3 was discovered as a GC-content dependent histone 

variant that associates with euchromatic coding regions and sub-telomeric regions 

where the GC content is higher (Fraschka et al., 2016). Interestingly, PfH3.3 occupies 

promoter and coding regions of activated and poised var genes, raising a possibility 

of its epigenetic role in the memory of var gene expression (Fraschka et al., 2016). 

At least 106 individual histone PTMs have been identified so far in P. falciparum 

(Coetzee et al., 2017; Gupta et al., 2013; Saraf et al., 2016) and many of those have 

been found in other eukaryote models. Among those modifications, histone 

acetylation and histone methylation are the most abundant and widely studied.  

At least four histone acetyl transferases (HATs) and three classes of histone 

deacetylases (HDACs) have been identified in P. falciparum (Liwang Cui and Miao, 

2010). Acetylated lysines on histone tails such as lysine 9 at histone 3 (H3K9ac) and its 

associated HAT, PfGCN5 - a yeast GCN5 homologue involved in chromatin 

remodelling (Fan et al., 2004) were found at putative transcriptional starting sites (TSSs) 

and associated with gene activation (Long Cui et al., 2007). In contrast, PfSIR2, a P. 

falciparum HDAC homolog of yeast SIR2 protein (silent information regulator 2), which 

is responsible for the deacetylation of acetylated lysines on histone 3 and 4 (Merrick 

and Duraisingh, 2007), was found at promoters of the silenced var2csa gene and has 

been shown to mediate the mutually exclusive expression of sub-telomeric virulent 

genes including var and rifin (Duraisingh et al., 2005).  
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While histone acetylation is involved in gene activation, histone methylation could be 

involved in both gene activation and silencing. To be specific, H3K4me3 is associated 

with actively transcribed genes in P. falciparum (Salcedo-Amaya et al., 2009), PfSET2-

dependent H3K36me3 is enriched at the TSSs and associated with transcriptional 

repression, specifically with var gene silencing, controlling the singular choice of var 

gene expression (Jiang et al., 2013). Hence, by incorporating these modifications, 

histones can dictate higher order structure of chromatin, regulating transcriptional 

accessibility through recruitment of non-histone proteins (Kouzarides, 2007). To fulfil this 

function, histone PTM patterns (so-called histone codes) need to be recognized or 

read by histone code “reader” proteins containing specific domains binding to 

histone PTMs.  

In P. falciparum, there have been several histone code readers discovered including 

the phosphorylated histone reader - Pf14-3-3I (Dastidar et al., 2013), the acetylated 

histone reader - PfBDP1 (Josling et al., 2015) and the methylated histone reader - PfHP1 

(Brancucci et al., 2014; Flueck et al., 2009; Pérez-Toledo et al., 2009). Among those, 

PfBDP1 and PfHP1 have been functionally characterized in vivo.  

The PfBDP1 or bromodomain protein encoded by PF3D7_1033700 contains one 

bromodomain at the C-terminus and binds preferentially to H3K9ac and H3K14ac 

(Josling et al., 2015). PfBDP1 was found to interact with another bromodomain-

containing protein namely PfBDP2 (Josling et al., 2015). PfBDP1 was enriched near the 

transcriptional starting sites at the promoter regions of a number of genes important 

for invasion (Josling et al., 2015). Moreover, PfBDP1 depletion resulted in the 

downregulation of genes involved in invasion ligands and motility during invasion in 

schizont stage (Josling et al., 2015). Thus, these findings imply a role of PfBDP1 in 

invasion gene recognition and regulation (Josling et al., 2015).  

Plasmodium falciparum heterochromatin protein 1 (PfHP1), a reader of H3K9me3 is a 

conserved protein from fission yeast to human (Voss et al., 2014). The protein has stood 

out for its functions in epigenetically regulatory mechanisms in various cellular 

processes including antigenic variation, life cycle progression and sexual 

differentiation (Brancucci et al., 2014). As its name suggests, HP1 is an essential 

component of heterochromatin (Kwon and Workman, 2011). P. falciparum 

heterochromatin protein 1 (PfHP1) specifically recognizes the H3K9me3 mark and 

plays a central role in gene silencing (Voss et al., 2014). The vast majority of parasite 
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genes located within heterochromatin are clonally variant genes such as var, rifin, 

stevor (Rovira-Graells et al., 2012). Recently, Brancucci and colleagues have revealed 

a central role of PfHP1 in controlling the mutually exclusive expression of the var gene 

family (Brancucci et al., 2014). In addition, this study also showed that PfHP1 is required 

for the parasite to enter S phase and mitotic proliferation during the IDC (Brancucci 

et al., 2014). Interestingly, PfHP1 also orchestrates at the ap2-g locus, which encodes 

for the transcription factor AP2-G that is essential for sexual commitment in P. 

falciparum (Brancucci et al., 2014; Kafsack et al., 2014). Because of the important 

functions of PfHP1 in these crucial processes, PfHP1 should be studied in more detail 

on the functional level in order to acquire a deeper insight into antigenic variation, 

parasite proliferation and sexual commitment.  

1.4 Heterochromatin protein 1 in eukaryotes 

HP1 was originally identified in Drosophila melanogaster as a non-histone 

chromosomal protein associated with heterochromatin (Eissenberg et al., 1990; James 

and Elgin, 1986). It is well conserved in eukaryotes and has been studied extensively in 

fission yeast (Schizosaccharomyces pombe), D. melanogaster and mammals 

(Lomberk et al., 2006b). 

HP1 is a main component of heterochromatin structure. Heterochromatin is generally 

enriched at centromeric and telomeric regions and localises at the nuclear periphery 

(Lomberk et al., 2006b). Other studies also revealed the association of HP1 with some 

euchromatic regions and this somehow depends on specific isoforms of HP1 (Hiragami 

and Festenstein, 2005).  

The major and well-known function of HP1 lies in heterochromatin formation and gene 

silencing. HP1 recognizes and binds to H3K9me3 (Lomberk et al., 2006b). In turn, HP1 

forms a homodimer, which recruits a H3K9me-specific histone methyltransferase 

(HKMT) (Lomberk et al., 2006b). As a consequence, heterochromatin and gene 

silencing can spread in cis along the chromatin fibre. Other functions of HP1 include 

the silencing of euchromatic genes, enhancing DNA repair by relaxing the 

heterochromatin structure in response to DNA damage, targeting and protecting 

telomeres, up-regulating genes located at heterochromatin regions or stabilizing 

transcript processing and elongation (Kwon and Workman, 2011).   

In mammals, there are three HP1 variants encoded by a class of genes called 

chromobox (cbx) genes. They are cbx5/HP1α, cbx1/HP1β and cbx3/HP1γ, which are 



Chapter 1|   Introduction 

 13 

highly similar in the amino acid sequence (Hayakawa et al., 2003). While HP1α and 

HP1β localize at centromeric and telomeric heterochromatin (Dialynas et al., 2007; 

Zeng et al., 2010), HP1γ associates with both heterochromatic and euchromatic 

regions (Minc et al., 2000).  

In S. pombe, Switching 6 (Swi6) and Chromo domain-containing protein 2 (Chp2) are 

two important homologs of HP1 protein involved in gene silencing and 

heterochromatin formation (Zeng et al., 2010). Both Chp2 and Swi6 contribute to the 

localization of histone deacetylase (HDAC) repressor complexes such as Clr3/Clr6-

HDAC to heterochromatin loci (Fischer et al., 2009; Sugiyama et al., 2007; Yamada et 

al., 2005). Not only does histone deacetylation by these HP1-associated complexes 

prevent the transcriptional machinery from accessing heterochromatin but this also 

provides proper nucleosome orders required for higher chromatin structure (Sugiyama 

et al., 2007; Yamada et al., 2005). The double deletion of Swi6 and Chp2 caused an 

increase in Pol II enzyme occupancy at centromeric heterochromatin, indicating an 

essential role of Swi6 and Chp2 in heterochromatin silencing effects (Fischer et al., 

2009).  

1.4.1 HP1 structure and domain function 

HP1 is a small protein containing three regions: two conserved domains at the N- and 

C-terminus, namely the chromo domain (CD) and the chromoshadow domain (CSD), 

respectively, and a variable linker or hinge domain between them (Aasland and 

Stewart, 1995; Kwon and Workman, 2008; Lomberk et al., 2006a).  

Chromodomain – a recognizer of a specific histone mark  

The chromatin organization modifier domain or chromo domain (CD) is located at the 

N-terminus of HP1 and this domain is highly conserved among animals, fungi and 

plants (Lomberk et al., 2006b). Conserved amino acid residues form the backbone of 

a relatively open hydrophobic groove on the beta sheet of the CD (Singh and 

Georgatos, 2002). The total negative charge distribution of the CD suggests that the 

domain is more likely to interact with proteins rather than with DNA (Eissenberg and 

Elgin, 2000). The CD interacts directly with H3K9me2/3 via its hydrophobic pocket, 

altering the chromatin structure to form heterochromatin (Lomberk et al., 2006b). 

Mutations at highly conserved amino acids such as Tyr24, Va26, Trp45 and Tyr48 in the 

CD of Drosophila HP1 can incapacitate the binding to H3K9me3, resulting in functional 

defects of HP1 (Lomberk et al., 2006b). Consistently, the substitution of some aromatic 
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hydrophobic amino residues in the CD of Swi6 caused Swi6 loss-of-function 

phenotypes, for example the abolishment in mating-type switching to the opposite 

allele and reducing the number of cells that can form normal zygotic asci (Wang et 

al., 2000).  

Chromo Shadow Domain – a domain directs protein-protein interactions  

The chromo shadow domain (CSD) is a unique motif of the HP1 family (Lomberk et al., 

2006b). It locates at the C-terminus of HP1. Regardless of the high similarity in sequence 

and structure with the CD, the CSD plays different roles in self-dimerization and 

interaction with various non-histone proteins (Lomberk et al., 2006b). A consensus 

pentapeptide sequence motif (PxVxL) in this domain is required for homodimerization 

and is also found in proteins interacting with HP1 (Brasher et al., 2000; Cowieson et al., 

2000; Lechner et al., 2000; Smothers and Henikoff, 2000). Mutations in this motif interfere 

with HP1 homo-dimer formation, causing defects in H3K9m3e binding and 

heterochromatin establishment (Brasher et al., 2000; Schultz et al., 2002). 

Hinge region - more than a linker  

The linker or hinge region separating the CD and CSD domains is less conserved and 

has a flexible structure. The domain was assumed to be exposed on the surface of 

HP1 (Singh and Georgatos, 2002). In a study in S. pombe, the length of the hinge 

domain was shown to be essential for the full function of Swi6 (Wang et al., 2000). 

When the Swi6 hinge domain was shortened by 80 amino acids down to the size of 

the hinge domain of mouse HP1β (M31), Swi6 was still fully functional and localized to 

nucleus (Wang et al., 2000). However, with a larger deletion in the hinge domain by 

112 amino acids, the truncated Swi6 only retained 25% of wild type activity and was 

not strictly localized within the nucleus (Wang et al., 2000).  

1.4.2 HP1 post-translational modifications – functional decorations 

In general, HP1 possesses a number of posttranslational modifications (PTMs) that 

include mainly phosphorylation but also acetylation, methylation, formylation, 

uquibitination and sumoylation (Kwon and Workman, 2011; LeRoy et al., 2009; 

Lomberk et al., 2006a). The dynamics in the PTMs of HP1 is highly important in 

regulating its functions. In humans, HP1α was shown to be a substrate of the nuclear 

Dbf2-related (NDR) kinase (Chakraborty et al., 2014). In an NDR mutant, the 

unphosphorylated HP1α, prominently at serine 95 (S95) in the hinge domain, caused 

a significant increase in the proportion of cells at prometaphase while a decrease in 
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cells at metaphase was observed (Chakraborty et al., 2014). In the NDR-depleted 

cells, chromosome alignment was defective and mitotic progression was delayed, 

suggesting an important role of the phosphorylated S95 in mitosis (Chakraborty et al., 

2014). In another study, hyperphosphorylation at the N-terminus of murine HP1α 

demonstrated a significant influence on the localization of HP1 to heterochromatin as 

well as on chromosomal stability (Hiragami-Hamada et al., 2011). When a 

phosphorylated residue (S14) was replaced with an unphosphorylatable alanine (A), 

the mutated HP1 showed weak binding to H3K9me3 and diffused heterochromatic 

localization(Hiragami-Hamada et al., 2011). A mutant containing multiple 

phosphomutations (S11A-S14A) showed multiple abnormal chromosomes such as 

diplochromosomes, circular chromosomes and long fused chromosomes (Hiragami-

Hamada et al., 2011). The phosphomutant also showed little or no affinity to casein 

kinase 2 (CKII) compared to wild type HP1α which also bound strongly to H3K9me3 

after being phosphorylated by CKII (Hiragami-Hamada et al., 2011). In S. pombe, Swi6 

phosphorylation contributes to heterochromatic silencing at centromeres and 

phosphorylated Swi6 catalysed by CKII is required for its interaction with other effectors 

(Shimada et al., 2009).  

1.5 Heterochromatin protein 1 in Plasmodium falciparum 

1.5.1 Plasmodium falciparum heterochromatin protein 1 at a glance 

Unlike most other eukaryotes, P. falciparum encodes only a single HP1 protein 

denoted as PfHP1 (Flueck et al., 2009; Pérez-Toledo et al., 2009). In general, PfHP1 also 

retains a common HP1 structure: a CD domain at the N-terminus, a hinge domain and 

a CSD domain at the C-terminus. Genome-wide profiling showed that PfHP1 mainly 

localizes to telomeric/subtelomeric regions and some chromosome-internal islands, 

but not in peri-centromeric regions (Flueck et al., 2009) where H3K9me3 is also absent 

(Lopez-Rubio et al., 2009; Salcedo-Amaya et al., 2009). This indicates that PfHP1 might 

not contribute to maintenance of centromere structure and function as in other 

eukaryotes (Flueck et al., 2009; Pérez-Toledo et al., 2009). The PfHP1-demarcated 

heterochromatic domains contain a large number of protein-coding genes (approx. 

425) of which most belong to gene families encoding exported virulence proteins that 

are specific for P. falciparum (Flueck et al., 2009). The association of PfHP1 and 

H3K9me3 at these loci highlights an underlying role of PfHP1 in regulating the 

phenotypic/antigenic variation of virulence factors, with the best-known example 
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being the mutually exclusive expression of var/PfEMP1 (Brancucci et al., 2014; Flueck 

et al., 2009). Another regulatory role of PfHP1/H3K9me3 was implied in regulating 

invasion pathway switching involved in facultative interchanging between 

transcriptionally permissive and silent states of Pfrh4 (invasion gene) and a 

neighbouring pseudogene, pfeba-165 (Coleman et al., 2012). Silent state of pfrh4 was 

found associated with H3K9me3-marked heterochromatin regions near TSS and ORF 

(Coleman et al., 2012; Jiang et al., 2010) and preferably recruited to a  transcriptionally 

repressive heterochromatic zone at nuclear periphery (Coleman et al., 2012). Further, 

during gametocytogenesis, genes encoding for key components of gametocyte 

determinant like pfap2-g (Kafsack et al., 2014) and earliest gametocyte markers, for 

example pfs16, pfg27, pfg 14-744/748 (Eksi et al., 2005; 2012) were reduced in 

PfHP1/H3K9me3 occupation (Brancucci et al., 2014; Flueck et al., 2009; Fraschka et 

al., 2018). In contrast, genes involving in host cell remodelling like mesa, pfemp3, hsp40 

and kahrp were found associated with PfHP1/H3K9me3 during gametocytogenesis 

(Fraschka et al., 2018). Interestingly, studies on genome-wide distribution of 

heterochromatin have shown the association of PfHP1/H3K9me3 with variance gene 

families and pfap2-g in intracellular blood stage as well as in salivary gland sporozoites 

with a similar enrichment (Brancucci et al., 2014; Flueck et al., 2009; Lopez-Rubio et al., 

2009; Zanghì et al., 2018). Notably, mutually exclusive expression of PfEMP1 was also 

implied in sporozoites similarly to blood stage parasites (Brancucci et al., 2014; Voss et 

al., 2006) and possibly involved in sporozoite migration and hepatocyte infectivity 

(Zanghì et al., 2018). Thus, these understandings strengthen a role of PfHP1/H3K9me3 

in stage-specific epigenetic regulation during the parasite life cycle using 

heterochromatin restructuring. 

1.5.2 PfHP1 functions during intracellular development cycle 

Recently, Brancucci and Bertschi et al. have studied the function of PfHP1 through a 

PfHP1 knockdown clone by targeting PfHP1 with the FKPB destabilization domain (DD) 

(Armstrong and D. E. Goldberg, 2007; Brancucci et al., 2014) (Figure 1.2). The DD allows 

the targeted degradation of DD fusion proteins when cells are cultured in absence of 

the stabilizing ligand Shield-1 (Armstrong and Goldberg, 2007). After Shield-1 removal 

at 4-12 hpi, 3D7/PfHP1-GFP-DDOFF parasites can still complete the current cycle 

(generation 1) but showed very pronounced phenotypes after reinvasion in 

generation 2 (Figure 1.2). These phenotypes are summarised in the following 

paragraphs. 
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Figure 1.2. The pipeline of Shield-1 removal (at 4-12 hpi in generation 1) and light 

microscopic observation of Giemsa smears for 3D7/PfHP1-GPF-DDON/OFF through 

generation 1 and 2. 3D7/ PfHP1-GFP-DDOFF showed a very pronounced morphological 

phenotype compared to the control after reinvasion in generation 2 (Brancucci et al., 

2014).  

First, in the OFF Shield-1 condition, a high proportion of subtelomeric PfHP1-associated 

genes were up-regulated such as rifin, pfmc-2tm and especially the var gene 

family(Brancucci et al., 2014).  To be specific, when Shield-1 was withdrawn at 4-12hpi 

in generation 1, var gene transcription was comparable between 3D7/PfHP1-GPF-

DDOFF and 3D7/PfHP1-GPF-DDON during the current cycle (Brancucci et al., 2014). 

However, at 16-24 hpi in generation 2, there was a massive de-repression of most var 

genes such that 52 out of 60 genes of this family were highly upregulated (Brancucci 

et al., 2014). In brief, these results identified a central role for PfHP1 in silencing 

heterochromatic genes and controlling mutually exclusive expression of var genes.  

 

Figure1.3. Hyper-induction of gametocytogenesis and normal gametocyte 

maturation observed in approximately 52% of 3D7/PfHP1-GFP-DDOFF parasites in 

generation 2 (upper panel) (Brancucci et al., 2014). The remaining subset of PfHP1-

depleted parasites did not commit to sexual development but was unable to enter S-

phase and arrested prior to schizogony (lower panel). 
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Second, a high percentage of early stage I gametocytes was observed in the 

3D7/PfHP1-GFP-DDOFF population in generation 2 (Brancucci et al., 2014). This striking 

phenotype occurred as a result of the activation of the pfap2-g gene in generation 1 

trophozoites or schizonts (Brancucci et al., 2014). In asexual parasites, pfap2 locus is 

silencing by PfHP1/H3K9me3-marked heterochromatin (Brancucci et al., 2014; Flueck 

et al., 2009; Josling and Llinás, 2015; Kafsack et al., 2014). Interestingly, Brancucci and 

colleagues found that in PfHP1-depleted parasites, PfHP1 and H3K9me3 occupancy 

were substantially reduced at the pfap2-g locus in schizonts of the same cycle of 

induction (generation 1) and in the ring progeny (generation 2) (Brancucci et al., 

2014). The removal of H3K9me3-bound PfHP1 is mediated by the upstream regulator 

of sexual commitment, PfGDV1 (Gametocyte gene development 1), which results in 

the derepression of pfap2-g, thus triggering sexual commitment (Filarsky et al., 2018). 

The depletion of PfHP1 initiates de-repression of pfap2-g in committed schizonts which 

then release sexually committed merozoites that re-invade and undergo full 

gametocyte maturation over the next 8-10 days (Figure 1.3, upper and middle panel) 

(Brancucci et al., 2014). Approximately 52% of the 3D7/PfHP1-GFP-DDOFF population 

committed to gametocytes in comparison to ~2% in the control (Brancucci et al., 

2014). The sexual commitment process driven by this PfHP1-dependent pathway is 

considered as a canonical next cycle conversion (NCC) route in which an additional 

round of replication occurs after sexual commitment (Bancells et al., 2019).   

Third, a role for PfHP1 in mitotic proliferation was revealed through PfHP1 depletion. 

After 24 hpi in generation 2, the approx. 45% of 3D7/PfHP1-GFP-DDOFF parasites that 

did not undergo sexual commitment arrested at the trophozoite stage and were 

unable to enter schizogony because of a failure in DNA replication (Figure 1.3, lower 

panel, Brancucci et al., 2014). Interestingly, these arrested trophozoites remained in a 

dormant state (Figure 1.3, lower panel) and were able to re-accumulate PfHP1 and 

re-enter replication cycles when Shield-1 was added back to the culture medium 

(Brancucci et al., 2014). Indeed, delayed replication timing and cell cycle progression 

at the S and G2/M phase have been observed in other eukaryote models like S. 

pombe and D. melanogaster when HP1 was depleted (De Lucia et al., 2005; Hayashi 

et al., 2009; Schwaiger et al., 2010). 

Taken together, the study of Brancucci and colleagues has identified essential 

functions of PfHP1 in (1) the maintenance of heritable silencing and mutually exclusive 

expression of var genes, (2) in mitotic progression of asexual blood stage parasites, 
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and (3) in the sexual differentiation switch (Brancucci et al., 2014). This study hence 

provides a fundamental basis for further investigation on detailed functions of PfHP1 

in these processes.  

1.5.3 PfHP1 phosphorylation 

Large-scale phosphoproteomics studies in P. falciparum so far identified several 

phosphorylated residues in PfHP1. They include T2, S4, S33, S57, S89, S92, S108, T110, 

S122, S125, S174  (Collins et al., 2014; Filarsky et al., 2018; Lasonder et al., 2012; 2015; 

Pease et al., 2013; Solyakov et al., 2011; Treeck et al., 2011), and the Y32 and S136 

residues that have been identified as additional phosphosites in a recent study 

investigating native PfHP1 complexes (Filarsky et al., 2018). Unsurprisingly, PfHP1 is 

mainly phosphorylated in the hinge domain as observed in HP1s from other eukaryotes 

(Lomberk et al., 2006b). As mentioned above, mutations in the hinge region have 

been shown to hamper the location and functions of HP1. Therefore, we considered 

it worthy to study in detail whether phosphorylation controls some of the known 

functions of PfHP1. Moreover, the kinases that phosphorylate PfHP1 and their target 

phosphosites on PfHP1 are still elusive.  

  



Chapter 1|   Introduction 

 20 

1.6 Main aims and objectives 

My research pursued in this PhD project aimed to investigate PfHP1 function in detail 

using CRISPR/Cas9-based gene editing combined with the DiCre/loxP system for 

conditional mutagenesis. The two specific objectives were: 

Objective 1: To uncover the roles of the individual PfHP1 domains in PfHP1 function. 

Objective 2: To understand if and how phosphorylation of PfHP1 regulates its function. 

Both objectives focused on the three known PfHP1-dependent cellular processes: (1) 

the maintenance of heritable silencing and mutually exclusive expression of var 

genes, (2) mitotic progression of asexual blood stage parasites, and (3) sexual 

commitment (Brancucci et al., 2014). The first study analysed the functional 

contribution and conservation of the CD, hinge and CSD domains of PfHP1. The main 

results from this project were presented in Chapter 3 (manuscript in preparation). 

Some preliminary results related to this project were presented in Chapter 4.  Some 

initial results obtained during this study using functional complementation assays were 

presented in Chapter 5. The second project addressed (1) the kinases phosphorylating 

PfHP1 and their target residues (in collaboration with Prof. C. Doerig, Monash 

University, Melbourne, Australia and Prof. Isabel Lucet, Walter and Eliza Hall Institute of 

Medical Research, Melbourne, Australia); and (2) the role of selected phosphorylated 

residues in regulating PfHP1 function. The main results from this study were presented 

in Chapter 2 (Bui et al., manuscript submitted).  
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2.1 Abstract  

Previous studies in model eukaryotes have demonstrated that phosphorylation of 

heterochromatin protein 1 (HP1) is important for dynamically regulating its various 

functions. However, in the malaria parasite Plasmodium falciparum both the function 

of HP1 phosphorylation and the identity of the protein kinases targeting HP1 are still 

elusive. In order to functionally analyze phosphorylation of P. falciparum HP1 (PfHP1), 

we first mapped PfHP1 phosphorylation sites by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis of native PfHP1, which identified motifs from which 

potential kinases could be predicted; in particular, several phosphorylated residues 

were embedded in motifs rich in acidic residues, reminiscent of targets for P. 

falciparum casein kinase 2 (PfCK2). Secondly, we tested recombinant PfCK2 and a 

number of additional protein kinases for their ability to phosphorylate PfHP1 in in vitro 

kinase assays. These experiments validated our prediction that PfHP1 acts as a 

substrate for PfCK2. Furthermore, LC-MS/MS analysis showed that PfCK2 

phosphorylates three clustered serine residues in an acidic motif within the central 

hinge region of PfHP1. To study the role of PfHP1 phosphorylation in live parasites we 

used CRISPR/Cas9-mediated genome editing to generate a number of conditional 

PfHP1 phosphomutants based on the DiCre/LoxP system. Our studies revealed that 

neither PfCK2-dependent phosphorylation of PfHP1, nor phosphorylation of the hinge 

domain in general, affect PfHP1’s ability to localize to heterochromatin, and that PfHP1 

phosphorylation in this region is dispensable for the proliferation and sexual 

differentiation of P. falciparum blood stage parasites. 
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2.2 Introduction 

Euchromatin and heterochromatin are the two main structures of chromatin in 

eukaryotes. While euchromatin is associated with active gene transcription, 

heterochromatin is associated with heritable gene silencing. Heterochromatin is 

characterized by the enrichment of heterochromatin protein 1 (HP1) bound to 

trimethylated histone 3 lysine 9 (H3K9me3) (Bannister et al., 2001; Lachner et al., 2001; 

Lomberk et al., 2006). HP1 recruits chromatin modifiers such as H3K9me-specific histone 

methyltransferases, which in turn methylate H3K9 in neighbouring nucleosomes, thus 

facilitating the binding of further HP1 proteins and consequently the regional 

spreading of heterochromatin in a sequence-independent manner (Grewal and 

Moazed, 2003; Lomberk et al., 2006). In addition to promoting gene silencing and 

heterochromatin maintenance HP1 also plays roles in centromere function in fission 

yeast and humans and in DNA replication and repair (Kwon and Workman, 2008; Zeng 

et al., 2010).  

HP1 is widely conserved among eukaryotes and consists of three functional domains, 

namely the N-terminal chromo domain (CD) that binds H3K9me3 (Jacobs et al., 2001; 

Lachner et al., 2001; Platero et al., 1995), the C-terminal chromoshadow domain (CSD) 

that mediates HP1 homodimerisation and specific interactions with other regulatory 

proteins (Brasher et al., 2000; Cowieson et al., 2000; Schotta et al., 2002), and a variable 

hinge region located between the CD and CSD domains that has been shown to 

interact with DNA and/or RNA (Meehan et al., 2003; Muchardt et al., 2002; Sugimoto 

et al., 1996). Some eukaryotes have several HP1 paralogs; for instance, 

Schizosaccharomyces pombe encodes two HP1 variants (Swi6 and Chp2) and 

mammals possess three HP1 variants (HP1α, HP1β and HP1γ) (Kwon and Workman, 

2008; Lomberk et al., 2006). 

The parasitic protist Plasmodium falciparum, the causative agent of the most severe 

form of malaria in humans, possesses a single HP1 ortholog (PfHP1). PfHP1 binds to and 

co-localizes with H3K9me3 to heterochromatic domains in the subtelomeric regions of 

all 14 chromosomes and to internal heterochromatic islands on some chromosomes 

(Flueck et al., 2009; Fraschka et al., 2018; Lopez-Rubio et al., 2009; Perez-Toledo et al., 

2009; Salcedo-Amaya et al., 2010). There is no evidence for the presence of either 

PfHP1 or H3K9me3 in peri-centromeric regions, suggesting that PfHP1 does not 

contribute to the maintenance of centromere structure and function in this organism 

(Flueck et al., 2009; Fraschka et al., 2018; Hoeijmakers et al., 2012; Lopez-Rubio et al., 
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2009; Salcedo-Amaya et al., 2010). The subtelomeric and chromosome-internal 

heterochromatic domains collectively cover over 400 protein-coding genes, most of 

which belong to P. falciparum-specific gene families that encode virulence factors 

exported to the host erythrocyte (Flueck et al., 2009; Fraschka et al., 2018; Lopez-Rubio 

et al., 2009; Salcedo-Amaya et al., 2010). In addition, PfHP1 also binds to a small 

number of euchromatic loci, including the gene encoding the master transcription 

factor of sexual differentiation PfAP2-G (Flueck et al., 2009; Fraschka et al., 2018). 

Consistent with a role for PfHP1 in heritable gene silencing, almost all PfHP1-associated 

genes are expressed in a clonally variant manner (Rovira-Graells et al., 2012). The best-

studied example is provided by the var gene family that consists of approximately 60 

members, each encoding a variant of the erythrocyte membrane protein 1 (PfEMP1) 

antigen that is exposed on the surface of infected red blood cells (iRBCs) (Baruch et 

al., 1995; Gardner et al., 2002; Smith et al., 1995; Su et al., 1995). The PfEMP1-dependent 

binding of iRBCs to endothelial cells and uninfected RBCs leads to parasite 

sequestration in the microvasculature, which strongly contributes to severe disease 

(Hviid and Jensen, 2015; Scherf et al., 2008). Importantly, expression of the var gene 

family is controlled in a mutually exclusive manner (aka singular gene choice), such 

that at any given time only a single var gene is transcribed while all other family 

members are epigenetically silenced in a PfHP1-dependent manner (Brancucci et al., 

2014; Deitsch and Dzikowski, 2017; Guizetti and Scherf, 2013; Scherf et al., 1998). 

Switches in var gene transcription then lead to clonal antigenic variation of PfEMP1, 

allowing the parasite to evade adaptive immune responses and establish chronic 

infection (Scherf et al., 2008; Smith et al., 1995). 

Using an inducible PfHP1 loss-of-function parasite line, where PfHP1 expression levels 

can be modulated via the FKBP/DD-Shield-1 conditional expression system (Armstrong 

and Goldberg, 2007; Banaszynski et al., 2006), we recently identified three important 

roles for PfHP1 in the biology of blood stage parasites (Brancucci et al., 2014). First, we 

found that PfHP1 is essential for the heritable silencing of heterochromatic gene 

families as PfHP1 depletion resulted in the de-repression of almost all var genes and 

many other subtelomeric gene families in the progeny. Second, we demonstrated that 

PfHP1 depletion leads to a 25-fold increase in sexual conversion rates, with over 50% 

of parasites in the progeny differentiating into gametocytes (which are required for 

malaria transmission via the mosquito vector). This striking phenotype was linked to de-

repression of the ap2-g locus in absence of PfHP1. Third, we showed that the remaining 
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asexual parasites in the PfHP1-depleted progeny failed to enter S-phase, revealing a 

crucial role for PfHP1 in the control of proliferation (Brancucci et al., 2014). 

Studies in model eukaryotes have shown that HP1 is post-translationally modified, 

particularly by phosphorylation. Phosphorylation of HP1 regulates various functions in 

a number of cellular processes in fission yeast and mammals, including 

heterochromatic gene silencing, mitosis and DNA repair (Kwon and Workman, 2011; 

Shimada and Murakami, 2010). For instance, casein kinase 2 (CK2)-dependent 

phosphorylation of serine residues in the N-terminal part of Swi6 is important for 

transcriptional silencing and the recruitment of the histone deacetylase complex 

SHREC in S. pombe (Shimada et al., 2009). Similarly, in mice the N-terminal 

phosphorylation of HP1α by CK2 is important for targeting HP1 to heterochromatin as 

well as for chromosomal stability. While a single substitution of serine 14 with alanine 

(S14A) impaired the binding of HP1 α to H3K9me3 and caused diffuse heterochromatic 

localization, multiple substitutions of clustered serines (S11A to S14A) hampered 

chromosomal integrity (Hiragami-Hamada et al., 2011). In humans, HP1 

phosphorylation has been shown to play a role in progression through mitosis. Human 

HP1α is a substrate of the nuclear Dbf2-related (NDR) kinase; in an NDR-depleted cell 

line, the lack of HP1α phosphorylation at serine 95 in the hinge domain resulted in 

chromosome alignment defects, aberrant spindle morphology and a delay in 

metaphase progression (Chakraborty and Prasanth, 2014). Furthermore, HP1 

phosphorylation has also been shown to play a role the DNA damage response in 

humans. CK2-dependent phosphorylation of HP1β at threonine 51 was shown to 

modulate the dispersion of HP1 from chromatin, which in turns facilitates histone H2AX 

phosphorylation and recruitment of downstream regulators involved in repairing 

chromosomal DNA breaks (Ayoub et al., 2008). 

In contrast to model eukaryotes, the functional role of HP1 phosphorylation in P. 

falciparum and the kinases involved are still unknown. Hence, to begin understanding 

how PfHP1 function is regulated in P. falciparum, we studied PfHP1 phosphorylation 

using in vitro and in vivo assays. Liquid chromatography tandem mass spectrometry 

(LC-MS/MS) analysis of immunoprecipitated native PfHP1 showed that PfHP1 is 

phosphorylated in its CD and hinge domains. In vitro kinase assays revealed that PfHP1 

is a substrate of P. falciparum CK2 (PfCK2). LC-MS/MS analysis showed that PfCK2 

targets three clustered serine residues within the PfHP1 hinge region in vitro. By 

generating conditional PfHP1 phosphomutant cell lines using CRISPR/Cas9-mediated 

genome editing combined with the DiCre/LoxP system (Collins et al., 2013; Jones et 
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al., 2016), we found that PfCK2-dependent phosphorylation of PfHP1, and 

phosphorylation of the PfHP1 hinge domain in general, is dispensable for proper PfHP1 

localisation, gene silencing, parasite growth and sexual conversion.  

