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Summary

Cystic fibrosis (CF) is a is an autosomal-recessive inherited metabolic disorder that
affects all organs in the human body. Patients affected with CF suffer particularly
from chronic inflammation and obstruction of the airways. Through early detection,
continuous monitoring methods, and new treatments, the life expectancy of patients with
CF has been increased drastically in the last decades. However, continuous monitoring
of the disease progression is essential for a successful treatment. The current state-
of-the-art method for lung disease detection and monitoring is computed tomography
(CT) or X-ray. These techniques are ill suited for the monitoring of disease progressions
because of the ionizing radiation the patient is exposed during the examination. Through
the development of new magnetic resonance imaging (MRI) sequences and evaluation
methods, MRI is able to measure physiological changes in the lungs. The process to
create physiological maps, i.e., ventilation and perfusion maps, of the lungs using MRI
can be split up into three parts: MR-acquisition, image registration, and image analysis.

In this work, we present different methods for the image registration part and the
image analysis part. We developed a graph-based registration method for 2D dynamic
MR image series of the lungs in order to overcome the problem of sliding motion at
organ boundaries. Furthermore, we developed a human-inspired learning-based regis-
tration method. Here, the registration is defined as a sequence of local transformations.
The sequence-based approach combines the advantage of dense transformation models,
i.e.,large space of transformations, and the advantage of interpolating transformation
models, i.e.,smooth local transformations.

We also developed a general registration framework called Autograd Image Registra-
tion Laboratory (AIRLab), which performs automatic calculation of the gradients for
the registration process. This allows rapid prototyping and an easy implementation of
existing registration algorithms.

For the image analysis part, we developed a deep-learning approach based on gated
recurrent units which is able to calculate ventilation maps with less than a third of the
number of images of the current method. Automatic defect detection in the estimated
MRI ventilation and perfusion maps is essential for the clinical routine to automatically
evaluate the treatment progression. We developed a weakly supervised method that
is able to infer a pixel-wise defect segmentation by using only continuous global label
during training. In this case, we directly use the lung clearance index (LCI) as a global
weak label, without any further manual annotations. The LCI is a global measure to
describe ventilation inhomogeneities of the lungs and is obtained by a multiple breath
washout test.

ix






Zusammenfassung

Zystische Fibrose (ZF) ist eine autosomal-rezesiv vererbte Stoffwechselerkrankung.
Patienten mit dieser Erkrankung leiden besonders unter einer chronischen Entziindung
und Blockierung der Atemwege. Durch eine frithzeitige Erkennung und neue Behand-
lungsmethoden ist die Lebenserwartung von Patienten mit ZF in den letzten Jahrzehnten
drastisch gestiegen. Eine kontinuierliche Uberwachung des Krankheitsverlaufes und der
entsprechenden Medikation ist aber nach wie vor essenziell um einen guten therapeu-
tischen Erfolg zu erzielen. Haufig eingesetzte Methoden fiir die Uberwachung sind bild-
basierte Verfahren auf der Basis von Rontgenstrahlen wie die Computertomographie oder
das Thoraxrontgen. Fiir eine regelméssige Anwendung sind diese Methoden aufgrund
der hohen Strahlenbelastung nicht geeignet. Durch die Entwicklung neuer Sequenzen fiir
die Magnetresonanztomographie (MRT) und entsprechende Auswertealgorithmen ist es
nun moglich physiologische Anderungen des Lungengewebes mittels MR zu messen. Da
eine MR Untersuchung zu keiner Strahlenbelastung des Patienten fiihrt, eignet sich MR
besonders um den Verlauf der Erkrankung sowie der Behandlung zu iiberwachen. Der
Prozess mit dem physiologische Karten der Lunge mit MR erzeugt werden kénnen setzt
sich im Wesentlichen aus drei Teilen zusammen: MR-Aufnahme, Bildregistrierung und
der Bildanalyse.

Im Rahmen dieser Arbeit wurden Methoden entwickelt, die in den Bereichen der Bil-
dregistrierung und der finalen Bildanalyse Verwendung finden. Die Bildregistrierung
legt die Grundlage fiir die weitere Verarbeitung der Daten und muss daher besonders
genau sein. Wir haben eine Graph-basierte Registrierungsmethode speziell fir die Reg-
istrierung von dynamischen 2D Bildserien der Lunge entwickelt. Zudem haben wir eine
Registrierungsmethode entwickelt die sich daran orientiert wie ein Mensch zwei Bilder
registrieren wiirde. Dabei handelt es sich um eine lernbasierte Methode, bei der die finale
Transformation aus einer Sequenz von lokalen Transformation besteht. Basierend auf den
Erfahrungen, die wir durch die Entwicklung der Registrierungsmethoden erhalten haben,
konnten wir das allgemeine Registrierungsframework AIRLab entwickeln. Der Vorteil
dieses Frameworks ist die automatische Bestimmung der Gradienten der Kostenfunk-
tion beziiglich der Transformationsparameter. Es eignet sich besonders fiir die schnelle
Entwicklung neuer Ideen oder das Reproduzieren bestehender Registrierungsmethoden.

Im Bereich der Bildanalyse haben wir eine Methode entwickelt die fiir die Bestimmung
der Ventilationskarten weniger Bilder bendétigt als die aktuell verwendete Methode. Dies
ermoglicht eine kiirzere Untersuchungszeit und damit weniger Stress fiir den Patien-
ten. Fiir eine kontinuierliche Uberwachung des Krankheitsverlaufes ist eine automatische
Auswertung der physiologischen Karten notwendig. Dafiir haben wir eine lernbasierte
Segmentierungsmethode entwickelt die eine pixelweise Segmentierung der defekten Be-
reiche in den Ventilationskarten erzeugt. Unsere Methode verwendet zum Lernen dieser
Segmentierung nur ein globales schwaches Label und zwar den Lung Clearance Index
(LCI).

xi






Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disorder affecting multiple or-
gans. The most serious impact in people with the severe disease phenotype, is on the
respiratory system Elborn (2016); Elborn et al. (1991); O’Sullivan and Freedman (2009).
Through early detection mechanisms and new treatments, the life expectancy of patients
with CF has been increased by 40 years in the last decades Elborn (2016). The cur-
rent monitoring system relies on lung function tests, e.g. spirometry, multiple-breath
washout, or radiation-based imaging methods like computed tomography (CT) or X-ray.
However, lung function tests are not able to show regional changes of the lung function
or structure. CT and X-ray are problematic for monitoring the disease progression due
to a high cumulative radiation dose associated with frequent follow-up examinations
especially in children and young adults. Recently, a new magnetic resonance imag-
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Figure 1.1: Automatic process pipeline for the generation of MR ventilation maps, MR perfusion
maps, and report.

ing (MRI) pulse sequence termed ultra-fast steady-state free precession (ufSSFP) has
been proposed for the assessment of pulmonary lung function Bauman and Bieri (2017);
Bauman et al. (2016). ufSSFP imaging exploits very short echo and repetition times
and thus offers high signal intensity in the lung tissue in comparison to contemporary
MR pulse sequences. An overview of the process pipeline for the generation of MRI
ventilation and perfusion maps is shown in Figure 1.1. The process to obtain the phys-
iological properties of the lungs using MRI contains three major steps (Figure 1.1). In
the first step, several dynamic 2D image series at different positions are acquired using
the ufSSFP MR sequence in order to cover the entire lung volume. Each single im-
age series contains 140 images. Image series are acquired in free-breathing and without
echocardiogram-gating. For further analysis of the image data corresponding anatom-
ical structures need to be spatially aligned. The alignment is achieved by performing
image registration for each image in the series. Based on the registration result a ded-
icated spectral analysis method of the time-resolved image series called matrix pencil
decomposition is performed Bauman and Bieri (2017). The results of this analysis are
ventilation and perfusion maps of the lungs. Based on the ventilation and perfusion map
computation a report is automatically generated to aid the disease follow-up process.
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Ventilation map Perfusion map

Figure 1.2: MR Ventilation and perfusion maps of a patient with CF. Computed with the method
presented by Bauman and Bieri (2017) based on the ufSSFP MR image sequence.

Contribution

In this work, we present different methods for the image registration (I1I) and the image
analysis (III) part of the process pipeline shown in Figure 1.1. The major part of this
work was done for the image registration (II).

Registration of the pulmonary structures in medical images is a very complex task
due to sliding-organ motion and intensity changes of corresponding structures due to
physiological changes. Since the subsequent image analysis methods rely on the results
of the image registration, the registration has a direct influence on the accuracy of the
generated ventilation and perfusion maps. In order to improve the registration result, we
developed a graph-based registration method to overcome the problem of sliding-organ
motion with a high registration accuracy at the sliding-organ boundaries. Deep learn-
ing methods have become state-of-the-art methods for the task of image segmentation
and image classification. In the past years, learning-based registration methods have
shown good performance, especially in terms of computation time. However, current
learning-based registration methods are built on feed forward neural networks where the
transformation is directly estimated. Our presented approach is designed as a sequence-
based model using a recurrent neural network at its core. In each iteration, a local
transformation is estimated by the network until both images are properly aligned.
The sequence-based approach combines the advantage of dense transformation models,
i.e.,large space of transformations, and the advantage of interpolating transformation
models, i.e.,smooth local transformations. Furthermore, this allows an additional di-
mension for the regularization, i.e., the number of local transformation used to spatially
align both images.

Finally, we propose a general registration framework the Autograd Image Registra-
tion Laboratory (AIRLab) to speed up the development of new registration methods



and the reproducibility of current methods. In AIRLab, the gradients are calculated
automatically which is a key feature to speed up the development process.

For the image analysis part (IIT), we developed a method able to calculate ventilation
maps by using fewer images than the current state-of-the-art method while keeping the
same quality of the functional maps. This allows a reduction in the scanning time
which decreases overall examination time. Automatic defect detection of functional
lung impairment in the generated ventilation and perfusion maps for the generated
ventilation and perfusion map is essential for the clinical routine. However, obtaining
pixel-wise labeled ground-truth data is difficult as it is a very time-consuming process.
We developed a weakly supervised defect segmentation method for ventilation maps
without any human annotations. For this, we used the lung clearance index (LCI) as
a global weak label. The LCI is derived from clinically well established multi-breath
washout examinations which is a common biomarker for the detection of ventilation
inhomogeneities of the lungs.

Outline

The medical background, the technical details of the new MR image sequence, and the
method for the calculation of the ventilation and perfusion maps is described in Chap-
ter 2. A description of the mathematical background on medical image registration and
the different classes of registration methods is given in Chapter 3. Chapter 4 contains
the background of the used machine learning method in this work. The adaptive graph
diffusion registration method is described in Chapter 5 and the learning-based registra-
tion method using recurrent neural networks is presented in Chapter 6. In Chapter 7,
we described the developed registration framework AIRLab. The accelerated method
for the generation of ventilation maps is presented in Chapter 8 and the weakly super-
vised defect segmentation method is described in Chapter 9. Finally, in Chapter 10, we
discussed our work and described possible future work for further improvements.






Medical Background

According to the World Health Organization (WHO) chronic lung disease like chronic
obstructive pulmonary disease (COPD), or lower respiratory infections are predicted to
be in the top five of leading causes of mortality in the world by 2030 Mathers and Loncar
(2006).

2.1 Cystic Fibrosis

Cystic Fibrosis (CF) is an autosomal recessive genetic disorder Elborn (2016) affect-
ing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It affects
multiple organs and was first diagnosed by Dorothy Anderson in 1938 and described in
Andersen (1938). The most serious impact in people with the severe disease phenotype,
is on the respiratory system and the increased susceptibility of individuals to colonisation
and infection of the airways with Gram-negative bacteria, e.g., Pseudomonas aeruginosa,
Elborn (2016); Elborn et al. (1991); O’Sullivan and Freedman (2009). Through the devel-
opment of new treatment methods and early detection mechanisms, the life expectancy
for patients diagnosed with CF is about 40 years Elborn (2016). Current monitoring
systems for the disease progression and the evaluation of the treatment are pulmonary
function test, e.g., the multiple breath nitrogen washout test (No-MBW) Robinson et al.
(2009) for the estimation of the lung clearance index (LCI), or ionizing radiation-based
imaging methods like computed tomography (CT) or X-ray Ley (2015). However, ion-
izing radiation-based imaging methods like CT or X-ray are ill suited for continues
monitoring over a long period of time or for pediatric applications.

2.2 Medical Imaging

Medical imaging is an essential part of the modern clinical routine. There are sev-
eral different imaging modalities used in the clinic today. The development of medical
imaging started with the discovery of the X-rays by Wilhelm Rontgen on November 8,
1895 Berger et al. (2018). Followed by the development of computed tomography (CT)
Hounsfield (1975). CT uses projections, i.e., X-ray images, from different angles in order
to compute a cross-sectional image of the region of interest instead of a single projection
obtained by X-ray. With CT it is now possible to obtain a 3D image of different parts of
the human body. In the 1970 magnetic resonance imaging (MRI) was presented Dama-
dian (1971); Lauterbur (1973); Mansfield and Grannell (1975). In comparison to CT,
MRI does not use ionizing radiation for image generation and is able to generate images
with high soft-tissue contrast. MRI exploits the property of spin in different nuclei in
order to generate signal, i.e., an image. If the hydrogen nucleus is used as a target, MRI
is called proton MRI because the hydrogen nucleus consists of a single proton. Its high
abundance in the human body predetermined the usage of the hydrogen nucleus as a
target for MRI.
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Figure 2.1: (a) Time-resolved 2D image series acquired with the ufSSFP MR sequence, and (b)
corresponding position of the image in the breathing cycle.

2.2.1 Magnetic Resonance Imaging of the Lungs

MRI has shown very good results for general soft tissue imaging of several anatomi-
cal structures, e.g.,the brain. However, the application of proton MRI of the lungs is
difficult due to the low proton density of the lung parenchyma in comparison to other
tissue types, constant breathing, and cardiac motion Kauczor and Wielpiitz (2018). In
the past, several methods have been presented in order to reduce motion artifacts by
using physiological gating mechanism Biederer et al. (2002) or dedicated MR acquisition
techniques Jud et al. (2018a).

A method to increase the image contrast inside the lung is the usage of hyperpolarized
gases van Beek et al. (2004). Here, the patient inhales the hyperpolarized gas during
the image acquisition. However, these methods require specialized equipment for the
examination which increases the complexity of the acquisition procedure.

2.2.2 MR Ventilation and Perfusion of the Lungs

In Bauman et al. (2016) a new MR sequence was presented which is able to measure
physiological changes of the lungs without using specialized equipment. The presented
sequence is a time-resolved 2D image sequence named ultra-fast steady-state free preces-
sion (ufSSFP). In order to measure the physiological properties of the lungs, and in par-
ticular the ventilation, the acquisition of the image series is performed in free-breathing
as shown in Figure 2.1. The ufSSFP sequence uses Cartesian gradient switching pat-
terns and optimized excitation pulses to accelerated the pulse sequence. Furthermore,
partial echo readouts and ramp sampling techniques are used. This allows for remark-
ably shorter echo time (TE) and repetition time (TR) in comparison to contemporary
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Figure 2.2: MR images acquired with the ufSSFP sequence at different coronal slice positions from
posterior to anterior.

techniques, which improves the signal in the lung parenchyma and reduces imaging arti-
facts. Here, the artifacts are mostly motion and banding artifacts. In order to cover the
complete lungs 8 to 12 coronal slices with 140 2D images per slice position are acquired.
An example of MR images from different coronal slice positions is shown in Figure 2.2.
The total examination time is about 10 minutes.

Based on the acquired image data it is possible to compute spatial pulmonary venti-
lation and perfusion maps. Two methods have been developed in the past for the map
generation. The first was presented in Bauman et al. (2009) using Fourier decomposition
(FD) and the second in Bauman and Bieri (2017) using the matrix pencil (MP) method
to calculate the spectral components of the time-resolved signal modulations (inten-
sity signals). Figure 2.3 shows a general overview of the map calculation process. The
first step in the processing pipeline is the image registration step. Image registration is
needed because the image series is acquired in free-breathing and therefore correspond-
ing structures are not aligned over time. The registration of images of the anterior parts
of the thorax is a challenging task due to sliding-organ motion. A detailed description
of this registration problem is given in Section 3.9. After the image registration step,
corresponding anatomical structures are aligned and the actual map calculation can be
performed. Therefore, the time-varying pixel intensity signal at each spatial position is
analyzed. For each time signal, a frequency analysis is performed by detecting corre-
sponding frequencies for the ventilation and the perfusion. Figure 2.4 shows an example
of the spatial ventilation and perfusion maps for the MP method Bauman and Bieri
(2017) for selected coronal slices of the lung of a CF patient.
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Figure 2.3: Schematic process of MR perfusion and ventilation computation based on a dynamic 2D
ufSSFP MR image series.

2.2.3 Medical Image Representation

Medical images appear in a wide variety of different formats depending on the imaging
method and the application. The major image formats are 2D, 2D+¢, and 3D image
data. An example for 2D image data is the image generated by an X-ray system. Medical
image time series, i.e., 2D-+t, are obtained for intraoperative imaging with 2D ultrasound
or an X-ray C-arc. Furthermore, images series are also used for diagnostics as for example
the presented ufSSFP MR sequence. The acquisition of 3D image data is standard in
the medical environment and mainly generated by 3D CT or 3D MR systems. Through
the development of new methods, 4D imaging methods have become popular in the last
decade Jud et al. (2018a); von Siebenthal et al. (2007).

In this work, we will focus on 2D, 2D + ¢, and 3D medical image data. Figure 2.5 shows
an example of the relevant medical image formats used in this work. For processing and
storing of the image, a digital representation is needed.

We define a medical imaging system as a function

S QO — X (2.1)

which maps from the object domain Q¢ to the continuous image domain X C R%. The
output of the imaging system S is an image I defined as

I:X >R (2.2)
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(a) Morphology (b) Ventilation (c) Perfusion

Figure 2.4: Example of spatial ventilation and perfusion maps for selected coronal slices of the lung
of a patient with CF.

were ¢ is the number of color channels of the image. In this work, we focus on grayscale
images with only one channel (¢ =1). In order to process the image, a compatible
representation is needed. Therefore, the image signal is discretized in space. The size
of the discretization is given as a pixel spacing Ax, Ay, Az for each spatial dimension
x,y, z. Figure 2.6b shows the effect of the image intensities after a spatial discretization.
The discrete image domain X is then defined as a set of points

X = {a}l, 2 € X, (2.3)

where N is the number of pixels in 2D or voxels in 3D. In the case of an image time
series, a discretization At is also performed on the time domain ¢.

Besides the discretization in space, a discretization of the image intensity range of
the image is performed called quantization. Therefore, the intensity range of the image
is discretized in B bins. The number of bins controls the number of possible different
grayscale values in the image. For a given image I : X — R the intensity quantization

is defined as
) — - 4
I(x;) A]{ At 2J, (2.4)
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Figure 2.5: Medical image representation for 2D images, 2D+t image series, and 3D image volumes.
(zc,yc) is the camera coordinate system.

where Ap is the distance between each bin. Figure 2.6¢ shows an example of an in-
tensity quantization with B = 16 bins. Most of today’s imaging systems in the clinical
environment are digital imaging systems. This means no physical image is created as
for example in older X-ray systems.

ol
)

(a) Original Signal (b) Spatial Discretization (c) Value Quantization

Figure 2.6: Effect of the signal discretization (b) in the spatial domain and (c) for the value quanti-
zation with 16 bins.

10



Medical Image Registration

Medical image registration has been an active field of research over the last decades.
Compared to other research areas in the field of medical image analysis, image regis-
tration is about the estimation of spatial correspondence between two or more images.
Important registration problems are 2D-2D, 3D-3D, 2D-3D, and the registration of im-
ages from different imaging modalities, e.g., CT-MR.

The pairwise-registration problem of a fixed image F' : X — R and a moving image
M : X — R on the image domain X C R% d € N5 can be described as a regularized
minimization problem of the form

= argmin/ S(F(z),M(z)o f(x)) + AR(f(x))dz. (3.1)
feFr X

Here, f*:X — R? is the transformation of interest and a minimizer of (3.1), F the
space of admissible transformations, and § : X x X — R is an image similarity measure.
Often S is called data term. Furthermore, M(z) o f(x) defines the deformation of
the moving image M with the transformation f, with M(x + f(x)). The regularizer
R : R? — R restricts the space of admissible transformations by adding prior knowledge
to the minimization problem. The trade-off between the data term S and the regularizer
R is achieved by the scalar weight A € R>q. Several different approaches have been
presented in the past in order to solve (3.1). A survey of different medical registration
method is given by Maintz and Viergever (1998); Sotiras et al. (2013). In this work,
we define four different categories of registration methods: non-parametric, parametric,
gradient-free, and learning-based methods.

3.1 Non-Parametric Registration

Non-parametric methods are using the Calculus of Variations to find a minimizer of
(3.1). One of the first method which described the image registration or image matching
problem in the form of (3.1) was described by Horn and Schunck (1981). Given the 2D
image sequence I(z,y,t) : R® — R, where z, y represents the spatial coordinates of the
image and t the time. The major assumption to compute the optical flow between two
images acquired with a time delay dt is the brightness assumption Horn and Schunck
(1981)

I(z,y,t) = I(x + dx,y + 0y, t + dt). (3.2)

Here, dx and dy are the distances of corresponding brightness patterns of two images.
Through a Taylor-Series expansion of the right side of (3.2), we obtain

oI oI oI
I(z,y,t) = I(z,y,t) + (5:1;% + 5ya—y + (5ta +e (3.3)
_OIdx 0Oléy OI

=osst Taget Tar et (3.4)
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3 Medical Image Registration

Here, € contains higher order terms and for ¢t — 0, dz — 0, and dy — 0, we obtain the
classical optical flow assumption

ol ol ol
with the flow
_dr | dy
odt’ T dt’

We can observe that (3.5) is an ill-posed problem as there is only one equation for the
two unknown u and v, with f = [u,v]. This problem is also known as the aperture
problem Horn and Schunck (1981). In order to solve this problem, the regularization

ou\ > ou\* v\ > v\ ?
R - - — — — ] d 3.7
wo=f @) @) @) @) e e
was presented by Horn and Schunck (1981). The final minimization problem is then
given as

ol ol o1\ > ou 2 ou 2 ov\ 2 ov\ 2
= [ (G5 5) “((ax) () + () + () )am 09

As (3.8) is of the form

u (3.6)

E:/ F(x,u,v,d',v")dz (3.9)
X

the Euler-Lagrange formalisms

oF d OF d OF

oF d OoF d OF
with
ou ou v ov
Uy = I Uy = ny Uy = Iz Vy = 87y (3.12)
can be used to obtain the final differential equations
arN*>  aror ) a1 oI
arN*  oarar o\ OIdI
el il - 14
”(&:) “aray ~ V) ~ g5 (3:14)

Here, V2 = Y7 99 i3 the Laplace operator. In order to solve (3.13)-(3.14) a dis-

i=1 9%,
cretization of the transformation u and v is performed. Horn and Schunck (1981) used
Lagrange-Multiplier and the Gauss-Seidel method to find a solution of (3.13)-(3.14).
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3.2 Parametric Registration

In the past, several extensions of the optical flow method of Horn and Schunck (1981)
have been presented. Extensions are mostly related to changes of the image similar-
ity term, i.e.,the brightness assumption, or the regularization. In (3.2) it is assumed
that moving structures do not change their intensity values between two images. How-
ever, this holds not true for most natural images, and especially not for medical images.
Hermosillo et al. (2002) presented different image similarity measures, e.g., Mutual In-
formation, Cross Correlation, to overcome the problem of brightness changes in images.
They integrated these similarity measures into the variational registration framework.
A detailed overview of different image similarity measures and their applications is given
in Section 3.6.

As mentioned above the regularizer R is a necessary part for the variational registra-
tion approach and it allows the usage of prior knowledge of the transformation f. Nagel
and Enkelmann (1986) present a regularization method, which was extended by Alvarez
et al. (2000) which also use information of the image to control the regularization. Their
loss function for the registration of 2D images has the form

JOLF.£)= [ (F@) = M+ @) + A (V@) DIV (@) do (3,19

RQ
with .
oF oF
B 1 ay ay 5 (1 0

From (3.16), we can observe that the transformation is not smoothed across image
boundaries in F' for |VF| > «. The Euler-Lagrange equations for (3.15) are then

[F(z) — M(z+ f(x))] %M(x + f(x)) + Mdiv (D(VF)Vu) =0 (3.17)
[F(x) — M(z+ f(x))] ;yM(x + f(x)) + Adiv (D(VF)Vv) = 0. (3.18)

3.2 Parametric Registration

Compared to the non-parametric registration methods described in Section 3.1 paramet-
ric registration methods use a predefined transformation model fy for the transformation
f. Here, 0 are the parameters of the transformation model. The registration problem is
now defined as

f; = argmin / S(F(x), M(2) o fo(x)) + AR(fs(x))dz, (3.19)
fo€Fs, Jx

were F, is the space of admissible functions for the transformation model fg. In contrast
to non-parametric registration methods, prior information of the transformation f can be
added by the regularizer R and the transformation model fy. The process of parametric
image registration is shown in Figure 3.1.

13



3 Medical Image Registration
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Figure 3.1: Parametric Image Registration Process.

3.2.1 Transformation Models

As mentioned above the transformation model is an implicit regularizer of the trans-
formation, as depending on the properties of the transformation model. There are two
major types of transformation models used in medical image registration: dense and
interpolating. For the dense transformation a displacement vector

fo(z) =0, (3.20)

is defined at the center position x of each pixel in the image, with 8, = (91,9, ...,94) € RY,
were d is the dimension of the image data.
Interpolating transformation models are of the form

N

fo(x) = 0ik(x, cy), (3.21)

=1

where {ci}fil, ¢; € X are the positions of the fixed regular grid points in the image do-
main, k: X x X — R the interpolating function, and N the number of grid points. The
transformation between the grid points is then an interpolation of the grid point val-
ues 6; with the kernel function k. An example of both transformation models is shown
in Figure 3.2. Interpolating transformation models normally contain fewer parameters
compared to the dense transformation model. In case the chosen interpolating function
is smooth, the final transformation is smooth by definition. However, the disadvantage
of interpolating transformation models is the smaller function space compared to dense
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3.3 Diffeomorphic Registration
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Figure 3.2: Dense and interpolation transformation models.

methods. These limitations are very important if it comes to model complex trans-
formation, e.g.,in the presence of sliding-organ motion (Section 3.9). Several different
interpolating functions with different properties have been used in the past. Interpolat-
ing functions with a compact support like the third order B-spline function

_ 3
2ole—yP+ L 0<lz—yl<1
I P 3
kB (2, y) = Colell 1< |o—yl <2 (3.22)
0, 2< |z —y|

used in Rueckert et al. (1999) or the C* Wendland function

kw(x,y) =32 (Hx—yH> , (3.23)

g

3 4 187 + 3572
Usa(r) =(1 - )}

used in Jud et al. (2016a,b) are common functions. Here, (-)4 is the maximum func-
tion max(0,z) and o € R controls the kernel width. Interpolating functions without a
compact support could also be used, e.g.,the Gaussian function or thin plate splines.