2.3 Results 

Identification of phosphorylated PfHP1 residues and parasite kinases phosphorylating 

PfHP1  

Several large-scale phosphoproteomics studies in P. falciparum collectively detected 

13 phosphorylated residues in PfHP1 (T2, S4, S33, T38, S57, S89, S92, S108, T110, S122, 

S125, S129, S174) (Collins et al., 2014; Lasonder et al., 2012; Lasonder et al., 2015; Pease 

et al., 2013; Solyakov et al., 2011; Treeck et al., 2011). The Y32 and S136 residues have 

been identified as additional phosphosites in a recent study investigating native PfHP1 

complexes (Filarsky et al., 2018). To confirm and possibly expand these results, we used 

LC-MS/MS experiments to map phosphorylated residues in native PfHP1. To this end, 

we purified PfHP1-GFP by immunoprecipitation (IP) from nuclear extracts prepared 

from 3D7/HP1-GFP parasites (Brancucci et al., 2014) in four independent biological 

replicate experiments (Figure 1A). LC-MS/MS analysis of the eluted protein samples 

identified a total of eleven phosphosites in PfHP1 (Figure 1B and Table S1). One of these 

phosphosites (S206) has not been identified in any of the earlier studies, and five 

previously mapped phosphosites (T38, S57, S92, S108 and T110) have not been 

identified here (Figure 1B). Two of the sites identified in our study are located in the first 

few residues preceding the CD domain (T2, S4), two are located within the CD domain 

in a predicted flexible loop (Y32, S33), six are located in the hinge region (S89, S122, 

S125, S129, S136, S174) and one is located in a predicted loop in the CSD domain (S206) 

(Figure 1B). 

Several of the identified phosphosites conform to CK2 target sites in view of their 

richness in acidic residues (e.g. S129; SDEE), while others appear as potential targets of 

proline-directed kinases such as CDK, GSK3 or MAPK (e.g. S174; ESP), or of basic 

residues-directed kinases such as AGC kinases (e.g. S89; SIK) (Table S1) [see Amanchy 

and colleagues for a comprehensive list of phosphorylation motifs (Amanchy et al., 

2007)]. To identify candidate kinases possibly phosphorylating PfHP1, we screened a 

set of six recombinant functional parasite kinases, namely PfCK2 (Holland et al., 2009), 

PfGSK3 (Droucheau et al., 2004), PfMAP2 (Dorin et al., 1999), PfNEK2 (Reininger et al., 

2009), PfNEK4 (Reininger et al., 2005) and PfPK6 (Bracchi-Ricard et al., 2000), for their 

ability to phosphorylate recombinant PfHP1 in vitro, which includes the potential 
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candidates PfCK2, PfGSK3 and PfMAP2 predicted by the phosphorylation site motifs 

outlined above. For this purpose, we expressed recombinant full-length PfHP1 and a 

truncated PfHP1 polypeptide encompassing the CD domain and hinge region 

(PfCD.H) in Escherichia coli and purified them by fast protein liquid chromatography 

(Figure 2A). To perform the kinase reactions, we used an in vitro assay based on 

luminescence signal detection (ADP-GloTM, Promega). The enzymatic reaction starts 

when a kinase is added into a mixture containing the substrate and ATP. Upon 

completion of the reaction, the ADP-GloTM assay quantifies the levels of ADP released 

from consumed ATP as a measure of kinase activity. Among the recombinant parasite 

kinases screened, PfMAP2, PfPK6, PfNEK2 and PfNEK4 showed little or no activity on 

PfHP1 (Figure S1). PfGSK3 showed some positive enzymatic activity on PfHP1 but this 

result was inconclusive due to the high level of autophosphorylation exerted by this 

kinase both in the ADP-Glo assay as well as in a radioactive kinase activity assay 

employing γ-P32-ATP (Figure S2). Importantly, however, PfCK2 displayed remarkable 

activity in phosphorylating PfHP1 in vitro. In the ADP-Glo assay, PfCK2 showed 

autophosphorylation activity and was able to phosphorylate the control substrate β-

casein. In absence of PfCK2, PfHP1 and PfCD.H exhibited no signals of phosphorylation 

activity as expected. In contrast, when PfCK2 was added to the PfHP1 and PfCD.H 

substrates, ADP conversion increased substantially compared to PfCK2 alone or PfCK2 

with β-casein (Figure 2B). Consistent results were obtained for PfCK2 using the in vitro 

γ-P32-ATP kinase assay. PfCK2 again showed auto-phosphorylation activity but was 

clearly capable of phosphorylating β-casein as a positive control and, at substantially 

higher levels, the PfHP1 and PfCD.H substrates (Figure 2C). To further probe the 

specificity of the CK2-dependent kinase reaction towards PfHP1 and PfCD.H, 4,5,6,7-

tetrabromobenzimidazole (TBB), a selective ATP-competitive inhibitor of CK2 across 

species (Sarno et al., 2001), was added to the kinase reactions. The treatment with 20 

µM TBB resulted in a significant drop of phosphorylation signal intensity in the reactions 

containing the substrates (Figure 2C). Finally, to identify the residues in PfHP1 targeted 

by PfCK2 in vitro, we performed LC-MS/MS analysis of the ADP-GloTM kinase assay 

reactions. The results revealed that PfCK2 phosphorylated a cluster of three serine 

residues in the hinge domain (S122, S125 and S129). Three additional predicted CK2 

target residues in the PfHP1 N-terminus (T2, S4, S33; see Table S1), however, where not 

detected in their phosphorylated form. As expected, no phosphorylated sites were 

detected in recombinant PfHP1 prior to the phosphorylation assay (Table S2). We also 
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failed to detect any phosphorylated residues in PfHP1 after incubation with PfGSK3 

(Table S2). 

Overall, using three independent approaches, we demonstrate that PfHP1 is 

phosphorylated at least at eleven residues during intra-erythrocytic development, that 

most of these residues are located either at the N-terminus, in predicted loop regions 

in the CD and CSD domains or in the hinge domain, and that three residues in the 

hinge region (S122, S125 and S129) are phosphorylated by PfCK2 in in vitro. 

Generation of conditional PfHP1 phosphomutant parasite lines 

To address the in vivo functional significance of PfHP1 phosphorylation, we used two 

subsequent CRISPR-Cas9-based gene editing steps to engineer parasites that allow for 

the conditional expression of PfHP1 phosphomutants based on the DiCre-loxP system 

(Collins et al., 2013) (Figures 3A, S3 and S4). In the first step, a sera2 intron:loxP element 

(Jones et al., 2016) was inserted into the 5’ end of the endogenous pfhp1 gene to 

obtain the 3D7/N31DC mother line. PCRs on gDNA and cDNA and Sanger sequencing 

confirmed the correct editing of the pfhp1 locus and the correct splicing of the sera2 

intron:loxP element (Figure S4). In the second step, a second sera2 intron:loxP element 

followed by a recodonised pfhp1 gene fused to gfp was placed directly downstream 

of the pfhp1 STOP codon (Figures 3A and S3). In these parasites, activation of the DiCre 

recombinase by rapamycin is expected to excise the floxed endogenous pfhp1 gene 

and to place a recodonised version encoding a PfHP1-GFP phosphomutant under 

control of the endogenous promoter (Figure 3A). We generated two such conditional 

PfHP1 phosphomutant lines called 3D7/HP1-3M and 3D7/HP1-HIM, where either the 

three serine residues targeted by PfCK2 in vitro (S122/125/129A) or the cluster of seven 

phosphorylated serine residues in the hinge region (S89/92/122/125/129/136/174A), 

respectively, have been substituted by non-phoshorylatable alanines. We also 

generated a control cell line where rapamycin treatment results in the replacement 

of the endogenous pfhp1 with a recodonized wild type pfhp1-gfp sequence 

(3D7/HP1-Control) (Figure 3A).  

PCR on parasite genomic DNA (gDNA) was used to confirm (1) the correct integration 

of the recodonised pfhp1-gfp gene directly downstream of the endogenous pfhp1 

locus; and (2) the successful DiCre-mediated excision of the floxed endogenous pfhp1 

gene in schizont stages (24-36 hrs after rapamycin treatment) in all three cell lines 

(Figure 3B). To confirm correct splicing of the sera2 intron:loxP element after rapamycin 

treatment and presence of the mutated codons encoding serine-to-alanine 
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substitutions, RT-PCR and Sanger sequencing was performed (Figure S4). Live cell 

fluorescence imaging in late schizonts at 40-48 hpi (40 hrs after rapamycin treatment) 

showed that in each of the three parasite lines, excision of the endogenous pfhp1 

gene was highly efficient and expression of the recodonised PfHP1-GFP variants was 

observed in close to 100% of parasites in the populations (Figure 3C). In contrast, 

parasites in the DMSO-treated control populations did not express GFP-tagged PfHP1 

variants as expected. Consistent with the live fluorescence imaging results, analysis of 

whole parasite protein lysates by Western Blot showed that the rapamycin-treated 

parasites exclusively expressed the recodonised PfHP1-GFP fusions, while DMSO-

treated control parasites exclusively expressed wild-type untagged PfHP1 (Figure 3D).  

PfHP1 phosphomutants still localize to perinuclear heterochromatin  

In Drosophila melanogaster and mice, CK2-dependent phosphorylation of HP1 is 

required for the correct localization of HP1 to heterochromatin (Hiragami-Hamada et 

al., 2011; Zhao and Eissenberg, 1999). We therefore tested if the PfHP1 phosphomutants 

PfHP1-3M and PfHP1-HIM still localize to subtelomeric heterochromatin. Live cell 

fluorescence imaging in late schizonts at 40-48 hpi and in the late ring stage progeny 

at 16-24 hpi in generation 2 showed that the GFP-tagged PfHP1-3M, PfHP1-HIM and 

control PfHP1-GFP were not expressed in DMSO-treated parasites as expected. 

However, in the rapamycin-treated populations the GFP-tagged PfHP1-3M and PfHP1-

HIM phosphomutants were expressed and showed a punctate pattern at the nuclear 

periphery indistinguishable from that observed for the PfHP1-GFP control protein 

(Figure 4). These results demonstrate that the phosphorylation of serine residues in the 

PfHP1 hinge domain is not required for the correct targeting and localization of PfHP1 

to heterochromatin.  

Phosphorylation of serine residues in the PfHP1 hinge domain is not required for parasite 

multiplication and plays no obvious role in regulating sexual commitment and var 

gene silencing 

In a recent study, we showed that PfHP1 is required for (1) progression through 

schizogony and thus parasite multiplication; (2) var gene silencing and mutually 

exclusive var gene expression; and (3) silencing of the pfap2-g locus and thus inhibition 

of sexual commitment (Brancucci et al., 2014). Here, we asked if phosphorylation of 

serine residues in the PfHP1 hinge domain is required for any of these processes. 

We first monitored the proliferation rates of the PfHP1 phosphomutants and the control 

line over three consecutive generations after rapamycin treatment. As shown in Figure 
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5A, in each parasite line the multiplication of DMSO- and rapamycin-treated parasites 

was highly comparable. This result indicates that phosphorylation of the PfHP1 hinge 

domain is not required for the proliferation of asexual blood stage parasites. 

To identify a possible role for PfHP1 hinge domain phosphorylation in controlling pfap2-

g silencing, we compared the sexual conversion rates between DMSO- and 

rapamycin-treated parasites for all three transgenic parasite lines. Parasite populations 

were split at 0-8 hpi and treated either with DMSO or rapamycin. After re-invasion, ring 

stage progeny (16-24 hpi in generation 2; day 1 of gametocytogenesis) were cultured 

in medium containing 50 mM N-acetyl-glucosamine (GlcNAc) for six consecutive days 

to eliminate asexual parasites (Fivelman et al., 2007; Ponnudurai et al., 1986). 

Gametocytaemia was determined on day six by inspection of Giemsa-stained blood 

smears and sexual conversion rates were calculated as the fraction of 

gametocytaemia on day 6 in relation to the total parasitaemia observed on day 1. As 

shown in Figure 5B, the rapamycin-treated 3D7/HP1-3M and 3D7/HP1-HIM populations 

showed significantly higher sexual conversion rates compared to the DMSO-treated 

populations (p<0.01, unpaired two-tailed Student’s t-test). Unexpectedly, however, 

rapamycin-treated 3D7/HP1-Control parasites, which express a recodonised wild-type 

pfhp1 gene, also displayed significantly increased sexual conversion compared to the 

matched DMSO-treated population. In contrast, the 3D7/1G5DiCre mother line, which 

expresses the DiCre recombinase in absence of a floxed pfhp1 locus, as well as 3D7 

wild type parasites did not show increased sexual conversion rates upon rapamycin 

treatment, showing that rapamycin-induced expression of the DiCre recombinase per 

se or the exposure to rapamycin per se has no effect on sexual conversion rates. 

Hence, the increased sexual conversion rates observed for rapamycin-treated 

3D7/HP1-3M, 3D7/HP1-HIM and the 3D7/HP1-Control parasites rather seem to be linked 

to the DiCre-dependent recombination events at the floxed pfhp1 locus. Whatever 

the mechanisms underlying this puzzling observation, our data clearly suggest that 

phosphorylation of the hinge domain plays no important role in regulating pfap2-g 

silencing. Furthermore, gametocytes expressing either of the two PfHP1 

phosphomutant proteins also developed into stage V gametocytes without any 

apparent morphological differences compared to control gametocytes (data not 

shown), suggesting that hinge domain phosphorylation is also dispensable for 

gametocytogenesis. 

Finally, to test if the PfHP1 phosphomutations investigated affect var/PfEMP1 

expression, we compared the expression of PfEMP1 in the late ring stage progeny of 
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DMSO- and rapamycin-treated 3D7/HP1-3M, 3D7/HP1-HIM and 3D7/HP1-Control 

parasites (16-24 hpi in generation 2) by IFA. We observed comparable fluorescence 

intensity signals for PfEMP1 and percentage of PfEMP1-positive iRBCs in the DMSO- and 

rapamycin-treated parasites of all three lines (Figure 5C), indicating that 

phosphorylation of the PfHP1 hinge domain plays no major role in regulating var gene 

expression. 

2.4 Discussion 

Heterochromatin-dependent gene silencing is an important mechanism employed by 

P. falciparum for clonally variant gene expression. PfHP1 is one of the critical factors in 

this process. In addition, PfHP1 is essential for proliferation of blood stage parasites. 

Phosphorylation of HP1 has been reported to dynamically regulate the function of this 

chromatin reader protein in a variety of eukaryotic organisms. Our study described 

here analysed phosphorylation of PfHP1 and its potential functional role in the biology 

of P. falciparum blood stage parasites.  

Using immunoprecipitation of native PfHP1-GFP followed by LC-MS/MS analysis we 

identified eleven phosphorylated residues in PfHP1 purified from asexual blood stage 

parasites. All except one of these sites (S206) have either been identified on multiple 

tryptic peptides and/or in at least two of the independent IP samples analysed here, 

or they have been detected in previous studies by high-throughput 

phosphoproteomics approaches (Collins et al., 2014; Lasonder et al., 2012; Lasonder 

et al., 2015; Pease et al., 2013; Solyakov et al., 2011; Treeck et al., 2011) and/or the 

mass spectrometry-based analysis of PfHP1 complexes (Filarsky et al., 2018). Hence, 

we assume these residues are truly phosphorylated in intra-erythrocytic parasites. By 

screening a number of recombinant P. falciparum kinases using two independent 

kinase activity assays, we found that PfCK2 and PfGSK3 are able to phosphorylate 

PfHP1 in vitro. However, for PfGSK3 the phosphorylation signals obtained with the 

control and PfHP1 substrates were not noticeably higher compared to those obtained 

from auto-phosphorylation. GSK3 is a serine/threonine protein kinase preferring to 

catalyse substrates upon prior phosphorylation of a residue nearby the consensus 

sequence (S*/T*-X-X-X-S/T) (Doble and Woodgett, 2003; Fiol et al., 1990). Therefore, it is 

likely that GSK3 is only able to efficiently phosphorylate substrates if they have been 

primed by phosphorylation through another kinase, which was not applied in our in 

vitro kinase assays. Moreover, although PfGSK3 phosphorylated PfHP1 in the ADP-Glo 

assay and to some extent also in the radioactive kinase assays, no PfGSK3-dependent 
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phosphosites were detected on the in vitro-reacted PfHP1 substrates by LC-MS/MS 

analysis. Hence, additional experiments with higher sensitivity will be required to 

confirm if PfHP1 is indeed phosphorylated by PfGSK3. 

Importantly, however, we obtained convincing results showing that PfCK2 

phosphorylates PfHP1 at a cluster of three serine residues located in the hinge region 

(LSLS122*DNS125*LKKS129*DEE), at least in vitro. Serine 122 and S129 are embedded in 

a typical CK2 phosphorylation consensus target motif rich in acidic residues (S*/T*-D/E-

X-D/E) (Pinna, 2002; Rusin et al., 2017; St-Denis et al., 2015), whereas S125 lacks the 

favoured acidic residue at position +1 or +3 as the most crucial specificity determinant 

of the phosphoacceptor site (Meggio et al., 1994). However, similar atypical CK2 

recognition sites containing only one acidic residue between -1 to +5 have indeed 

been reported (Bian et al., 2013). In our efforts to analyse the role of PfCK2-dependent 

PfHP1 phosphorylation in vivo, however, we found that substituting the three target 

residues in the hinge domain with non-phosphorylatable alanines (S122/125/129A; 

PfHP1-3M) had no observable effect on PfHP1 function; parasites expressing the PfHP1-

3M triple phosphomutant displayed no marked defects in PfHP1 localisation, ap2-

g/var gene silencing or mitotic progression. Strikingly, we even failed to observe any 

silencing- or growth-related phenotypes in parasites expressing the PfHP1-HIM 

phosphomutant, where seven serine residues in the hinge region have been replaced 

with alanines (S89/92/122/125/129/136/174A). 

In line with these results, it has been reported that phosphorylation of S93 within the 

mouse HP1α hinge region or S89/91 within the human HP1β hinge domain does not 

affect HP1’s localization to chromatin (Ayoub et al., 2008; Hiragami-Hamada et al., 

2011). In addition, co-immunoprecipitation of human HP1β with histone 3 revealed 

only a minor role for S89 phosphorylation in the ability of HP1β to bind H3K9me3, in spite 

of local conformational changes induced upon phosphorylation (Munari et al., 2014). 

In another study on Swi6, the HP1 ortholog in S. pombe, mutations of CK2-dependent 

phosphosites in the hinge and CSD domains (S192/212/220/268/274A) did also not 

affect heterochromatic gene silencing (Shimada et al., 2009). In other systems, 

however, essential roles of phosphorylation within the HP1 hinge region have still been 

reported. In humans, the Aurora A- and NDR1-dependent phosphorylation of serine 

residues in the hinge region of HP1γ and HP1α, respectively, both play crucial roles in 

mitotic progression during the G2/M phase (Chakraborty et al., 2014; Grzenda et al., 

2013). Further, protein kinase A (PKA)-dependent phosphorylation of the hinge domain 
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of a D. melanogaster HP1 variant plays important roles in HP1 dimerisation, protein-

protein interaction and binding to H3K9me3 (Badugu et al., 2005). 

In conclusion, our study confirms that PfHP1 is phosphorylated during intra-erythrocytic 

development at multiple residues particularly in the CD and hinge domains. We also 

show that PfCK2 phosphorylates three clustered serine residues in the PfHP1 hinge 

region in vitro, but the phosphorylation of these sites is not required for proper PfHP1 

function in blood stage parasites. If S122, S125, and S129 are indeed phosphorylated 

by PfCK2 in vivo and if PfCK2 phosphorylates additional target residues in PfHP1 could 

be tested in future experiments employing conditional PfCK2 knock-down cell lines 

(Tham et al., 2015). Surprisingly, we also demonstrate that the simultaneous mutation 

of seven phosphorylation target residues in the hinge has no observable effect on 

parasite viability. We therefore anticipate that phosphorylation of the PfHP1 hinge 

region may play an important role elsewhere in the parasite life cycle, for instance 

during meiosis in the mosquito vector and/or in the replicative phases during male 

gametogenesis, sporogony or exo-erythrocytic schizogony. While our study does not 

provide functional insight into the functional role of PfHP1 hinge domain 

phosphorylation, the experimental pipeline established in this study provides an 

elegant approach to interrogate protein function and the role of post-translational 

protein modifications in the biology of P. falciparum blood stage parasites.  

2.5 Materials and Methods 

Parasite culture and transfection 

3D7/HP1-GFP  parasites (Brancucci et al., 2014) were cultured at 5% hematocrit in 

RPMI-1640 medium supplemented with 25 mM HEPES, 100 mM hypoxanthine, 24 mM 

sodium bicarbonate and 0.5% Albumax II. The transgenic lines generated in this study 

were cultured in the same medium supplemented with 2 mM choline to reduce 

background sexual conversion rates as demonstrated recently (Brancucci et al., 

2017). Parasite cultures were synchronized using 5% sorbitol as described (Lambros and 

Vanderberg, 1979). Co-transfection of CRISPR/Cas9 and donor plasmids into the 

DiCre-expressing line 3D7/1G5DiCre (Collins et al., 2013) and selection of transfected 

populations was performed as described recently (Filarsky et al., 2018). 

Immunoprecipitation of native PfHP1-GFP 

Parasite nuclei were isolated from 30 ml culture of 3D7/HP1-GFP parasites (5% 

hematocrit) as described previously (Filarsky et al., 2018). Nuclear proteins were 

extracted using extraction buffer (2 M L-arginine, 1.925 M HCl, 50 mM H3PO4, and 10 
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mM TCEP) for 20 min on ice. The extract was cleared by centrifugation for 20 min at 

20’000 g and 4°C. The supernatant was diluted 1:5 with wash buffer 1 (WB1) (PBS 

containing additional 324 mM NaCl, 1 M L-proline, 1% octyl β-D-glucopyranoside and 

2 mM TCEP) and spun again using the same conditions. Extraction buffer, WB1 and 

buffers used for nuclear isolation were supplemented with 1x protease inhibitor 

cocktail (Roche), 5 mM ε-aminocaproic acid (protease inhibitor), 3 mM sodium 

butyrate (histone deacetylase inhibitor) and 2 mM NaF, 2 mM β-glycerophosphate, 4 

mM sodium tartrate, 1 mM sodium pyrophosphate and 1 mM activated NaVO3 

(phosphatase inhibitors). GFP-Trap®_A beads (Chromotek) were equilibrated in WB1, 

added to the supernatant and rotated for 1h at room temperature (RT). The beads 

were washed three times with WB1 and twice using WB2 (PBS containing additional 

824 mM NaCl and 0.2 mM TCEP). Proteins were eluted using arginine elution buffer (2 

M L-arginine, 50 mM acetic acid and HCl to pH 4). The eluate was neutralized by 

addition of 0.1 volumes of 1 M tris base. Next, the samples were processed and 

analyzed using LC-MS/MS as detailed below. 

Capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

For the PfHP1 IP experiments, the neutralised elutions were reduced with 10 mM DTT at 

37°C for 1 hr and alkylated with 50 mM iodo-acetamide for 15 min at room 

temperature. Proteins were digested with 250 ng endoproteinase LysC (Wako, Neuss, 

Germany) for two hours at 37°C followed by 500 ng trypsin (Worthington, Lakewood, 

NJ, USA) overnight. The digest was stopped with TFA to 1% final concentration and 

desalted on a microspin column (The Nest Group, Southborough, MA, USA) according 

to the manufacturer’s recommendations. 

For the ADP-GloTM in vitro kinase assay samples, 20 µl of the technical duplicate 

reactions were pooled, precipitated with 20% trichloroacetic acid (TCA) on ice for 

30min, followed by washing the precipitate with 17% TCA and two acetone (ice-cold) 

washes before air-drying the pellets. The protein pellets were dissolved in 30 µl 100 mM 

Tris-HCl (pH 8.0)/6 M Urea, reduced and alkylated as above and digested with 250 ng 

endoproteinase LysC for two hours at 37oC. The urea concentration was diluted to 2 

M with 100 mM Tris-HCl (pH 8.0) and the sample was further digested with 500 ng trypsin 

overnight at 37°C. The digest was acidified with 1% TFA and the sample was desalted 

on a MicroSpin cartridge according to the manufacturer’s recommendations.  

The eluted peptides were dried in a SpeedVac and dissolved in 40 µl 0.1% formic acid 

and analysed by capillary LC-MS/M) using a home-packed separating column (0.075 
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mm x 25 cm) packed with Reprosil C18 reverse-phase material (2.4 µm particle size, Dr. 

Maisch, Ammerbuch-Entringen, Germany). The column was connected on line to an 

Orbitrap Elite FT hybrid instrument (Thermo Scientific, Reinach, Switzerland). The 

solvents used for peptide separation were 0.1% formic acid in water (solvent A) and 

0.1% formic acid and 80% acetonitrile in water (solvent B). 2 µl of peptide digest were 

injected with a Proxeon nLC capillary pump (Thermo Scientific) set to 0.3 µl/min. A 

linear gradient from 0 to 40% solvent B in solvent A in 95 min was delivered with the 

nano pump at a flow rate of 300 nl/min. After 95 min the percentage of solvent B was 

increased to 75% in ten minutes. The eluting peptides were ionized at 2.5 kV. The mass 

spectrometer was operated in data-dependent mode. The precursor scan was done 

in the Orbitrap set to 60,000 resolution, while the fragment ions were mass analyzed in 

the LTQ instrument. A top twenty method was run so that the twenty most intense 

precursors were selected for fragmentation. The MS/MS spectra of the four PfHP1-GFP 

IP samples were searched against a combined P. falciparum (www.plasmoDB.org; 

release 9.3)/human annotated protein database using Proteome Discoverer 2.2 

(Thermo Scientific, Reinach, Switzerland) using the two search engines Mascot and 

SequestHT (Table S1). The PfHP1-GFP IP replicate samples 1 and 2 were additionally 

searched against the PfHP1-GFP sequence (Table S1). The PfCK2 and PfGSK3 ADP-

GloTM in vitro kinase assay samples were searched against the respective PfHP1 and 

PfCD.H recombinant protein sequences (Table S2). For the search, oxidized 

methionine, N-terminal protein acetylation and phosphorylation on serine, threonine 

and tyrosine were used as variable modifications. The identifications were filtered for 

a false discovery rate of 1%. 

Generation of E. coli expression vectors 

In order to increase the solubility strength of the SUMO tag, sequences encoding 

additional solubility tags were inserted upstream of the sequence encoding an N-

terminal 6xHis-SUMO tag as suggested elsewhere (Malakhov et al., 2004). For this 

purpose, the His-SUMO-encoding sequence was PCR amplified from pETA-HS 

(Fraschka et al., 2018) using the primers Bsa_His_f and T7term. The BsaI/XhoI-digested 

product was then cloned into BamHI/XhoI-cut pGB1 (a kind gift of S. Hiller) and pETA-

MBP (Bertschi et al., 2017), yielding the GB1-His-SUMO (pETA-GHS) and MBP-His-SUMO 

(pETA-MHS) expression vectors, respectively. Two gene fragments were amplified from 

3D7 genomic DNA; full-length pfhp1 (using primers HP1_F and HP1_Xho_R) and a 

truncated version encoding the CD and hinge domains only (PfCD.H: M1-T181 (using 

primers HP1_F and CDH_Xho_R). XhoI-digested PCR products were ligated into 
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SfoI/XhoI-cut expression vectors; full-length pfhp1 was cloned into pETA-MHS and 

pfcd.h into pETA-GHS. All primer sequences are listed in Table S3. 

Expression and purification of recombinant PfHP1 

Both recombinant proteins were expressed in E. coli Rosetta2 (DE3) cells (Novagen) 

using auto-induction at 22°C in ZYM-5052 medium (Studier, 2005). Expression cultures 

were spun down at 4°C and the pellets were kept at -20°C. Both recombinant proteins 

were purified using nickel affinity (A), followed by dextrin affinity (MHS-HP1 only) (B) 

and tag removal (C). PfCD.H was further purified using hydrophobic interaction 

chromatography (HIC) (D). Both proteins were polished using gel filtration (E). All 

affinity columns used were produced by GE Healthcare. (A) Nickel affinity. E. coli 

pellets were resuspended in buffer N-A (50 mM H3PO4, 20 mM imidazole, 500 mM NaCl, 

5 mM EACA and NaOH to pH 7.4) and lysed by sonication. The lysates were loaded 

on 1 ml HisTrap columns, washed with 20 column volumes (CV) of the same buffer and 

eluted using N-B (50 mM H3PO4, 225 mM imidazole, 500 mM NaCl, 5 mM EACA). For full 

length HP1, 2 M urea was included in the lysis buffer. The nickel eluate containing 

PfCD.H was buffer exchanged to subtraction buffer (0.75x concentrated N-A 

complemented with 10% glycerol, 1 mM TCEP and additional 125 mM NaCl) using 

three 5 ml HiTrap desalting columns. (B) Dextrin affinity (MHS-HP1 only). The protein was 

eluted from the nickel column directly on a 5 ml MBPTrap HP column placed below 

the HisTrap column. After elution, the nickel column was removed and the MBPTrap 

column was washed with 5 CV of N-A and eluted with N-A containing 2 M urea, 10 

mM maltose and 1 mM TCEP. (C) Tag removal. The GHS and MHS tags were cleaved 

off using recombinantly expressed SUMO protease (L403-K621 of S. cerevisiae ULP1; 

expressed as GB1-ULP1-6xHis fusion and purified by nickel affinity and gel filtration) in 

a ratio of 1:200 and incubated for 1.5 hours at 16°C. In order to subtract the tag, the 

protease and other contaminants, the digest was passed through a HisTrap column. 

In the case of full-length HP1, guanine-HCl was added to a final concentration of 1 M 

for this step. (D) HIC (PfCD.H only). Ammonium sulfate from a 4 M stock (pH adjusted 

to 7 using NH4OH) was added to the protein sample to 1.5 M and this mixture was 

loaded on a 1 ml Phenyl HP column equilibrated in buffer HIC (1.5 M ammonium 

sulfate, 5 mM EACA, 0.5 mM EDTA, 20 mM H3PO4-KOH, pH 6.8, and 10% Glycerol). The 

column was washed with 20 CV of the same buffer and the protein eluted using a 25 

CV long linear gradient, from 1.5 M to 0 M ammonium sulfate. (E) Gel filtration. PfCD.H 

was polished using 10 mM MOPS-KOH, pH 7, 100 mM NaCl, 10% glycerol buffer and a 

Superdex75 10/300 GL column. For full-length HP1, a HiLoad 26/60 Superdex 200 
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column was prepared in three steps: first, it was equilibrated in storage buffer (20 mM 

MOPS-KOH, pH 7, 0.5 M NaCl, 10 % glycerol). Then, a gradient (1/10th CV) from storage 

buffer to refolding buffer (20 mM MOPS-KOH, pH 7, 800 mM arginine, 267 mM citric 

acid) was loaded to the column, and finally a second gradient (1/8th CV), from 

refolding buffer to buffer N-A containing 2 M urea and 1 M guanine-HCl was loaded. 

As a result, the protein passed first through refolding and later through storage buffer. 

Both proteins were concentrated using Amicon spin filter (Millipore) with a 10K cut-off 

and stored at -80°C. Their purity and concentration were determined by SDS-PAGE 

and NanoDrop™ 2000/2000c spectrophotometer with UV extinction coefficients 

calculated by protparam (https://web.expasy.org/protparam/). 

In vitro kinase assays 

Purified recombinant P. falciparum kinases were prepared as described for PfCK2 

(Holland et al., 2009), PfGSK3 (Droucheau et al., 2004) and PfMAP2, PfNEK2, PfNEK4, 

PfPK6 (Van Voorhis et al., 2016). The ADP-GloTM in vitro kinase assay was performed in 

duplicates according to the manufacturer`s instructions (Promega, USA). The exact 

amount of recombinant kinase (0.6-7 µg) and PfHP1 or PfCD.H (1.8-5.8 µg) substrates 

used in each reaction is indicated in the corresponding figures. 10 µg of either histone 

from calf thymus, bovine myelin basic protein (MBP) or β-casein from bovine milk 

(Sigma-Aldrich) were used as positive controls. 5 µl out of 25 µl of the kinase reactions 

were used for the final ATP depletion and detection steps. The remaining reaction 

volume was used for LC-MS/MS analysis to identify phosphosites (see above).  

The γ-P32-ATP in vitro kinase assays were performed in a standard 25 µl reaction in 

kinase buffer (20 mM Tris HCl pH 7.5, 20 mM MgCl2, 2 mM MnCl2, 10 mM 

glycerolphosphate and 10 mM NaF) containing 10 µM ATP, 5 µCi γ-P32-ATP (3000 

Ci/mmol, Amersham Biosciences), substrates (5.4 µg PfHP1, 5.8 µg PfCD.H, 10 µg β-

casein, 10 µg calf thymus histone, or 5 µg MBP) and recombinant kinases (0.5 µg PfCK2 

or 0.6 µg PfGSK3). In the assay using PfCK2, 20 µM of 4,5,6,7-tetrabromobenzimidazole 

(TBB) in DMSO was use as a specific CK2 inhibitor (Holland et al., 2009; Sarno et al., 

2001). The reactions were carried out for 30 min at 30 °C and stopped by the addition 

of Laemmli buffer. The samples were analyzed by SDS-polyacrylamide gel 

electrophoresis followed by autoradiography. 