(3.24)

3.3 Diffeomorphic Registration

Diffeomorphic registration methods restrict the space of admissible transformation as
solutions to (3.1) to the space of diffeomorphic transformations Dif f(X). The major
advantage of diffeomorphic transformations is that they are invertible and therefore pre-
serve the topology of the image structures. A first approach of diffeomorphic registration
was presented in Christensen et al. (1996); Dupuis and Grenander (1998); Trouvé (1995).
Based on this the large deformation diffeomorphic metric mapping (LDDMM) was pre-
sented by Beg et al. (2005). Here, the transformation of interest f € Dif f(X) is defined
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3 Medical Image Registration

as the endpoint, i.e., f = ¢1, of the flow ¢y : X — X, on the unit time domain ¢ € [0, 1].
The flow is defined by the ordinary differential equation (ODE)

d
0~ u(o), (325)
and parametrized by a time-varying velocity field v; : X — R?, with ¢y = id. The final

transformation is then defined as

1
f=¢1=0¢o +/0 v (e )dt (3.26)

According to Beg et al. (2005) the solution of (3.25) is a diffeomorphism if the vector
field v; is smooth.

However, due to the time dependent velocity field v; LDDMM methods are highly
computationally complex. In order to reduce the computational complexity but keep
the diffeomorphic characteristics of the LDDMM transformation a parametrization of
the flow ¢; with a stationary velocity field v was presented by Arsigny et al. (2006);
Ashburner (2007); Hernandez et al. (2007). By using a stationary velocity field, the
ODE (3.25) for the flow simplifies to

0 = (@) (3.27)
As shown in Hernandez et al. (2007) the solution of (3.27) is a one-parameter subgroup
with the infinitesimal generator v. Here, v € g is the Lie algebra and ¢ is an element of
the Lie group G of diffeomorphic transformations Dif f(X). A diffeomorphism can be
achieved with the exponential map exp(v) : R? — Dif f(X) which maps from the Lie
algebra to the Lie group. The final transformation is then defined as

f=d1=exp(v), (3.28)

where exp(-) defines the matrix exponential. By using the exponential map the inverse
transformation is defined as

71 = exp(v) "t = exp(—v). (3.29)

The computation of the matrix exponential can be computationally very costly depend-
ing on the matrix size. There are several methods introduced in the past to compute
the matrix exponential Moler and Loan (2003).

3.4 Demons Registration

In Thirion (1998) a new method to solve the registration problem (3.1) was presented.
The name Demons-Registration is related to the idea of demons from the thermody-
namic presented by James Clerk Maxwell. Thirion’s demons registration methods can
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3.4 Demons Registration

Algorithm 1 Demons registration framework

1: Inputs:
F, M, N := number of iterations, o := kernel size, o := step size
2: Initialise:
f+<0
3: fori=1to N do
4: v VS(F, M o f) compute image force (demons)
5: f < f + av update transformation
6: f + K, *x f smooth transformation

be classified as a dense parametric registration approach consisting of two major parts.
These two parts are the computation of the force of each demon v; € R% at each pixel
position x; in the image, and the regularization of the displacement field. A general
overview of the demons registration method is given in Algorithm 1. Thirion presented
a force calculation based on the optical flow equation (3.2) with

(M () o f(2i) = F(x:)) V(M (i) o f(:))
(V(M () o f(2i)))? 4+ (M () o f(2;) — F(21))*’

where V is the nabla operator. For the regularization Thirion presented a diffusions
based approach defined as

(3.30)

vV, =

ft = Ko * (fi—1 + av) (3.31)

where K, is a Gaussian kernel function of size o, * the convolution operator, and « the
step size in a gradient descend manner.

Several works investigated the theoretical background of the demons registration
method. In Pennec et al. (1999) it was shown that the force calculation (3.30) pre-
sented by Thirion is similar to a second-order update scheme. For the regularization it
was shown in Cahill et al. (2009) that the Gaussian kernel is the Green’s function of the
diffusion equation. This shows that the demons registration method is an efficient imple-
mentation of the diffusion-based image registration. In the past, several extensions of the
demons registration method have been presented. The main changes are applied to the
force computation using different image similarity functions Lorenzi et al. (2013) or the
regularization Cahill et al. (2009); Papiez et al. (2018); Papiez et al. (2014); Sandkiihler
et al. (2018b). Furthermore, Santos-Ribeiro et al. (2016) presented an extension of the
force update weight « using momentum.

3.4.1 Diffeomorphic Demons

An essential extension was the introduction of diffeomorphic transformation (Section 3.3)
to the demons registration Vercauteren et al. (2007). In order to compute the matrix
exponential (3.28) the scaling and squaring algorithm can be used Moler and Loan
(2003). Several modifications of the diffeomorphic demons have been presented in the
past, e.g., Arsigny et al. (2006); Vercauteren et al. (2008).
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3 Medical Image Registration

3.5 Learning-based Image Registration

All mentioned registration methods from above, i.e., non-parametric, parametric, and
demons registration, share a common issue. Namely, for each pair of images, the min-
imization problem (3.1) needs to be solved. Neural networks (NNs) especially convo-
lutional neural networks (CNNs) have shown a drastic performance improvement for
several tasks, e.g.,image segmentation Ronneberger et al. (2015) and image classifica-
tion Krizhevsky et al. (2012). In general, the usage of neural networks can be split in two
parts: the training and the inference part. During training, a suited configuration of the
parameter of the neural network is learned to perform the given task using appropriate
training data. In the inference part the network is only evaluated and the parameters
of the network stay constant. A major advantage of using NNs to perform the task
of image registration is that a lower execution time for the inference part compared to
a much longer execution time during training. A more detailed description of neural
networks is given in Chapter 4. With this strategy, no optimization is needed for the
registration of two images in the inference part which drastically reduces the time for
the registration. The idea is that the transformation of interest f is modeled as a neural
network.

Fixed
Image -+ Similarity Loss
Neural Dense _,:
Network Displacement !
Moving Delnse
Image Displacement

Ground-truth

Figure 3.3: Learning-based image registration with full supervision. Solid paths are used only for the
inference and dashed path used during training.
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3.5 Learning-based Image Registration
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Figure 3.4: Unsupervised learning-based image registration. Solid paths are used only for the inference
and dashed path used during training.

There are two major directions presented in the literature for training a neural network
for the task of image registration: fully supervised and unsupervised. Fully supervised
learning for image registration were presented as the FlowNet Dosovitskiy et al. (2015),
the FlowNet 2.0 Ilg et al. (2017) for 2D time series or in Eppenhof et al. (2018) for
3D medical images. An overview of the general fully supervised learning process for
image registration is shown in Figure 3.3. For fully supervised learning the ground truth
transformation between the fixed and the moving image is needed. Compared to other
fully supervised learning tasks, e.g.,image segmentation or classification, the generation
of ground truth transformation is highly complex and time consuming. For the training
of the FlowNet animated image sequences were used and Eppenhof et al. (2018) used
artificial generated transformations for lung images to train the network.

For unsupervised learning there is no need to provide ground truth data. In the
context of image registration only the fixed and the moving image are needed during the
training. Figure 3.4 shows the structure of unsupervised learning for image registration.
It shows that the unsupervised case is closely related to the classical image registration
problem (3.1). In contrast to supervised methods, the moving image is transformed
with the transformation of the network and then compared to the fixed image using a
proper image similarity measure as presented in Section 3.6. Furthermore, a regularizer
(Section 3.7) for the transformation can be added to the overall loss function. The basis
for this kind of registration networks is the Spatial Transformer Network Jaderberg
et al. (2015). Based on this idea, several registration networks were developed in the
past Dalca et al. (2018b); de Vos et al. (2017); Hu et al. (2018); Stergios et al. (2018). A
diffeomorphic extension is presented by Dalca et al. (2018a); Krebs et al. (2019); Krebs
et al. (2018b). An overview of learning-based registration methods is given in Fu et al.
(2019); Haskins et al. (2019).
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3 Medical Image Registration

3.6 Image Similarity Measures

A key element in image registration is the way both images are compared in terms
of a pixel-wise similarity. There exists a variety of different image similarity measures
for different kind of registration tasks. The selection of a suitable similarity measure
is essential for image registration and especially for medical image registration. The
brightness assumption (3.2) introduced by Horn and Schunck (1981) is a very basic
measure and does not hold for all medical registration problems. A major problem for
medical image registration is the intensity difference of similar structures in the fixed
image F' and the moving image M. These intensity changes occur due to physiological
properties, e.g.,perfusion, or through different imaging modalities, e.g., F' is an MR
image and M is an CT image. In the following, we assume a discrete image domain
X = {z;}} |, 2; € X. Often the image measures are only evaluated on a subset of the
image domain X C X in order to speed-up the registration process.

Mean Squared Error

The Mean Squared Error (MSE) similarity measure is similar to the brightness assump-
tion of Horn and Schunck (1981). As mentioned above, similar structures are often
represented with different image intensities which is not considered by the MSE simi-
larity measure. However, the MSE is computationally efficient and therefore frequently
used. The MSE is defined as

Suse(F, M, f) = 137 X| ZX M@+ f(2))°, (3:32)

where | - | is the cardinality.

Mutual Information

Mutual Information (MI) as image similarity was presented by Wells et al. (1996) for
the registration of CT and MR images. The MI is defined as

Svi(F, M, f)=H(F)+ H(Mo f)— H(F,M o f), (3.33)

where H(-) is the marginal entropy and H(-,-) the joint entropy. In order to compute
the entropy, we interpret F' and M o f as two discrete random variables A and B with
the joint probability pa B(a,b) and the marginal probabilities p4(a) and pg(b). The joint
Shannon entropy of A and B is defined as

~ >~ > pan(a,b)logy(pan(a,b)). (3.34)

acAbeB

and the marginal Shannon entropy of a discrete random variable A is defined as

==Y pala)log,((pa(a)). (3.35)

acA
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3.6 Image Similarity Measures

For the computation of the MI similarity a differentiable estimation of joint probability
function pa p and the marginal probability functions p4 and pp is needed. A possible
method is described in the following.

We assume that the images F' : X — Zp and Mo f: X — Iy map to different
intensity ranges Zp C R and Zy; C R. In the next step, we discretize the intensity ranges
into B bins with Iy = {bF}2% bF € T and Iy = {bM}2M M € Ty Based on this, we

i=17"% v Ji=1"1
calculate the matrices P¥ € RIFIXIXI and PM ¢ RIMIXIXT with

F(z;) —b7\?
PZ}; = iexp <_ ((%)bl) >7 (3.36)
Olp 207,

P = iexp <— <M(x])_bM>2> (3.37)

Oy 201,

The discrete marginal probabilities are then defined as

1 X IX|
1 1 pF 1 1 pM
T -21 3P b4l 21 3= b5
j= M Jj=
= d = . 3.38
N o PE T g X (3.38)
X 2 2 by 2 2 el
=1 j=1 =1 7=1
The marginal Shannon entropies are then
Hr| [ ml
H(F)=-) pflog, (pi) and H(M) == pi"log, (p") . (3.39)
j=1 j=1
An approximation of the the joint probability can be achieved with
1 X 1 PF PM
FM X . 27zt imt jm
L) = m= . A4
Po T X (3.40)
X7 2 2xLimPjm
i=17=1 m=1
With this the joint Shannon entropy is defined as
lp| [Im]
F,M F,M
H(F,Mof)=— Z Zpij 10g2(pij ). (3.41)
i=1 j=1

With the formulation of (3.36) and (3.37), we explicitly use a Gaussian kernel density
estimator, with the variances oy, and oy, for the estimation of the probabilities. Fur-
thermore, we assume that the Gaussian kernel for the density estimation is uncorrelated.

21



3 Medical Image Registration

Structual Similarity Index Measure

The structural similarity index measure (SSIM) was presented as an image quality cri-
terion by Wang et al. (2004). For two local image patches a € R?, b € R? the SSIM is
defined as

SSIM(a, b) = I(a, b)%¢(a, b)’s(a, b)?, (3.42)

with a, 8,7+ € [0,1]. The SSIM combines three different similarity measures: the lumi-
nance (1)

2
a,b) = Leto £ (3.43)
Mg + /’Lb + C1
the contrast (c)
2
c(a,b) = =22 £ 2 (3.44)
oz +top+c
and the and structure (s)
s(a,b) = M. (3.45)
0q0p + C3

Here, p is the mean and o the standard deviation of an image patch. Furthermore, the
correlation coefficient is defined as o,,. The constants cq,ca,c3 € R are used to reduce
numerical instabilities in case the denominator of (3.43), (3.44), and (3.45) is close to
zero. In order to use the SSIM as a similarity measure for image registration, (3.42) is
computed it for every patch in the fixed and moving image. The SSIM is then defined
as

Sssim(F, M, f) = |)1(’ Z Uz, y)%c[z, y]Ps[z, y]. (3.46)

zeF
yeMof

Here, x and y are corresponding image patches of the fixed image F' and the warped
moving image M o f.

Normalized Cross Correlation

The normalized cross correlation (NCC) for the fixed image F' and the warped moving
image M o f is defined as

> (F(z) — prp)(M(z + f(2)) — paror)

_ zeX
Sl M =S o =) £ 016 @) e

where pup and pyio are the mean of the fixed and the warped moving image respectively.
A patch-based version of the NCC similarity measure was presented by Cachier and
Pennec (2000). They described an efficient computation of the local NCC and its gradient
using convolutions was introduced.

22



3.7 Regularizer

Normalized Gradient Fields

Normalized gradient fields (NGFs) were presented by Haber and Modersitzki (2006) for
the registration of multi-modal image data. The NGF is defined as

1

Sxar(F, M, f) = 57 > lIn(F,) xn(M o f,2)|°, (3.48)
zeX
where )
Vi(z
n(l,z) = { VTG V1@ 70, (3.49)
0, otherwise.

is the normalized gradient of an image I. According to Haber and Modersitzki (2006) the
definition of the normalized gradient (3.49) is very sensitive to noise and not differentiable
in homogeneous areas of the image. In order to overcome this issue, a regularized
normalized gradient field is defined as

V() .
n(l@)e = o IVI@) = VVI@)TVI() + €. (3.50)

For the estimation of £, Haber and Modersitzki (2006) propose

= 2 .
€= |X,x§(\w< ), (3.51)

were 1) is the estimated noise level.

3.7 Regularizer

Regularization of the transformation is part of most image registration methods, either
non-parametric (Section 3.1) or parametric (Section 3.2). For non-parametric registra-
tion methods the regularization is essential to obtain a solution (aperture problem Horn
and Schunck (1981)). With a regularizer, we are able to restrict the space of admis-
sible transformations by making use of prior knowledge of the transformation. In the
following, general regularizers used in medical image registration are presented. Fig-
ure 3.5 shows the result of the presented regularization methods for the registration of
MR images of the human thorax.

Diffusion Regularizer

The diffusion regularizer enforces the transformation f to be smooth on the complete
image domain &'

d
Roit = jﬂ S S IV (3.52)

zeX i=1
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3 Medical Image Registration

(a) Diffusion (b) TV (c) Isotropic TV

Figure 3.5: Results of different regularization methods on the final dense transformation model.

Total Variation

Total variation (TV) regularization was first used for image denoising Rudin et al. (1992)
and later in the field of image registration Pock et al. (2007); Sun et al. (2010). Vish-
nevskiy et al. (2014) applied TV regularization to parametric transformation models.
Similar to the diffusion regularization the TV regularization enforces a smooth displace-
ment, but in addition it allows discontinuities in the displacement. The TV regularization
is defined as

d
Ry = |)1(’ SN VAR (3.53)

zeX i=1

Isotropic Total Variation

In order to be able to describe discontinuities that are not aligned with the coordinate
axis the isotropic TV regularization

RiTv = |)1(’ Z Z Vfi(x)Q (3.54)

zeX =1

was introduced for image registration by Vishnevskiy et al. (2016).

3.8 Optimizer

Optimizers are essential for medical image registration and have a major impact on
the registration result. In Klein et al. (2007) the influence of different optimizers for a
fixed transformation model and loss function was evaluated. The major class of opti-
mization methods used in image registration are gradient-based optimization methods,
e.g., gradient descent, limited-memory Broyden—Fletcher—-Goldfarb—Shanno (LBFGS). In
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3.9 Sliding-Organ Motion Registration

order to use gradient-based optimization methods the gradient of the minimization prob-
lem (3.1) is needed.

For some image registration problems, especially 3D image registration the gradient
computation is very time-consuming. To overcome this problem, the evaluation and
the gradient computation of the equation of the minimization problem (3.1) are only
performed on a subset X C X of the image domain. Optimizers that are able to work
with the stochastic approximation of the gradient are for example the adaptive stochastic
gradient descent (ASGD) Klein et al. (2008), the stochastic LBFGS Qiao et al. (2015),
the ADAM optimizer Kingma and Ba (2014), the ADADELTA optimizer Zeiler (2012),
or the Adagrad optimizer Duchi et al. (2011).

3.8.1 Gradient-Free Optimization

As mentioned before the major class of optimization methods used in image registration
require the analytic calculation of the gradient of the minimization problem (3.1). In
Glocker et al. (2008); Heinrich et al. (2013) gradient-free registration methods based on
discrete Markov random fields were presented. The registration problem is reformulated
to a classification problem and a discrete optimization is used. Without the need for the
gradients non-differentiable image similarity measures and regularization methods could
be used.

3.9 Sliding-Organ Motion Registration

Sliding-organ motion is a major challenge in medical image registration. This kind of
motion occurs at organ boundaries were each organ has a different motion. A very
important example of sliding-organ motion is the registration of images of the human
thorax. Figure 3.6 shows a schematic view of the dominant motion of the human thorax
during breathing. It shows three different anatomical structures: the liver, the lung,
and the ribcage. Each of these structures possesses a different motion during breathing.
The major difference in terms of motion is between the ribcage and the liver and lung,
where the motion between the liver and the lung only slightly differs. These kind of
transformations are difficult to obtain, for a registration method, as they require two
properties. The first is the smoothness property of the transformation inside each organ.
The second property is the sharp transition, i.e., the discontinuity of the transformation,
at corresponding organ boundaries. In order to separate the different transformations
from each other a detection of this boundary is necessary. However, a segmentation of
the different transformation regions based on image intensities is very difficult, as the
motion is not always correlated to the intensities. An example for this is the boundary
between the liver and the ribcage shown in Figure 3.6.

In the past, several registration methods using different transformation models (dense,
interpolating) have been introduced to improve the registration of sliding organs. To
preserve local discontinuities with an interpolating transformation model, a stationary
first order B-Spline kernel with a TV regularization was introduced in Vishnevskiy et al.
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Sliding Organ Boundary
Lung-Ribcage !

Lung

Lung-Liver

Ribcage

Liver

Figure 3.6: Sliding-organ boundaries schematic for thorax images between the liver, the ribcage, and
the lung. Arrows indicate the corresponding motion of each organ during exhalation. Sliding-organ
boundaries are shown in green.

(2016). Creating a non-stationary kernel based on the image intensities was presented
in Jud et al. (2016b). A method that uses the local statistics of the motion field to
distinguish between different motion and their influence on the parameter update was
presented in Jud et al. (2017). Dense transformation models are very well suited for
modeling discontinuities of the transformation, but a smooth transformation inside each
organ must be enforced. An approach where bilateral filtering is used as regulariza-
tion to preserve the discontinuities of the transformation was presented in Papiez et al.
(2014) for a dense transformation model and in Jud et al. (2016a) for interpolating
transformation models. Kiriyanthan et al. (2012); Kiriyanthan et al. (2016) presented a
method where the registration and the corresponding motion segmentation is performed
in an alternating manner. Using supervoxels to model sliding boundaries was shown
in Heinrich et al. (2013). Direction-dependent regularization methods based on the im-
age intensities or the transformation are presented in Demirovic et al. (2009); Nagel
and Enkelmann (1986); Schmidt-Richberg et al. (2012). Graph-based formulation for
TV regularization was presented in Bagnato et al. (2009) and in Papiez et al. (2017) a
non-local regularization based on the minimum spanning tree was developed.
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Machine Learning (ML) gained attention in the public domain in the last years
through the presentation of computer programs that are able to master classical Atari
games Mnih et al. (2013) or AlphaGo Silver et al. (2016) which outperforms humans
in the board game Go. In the scientific community, Deep Learning (DL) has lead to
a paradigm shift across several domains. As shown in Figure 4.1 deep learning meth-
ods are part of Representation Learning (RL) methods. Compared to classical machine
learning methods, e.g., Support Vector Machine (SVM), where the features for a specific
task are handcrafted, representation learning methods learn an internal representation
that is needed to perform a specific task from given raw training data Goodfellow et al.
(2016); LeCun et al. (2015). One of the first ideas of deep learning was the Multilayer
Perceptron (MLP). The MLP is an extension of the by Rosenblatt (1958) presented
perceptron. Until the development of the backpropagation algorithm by Parker (1985);
Rumelhart et al. (1985); Werbos (1974), MLPs were difficult to train. Furthermore, it
was shown in Blum and Rivest (1989) that finding the corresponding weights to perform
a task correctly, e.g., classification, for a three-layer MLP is NP-complete without using
the backpropagation algorithm.

Current deep learning methods applied to images are mostly Convolutional Neural
Networks (CNNs) LeCun (1989). A milestone of deep learning and CNNs was the
presentation of a classification network based on CNNs Krizhevsky et al. (2012). It
drastically outperformed other state-of-the-art methods at the ImageNet Large Scale
Visual Recognition Challenge. Since then, most of the presented neural networks for
image processing are based on CNNs. Famous examples are the generative adversarial
neural networks (GANs) for image generation Goodfellow et al. (2014) or the U-Net for
semantic medical image segmentation Ronneberger et al. (2015).

Deep Learning (DL)

Representation Learning (RL)

| Machine Learning (ML)

| Artificial Intelligence (Al)

Figure 4.1: Overview of different learning definitions and their relations according to Goodfellow
et al. (2016).
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[Dendrite]
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Figure 4.2: Schematic model of the perceptron presented by Rosenblatt (1958). Corresponding
biological notations are given in square brackets.

In general, machine learning is about the development and application of methods
that are capable to perform a specific task without being given a specific description on
how to perform it. They are able to specialize themselves to the task by learning from
given training data. According to Deisenroth et al. (2019) machine learning is based on
three concepts: model, data, and learning. The model can be described as a function

fo : R4 — RO (4.1)

that is used to approximate an unknown function f. Here, 6 are the parameters of
the model, R% the input domain , and R% the output domain. The aim is to find a
configuration of the parameters 6 in order to obtain an accurate approximation of the
function f. As mentioned before, machine learning methods are capable to specialize
themselves to a specific task. The specialization in this case is finding the best parameter
configuration 6* for the given training data. This process is called learning.

4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are models used for machine learning that was in-
spired by biological neural networks. In McCulloch and Pitts (1943) a first logical neu-
ron is presented to describe the logical functions of the brain. Based on this Rosenblatt
(1958) presented the perceptron. A graphical representation of the perceptron is shown
in Figure 4.2. The perceptron consists of two layers: the input layer and the output
layer and is defined as

1, if Z]\L r;w; +wo >0
y(x) = izt (4.2)
0, otherwise.
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02 04 06 038 0
(b) Multilayer Perceptron (c) Multilayer Perceptron
(2) Perceptron (2 Hidden Layers) (3 Hidden Layers)

Figure 4.3: Classification results for two classes for different ANNs models. (a) shows the learned
classification function with the perceptron model, (b) MLP model with two hidden layers with 10
neurons each, and (c) MLP with three hidden layers and 50 neurons each. All models were trained
with the backpropagation algorithm and the sigmoid activation function. The blue line shows the
learned class boundary.

Here, x1,...,zy are the inputs of the perceptron and wyg,...,wy are the learnable
parameters, i.e.,the weights, of the network. Since the definition of the perceptron is
inspired by biological neural networks, we can also find the corresponding biological
elements in the perceptron. The input xi,...,xN corresponds to the different inputs
of a neuron called dendrites and the output y corresponds to the axon. In the cell
body, the soma, the different input signals are added up and in case a given threshold
is reached a signal is emitted. This corresponds to the weighted sum and the threshold
function of the perceptron. With this simple neural network, we are able to perform a
simple task, e.g., classification. Figure 4.3a shows the result of the perceptron used for
a 2D classification problem. The perceptron is able to learn only linear classification
functions. This was the major weakness that was claimed by Minsky and Papert (1969).
In detail, they proof that the perceptron is not able to learn the logic XOR function.
This statement leads to the so-called AI Winter. During this time, research in this field
was reduced to a minimum.

4.1.1 Multilayer Perceptron

The extension of the perceptron is the Multilayer Perceptron (MLP). Compared to
the original perceptron, a MLP contains additional hidden layers. Figure 4.4 shows
a schematic view of an MLP with one hidden layer. With the development of the
backpropagation algorithm Parker (1985); Rumelhart et al. (1985); Werbos (1974) it is
possible to efficiently optimize the parameters of an MLP. An MLP can have several
hidden layers and multiple neurons per layer. The output of the j-th neuron in the first
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Figure 4.4: Schematic model of a multilayer perceptron (MLP) with one hidden layer.

hidden layer of an MLP is defined as

NInput

hj = ¢ Z Wi ;T + Wo,; (4.3)
i=1

and for the j-th output neuron as

NHidden
0j = ¢ < Z wj jhi + w07j> , (4.4)

i=1

where ¢(-) is an activation function. With a MLP it is possible to learn non-linear
classification functions. The perceptron and the MLP are part of so-called feed forward
neural networks, because there are no feedback connections of the output back to the
model Goodfellow et al. (2016). Neural Networks with feedback connections are called
recurrent neural networks (RNNs). A detailed description of RNNs is given in Sec-
tion 4.3. Figure 4.3b shows the result of a learned non-linear classification function with
two hidden layers and in Figure 4.3c for three hidden layers. All of them were trained
using the backpropagation algorithm and the sigmoid activation function.