Transfection constructs 

We applied CRISPR/Cas9-mediated genome editing and the DiCre/LoxP system 

(Collins et al., 2013; Jones et al., 2016) to generate parasite lines for the conditional 
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expression of PfHP1-GFP phosphomutants. We engineered (1) 3D7/N31DC_PfHP1-3M 

(3D7/HP1-3M) for expression of the S122/125/129A PfHP1 mutant; (2) 

3D7/N31DC_PfHP1-HIM (3D7/HP1-HIM) for expression of the 

S89/92/122/125/129/136/174A PfHP1 mutant; and (3) 3D7/N31DC_PfHP1-Control 

(3D7/HP1-Control) for expression of wild type PfHP1-GFP. To obtain these cell lines we 

performed two subsequent transfection steps.  

In the primary transfection, we generated the mother cell line 3D7-1G5DC/5’-loxPint-

g31 (3D7/N31DC), which carries a sera2 intron:loxP element (Jones et al., 2016) 

inserted into the 5’ end of the pfhp1 coding sequence. To achieve this, we 

constructed the pHF-gC-guide31 plasmid by inserting two annealed complementary 

oligonucleotides (F-g31 and R-g31) encoding the sgRNA target sequence and 

containing appropriate single-stranded overhangs into the BsaI-digested pHF-gC 

SpCas9 plasmid (Filarsky et al., 2018) using T4 DNA ligase. The sgRNA target sequence 

(5’-ATTTATTTAGTAAAATGGAA-3’) is positioned at bps +70 to +89 within the pfhp1 

coding sequence and was identified using the CHOPCHOP web tool 

(http://chopchop.cbu.uib.no) (Labun et al., 2016; Montague et al., 2014). The donor 

plasmid pFdon-N31 was generated by Gibson assembly joining four PCR fragments 

encoding (1) the pFdon plasmid backbone (Filarsky et al., 2018) digested with SalI and 

EcoRI; (2) the 103 bp fragment encoding the sera2 intron:loxP fragment amplified from 

pD_SIP2xGFP plasmid (I. Niederwieser, unpublished) using primers F139 and R143; (3) a 

5’ homology region (5’ HR) spanning bps -490 upstream of the start codon to +87 in 

the pfhp1 coding sequence amplified from 3D7 gDNA using primers F147 and R145; 

and (4) a 3’ HR spanning bps +88 to +756 of the pfhp1 coding sequence amplified 

from 3D7 gDNA using primers F146 and R144 (the pfhp1 coding sequence is 798 bps 

long). For transfection, 50 µg of each plasmid (pHF-gC-guide31 and pFdon-N31) were 

mixed and co-electroporated into DiCre-expressing 3D7/1G5DC parasites (Collins et 

al., 2013). Transfected parasites were selected with 4 nM WR99210 for six days and then 

cultured in absence of drug selection until transgenic populations were established.  

In the second step, 3D7/N31DC parasites were transfected again to generate parasite 

lines 3D7/HP1-3M, 3D7/HP1-HIM and 3D7/HP1-Control that carry a second sera2 

intron:loxP sequence directly downstream of the endogenous pfhp1 STOP codon, 

followed by a recodonised mutated (HP1-3M and HP1-HIM) or wild type (HP1-Control) 

pfhp1-gfp sequence using the following cloning steps. First, we constructed the pBF-

gC-guide250 plasmid by inserting two annealed complementary oligonucleotides (F-

g250 and R-g250) encoding the sgRNA target sequence at the 3’ end of the pfhp1 
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coding sequence and appropriate single-stranded overhangs into the BsaI-digested 

pBF-gC SpCas9 plasmid (Filarsky et al., 2018) using T4 DNA ligase. The sgRNA target 

sequence (5’-AAAAAATTTAAGAGTTCCTG-3’) is positioned at bps +751 to +770 within 

the pfhp1 coding sequence (negative strand) and was identified using CHOPCHOP 

(http://chopchop.cbu.uib.no). Second, we constructed the three donor plasmids. The 

pD-HP1-Control plasmid was constructed by Gibson assembly joining two PCR 

fragments. The first fragment was amplified from the plasmid pD-PfHP1-KO (see 

Supplementary Methods) using primers F162 and R143 and contains, in the following 

order, the gpf coding sequence ending with a STOP codon, a 3’ HR spanning the 824 

bps directly downstream of the pfhp1 STOP codon, the pD plasmid backbone 

(Brancucci et al., 2017), a 5’ HR spanning bps +88 to +798 of the pfhp1 coding 

sequence carrying eight synonymous mutations between bps +757 to +798 (see 

Supplementary Methods) and ending with a STOP codon followed by the 103 bp sera2 

intron:loxP element. The second PCR fragment was amplified from a plasmid 

containing a synthetic recodonized pfhp1 sequence (pUC57-re-pfhp1) (GenScript™) 

(see Figure S3 and Supplementary Methods) using primers F164 and R165 and spans 

bps +88 to +798 of the pfhp1 coding sequence omitting the STOP codon. 

The pD-HP1-3M plasmid was constructed by Gibson assembly joining four PCR 

fragments encoding (1) the 5’ HR spanning bps +88 to +798 of the pfhp1 coding 

sequence ending with a STOP codon followed by the 103 bp sera2 intron:loxP element 

and bps +88 to +384 of the recodonised pfhp1 sequence amplified from the pD-PfHP1-

Control plasmid using primers F158 and R168, the latter of which introduces the 

S122/125A mutations into PfHP1; (2) a fragment spanning bps +367 to +798 of the 

recodonised pfhp1 sequence amplified from pUC57-re-pfhp1 (GenScript™) using 

primers F91 and R165, the former of which introduces the S125/129A mutations into 

PfHP1; (3) the gfp coding sequence ending with a STOP codon followed by the 3’ HR 

amplified from the pFdon-C-loxP-g250 vector (see Supplementary Methods) using 

primers F162 and R163; and (4) the pD plasmid backbone amplified from pUC19 using 

primers PCRA_F and PCRA_R (Brancucci et al., 2017).  

Finally, the pD-HP1-HIM plasmid was constructed in a two-step process. First, a 

fragment containing, in the following order, bps +88 to +798 of the recodonised pfhp1 

sequence encoding the S89/92/122/125/129/136/174A mutations followed by the gfp 

sequence ending with a stop codon and the 3’ HR was generated by Gibson assembly 

joining four fragments encoding (1) bps +88 to +280 of recodonised pfhp1 amplified 

from pD-PfHP1-Control using primers F164 and R172, the latter of which introduces the 
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S89/92A mutations; (2) bps +261 to +409 of the recodonised pfhp1 sequence amplified 

from pD-PfHP1-3M (containing the S122/125/129A mutations) using primers F171 and 

R174, the former of which introduces the S89/92A mutations and the latter of which 

introduces the S136A mutation; (3) bps +390 to +535 of the recodonised pfhp1 

sequence amplified from pD-PfHP1-Control using primers F173 and R176, the former of 

which introduces the S136A mutation and the latter of which introduces the S174A 

mutation; and (4) a fragment containing, in the following order, bps +520 to +798 of 

the recodonised pfhp1 sequence, the gfp coding sequence ending with a STOP 

codon and 3’ HR amplified from pD-PfHP1-Control using primers F175 and R163, the 

former of which introduces the S174A mutation. Second, the resulting fragment from 

the first step was used as template for a second round of PCR amplification using 

primers F164 and R163 and subjected to a second Gibson assembly joining with two 

other PCR fragments, namely the pD plasmid backbone amplified from pUC19 using 

primers PCRA_F and PCRA_R (Brancucci et al., 2017), and a fragment containing the 

5’ HR followed by the sera2 intron:lox P amplified from the pD-PfHP1-Control using 

primers F158 and R143.  

For each of the three transfections, 50 µg of the pBF-gC-guide250 plasmid was mixed 

with 50 µg of either pD-PfHP1-Control, pD-PfHP1-3M or pD-PfHP1-HIM and transfected 

by electroporation into the 3D7/N31DC parasite line as described above. Transfected 

parasites were selected with 5 µg/ml BSD-S-HCl for 10 days and then cultured in 

absence of drug pressure until transgenic populations were established. All 

oligonucleotide sequences used for the cloning of the CRISPR/Cas9 and donor 

plasmids are provided in Table S3. The nucleotide sequence of recodonized pfhp1 is 

provided in Figure S3. 

Nucleic acid isolation and diagnostic PCRs and reverse transcription PCRs 

To confirm correct editing of the pfhp1 locus we performed PCRs using the KAPA HiFi 

HotStart enzyme (Roche Sequencing Store) on gDNA isolated from the transgenic cell 

lines. To evaluate the excision efficiency after rapamycin treatment, diagnostic PCRs 

were performed on gDNA isolated 24-36 hours post rapamycin treatment (Knuepfer et 

al., 2017). To evaluate the splicing efficiency of the sera 2 intron:loxP from the pfhp1 

open reading frame, total RNA from the 3D7/N31DC mother cell line and the 

rapamycin-treated phosphomutant cell lines were isolated using Ribozol (Amresco) 

according to the manufacturer’s instruction. cDNA was then synthesized using 

oligo(dT) primers (RetroScript, Invitrogen) and PCRs on cDNA were performed using 
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primers F106 and R107 that amplify the entire coding sequence. All transfection 

plasmids generated in this study have been validated by Sanger sequencing. All 

transfection plasmids have been designed and Sanger sequencing results analysed 

using the SnapGene software (from GSL Biotech; available at snapgene.com). All 

primer sequences used for PCR are listed in Table S3. 

Induction of DiCre recombinase-mediated DNA excision by rapamycin treatment 

Parasites were synchronized twice 16 hours apart to obtain an eight-hour growth 

window (16-24 hpi). After re-invasion parasites were synchronized again at 0-8 hpi 

(generation 1) and split into two equal populations, one of which was treated with 

0.02% v/v of DMSO (negative control) and the other half was treated with 100 nM 

rapamycin for 1 hour (Knuepfer et al., 2017). The cultures were then spun down, 

washed with an equal volume of culture medium, resuspended in culture medium and 

returned to culture. 

SDS-PAGE and immunoblotting 

After DMSO or rapamycin treatment in generation 1, parasites were allowed to 

complete schizogony and re-invasion. At 16-24 hpi in generation 2, parasites were 

released from infected RBCs (iRBCs) by 0.15% saponin/PBS complemented with 1X 

protease inhibitor (Roche Diagnostics). After washing 2-3 times in ice-cold PBS, parasite 

pellets were lysed in 70°C pre-heated Urea/SDS buffer (8 M Urea, 5% SDS, 50 mM Bis-

Tris, 2 mM EDTA, 25 mM HCl at pH 6.5 supplemented with 2 mM DTT and 1X protease 

inhibitor). Whole parasite protein lysates were separated on NuPage 4-12% Bis-Tris gels 

(Novex) and analyzed by Western blot using mouse mAb α-GFP (Roche Diagnostics 

#11814460001), 1:1000; rabbit α-PfHP1 (Brancucci et al., 2014), 1:5’000; rabbit α-Histone 

4 (Abcam ab10158), 1:10’000. 

Live cell imaging and indirect immunofluorescence assay (IFA) 

To quantify the efficiency of pfhp1 excision after rapamycin treatment, live cell 

fluorescence microscopy was performed as described before (Witmer et al., 2012) 

with minor modifications using Hoechst (Merck) at a final concentration of 5 µg/ml to 

stain the nuclei. Excision efficiency was determined as the percentage of GFP-positive 

schizonts at 40-48 hpi in generation 1 (>100 schizonts counted per experiment). IFAs 

were performed on methanol-fixed cells using mouse IgG1 mAb α-ATS (Duffy et al., 

2002), 1:150; and Alexa Fluor 488-conjugated α-mouse IgG (Molecular Probes), 1:250. 

Images were taken at 63-fold magnification on a Leica DM 5000B microscope with a 
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Leica DFC 300 FX camera, acquired via the Leica IM 1000 software, processed using 

ImageJ software (https://imagej.nih.gov/ij). For each experiment, images were 

acquired and processed with identical settings.   

Parasite multiplication assay  

Parasites were tightly synchronized twice 16 hours apart, split into two equal 

populations after re-invasion at 0-8 hpi (generation 1), of which one half was treated 

with DMSO (negative control) and the other half was induced for DiCre recombinase-

mediated DNA excision by rapamycin treatment as described above. Giemsa smears 

were prepared to determine the parasitaemia at 16-24 hpi (generation 1). Giemsa-

stained smears were prepared every second day onwards for three generations. 

Parasitaemia was counted by visual inspection of Giemsa-stained blood smears 

(>3’000 RBCs counted per experiment). Multiplication rates were determined as the 

parasitaemia observed in the following generation divided by the parasitaemia 

observed in the previous generation. The extrapolative growth curve was generated 

using a starting parasiteamia at 0.1%. 

Gametocyte conversion assay 

Parasites were tightly synchronized twice 16 hours apart and split into two equal 

populations after re-invasion at 0-8 hpi (generation 1), of which one half was treated 

with DMSO (negative control) and the other half was induced for DiCre recombinase-

mediated DNA excision by rapamycin treatment as described above. At 16-24 hpi in 

the subsequent generation (day 1 of gametocytogenesis), cultures were treated with 

50 mM N-acetyl-D-glucosamine (GlcNAc) for six days to eliminate asexual parasites  

(Fivelman et al., 2007; Ponnudurai et al., 1986) and then cultured with normal culture 

medium for another 4-6 days to observe gametocyte maturation. Gametocytaemia 

was determined on day 6 by visual inspection of Giemsa-stained blood smears. Sexual 

conversion rates were determined as the gametocytaemia observed on day 6 as a 

proportion of the total parasitaemia observed on day 1. 
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Figure 1. Identification of phosphorylated residues in PfHP1. (A) Upper panel: silver-

stained SDS-PAGE gel of protein samples from a PfHP1-GFP immunoprecipitation (IP) 

experiment using nuclear extracts from 3D7/HP1-GFP parasites and GFP-Trap®_A 

beads. Lower panel: Western blot analysis of the IP samples using α-PfHP1 antibodies 

showing the presence of PfHP1-GFP in the input and elution samples. FT, flow through; 

W1-W5, wash 1-5; E1/E2, eluates 1 and 2. (B) Overview of all phosphosites (yellow 

circles) identified in PfHP1, either in this study by LC-MS/MS of immunopurified native 

PfHP1-GFP or in other proteomics studies (Collins et al., 2014; Filarsky et al., 2018; 

Lasonder et al., 2012; Lasonder et al., 2015; Pease et al., 2013; Solyakov et al., 2011; 

Treeck et al., 2011). Phosphosites identified here and in at least one previous study are 

highlighted in red letters, those identified only in previous studies are highlighted in 

black letters, and the phosphosite exclusively identified here (S206) is highlighted by a 

green letter. Helices and ß-sheets predicted by the secondary structure prediction tool 

JPred4 (http://www.compbio.dundee.ac.uk/jpred4/index.html) (Drozdetskiy et al., 

2015) are indicated by orange and green boxes, respectively. The approximate 

boundaries of the CD (brown), hinge domain (grey) and CSD (pink) are indicated 

(Flueck et al., 2009). Numbers refer to amino acid positions in the PfHP1 sequence. 

 

Figure 2. PfCK2 phosphorylates PfHP1 and in vitro. (A) Coomassie-stained SDS-PAGE 

gel showing the purified recombinant PfHP1 and PfCD.H proteins. (B) In vitro ADP-GloTM 

assay results reveal that PfCK2 phosphorylates PfHP1 and PfCD.H in vitro. The 

percentage of ADP converted back into ATP (y-axis) is a surrogate measure for kinase 

activity (i.e. the relative amount of ATP consumed in the kinase reaction). β-casein was 

included as a positive control substrate for PfCK2. Recombinant PfHP1 and PfCD.H in 

absence of PfCK2 were used as negative controls. Values represent the average of 

two replicate reactions. Error bars represent SD. (C) Coomassie-stained SDS-PAGE gel 

(top) and corresponding autoradiogram (bottom) of the in vitro γ-P32-ATP PfCK2 kinase 

assay performed with recombinant PfHP1 and PfCD.H substrates. β-casein was used 

as a positive control substrate. 20 µM TBB was used as a specific inhibitor of PfCK2 

(Holland et al., 2009; Sarno et al., 2001). 

 

Figure 3. Generation of DiCre-inducible PfHP1 phosphomutants. (A) Schematics of the 

CRISPR/Cas9-edited pfhp1 loci (left panel) and corresponding PfHP1 protein products 

(right panel) expressed in the 3D7/N31DC mother line (top) and the 3D7/HP1-3M, 
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3D7/HP1-HIM and 3D7/HP1-Control parasites (bottom) before (DMSO) and after (RAP) 

rapamycin-induced DiCre-dependent excision of the wild type pfhp1 locus. HR, 

homology regions used for homology-directed repair of Cas9-induced DNA double-

strand breaks. Blue arrowheads indicate the position of sera2 intron:loxP elements 

(Jones et al., 2016). Red asterisks indicate STOP codons. Blue asterisks indicate the 

relative position of serine-to-alanine substitutions in the PfHP1 hinge region in the 

3D7/HP1-3M and 3D7/HP1-HIM phosphomutants. Orange and blue boxes represent 

the wild type and recodonised pfhp1/PfHP1 sequences, respectively. Numbers in the 

gene and protein schematics refer to nucleotide and amino acid positions, 

respectively. The black arrowheads indicate the binding sites of the F119 and R157 

primers used to confirm correct editing of the pfhp1 locus and efficient DiCre-

mediated excision upon rapamycin treatment by PCR on gDNA (see Figure 3B below). 

(B) PCR on gDNA confirms the correctly edited pfhp1 loci and efficient excision of the 

endogenous pfhp1 gene after rapamycin treatment in 3D7/HP1-3M, 3D7/HP1-HIM and 

3D7/HP1-Control parasites. Using primers F119 and R157 (see Figure 3A) the correctly 

edited pfhp1 locus delivers a PCR product of 3781 bps in the 3D7/HP1-3M (left panel), 

3D7/HP1-HIM (middle panel) and 3D7/HP1-Control line (right panel). In the 3D7/N31DC 

mother line (i.e. prior to the insertion of a recodonised pfhp1-gfp fusion gene) this PCR 

reaction delivers a 2250 bps fragment (right panel). Correct excision of the 

endogenous pfhp1 gene in rapamycin-treated 3D7/HP1-3M, 3D7/HP1-HIM and 

3D7/HP1-Control parasites results in a decrease of the size of the PCR fragment from 

3781 bps to 2964 bps. Primers targeting the cg6 control locus (PF3D7_0709200) have 

been used as control. RAP, rapamycin. (C) The efficiency of DiCre-mediated excision 

of the endogenous pfhp1 gene and resulting expression of the recodonised PfHP1-GFP 

fusion proteins has been quantified by counting the number of GFP-positive parasites 

in paired control (DMSO) and rapamycin-treated (RAP) populations in late schizont 

stages (40-48 hpi) (40 hrs after rapamycin treatment). Values represent the mean of 

three (3D7/HP1-HIM) and four (3D7/HP1-3M and 3D7/HP1-Control) independent 

biological replicate experiments (>100 iRBCs scored for each population). Error bars 

indicate SD. (D) Western blot showing the expression of endogenous untagged PfHP1 

and recodonised PfHP1-GFP in the progeny of DMSO- and rapamycin-treated 

3D7/HP1-3M, 3D7/HP1-HIM and 3D7/HP1-Control parasites (16-24 hpi, generation 2) (64 

hrs after rapamycin treatment). α-histone 4 (H4) antibodies were used as loading 

control. RAP, rapamycin. 
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Figure 4. Sub-nuclear localization of PfHP1 phosphomutants. (A) Representative live 

cell fluorescence images showing the localization of the GFP-tagged PfHP1-3M and 

PfHP1-HIM phosphomutants and the PfHP1-Control protein in late schizonts (LS, 40-48 

hpi, generation 1; 40 hrs after rapamycin treatment) and after re-invasion in the 

progeny at late ring stage (LR, 16-24 hpi, generation 2; 64 hrs after rapamycin 

treatment). Nuclei were stained with Hoechst. DIC, differential interference contrast. 

Scale bar, 5 µm. 

 

Figure 5. Phenotypes of PfHP1 phosphomutants. (A) Growth curves of the control 

(DMSO) and rapamycin-treated (RAP) PfHP1-GFP phosphomutants and control line 

over three generations of intra-erythrocytic replication. Values are the mean of four 

(3D7/HP1-3M and 3D7/HP1-Control) and six (3D7/HP1-HIM) independent replicate 

experiments. Error bars represent SD. (B) Sexual conversion rates of DMSO- and 

rapamycin-treated (RAP) PfHP1-GFP phosphomutants, the PfHP1-Control line, the 

3D7/1G5DiCre mother line and 3D7 wild type parasites. Values represent the mean of 

four (3D7/HP1-3M and 3D7/HP1-Control), six (3D7/HP1-HIM) and three (3D7/1G5DiCre 

and 3D7 wild type) independent replicate experiments. Error bars represent SD. 

Asterisks indicate significant differences in sexual conversion rates between RAP-

treated and DMSO-treated parasites (p<0.01; unpaired two-tailed Student`s t-test). (C) 

Representative images showing PfEMP1 expression in control (DMSO) and rapamycin-

treated (RAP) PfHP1-GFP phosphomutants and control line in the late ring stage 

progeny (LR, 16-24 hpi, generation 2; 64 hrs after rapamycin treatment) as determined 

by IFA using α-ATS antibodies recognizing the conserved ATS domain of PfEMP1 (Duffy 

et al., 2002). The percentage of PfEMP1-positive iRBCs are indicated for each 

population. Values represent the mean of two independent experiments (+/- SD) 

(3D7/HP1-3M and 3D7/HP1-Control) and a single experiment (3D7/HP1-HIM). Nuclei 

were stained with DAPI. DIC, differential interference contrast. Scale bar, 5 µm. 

  



Chapter 2|                           Mapping and functional analysis of PfHP1 phosphorylation 

 57 

Figure 1 

  

B

A
In

pu
t

FT W
1

W
2

W
3

W
4

W
5

E1 E2

75 -

50 -

kDa

37 -

25 -
20 -

15 -

10 -

100 -
150 -
250 -

75 -

50 -

100 -

- PfHP1-GFP

- PfHP1-GFP

α-PfHP1

Y32 S33 T38 S57

58 178
CD CSDHinge

1 2668 256

T2 S4 

S206

S89 S92 S108 T110 S122 S125 S129 S136 S174

N C

10 20 30 40 50 60 70 80 90 100

110 120 130 140 150 160 170 180 190 200

210 220 230 240 250 260

MTGSDEEFEIGDILEIKKKKNGFIYLVKWKGYSDDENTWEPESNLIHLTTFKKKMESLKTNFLSKANETNGDGKILKNHILAPTQEDDSIKSKGRSSLAP

RRKMSRKSLTNKLENKKNLSLSDNSLKKSDEEDNESVKHENHVNDGNLLNVEDVYSVRIKNKKLEFLASLKNESPQWVEETNIRRTGHLNIKVNDFKRYV

RRKKSSRGNRIVIKNLHNVGDELYISVIHNINNKEIHSLYPSKVIEYIYPQELLNFLLSRLRYRTA



Chapter 2|                           Mapping and functional analysis of PfHP1 phosphorylation 

 58 

Figure 2 

  

A C
Pf

HP
1

37 -

25 -
20 -

kDa

50 -

75 -
100 -

200 -
150 -

15 -

10 -

Pf
CD

.H

- PfCK2
- PfHP1

- PfCD.H

50 -

40 -

30 -

20 -

15 -

Pf
CD

.H

- β-casein

- PfHP1

Autoradiograph

Coomassie blue 

Pf
CK

2

Pf
CK

2 
+ 

β-
ca

se
in

Pf
CK

2 
+ 

Pf
HP

1
Pf

CK
2 

+ 
Pf

CD
.H

Pf
CK

2 
+ 

Pf
HP

1 
+ 

20
m

M
 T

BB

Pf
CK

2 
+ 

Pf
HP

1 
+ 

DM
SO

Pf
CK

2 
+ 

Pf
CD

.H
 +

 2
0m

M
 T

BB

Pf
CK

2 
+ 

Pf
CD

H 
+ 

DM
SO

Pf
HP

1

- PfCD.H

- PfCK2

- β-casein

50 -

40 -

30 -

20 -

kDa

B

Pf
CK

2 
(6

.2
5µ

g)
Pf

CK
2 

+ 
β-

ca
se

in

Pf
CK

2 
+ 

1.
8µ

g 
Pf

HP
1

Pf
CK

2 
+ 

5.
4µ

g 
Pf

HP
1

Pf
CK

2 
+ 

2.
9µ

g 
Pf

CD
.H

Pf
CK

2 
+ 

5.
8µ

g 
Pf

CD
.H

5.
4µ

g 
Pf

HP
1

5.
8µ

g 
Pf

CD
.H

%
 A

D
P 

co
nv

er
te

d 
to

 A
TP

0

20

80

100

40

60

120



Chapter 2|                           Mapping and functional analysis of PfHP1 phosphorylation 

 59 

Figure 3 
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Figure 4 
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Figure 5 
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2.7 Supplementary Information 

 

 

This Supplementary Information includes: 

Supplementary Methods 

Figures S1 to S4 

Tables S1 to S3 
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Supplementary Methods 

 

Generation of the pFdon-C-loxP-g250 donor plasmid 

The pFdon-C-loxP-g250 plasmid was constructed by Gibson assembly joining five DNA 

fragments. The first fragment represents the pFDon plasmid (Filarsky et al., 2018) 

digested with SalI and EcorI. The second fragment represents a pfhp1 5’ HR spanning 

bps +88 to +798  omitting the stop codon and carrying eight synonymous mutations 

between bps +757 to +798 [ 

(CàT)T(CàA)TTAAATTT(TàC)TTATTATCAAGA(CàT)TAAGATA(CàT)(CàA)G(TàA)AC

AGC(TàG)], followed by 28 bps of the sera2 intron:loxP element. This 5’ HR was 

generated in a four-step PCR process. First, a PCR fragment containing six synonymous 

mutations within the region spanning bps +757 to + 790 of the pfhp1 sequence (of 

which three are located within the sgRNA target sequence) was amplified from 3D7 

gDNA using primers F133 and R138. This sequence was then used as template for a 

second round of amplification adding two more mutations within bps +792 to +798 of 

the pfhp1 sequence followed by six bps of the sera2 intron:loxP sequence (primers F133 

and R138.1). The second sequence was then used as template for a third round of 

amplification adding nine more bps of the sera2 intron:loxP sequence (primers F133 

and R138.2). The third sequence was used as template for the final round of 

amplification to add in total 28 bps of the sera2 intron:loxP sequence to serve as 

overhang for subsequent Gibson assembly (primers F133 and R138.3). The third 

fragment represents the sera2 intron:loxP sequence followed by bps +1 to +356 of the 

gpf coding sequence amplified from the pD_SIP2xGFP plasmid (Igor Niederwieser, 

unpublished) using primers F139 and R148. The fourth fragment spans bps +336 to +714 

of the gfp coding sequence ending with a stop codon and a Gibson assembly 

overhang amplified from the pD_SIP2xGFP plasmid (Igor Niederwieser, unpublished) 

using primers F149 and R136. The fifth and final fragment for Gibson assembly 

represents a pfhp1 3’ HR spanning the 824 bps directly downstream of the stop codon 

amplified from 3D7 gDNA using primers F71 and R134. All oligonucleotide sequences 

used for the cloning of the pFdon-C-loxP-g250 plasmid are provided in Table S3. 

 

Generation of the pD-PfHP1_KO donor plasmid 

The pD-PfHP1-KO donor plasmid was constructed by Gibson assembly joining three 

PCR fragments encoding (1) the plasmid backbone pD amplified from pUC19 using 
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primers PCRA_F and PCRA_R (Brancucci et al., 2017), (2) a 5’ HR spanning bps +88 to 

+798 of the pfhp1 coding sequence ending with a stop codon carrying eight 

synonymous mutations within the region spanning bps +757 to +798 amplified from the 

pFdon-C-loxP-g250 plasmid (see above) using primers F158 and R159; and (3) a PCR 

product amplified from the pFdon-C-loxP-g250 plasmid using primers F139 and R163 

and representing, in the following order, the 103 bp sera2 intron:loxP element, the gfp 

coding sequence ending with a stop codon and a 3’ HR sequence spanning 824 bps 

directly downstream of the pfhp1 stop codon. All oligonucleotide sequences used for 

the cloning of the pD-PfHP1-KO plasmid are provided in Table S3. 

 

Supplementary Figures 

Figure S1. ADP Glo in vitro kinase assay results. Based on ADP-GloTM kinase assays 

PfMAP2, PfPK6, PfNEK2 and PfNEK4 do not specifically phosphorylate PfHP1 and 

PfCD.H in vitro. The percentage of ADP converted back into ATP (y-axis) is a surrogate 

measure for kinase activity (i.e. the relative amount of ATP consumed in the kinase 

reaction). MBP was included as a positive control substrate for PfMAP2, PfPK6 and 

PfNEK2, β-casein was included as a positive control substrate for PfNEK4. Recombinant 

PfHP1 and PfCD.H in absence of recombinant kinases were used as negative controls. 

All kinases except PfNEK4 show substantial autophosphorylation activity. Values 

represent the results of a single experiment each.  

 

Figure S2. PfGSK3 phosphorylates PfHP1 and PfCD.H in vitro. (A) ADP-GloTM kinase 

assay. The percentage of ADP converted back into ATP (y-axis) is a surrogate measure 

for kinase activity (i.e. the relative amount of ATP consumed in the kinase reaction). 

Recombinant PfGSK3 showed strong autophosphorylation activity (column 1). 

Histones from calf thymus were used as positive control substrates (column 2). The 

addition of PfHP1 and PfCD.H increased the ATP consumption compared to 

addition of the control substrate (columns 3 to 6). Recombinant PfHP1 and PfCD.H in 

absence of PfGSK3 were used as negative controls (columns 7 and 8). The amount of 

PfGSK3 and substrates used in the assay is indicated. Values represent the results from 

two replicate reactions. Error bars represent SD. (B) γ-P32-ATP kinase assay. Coomassie-

stained gel (top) and corresponding autoradiogram (bottom) of the in vitro γ-P32-ATP 

PfGSK3 kinase assay performed with recombinant PfHP1 and PfCD.H substrates. 

Recombinant PfGSK3 showed strong autophosphorylation activity (lanes 3-6). 
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Histones from calf thymus were used as positive control substrates (lane 4). PfGSK3 

phosphorylated the control and the PfHP1 and PfCD.H test substrates (lanes 4-6). 

Recombinant PfHP1 and PfCD.H in absence of PfGSK3 were used as negative controls 

(lanes 1 and 2). 0.6 µg of PfGSK3 was used in each reaction. 

 

Figure S3. Two-step CRISPR/Cas9-based gene editing strategy to generate DiCre-

inducible PfHP1 phosphomutant cell lines. (A) First gene editing step: Schematic maps 

of the pfhp1 locus (PF3D7_1220900) in 3D7/1G5DiCre parasites (Collins et al., 2013) 

(top), the co-transfected pFDon-N31 donor plasmid and pHF_gC-guide31 

CRISPR/Cas9 transfection vector (center), and the modified pfhp1 locus after 

CRISPR/Cas9-based gene editing in 3D7/N31DC parasites (bottom). The nucleotide 

positions of the sgt_pfhp1-5’ sgRNA target sequence is indicated (chromosome 12 

coordinates). The pFDon-N31 donor plasmid contains a 103 bp sera2 intron:loxP 

element (light blue triangle) (Jones et al., 2016) flanked by two homology regions (HR) 

(orange, black) for homology-directed repair. The pHF_gC-guide31 plasmid contains 

expression cassettes for SpCas9 (dark grey), the sgRNA (purple) and the hdhfr-yfcu 

fusion selection marker (light grey-brown). Second gene editing step: Schematic maps 

of the pfhp1 locus in 3D7/N31DC parasites (top), the co-transfected pD_HP1 donor 

plasmid (pD_HP1-Control is shown as an example) and pBF_gC-guide250 CRISPR/Cas9 

transfection vector (center), and the modified pfhp1 locus after CRISPR/Cas9-based 

gene editing in 3D7/HP1-3M, 3D7/HP1-HIM and 3D7/HP1-Control parasites (3D7/HP1-

Control is shown as an example) (bottom). The nucleotide positions of the sgt_pfhp1-

3’ sgRNA target sequence is indicated (chromosome 12 coordinates). The pD_HP1 

donor plasmids contain an assembly of the 103 bp sera2 intron:loxP element (light blue 

triangle) (Jones et al., 2016) and the recodonised pfhp1 sequence (dark blue) fused 

to gfp (green) flanked by two homology regions (HR) (orange, black) for homology-

directed repair. The pBF_gC-guide250 plasmid contains expression cassettes for 

SpCas9 (dark grey), the sgRNA (purple) and the bsd-yfcu fusion selection marker (light 

grey-brown). Red stars represent STOP codons. Numbers refer to the nucleotide 

position within the pfhp1 coding sequence. (B) Nucleotide sequences of the wild type 

(pfhp1) and recodonised (pfhp1 re) pfhp1 genes and amino acid sequence of PfHP1. 

Bases altered in the pfhp1 re are highlighted in red letters. Numbers refer to the 

nucleotide position within the pfhp1 coding sequence. 
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Figure S4. Confirmation of successful gene editing by PCR and Sanger sequencing. (A) 

Top: Schematic of the CRISPR/Cas9-edited pfhp1 locus in the 3D7/N31DC mother line 

carrying a 103 bp sera2 intron:loxP element (Jones et al., 2016) inserted into the 5’ end 

of the gene. The homology regions (HR) used for homology-directed repair of the 

Cas9-induced DNA double-strand break are indicated. The blue arrowhead indicates 

the position of sera2 intron:loxP element. The red asterisk indicates the STOP codon. 