Activation Functions

An essential part of a single neuron (perceptron) is the activation function. With the
activation functions, the model is transformed from a linear to a non-linear model.
The original perceptron presented by Rosenblatt (1958) used the Heaviside activation
function. In the following, we will present a selection of common activation functions
used in ANNs. Figure 4.5 shows the corresponding plots of the presented activation
functions.
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Heaviside Activation Function

1, ifz>0

0, otherwise

Heaviside(z) = {

Hyperbolic Tangent

exp(z) — exp(—z)

Tanh(z) =
anh(z) exp(z) + exp(—x)
Sigmoid
Sigmoid(z) = —
SIOIAE) = 1+ exp(—x)

Rectified Linear Unit

ReLu(z) = max(x, 0)

Leaky Rectified Linear Unit

LeakyReLu(z) = max(z,0) + slope min(0, )

Exponential Linear Unit

ELU(z) = max(z,0) + min(0, cexp(x) — 1)

(4.5)

(4.6)

(4.7)

(4.8)

(4.10)
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Figure 4.5: Different activation functions used for ANNs.
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4.2 Convolutional Neural Networks

(a) MR Image of the Knee (b) Horizontal Sobel Features

(d) Selected Feature Representations from a Neural Network Layer

Figure 4.6: Examples of handcrafted and generated features extracted for an MR image of the knee.
(a) MR image of the knee, (b) Sobel horizontal edge detection features, (c) Sobel vertical edge
detection features, and (d) selected features of a CNN layer trained for image reconstruction in an
autoencoder network.

4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have shown huge success in the field of ANN
research, especially in the field of image processing, e.g., Krizhevsky et al. (2012). They
were introduced by LeCun (1989). The main idea behind the CNNs described by LeCun
(1989) is the use of local connectivity. Compared to the MLP (Figure 4.4), the weights
in each layer are locally shared. According to LeCun (1989) this results in a better
generalization of the model because of the reduced number of parameters. The local
connectivity can be modeled as a convolution which leads to the name convolutional
neural networks. First CNNs for digit classification were presented in LeCun et al.
(1990) and further extensions in Lecun et al. (1998). A convolution of two 2D functions
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Figure 4.7: Example of a convolutional neural network layer with three input channels and two output
channels. Here ® is the Hadamard product and wqg to wss are the learnable parameters.

Activation
Function

Output Channels c©

Input Channels ¢!

f:R? - R and k: R? = R is defined as
(Feaen)= [ [ ek -y -y, (4.11)

where f is the signal and k is the kernel.

In general, the input data for a convolutional neural network are discrete signals,
e.g.,images. With the commutative property of the convolution Goodfellow et al. (2016),
one can write the discrete convolution as

(f *9)(i,§) = Z Zfz—mj— m)k(m, n), (4.12)

—M n=—N

where M and N are the width and the height of the kernel k. Furthermore, we assume
that the coordinate origin is in the center of the kernel. However, in most machine
learning libraries the cross-correlation

(f*9)(i,7) Z Z fi+m,j+n)k(m,n), (4.13)

—Mn=—N

is used instead of the convolution Goodfellow et al. (2016). The major aim of the
convolution layer is to extract local features of the input with a stationary kernel k.
The kernel size is in general much smaller than the image size. Typical kernel sizes
for 2D images are 3 x 3, 5 x 5, or 7 x 7. Before CNNs, convolutions were also used
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(b) Output channel (c) Output channel

(a) Input channel i s
stride 1 stride 2

stride 2

stride 1

Figure 4.8: Visualization of the output of a strided convolution for (b) a stride of 1 and (c) a stride
of 2. The blue colored regions representing the new size of the output for different strides.

to extract features from images, but there the kernel function was handcrafted. Those
features are then used for example by SVMs to perform a classification tasks. Known
kernel functions are for example the Sobel edge detection filter. Figure 4.6 shows an
example of the features generated with the Sobel filter from an MR image of the knee.
Furthermore, it shows selected features of a CNN layer of an autoencoder network that
was trained for the task of image compression and reconstruction. It can be observed
that some features are similar to the Sobel features.

CNN layers are part of representation learning methods (Figure 4.1). As mentioned
above, representation learning methods are able to learn an internal representation to
fulfill a specific task. In a CNN layer, the internal representation is defined by the weights
of the kernel. This means a CNN layer selects the features that are needed to perform the
task by learning the corresponding weights of the kernel. Figure 4.7 shows the general
structure of a CNN layer with the corresponding learnable weights. In general, a CNN
layer uses a multichannel convolution in order to learn more than one feature per layer.
The j-th output channel of a CNN layer is then defined as

N1
S (@y) =0 (Z(é * kij)(@,y) + bj) , (4.14)

i=1
where i is the index for the input channels, ¢! the input channels, ¢© are the output
channels (feature maps), k; ; is the kernel applied to the i-th input channel, b; the bias,
¢(+) the activation function, and N the number of input channels.

Strided Convolutions

There are several specializations of convolutions used in CNNs. One specialization is the
strided convolution. Strided convolutions are used in order to reduce spatial resolution
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(b) Rearrange input elements
and perform convolution

(a) Input channel (c) Output channel

Figure 4.9: Visualization of a transposed convolution. The input channel is first rearranged with a
given stride and filed with zeros (b). In addition, in this example zero padding is applied at the image
border. After this, a convolution is applied which results int the final output channel (c).

of the input channel (down-sampling). The strided convolution is defined as

(f*xg)(i,j,s Z Z flis+m,js+ m)k(m,n), (4.15)

—Mn=—N

where s is the stride. It is possible to define different strides for each spatial dimension.
Figure 4.8 shows an example of a strided convolution. Besides the strided convolution
other down-sampling mechanisms are used. Examples are maximum pooling or average
pooling layers where either the maximum or the average of a local neighborhood is
selected. Maximum and average pooling are additional layers, which are arranged after
the convolutional layer.

Transposed Convolutions

Transposed convolutions can be used to increase the spatial resolution of the input chan-
nel (up-sampling). Figure 4.9 shows an example of the effect of transposed convolutions
used for up-sampling. Up-sampling layers are used for example in the generator network
of GANs Goodfellow et al. (2014) or in the decoder part of an autoencoder network. Al-
ternatives for up-sampling are classical interpolation methods, e.g., linear interpolation.
In Wojna et al. (2019) a comparison of different up-sampling technics is presented.

4.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a special class of neural networks for the process-
ing of sequential data. Compared to feedforward neural networks described in Section 4.1
RNN poses feedback connections. In detail, this means that the current output of an
RNN is depending on the last output. With this property, RNNs are well suited for the
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A
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Tt

Figure 4.10: Unrolled recurrent neural network.

detection of features that are encoded in the sequence itself. A RNN is defined as
hy = p(Wxy + Uhy_1), (4.16)

where h; is the output of the RNN, z; is the input at time ¢, and v is the activation
function. The learnable weights of the RNN are the weighting matrix W of the input
and U the weight matrix of the last output at ¢ — 1. A graphical representation of an
unfolded RNN is shown in Figure 4.10. RNNs can also be seen as a special method
to share parameters. Compared to CNNs where the parameter sharing is done for the
spatial domain RNNs share parameter across the sequence. By using the same parameter
configuration for each element of the sequence RNNs are able to handle sequences with an
arbitrary sequence length. In this work, RNNs are used to build a sequence-based image
registration method (Section 6) and for the generation of ventilation maps (Section 8).

4.3.1 Long Short-Term Memory Networks

A major limitation of RNNs is to learn long-term dependencies. By applying the same
function on the complete input sequence, a deep computation graph is built. The com-
putation graph contains all operations performed on the input data. It is needed to
update the parameters using the gradients during the backpropagation step. Deep com-
putation graphs can suffer from the so-called vanishing and exploding gradient problem
Goodfellow et al. (2016). These effects are not specific to RNNs but for all very deep
neural networks. For feed forward neural networks the depth of the computation graph
depends on the model design. In comparison, for RNNs it depends on the sequence
length. The Long Short-Term Memory neural networks (LSTMSs) are an extension of
the base RNN (4.16), presented by Hochreiter and Schmidhuber (1997), to improve the
learning of long-term dependencies. LSTMs belong to the class of gated RNNs and
defined by
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Figure 4.11: Unrolled Long Short-Term Memory neural network.

it = ¢ Wizy + Uihy—1 + b;) (
or = ¢ (Woxy + Uphy—1 + by) , (
ct = ci—1+ 1 © Y (Weay + Uchy—1 + be), (4.19
hi = 0t © Y(ct). (

Here, i; the input gate, o; the output gate with the corresponding weights W, U and the
bias b. The cell state is defined as ¢; and the output as h;. As activation functions the
sigmoid function ¢(-) is used for the gates and for the remaining the hyperbolic tangent
¥(+) is used. Figure 4.11 shows a graphical representation of (4.17), (4.18), (4.19), and
(4.20).

4.3.2 Gated Recurrent Units

The Gated Recurrent Unit (GRU) was presented by Cho et al. (2014). Similar to LSTMs
a GRU contains two gates: the reset gate and the update gate. The update gate controls

the influence of the last state and the current input to the next output state. A GRU
cell is defined by

re = ¢ (Wray + Uphy—1) (4.21)
up = ¢ Wy + Ushi—1), (4.22)
hy =1 (Way+U(ry © hyy), (4.23)
he=(1—2)©®hi1 4 ut © hy. (4.24)
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Figure 4.12: Unrolled gated recurrent unit.

Here, r; is the reset gate, u; the update gate, h; the proposal state, and h; the output
of the GRU cell at the time ¢. Figure 4.12 shows a graphical representation of (4.21),
(4.22), (4.23), and (4.24).

4.4 Deep Neural Networks

Deep neural network (DNN) models are an essential part of current machine learning
methods and consist of one or more hidden layers. An example is the MLP described
in Section 4.1.1. In this section, we will describe how to build a DNN for a specific task
with the methods described above and further we will introduce additional methods
that are used in DNNs in order to improve the performance. Figure 4.13 shows an
example of a feed forward deep neural network, i.e.,an autoencoder network, with 8
layers f1,..., f8 There are two major parts in the presented autoencoder network: the
encoder E with the layer fé, ey fé and the decoder D with the layer f]‘g, e ,f%. The
goal is to train the encoder FE to transform the input image into a low dimensional feature
space, i.e.,latent space, and then reconstruct the image from this feature space using
the decoder D. An application for such an autoencoder network is image compression.
A similar autoencoder structure is used in Section 9 to generate a weakly supervised
segmentation method.
For the encoder the output is defined as

YE = E(xng) = f]%(f]%(f]%(fé(x791)792)793)’94) (4'25)

and for the decoder as

YD = D(x79D) = fl%(fl%(fg(flg(xa05)706>707>708)7 (426>
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Figure 4.13: Deep neural network architecture example of a so-called autoencoder network for di-
mension reduction for image compression. Conv-down blocks reducing the spatial resolution in each
layer by either a strided convolution or a pooling operation. Conv-up blocks increase the spatial
dimension by using bilinear interpolation or transposed convolutions. (B: Batch Size, C: Channels,
W: Image width, H: Image height)

where 0; are the learnable weights of the I-th layer. The final autoencoder is then defined
as

y = A(w,0) = D(E(z,05), 0))- (4.27)
Each layer in the encoder F is defined as
flli)(x) = zp(gHOI"Il'l(gconV(x7 S, erlzonv)7 05’101‘1’11))’ (428)

where geony is the strided convolution with the kernel parameter 6. and the stride s

in order to reduce the spatial resolution of the input. It is also possible to use pooling
operation as maximum pooling or average pooling in order to reduce the spatial reso-
lution. The output of the convolution is then passed to the normalization gnomm with
the learnable parameter 6 . Different normalization methods for neural networks
have been presented in the literature. The common normalization methods are batch-
normalization loffe and Szegedy (2015), instance normalization Ulyanov et al. (2016),
or group normalization Wu and He (2019). The intention of the normalization is to
keep the distribution of the features close to normal distribution N'(0,1). however, the
normalization is not mandatory to build a deep neural network. Finally, the results are
passed to the activation function #(-).
For the decoder D each layer is defined as

fll) (x) = Tp(gnorm (gconv (gup (‘T)v Héonv)7 Héorm))v (429)
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where g, is a bilinear up-sampling method to increase the spacial resolution, but also
transposed convolutions could be used.