Numbers refer to nucleotide positions within the pfhp1 coding sequence. The black 

arrowheads indicate the binding sites of the primers used to confirm correct gene 

editing of the pfhp1 locus by PCR on gDNA. Bottom: PCR on gDNA isolated from 

3D7/N31DC parasites and 3D7/1G5DiCre control parasites (Collins et al., 2013) 

confirms the correctly edited pfhp1 locus in the 3D7/N31DC mother line. Primer pairs 

F156/R143 and F139/R265 deliver PCR products only from the 3D7/N31DC but not from 

the parental 3D7/1G5DiCre line (note that F139 and R143 bind specifically to the sera2 

intron:loxP element). Using primers F156 and R265, the correctly edited pfhp1 locus 

delivers a PCR product of 1893 bps in the 3D7/N31DC line and of 1790 bps in the 

parental 3D7/1G5DiCre line (i.e. prior to the insertion of the sera 2 intron:loxP element). 

Primers targeting the cg6 control locus (PF3D7_0709200) have been used as control. 

(B) Top: Schematic maps of the CRISPR/Cas9-edited pfhp1 gene locus in the 

3D7/N31DC mother line carrying a 103 bp sera2 intron:loxP element (left) and the 

corresponding mRNA/cDNA sequence after splicing of the sera2 intron:loxP element 

(right). The blue arrowhead indicates the position of sera2 intron:loxP element. The red 

asterisk indicates the STOP codon. The black arrowheads indicate the binding sites of 

the F106 and R107 primers used to confirm splicing of the sera2 intron:loxP element. 

Bottom left: PCR on gDNA and cDNA from 3D7/N31DC parasites confirms the correct 

splicing of the sera2 intron:loxP element. The F106 and R107 primers bind up- and 

downstream of the pfhp1 open reading frame and amplify a 1020 bp and 917 bp 

fragment from gDNA and cDNA, respectively. Bottom right: Sanger sequencing of PCR 

products amplified from gDNA and cDNA confirms the correct insertion of the sera2 

intron:loxP element into the pfhp1 gene in 3D7/N31DC parasites and correct splicing 

of the sera2 intron:loxP element, respectively. (C) Top: schematics of the CRISPR/Cas9-

edited pfhp1 locus in 3D7/HP1-3M parasites after rapamycin-induced DiCre-

dependent replacement of endogenous wild type pfhp1 with a recodonised mutated 

pfhp1-3m-gfp fusion gene and the corresponding mRNA/cDNA sequence after 

splicing of the sera 2 intron:loxP element. The blue arrowhead indicates the position of 

sera2 intron:loxP element. The red asterisk indicates the STOP codon. The blue asterisks 
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indicate the relative position of mutations encoding serine-to-alanine substitutions in 

the 3D7/HP1-3M phosphomutant. Orange and blue boxes represent the wild type and 

recodonised pfhp1 sequences, respectively. The black arrowheads indicate the 

binding sites of the F106 and R107 primers used to confirm splicing of the sera2 

intron:loxP element. Bottom left: PCR on gDNA and cDNA from rapamycin-treated 

3D7/HP1-3M parasites confirms the correct splicing of the sera2 intron:loxP element. 

The F106 and R107 primers bind up- and downstream of the pfhp1-gfp open reading 

frame and amplify a 1734 bp and 1631 bp fragment from gDNA and cDNA, 

respectively. Bottom right: Sanger sequencing of the RT-PCR product amplified from 

cDNA from rapamycin-treated 3D7/HP1-3M parasites confirms the successful 

introduction of the mutations encoding the S122A/S125A/S129A substitutions in the 

3D7/HP1-3M phosphomutant.  
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Figure S1 
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Figure S2 
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Figure S3 
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pfhp1     TAAAAAAAAGTGATGAAGAAGATAATGAATCTGTAAAACATGAGAATCACGTTAATGATGGAAATTTATTAAATGTTGAAGATGTATATAGCGT  470  
         I  K  K  S  D  E  E  D  N  E  S  V  K  H  E  N  H  V  N  D  G  N  L  L   N  V  E  D  V  Y  S  V   
pfhp1  re TAAAGAAAAGTGATGAAGAAGATAATGAATCTGT TAAACATGAAAATCATGTAAATGATGGAAATTT GTTAAATGT AGAAGATGTTTATAG TGT 470  
pfhp1     TCGTATTAAAAATAAGAAATTGGAGTTTTTGGCTAGCTTGAAAAATGAATCTCCACAATGGGTAGAAGAAACAAATATTAGAAGAACTGGACAT  564  
           R  I  K  N  K  K  L  E  F  L  A  S  L  K  N  E  S  P  Q  W  V  E  E  T  N  I  R  R  T  G  H      
pfhp1  re AAGAATTAAAAATAAGAAATT AGAATTTTT AGCTTCT TT AAAGAATGAAAGTCCACAATGGGT TGAAGAAACAAATATTAGAAGAACAGGT CAT  564  
pfhp1     TTAAATATTAAAGTCAATGATTTTAAAAGATATGTAAGAAGAAAAAAAAGTTCTAGGGGTAATAGAATAGTTATCAAAAATCTACACAACGTTG  658  
          L  N  I  K  V  N  D  F  K  R  Y  V  R  R  K  K  S  S  R  G  N  R  I  V  I  K  N  L  H  N  V   
pfhp1  re TT GAATATTAAAGT TAATGATTTTAAAAGATATGT TAGAAGAAAGAAAAGTAGTAGAGGAAATAGAATAGT AATTAAAAATTTGCATAATGTAG 658  
pfhp1     GAGATGAATTATATATTTCGGTTATTCATAATATAAATAATAAAGAAATTCATAGTTTATATCCTTCCAAAGTTATTGAATATATTTATCCACA  752  
         G  D  E  L  Y  I  S  V  I  H  N  I  N  N   K  E  I  H  S  L  Y  P  S  K  V  I  E  Y  I  Y  P  Q   
pfhp1  re GAGATGAATTATATAT AAGTGTTATTCATAATATAAATAATAA GGAAATTCATAGTTTATATCCTTC AAAAGTAATAGAATATAT ATATCC TCA 752  
pfhp1     GGAACTCTTAAATTTTTTATTATCAAGACTAAGATACCGTACAGCT                                                  798  
           E  L  L  N  F  L  L  S  R  L  R  Y  R  T  A  
pfhp1  re AGAATTATTAAATTT CTTATT ATCAAGATTAAGATA TAGAACAGCA                                                 798  
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Figure S4 
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Supplementary Tables 

Table S1. Mass spectrometry results of the PfHP1-GFP immunoprecipitation experiments 

(Table not inserted into the thesis due to size. Data available on request (Gene 

Regulation Laboratory - Till S. Voss, Swiss TPH)).  

Table S2. Mass spectrometry results of the PfCK2 and PfGSK3 ADP-GloTM in vitro kinase 

assays  

(Table not inserted into the thesis due to size. Data available on request (Gene 

Regulation Laboratory - Till S. Voss, Swiss TPH)).  

Table S3. List of all oligonucleotides used in this study. 

Application Oligo name Sequence (5’-3’) 
Annealing  
  
  
  

F-g31 TATTATTTATTTAGTAAAATGGAA 
R-g31 AAACTTCCATTTTACTAAATAAAT 
F-g250 TATTCATAATAAAATTAAGCTGTA 
R-g250 AAACCAGGAACTCTTAAATTTTTT 
R107 CTTATATAAATAAATTTACTACAG 
F119 GTGTGTGTTTAAGAAAAAATATG 
F156 GCAATAAGAAAAAAAATGGGAGG 
R157 CATGTAGCCAAAATATGTG 
R265 TATTCATAATAAAATTAAGCTGTA 
F-cg6 GTTCATGCTCCTCAACAAAG 
R-cg6 GAACAAATACATAAGAGCGC 

PCR 
cloning 
transfection 
vectors 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

F71 TTTTATTATGCAAATATACATATATAC 
F91 GATAATGCATTAAAGAAAGCTGATGAAGAAGATAATGAATCTG 
F133 CAGTGAGCGAGGAAGCTTGTCGACAAAGGATATTCAGATGATGAG 
R134 CTTTTCTCTTGTGGATCCGAATTCGAGGTTAAAATTCTAAACTATATG 
R136 GTATATATGTATATTTGCATAATAAAATTATTTGTATAGTTCATCCATG 
R138 TATATCTTAATCTTGATAATAAGAAATTTAATAATTCCTGTGGATAAATATATTC 
R138.1 ATTTACCGCTGTTCTATATCTTAATCTTGATAATAAG 
R138.2 ATTTTTTTTATTTACCGCTGTTCTATATCTTAATC 
R138.3 GTTATTGTATATTATTTTTTTTATTTACCGCTGTTC 
F139 GTAAATAAAAAAAATAATATACAATAAC 
R143 CTAAAAGAATATAAAATATATAAATAT 
R144 CTTTTCTCTTGTGGATCCGAATTCTTCCTGTGGATAAATATATTC 
R145 GTTATTGTATATTATTTTTTTTATTTACCCATTTTACTAAATAAATAAAAC 
F146 ATATTTATATATTTTATATTCTTTTAGAAAGGATATTCAGATGATGAG 
F147 CAGTGAGCGAGGAAGCTTGTCGACACACCCCCAAAAGGCCGA 
R148 AGGGTATCACCTTCAAACTTGACTTCAGCACGTGTCTTGTAG 
F149 CAAGTTTGAAGGTGATACCCT 
F158 CGTTGGCCGATTCATTAATGAAAGGATATTCAGATGATGAG 
R159 GTTATTGTATATTATTTTTTTTATTTACTTACGCTGTTCTATATCTTAATC 
F162 ATGAGTAAAGGAGAAGAAC 
R163 CCTCTTCGCTATTACGCCAGGAGGTTAAAATTCTAAACTATATG 
F164 ATATTTATATATTTTATATTCTTTTAGAAAGGATATAGTGATGATGA 
R165 GTTCTTCTCCTTTACTCATTGCTGTTCTATATCTTAATC 
R168 TTTCTTTAATGCATTATCAGCTAATGACAAATTTTTCTTATTTTC 
F171 TGATGCAATAAAAGCTAAAGGTAGAAGTTCATTAG 
R172 CTTTAGCTTTTATTGCATCATCTTCTTGTGTTGGAG 
F173 TGAAGAAGATAATGAAGCAGTTAAACATGAAAATCATGTAAATG 
R174 CTGCTTCATTATCTTCTTCATCAG 
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F175 GCACCACAATGGGTTGAAGAAAC 
R176 CAACCCATTGTGGTGCTTCATTCTTTAAAGAAGCTAAAAATTC 
PCRA_F  CTGGCGTAATAGCGAAGAGG 
PCRA_R  CATTAATGAATCGGCCAACG 

PCR 
cloning 
expression 
vectors 
  

Bsa_His_f AAGGTCTCGGATCTCATCATCATCATCATCACGGG 
T7term TGCTAGTTATTGCTCAGCGG 
HP1_F ATGACAGGCTCAGATGAAGAATTTGAAATTGG 
HP1_Xho_R ATATTTGCATTCTCGAGTTAAGCTGTACGG 
CDH_Xho_R GTTCCTCGAGTTTATGTTTCTTCTACCCATTGTGG 
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3.1 Abstract 

The human malaria protozoan Plasmodium falciparum has a unique ortholog of 

heterochromatin protein 1, called PfHP1, which has been shown to cooperate in the 

regulation of various cellular processes through a sophisticated epigenetic 

mechanism. PfHP1 has been reported to play an important role in mitotic progression, 

transcriptional silencing of heterochromatin-associated genes and sexual 

differentiation. However, the precise functional contribution and conservation of 

each domain of PfHP1 protein have not been studied until now. Here, we employed 

CRISPR/Cas9-mediated genome editing and the DiCre/LoxP system to dissect the 

function of individual PfHP1 domains. First, we showed that the N-terminal 29 residues 

(aas 1-29) and the C-terminal 76 residues (aas 191-266) are responsible for targeting 

PfHP1 to nucleus, in which the later polypeptide has a stronger effect required for the 

efficient nuclear targeting. Second, we revealed that each of the three structural 

domains of the intact PfHP1 are required for proper heterochromatin binding, normal 

asexual proliferation and ap2-g gene silencing.  Third, we successfully generated a 

PfHP1 knock out cell line that highly produces gametocytes once inducted (more 

than 82% of sexual conversion rate). Finally, we discovered that the HP1 Hinge and 

CSD domains are functionally conserved between P. falciparum and P. berghei in 

terms of heterochromatin binding, normal asexual proliferation, var gene - and ap2-

g gene silencing. Our study not only represents a major insight into PfHP1 function and 

conservation but also provides a tool for further studies on gametocyte biology in the 

human malaria parasites.  
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3.2 Introduction 

Heterochromatin protein 1 (HP1) was initially described in Drosophila melanogaster as 

a non-histone chromosomal protein associated with heterochromatin and essential 

for gene silencing in position effect variegation (Eissenberg et al., 1990; James et al., 

1989; James and Elgin, 1986). The well-known function of HP1 lies in the formation and 

spreading of heterochromatin region via its recognition of methylated lysine 9 on 

histone 3 tails (H3K9me3) (Maison and Almouzni, 2004; Zeng et al., 2010). Chromatin-

bound HP1 serves as a platform for the recruitment of downstream chromatin 

modifiers including H3K9me-specific histone methyltransferases which methylate H3K9 

in neighbouring nucleosomes, facilitating the binding of further HP1 proteins (Maison 

and Almouzni, 2004). The self-propagation of HP1 results in the spread of regional 

heterochromatin, thereby promoting silencing of heterochromatin-associated genes 

(Grewal and Moazed, 2003; J. Wang et al., 2016).  

HP1 is a small protein and well conserved among eukaryotes (Zeng et al., 2010). Its 

orthologs have been identified in a broad range of organisms from fission yeast 

(Schizosacharomyces pombe) to humans (Lomberk et al., 2006; Zeng et al., 2010). In 

S. pombe, Switching 6 (Swi6) and Chromo domain-containing protein 2 (Chp2) are 

two important homologs of the HP1 protein family involved in gene silencing and 

heterochromatin formation (Zeng et al., 2010). In mammals, there are three HP1 

variants encoded by a class of genes called chromobox (cbx) genes. They are 

cbx5/HP1α, cbx1/HP1β and cbx3/HP1γ, which are highly similar in amino acid (aa) 

sequences (Vermaak et al., 2005). In general, HP1 is characterized by three structural 

domains: (1) a conserved chromo domain (CD) at the N-terminus, which binds 

H3K9me3; (2) a conserved chromo shadow domain (CSD) at the C-terminus, which 

mediates HP1 dimerization and HP1 interaction with other nuclear chromatin modifiers 

and (3) a variable intervening region or hinge domain linking CD and CSD, which 

interacts with Histone H1, DNA, RNA as well as native chromatin (Aasland and Stewart, 

1995; Kwon and Workman, 2011; Lomberk et al., 2006).  

HP1 has been well characterized in many eukaryotes. In mammalian models, 

localization of HP1 proteins has been shown to be variant-specific. While mammalian 

HP1α and HP1β are found at centromeric heterochromatin regions, HP1γ is found in 

both heterochromatic and euchromatic regions (Horsley et al., 1996; Minc et al., 1999; 

2000). The domain responsible for targeting HP1 to the nucleus has been reported to 
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be species-dependent. In Drosophila melanogaster, the nuclear targeting ability is 

highlighted in the C-terminal 54 residues of the protein (aas 152-206) (Powers and 

Eissenberg, 1993). This finding is surprising as the polypeptide does not bear a 

consensus nuclear localization signal (NLS) (Dingwall and Laskey, 1991; Powers and 

Eissenberg, 1993). In contrast, the hinge region of Swi6 demonstrates nuclear targeting 

function and carries canonical consensus NLS motifs (G. Wang et al., 2000). 

Additionally, the Swi6 C-terminus acts as a second, albeit weaker, nuclear targeting 

domain without predicted consensus NLS (G. Wang et al., 2000). Heterochromatin 

binding domains in HP1 also show inter-species difference. In fission yeast, the chromo 

domain (CD domain) was shown to direct Swi6 to heterochromatin (G. Wang et al., 

2000). Meanwhile, in mice this function additionally requires RNA binding by the hinge 

domain (Muchardt et al., 2002). Drosophila HP1 carries two redundant domains for 

pericentric heterochromatin targeting: the first lies in the N-terminal 95 residues (aas 

1-95) (Platero et al., 1995) and the second in the C-terminal 112 residues (aas 95-206) 

(Powers and Eissenberg, 1993).  

The human malaria parasite Plasmodium falciparum possesses only one HP1 homolog, 

designated as PfHP1 (Flueck et al., 2009; Pérez-Toledo et al., 2009). PfHP1 is mainly 

enriched at subtelomeric regions of all 14 chromosomes and some chromosome-

internal islands (Flueck et al., 2009) where H3K9me3 occupies (Lopez-Rubio et al., 2009; 

Salcedo-Amaya et al., 2009). However, PfHP1 is absent from peri-centromeric regions 

(Flueck et al., 2009), possibly because these regions lack H3K9me3 (Lopez-Rubio et al., 

2009; Salcedo-Amaya et al., 2009). This demarcated localization indicates that PfHP1 

might not contribute to the formation and maintenance of centromere structure and 

function as observed for HP1 proteins in other eukaryotes (Allshire et al., 1995; Bernard 

et al., 2001; Fischer et al., 2009; Nonaka et al., 2002; Yi et al., 2018). Further, PfHP1 covers 

a large number of protein-coding genes and most of them belong to gene families 

encoding exported virulence proteins specific for P. falciparum including var gene 

family (Flueck et al., 2009). The var gene family consists of 60 genes encoding 

antigenically and functionally distinct variants of erythrocyte membrane protein 1 

(PfEMP1) (Brancucci et al., 2014; Flueck et al., 2009; Pérez-Toledo et al., 2009). The 

interaction of PfEMP1 with receptors such as ICAM-1, CD-36 on blood endothelial cells 

and with uninfected RBCs (rosetting) results in cellular adherence and sequestration 

of infected red blood cells (iRBCs) (Cowman et al., 2016; Newbold et al., 1997; Reeder 



Chapter 3|      In-depth functional analysis of PfHP1

   

 83 

and Brown, 1996; Rowe et al., 2009). Antigenic variation and diversity of PfEMP1 

contribute significantly to immune evasion and hence, to the establishment of chronic 

infection (Cowman et al., 2016; Reeder and Brown, 1996). At any given time, there is 

only one var gene expressed while the rest are simultaneously transcriptional silenced 

(Dzikowski et al., 2006; Voss et al., 2006). The mutually exclusive expression of var genes 

is regulated by sophisticated epigenetic mechanisms including repressive histone 

modification (Jiang et al., 2013; Lopez-Rubio et al., 2009; 2007), histone-modifying 

enzymes like HDACs (Duraisingh et al., 2005; Tonkin et al., 2009)and HKMTs (Jiang et 

al., 2013; Volz et al., 2012), dynamic remodelling of chromatin and perinuclear locus 

reposition (Dzikowski et al., 2006; Freitas-Junior et al., 2005; Ralph et al., 2005; Voss et 

al., 2006), repressive long non-coding RNAs (Amit-Avraham et al., 2015; Epp et al., 

2009) and PfHP1 (Brancucci et al., 2014).  

Additionally, the roles of PfHP1 in three important cellular processes have been 

inferred through the use of a conditional loss-of-function mutant by targeting pfhp1 

gene with a sequence encoding FKPB destabilization domain (Armstrong and 

Goldberg, 2007; Brancucci et al., 2014). First, a massive de-repression of most of var 

genes was observed in the PfHP1-depleted parasites, leading to 52 out of 60 genes in 

this family to be highly upregulated (Brancucci et al., 2014). PfHP1 interacts with the 

histone mark H3K9me3 to obtain repressive heterochromatic state as well as to 

maintain the repressive cluster of silenced var genes while permissive state of a var 

gene is achieved by being devoid of PfHP1 (Brancucci et al., 2014; Bunnik et al., 2018; 

Voss et al., 2014). The study identified a central role of PfHP1 in epigenetic regulation 

of the mutually exclusive expression and inheritance of var gene family (Brancucci et 

al., 2014). Second, PfHP1 has been showed to be indispensable for normal growth of 

asexual parasites (Brancucci et al., 2014). Nearly 50% of the PfHP1-depleted parasites 

were unable to enter schizogony stage because of defective DNA replication one 

generation after stimulation (Brancucci et al., 2014). Instead, these parasites entered 

a reversible arrested trophozoite stage (Brancucci et al., 2014). Finally, a remarkable 

induction in sexual conversion of approximately 52% was found in the PfHP1-depleted 

parasites (Brancucci et al., 2014). The sexual conversion resulted from the derepression 

of pfap2-g locus (Brancucci et al., 2014). pfap2-g is a member of the apiap2 family 

and encodes for PfAP2-G, the master transcriptional regulator of gametocytogenesis 

(Kafsack et al., 2014). pfap2-g was identified as a heterochromatic island covered by 
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H3K9me3 (Lopez-Rubio et al., 2009) and is the only PfHP1-regulated member of the 

apiap2 family (Flueck et al., 2009). In P. falciparum, GDV1 (gametocyte development 

1 protein) has been shown to bind PfHP1 in vivo and in vitro and form a putative 

regulatory complex that initiates gametocytogenesis (Filarsky et al., 2018). Using an 

ap2-g loss-of-function mutant in the gametocyte-non-producible P. falciparum clone, 

F12, the authors have revealed that ap2-g and some other genes that are occupied 

by PfHP1 was upregulated after the overexpression of GDV-1 (Filarsky et al., 2018). 

Together, GDV-1 was suggested to activate sexual commitment process by 

antagonizing HP1-dependent silencing of the ap2-g locus (Filarsky et al., 2018). The 

depletion of PfHP1 initiates de-repression of pfap2-g in committed schizonts, which 

then release sexually committed merozoites that re-invade and undergo full 

gametocyte maturation over the next 8-10 days (Brancucci et al., 2014). Thus, these 

studies have reinforced the central role of PfHP1 in controlling the differentiation 

switch from asexual to sexual stage of the human malaria parasites in its IDC.  

Here, we conducted the first in-depth functional analysis of PfHP1 domains using 

CRISPR/Cas9-mediated genome editing and the DiCre/LoxP system. First, we showed 

that the N-terminal 29 residues (aas 1-29) and the C-terminal 76 residues (aas 191-266) 

are responsible for targeting PfHP1 to nucleus. The later polypeptide presents a 

stronger effect required for the full delivery of PfHP1 to nucleus. Software analysis 

addressed KKKK (aas 17-20) at the N-terminus and RRKK (aas 201-204) at the C-

terminus as putative functional NLSs.  Second, we found that intact PfHP1 containing 

all three structural domains is required for heterochromatin localization and the 

normal asexual growth of blood stage malaria parasites. Our results indicate that 

individual domains of PfHP1 confer precise functional contribution and/or have 

specific interaction with heterochromatin. Third, we successfully generated a PfHP1 

knock out cell line with more pronounced morphological phenotype that allows 

massive production of more than 82% gametocytes once induced. Finally, we 

addressed that the HP1 Hinge and CSD domains are functionally conserved between 

P. falciparum and P. berghei.  

3.3 Results 

Investigation of the roles of PfHP1 domains in PfHP1 localization 
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To begin studying the functional contribution of individual PfHP1 domains, we 

engineered parasites that allow conditional expression of PfHP1 mutants based on the 

DiCre-loxP system (Collins et al., 2013) using CRISPR-Cas9-based gene editing. In these 

parasites, the endogenous pfhp1 gene is excised upon rapamycin (RAP)-induced 

activation of the DiCre recombinase and replaced with a recodonised pfhp1 gene 

encoding a mutated PfHP1 protein carrying a C-terminal GFP tag (Figures 1 and S1). 

We generated four such conditional PfHP1 mutant cell lines called 3D7/HP1-KO, 

3D7/HP1-∆CD, 3D7/HP1-∆Hinge, 3D7/HP1-∆CSD, where aas 30-266 (full-length PfHP1 is 

266 aas), 30-58 (CD domain), 75-177 (hinge domain) or 191-266 (CSD domain), 

respectively, have been deleted (Figure 1B). In the 3D7/HP1-∆Hinge cell line, aas 75-

177 is substituted by a peptide representing aas 232-254 of PfSIP2, a member of the 

ApiAP2 family of transcription factors specific for Plasmodium and related 

Apicomplexan parasites (Flueck et al., 2009). In PfSIP2, this short polypeptide links two 

adjacent AP2-binding domains (Flueck et al., 2010) and was used in the 3D7/HP1-

∆Hinge mutant line as a linker separating the CD and CSD domains (Figure 1C). We 

also used a control cell line where endogenous pfhp1 is replaced by a recodonized 

pfhp1 wild type sequence (3D7/HP1-Control) (Bui et al., manuscript submitted) (Figure 

1C). The CRISPR-Cas9-based gene editing strategy used to generate these parasite 

lines is explained in detail in the Materials and Methods section and Figure S1. 

PCR on parasite genomic DNA (gDNA) was performed to confirm the correct 

integration of the recodonised pfhp1-gfp gene variants directly downstream of the 

endogenous pfhp1 gene and the successful DiCre-mediated excision of the floxed 

endogenous pfhp1 gene upon RAP treatment in all five cell lines (Figure S2A). After 

RAP treatment, GFP-tagged PfHP1 mutants were expressed under the control of the 

endogenous pfhp1 promoter (Figure S1). The conditional expression of PfHP1-GFP 

fusions allowed us to identify the roles of each of the three PfHP1 domains in targeting 

PfHP1 to nucleus and peri-nuclear heterochromatin. Live cell fluorescence imaging at 

40-48 hpi in the same intra-erythrocytic cell cycle (generation 1, 40 hrs post RAP 

treatment) showed that RAP treatment resulted in the highly efficient excision of the 

endogenous pfhp1 gene and expression of PfHP1-GFP fusion proteins in ~86% to 99% 

of parasites in the populations (Figures 2 and S2B).  In contrast, parasites in the DMSO-

treated control populations did not express the GFP-tagged PfHP1 mutants as 

expected (Figures 2 and S2B). Consistent with the live fluorescence imaging results, 
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analysis of whole parasite protein lysates by Western Blot showed that the RAP-treated 

parasites exclusively expressed the truncated PfHP1-GFP fusions while DMSO-treated 

control parasites exclusively expressed untagged wild-type PfHP1 (~31KDa) (Figure 

S2C). The expression levels of GFP fusions from PfHP1 mutant lines were similar to that 

of GFP fusion from PfHP1 control cell line, with the exception of GFP fusions from 

3D7/HP1-∆Hinge and 3D7/HP1-∆CD lines (Figure S2C). Since all GFP fusion proteins 

were expressed under control of the endogenous pfhp1 promoter, the lower 

expression of GFP fusions observed in 3D7/HP1-∆Hinge and 3D7/HP1-∆CD lines was 

likely result of mRNA instability, inefficient protein translation because of mRNA 

secondary structures or reduced protein stability. However, we were able to obtain a 

sufficient level of GFP signal in 3D7/HP1-∆CD and 3D7/HP1-∆Hinge cell lines at schizont 

stage when protein expression peaks (Figure 2D-E). 

The PfHP1 domain(s) responsible for nuclear targeting was determined as below. First, 

the ∆CD-GFP (deletion of aas 30-58) and ∆Hinge-GFP (deletion of aas 75-177) 

localized to the nucleus (Figure 2D-E), suggesting that the sequences they share, i.e. 

aas 1-29, 59-74 and 178-266, are responsible for this function. Second, the ∆CSD-GFP 

in which the aas 191-266 are deleted, localized to both cytosol and preferably to 

nucleus (Figure 2C). Thus, the C-terminal polypeptide (aas 191-266) is required for 

efficient nuclear delivery. Third, GFP signal in 3D7/HP1-KO (deletion of aas 30-266) 

localized to both compartments (Figure 2B). Hence, the short N-terminal polypeptide 

(aas 1-29) is likely insufficient to target PfHP1 to nucleus.  

We next used the NuPred (Brameier et al., 2007) and PSORTII 

(https://psort.hgc.jp/form2.html) algorithms to identify putative NLS elements. These 

analyses demonstrated NLSs in each of PfHP1 domains (Figure 1A):  a KKKK motif (aas 

17-20) in CD domain, a RRKK motif (aas 201-204) in CSD domain and PRRK motif (aas 

100-103) or/and PRRKMSR motif (aa 100-106) in Hinge domain. These NLSs match 4-

residue or 7-residue pattern of the PKKKRKV NLS motif exemplified from simian virus 40 

(SV-40) (Kalderon et al., 1984). There was no potential NLSs predicted in the PfSIP2 

linker sequence, thus, the localization of ∆Hinge-GFP lies in PfHP1 intrinsic sequence 

(aas 1-78 and 178-266). Since the fusion ∆Hinge-GFP protein was still imported into 

nucleus (Figure 2D), predicted NLSs within Hinge domain are not necessary for this 

function. 
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From our approach, only GFP fusion of 3D7/HP1-Control cell line localized to 

heterochromatin foci, representing by punctuated patterns at nuclear periphery 

(Figure 2A). Although the GFP fusions of 3D7/HP1-∆CD and 3D7/HP1-∆Hinge cell lines 

localize to the nucleus, their ability to target heterochromatin is abolished (Figure 2D-

E). Thus, an entire CD domain and Hinge domain are obligatory for heterochromatin 

targeting. Furthermore, GFP-∆CSD fusion expressing CD-Hinge domains was partially 

diffused from nucleus to cytosol and was not concentrated in perinuclear foci (Figure 

2C, 3D7/HP1-∆CSD).   Together, CD-Hinge domain is insufficient for targeting PfHP1 to 

heterochromatin but additionally requires CSD domain.  

In summary, our live imaging data indicated that the N-terminal 29 aas (1-29) and C-

terminal 76 aas (191-266) are responsible for targeting PfHP1 to nucleus. The later 

polypeptide presents a stronger effect required for the full delivery of PfHP1 to nucleus. 

Software analysis addressed KKKK (aas 17-20) in CD and RRKK (aas 201-204) in CSD as 

putatively functional NLSs. As only intact PfHP1 is able to bind heterochromatin, our 

result implied essential and precise functional contribution and/or specific interaction 

of each structural domain with heterochromatin components. 

Each of PfHP1 domains is indispensable for normal asexual growth  

In a recent study, we showed that PfHP1 is required for (1) progression through 

schizogony and thus parasite multiplication; (2) silencing of the pfap2-g locus and thus 

inhibition of sexual commitment; and (3) var mutually exclusive expression and thus 

the PfEMP1 expression (Brancucci et al., 2014). Here, we asked if the individual 

domains of PfHP1 are required for any of these processes. The 3D7/HP1-Control (Bui et 

al., manuscript submitted, Chapter 2) was used as a control to evaluate the function 

of PfHP1 mutants.  

First, we investigated the proliferation of the four PfHP1 truncation cell lines and the 

control cell line. As shown in Figure 3A, in the 3D7/HP1-Control cell line, the 

multiplication of DMSO- and RAP-treated parasites was highly comparable. As 

expected, the multiplication of DMSO-treated parasites from four PfHP1 truncation 

mutant lines was also comparable to that of the control. In contrast, the RAP-treated 

parasites of four PfHP1 truncation mutant lines consistently drew a same pattern of 

proliferation defect in the following cycle after RAP treatment, showing a failure in 

entering schizogony in generation 2 (Figure 3A). In generation 3 of the RAP-treated 
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population (112 hrs post RAP treatment), we were able to select a relative fraction of 

about ~4.5 to 18% of total infected parasites as proliferating asexual subpopulation 

(RAPSUR subpopulations) (Figure S3). However, these proliferating asexual 

subpopulations did not display GFP signal (data not show), indicating that the DNA 

excision did not occur after RAP treatment. Further examination of RAPSUR 

subpopulations revealed the lack of Cre recombinase activity, thus, resulting in the 

failure of DNA excision and presence of proliferating asexual parasites (Figure S3). 

Although the mechanism how PfHP1 regulates asexual mitosis is unknown, the results 

indicated that individual domains of PfHP1 are required for proper function of PfHP1 

in controlling the virtual proliferation of asexual blood stage parasites. This data is 

consistent with previously reported data (Brancucci et al., 2014). 

Second, we examined a possible role of individual PfHP1 domains in controlling pfap2-

g silencing by comparing the sexual commitment rates between DMSO- and RAP-

treated parasites for all PfHP1 truncation mutant lines. As shown in Figure 3B, left panel, 

RAP-treated 3D7/HP1-KO, 3D7/HP1-DCD, 3D7/HP1-DHinge and 3D7/HP1-DCSD 

parasites showed significantly higher sexual conversion rates compared to the DMSO-

treated populations (p-value < 0.01, unpaired two-tailed Student’ t-test). The result is 

consistent with previously described result (Brancucci et al., 2014) except that we 

obtained extremely higher conversion rate of approximately 82-95% in RAP treated 

populations in these PfHP1 truncation lines. However, we also found a significant 

increase in sexual conversion rate for the RAP-treated 3D7/HP1-Control parasites 

expressing a recodonised wild-type pfhp1 gene (p-value < 0.01, unpaired two-tailed 

Student’ t-test) (Figure 3B, left panel). Comparing the fold changes of sexual 

conversion rates between RAP- versus DMSO-treated parasites showed significant 

differences between parasites expressing truncated PfHP1 variants compared to the 

3D7/HP1-Control cell line (Figure 3B right panel).  

An α-Pfs16 IFA study (30-38 to 40-48 hpi, generation 2) and overview images of a 

Giemsa-stained blood smear (10 days post invasion) confirmed high proportion of 

stage I and stage IV/V gametocytes, respectively, in 3D7/HP1-KO cell line (Figures 3C). 

Gametocytes in the RAP-treated sample of 3D7/HP1-KO and other PfHP1 mutant cell 

lines completed sexual development within 8–10 days, similar to DMSO-treated 

gametocytes. Together, the result suggested that each of PfHP1 individual domains is 
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essential for controlling ap2-g silencing and reinforced the central role of PfHP1 in 

epigenetic regulation of sexual commitment process in the human malaria parasites.  