Parameter Gradient Calculation and Update (Training)

In order to find the best parameter setting 6* of the encoder and the decoder to com-
press and reconstruct the image, the network needs to be trained. For the training a
scalar-valued loss function L(x,A(z,0)) is needed. The aim of this loss function is to
compare the input of the network x with the output of the network. For the autoen-
coder example, the loss function can be seen as an image similarity measure described
in Section 3.6. With this it is possible to update the parameter 6 of the network using
the backpropagation algorithm by calculating the gradient of each parameter

o <8£(ﬂc,A(x,9)) AL (z, Az, 0)) aﬁ(x,A(x,e)))

0= 0 , 0, 5 (4.30)

As shown in (4.27) deep neural networks are a composition of several functions. The
mathematical method to calculate the gradient is the chain rule. The backpropaga-
tion algorithm presented by Parker (1985); Rumelhart et al. (1985); Werbos (1974) is
a method for the fast computation of the analytic gradient of each parameter in the
network by reducing the number of repeated calculations. Finding the best parameter
setting 0* for the model that reduces the loss function £ can be written as a minimization
problem of the form

6" = argmin Y L(xs, Az, 0)), (4.31)

4 z, €D

where x; is an element of the training data set D. Since the gradient of each parameter
can be calculated, gradient based optimization methods like, e.g., the stochastic gradient
descent, can be used. Several optimization methods have been presented in the past to
improve the optimization process. Examples are the ADAM optimizer Kingma and Ba
(2014), the ADADELTA optimizer Zeiler (2012), or the Adagrad optimizer Duchi et al.
(2011).

4.4.1 Deep Neural Networks for Semantic Segmentation

Deep neural networks have shown huge success in several tasks of machine learning
problems. For example, in image classification with AlexNet Krizhevsky et al. (2012),
GoogleNet Szegedy et al. (2015), or ResNet He et al. (2016) and in image generation with
the presentation of GANs Goodfellow et al. (2014). The aim of semantic segmentation
is to perform a pixel-wise classification instead of a classification of the whole image.
Long et al. (2015) presented a method for a pixel-wise segmentation based on CNNs.
Combining an encoder and a decoder part to obtain a pixel-wise classification was pre-
sented in Noh et al. (2015); Ronneberger et al. (2015). All of these methods have in
common that they are trained in a fully supervised manner. This means for each train-
ing image a corresponding pixel-wise ground-truth label is needed. However, obtaining

41



4 Machine Learning

this ground-truth segmentation is a time consuming and costly process, especially in
the field of medical image processing. In order to reduce the number of labeled data,
semi supervised methods were presented. Semi supervised methods are able to learn
to generate pixel-wise segmentation with only a limited number of pixel-wise annotated
data in combination with unlabeled data. Examples of such methods were presented in
Hong et al. (2015); Papandreou et al. (2015a); Souly et al. (2017). However, for some
training data, a manual classification on the pixel level is still needed for the training.
In contrast to fully or semi supervised methods, weakly supervised methods only use a
global label per image. Andermatt et al. (2019); Vorontsov et al. (2019) used domain
translation to perform the segmentation using only the domain label. Methods that use
no supervision for training are called unsupervised methods. Here, no labeled data is
used during training. Unsupervised methods are used for medical segmentation tasks
are also known as anomaly detection or out of distribution detection (ODD). For the
anomaly detection or ODD a network, for example, an autoencoder is trained to recon-
struct images of a specific domain for example brain images of healthy subjects. If an
image that is not part of the trained distribution is passed through the network, the
network should not be able to reconstruct the image properly. Comparing the input
with the out shows the difference, i.e.,the anomaly contained in the image Baur et al.
(2018); Schlegl et al. (2017); Zimmerer et al. (2019, 2018).
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Adaptive Graph Diffusion Regularisation for
Discontinuity Preserving Image Registration

In the following paper, we present a method for the registration of 2D and 3D image
data. We focus on the problem of the registration of images containing sliding-organ
motion and therefore discontinuities in the displacement field. Our presented method is
based on graph diffusion. The results show that our method is able to register images
that contain sliding organ boundaries and that it preserves the discontinuities of the
transformations.

Publication

The paper was presented at the 8th International Workshop on Biomedical Image Reg-
istration (WBIR) in Leiden, Netherlands, 2018!.

"https://link.springer.com/chapter/10.1007/978-3-319-92258-4_3
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5.1 Introduction

Adaptive Graph Diffusion Regularisation for
Discontinuity Preserving Image Registration

Robin Sandkiihler!, Christoph Jud!, Simon Pezold!, Philippe C. Cattin!

Abstract

Registration of thoracic images is central when studying for example physiological changes
of the lung. Due to sliding organ motion and intensity changes based on respiration the
registration of thoracic images is challenging. We present a novel regularisation method
based on adaptive anisotropic graph diffusion. Without the need of a mask it preserves
discontinuities of the transformation at sliding organ boundaries and enforces smooth-
ness in areas with similar motion. The graph diffusion regularisation provides a direct
way to achieve anisotropic diffusion at sliding organ boundaries by reducing the weight
of corresponding edges in the graph which cross the sliding interfaces. Since the graph
diffusion is defined by the edge weights of the graph, we develop an adaptive edge weight
function to detect sliding boundaries. We implement the adaptive graph diffusion reg-
ularisation method in the Demons registration framework. The presented method is
tested on synthetic 2D images and on the public 4D-CT DIR-Lab data set, where we
are able to correctly detect the sliding organ boundaries.

5.1 Introduction

The registration of images of the human thorax is essential for the analysis or the mon-
itoring of physiological properties of the upper abdomen. However, thoracic images are
affected by sliding organ motion at the thoracic cavity, and corresponding mass points
undergo cyclic intensity changes over the respiratory cycle. If images are affected by
sliding organ motion the global smoothness assumption of the transformation often does
not hold, because of local discontinuities in the transformation at these boundaries.
Several registration approaches haven been presented to overcome the trade-off be-
tween global smoothness and local discontinuity preservation. Based on their definition
parametric approaches are more likely to achieve global smoothness, if the chosen basis
function is smooth. In order to preserve local discontinuities with a parametric ap-
proach, a stationary first order B-spline kernel combined with a Total Variation (TV)
regularisation is introduced in Vishnevskiy et al. (2016). A non-stationary kernel is
described in Jud et al. (2016a). Here, a smooth kernel is locally adapted in its shape
based on the image intensities. Non-parametric approaches are well suited for local dis-
continuity preservation, as they directly estimate the transformation for each pixel. Dif-
ferent direction-dependent regularisation methods based on the image intensities or the
transformation are presented in Demirovic et al. (2009); Nagel and Enkelmann (1986);

!Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
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5 Adaptive Graph Diffusion Regularisation

Schmidt-Richberg et al. (2012). In Papiez et al. (2014) an adaptive Gaussian regulari-
sation based on bilateral filtering is shown. Segmentation of the sliding boundaries can
also be used by either building a motion segmentation Kiriyanthan et al. (2016) during
the registration, or assuming a prior segmentation to locally adapt the transformation
model Hua et al. (2017). Several graph based approaches have been introduced in the
past. Using a graph based formulation for TV regularisation Bagnato et al. (2009) or
a non-local regularisation based on the minimum spanning tree of a graph Papiez et al.
(2017). In both methods the image intensities are used to calculate the edge weights of
the graph.

As mentioned before parametric approaches are well suited for global smoothness, and
non-parametric regularisation, especially anisotropic diffusion Demirovic et al. (2009);
Nagel and Enkelmann (1986); Schmidt-Richberg et al. (2012), are effective to preserve
local discontinuities. In order to achieve both, we propose the graph diffusion as regular-
isation method for image registration. Graph diffusion allows global smoothness while
at the same time local differences on the pixel level are considered. It was shown to be
a valid regularisation operator for kernel-based learning algorithms Smola and Kondor
(2003) and a reliable and computationally efficient method in the area of edge-preserving
image smoothing Zhang and Hancock (2008). Anisotropic diffusion can be achieved with
graph diffusion in a straightforward way by modifying the edge weight between nodes.
In order to achieve anisotropic diffusion at local discontinuities, we need to reduce the
edge weights of nodes which are located on different sites of a sliding organ boundary.

In this work, we present the adaptive anisotropic graph diffusion regularisation method
(A%2GD) to enforce global smoothness and preserve local discontinuities of the transfor-
mation. We achieve this without prior information (e.g. segmentation) of the sliding or-
gan boundaries. A local adaptive edge weight function is developed to create anisotropic
diffusion only at sliding organ interfaces and isotropic diffusion in areas with similar mo-
tion. The proposed regularisation is implemented in the Demons framework Thirion
(1998) and replaces the isotropic diffusion regularisation. To the extent of our knowl-
edge, graph diffusion has not been used as regularisation method for image registration
before.

5.2 Background

Let TR : X — R be the target and reference image over the image domain X. We
define the image domain X = {x;}I' ; as a set of regular distributed grid points z; in
d-dimensions. The registration problem can be defined as a regularised minimisation
problem:

f=argminS[T, R,] + ¢R[u], (5.1)

where transformation of interest f: X — R is a minimiser of (5.1). Here, S[-,-] is the
similarity measure for the target image 7" and the transformed reference image Ry with
Ry¢(z;) = R(z; + f(x;)). In order to restrict the space of admissible transformations,

46
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prior knowledge of the transformation space (e.g. smoothness) can be applied to the
registration problem by the regularisation term R[|. The parameter ¢ controls the
influence of the regularisation e.g. the smoothness of the transformation. A possible
method to find a transformation that minimises (5.1) is the Demons method proposed by
Thirion Thirion (1998). He proposed an iterative method to determine f by alternating
minimising the similarity S and computing the regularisation R. A generalisation of
this idea is shown in Algorithm 2. Thirion proposed an isotropic diffusion process as

Algorithm 2 Demons registration framework

1: Inputs:
T, R, N := number of iterations, ¢ := kernel size, « := step size
2: Initialise:
f+<0
3: fori=1to N do
4: s <= VS[T', Rf] compute image force (demons)
5: f < f + as update transformation
6: f + K, * f smooth transformation

regularisation to smooth the transformation. Isotropic diffusion can be achieved by
Rolf] =K« f 1=1,....d (5.2)

for each spatial dimension [. Here, * is the convolution and KS is a Gaussian kernel
(diffusion kernel) with a kernel size of \/2¢ Babaud et al. (1986).

5.3 Method

We summarise in the following the definition of diffusion on graphs, how it can be
calculated efficiently, and how we use it as regularisation for image registration. Further,
we propose our extension the adaptive anisotropic graph diffusion regulariser (A2GD),
and an edge weight function to detect sliding organ boundaries.

Adaptive Graph Diffusion Regularisation

In order to apply graph diffusion as regularisation Rgp[f], the transformation f is
modelled as an undirected weighted grid graph G = (V, E, W) with n nodes. Each
node v; € V, with the node position x; € X, represents f(z;). The set of edges is
given as E CV x V. An edge e;; € E connects the nodes v; and v;. The weight
matrix W € R™ " contains the edge weights of the graph with W (i, j) = w(e;;) and
w: E —[0,1]. A central element in spectral graph theory is the graph Laplacian matrix
L € R™™ The Laplacian matrix is a symmetric matrix and is defined as L = D — W
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5 Adaptive Graph Diffusion Regularisation

with
D(i,j) = W(i,j), ifi=j
L(’L,j) = —W(i,j), if €ij € E (53)
0, otherwise,

where D € R™*" is the diagonal degree matrix with D(i,i) = > 7_; W (i, j).

The diffusion rate or the flow between two nodes is determined by the weight of the
edge between both nodes. This allows to define arbitrary anisotropic diffusion by only
modifying the edge weights of the graph. In order to define the diffusion process on
graphs, Equation (5.2) can be rewritten as

Raplf] = KSPf' = exp(—¢L)f' 1=1,....d. (5.4)

Here, fi € R™¥! is the column vector representation of the transformation f and
KSD € R™" is the graph diffusion kernel Kondor and Lafferty (2002); Zhang and
Hancock (2008) with the matrix exponential exp(-). If the edge weights are set according
to the node position z; and x; with w(e;;) = exp(—||z; — z;]|*/4¢), then (5.2) and (5.4)
will provide the same results. We refer the reader to Zhang and Hancock (2008) for a
more detailed description of graph diffusion.

In order to achieve an adaptive graph diffusion regularisation we make the graph
diffusion kernel K S’D non-static. We do this by updating the edge weights in the weight
matrix Wy, in each iteration k with the edge weight function presented bellow. The final
adaptive graph diffusion regularisation is defined as

Razcplfir1, Wil = KGP(Wi) fiyr = exp(—pL(Wi) flyy [=1,....d. (5.5)

Computation of the graph diffusion

Calculating the matrix exponential of the Laplace matrix L is the major computational
challenge for the graph diffusion. For the matrix L, the matrix exponential can be
defined as

| —

exp(L) = Z L*. (5.6)
k=0

Different approaches exists to compute the matrix exponential Moler and Loan (2003).
The graph Laplacian matrix L can be of high order, therefore the computation becomes
costly. However, the explicit calculation of the matrix exponential is not required for
the graph diffusion. In order to compute the graph diffusion only the action of the
graph diffusion kernel to the transformation vector is needed (5.4). It has been shown in
Saad (1992) that those kind of actions can be efficiently approximated with the Krylov
subspace projection methods. Therefore, exp(L)f is approximated by an element of the
Krylov subspace K,,(L, f) = span{f, Lf,L?f,..., L™ 1 f}, where m is the dimension of
the Krylov subspace. Normally the Krylov space dimension (m < 50) is much smaller
compared to n which can be in the range of a few million in case of 3D registration. Since

™

!
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L is a hermitian matrix, the Lanczos algorithm Lanczos (1950) offers a computationally
efficient way to find the approximating element of K,,(L, f). The final approximation
of (5.4) is then given as

.]Eslmooth - eXp(—(pL)fTI ~ |’fl‘|2PeXP(Q)61' (57)

Here, P € R™ "™ is the projection matrix, @ € R™*™ a symmetric tridiagonal matrix,
and ej is the first unit vector. Both matrices P and ) are the results of the Lanczos
algorithm. The approximation only requires the matrix exponential of a matrix with
the order of m instead of the order of n. Since @ is a symmetric tridiagonal matrix, we
compute the matrix exponential of Q by exp(Q) = Aexp(I')A~!. Each column in A is
an eigenvector of () and I' is a diagonal matrix of the corresponding eigenvalues. The
matrix exponential of I' is the exponential of each diagonal element of T'.