The function of the HP1 Hinge and Chromo shadow domains is conserved between P. 

falciparum and P. berghei 

It has been shown that in S. pombe, replacement of Swi6 CD domain by CD domain 

of mouse HP1-like protein, M31 retained Swi6 function in sporulation phenotype, 

normal zygote asci formation and mitotic stability ability while CSD substitution did not 

(G. Wang et al., 2000). Thus, chromodomain function is conserved between fission 

yeast and mouse (G. Wang et al., 2000). We also pointed out if such conservation 

occurs within Plasmodium using a domain swap experiment. Among HP1 orthologs 

within Plasmodium genus, we chose P.berghei HP1 (PbPH1) to perform domain swap 

experiment with P.falciparum HP1 because of the similarity in controlling sexual 

conversion switch through ap-2g derepression in the two malaria parasites (Brancucci 

et al., 2014; Kafsack et al., 2014; Sinha et al., 2014). 

To this end, we generated three HP1-hybrid cell lines namely 3D7/HP1-hyb-PbHinge, 

3D7/HP1-hyb-PbCSD, 3D7/HP1-hyb-PbHP1 in which the PfHP1 Hinge, CSD or full length 

PfHP1 were conditionally substituted by PbHP1 Hinge, CSD domain and full length 

PbHP1, respectively using similar approach described above (Figures 4A-B and S1). A 

CD domain swap was not performed because of high degree in identity and similarity 

between PfHP1- and PbHP1 CD sequences after RAP induction (only six residues 

different) [Figure S4B and (Fraschka et al., 2018)]. We successfully generated two 

PfHP1 hybrid mutant lines, 3D7/HP1-hyb-PbHinge and 3D7/HP1-hyb-PbCSD. Despite a 

number of efforts, we failed to obtain the 3D7/HP1-hyb-PbHP1 line. The 3D7/HP1-

Control cell line was also used as a control to evaluate the function of the PfHP1 hybrid 

mutants in three PfHP1-dependent processes mentioned above. 

To assess the ability of hybrid HP1s in heterochromatin binding, we performed live 

imaging at 40-48 hpi in generation 1 and at 16-24 hpi in generation 2 to observe the 

localization of GFP fusion proteins after RAP treatment. None of the DMSO-treated 

parasites expressed the GPF-tagged proteins as expected, whereas in the RAP-

treated populations, the GFP-tagged PfHP1-hyb-PbHinge and PfHP1-hyb-PbCSD 

hybrids localized to nucleus and to heterochromatin loci indistinguishable to the GFP-
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tagged PfHP1 control (Figures 4C, 2A and S2A). Thus, replacement of PfHP1 Hinge or 

CSD domain by that of PbHP1 retains proper heterochromatin localization of PfHP1. 

We next evaluated proliferation rates of the HP1 hybrid cell lines and control cell line 

over three consecutive generations after RAP treatment. In our static culture 

condition, DMSO- and RAP-treated parasites in both 3D7/HP1-hyb-PbHinge, 3D7/HP1-

hyb-PbCSD and 3D7/HP1-Control lines proved highly comparable rate of 

multiplication (Figures 5A and 3A), revealing proper function of the PfHP1-PbHP1 

hybrids in controlling cell cycle progression and growth.  

To study the possible role of HP1 hybrid mutants in regulating pfap2-g silencing, sexual 

conversion rate between DMSO- and RAP- treated parasites were examined. As 

shown in Figure 5B, left panel, RAP-treated population always revealed higher sexual 

conversion rate compared to DMSO-treated population. Comparing the fold 

changes of sexual conversion rates between RAP- versus DMSO-treated parasites 

showed insignificant differences between mutant lines expressing PfHP1-PbHP1 

hybrids compared to the 3D7/HP1-Control line (Figure 5B, right panel) (p value > 0.05, 

unpaired two-tailed Student’ t-test). Hence, the Hinge and CSD domain exchange 

between PfHP1 and PbHP1 does not affect the regulation of ap2-g silencing in the 

human malaria parasites. 

Finally, to probe the ability of HP1 hybrids in maintaining singular var gene expression, 

immunofluorescence study was performed to compare the expression of PfEMP1 in 

the progeny of DMSO- and RAP-treated 3D7/HP1-hyb-PbHinge, 3D7/HP1-hyb-PbCSD 

and the control cell lines at 16-24 hpi, generation 2. IFAs showed comparable intensity 

for PfEMP1 signal between RAP-treated and DMSO-treated paired samples from these 

three cell lines (Figure 5C), implying a preserved function of the PfHP1-PbHP1 hybrids 

in regulating var gene expression.  

Taken together, these data reflect the functional conservation of Hinge and CSD 

domains in PfHP1 and PbHP1. However, our study did not rule out if HP1 function is 

conserved between the two parasites because of the failure in obtaining 3D7/HP1-

hyb-PbHP1 line expressing full length PbHP1.  

3.4 Discussion 

Previous studies have indicated that domains targeting HP1s to nucleus are species-

dependent and do not always possess canonical NLS sequences (Powers and 
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Eissenberg, 1993; G. Wang et al., 2000). Therefore, we could not rely on sequence 

homology to predict the nuclear targeting sequence within PfHP1. Instead, we had 

to determine the nuclear localization sequence empirically. We identified that the C-

terminal 76 residue-polypeptide (aas 191-266) presents strong and effective nuclear 

targeting ability while the N-terminal 29 residue-polypeptide (aas 1-29) expresses 

weaker ability. Fusion proteins lacking the C-terminal polypeptide (aas 191-266) were 

not fully imported into nucleus. Although the N-terminal 29 residue-polypeptide was 

insufficient for fully targeting PfHP1 to nucleus, our results cannot indicate whether the 

CSD alone is sufficient for this function because the former polypeptide was always 

present in all of PfHP1 truncation variants.    

Heterochromatin binding function has been well studied in many model organisms 

(Muchardt et al., 2002; Platero et al., 1995; Powers and Eissenberg, 1993; G. Wang et 

al., 2000). Studies employing different experimental systems have highlighted the 

contribution of more than one structural HP1 domain for proper heterochromatin 

targeting. In mouse, heterochromatin-targeting ability of HP1a is underlined by RNA 

binding via a conserved region of Hinge together with the binding to methylated 

histone via CD (Muchardt et al., 2002). Additionally, in Drosophila, the domain 

directing HP1 to heterochromatin was first assigned to the C-terminal half of the 

protein (aas 95-206) that contains the CSD region (aas 142-206) and a substantial 

length of the hinge domain (Powers and Eissenberg, 1993). In the study of J. A. Powers 

and C. Eissenberg, in order to determine the domain targeting HP1 to nucleus, a 

number of lacZ/hp1 gene fusion sequences were used to express HP1 deletions that 

were N-terminally tagged with β-galactosidase (Powers and Eissenberg, 1993). Protein 

fusions containing CD and/or Hinge domain failed to target nucleus while protein 

fusions containing majority of CSD region (aas 152-206; CSD domain is from aas 142 to 

206) showed nuclear localization (Powers and Eissenberg, 1993). However, 

heterochromatin localization was only found in the protein fusions that contained at 

least a substantial length/part of the Hinge domain plus CSD region (aas 95-206) 

(Powers and Eissenberg, 1993).  Specify that β-galactosidase fusion HP1 variants were 

expressed in a wild-type HP1 background in vivo in the study of J. A. Powers and C. 

Eissenberg, heterochromatin-binding function in this scenario could result from 

dimerization between CSD-containing fusion protein and endogenous HP1 protein. In 

our approach, HP1-GFP fusions were expressed in a null PfHP1 background. We found 
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that only full length PfHP1 was properly recruited to heterochromatin foci and that 

CD-Hinge was insufficient for this function. Although CD-Hinge region is able to bind 

existing H3K9me3 (Bannister et al., 2001; Lachner et al., 2001), it is possible that the lack 

of CSD domain has prevented PfHP1 homo-dimerization as well as the recruitment of 

histone lysine methyl transferase (HKMT).  In turns, these events impede PfHP1 self-

propagation and de novo H3K9me3 establishment during cell division, resulting in 

deficiency in heterochromatin compaction and cohesion in schizont stage of 

generation 1 and the ring progeny in generation 2. In consequence, parasites 

expressing truncated PfHP1 variants were unable to enter schizogony and committed 

to gametocytes, emphasising that PfHP1 is indispensable for normal growth of asexual 

blood-stage malaria parasites. 

By successful generating an inducible pfhp1 knockout cell line, we obtained 

interesting pronounced morphology with (1) exiguous number/ exclusion of arrested 

trophozoite population and (2) more than 82% of the population synchronously switch 

to sexual commitment pathway. Notably, while gametocyte production is labouring 

(S. Duffy et al., 2016; Saliba and Jacobs-Lorena, 2013), the gametocyte highly 

producible line in our study presents a robust tool for further studies on 

gametocytogenesis, gametocyte development and biology, anti-malaria 

gametocyte drug discovery as well as transmission-block strategies. 

Although HP1 has been studied in P. falciparum (Brancucci et al., 2014; Flueck et al., 

2009; Pérez-Toledo et al., 2009), function of HP1 in P. berghei is still little known. It has 

been reported that HP1 was enriched at all subtelomeric regions of 14 chromosomes 

in all Plasmodium species (Fraschka et al., 2018). However, heterochromatin 

organization is different between P. falciparum and P. berghei during parasite 

developments (Fraschka et al., 2018; Witmer et al., 2019). During progression from 

asexual developmental stages to sexual conversion process, subtelomeric 

heterochromatin expansion was observed in P. falciparum while heterochromatin 

landscape was remained between developmental stages in P. berghei (Fraschka et 

al., 2018; Witmer et al., 2019). Genes driving iRBC remodeling become 

heterochromatic during gametocytogenesis in P. falciparum (Fraschka et al., 2018). 

The difference is explained by the fact that P. berghei does not encode for such similar 

orthologues.  Intriguingly, ap2-g locus was enriched in HP1 in all Plasmodium species 

(Fraschka et al., 2018). Additionally, ap2-g has been identified as a conserved master 



Chapter 3|      In-depth functional analysis of PfHP1

   

 93 

regulator of gametocytogenesis in both of P. falciparum and P. berghei (Brancucci et 

al., 2014; Kafsack et al., 2014; Sinha et al., 2014). The removal of H3K9me3-bound PfHP1 

from ap2-g locus is mediated by the upstream regulator of sexual commitment, 

PfGDV1, thus triggering sexual commitment (Filarsky et al., 2018). The similarity in 

controlling gametocytogenesis through ap2-g derepression in P. falciparum and P. 

berghei has prompted us to investigate on the functional conservation of HP1 

domains in the two parasites. However, there is no GDV-1 ortholog in P. berghei, 

suggesting an alternative regulatory mechanism in controlling the pbap2-g silencing 

in this rodent malaria parasites (Eksi et al., 2012). From our study, the PbHP1-PfHP1 

hybrids are inferred to interact with PfGDV-1 to evict HP1 hybrids from pfap2-g locus. 

These results are possibly explained by the high conservation in PfHP1 and PbHP1 

sequences as well as individual domain sequences (Figure S5, >82% similarity in protein 

sequences and (Fraschka et al., 2018)). Although we do not know the exact domain(s) 

of PfHP1 interacting with GDV-1, such interaction was likely retained in our domain 

swapping experiment, emphasizing the functional conservation of HP1 between the 

human and rodent malaria parasites.  

In conclusion, our study identified that the N-terminal 29 residues (aas1-29) and C-

terminal 76 residues (aas 191-266) are responsible for targeting PfHP1 to nucleus. In 

parallel, we revealed that each of the three structural domains of PfHP1 protein is 

required for PfHP1 proper function in heterochromatin binding, normal asexual 

proliferation and ap2-g gene silencing.  Finally, we discovered that the Hinge and CSD 

domains are functionally conserved between the P. falciparum and P. berghei. Our 

study not only represents a major insight into PfHP1 function and conservation but also 

provides a tool for robust production of gametocytes used in further studies on 

gametocyte biology or high-throughput anti-malaria gametocyte drug screen. 

3.5 Materials and Methods 

Parasite culture and transfection 

The transgenic cell lines generated in this study were cultured at 5% hematocrit in 

RPMI-1640 medium supplemented with 25 mM HEPES, 100 mM hypoxanthine, 24 mM 

sodium bicarbonate, 0.5% Albumax II supplemented with 2mM choline to reduce 

background sexual conversion rates as demonstrated recently (Brancucci et al., 2014; 

Trager and Jensen, 1976). Parasite cultures were synchronized using 5% sorbitol as 
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described previously (Lambros and Vanderberg, 1979). Cotransfection of 

CRISPR/Cas9 and donor plasmids into the DiCre-expressing line 3D7/1G5DiCre (Collins 

et al., 2013) and selection of transfected populations were performed as described 

recently (Filarsky et al., 2018) and (Bui et al, submitted). 

Transfection constructs 

We applied CRISPR/Cas9-mediated genome editing and the DiCre/LoxP system 

(Collins et al., 2013) to generate cell lines conditionally expressing truncated PfHP1 

and hybrid PfHP1 variants. We engineered (1) 3D7/HP1-KO for expression of full-length 

PfHP1 deletion (deletion of aas 30- 266. The PfHP1 is 266 aas in length 

(PF3D7_1220900)); (2) 3D7/HP1-∆CD for expression of PfHP1 CD deletion (deletion of 

aas 30-58); (3) 3D7/HP1-∆Hinge for the expression of PfHP1 Hinge deletion (aas 75-177 

of PfHP1 was replaced with a peptide representing aas 232-254 of PfSIP2. The PfSIP2 is 

1979 aas in length (PF3D7_0604100)); (4) 3D7/HP1-∆CSD for the expression of PfHP1 

CSD deletion (deletion of aas 191-266); (4) 3D7/hyb-PbHinge for the expression of 

chimeric PfHP1 in which PfHP1 Hinge domain (aas 75-177) was replaced by PbHP1 

Hinge domain (aas 75-192); (6) 3D7/hyb-PbCSD for the expression of chimeric PfHP1 

in which PfHP1 CSD domain (aas 191-266) was replaced by PbHP1 CSD domain (aas 

206-281). The PbHP1 is 281 aas in length (PBANKA_1436100); (7) 3D7/HP1-hyb-PbHP1 

for expression of full length PbHP1 (aas 30-266) and (8) 3D7/HP1-Control for expression 

of wild type PfHP1 [Bui et al, manuscript submitted] (See Figs S1, 1C and 3A for 

schematic illustrations). To obtain these cell lines, we performed two subsequent 

transfection steps.  

In the primary transfection, the mother cell line 3D7-1G5DC/5’-loxPint-g31 (or 

3D7/N31DC) which carries a sera2 intron:loxP element (Jones et al., 2016) inserted into 

the 5’of pfhp1 coding sequence was generated as described previously [Bui et al, 

manuscript submitted, Chapter 2].  

In the second transfection, the mother cell line 3D7/N31DC parasites were transfected 

again to generate seven parasite lines: 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge, 

3D7/HP1-∆CSD, 3D7/hyb-PbHinge, 3D7/hyb-PbCSD, 3D7/HP1-Control. These 

transgenic parasite lines carry a second sera2 intron: loxP sequence directly 

downstream of the endogenous pfhp1 stop codon, followed by GFP coding 

sequence (HP1-KO), a recodonised mutated PfHP1 (HP1-∆CD, HP1-∆Hinge, HP1-∆CSD, 
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HP1-hyb-PbHinge, HP1-hyb-PbCSD) or wild type (HP1-Control) pfhp1-gfp sequence. 

The transgenic parasite lines were generated using the following cloning steps. 

First, we constructed the pBF-gC-guide250 plasmid carrying the sgRNA target 

sequence at the 3’ end of the pfhp1 coding sequence [Bui et al., manuscript 

submitted].  

Second, we constructed the seven donor plasmids.  

The pD-PfHP1-Control donor plasmid and pD-PfHP1-KO were constructed as 

described previously [Bui et al., manuscript submitted]. 

The pD-PfHP1-∆CD donor plasmid was constructed by Gibson assembly joining three 

PCR fragments encoding (1) the pD plasmid backbone amplified from pUC19 using 

primers PCRA_F and PCRA_R (Brancucci et al., 2017), (2) a 5` homologous region (HR) 

followed by a 103bp- sera2 intron:loxP sequence amplified from pD-PfHP1-Control 

using primers F158 and R143, (3) a fragment amplified from pD-PfHP1-Control using 

primers F177 and R163 spanning, in the following order, base pairs (bps) +175 to +798 

of a synthetic recodonized pfhp1 coding sequence (re-pfhp1, GenScript™) omitting 

the stop codon (the pfhp1 coding sequence is 798 bp long), a gfp coding sequence 

ending with stop codon and a 3`HR spanning 824 bps downstream of the pfhp1 stop 

codon.  

The pD-PfHP1-∆Hinge donor plasmid was constructed by Gibson assembly joining four  

PCR fragments encoding (1) the pD plasmid backbone amplified from pUC19 using 

primers PCRA_F and PCRA_R (Brancucci et al., 2017), (2) 5` HR  followed by the sera2 

intron: loxP sequence amplified from pD-PfHP1-Control using primers F158 and R143, 

(3) a fragment amplified from the pBCam-∆Hinge-3HA-Cherry plasmid 

(supplementary method) using primers F164 and R165 spanning, in the following order, 

bps +88 to +222 of the re-pfhp1 coding sequence, bps +694 to +762 of the pfsip2 

coding sequence (the pfsip2 coding sequence is 5937 bp long) and bps +532 to +798 

of the re-pfhp1 coding sequence omitting stop codon, (4) a fragment amplified from 

pFdon C-loxP-g250 [Bui et al, manuscript submitted] using primers F162 and R163 

spanning, in the following order, a gfp coding sequence ending with stop codon and 

the 3`HR. 

The pD-PfHP1-∆CSD donor plasmid was constructed by Gibson assembly joining three 

PCR fragments encoding (1) the pD plasmid backbone amplified from pUC19 using 
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primers PCRA_F and PCRA_R (Brancucci et al., 2017), (2) a fragment amplified from 

pD-PfHP1-Control using primers F158 and R178 spanning, in the following order, the 

5`HR, the sera2 intron: loxP, bps +88 to +570 of the re-pfhp1 coding sequence (3) a 

fragment amplified from pFdon C-loxP-g250 [Bui et al, manuscript submitted] using 

primers F162 and R163 spanning, in the following order, a gfp coding sequence 

ending with stop codon and the 3’ HR.  

The pD-hyb-PbHinge donor plasmid was constructed by Gibson assembly joining two 

PCR fragments encoding (1) the pD-HP1-KO plasmid backbone was amplified from its 

own template using primers F162 and R143, (2) a fragment amplified from the pBCam-

hyb-PbHinge-3HA-Cherry (supplementary method) using primers F164 and R165 

spanning, in the following order, bps +88 to +222 of the re-pfhp1 coding sequence, 

bps +223 to +576 of the hp1 from P. berghei coding sequence (pbhp1, the pbhp1 

coding sequence is 843 bp long), bps +532 to +798 of the re-pfhp1 coding sequence 

omitting the stop codon. 

The pD-hyb-PbCSD donor plasmid was constructed by Gibson assembly joining two 

PCR fragments encoding (1) the pD-HP1-KO plasmid backbone was amplified from its 

own template using primers F162 and R143, (2) a fragment amplified from the pBCam-

hyb-PbCSD-3HA-Cherry (supplementary method) using primers F164 and R161 

spanning, in the following order, bps +88 to +570 of the re-pfhp1 coding sequence, 

bps +616 to +843 of the pbhp1 omitting the stop codon. 

Finally, the pD-hyb-PbHP1 donor plasmid was constructed by Gibson assembly joining 

five PCR fragments encoding (1) the 5’ HR spanning bps +88 to +798 of the pfhp1 

coding sequence ending with a stop codon amplified from pFdon C-loxP-g250 [Bui et 

al, manuscript submitted] using primers F158 and R159; (2) 103 bp sera2 intron:loxP 

element was amplified from  pD-SIP2-loxP-GFP   plasmid (I. Niederwieser, unpublished; 

see also Hai BUI et al, manuscript submitted, Chapter 2) using primers F139 and R143; 

(3)  bps +88 to +843 of the pbhp1 amplified from P. berghei gDNA using primers F160 

and R161; (4) a fragment containing the gfp sequence ending with a stop codon 

followed by the 3’ HR was  amplified from pFdon C-loxP-g250 [Bui et al, manuscript 

submitted] using primers F162 and R163 and (5) the pD plasmid backbone amplified 

from pUC19 using primers PCRA_F and PCRA_R (Brancucci et al., 2017). 
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For each of the seven transfections, 50 µg of the pBF-gC-guide250 plasmid was mixed 

with 50 µg of a donor plasmid above and electroporated into the 3D7/N31DC mother 

parasite line. Transfected parasites were selected as described previously [(Filarsky et 

al., 2018) and (Bui et al, manuscript submitted)].  

All oligonucleotide sequences used for the cloning of the CRISPR/Cas9 and donor 

plasmids are provided in Table S1. The nucleotide sequence of recodonized pfhp1 

and pbhp1 are provided in Figure S4. 

Induction of DiCre recombinase mediated DNA excision by Rapamycin 

Parasites were synchronized twice 16 hours apart to obtain an eight-hour growth 

window (16-24 hpi). After re-invasion parasites were synchronized again at 0-8 hpi 

(generation 1) and split into two equal populations, of which one half was treated 

with 0.02%v/v of DMSO (negative control) and the other half was treated with 100 nM 

RAP for 1 hour (Knuepfer et al., 2017). The cultures were then spun down, washed with 

an equal volume of culture medium, resuspended in culture medium and returned to 

culture. 

Live cell imaging and indirect immunofluorescence assay (IFA) 

To quantify the efficiency of pfhp1 excision after RAP treatment, live cell fluorescence 

microscopy was performed as described before [Witmer et al., 2012] with minor 

modification using 5 µg/ml Hoechst (supplied by Merk, Darmstadt, DE) to stain the 

nuclei. Excision efficiency was determined as the percentage of GFP-positive 

schizonts at 40-48 hpi in generation 1 (>200 schizonts counted per experiment).  

IFAs were performed on methanol-fixed cells using mouse IgG1 mAb α-ATS (M. F. Duffy 

et al., 2002),1:150; mouse mAb α-Pfs16 (kind gift from Robert W. Sauerwein), 1:250; and 

Alexa Fluor 488-conjugated α-mouse IgG (Molecular Probes), 1:250. Images were 

taken at 63-fold magnification on a Leica DM 5000B microscope with a Leica DFC 300 

FX camera, acquired via the Leica IM 1000 software, processed using ImageJ 

software [https://imagej.nih.gov/ij/]. For each experiment, images were acquired and 

processed with identical settings.   

Parasite multiplication assay  

Parasites were tightly synchronized twice 16 hours apart. At 0-8 hpi, generation 1, 

parasites were split into two equal populations, of which one half was treated with 
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DMSO (negative control) and the other half was induced for DiCre recombinase-

mediated DNA excision by RAP treatment as described above. Giemsa smears were 

prepared to determine the parasitaemia at 16-24 hpi (generation 1).  Giemsa-stained 

smears were prepared every second day onwards for three generations. 

Parasitaemia was counted by visual inspection of Giemsa-stained blood smears (≥ 

3’000 RBCs counted per experiment). Multiplication rates were determined as the 

parasitaemia observed in the following generation divided by the parasitaemia 

observed in the previous generation. The extrapolative growth cure was generated 

using starting parasitaemia at 0.1%. 

Gametocyte conversion assay 

After DMSO or RAP treatment in generation 1, parasites were allowed to complete 

schizogony and re-invasion. At 16-24 hpi in generation 2, each pair of cultured (DMSO- 

and RAP-treated) were treated with 50 mM N-acetyl-D-glucosamine (GlcNAc) for five 

days to eliminate asexual parasites (Ponnudurai et al., 1986) and then cultured with 

normal culture medium for another 4-6 days to observe the maturation of 

gametocytes. Gametocytaemia was determined on day 6 of GlcNAc treatment by 

visual inspection of Giemsa-stained blood smears. Sexual conversion rates were 

determined as the gametocytaemia observed on the day 6 as a proportion of the 

total parasitaemia observed on day 1 of GlcNAc treatment. 

SDS-PAGE and immunoblotting 

After DMSO or RAP treatment in generation 1, parasites were allowed to complete 

schizogony and re-invasion. At 16-24 hpi in generation 2 parasites were released from 

infected RBCs (iRBCs) by 0.15% saponin/PBS complemented with 1X protease inhibitor 

(Roche Diagnostics). After washing 2-3 times in ice-cold PBS, parasite pellets were 

lysed in 70°C pre-heated Urea/SDS buffer (8 M Urea, 5% SDS, 50 mM Bis-Tris, 2 mM EDTA, 

25 mM HCl at pH 6.5 supplemented with 2 mM DTT and 1X protease inhibitor). Whole 

parasite protein lysates were separated on NuPage 4-12% Bis-Tris gels (Novex) and 

analyzed by Western blot using mouse mAb α-GFP (Roche Diagnostics 

#11814460001), 1:1000; rabbit α-PfHP1(Brancucci et al., 2014), 1:5’000; rabbit α-Histone 

4 (Abcam ab10158). 

Nucleic acid isolation and polymerase chain reaction 
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To evaluate the correct editing of the pfhp1 locus, we performed PCRs on genomic 

DNAs (gDNAs) of transgenic cell lines, which were sampled and isolated as described 

previously (Witmer et al., 2012). 

To evaluate the DNA excision efficiency after RAP treatment, diagnostic PCRs were 

performed on gDNAs after 24-36 hours post treatment. Primers were designed to allow 

the PCR amplification to span over the 5`to 3` homologous regions.  

All transfection plasmids generated in this study have been validated by Sanger 

sequencing. All transfection plasmids have been designed and Sanger sequencing 

results analysed using the SnapGene software (from GSL Biotech; available at 

snapgene.com). All primer sequences used for PCR are listed in Table S1. 
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Figure 1. Generation of DiCre-inducible PfHP1 truncation mutants. (A) Organization of 

PfHP1 (Flueck et al 2009). The amino acid sequence of CD and CSD domains are 

indicated. Red letters indicate predicted functional NLS motifs in CD and CSD 

domains by NucPred and PSORTII. (B) Schematics of the CRISPR/Cas9-edited pfhp1 

locus (upper panel) and corresponding PfHP1 protein products (lower panel) before 

(DMSO) and after (RAP) rapamycin-induced DiCre-dependent excision of the wild 

type pfhp1 locus. Blue arrowheads indicate the position of sera2 intron:loxP elements. 

Red stars indicate STOP codons. Brown and blue boxes represent the wild type 

pfhp1/PfHP1 and the replacing cassette sequences/replacing protein sequences, 

respectively. Green boxes represent gfp/GFP sequence. Numbers in the gene and 

protein schematics refer to nucleotide and amino acid positions, respectively. RAP, 

rapamycin. (C) Diagrams showing organization of recodonized PfHP1 (top panel) and 

PfHP1 protein products expressed in the 3D7/HP1-Control, 3D7/HP1-KO, 3D7/HP1-∆CD, 

3D7/HP1-∆Hinge and 3D7/HP1-∆CSD after RAP-treatment (lower panels). Dashed lines 

represent corresponding deletion in PfHP1 protein sequence. Purple curve represents 

a short polypeptide of the PfSIP2 protein known to link two adjacent Ap2-binding 

domains of the protein. The amino acid sequence and position of this polypeptide 

are indicated. Localization and heterochromatin binding function of corresponding 

PfHP1 control- and truncated PfHP1 proteins are summarized on the right. N: nuclei. C: 

cytosol. 

Figure 2. Subcellular localization of PfHP1 truncation mutants. (A – E) Representative 

live cell fluorescence images showing localization of the GFP-fusions in (A) 3D7/HP1-

Control, (B) 3D7/HP1-KO, (C) 3D7/HP1-∆CSD, (D) 3D7/HP1-∆Hinge and (E) 3D7/HP1-

∆CD in late schizonts (LS, 40-48 hpi, generation 1; 40 hrs after rapamycin treatment). 

Nuclei were stained with Hoechst. DIC, differential interference contrast. Scale bar 

(black), 5 µm. Magnificent bar (white), 2.5 µm. 

Figure 3. Phenotypes of PfHP1 truncation mutants. (A) Growth curves of the DMSO- and 

RAP-treated PfHP1 truncation mutant lines and control cell line over three consecutive 

generations. Values are the mean of four replicates for 3D7/HP1-Control and three 

biological replicates for other cell lines (>3.000 RBCs counted per sample). Error bars 

indicate SD. (B) Sexual conversion rate of the 3D7/HP1-Control and PfHP1 truncation 

mutant lines accessed by GlucNAc assay and inspected by Giemsa at day 6 of the 

treatment (left panel) and the corresponding fold change in sexual conversion rates 
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between the RAP-treated versus DMSO-treated control populations (right panel). 

Results are the mean of at least three replicates (>3.000 RBCs counted per sample. n 

indicates number of replicates). Error bars indicate SD. Asterisks indicate significant 

differences in sexual commitment rates between RAP-treated and DMSO-treated 

parasites (right panel, p<0.01; unpaired two-tailed Student’s t-test). (C) Overview 

images of IFAs and Giemsa stains of DMSO- and RAP- treated population of 3D7/HP1-

KO (left panel). IFAs were performed on methanol-fixed cultures at 30-38 hpi, 

generation 2 using α-Pfs16 antibodies. Giemsa stains were taken at 10 days post 

invasion (10dpi). Images of IFAs and Giemsa stains highlight the large proportion of 

stage I gametocytes (green) and stage IV-V gametocytes in RAP-treated population 

compared to DMSO-treated population of 3D7/HP1-KO.  Sexual conversion rate of 

3D7/HP1-KO and 3D7/HP1-Control was accessed by Pfs16 IFAs at 30-38 to 40-48 hpi, 

generation 2 (right panel). Results are the mean of replicates (>200 iRBCs counted per 

sample. n indicates number of replicates). Error bars indicate SD. 

Figure 4. Generation of DiCre-inducible PfHP1-PbHP1 hybrid mutants. (A) Organization 

of PfHP1 and PbHP1 based on protein sequence alignment using Global Alignment 

EMBOSS Needle (https://www.ebi.ac.uk/Tools/psa/emboss_needle/)(see also Figure 

S4B). (B) Diagrams showing GFP-tagged PfHP1 hybrid protein products expressed in 

the 3D7/HP1-hyb-PbHinge, 3D7/HP1-hyb-PbCSD and 3D7/HP1-hyb-PbHP1 cell lines 

after RAP-treatment. (C) Representative live cell fluorescence images showing the 

localization of GFP-fusions in 3D7/HP1-hyb-PbHinge and 3D7/HP1-hyb-PbCSD cell lines 

in late schizonts (LS, 40-48 hpi, generation 1, 40 hrs after DMSO/RAP- treatment) and in 

late ring (LR, 16-24 hpi, generation 2, 64 hrs after DMSO/RAP treatment). Scale bar 

(black), 5µm. Magnificent bar (white), 2.5 µm. 

Figure 5. Phenotype of PfHP1-PbHP1 hybrid mutant lines. (A) Growth curves of the 

DMSO- and RAP-treated 3D7/HP1-hyb-PbHinge and 3D7/HP1-hyb-PbCSD parasites 

over three consecutive generations.  Values are the mean of three (3D7/HP1-hyb-

PbHinge) and four (3D7/HP1-hyb-PbCSD) independent replicate experiments. Error 

bars represent SD. (B) Sexual conversion rates of the DMSO- and RAP-treated PfHP1-

PbHP1 hybrid mutants and the control cell line (left panel) and the corresponding fold 

change in sexual conversion rates between the RAP-treated versus DMSO-treated 

control population (right panel). Values represent the mean of three (3D7/HP1-hby-

PbHinge) and four (3D7/HP1-Control and 3D7/HP1-hyb-PbCSD) independent 
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replicate experiments. Error bars represent SD. There is no significant difference in the 

fold induction in sexual conversion rates of the 3D7/HP1-hyb-PbHinge and 3D7/HP1-

hyb-PbCSD compared to the 3D7/HP1-Control cell line (right panel, p value > 0.05; 

unpaired two-tailed Student’ t-test). (C) PfEMP1 expression in DMSO- and RAP-treated 

PfHP1-PbHP1 hybrid mutants and control cell lines in the progeny at late ring stage 

(LR, 16-24 hpi, generation 2; 64 hrs after rapamycin treatment) as determined by IFA 

using α-ATS antibodies recognizing the conserved ATS domain of PfEMP1 (M. F. Duffy 

et al., 2002). The percentages of PfEMP1-positive iRBCs are indicated for each 

population. Values represent the mean of two independent experiments (+/-SD) 

(3D7/HP1-Control) and a single experiment (3D7/HP1-hyb-PbHinge and 3D7/HP1-hyb-

PbCSD). At least 200 iRBCs counted per sample. Nuclei were stained with DAPI. DIC, 

differential interference contrast. Scale bar, 5µm.  
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Figure 2 

 

  

5 µm

LS
 (4

0-
48

hp
i),

  G
en

1

3D7/HP1-KO

GFP Hoechst
GFP

Hoechst/DICGFP/Hoechst

RAP

DMSO

B

LS
 (4

0-
48

hp
i),

  G
en

1

3D7/HP1-Control

5 µm

RAP

DMSO

GFP Hoechst
GFP

Hoechst/DICGFP/Hoechst

A

3D7/HP1-∆CSD

GFP Hoechst GFP/Hoechst

5 µm

GFP
Hoechst/DIC

RAP

DMSO

LS
 (4

0-
48

hp
i),

  G
en

1

3D7/HP1-∆Hinge

GFP Hoechst GFP/Hoechst

5 µm

GFP
Hoechst/DIC

LS
 (4

0-
48

hp
i),

  G
en

1

RAP

DMSO

GFP

3D7/HP1-∆CD

Hoechst GFP/Hoechst

5 µm

GFP
Hoechst/DIC

LS
 (4

0-
48

hp
i),

  G
en

1

RAP

DMSO

C

D

E



Chapter 3|      In-depth functional analysis of PfHP1

   

 105 

Figure 3 
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Figure 4 
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Figure 5 

  

C

A

B

3D7/HP1-hyb-PbHinge

1 2 3

1

2

3

4

5

6

0

Pa
ra

si
ta

em
ia

 %
DMSO
RAP

Gen. post RAP-treatment

Pa
ra

si
ta

em
ia

 %

Gen. post RAP-treatment

1 2 3

1

2

3

4

5

6

0

DMSO
RAP

3D7/HP1-hyb-PbCSD 
LR

 (1
6-

24
hp

i),
 G

en
 2

RAP

DMSO

3D7/HP1-hyb-PbHinge

α-ATS
α-ATS/

DAPI/DIC

3D7/HP1-Control

α-ATS
α-ATS/

DAPI/DIC

5µm

3D7/HP1-hyb-PbCSD

α-ATS
α-ATS/

DAPI/DIC

73.5 +/-3.7 SD

74.7 +/-3.7 SD

58.0%

76.92%

81.02%

82.30%

Se
xu

al
 c

on
ve

rs
io

n 
ra

te
 (%

)

DMSO
0

5

10

15

20

30

35

25

p = 0.18

p = 0.12

RAP DMSO RAP DMSO RAP
3D7/HP1-

hyb-PbHinge
(n=3)

3D7/HP1-
hyb-PbCSD

(n=4)

3D7/
HP1-Control

(n=4)

Fo
ld

 c
ha

ng
e 

of
 c

on
ve

rs
io

n 
ra

te
 

(R
AP

/D
M

SO
)

3D
7/H

P1-C
on

tro
l (n

=4
)

3D
7/H

P1-h
yb

-P
bH

ing
e (

n=
3)

3D
7/H

P1-h
yb

-P
bC

SD (n
=4

)
0

2

4

8

6



Chapter 3|      In-depth functional analysis of PfHP1

   

 108 

3.6 References 

Aasland, R., Stewart, A.F., 1995. The chromo shadow domain, a second chromo domain in 
heterochromatin-binding protein 1, HP1. Nucleic Acids Res. 23, 3168–3173. 

Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P., Cranston, G., 1995. Mutations derepressing 
silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 
9, 218–233. doi:10.1101/gad.9.2.218 

Amit-Avraham, I., Pozner, G., Eshar, S., Fastman, Y., Kolevzon, N., Yavin, E., Dzikowski, R., 2015. 
Antisense long noncoding RNAs regulate var gene activation in the malaria parasite 
Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 112, E982–91. 
doi:10.1073/pnas.1420855112 

Armstrong, C.M., Goldberg, D.E., 2007. An FKBP destabilization domain modulates protein 
levels in Plasmodium falciparum. Nat Meth. 4, 1007–1009. doi:10.1038/nmeth1132 

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., 
Kouzarides, T., 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 
chromo domain. Nature 410, 120–124. doi:10.1038/35065138 

Bernard, P., Maure, J.F., Partridge, J.F., Genier, S., Javerzat, J.P., Allshire, R.C., 2001. 
Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542. 
doi:10.1126/science.1064027 

Brameier, M., Krings, A., MacCallum, R.M., 2007. NucPred--predicting nuclear localization of 
proteins. Bioinformatics 23, 1159–1160. doi:10.1093/bioinformatics/btm066 

Brancucci, N.M.B., Bertschi, N.L., Zhu, L., Niederwieser, I., Chin, W.H., Wampfler, R., Freymond, 
C., Rottmann, M., Felger, I., Bozdech, Z., Voss, T.S., 2014. Heterochromatin protein 1 
secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176. 
doi:10.1016/j.chom.2014.07.004 

Brancucci, N.M.B., Gerdt, J.P., Wang, C., De Niz, M., Philip, N., Adapa, S.R., Zhang, M., Hitz, E., 
Niederwieser, I., Boltryk, S.D., Laffitte, M.-C., Clark, M.A., Grüring, C., Ravel, D., Blancke 
Soares, A., Demas, A., Bopp, S., Rubio-Ruiz, B., Conejo-Garcia, A., Wirth, D.F., 
Gendaszewska-Darmach, E., Duraisingh, M.T., Adams, J.H., Voss, T.S., Waters, A.P., Jiang, 
R.H.Y., Clardy, J., Marti, M., 2017. Lysophosphatidylcholine Regulates Sexual Stage 
Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell 171, 1532–
1544.e15. doi:10.1016/j.cell.2017.10.020 

Bunnik, E.M., Cook, K.B., Varoquaux, N., Batugedara, G., Prudhomme, J., Cort, A., Shi, L., 
Andolina, C., Ross, L.S., Brady, D., Fidock, D.A., Nosten, F., Tewari, R., Sinnis, P., Ay, F., Vert, 
J.-P., Noble, W.S., Le Roch, K.G., 2018. Changes in genome organization of parasite-
specific gene families during the Plasmodium transmission stages. Nat Commun 9, 1910–
15. doi:10.1038/s41467-018-04295-5 

Collins, C.R., Das, S., Wong, E.H., Andenmatten, N., Stallmach, R., Hackett, F., Herman, J.-P., 
Müller, S., Meissner, M., Blackman, M.J., 2013. Robust inducible Cre recombinase activity 
in the human malaria parasite Plasmodium falciparum enables efficient gene deletion 
within a single asexual erythrocytic growth cycle. Mol. Microbiol. 88, 687–701. 
doi:10.1111/mmi.12206 

Cowman, A.F., Healer, J., Marapana, D., Marsh, K., 2016. Malaria: Biology and Disease. Cell 
167, 610–624. doi:10.1016/j.cell.2016.07.055 

Dingwall, C., Laskey, R.A., 1991. Nuclear targeting sequences--a consensus? Trends Biochem. 
Sci. 16, 478–481. 

Duffy, M.F., Brown, G.V., Basuki, W., Krejany, E.O., Noviyanti, R., Cowman, A.F., Reeder, J.C., 
2002. Transcription of multiple var genes by individual, trophozoite-stage Plasmodium 
falciparum cells expressing a chondroitin sulphate A binding phenotype. Mol. Microbiol. 
43, 1285–1293. 

Duffy, S., Loganathan, S., Holleran, J.P., Avery, V.M., 2016. Large-scale production of 
Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 11, 976–992. 
doi:10.1038/nprot.2016.056 

Duraisingh, M.T., Voss, T.S., Marty, A.J., Duffy, M.F., Good, R.T., Thompson, J.K., Freitas-Junior, 
L.H., Scherf, A., Crabb, B.S., Cowman, A.F., 2005. Heterochromatin silencing and locus 



Chapter 3|      In-depth functional analysis of PfHP1

   

 109 

repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121, 
13–24. doi:10.1016/j.cell.2005.01.036 

Dzikowski, R., Frank, M., Deitsch, K., 2006. Mutually exclusive expression of virulence genes by 
malaria parasites is regulated independently of antigen production. PLoS Pathog. 2, e22. 
doi:10.1371/journal.ppat.0020022 

Eissenberg, J.C., James, T.C., Foster-Hartnett, D.M., Hartnett, T., Ngan, V., Elgin, S.C., 1990. 
Mutation in a heterochromatin-specific chromosomal protein is associated with 
suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl. Acad. 
Sci. U.S.A. 87, 9923–9927. 

Eksi, S., Morahan, B.J., Haile, Y., Furuya, T., Jiang, H., Ali, O., Xu, H., Kiattibutr, K., Suri, A., 
Czesny, B., Adeyemo, A., Myers, T.G., Sattabongkot, J., Su, X.-Z., Williamson, K.C., 2012. 
Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis 
early gene identification and commitment to sexual development. PLoS Pathog. 8, 
e1002964. doi:10.1371/journal.ppat.1002964 

Epp, C., Li, F., Howitt, C.A., Chookajorn, T., Deitsch, K.W., 2009. Chromatin associated sense 
and antisense noncoding RNAs are transcribed from the var gene family of virulence 
genes of the malaria parasite Plasmodium falciparum. RNA 15, 116–127. 
doi:10.1261/rna.1080109 

Filarsky, M., Fraschka, S.A., Niederwieser, I., Brancucci, N.M.B., Carrington, E., Carrió, E., Moes, 
S., Jenoe, P., Bartfai, R., Voss, T.S., 2018. GDV1 induces sexual commitment of malaria 
parasites by antagonizing HP1-dependent gene silencing. Science 359, 1259–1263. 
doi:10.1126/science.aan6042 

Fischer, T., Cui, B., Dhakshnamoorthy, J., Zhou, M., Rubin, C., Zofall, M., Veenstra, T.D., Grewal, 
S.I.S., 2009. Diverse roles of HP1 proteins in heterochromatin assembly and functions in 
fission yeast. Proc. Natl. Acad. Sci. U.S.A. 106, 8998–9003. doi:10.1073/pnas.0813063106 

Flueck, C., Bartfai, R., Niederwieser, I., Witmer, K., Alako, B.T.F., Moes, S., Bozdech, Z., Jenoe, 
P., Stunnenberg, H.G., Voss, T.S., 2010. A major role for the Plasmodium falciparum 
ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog. 6, e1000784. 
doi:10.1371/journal.ppat.1000784 

Flueck, C., Bartfai, R., Volz, J., Niederwieser, I., Salcedo-Amaya, A.M., Alako, B.T.F., Ehlgen, F., 
Ralph, S.A., Cowman, A.F., Bozdech, Z., Stunnenberg, H.G., Voss, T.S., 2009. Plasmodium 
falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation 
of exported virulence factors. PLoS Pathog. 5, e1000569. 

Fraschka, S.A., Filarsky, M., Hoo, R., Niederwieser, I., Yam, X.Y., Brancucci, N.M.B., Mohring, F., 
Mushunje, A.T., Huang, X., Christensen, P.R., Nosten, F., Bozdech, Z., Russell, B., Moon, 
R.W., Marti, M., Preiser, P.R., Bartfai, R., Voss, T.S., 2018. Comparative Heterochromatin 
Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation 
and Development of Malaria Parasites. Cell Host Microbe 23, 407–420.e8. 
doi:10.1016/j.chom.2018.01.008 

Freitas-Junior, L.H., Hernandez-Rivas, R., Ralph, S.A., Montiel-Condado, D., Ruvalcaba-Salazar, 
O.K., Rojas-Meza, A.P., Mancio-Silva, L., Leal-Silvestre, R.J., Gontijo, A.M., Shorte, S., Scherf, 
A., 2005. Telomeric heterochromatin propagation and histone acetylation control 
mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121, 
25–36. doi:10.1016/j.cell.2005.01.037 

Grewal, S.I.S., Moazed, D., 2003. Heterochromatin and epigenetic control of gene expression. 
Science 301, 798–802. doi:10.1126/science.1086887 

Horsley, D., Hutchings, A., Butcher, G.W., Singh, P.B., 1996. M32, a murine homologue of 
Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase 
nuclei and is largely excluded from constitutive heterochromatin. Cytogenet. Cell Genet. 
73, 308–311. doi:10.1159/000134363 

James, T.C., Eissenberg, J.C., Craig, C., Dietrich, V., Hobson, A., Elgin, S.C., 1989. Distribution 
patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of 
Drosophila. Eur. J. Cell Biol. 50, 170–180. 



Chapter 3|      In-depth functional analysis of PfHP1

   

 110 

James, T.C., Elgin, S.C., 1986. Identification of a nonhistone chromosomal protein associated 
with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6, 3862–
3872. 

Jiang, L., Mu, J., Zhang, Q., Ni, T., Srinivasan, P., Rayavara, K., Yang, W., Turner, L., Lavstsen, T., 
Theander, T.G., Peng, W., Wei, G., Jing, Q., Wakabayashi, Y., Bansal, A., Luo, Y., Ribeiro, 
J.M.C., Scherf, A., Aravind, L., Zhu, J., Zhao, K., Miller, L.H., 2013. PfSETvs methylation of 
histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 499, 223–227. 
doi:10.1038/nature12361 

Jones, M.L., Das, S., Belda, H., Collins, C.R., Blackman, M.J., Treeck, M., 2016. A versatile 
strategy for rapid conditional genome engineering using loxP sites in a small synthetic 
intron in Plasmodium falciparum. Sci Rep 6, 21800. doi:10.1038/srep21800 

Kafsack, B.F.C., Rovira-Graells, N., Clark, T.G., Bancells, C., Crowley, V.M., Campino, S.G., 
Williams, A.E., Drought, L.G., Kwiatkowski, D.P., Baker, D.A., Cortés, A., Llinás, M., 2014. A 
transcriptional switch underlies commitment to sexual development in malaria parasites. 
Nature 507, 248–252. doi:10.1038/nature12920 

Kalderon, D., Roberts, B.L., Richardson, W.D., Smith, A.E., 1984. A short amino acid sequence 
able to specify nuclear location. Cell 39, 499–509. doi:10.1016/0092-8674(84)90457-4 

Knuepfer, E., Napiorkowska, M., van Ooij, C., Holder, A.A., 2017. Generating conditional gene 
knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing 
parasite lines using CRISPR/Cas9. Sci Rep 7, 3881–12. doi:10.1038/s41598-017-03984-3 

Kwon, S.H., Workman, J.L., 2011. The changing faces of HP1: From heterochromatin formation 
and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of 
transcription. Bioessays 33, 280–289. doi:10.1002/bies.201000138 

Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T., 2001. Methylation of histone H3 
lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120. doi:10.1038/35065132 

Lambros, C., Vanderberg, J.P., 1979. Synchronization of Plasmodium falciparum erythrocytic 
stages in culture. J. Parasitol. 65, 418–420. 

Lomberk, G., Wallrath, L., Urrutia, R., 2006. The Heterochromatin Protein 1 family. Genome Biol. 
7, 228. doi:10.1186/gb-2006-7-7-228 

Lopez-Rubio, J.J., Gontijo, A.M., Nunes, M.C., Issar, N., Hernandez-Rivas, R., Scherf, A., 2007. 5' 
flanking region of var genes nucleate histone modification patterns linked to phenotypic 
inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305. 
doi:10.1111/j.1365-2958.2007.06009.x 

Lopez-Rubio, J.J., Mancio-Silva, L., Scherf, A., 2009. Genome-wide analysis of 
heterochromatin associates clonally variant gene regulation with perinuclear repressive 
centers in malaria parasites. Cell Host Microbe 5, 179–190. doi:10.1016/j.chom.2008.12.012 

Maison, C., Almouzni, G., 2004. HP1 and the dynamics of heterochromatin maintenance. 
Nat. Rev. Mol. Cell Biol. 5, 296–304. doi:10.1038/nrm1355 

Minc, E., Allory, Y., Worman, H.J., Courvalin, J.C., Buendia, B., 1999. Localization and 
phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 
108, 220–234. 

Minc, E., Courvalin, J.C., Buendia, B., 2000. HP1gamma associates with euchromatin and 
heterochromatin in mammalian nuclei and chromosomes. Cytogenet. Cell Genet. 90, 
279–284. 

Muchardt, C., Guilleme, M., Seeler, J.-S., Trouche, D., Dejean, A., Yaniv, M., 2002. 
Coordinated methyl and RNA binding is required for heterochromatin localization of 
mammalian HP1alpha. EMBO Rep. 3, 975–981. doi:10.1093/embo-reports/kvf194 

Newbold, C., Warn, P., Black, G., Berendt, A., Craig, A., Snow, B., Msobo, M., Peshu, N., Marsh, 
K., 1997. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. 
J. Trop. Med. Hyg. 57, 389–398. doi:10.4269/ajtmh.1997.57.389 

Nonaka, N., Kitajima, T., Yokobayashi, S., Xiao, G., Yamamoto, M., Grewal, S.I.S., Watanabe, 
Y., 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. 
Nat. Cell Biol. 4, 89–93. doi:10.1038/ncb739 

Pérez-Toledo, K., Rojas-Meza, A.P., Mancio-Silva, L., Hernández-Cuevas, N.A., Delgadillo, 
D.M., Vargas, M., Martínez-Calvillo, S., Scherf, A., Hernandez-Rivas, R., 2009. Plasmodium 



Chapter 3|      In-depth functional analysis of PfHP1

   

 111 

falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is 
linked to mutually exclusive expression of var genes. Nucleic Acids Res. 37, 2596–2606. 
doi:10.1093/nar/gkp115 

Platero, J.S., Hartnett, T., Eissenberg, J.C., 1995. Functional analysis of the chromo domain of 
HP1. EMBO J. 14, 3977–3986. 

Ponnudurai, T., Lensen, A.H., Meis, J.F., Meuwissen, J.H., 1986. Synchronization of Plasmodium 
falciparum gametocytes using an automated suspension culture system. Parasitology 93 
( Pt 2), 263–274. doi:10.1017/s003118200005143x 

Powers, J.A., Eissenberg, J.C., 1993. Overlapping domains of the heterochromatin-associated 
protein HP1 mediate nuclear localization and heterochromatin binding. J. Cell Biol. 120, 
291–299. doi:10.1083/jcb.120.2.291 

Ralph, S.A., Scheidig-Benatar, C., Scherf, A., 2005. Antigenic variation in Plasmodium 
falciparum is associated with movement of var loci between subnuclear locations. Proc. 
Natl. Acad. Sci. U.S.A. 102, 5414–5419. doi:10.1073/pnas.0408883102 

Reeder, J.C., Brown, G.V., 1996. Antigenic variation and immune evasion in Plasmodium 
falciparum malaria. Immunol. Cell Biol. 74, 546–554. doi:10.1038/icb.1996.88 

Rowe, J.A., Claessens, A., Corrigan, R.A., Arman, M., 2009. Adhesion of Plasmodium 
falciparum-infected erythrocytes to human cells: molecular mechanisms and 
therapeutic implications. Expert Rev Mol Med 11, e16. doi:10.1017/S1462399409001082 

Salcedo-Amaya, A.M., van Driel, M.A., Alako, B.T., Trelle, M.B., van den Elzen, A.M.G., Cohen, 
A.M., Janssen-Megens, E.M., van de Vegte-Bolmer, M., Selzer, R.R., Iniguez, A.L., Green, 
R.D., Sauerwein, R.W., Jensen, O.N., Stunnenberg, H.G., 2009. Dynamic histone H3 
epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. 
Natl. Acad. Sci. U.S.A. 106, 9655–9660. doi:10.1073/pnas.0902515106 

Saliba, K.S., Jacobs-Lorena, M., 2013. Production of Plasmodium falciparum gametocytes in 
vitro. Methods Mol. Biol. 923, 17–25. doi:10.1007/978-1-62703-026-7_2 

Sinha, A., Hughes, K.R., Modrzynska, K.K., Otto, T.D., Pfander, C., Dickens, N.J., Religa, A.A., 
Bushell, E., Graham, A.L., Cameron, R., Kafsack, B.F.C., Williams, A.E., Llinás, M., Berriman, 
M., Billker, O., Waters, A.P., 2014. A cascade of DNA-binding proteins for sexual 
commitment and development in Plasmodium. Nature. 507, 253-257. 
doi:10.1038/nature12970 

Tonkin, C.J., Carret, C.K., Duraisingh, M.T., Voss, T.S., Ralph, S.A., Hommel, M., Duffy, M.F., Silva, 
L.M.D., Scherf, A., Ivens, A., Speed, T.P., Beeson, J.G., Cowman, A.F., 2009. Sir2 paralogues 
cooperate to regulate virulence genes and antigenic variation in Plasmodium 
falciparum. PLoS Biol 7, e84. doi:10.1371/journal.pbio.1000084 

Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 
673–675. 

Vermaak, D., Henikoff, S., Malik, H.S., 2005. Positive selection drives the evolution of rhino, a 
member of the heterochromatin protein 1 family in Drosophila. PLoS Genet. 1, 96–108. 
doi:10.1371/journal.pgen.0010009 

Volz, J.C., Bartfai, R., Petter, M., Langer, C., Josling, G.A., Tsuboi, T., Schwach, F., Baum, J., 
Rayner, J.C., Stunnenberg, H.G., Duffy, M.F., Cowman, A.F., 2012. PfSET10, a Plasmodium 
falciparum methyltransferase, maintains the active var gene in a poised state during 
parasite division. Cell Host Microbe 11, 7–18. doi:10.1016/j.chom.2011.11.011 

Voss, T.S., Bozdech, Z., Bartfai, R., 2014. Epigenetic memory takes center stage in the survival 
strategy of malaria parasites. Curr. Opin. Microbiol. 20, 88–95. 
doi:10.1016/j.mib.2014.05.007 

Voss, T.S., Healer, J., Marty, A.J., Duffy, M.F., Thompson, J.K., Beeson, J.G., Reeder, J.C., 
Crabb, B.S., Cowman, A.F., 2006. A var gene promoter controls allelic exclusion of 
virulence genes in Plasmodium falciparum malaria. Nature 439, 1004–1008. 
doi:10.1038/nature04407 

Wang, G., Ma, A., Chow, C.M., Horsley, D., Brown, N.R., Cowell, I.G., Singh, P.B., 2000. 
Conservation of heterochromatin protein 1 function. Mol. Cell. Biol. 20, 6970–6983. 

Wang, J., Jia, S.T., Jia, S., 2016. New Insights into the Regulation of Heterochromatin. Trends 
Genet. 32, 284–294. doi:10.1016/j.tig.2016.02.005 



Chapter 3|      In-depth functional analysis of PfHP1

   

 112 

Witmer, K., Fraschka, S.A., Vlachou, D., Bartfai, R., Christophides, G.K., 2019. Epigenetic 
regulation underlying Plasmodium berghei gene expression during its developmental 
transition from host to vector. bioRxiv 41, 646430. doi:10.1101/646430 

Witmer, K., Schmid, C.D., Brancucci, N.M.B., Luah, Y.-H., Preiser, P.R., Bozdech, Z., Voss, T.S., 
2012. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by 
comparative transcriptional profiling. Mol. Microbiol. 84, 243–259. doi:10.1111/j.1365-
2958.2012.08019.x 

Yi, Q., Chen, Q., Liang, C., Yan, H., Zhang, Z., Xiang, X., Zhang, M., Qi, F., Zhou, L., Wang, F., 
2018. HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO 
Rep. 19, 120. doi:10.15252/embr.201745484 

Zeng, W., Ball, A.R., Yokomori, K., 2010. HP1: heterochromatin binding proteins working the 
genome. Epigenetics 5, 287–292. 

 
  



Chapter 3|      In-depth functional analysis of PfHP1

   

 113 

3.7 Supplementary Information 

This Supplementary Information includes: 

Supplementary method 1 

Figure S1 to S5 

Tables S1  
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Supplementary method 1. The generation of pBCam-∆Hinge-3HA-Cherry, pBCam-

hyb-PbHinge-3HA-Cherry and pBCam-hyb-PbCSD-3HA-Cherry plasmids 

The pBCam-∆Hinge-3HA-Cherry was constructed as follows. The fragment PfCD 

spanning bps +1 to +222 of the re-pfhp1 sequence was amplified from a pUC57 

plasmid containing a synthetic recodonized pfhp1 coding sequence (pUC57-re-

pfhp1) (GenScript™) using primers F11 and R148. The fragment PfSIP2.linker spanning 

bps +694 to +762 of the pfsip2 coding sequence was amplified from 3D7 gDNA using 

primers F4 and R5. The fragment PfCSD spanning bps +532 to +798 of the re-pfhp1 

sequence, omitting stop codon was amplified from pUC57-re-pfhp1 using primers F2 

and R3. A hybrid fragment of PfSIP2.linker/PfCSD was amplified by fusion PCR from a 

mixture of PfSIP2.linker and PfCSD PCR templates using primer F4 and R3. The final 

hybrid fragment of PfCD/PfSIP2.linker/PfCSD was amplified by fusion PCR from a 

mixture of PfCD and PfSIP2.linker/PfCSD PCR templates using primers F11 and R3 and 

cloned into pBCam-3HA –Cherry using BamHI and NheI and T4 DNA ligase. 

The pBCam-hyb-PbHinge-3HA-Cherry was constructed as follows. The fragment PfCD 

spanning bps +1 to +222 of the re-pfhp1 sequence was amplified from pUC57-re-

pfhp1 using primers F11 and R1. The fragment PbHinge spanning bps +223 to +576 of 

the pbhp1 sequence was amplified from P. berghei gDNA using primers F35 and R36.  

The fragment PfCSD spanning bps +532 to +798 of the re-pfhp1 sequence, omitting 

stop codon was amplified from pUC57-re-pfhp1 using primers F2 and R42. A hybrid 

fragment of PfCD/PbHinge was amplified by fusion PCR from a mixture of PfCD and 

PbHinge PCR templates using primer F11 and R36. The final hybrid fragment of 

PfCD/PbHinge/PfCSD was amplified by fusion PCR from a mixture of PfCD/PbHinge 

and PfCSD PCR templates using primers F11 and R42 and cloned into pBCam-3HA –

Cherry using BamHI and NotI. 

The pBCam-hyb-PbCSD-3HA-Cherry was constructed as follows. The fragment 

PfCD.Hinge spanning bps +1 to +570 of the re-pfhp1 sequence was amplified from 

pUC57-re-pfhp1 using primers F11 and R12. The fragment PbCSD spanning bps +616 

to +843 of the pbhp1 sequence, omitting stop codon was amplified from P. berghei 

gDNA using primers F38 and R41. A hybrid fragment of PfCD.Hinge/PbCSD was 

amplified by fusion PCR from a mixture of PfCD.Hinge and PbCSD PCR templates using 

primers F11 and R41 and cloned into pBCam-3HA–Cherry using BamHI and NotI. 
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Supplementary Figures 

Figure S1. Two-step CRISP/Cas9-based gene editing strategy to generate DiCre-

inducible PfHP1 truncation and PfHP1-PbHP1 hybrid cell lines.  

(A) First gene editing step: Schematic maps of the pfhp1 locus (PF3D7_1220900) in 

3D7/1G5DiCre parasites (top), the co-transfected pFDon-N31 donor plasmid and 

pHF_gC-guide31 CRISPR/Cas9 transfection vector (center), and the modified pfhp1 

locus after CRISPR/Cas9-based gene editing in 3D7/N31DC parasites (bottom). The 

nucleotide positions of the sgt_pfhp1-5’ sgRNA target sequence is indicated 

(chromosome 12 coordinates).  The pFDon-N31 donor plasmid contains a 103 bp sera2 

intron:loxP element (light blue triangle) (Jones et al., 2016) flanked by two homology 

regions (HR) (brown, black) for homology-directed repair. The pHF_gC-guide31 

plasmid contains expression cassettes for SpCas9 (dark grey), the sgRNA (purple) and 

the hdhfr-yfcu fusion selection marker (light grey-dark brown). Second gene editing 

step: Schematic maps of the pfhp1 locus in 3D7/N31DC parasites (top), the co-

transfected pD_HP1 donor plasmids and pBF_gC-guide250 CRISPR/Cas9 transfection 

vector (center), and the modified pfhp1 locus after CRISPR/Cas9-based gene editing 

in 3D7/HP1-Control, 3D7/HP1-KO and 3D7/HP1-hyb-PbCSD are shown as examples 

(bottom). The nucleotide positions of the sgt_pfhp1-3’ sgRNA target sequence is 

indicated (chromosome 12 coordinates).  The pD_HP1 donor plasmids contain an 

assembly of the 103 bp sera2 intron:loxP element (light blue triangle) and the 

replacing cassette (dark blue) fused to gfp (green) flanked by two homology regions 

(HR) (brown, black) for homology-directed repair. The pBF_gC-guide250 plasmid 

contains expression cassettes for SpCas9 (dark grey), the sgRNA (purple) and the bsd-

yfcu fusion selection marker (light grey-brown). Red stars represent STOP codons. 

Numbers refer to the nucleotide position within the pfhp1 coding sequence. The black 

arrowheads indicate the binding sites of the F119 and R157 primers used to confirm 

correct gene editing of the pfhp1 locus and efficient DiCre-mediated excision upon 

rapamycin treatment by PCR on genomic DNA.  

Figure S2. Confirmation of successful generation of DiCre-inducible PfHP1 truncation 

and hybrid cell lines. (A) PCR confirmation of correct editing of the pfhp1 locus and 

efficient excision of the endogenous pfhp1 gene after RAP treatment. PCRs were 
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amplified from gDNA of 3D7/HP1-Control, 3D7/HP1-hyb-PbHinge, 3D7/HP1-hyb-

PbCSD, 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge, 3D7/HP1-∆CSD cell lines in 

DMSO (-) and RAP (+) treated conditions. Using primers F119 and R157 (see Figure S1), 

correct editing of the pfhp1 locus delivers a PCR product of 2250 bps in the 

3D7/N31DC mother line prior to insertion of a replacing cassette-gfp fusion sequence. 

The length of the correctly edited pfhp1 locus (-) and the length of the locus after 

efficient excision upon RAP treatment (+) from PfHP1 mutant cell lines were indicated 

at the bottom of the figure. The correct excision of floxed DNA after RAP treatment 

resulted in a decrease in the size of the corresponding PCR fragments in DMSO treated 

condition (-). (B) The efficiency of DiCre-mediated excision and resulting expression of 

GFP-tagged PfHP1s were quantified by the proportion of GFP-positive parasites in the 

paired DMSO- and RAP-treated samples in late schizonts (40-48 hpi, generation 1, 40 

hrs after RAP-treatment). Values represent the mean of three independent biological 

replicates (>140 iRBCs scored for 3D7/HP1-hyb-PbHinge and 3D7/HP1-hyb-PbCSD 

populations and >200 iRBCs scored for other cell lines). Error bars indicate SD. The GFP-

positive parasites in the DMSO- and RAP-treated populations of the 3D7/HP1-∆CD and 

3D7/HP1-∆Hinge were not determined. (C) Expression of GFP fusion from PfHP1 mutant 

cell lines were examined by Western blot in the ring progeny of DMSO- and RAP-

treated populations from all seven transgenic cell lines (16-24 hpi, generation 2, 64 hrs 

after DMSO/RAP treatment). Immunoblot using α-PfHP1 antibodies revealed 

untagged wild type PfHP1 (~31 KDa) expressed in all DMSO treated samples. 

Immunoblot using α-GFP antibodies revealed GFP fusion proteins expressed in all RAP 

treated samples of 3D7/HP1-Control (57.87 KDa), 3D7/HP1-∆CD (54.45 KDa), 3D7/HP1-

∆Hinge (47.51 KDa), 3D7/HP1-∆CSD (47.70 KDa), 3D7/HP1-KO (30.09 KDa), 3D7/HP1-

hyb-PbHinge (57.72 KDa) and 3D7/HP1-hyb-PbCSD (56.77 KDa). The molecular weight 

of GFP fusion proteins were predicted using Protein Molecular Weight tool at 

genecorner.ugent.be. α-histone 4 (H4) antibodies were used as loading control. 

Figure S3. Lack of Cre recombinase activity in a small subpopulations of transgenic 

cell lines. (A) The relative proportion of sexual and asexual subpopulation (RAPSUR) of 

RAP-treated 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge, 3D7/HP1-∆CSD populations 

in generation 3 (112 hrs after RAP treatment). Results are the mean of three 

independent replicates (>100 iRBCs counted per sample). Error bars indicate SD. (B) 

Examination of the pfhp1 locus and the presence of DiCre cassette at sera5 locus in 
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3D7/1G5DiCre, 3D7/N31DC lines and RAPSUR subpopulation of 3D7/HP1-KO, 3D7/HP1-

∆CD, 3D7/HP1-∆Hinge and 3D7/HP1-∆CSD. PCR amplification using F119 and R157 

revealed the correctly edited pfhp1 locus in tested RAPSUR subpopulations. Primers 

sera5 +27 and -25 confirmed wild type sera5 locus, i.e absence of DiCre cassette (1.7 

kb PCR products) while the primers sera5 +27 and -11 confirmed correctly edited sera5 

locus, i.e presence of the DiCre cassette (1.9 kb PCR products) (Collins et al., 2013) in 

tested cell lines. The lack of DiCre cassette and/or ineffective activity of Cre 

recombinase resulted in the failure of DNA excision, thus, generating a proliferating 

asexual subpopulation in PfHP1 truncation cell lines after RAP treatment.  

Figure S4. PfHP1 and PbHP1 are highly conserved in protein sequence. (A) Nucleotide 

sequences of the wild type (pfhp1) and recodonised (pfhp1 re) pfhp1 genes and 

amino acid sequence of PfHP1. Bases altered in the pfhp1 re are highlighted in red 

letters. Numbers refer to the nucleotide position within the pfhp1 coding sequence. 

(B) Alignment of PfHP1 and PbHP1 by EMBOSS Needle 

(https://www.ebi.ac.uk/Tools/psa/emboss_needle/). Conserved residues are marked 

by asterisks. The positions of the PfHP1 chromo- and chromoshadow domains are 

indicated (Flueck et al., 2009). 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 

 

 

 

 

 

 

  

PfHP1 MTGSDEEFEIGDILEIKKKKNGFIYLVKWKGYSDDENTWEPESNLIHLTTFKKKMESLKT 60       
PbHP1 MTGSDEEFEIGDILDVKRKKNGFIYLVKWKGYSDDENTWEPESNLLHLTDFKKKMEYLKS 60           
      **************::*:***************************:*** ****** **:           
 
PfHP1 NFLSKANETNGDGKILKNHILAPTQED----DSIKSKGRSSLAPRRKMSRKSLTNKLEN- 115       
PbHP1 IYLNKIDRTSSDSKIMKKNNVQLFDQDDMGNTLMKPKGRTTLISRKRGHKRGMRNRMRNR 120           
       :*.* :.*..*.**:*:: :   ::*      :* ***::*  *::  ::.: *::.*                 
 
PfHP1 --------KKNLSLSDNSLKKSDEEDNESVKHENHVN--DGNLLNVEDVYSVRIKNKKLE 165       
PbHP1 MRNRIGNKSSASSVTDGSLKKSDDDDNQSIKKESSSNNYNNTLLNIEDVYSVRIKNRKME 180                                      
         ..  *::*.******::**:*:*:*.  *  :..***:**********:*:* 
 
PfHP1 FLASLKNESPQWVEETNIRRTGHLNIKVNDFKRYVRRKKSSRGNRIVIKNLHNVGDELYI 225       
PbHP1 FLASLKNASPQWVEESNIRSTGHLNIKVNDFKKYIKRKKTSKGSRIVIKNLHNVGDELYI 240           
      ******* *******:*** ************:*::***:*:*.****************  
          
PfHP1 SVIHNINNKEIHSLYPSKVIEYIYPQELLNFLLSRLRYRTA 266 
PbHP1 SVIHNINNKEIHSLYPSKVIEYIYPQELLNFLLSRLRYRTV 281       
  ****************************************. 