Local edge update

The graph diffusion allows an anisotropic diffusion process by modifying corresponding
edge weights. However, detecting the corresponding edges only in one information do-
main (e.g. image intensities) is challenging, since sliding organ boundaries not always
correspond to intensity differences (see Figure 5.1, Case (I)). We define five cases (see
Figure 5.1) to adapt the edge weights either for anisotropic or isotropic diffusion. In Case
(I) and (II), the edges crosses a sliding organ boundary and therefore their edge weights
need to be zero to enforce anisotropic diffusion. The other edges are either inside the
same organ (Case (III) and (V)) or crossing an organ boundary where both organs move
similarly (Case (IV)). In cases (III) to (V) isotropic diffusion is desired and therefore
the edge weights should be one. We propose a locally adaptive edge weight function to
cover all five cases based on three different information domains. The first two are the
image intensity domain (Case III, V)

Wimg(€ij) = exp(—img||T (x:) — T (z;)[), (5-8)
and the transformation domain (Case I-V)
wi(eij) = exp(=of|f(x:) — f(2;)I]), (5.9)

with the scaling parameter ;g and J; The third domain is described by the relation
between the direction of the image gradient and the direction of the transformation
(Case II, IV) based on the Nagel-Enkelmann operator Nagel and Enkelmann (1986).
Adapting the pixel-wise Nagel-Enkelmann operator to an edge weight function for the
graph diffusion results in

V)@ IV Eanler) ()T
wi(ey) =05 (HWmax(ez-jm 7 T TV Tmanle) ||f($j)||> (5.10)
with
h oy = [ TT@) 9T = 9T -~
e VT(xj), otherwise. '
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5 Adaptive Graph Diffusion Regularisation

The final weight function is then given as
w(eij) = Twi(eij) + (1 — 7)[(wimg(eij)wiles;) + (1 — wimg)w (€ij)]- (5.12)

The scale function 7 € [0, 1] in (5.12) allows to adapt the scale between the image based
domains (5.8) and (5.10) and the transformation domain (5.9).

Figure 5.1: Different cases, which are considered for the edge weight adaptation at sliding interfaces
(dashed green) based on image gradients (red), transformation (blue) and intensity differences (gray
values).

The final edge weights are thresholded with
0 i) < 0.5
nerg) =4 o) <05 (5.13)
1, else
In order to reduce the effect of oscillating edge weights an exponential smoothing
W14, 5) = pWi(i,5) + (1 — p)wg+1(€s5) (5.14)

is applied, where p is the exponential decay rate.

Node Isolation

A node v; is isolated from the graph, if all edges connected to this node have a zero
weight D(i,7) = 0. Isolated nodes can cause artefacts in the transformation, because
they are excluded from the regularisation. In order to prevent node isolation, all weights
of the edges connected to a node v; with D(i,7) < 8 will be set to one. We choose § < 2
in 2D and 8 < 3 in 3D , so that the reset will not affect nodes at sliding boundaries.

Transformation Update

The update of the transformation in the Demons framework can be written in the form
of a gradient descent update

fr+1 = fu + mVS[T, Ry, ]. (5.15)
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In order to improve the convergence of the Demons framework we replace (5.15) by the
well known Momentum optimiser equations

b1 = agvy + i VS[T, Ry, ] (5.16)
fer1 = fi + bea (5.17)

as introduced in Santos-Ribeiro et al. (2016). We set np = 1/(||V Ry, ||? + %) according
to Thirion (1998), where ¢, € R~ allows a modification of the step size in each iteration.

5.4 Results

We evaluated our adaptive graph diffusion regularisation method on synthetic 2D images
with given ground truth, and on the public available DIR-Lab data sets.

Synthetic Experiments

We define a target image T with a size of 256 x 256 pixels and the intensities

T(x) =z X e;/m, where e; is a unit vector (Figure 5.2a). The inner part of the target
image is rotated by 15 degrees and the outer part is rotated in the opposite direction,
in order to simulate a sliding boundary (Figure 5.2b).

The Swmse(T, Rf) =1/n> 1 (T(z;) — Ry(z))* metric is used as similarity measure.
We choose w(e;;) = 0.5 (1+ ||f(z:)T f(zj)]|2/]f (@)l f(z;)]]2) as edge weight func-
tion, because the sliding organ boundary in the image can be mainly described by di-
rection differences of the displacement. Further, we used a multi-scale approach with
three resolutions {64, 128,256}. The regularisation parameter are set to pg = {4, 8,13}
and @nin = {1,2,2}. In each iteration the current regularisation weight is given by
v = @o * exp(—0.05k) + @omin All remaining parameters are set as follows: m = 30,
1 =0.01, p=0.9, a=0.9, and N = {100,100, 200} iterations. All edge weights w(e;;)
are initialised with one.

The results of the proposed regularisation method for the synthetic experiments are
shown in Figure 5.2d with edge update and in Figure 5.2f without edge update. With
edge updates during the registration the ground truth displacement is very well esti-
mated. The sliding boundary is clearly detected as we can see a reduction of the degree
matrix values only at the sliding organ boundary (Figure 5.2¢). If we apply the trans-
formation result from the method without the edge update to a checker board, we get
strong distortion at the sliding boundary (Figure 5.2g). Compared to this, our presented
method reduce the distortion at sliding organ boundaries to a minimum (Figure 5.2¢).

DIR-Lab Data Set

The publicly available DIR-Lab? data set contains 10 4D-CT image series of different
individuals. All images have a size between 256 x 256 x 94 voxel and 512 x 512 x 136

*http://www.dir-lab.com
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Figure 5.2: Target image (a) and reference image (b) for the synthetic experiment. The red circle
shows the sliding organ boundary between the inner and the outer region. Registration result with
edge update (d) and the corresponding warped checker board (e), and without edge update (f) and
the corresponding warped checker board (g). The graph degree matrix at the end of the registration
is shown in (c).

voxel, with a voxel size in the range of 0.97 x 0.97 x 2.5mm? and 1.16 x 1.16 x 2.5 mm?3.
For all images we clip the intensities between 50 HU and 1200 HU, scale them in a
range of [0, 1], and resample all to a voxel size of 1 x 1 x 1mm?. For the evaluation of
the registration result, the DIR-Lab data set provides 300 landmarks for the maximal
inhalation and maximal exhalation of the breathing cycle. As images similarity measure
the normalised local cross correlation S is used. We use the derivative approximation
of Siee introduced in Cachier and Pennec (2000).

Table 5.1: Mean snap to voxel TRE in millimetre based on the 300 landmarks of DIR-Lab data set.

Case #1 #2 #3 #4 #5 #6 HT #8 #9 #10 mean
No Reg. 3.87 4.34 6.96 9.86 7.51 10.9311.0315.017.94 7.33 8.48
MST Papiez et al. (2017) | 0.83 0.87 1.10 1.96 1.36 1.77 1.58 2.08 1.50 1.40 1.44
A2GD 1.12 1.20 1.27 1.61 1.53 1.32 1.38 1.45 1.36 1.34 1.36

A multi-scale approach with four scales is used for the registration. At the end of

each scale level, the transformation result is projected to the next scale level as initial
value. All parameters are set as follows: N = {200, 200, 200,300}, m = 30, p = {0.9},
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I 32[mm]

I 0[mm]

Figure 5.3: Displacement field of the #8 case of the DIR-Lab data set.

Olec = {2,8,10,15}, dimg = 5, 0f = {1,0.5,0.25,0.125}, ¢ = {0.5,0.3,0.2,0.2} and
increased with 1073, The regularisation parameter is set to ¢ = {2,3,3,3}. Weset 79 = 0
and increase it linear with a factor of 107 in each iteration. With this configuration the
average run time is 5 minutes for one image pair on a GPU.

In Table 5.1 the mean TRE for all 10 data sets based on the 300 landmarks is shown.
We compare our method to the MST based graph regularisation method Papiez et al.
(2017). As shown in Figure 5.3 our method is able achieve global smoothness of the
transformation and preserves discontinuities at sliding organ boundaries.

5.5 Conclusion

We presented a novel regularisation method based on adaptive anisotropic graph dif-
fusion. Without the need of a prior segmentation of the sliding organ boundaries our
proposed regularisation method enforces global smoothness and preserves local disconti-
nuities. In order to achieve anisotropic diffusion at sliding organ boundaries we developed
an adaptive edge weight function based on local image intensities and the transforma-
tion. The results show that we are able to well detect the sliding organ boundaries and
preserve the discontinuities in the transformation for the synthetic examples and for
the DIR-Lab data set. We achieve a sub-millimetre difference, if we compare our TRE
results to results of state of the art methods.
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Recurrent Registration Neural Networks for
Deformable Image Registration

In the following paper, we present a learning-based registration method. The regis-
tration method is inspired by how a human would register two images using only local
transformations. We reformulate the registration problem as a sequence of local defor-
mations. In order to model this sequence, we based our model on gated recurrent neural
networks, called Recurrent Registration Neural Networks (R2N2). With a sequence-
based model, we are able to apply local transformations until both images are properly
aligned. The network should therefore learn, where both images are not correctly spa-
tially aligned and how to align them properly. The results show that our method is able
to register two images with the same accuracy as the B-spline method, but 15 times
faster.

Publication

This paper was presented at the Conference for Neural Information Processing Systems
(NeurIPS), Vancouver, Canada, 2019

"https://papers.nips.cc/paper/9080-recurrent-registration-neural-networks-for-
deformable-image-registration
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6.1 Introduction

Recurrent Registration Neural Networks for
Deformable Image Registration

Robin Sandkiihler!, Simon Andermatt!, Grzegorz Bauman?, Sylvia Nyilas?,
Christoph Jud!, Philippe C. Cattin'

Abstract

Parametric spatial transformation models have been successfully applied to image reg-
istration tasks. In such models, the transformation of interest is parameterized by a
fixed set of basis functions as for example B-splines. Each basis function is located on
a fixed regular grid position among the image domain because the transformation of
interest is not known in advance. As a consequence, not all basis functions will necessar-
ily contribute to the final transformation which results in a non-compact representation
of the transformation. We reformulate the pairwise registration problem as a recursive
sequence of successive alignments. For each element in the sequence, a local deforma-
tion defined by its position, shape, and weight is computed by our recurrent registration
neural network. The sum of all lo- cal deformations yield the final spatial alignment of
both images. Formulating the registration problem in this way allows the network to de-
tect non-aligned regions in the images and to learn how to locally refine the registration
properly. In contrast to current non-sequence-based registration methods, our approach
iteratively applies local spatial deformations to the images until the desired registration
accuracy is achieved. We trained our network on 2D magnetic resonance images of the
lung and compared our method to a standard parametric B-spline registration. The
experiments show, that our method performs on par for the accuracy but yields a more
compact representation of the transformation. Furthermore, we achieve a speedup of
around 15 compared to the B-spline registration.

6.1 Introduction

Image registration is essential for medical image analysis methods, where corresponding
anatomical structures in two or more images need to be spatially aligned. The mis-
alignment often occurs in images from the same structure between different imaging
modalities (CT, SPECT, MRI) or during the acquisition of dynamic time series (2D+t,
4D). An overview of registration methods and their different categories is given in Sotiras
et al. (2013). In this work, we will focus on parametric transformation models in com-
bination with learning-based registration methods. There are mainly two major classes

!Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
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6 R2N2 for Deformable Image Registration

of parametric transformation models used in medical image registration. The first class
are the dense transformation models or so-called optical-flow Horn and Schunck (1981).
Here, the transformation of each pixel in the image is directly estimated (Figure 6.2a).
The second class of models are interpolating transformation models (Figure 6.2b). Inter-
polating transformation models approximate the transformation between both images
with a set of fixed basis functions (e.g. Gaussian, B-spline) among a fixed grid of the
image domain Jud et al. (2016a,b); Rueckert et al. (1999); Vishnevskiy et al. (2016).
These models reduce the number of free parameters for the optimization, but restrict
the space of admissible transformations. Both transformation models have advantages
and disadvantages. Dense models allow preservation of local discontinuities of the trans-
formation, while the interpolating models achieve a global smoothness if the chosen basis
function is smooth.