Chromo domain

Chromoshadow domain

pfhp1     ATGACAGGGTCAGATGAAGAATTTGAAATTGGTGATATACTTGAAATAAAAAAAAAGAAGAATGGTTTTATTTATTTAGTAAAATGGAAAGGAT   94  
          M  T  G  S  D  E  E  F  E  I  G  D  I  L  E  I  K  K  K  K  N  G  F  I  Y  L  V  K  W  K  G     
pfhp1  re ATGACAGGTAGT GATGAAGAATTTGAAATTGG AGATATA TT AGAAATTAAAAAGAAGAAAAATGGTTTTAT CTACTTAGTAAAATGGAAAGGAT   94  
pfhp1     ATTCAGATGATGAGAATACTTGGGAACCCGAAAGTAATTTAATACATTTGACAACATTTAAGAAAAAGATGGAAAGCTTAAAAACGAATTTTTT  188  
         Y  S  D  D  E  N  T  W  E  P  E  S  N  L  I  H  L  T  T  F  K  K  K   M  E  S  L  K  T  N  F  L  
pfhp1  re ATAGTGATGATGAAAATACATGGGAACCAGAATCA AATTT GATTCATTTGACAAC TTTTAA AAAGAAAATGGAATCA TTAAAAAC AAATTT CTT  188  
pfhp1     ATCGAAAGCTAATGAGACAAATGGTGATGGGAAAATTTTGAAAAATCATATATTAGCACCAACACAAGAAGACGATAGTATTAAATCAAAAGGT  282  
           S   K  A  N  E  T  N  G  D  G  K  I  L  K  N  H  I   L   A  P  T   Q  E   D  D  S   I   K  S   K  G 
pfhp1  re ATC TAAAGCAAATGAAACAAATGGAGATGGTAAAATATT AAAGAATCATAT T TTAGC TCCAACACAAGAAGATGATAGTAT AAAATCAAAAGGT 282  
pfhp1     AGAAGTTCCTTAGCACCCCGACGAAAAATGAGTAGAAAAAGTTTAACGAACAAACTAGAAAATAAAAAGAACTTATCTTTATCAGACAATTCTT  376  
          R  S   S   L   A  P  R  R  K  M  S   R  K  S   L   T   N  K  L   E   N  K  K  N  L   S   L   S   D  N  S   
pfhp1  re AGAAGTTCATTAGCACC TAGAAGAAAAATGTC TAGAAAAAGTTTAAC AAATAAGTTAGAAAATAAGAAAAATTT GTC ATTATC T GATAATTC AT 376  
pfhp1     TAAAAAAAAGTGATGAAGAAGATAATGAATCTGTAAAACATGAGAATCACGTTAATGATGGAAATTTATTAAATGTTGAAGATGTATATAGCGT  470  
         I  K  K  S  D  E  E  D  N  E  S  V  K  H  E  N  H  V  N  D  G  N  L  L   N  V  E  D  V  Y  S  V   
pfhp1  re TAAAGAAAAGTGATGAAGAAGATAATGAATCTGT TAAACATGAAAATCATGTAAATGATGGAAATTT GTTAAATGT AGAAGATGTTTATAG TGT 470  
pfhp1     TCGTATTAAAAATAAGAAATTGGAGTTTTTGGCTAGCTTGAAAAATGAATCTCCACAATGGGTAGAAGAAACAAATATTAGAAGAACTGGACAT  564  
           R  I  K  N  K  K  L  E  F  L  A  S  L  K  N  E  S  P  Q  W  V  E  E  T  N  I  R  R  T  G  H      
pfhp1  re AAGAATTAAAAATAAGAAATT AGAATTTTT AGCTTCT TT AAAGAATGAAAGTCCACAATGGGT TGAAGAAACAAATATTAGAAGAACAGGT CAT  564  
pfhp1     TTAAATATTAAAGTCAATGATTTTAAAAGATATGTAAGAAGAAAAAAAAGTTCTAGGGGTAATAGAATAGTTATCAAAAATCTACACAACGTTG  658  
          L  N  I  K  V  N  D  F  K  R  Y  V  R  R  K  K  S  S  R  G  N  R  I  V  I  K  N  L  H  N  V   
pfhp1  re TT GAATATTAAAGT TAATGATTTTAAAAGATATGT TAGAAGAAAGAAAAGTAGTAGAGGAAATAGAATAGT AATTAAAAATTTGCATAATGTAG 658  
pfhp1     GAGATGAATTATATATTTCGGTTATTCATAATATAAATAATAAAGAAATTCATAGTTTATATCCTTCCAAAGTTATTGAATATATTTATCCACA  752  
         G  D  E  L  Y  I  S  V  I  H  N  I  N  N   K  E  I  H  S  L  Y  P  S  K  V  I  E  Y  I  Y  P  Q   
pfhp1  re GAGATGAATTATATAT AAGTGTTATTCATAATATAAATAATAA GGAAATTCATAGTTTATATCCTTC AAAAGTAATAGAATATAT ATATCC TCA 752  
pfhp1     GGAACTCTTAAATTTTTTATTATCAAGACTAAGATACCGTACAGCT                                                  798  
           E  L  L  N  F  L  L  S  R  L  R  Y  R  T  A  
pfhp1  re AGAATTATTAAATTT CTTATT ATCAAGATTAAGATA TAGAACAGCA                                                 798  
 

A

B
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Table S1. Primers and primer sequences used in the study of in-depth functional 

analysis of heterochromatin protein 1 in Plasmodium falciparum 

Application Primer Sequence 5’-3’ 
PCR 
cloning 
transfection 
vectors 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

R1 TTT ACC ATC TCC ATT TGT TTC ATT TG 
F2  GTTGAAGAAACAAATATTAGAAGAAC 
R3 CAGT GCTAGC TGC TGT TCT ATA TCT TAA TCT TG 
F4  GAA ACA AAT GGA GAT GGT AAA GGA ATA ACC TTT GAA CAA TTA TAT C 
R5 CTA ATA TTT GTT TCT TCA AC ACC TAC ATT TTC AAA TAC TCG TAC 
F11  CAGT GGATCC AAAAA ATGACAGGTAGTGATGAAG 
R12 ATT CAA ATG ACC TGT TCT TC 
F35  CAAATGAAACAAATGGAGATGGTAAAATTATGAAAAAAAACAATGTACAG 
R36 GTT CTT CTA ATA TTT GTT TCT TCA ACC CAT TGT GGT GAT GCA TTT TTT AAG 
F38  GAAGAACAGGTCATTTGAATATAAAAGTTAACGATTTTAAAAAA 
R41 CAATGCGGCCGCAACCGTTCTATATCTAAGTCTTG 
R42 CAATGCGGCCGCTGCTGTTCTATATCTTAATCTTG 
F119 GTGTGTGTTTAAGAAAAAATATG 
F139 GTAAATAAAAAAAATAATATACAATAAC 
R143 CTAAAAGAATATAAAATATATAAATAT 
R148 AGGGTATCACCTTCAAACTTGACTTCAGCACGTGTCTTGTAG 
R157 CATGTAGCCAAAATATGTG 
F158 CGTTGGCCGATTCATTAATGAAAGGATATTCAGATGATGAG 
R159 GTTATTGTATATTATTTTTTTTATTTACTTACGCTGTTCTATATCTTAATC 
F160 ATATTTATATATTTTATATTCTTTTAGAAAGGCTATTCAGATGATG 
R161  GTTCTTCTCCTTTACTCATAACCGTTCTATATCTAAGTC 
F162  ATGAGTAAAGGAGAAGAAC 
R163 CCTCTTCGCTATTACGCCAGGAGGTTAAAATTCTAAACTATATG 
F164  ATATTTATATATTTTATATTCTTTTAGAAAGGATATAGTGATGATGA 
R165  GTTCTTCTCCTTTACTCATTGCTGTTCTATATCTTAATC 
F177  ATATTTATATATTTTATATTCTTTTAGAAAACAAATTTCTTATCTAAAG 
R178  GTTCTTCTCCTTTACTCATATTCAAATGACCTGTTCTTC 
PCRA_F CTGGCGTAATAGCGAAGAGG 
PCRA_R CATTAATGAATCGGCCAACG 

Annealing  
  
  
  

F-g31 TATTATTTATTTAGTAAAATGGAA 
R-g31 AAACTTCCATTTTACTAAATAAAT 
F-g250 TATTCATAATAAAATTAAGCTGTA 
R-g250 AAACCAGGAACTCTTAAATTTTTT 

PCR gDNA 
  
  
  
  
  
  

F-cg6 GTTCATGCTCCTCAACAAAG 
R-cg6 GAACAAATACATAAGAGCGC 
F119 GTGTGTGTTTAAGAAAAAATATG 
R157 CATGTAGCCAAAATATGTG 
sera5+27 CAATATCATTTGAATCAAACAGTGGT 
sera5 -11 CTTTGCCATCCAGGCTGTTC 
sera5 -25 CCATTGGACTAGAACCTTCAT 
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Chapter 4. Preliminary results about the roles of individual PfHP1 

domains in regulating var gene silencing 

4.1 Aim of study 

As mentioned before, Brancucci and colleagues have employed a PfHP1 knock-

down cell line to show that PfHP1 is required for three important cellular processes: (1) 

progression through schizogony and thus, normal parasite replication; (2) silencing of 

the pfap2-g locus and thus, inhibition of sexual commitment; and (3) var gene 

silencing and thus, ensuring the singular choice of var gene expression (Brancucci et 

al., 2014). In Chapter 3, I have shown that each of three PfHP1 domains is essential for 

(1) the proliferation of asexual blood stage parasites and (2) the silencing of ap2-

g/inhibition of the sexual conversion, which is consistent with the previous results 

(Brancucci et al., 2014).  

Here, I aimed to investigate if individual domains of PfHP1 also play a role in regulating 

var gene silencing, as previously shown for full length PfHP1 (Brancucci et al., 2014). 

My preliminary results showed that an extremely high percentage of stage I 

gametocytes in the generation after rapamycin treatment did not express PfEMP1 in 

all four mutant cell lines: 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge and 3D7/HP1-

∆CSD. My preliminary data suggest a possibility that sexual committed parasites might 

execute alternative mechanism to regulate var gene silencing independent to PfHP1.  

4.2 Methods 

Cell lines used in this study 

The following cell lines were used in this study: 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-

∆Hinge, 3D7/HP1-∆CSD and 3D7/HP1-Control. These cell lines have been generated, 

cultured and induced to express GFP-tagged PfHP1 mutants as described in Chapter 

3 of this thesis. 

Indirect immunofluorescence assay (IFA) 

IFAs were performed on methanol-fixed cells in the progeny of rapamycin-treated 

parasites (30-38h to 40-48 hpi, generation 2) using mouse IgG or IgG1 mAb α-ATS 

(Duffy et al., 2002),1:150; mouse mAb α-Pfs16 (kind gift from Robert W. Sauerwein), 
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1:250; and Alexa Fluor 488-conjugated α-mouse IgG or IgG1 (Molecular Probes), 1:250. 

Images were taken at 63-fold magnification on a Leica DM 5000B microscope with a 

Leica DFC 300 FX camera, acquired via the Leica IM 1000 software, processed using 

ImageJ software [https://imagej.nih.gov/ij/]. For each experiment, images were 

acquired and processed with identical settings. 

4.3 Results  

To address the functional contribution of individual domains of PfHP1 in controlling var 

gene expression, parasites were split at 0-8 hpi in generation 1 and treated either with 

DMSO or RAP. Immunofluorescence imaging was performed to compare the 

expression of PfEMP1 in the progeny of DMSO- and RAP-treated parasites (40-48 hpi, 

generation 2).   

In the 3D7/HP1-Control cell line, the majority of both RAP- and DMSO-treated parasites 

were schizonts and comparable in fluorescence intensity signals for PfEMP1 (Figure 

4.1A). Similarly, approximately 100% of DMSO-treated 3D7/HP1-KO, 3D7/HP1-∆CD, 

3D7/HP1-∆Hinge and 3D7/HP1-∆CSD parasites were schizonts and PfEMP1-positive as 

expected (Figure 4.1A and C). Notably, the proportion of schizonts in the 

corresponding RAP-treated samples dropped to 0.7 - 2.58% and these were also 

positive for PfEMP1. In contrast, undetectable PfEMP1 signal was observed in the rest 

of the parasites in the RAP-treated populations (Figure 4.1A and C).   

In order to characterize if the PfEMP1-negative parasites in these RAP-treated 

populations indeed correspond to early gametocytes, I performed independent Pfs16 

IFAs since the α-ATS and α-Pfs16 antibodies are both mouse-derived monoclonal 

antibodies. The Pfs16 IFAs showed that only ~ 4 to 6% of the progeny of DMSO-treated 

parasites were Pfs16-positive in 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge and 

3D7/HP1-∆CSD cell lines. In contrast, this population was observed at ~85 to 98% in the 

corresponding RAP-treated parasites (Figure 4.1B-C). These extremely high 

percentage of early gametocytes is very similar to the proportion of PfEMP1-negative 

parasites observed in the RAP-treated samples of 3D7/HP1-KO, 3D7/HP1-∆CD, 

3D7/HP1-∆Hinge and 3D7/HP1-∆CSD cell lines. 

Together, two independent immunofluorescence studies showed that at early stage 

of gametocytogenesis, PfEMP1 expression is strongly reduced even in the absence of 

PfHP1.  
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Figure 4.1. PfEMP1 expression is reduced at early stage of gametocytogenesis. (A) 

Representative images showing PfEMP1 expression in the progeny of DMSO- and RAP-

treated PfHP1 truncation mutant and control cell lines (40-48 hpi, generation 2) as 

determined by IFA using α-ATS antibodies recognizing the conserved ATS domain of 

PfEMP1. Nuclei were stained with DAPI. DIC, differential interference contrast. Scale 

bar 5 µm. (B) Representative examples of independent PfEMP1 and Pfs16 IFAs in the 

progeny of DMSO- and RAP-treated 3D7/HP1-KO parasites (40-48 hpi, generation 2) 

as determined by IFA using α-ATS antibodies and α-Pfs16 antibodies. Scale bar 10 µm. 

(C) Proportion of PfEMP1-positive parasites and proportion Pfs16-positive parasites in 

DMSO- and RAP-treated PfHP1 truncation mutant lines (40-48 hpi, generation 2) as 

determined by independent IFAs using α-ATS antibodies and α-Pfs16 antibodies. 

Values were obtained from a single experiment each (>200 iRBCs counted per sample 

except for 3D7/HP1-∆CSD DMSO with >150 iRBCs counted). 

 

In order to better study the expression of PfEMP1 in the early stage I gametocytes, I 

performed a double labelling IFA using α-Pfs16 and α-ATS antibodies simultaneously 

using 3D7/HP1-∆CD parasites as a representative cell line. Although both of α-Pfs16 

and α-ATS antibodies are mouse-derived, α-Pfs16 antibodies mark the 

parasitophorous vacuole membrane (PVM) (Bruce et al., 1994; Eksi and Williamson, 

2011; Kongkasuriyachai et al., 2004; Maier et al., 2009) while α-ATS antibodies visualize 

PfEMP1 that is exported beyond the parasite boundaries (Horrocks et al., 2005; Marti 

and Spielmann, 2013). Hence, using a single secondary labelled anti-mouse IgG 

antibody type still allows the differentiation the two labelling patterns, of which one 

comes from PfEMP1 and the other comes from Pfs16 antigens. As shown in Figure 4.2, 

only schizonts expressed PfEMP1 in both DMSO-/RAP-treated conditions. In contrast, 

neither gametocytes with wild type PfHP1 background (DMSO-treated condition, 

Pfs16-positive parasites) nor the induced gametocytes with mutant PfHP1 background 

(RAP-treated condition, Pfs16-positive parasites) expressed PfEMP1. This result was 

consistent with the observation from the two independent IFAs shown above.  

This preliminary result is somehow contradictory to the result described previously 

where the progeny of PfHP1-GFP-DD knockdown parasites showed increased PfEMP1 

expression because of de-repression of the var gene family (Brancucci et al., 2014). 
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However, in the previous study, the proportion of PfHP1-depleted parasites in the 

population showing upregulated PfEMP1 was not specified. It has been reported that 

approximately 50% of the ring progeny from PfHP1-depleted parasites were early 

stage I- gametocytes (Pfs16-positive) and the rest was arrested trophozoites 

(Brancucci et al., 2014). Hence, this gametocyte subpopulation in the PfHP1-depleted 

parasites was speculated to not express PfEMP1 while the arrested asexual 

trophozoites was speculated to highly express PfEMP1. I have repeated the PfEMP1 

IFA on the 3D7/HP1-GFP-DD line in ON and OFF Shield-1 conditions in order to quantify 

the proportion of parasites that expressing high level of PfEMP1. However, I was 

unsuccessful to generate these results since there have been high background or very 

faint PfEMP1 signal intensity obtained from IFA samples that interfered with evaluation 

of bona fide PfEMP1 signal as well as the quantification. The possible reasons for this 

failure could be the differences in experimental conditions compared to the previous 

study, including the use of different Shield-1 stocks and especially different batches of 

α-ATS antibodies for which I indeed experienced large variabilities in quality (for 

example, one batch with aggregation of antibodies in -20oC storage condition) (data 

not shown).  

Although the results presented in this chapter are preliminary and need to be 

repeated in biological replicates, the PfEMP1 and Pfs16 expression patterns were very 

consistent in all four cell lines, the 3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge and 

3D7/HP1-∆CSD. This initial result therefore suggests that var gene expression during the 

onset of gametocytogenesis is downregulated independently of PfHP1, probably 

because of the low abundance/absence of transcription factor(s) that previously 

activated permissive var locus in asexual stage parasites.  
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Figure 4.2. PfEMP1 and Pfs16 co-labelling in 3D7/HP1-∆CD cell line. (A) Representative 

overview images showing PfEMP1 expression in the progeny of DMSO- and RAP-

treated 3D7/HP1-∆CD at 40-48 hpi, generation 2 as determined by IFA using α-ATS 

antibodies recognizing the conserved ATS domain of PfEMP1. Nuclei were stained with 

DAPI. DIC, differential interference contrast. Scale bar 10 µm. (B) Double labelling IFA 

using α-Pfs16 and α-ATS antibodies for 3D7/HP1-∆CD cell line at 40-48 hpi, generation 

2. The white arrows indicate PfEMP1 staining pattern in schizonts. The green boxes 

indicate Pfs16 staining pattern of stage I gametocytes. The proportion of each 

labelled subpopulation was not determined. Scale bar 10 µm. 
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Chapter 5. Studying PfHP1 function using a genetic 

complementation approach 

 

This chapter presents some initial analyses on the functional contribution of PfHP1 

domains to overall PfHP1 function and the functional conservation of PfHP1 domains 

among different species, using a genetic complementation approach. In this study, I 

employed the previously published PfHP1 knockdown cell line, 3D7/HP1-GFP-DD 

(Brancucci et al., 2014), to ectopically express a series of PfHP1 mutants and evaluate 

their ability to complement  three PfHP1-dependent processes: (1) maintenance of 

mutually exclusive expression of var genes, (2) mitotic progression of asexual blood 

stage parasites and (3) sexual differentiation switch (Brancucci et al., 2014). 

 

5.1 Methods 

Parasite culture and transfection 

3D7/HP1-GFP-DD parasites (Brancucci et al., 2014) were cultured at 5% hematocrit in 

RPMI-1640 medium supplemented with 25 mM HEPES, 100 mM hypoxanthine, 24 mM 

sodium bicarbonate and 0.5% Albumax II, 4 nM WR99210 (WR) and 625 nM Shield-1. 

(Brancucci et al., 2014; Lambros and Vanderberg, 1979; Trager and Jensen, 1976; Voss 

et al., 2006). Transfection was performed as described (Brancucci et al., 2014; Voss et 

al., 2006). 

Transfection cell lines and transfection constructs 

I employed the pBcam-3xHA-Cherry vector (Witmer et al., 2012) to generate a series 

of complementation constructs expressing mutant PfHP1 proteins C-terminally tagged 

with a sequence encoding the 3xHA-CherryFP epitope-fluorophore tag. These 

complementation constructs were expressed under the control of the constitutive P. 

falciparum calmodulin (cam) promoter. The pBcam-3xHA-Cherry vector can be 

selected on blasticidin for stable episomal maintenance. I have successfully 

generated seven such complementation cell lines by transfecting pBcam-3xHA-

Cherry-derived PfHP1 complementation plasmids into 3D7/HP1-GFP-DD parasites. 

They are listed below. 
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(1) 3D7/HP1-Control-HAC that ectopically expresses full-length wild type PfHP1 (aas 1-

266). 

(2) 3D7/HP1-∆CD-HAC that ectopically expresses a PfHP1 mutant consisting only of 

the Hinge and CSD regions (aas 55-266). 

(3) 3D7/HP1-∆Hinge-HAC that ectopically expresses a PfHP1 mutant in which the hinge 

region (aas 75-177) is replaced by a linker polypeptide derived from the ApiAP2 factor 

PfSIP2 (aas 232-254 of PfSIP2 that connect two AP2 domains) (Flueck et al., 2009).  

(4) 3D7/HP1-∆CSD-HAC that ectopically expresses a PfHP1 mutant consisting only of 

the CD and Hinge regions (aas 1-190). 

(5) 3D7/hsHP1-N-HAC that ectopically expresses a chimeric PfHP1 containing, in the 

following order, the human HP1α CD (aas 1-75) followed by the PfHP1 Hinge and CSD 

regions (aas 55-266, encoded by a recodonized pfhp1 sequence, GenscriptTM, see 

Chapter 2 for more details). 

(6) 3D7/Swi6-N-HAC that ectopically expresses a chimeric PfHP1 containing, in the 

following order, the S.pombe Swi6 CD (aas 1-139) followed by the PfHP1 Hinge and 

CSD regions (aas 55-266, encoded by a recodonized pfhp1 sequence, GenscriptTM). 

(7) 3D7/Swi6-C-HAC that ectopically expresses a chimeric PfHP1 containing, in the 

following order, the PfHP1 CD and Hinge regions (aas 1-190, encoded by a 

recodonized pfhp1 sequence, GenscriptTM) followed by the Swi6 CSD region (aas 260-

328). 

 

The corresponding transfection constructs are listed below. 

The pBcam-PfHP1 full-3xHA-Cherry carrying full-length wild type PfHP1 (aas 1-266) was 

obtained from N.Brancucci [N.Brancucci PhD dissertation, 2014] 

To generate the pBcam-∆CD-3xHA-Cherry, a fragment named PfHP1.HingeCSD 

encoding aas 55-266 of the endogenous PfHP1 was amplified from 3D7 gDNA using 

primers 5fwd and 5rev and cloned into the pBcam-3xHA-Cherry plasmid using BamHI 

and NotI and T4 ligase. 

The pBcam-∆Hinge-3xHA-Cherry was constructed as described in Chapter 3 

(Supplementary Information).  
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To generate the pBcam-∆CSD-3xHA-Cherry plasmid, a fragment named 

PfHP1.CDHinge encoding aas 1-190 of the endogenous PfHP1 was amplified from 3D7 

gDNA using primers 2fwd and 2rev and cloned into the pBcam-3xHA-Cherry plasmid 

using BamHI and NotI and T4 ligase.  

The pBcam-HsHP1-N-3xHA-Cherry was constructed as follows. A fragment named 

HsHP1.CD encoding aas 1-75 of the human HP1α was amplified from cDNA of human 

Jurkat cells using primers F6 and R7. A fragment named PfHP1.HingeCSD encoding 

aas 55-266 of recodonized PfHP1 (rePfHP1) was amplified from pUC57-rePfHP1 

(Genscript™) using primers F10 and R3. The resulting hybrid fragment 

HsCD/PfHP1.HingeCSD was amplified by fusion PCR from a mixture of HsHP1.CD and 

PfHP1.HingeCSD PCR products (at 1:100 dilution) using primers F6 and R3 and cloned 

into pBCam-3xHA–Cherry using BamHI and NheI and T4 ligase.  

The pBcam-Swi6-N-3xHA-Cherry was constructed as follows. A fragment named 

Swi6.CD encoding aas 1-139 of the S. pombe Swi6 was amplified from plasmid 

pMB117-Swi6 (kind gift of M. Bühler, Friedrich-Miescher Institute, Basel, Switzerland) 

using primers F8 and R9. The resulting hybrid fragment Swi6CD/PfHP1.HingeCSD was 

amplified from a mixture of Swi6.CD and PfHP1.HingeCSD PCR products (at 1:100 

dilution) by fusion PCR using primers F8 and R3 and cloned into pBcam-3xHA–Cherry 

using BamHI and NheI and T4 ligase.  

The pBcam-Swi6-C-3xHA-Cherry was constructed as follows. A fragment named 

Swi6.CSD encoding aas 260-328 of the S.pombe Swi6 was amplified from plasmid 

pMB117-Swi6 using primers F15 and R16.  The resulting hybrid fragment 

PfHP1.CDHinge/Swi6.CSD was amplified from a mixture of PfHP1.CDHinge and 

Swi6.CSD PCR products (at 1:100 dilution) by fusion PCR using primers F11 and R16 and 

cloned into pBcam-3xHA –Cherry using BamHI and NheI and T4 ligase. 

All primer sequences are listed in Table 1. 

For each of the seven transfections, 100 µg of the corresponding pBcam-3xHA-Cherry-

derived complementation vector described above was electroporated into the 

3D7/HP1-GFP-DD parasite line. Transfectants were selected in the presence of the 

indicated combinations of 625 nM Shield-1 and 4 nM WR99210 (to maintain 3D7/HP1-

GFP-DD parasites stably expressing PfHP1-GFP-DD from the endogenous locus) and 5 

µg/ml BSD (to maintain the pBcam-3xHA-Cherry-derived complementation vector). 
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Once obtained, transfectants were continuously cultured in the presence of 625 nM 

Shield-1, 4 nM WR99210 and 10 µg/ml BSD. 

Western Blot analysis 

Transfectants cultured under ON Shield-1 conditions (625 nM Shield-1, 4nM WR and 10 

µg/ml BSD) were synchronized twice 16 hrs apart to obtain an 8 hrs growth window. 

The parasites were then synchronized at 0-8 hpi generation 1 and split into two 

populations, one cultured with Shield-1 and one without Shield-1. Nuclei were isolated 

at 40-48 hpi generation 1 as described in Chapters 2 and 3. Proteins were detected 

using mouse mAb α-GFP (Roche Diagnostics #11814460001), 1:1’000; rat mAb α-HA 

(3F10, Roche Diagnostics #11867423001), 1:1’000; rabbit α-PfHP1 (Brancucci et al., 

2014), 1:5’000; rabbit α-Histone 4 (Abcam ab10158), 1:10’000.  

Fluorescence microscopy 

IFAs were performed on methanol-fixed cells using the following antibodies: rat mAb 

α-HA (3F10, Roche Diagnostics #11867423001), 1:100; mouse mAb α-GFP (Roche 

Diagnostics #11814460001), 1:100; mouse IgG1 mAb α-ATS (Duffy et al., 2002), 1:150, 

Secondary antibodies: Alexa Fluor 568-conjugated α-rat IgG (Molecular Probes 

#A11077), 1:250; Alexa Fluor 488-conjugated α-mouse IgG (Molecular Probes), 1:250. 

Nuclei were stained with DAPI. Images were taken at 63-fold magnification on a Leica 

DM 5000B microscope with a Leica DFC 300 FX camera, acquired via the Leica IM 

1000 software, processed using ImageJ software [https://imagej.nih.gov/ij/]. For each 

experiment, images were acquired and processed with identical settings.   

Parasite multiplication assay  

Parasites were tightly synchronized (0-8 hpi, generation 1), split into two equal 

populations, of which one half was maintained with 625 nM Shield-1, 4 nM WR99210 

and 10 µg/ml BSD (negative control) and the other half was induced for the depletion 

of endogenous PfHP1-GFP-DD by Shield-1 removal (4 nM WR99210 and 10 µg/ml BSD). 

Giemsa smears were prepared to determine the parasitaemia at 16-24 hpi 

(generation 1). Giemsa-stained smears were prepared every second day onwards for 

three generations. Parasitaemia was counted by visual inspection of Giemsa-stained 

blood smears (≥ 1’000 RBCs counted per experiment). Multiplication rates were 

determined as the parasitaemia observed in the following generation divided by the 

parasitaemia observed in the previous generation. The extrapolative growth cure was 

generated using a starting parasiteamia at 0.1%. 
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Gametocyte conversion assay 

Parasites were tightly synchronized (0-8 hpi, generation 1), split into two equal 

populations, of which one half was maintained with 625 nM Shield-1, 4 nM WR99210 

and 10 µg/ml BSD (negative control) and the other half was induced for the depletion 

of endogenous PfHP1-GFP-DD by Shield-1 removal as described above. 

Gametocytaemia and arrested parasitaemia was determined on day seven after 

Shield-1 removal by visual inspection of Giemsa-stained blood smears. Sexual 

conversion rates were determined as the gametocytaemia observed on day seven 

as a proportion of the total parasitaemia observed at 16-24 hpi in generation 2. 

Arrested parasitaemia was determined as the arrested trophozoites observed on day 

seven as a proportion of the total parasitaemia observed at 16-24 hpi in generation 2. 

5.2 Results and discussion 

Validation of complementation PfHP1 cell lines 

To begin studying the in vivo functional contribution and conservation of structural 

domains of PfHP1, I employed the conditional PfHP1 knockdown cell line, 3D7/HP1-

GFP-DD (Brancucci et al., 2014) and expressed a series of episomal complementation 

PfHP1 constructs cloned into the pBcam-3xHA-Cherry vector (Witmer et al., 2012). 

There were seven complementation cell lines generated successfully. The control cell 

line is 3D7/HP1-Control-HAC. Three truncated PfHP1 mutant cell lines are 3D7/HP1-

∆CD-HAC, 3D7/HP1-∆Hinge-HAC and 3D7/HP1-∆CSD-HAC. Three chimeric PfHP1 

mutant cell lines are 3D7/hsHP1-N-HAC, 3D7/Swi6-N-HAC and 3D7/Swi6-C-HAC. The 

generation of complementation cell lines and transfection constructs are explained 

in detail in the Methods section above and in Figure 5.1.  
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Figure 5.1. The generation of PfHP1 complementation cell lines. (A) Structure of PfHP1, 

Swi6 and hsHP1a (Flueck et al., 2009; Hayakawa et al., 2003; Wang et al., 2000). (B) 

Names of the complementation cell lines (left) and schematics of the ectopically 

expressed PfHP1 protein products (right) used in this study. The red oval represents 

3xHA-CherryFP. The dashed lines represent deletions. The numbers indicate positions 

of amino acid residues. The blue, green, orange and brown colors represent domains 

from PfHP1, HsHP1, Swi6 and PfSIP2, respectively. 

 

When transfectants were obtained, expression of ectopic proteins was analyzed by 

immunoblot using whole parasite protein lysates harvested at 40-48 hpi in generation 

1. In the immunoblot analysis, the α-HA antibodies recognize ectopic proteins which 

were C-terminally tagged with 3xHA-CherryFP (or shortly HAC-tag), the α-GFP 

antibodies recognize endogenous the PfHP1-GFP-DD protein at ~70 KDa. Note that 

the rabbit polyclonal α-PfHP1 antibodies recognize mostly the CD and the Hinge 

region of PfHP1 (I. Niederwieser, personal communication). The immunoblot analysis 

with α-HA antibodies revealed the correct expression of all seven ectopic PfHP1 
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mutants: (1) HP1-Control-HAC at ~63KDa; (2) HP1-∆CD-HAC at ~58KDa; (3) HP1-

∆Hinge-HAC at ~54.9KDa; (4) HP1-∆CSD-HAC at ~55.1KDa; (5) hsHP1-N-HAC at 

~66KDa; (6) Swi6-N-HAC at ~73.5KDa; (7) Swi6-C-HAC at ~72KDa. Protein molecular 

weight was predicted using Protein Calculator free software 

(http://protcalc.sourceforge.net/). As shown in Figure 5.2A, under ON Shield-1 

conditions (1) all cell lines expressed similar levels of the endogenous PfHP1-GFP-DD 

shown by analysis with α-GFP; (2) similar amounts of protein lysates were loaded as 

shown by analysis with α-H4 (histone H4); (3) the endogenous and ectopic PfHP1s in 

the 3D7/HP1-Control-HAC were expressed at similar levels shown by the analysis with 

α-PfHP1 antibodies, giving an indirect standard to compare the expression level of 

other ectopic PfPH1 mutants to that of endogenous PfHP1. However, ectopic PfHP1s 

from the other six complementation cell lines were expressed at different levels (Figure 

5.2A). To be specific, the expression level of ectopic PfHP1s from 3D7/HP1-∆CSD-HAC, 

3D7/hsHP1-N-HAC; 3D7/Swi6-N-HAC and 3D7/Swi6-C-HAC were similar to that of 

endogenous PfHP1-GFP-DD. In contrast, the expression levels of ectopic PfHP1s from 

3D7/HP1-∆CD-HAC and 3D7/HP1-∆Hinge-HAC were much lower than that of 

endogenous PfHP1-GFP-DD. In order to possibly increase the expression level of 

ectopic PfHP1s, PfHP1 mutant cell lines were challenged with a higher amount of BSD 

up to 20 µg/ml. However, under this condition, parasites revealed low multiplication 

rates, prolonged cell cycle and cell death (data not shown). Therefore, the culture 

condition with 10 µg/ml of BSD was selected as the standard condition for the optimal 

expression of ectopic PfHP1 mutants. In brief, the immunoblot assay showed that with 

the low level expression of ectopic PfHP1 mutants in 3D7/HP1-∆CD-HAC and 3D7/HP1-

∆Hinge-HAC parasites, these cell lines were not suitable for further studies, while the 

3D7/HP1-Control-HAC, 3D7/HP1-∆CSD-HAC, 3D7/hsHP1-N-HAC, 3D7/Swi6-N-HAC and 

3D7/Swi6-C-HAC were suitable for further analysis.  

In parallel to the Western blot analysis, localization IFA studies were also performed at 

trophozoite stage (around 24-32 hpi, generation 1) to analyze the localization of 

ectopic PfHP1 mutants. In the presence of endogenous PfHP1-GFP-DD (ON Shield-1 

condition), ectopic PfHP1s from 3D7/HP1-Control-HAC, 3D7/hsHP1-N-HAC, 3D7/Swi6-

N-HAC, 3D7/HP1-∆CD-HAC and 3D7/HP1-∆Hinge-HAC were concentrated into foci at 

nuclear periphery indistinguishable to endogenous PfHP1. In contrast, when the PfHP1 

CSD domain is deleted (3D7/HP1-∆CSD-HAC) or replaced by the CSD from Swi6 

(3D7/Swi6-C-HAC), the heterochromatin localization was hampered at different 
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levels. First, in the 3D7/Swi6-C-HAC line a subpopulation (percentage not determined) 

showed cytosolic localization and punctate nuclear localization, i.e. not 

heterochromatin-restricted localization. Second, in the 3D7/HP1-∆CSD-HAC line the 

CSD-truncated PfHP1 localised to the cytosol (Figure 5.2B). Together, these results 

indicate an important role of the PfHP1 CSD domain in targeting the protein to 

nucleus. In addition, the results also suggest that the replacement of the PfHP1 CD 

domain with that from other HP1 proteins (Swi6 and hsHP1a) could retain the correct 

localization of PfHP1, which is possibly obtained by dimerization of chimeric PfHP1s 

with endogenous PfHP1 via the CSD. On the contrary, it seems that replacement of 

the PfHP1 CSD domain with that from Swi6 only partly fulfilled this function. Thus, the 

IFA results corroborated the central role of the CSD domain in HP1 homodimerisation 

(Cowieson et al., 2000), specific for each species.  
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Figure 5.2. Validation of PfHP1 complementation cell lines. (A) Expression of ectopic 

PfHP1s in transgenic cell lines. α-HA antibodies recognized ectopic PfHP1 proteins, α-

GFP antibodies recognized endogenous PfHP1-GFP-DD protein at ~70 KDa. α-H4 

antibodies recognized histone H4 and used for loading control. α-HP1 antibodies 

recognized both endogenous PfHP1-GFP-DD and ectopic PfHP1 proteins. The asterisks 

represent ectopic PfHP1s recognized by α-PfHP1 antibodies (note that the α-HP1 

antibodies do not efficiently bind to the PfHP1 CSD domain). The hyphens represent 

endogenous PfHP1-GFP-DD protein at ~70 KDa. (B) Localization of ectopic PfHP1s in 

the presence of endogenous PfHP1 in trophozoites (ON Shield-1). Scale bar 10 µm. 
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In the absence of endogenous PfHP1-GFP-DD (OFF Shield-1 cultures, 24-32 hpi, 

generation 2), in 3D7/HP1-Control-HAC and 3D7/hsHP1-N-HAC parasites ectopic 

PfHP1s localized to heterochromatin foci. In contrast, the hybrid PfHP1 protein in the 

3D7/Swi6-C-HAC line mislocalized to cytoplasm and no heterochromatin foci were 

observed (Figure 5.3 left panel). Unfortunately, in 3D7/Swi6-N-HAC, 3D7/HP1-∆CD-

HAC, 3D7/HP1-∆Hinge-HAC and 3D7/HP1-∆CSD-HAC parasites the signal intensity for 

CherryFP-tagged PfHP1 mutants was not above the background so that the 

localization of these ectopic PfHP1 mutants could not be determined in parasites 

depleted of wild type PfHP1 (Figure 5.3 left panel). This was expected for 3D7/HP1-

∆CD-HAC and 3D7/HP1-∆Hinge-HAC parasites that expressed the ectopic PfHP1 

mutants at very low levels (see Figure 5.2 above). However, the ectopic PfHP1 mutants 

in 3D7/Swi6-N-HAC and 3D7/HP1-∆CSD-HAC were expressed at levels similar to that of 

endogenous PfHP1-GFP-DD so it was unexpected that these two HP1 mutants could 

not be detected by IFA. Hence, I asked if there were some problems during the IFA 

performance that did not allow the visualization of these ectopic PfHP1 mutants under 

OFF Shield-1 conditions. To this end, I conducted an immunoblot analysis using whole 

parasite protein lysates from the 3D7/HP1-Control-HAC, 3D7/Swi6-N-HAC and 

3D7/HP1-∆CSD-HAC lines to examine protein expression levels in both ON and OFF 

Shield-1 conditions. As shown in Figure 5.4, the immunoblot analysis revealed that in 

OFF Shield-1 condition, when endogenous PfHP1-GFP-DD was depleted, the ectopic 

PfHP1s in 3D7/Swi6-N-HAC and 3D7/HP1-∆CSD-HAC lines were expressed at extremely 

low levels compared to that of the 3D7/HP1-Control-HAC line. In ON Shield-1 

condition, the ectopic PfHP1s in 3D7/Swi6-N-HAC and 3D7/HP1-∆CSD-HAC lines were 

expressed at lower levels compared to that of the 3D7/HP1-Control-HAC line (Figure 

5.4), which was different to previous observation (Figure 5.2). Thus, the 3D7/Swi6-N-

HAC and 3D7/HP1-∆CSD-HAC expressed ectopic PfHP1 mutants at uneven levels. 

Therefore, alternative transgenic lines with higher and unfluctuating expression level 

of ectopic PfHP1 variants would be needed for the localization study and further 

studies of PfHP1 mutants. The other cell lines, 3D7/hsHP1-N-HAC and 3D7/Swi6-C-HAC 

should also be re-examined in term of ectopic PfHP1 expression. Nevertheless, the 

immunofluorescence study once again emphasized that (1) CD replacement does 

not severely alter the capacity of PfHP1 to localize to heterochromatin; and (2) CSD 

replacement cannot fulfil this function, probably because of the differences in CSD-

specific binding properties present in each species. 
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Figure 5.3. Localization of ectopic PfHP1 mutants and PfEMP1 expression in PfHP1 

complementation cell lines. (A) Localization study of ectopic PfHP1 mutants. (B) 

PfEMP1 expression of complementation cell lines in the presence (ON Shield-1) and 

absence (OFF Shield-1) of endogenous PfHP1-GFP-DD at 24-32 hpi, generation 2.  

 

 

Figure 5.4. Ectopic PfHP1 expression in some PfHP1complementation cell lines. 

Immunoblot analysis revealed low expression of ectopic PfHP1 mutants in 3D7/HP1-

∆CSD-HAC and 3D7/Swi6-N-HAC compared to that of the 3D7/HP1-Control-HAC line.  

 

In a recent study, it has been observed in PfHP1-depleted 3D7/HP1-GFP-DD parasites 

that (1) PfEMP1 expression is upregulated because of the derepression of var gene 

family; (2) sexual conversion rate is increased because of the derepression of the 

pfap2-g gene, which encodes for PfAP2-G, a master regulator of sexual differentiation 

(Kafsack et al., 2014) and (3) a subpopulation of parasites arrested at the trophozoite 

stage as a result of a failure in DNA replication preventing progression through 

schizogony (Brancucci et al., 2014). In parallel with the localization study, I investigated 

the functional contribution and conservation of the CD, hinge and CSD domains of 

PfHP1 in these three main PfHP1-dependent processes (var gene silencing, mitotic 

proliferation, sexual commitment). 

First, to probe the ability of PfHP1 mutants in maintaining singular choice of var gene, 

IFAs were performed to compare the expression levels of PfEMP1 in the progeny of ON 

and OFF Shield-1 parasites at 24-32 hpi in generation 2. As shown in Figure 5.3 (right 
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panel), in both the ON and OFF Shield-1 conditions, the 3D7/HP1-Control-HAC cell line 

expressed PfEMP1 at low level, represented by comparable fluorescence intensity. As 

expected, in the ON Shield-1 condition, the other complementation cell lines 

expressed comparably low levels of PfEMP1 similarly to that seen for the control cell 

line. In contrast, in the OFF Shield-1 condition strong upregulation of PfEMP1 expression 

was observed for all six other complementation lines 3D7/HP1-∆CD-HAC, 3D7/HP1-

∆Hinge-HAC, 3D7/HP1-∆CSD-HAC, 3D7/hsHP1-N-HAC, 3D7/Swi6-N-HAC and 3D7/Swi6-

C-HAC. This result is similar to the result previously presented for the PfHP1-depleted 

cell line (Brancucci et al., 2014).  

 

Figure 5.5. Phenotypes of PfHP1 complementation cell lines. (A) Growth curves of three 

PfHP1 complementation cell lines and the control cell line over three generations 

under ON/OFF Shield-1 condition. Values were obtained from one experiment (>1000 

RBCs counted for each sample). (B) Sexual conversion rates and proportion of 

arrested trophozoites determined on day seven after Shield-1 removal in the OFF 

Shield-1 population of three complementation cell lines. Values represent mean of 

two independent experiments (>2000 cells counted for each sample).   Error bars 

represent SD. n.d means not determined.  
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Second, I evaluated the growth phenotype of the PfHP1 complementation cell lines 

by determining replication rates over three consecutive generations. In the 3D7/HP1-

Control-HAC line, parasites in the ON and OFF Shield-1 condition showed a highly 

comparable rate of multiplication as expected (Figure 5.5A). Meanwhile, in the 

3D7/hsHP1-N-HAC, 3D7/Swi6-N-HAC and 3D7/Swi6-C-HAC lines, parasites in the OFF 

Shield-1 condition consistently showed a proliferation defect in the cycle after Shield-

1 removal (generation 2) (Figure 5.5A). From those OFF Shield-1 populations, I 

obtained approximately 31% of arrested trophozoites at day seven after Shield-1 

removal (Figure 5.5B). These phenotypes are again similar to the growth defect of the 

3D7/HP1-GFP-DD line under OFF Shield-1 condition as described previously (Brancucci 

et al., 2014). 

Third, I examined a possible role of chimeric PfHP1s in controlling pfap2-g silencing by 

examining the sexual commitment rates in three PfHP1 complementation cell lines, 

3D7/hsHP1-N-HAC, 3D7/Swi6-N-HAC and 3D7/Swi6-C-HAC. As shown in Figure 5.5B, 

the gametocyte populations comprised of approximately 41-51% of all infected RBCs 

in the OFF Shield-1 populations. These high rates of sexual commitment are 

comparable to that of the PfHP1-depeleted parasites (Brancucci et al., 2014). 

On the one hand, these preliminary results seemingly suggest that (1) full-length PfHP1, 

or in other words, every single domain of PfHP1 is required for normal growth of asexual 

parasites as well as for controlling singular choice of var gene; (2) the replacement of 

either CD or CSD domain with that of human HP1α or S. pombe Swi6 fails to restore 

PfHP1’s roles in controlling cell cycle progression, var- and ap2-g gene silencing, or in 

other words, the CD and CSD functions are not conserved among P. falciparum, 

fission yeast and human. On the other hand, it is worth noting that HP1 operates 

position-effect variegation in a dose-dependent manner (Eissenberg et al., 1990; 

Eissenberg et al., 1992). Since the two independent immunoblots showed fluctuating 

and/or low expression levels of ectopic PfHP1 mutants in the major of transgenic cell 

lines (3D7/HP1-∆CD-HAC and 3D7/HP1-∆Hinge-HAC, 3D7/HP1-∆CSD-HAC and 

3D7/Swi6-N-HAC), the dosage effect of PfHP1 possibly explained the failure of ectopic 

PfHP1 mutants in fulfilling wild type PfHP1 functions. As mentioned above, there needs 

alternative transgenic cell lines with higher and unfluctuating expression level of PfHP1 

mutants for further studies in order to obtain firm conclusions on the functional 

contribution and conservation of PfHP1 domains among species. Nevertheless, the 

preliminary localization study indicated an important role of the PfHP1 CSD domain in 
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targeting the protein to nucleus and this function is underlined by the 

homodimerization and/or interaction that is specific for each species. This result is 

consistent with investigated role of CSD presented in Chapter 3 of this thesis. 

 

Table 1. List of primers 

Application Primer Sequence 5’-3’ 
PCR cloning  
  
  
  
  
  
  
  
  

2wd CAGT GGATCCAAAAAATGACAGGGTCAGATGAAGA 
2rev CAGTGCGGCCGCATTTAAATGTCCAGTTCTTCTAA 
5fwd CAGT GGATCCAAAAA ATGACAGGGTCAGATGAAGA 
5rev CAGTGCGGCCGCATTTAAATGTCCAGTTCTTCTAA 
R3 CAGTGCTAGCTGCTGTTCTATATCTTAATCT TG 
F6 CAGTGGATCCAAAAAATGGGAAAGAAAACCAAGCGGAC 
R7 GAAATTTGTTTTTAATGATTCCATCTCCTTCATCTTCTTATAC 
F8 CAGTGGATCCAAAAAATGAAGAAAGGAGGTGTTC 
R9 GAAATTTGTTTTTAATGATTCCATTGGTCTTCCTCCATGTTC 
F10 ATGGAATCATTAAAAACAAATTTC 
F15 GAAGAACAGGTCATTTGAATGTTAAACAAGTAGAAAACTATG 
R16 CAGT GCTAGCTTCATTTTCACGGAACGTTAAG 
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Chapter 6. General discussion and Outlook   

6.1 PfHP1 phosphorylation and speculation 

It has been well observed in other model eukaryotes that HP1 is subject to 

phosphorylation to regulate its various functions including progression through mitosis 

(Chakraborty and Prasanth, 2014; Hiragami-Hamada et al., 2011) and 

heterochromatic gene silencing (Hiragami-Hamada et al., 2011; Shimada et al., 2009; 

Zhao and Eissenberg, 1999; Zhao et al., 2001). The hinge domain of HP1 has been 

known for DNA/RNA binding activity in the human, mouse and Xenopus laevis HP1 

family proteins (Meehan et al., 2003; Muchardt et al., 2002; Sugimoto et al., 1996). In 

P. falciarpum, most of the phosphosites in PfHP1 identified by MS/MS intriguingly 

clusters in the hinge region, proposing a possible link between hinge domain 

phosphorylation and PfHP1 function at first impression.  

Focusing on investigating the role of the PfHP1 hinge phosphorylation in parasite 

biology in vivo, I have successfully applied the CRISPR/Cas9-mediated genome 

editing technique to generate a number of conditional PfHP1 phospho-mutants 

based on the DiCre/LoxP system. One of the advantages of this method is the 

conditional expression of the PfHP1 mutants in absence of wild type PfHP1, ensuring 

that dimerization between wild type and mutated PfHP1 does not occur. Thus, the 

system allows precise interpretation on the localization of PfHP1 mutants. Although 

western blot results showed high expression of PfHP1 phosphomutants and absence 

of endogenous PfHP1 (Chapter 2 of this thesis), I did not observe any clear differences 

in the localization of phosphomutated PfHP1s compared to wild type PfHP1 in my IFAs 

as well as in the three major PfHP1-dependent processes of var gene silencing, sexual 

commitment and S-phase entry (Brancucci et al., 2014). 

Considering the methodology for studying in vivo function of PfHP1 phosphorylation in 

particular, and protein phosphorylation in general, alanine is largely used as a non-

phosphoryltable residue to substitute serine, and is a powerful approach to mimic the 

effect of non-phosphorylation (Chen and Cole, 2015). Although serine and alanine 

are both small amino acids, serine is polar amino acid, meaning it is hydrophilic, while 

alanine is non-polar and hydrophobic. Furthermore, the side chain from serine can 

form hydrogen bonds with a variety of polar substrates in contrast to the non-active 
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side chain from alanine (Chen and Cole, 2015). The serine-to-alanine substitution 

might, therefore, alter the hydrophobicity or secondary structure of the PfHP1 hinge 

region. However, since the hinge region is unstructured (Lomberk et al., 2006), it is 

possible that the serine-to-alanine substitution does not largely affect PfHP1 global 

structure, hence, PfHP1 functions. In my study, all phosphomutants (3D7/HP1-3M and 

3D7/HP1-HIM) retain PfHP1 functions, suggesting that the serine-to-alanine 

substitutions did not negatively impact on PfHP1 function. 

So, the question is: what role do these phosphosites in the hinge region play? I raise a 

hypothesis that the phosphorylation of PfHP1 hinge domain might contribute to 

regulate PfHP1 interaction with (1) DNA/RNA and/or (2) a so far unknown interactor. 

The first hypothesis could be tested in vitro by mobility shift electrophoresis assay - 

EMSA using purified recombinant wtPfHP1 and hinge-phosphomutated PfHP1s. The 

second hypothesis could be tested by PfHP1 pull-down experiments between the 

DMSO- and RAP-treated conditions using the 3D7/HP1-HIM cell line. However, such 

factors could appear in only a certain stage among many stages during the P. 

falciparum life cycle, so nuclear protein extraction should be conducted in time 

course. Together with the fact that no major effects were observed by the non-

phosphorylatable PfHP1 hinge domain during blood stages, such pull-down 

experiments should also be performed in mosquito stage of the parasites.  Beside the 

localization, interaction and the three major PfHP1-dependent cellular processes, the 

function of PfHP1 hinge phosphorylation could be tested on the fitness of parasites 

during cellular stress such as heat shock or anti-malaria drug susceptibility. 

Of course, with the experimental design system and “knock-in” technique I 

established by the CRISPR/Cas9 and DiCre/loxP systems, my study provides an elegant 

approach to allow studying the functional contribution of other phosphosites within 

the PfHP1 CD and CSD domains. One of the most interesting phosphosite to me is S206, 

whose position is next to a predicted NLS motif (aas 201-204) residing in the CSD region 

(Chapter 3 of this thesis). It is worth noting that the S206 residue was detected only 

once in our four MS/MS experiments mapping phosphorylated residues in native 

PfHP1-GFP purified by immunoprecipitation (IP) from protein extracts of blood stage 

parasites (Bui et al., manuscript submitted). The apparent low frequency of the S206 

phosphorylation is possibly due to its phosphorylation state occurring in a narrow time 

window or in a very small subpopulation of the parasites. From this point of view, the 

phosphorylation state of S206 itself in the CSD domain possibly regulates the 
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interaction of PfHP1 with other effectors to modulate a special process occurring only 

in such a short time period or small subpopulation. To enlighten this hypothesis, a cell 

line carrying a serine-to-alanine substitution at S206 could be easily generated. It is 

certainly worth to generate a phosphomimetic control cell line of by serine-to-

glutamate substitution (Chen and Cole, 2015; Hiragami-Hamada et al., 2011; Shimada 

et al., 2009; Zhao and Eissenberg, 1999)  at S206 in order to compare the effects of 

phosphorylation (DMSO control condition) versus constitutive phosphorylation (serine-

to-glutamate) and non-phosphorylation (serine-to-alanine). 

In summary, successful identification of PfHP1-associated processes with PfHP1 

phosphorylation will undoubtedly contribute to our understanding about PfHP1 and 

its function in malaria pathology. 

6.2 Functional contribution of PfHP1 individual domains and speculation 

While the hinge phosphorylation is likely not involved in PfHP1 function during the 

parasitic IDC (Bui et al., manuscript submitted), it can be predicted that hinge domain 

replacement should not influence PfHP1 functions. In fact, the replacement of PfHP1 

hinge domain by PbHP1 hinge domain retained PfHP1 function (Chapter 3 of this 

thesis). It is probably because of the high similarity in length (the PbHP1 hinge domain 

is 15 residues longer than the PfHP1 hinge domain) and in the sequences (Chapter 3 

of this thesis). However, the replacement of PfHP1 hinge domain by a shorter linker 

prevented PfHP1 heterochromatin localization and induced gametocytogenesis 

(Chapter 3 of this thesis). Furthermore, when the hinge domain was preserved and the 

CD was partly shortened (deletion of residues 30-58, 3D7/HP1-∆CD line), 

heterochromatin targeting was also hampered, probably because of the 

abolishment in H3K9me3 binding ability. Together, these results emphasized the CD 

and hinge regions as targeting module of PfHP1 to heterochromatin. In addition, this 

function also likely depends on the length of the hinge domain as implied in an in vivo 

study in S. pombe (Wang et al., 2000). In S. pombe, when the hinge domain was 72-

residues shortened to the length of mouse HP1α (M31), the truncated protein still fully 

functioned as opposed to a longer removal of 95 residues in the hinge that resulted in 

a major reduction of Swi6 functions in normal zygote asci formation and mitotic 

stability (Wang et al., 2000).  

In my study, I tackled the functional contribution of the hinge domain by the 

substitution of the hinge domain with a short linker from another protein (PfSIP2). At first 
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glance, this replacement was a good solution since the small linker between two AP2 

domains of PfSIP2 has fulfilled the purpose of mimicking a spacer between CD and 

CSD domain from PfHP1. However, going beyond this aim and in order to incorporate 

other scientific questions, for example which residues of the hinge domain are 

essential for PfHP1 function or to what extent the hinge domain reduction in length is 

tolerable for PfHP1 functions, my approach employed here cannot answer. In 

general, the insertion of another gene fragment into pfhp1 could interfere with 

downstream analysis, for example the interpretation of localization results since PfSIP2 

also localizes to nucleus at heterochromatin loci and co-localizes with PfHP1 (Flueck 

et al., 2009). Fortunately, PSORTII prediction did not reveal any NLS in the PfSIP2 linker. 

In any case, to fulfil the research aims more comprehensively, the methodology would 

be more optimal to preserve PfHP1 hinge sequences and study its functional 

contribution by a series of hinge deletion. 

In summary, although there have been some disadvantages in the method applied, 

my study still implies the essence of the CD-hinge region in targeting PfHP1 to 

heterochromatin, in which the contribution of the hinge domain as a spacer is still an 

open question that can be investigated in future.  

6.3 PfHP1 and var gene regulation during gametocytogenesis 

Chronic malaria is caused by the persistence of the parasites during blood stage 

infection (Buffet et al., 2011; Cowman et al., 2016; Kyes et al., 2001). The underlying 

reason for this persistence is the antigenic variation of the variant surface adhesion 

antigens, especially PfEMP1 expressing on iRBCs that allows immune evasion (Buffet et 

al., 2011; Cowman et al., 2016; Kyes et al., 2001). Further, PfEMP1 also mediates 

parasite rosetting (attachment of iRBCs to uninfected RBCs and the cytoadhesion to 

the microvasculature (Cowman et al., 2016; Newbold et al., 1997; Reeder and Brown, 

1996; Rowe et al., 2009). Once sequestered, the parasites escape from splenic 

clearance, causing severe symptoms (Buffet et al., 2011; Cowman et al., 2016; Kyes 

et al., 2001). Thus, PfEMP1 is considered the major virulence factor of P. falciparum 

and the study on controlling mechanisms of var gene expression would contribute to 

understanding on pathology and assist malaria prevention. PfEMP1 is encoded by the 

var gene family that contains 60 members but only one var gene is transcribed by a 

single parasite (Dzikowski and Deitsch, 2009; Scherf et al., 1998; Voss et al., 2006). This 

is known as mutually exclusive expression. The expression switch of PfEMP1/var gene 
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in mutually exclusive expression is a key component of antigenic variation (Reeder 

and Brown, 1996; Scherf et al., 2008). The mutually exclusive expression of var genes 

has been shown to be regulated by different epigenetic mechanisms including 

lncRNAs (Amit-Avraham et al., 2015; Jiang et al., 2013; Ralph et al., 2005), chromatin 

structure changes involving histone variants (Petter et al., 2011; 2013) and histone post-

translational modifications (Lopez-Rubio et al., 2007; Westenberger et al., 2009), 

subnuclear compartmentalisation/genome organization (Brolin et al., 2009; Marty et 

al., 2006; Ralph et al., 2005; Voss et al., 2006), histone-modifying enzymes like HDACs 

(Duraisingh et al., 2005; Tonkin et al., 2009), HKMTs (Jiang et al., 2013; Volz et al., 2012)  

and PfHP1 (Brancucci et al., 2014). Among the epigenetic factors that maintain 

singular choice of var gene expression, PfHP1 has been shown to be a key regulator 

of antigenic variation as conditional depletion of PfHP1 (3D7/HP1-GFP-DD in OFF 

Shield-1 condition) disrupted transcriptional silencing of almost all of var genes as well 

as the ap2-g gene encoding for PfAP2-G (Brancucci et al., 2014). In repressive state, 

internal and subtelomeric var genes were tethered at nuclear periphery while in 

permissive state, an actively transcribed var gene was disassociated with telomeric 

clusters and repositioned to another site of the nuclear periphery (Ralph et al., 2005; 

Voss et al., 2006). Interestingly, using the same PfHP1-depleted cell line (3D7/HP1-GFP-

DD in OFF Shield-1 condition) and applying the Hi-C (chromosome conformation 

capture coupled with next-generation sequencing) technique, recently Bunnik and 

colleagues showed a complete loss of tethering between internal and subtelomeric 

var genes, suggesting a role for PfHP1 in maintaining the structure of repressive var 

clusters (Bunnik et al., 2018). While these studies clearly demonstrated the important 

role of PfHP1 in derepression of var genes, I still propose some aspects need to be 

revisited. First, is there any correlation between the induction in var gene transcription 

and PfEMP1 protein translation? Brancucci and colleagues revealed the hyper-

expression of PfEMP1 in the PfHP1-depleted cell line both by IFA and by immunoblot 

analysis. However, since there are two subpopulations in the investigated progeny of 

PfHP1-depleted parasites (approximately 50% each of arrested trophozoites and early 

gametocytes), it is unclear whether both of the two subpopulations hyper-expressed 

PfEMP1. In my preliminary results about the expression of PfEMP1, I consistently 

observed lack of PfEMP1 expression in the progeny of all RAP-treated PfHP1-GFP 

mutant cell lines (3D7/HP1-KO, 3D7/HP1-∆CD, 3D7/HP1-∆Hinge and 3D7/HP1-∆CSD). 

Hence, my preliminary results are seemingly in contrast to the results previously 
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presented (Brancucci et al., 2014). The major difference between the PfHP1 depleted 

cell line (3D7/HP1-GFP-DD in OFF Shield-1 condition) and the PfHP1 knockout cell line 

(3D7/HP1-KO in RAP treated condition) resides in the sexual conversion rate that the 

former one produced ~50% (Brancucci et al., 2014) while later one produced up to 

nearly 100% gametocytes (Chapter 3-4 of this thesis). Therefore, I speculate that in 

PfHP1 depleted cell line, the subpopulation hyper-expressing PfEMP1 likely derives 

from the arrested trophozoites. To confirm the observation of my study, microarray or 

qRT-PCR would be practical methods to examine the var transcription profile in 

gametocytes produced by PfHP1 knockout cell line. Nevertheless, my preliminary 

results suggest an unknown mechanism employed by early gametocytes to suppress 

the expression of var/PfEMP1 even in a PfHP1-depleted background. In other words, 

during onset of gametocytogenesis the repression of var gene transcription possibly 

follows another regulatory mechanism that is PfHP1-independent. The downregulation 

of var gene at the onset of gametocytogenesis could be due to the low abundance 

(or absence) of the transcription factor(s) activating var gene, which is previously 

abundant in asexual stage parasites. Further, this result is highly consistent with 

previously reported result (Tibúrcio et al., 2013). Gametocytes with wild type PfHP1 

background have been shown to minimally express PfEMP1 on the membrane of 

knob-less gametocyte-iRBCs (Tibúrcio et al., 2013). It has also been shown that stage 

I/II gametocyte-iRBCs were unable to bind to the host ligands used by PfEMP1 

expressed by the asexual parasites to bind endothelial cells such as ICAM1 and CD36 

by cytoadhesion assays (Tibúrcio et al., 2013). Although a defined subset of 

nonsubtelomeric type C var genes were selectively transcribed during gametocyte 

development (early stage II and III) independent to the phenotype of asexual 

progenitors (Sharp et al., 2006; Tibúrcio et al., 2013), global transcription of var genes 

was dramatically reduced at early gametocytogenesis in 3D7 (Tibúrcio et al., 2013). 

Additionally, the PfEMP1 reduction phenotype is not surprising because of the need 

of low antigenicity of immature gametocytes during their long residence in the bone 

marrow in order to avoid destruction by the reticulo-endothelial system (Alano, 2007; 

Rogers et al., 2000).  

In a PfHP1-depleted cell line with almost all of var gene transcription upregulated 

(Brancucci et al., 2014), the proportion of parasites hyper-expressing PfEMP1 was not 

specified (Brancucci et al., 2014). As there is limitation for the physical purification of 

gametocytes stage I and arrested trophozoites as well as changes in experimental 
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conditions as mentioned before (chapter 4 of this PhD thesis), I was not able to repeat 

the PfEMP1 expression experiments of the 3D7/HP1-GFP-DD cell line (Brancucci et al., 

2014). I therefore suggest experimental methods that would allow to resolve these 

obstacles. The first and easier method is to repeat a double-labelling IFA using α-ATS 

antibodies recognizing the conserved ATS domain of PfEMP1 and antibodies 

recognizing the early gametocyte marker; Pfs16 (Bruce et al., 1994) and PfGEXP5 

(Tibúrcio et al., 2015) are such early gametocyte markers. However, antibodies 

available for those are all mouse-derived (Tibúrcio et al., 2015), causing problems for 

co-labelling with the mouse-derived α-ATS antibodies. We later determined by ELISA 

that α-ATS is mouse IgG1-κ antibodies while α-Pfs16 is mouse IgG1-λ antibodies (with 

help from Julia Hauser, Swiss TPH). Thus, Pfs16 and PfEMP1 double-labelling IFA using 

different antibody subtypes could be feasible. Alternatively, a second method is to 

regenerate a PfHP1 loss-of-function mutant as Brancucci and colleagues described 

previously, however in a conditional PfAP2-G overexpression cell line. Such a cell line 

could be obtained by the insertion of a pfap-2g gene targeted with a sequence 

encoding the glmS ribozyme (Prommana et al., 2013) and a fluorescent tag like 

CherryFP or the tandem dimer Tomato (tdTomato) (Morris et al., 2010) into the non-

essential cg6 locus (Nkrumah et al., 2006). I expect a homogenous sexually committed 

population when Shield-1 is removed to deplete PfHP1 while PfAP2-G is simultaneously 

overexpressed by glucosamine removal (Prommana et al., 2013) at early ring stage 

(Bancells et al., 2019; Brancucci et al., 2014) to drive sexual commitment. In this case, 

the non-overexpression of PfAP2-G by the continuous presence of glucosamine is 

considered as control condition, in which I expect two subpopulations of 

gametocytes and arrested trophozoites as described previously in the PfHP1-depleted 

cell line (Brancucci et al., 2014). Moreover, another external control cell line could be 

added to the study by generating a PfHP1 loss-of-function mutant in a null PfAP2-G 

background cell line, where the sexual conversion is blocked. In the latter control cell 

line, I expect that the PHP1 depletion results in a pure arrested trophozoite population. 

α-PfEMP1 IFAs among three conditions (pure gametocytes, pure arrested trophozoites 

and mixed of the two populations) would hopefully allow concluding on the actual 

overexpression of PfEMP1 whether in gametocytes and/or only in arrested 

trophozoites with a PfHP1-depleted background.   
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6.4 Significance of the research 

Although there is tremendous amount of research in the field of malaria, this tropical 

disease is still a burden to developing countries and claims over 400.000 deaths in 2017 

(World malaria report 2018, WHO). This is mainly because of the impressive biology of 

the parasite as it lives a very complex life cycle, changing between different hosts 

and various environments as well as combining both asexual proliferation and sexual 

differentiation within the human blood stream. Another striking feature is that this 

human malaria parasite can express highly stage-specific and variable antigens, 

allowing the parasite to escape the human immune response. Together, this causes a 

lot of difficulties in malaria eradication unless there is deep understanding in the 

underlying mechanisms that take part in regulating its transmission and antigenic 

variation. In this theme, epigenetics in general and PfHP1 in particular has emerged 

as a central part that needs to be studied in much more detail.  

For the first time, I have conducted a detailed study on the function of PfHP1 as well 

as its central contribution to the three main PfHP1-dependent processes (var gene 

silencing, mitotic proliferation, sexual commitment) through the conditional expression 

of truncated and chimeric PfHP1s in a DiCre recombinase-expressing 3D7 cell line 

(1G5DC) (Collins et al., 2013). Following up on this aspect, PfCK2 was revealed to 

phosphorylate PfHP1 in vitro at a cluster of serines in the hinge region. In addition, 

PfHP1 phosphorylation was also analyzed for the first time although the 

phosphorylation of the hinge region showed unimportant to control PfHP1 function in 

blood stage parasites. In this study, the success in generating an inducible PfHP1-

knockout parasite line that produces gametocytes at high levels is indeed an 

important tool to perform further research on gametocyte biology and development 

or applied research to prevent malaria transmission such as identifying anti-malarial 

gametocyte drug screen. Beside relevant research prospection, the method for the 

generation of conditional knockout cell lines presented in this study by combining 

CRISPR/Cas9-based gene editing and conditional gene replacements using the 

DiCre/loxP system presents an elegant and versatile approach to analyze function 

and phosphorylation also of other important proteins. Furthermore, this study may also 

be relevant to study pathogenesis and transmission in general and the underlying 

epigenetic mechanisms in particular, in some other unicellular pathogenic eukaryotes 

since they also share common features such as changing living environments and 

mutually exclusive expression of surface antigens. 
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