Although the computation time for the registration has been reduced in the past, image
registration is still computationally costly, because a non-linear optimization problem
needs to be solved for each pair of images. In order to reduce the computation time and
to increase the accuracy of the registration result, learning-based registration methods
have been recently introduced. As the registration is now separated in a training and an
inference part, a major advantage in computation time for the registration is achieved.
A detailed overview of deep learning methods for image registration is given in Haskins
et al. (2019). The FlowNet Dosovitskiy et al. (2015) uses a convolutional neural network
(CNN) to learn the optical flow between two input images. They trained their network in
a supervised fashion using ground-truth transformations from synthetic data sets. Based
on the idea of the spatial transformer networks Jaderberg et al. (2015), unsupervised
learning-based registration methods were introduced Dalca et al. (2018b); de Vos et al.
(2017); Hu et al. (2018); Stergios et al. (2018). All of these methods have in common that
the output of the network is directly the final transformation. In contrast, sequence-
based methods do not estimate the final transformation in one step but rather in a
series of transformations based on observations of the previous transformation result.
This process is iteratively continued until the desired accuracy is achieved. Applying a
sequence of local or global deformations is inspired by how a human would align two
images by applying a sequence of local or global deformations. Sequence-based methods
for rigid Liao et al. (2017); Miao et al. (2018) and for deformable Krebs et al. (2017)
registration using reinforcement learning methods were introduced in the past. However,
the action space for deformable image registration can be very large and the training of
deep reinforcement learning methods is still very challenging.

In this work, we present the Recurrent Registration Neural Network (R2N2), a novel
sequence-based registration method for deformable image registration. Figure 6.1 shows
the registration process with the R2N2. Instead of learning the transformation as a
whole, we iteratively apply a network to detect local differences between two images
and determine how to align them using a parameterized local deformation. Modeling
the final transformation of interest as a sequence of local parametric transformations
instead of a fixed set of basis functions enables our method to extend the space of
admissible transformations, and to achieve a global smoothness. Furthermore, we are
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6.2 Background

Figure 6.1: Sequence-based registration process for pairwise deformable image registration of a fixed
image F' and a moving image M.

able to achieve a compact representation of the final transformation. As we define the
resulting transformation as a recursive sequence of local transformations, we base our
architecture on recurrent neural networks. To the best of our knowledge, recurrent neural
networks are not used before for deformable image registration.

6.2 Background

Given two images that need to be aligned, the fixed image F': X — R and the moving
image M : X — R on the image domain X C R?, the pairwise registration problem can
be defined as a regularized minimization problem

*=argmin S[F, M o f] + AR|[f]. (6.1)
!

Here, f*:X — R? is the transformation of interest and a minimizer of (6.1).
The image loss §: X X X — R determines the image similarity of F' and M o f, with
(Mo f)(z) =M(z+ f(z)). In order to restrict the transformation space by using prior
knowledge of the transformation, a regularization loss R : R — R and the regularization
weight A are added to the optimization problem. The regularizer is chosen depending
on the expected transformation characteristics (e.g. global smoothness or piece-wise
smoothness).

Transformation

In order to optimize (6.1) a transformation model fy is needed. The minimization
problem then becomes

0* = argmin S[F, M o fg] + AR|[fs], (6.2)
0

where 6 are the parameters of the transformation model. There are two major classes of
transformation models used in image registration: dense and interpolating. In the dense
case, the transformation at position x in the image is defined by a displacement vector

fo(x) = 0, (6.3)
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Figure 6.2: Dense, interpolating, and proposed transformation models.
with 6, = (91,02, ...,04) € RZ For the interpolating case the transformation at position

x is normally defined in a smooth basis

N
fo(z) = Z 0ik(z, c;). (6.4)

Here, {c;}Y,,c; € X are the positions of the fixed regular grid points in the image
domain, k: X x X — R the basis function, and N the number of grid points. The
transformation between the control points ¢; is an interpolation of the control point
values 6; € R? with the basis function k. A visualization of a dense and an interpolating
transformation model is shown in Figure 6.2.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed for sequential
data. A simple RNN has the form

hy = ¢(W.1‘t + Uht_l), (65)

where W is a weighting matrix of the input at time ¢, U is the weight matrix of the last
output at time ¢ — 1, and ¢ is an activation function like the hyperbolic tangent or the
logistic function. Since the output at time ¢ directly depends on the weighted previous
output h;_1, RNNs are well suited for the detection of sequential information which is
encoded in the sequence itself. RNNs provide an elegant way of incorporating the whole
previous sequence without adding a large number of parameters. Besides the advantage
of RNNs for sequential data, there are some difficulties to address e.g. the problem
to learn long-term dependencies. The long short-term memory (LSTM) architecture
was introduced in order to overcome these problems of the basic RNN Hochreiter and
Schmidhuber (1997). A variation of the LSTM, the gated recurrent unit (GRU) was
presented by Cho et al. (2014).
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Figure 6.3: Network architecture of the presented Recurrent Registration Neural Network.

6.3 Methods

In the following, we will present our Recurrent Registration Neural Network (R2N2) for
the application of sequence-based pairwise medical image registration of 2D images.
Sequence-Based Image Registration

Sequence-based registration methods do not estimate the final transformation in one
step but rather in a series of local transformations. The minimization problem for the
sequence-based registration is given as

S[F, M o f2] + AR[fr]. (6.6)

M=

0" = argmin —
9 T
t=1

Compared to the registration problem (6.2) the transformation f{ is now defined as a
recursive function of the form

0, if t =0,
fte—l + l(x)ge(Fa Mo fte_l)) else.

Here, gy is the function that outputs the parameter of the next local transformation given
the two images F and Mo f{. In each time step ¢, a local transformation [ : X x X — R?
is computed and added to the transformation f¢. After transforming the moving image
M with ff, the result is used as input for the next time step, in order to compute the
next local transformation as shown in Figure 6.1. This procedure is repeated until both
input images are aligned. We define a local transformation as a Gaussian function

(e, F, M) = { (6.7)

Iz, 70, Ty, 01) = vy exp <—;(x — TR e — m) , (6.8)

where % = (z4,y;) € X is the position, v = (vf,v)) € [~1,1]> the weight,
and 'y = {07, 0}, a4} the shape parameter with

S(Ty) = [cos(at) sin(at)] [afg o] [Cos(at) sin(at)]T' (6.9

sin(oy)  cos(ay) 0 o7 [sin(ay) cos(ay)
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6 R2N2 for Deformable Image Registration

Here, o},0) € Rso control the width and o € [0,7] the rotation of the Gaussian
function. The output of gy is defined as g9 = {Z¢, ', v;}. Compared to the interpolating
registration model shown in Figure 6.2b, the position #; and shape I'y of the basis
functions are not fixed during the registration in our method (Figure 6.2c).
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Figure 6.4: Architectures for the position network, the parameter network, and the gated recurrent
registration unit.

Network Architecture

We developed a network architecture to approximate the unknown function gy, where 6
are the parameters of the network. Since the transformation of the registration is defined
as a recursive sequence, we base our network up on GRUs due to their efficient gated
architecture. An overview of the complete network architecture is shown in Figure 6.3.
The input of the network are two images, the fixed image F' and the moving image
M o fi. As suggested in Liu et al. (2018), we attached the position of each pixel as
two additional coordinate channels to improve the convolution layers for the handling of
spatial representations. Our network contains three major sub-networks to generate the
parameters of the local transformation: the gated recurrent registration unit (GR2U),
the position network, and the parameter network.

Gated Recurrent Registration Unit  Our network contains three GR2U for different spatial
resolutions (128 x 128, 64 x 64, 32 x 32). Each GR2U has an internal structure as shown
in Figure 6.4c. The input of the GR2U block is passed through a residual network,
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6.3 Methods

with three stacked residual blocks He et al. (2016). If not stated otherwise, we use the
hyperbolic tangent as activation function in the network. The core of each GR2U is the
C-GRU block. For this, we adopt the original GRU equations shown in Cho et al. (2014)
in order to use convolutions instead of a fully connected layer as presented in Andermatt
et al. (2017). In contrast to Andermatt et al. (2017), we adapt the proposal gate (6.12)
for use with convolutions, but without factoring r; out of the convolution. The C-GRU
is then defined by:

=1 (ZI: (z+wh?) + (hf,l * uffj> + bﬁ) , (6.10)
(hf,l * u’”) + b?;) , (6.11)
(

(r; © hY_y) * uk’j> + bj> : (6.12)
k
W =01-2)ohl_ | +z ohl (6.13)

Here, r represents the reset gate, z the update gate, h; the proposal state, and h; the
output at time t. We define ¢(-) as the hyperbolic tangent, 1(-) represents the logistic
function, and ® is the Hadamard product. The convolution is denoted as * and u_,w, b,
are the parameters to be learned. The indices ¢, j, k correspond to the input and
output/state channel index. We also applied a skip connection from the output of the
residual block to the output of the C-GRU.

Position Network The architecture of the position network is shown in Figure 6.4a and
contains two paths. In the left path, the position of the local transformation x} is
calculated using a convolution layer followed by the spatial softmax function Finn et al.
(2016). Here, n is the level of the spatial resolution. The spatial softmax function is

defined as
o orld) (614
SR

where ¢ and j are the spatial indices of the k-th feature map c. The position is then
calculated by

Ty = ZZP(CIJ)XZ,ZZp(CU)Y;? ) (6.15)

where (X[}, Y;7) € X are the coordinates of the image pixel grid. As shown in Figure
6.3 an estimate of the current transformation position is computed on all three spatial
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6 R2N2 for Deformable Image Registration

levels. The final position is calculated as a weighted sum

3 n,.n
= Lnft St (6.16)
> n Wi
The weights wj* € R are calculated on the right side of the position block. For this, a
second convolution layer and a second spatial softmax layer are applied to the input of
the block. We calculated the similarity of the left spatial softmax p'(c;;) and the right
spatial softmax p"(c;;) as the weight of the position at each spatial location

Tt

wp =233 o) — pe)] (6.17)

This weighting factor can be interpreted as certainty measure of the estimation of the
current position at each spatial resolution.

Parameter Network The parameter network is located at the end of the network. Its
detailed structure is shown in Figure 6.4b. The input of the parameter block is first
passed through a convolution layer. After the convolution layer, the first half of the
output feature maps is passed through a second convolution layer. The second half
is applied to a spatial softmazx layer. For each element in both outputs, a point-wise
multiplication is applied, followed by an average pooling layer down to a spatial resolution
of 1 x 1. We use a fully connected layer with one hidden layer in order to reduce the
output to the number of needed parameters. The final output parameters are then

defined as

of = ¢(C%)UmaXa UZ = d}(cg)o'max» v = (;5(6?), Uz = ¢(C§)a Oy = ¢(C?)Wa (6.18)

where ¢(+) is the hyperbolic tangent, ¥ () the logistic function, and opax the maximum
extension of the shape.

6.4 Experiments and Results

Image Data We trained our network on images of a 2D+t magnetic resonance (MR)
image series of the lung. Due to the low proton density of the lung parenchyma in
comparison to other body tissues as well as strong magnetic susceptibility effects, it is
very challenging to acquire MR images with a sufficient signal-to-noise ratio. Recently,
a novel MR pulse sequence called ultra-fast steady-state free precession (ufSSFP) was
proposed Bauman et al. (2016). ufSSFP allows detecting physiological signal changes
in lung parenchyma caused by respiratory and cardiac cycles, without the need for
intravenous contrast agents or hyperpolarized gas tracers. Multi-slice 2D+t ufSSFP
acquisitions are performed in free-breathing.

For a complete chest volume coverage, the lung is scanned at different slice positions
as shown in Figure 6.5. At each slice position, a dynamic 2D+t image series with 140
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Figure 6.5: Maximum inspiration (top row) and maximum expiration (bottom row) for different slice
positions of one patient from back to front.

images is acquired. For the further analysis of the image data, all images of one slice
position need to be spatially aligned. We choose the image which is closest to the mean
respiratory cycle as fixed image of the series. The other images of the series are then
registered to this image. Our data set consists of 48 lung acquisitions of 42 different
patients. Each lung scan contains between 7 and 14 slices. We used the data of 34
patients for the training set, 4 for the evaluation set, and 4 for the test set.

Network Training The network was trained in an unsupervised fashion for ~ 180,000
iterations with a fixed sequence length of t = 25. Figure 6.6 shows an overview of
the training procedure. We used the Adam optimizer Kingma and Ba (2014) with the
AMSGrad option Reddi et al. (2019) and a learning rate of 0.0001. The maximum
shape size is set to opmax = 0.3 and the regularization weight to Agrane = 0.1. For the
regularization of the network parameter, we use a combination of Srivastava et al. (2014)
particularly the use of Gaussian multiplicative noise and dropconnect Wan et al. (2013).
We apply multiplicative Gaussian noise N'(1,1/0.5/0.5) to the parameter of the proposal
and the output of the C-GRU. As image loss function S the mean squared error (MSE)
loss is used and as transformation regularizer R the isotropic total variation (TV). The
training of the network was performed on an NVIDIA Tesla V100 GPU.

Fixed Image (F)

Image Loss

6
RoN2 9+ Dense Spatial
Displacement Transformer

Update input image M1 with Wy

M,

Moving Image (M)

Figure 6.6: Unsupervised training setup (W; is the transformed moving image).
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Table 6.1: Mean target registration error (TRE) for the proposed method R2N2 and a standard B-spline registration (BS) for the test data

set in millimeter. The small number is the maximum TRE for all images for this slice.

Patient ‘ Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice & ‘ mean
R2N2 1.26 185 1.08 214 1.13 182 1.23258 147274 1.12151 092133 1.04187 | 1.16
BS 1.28 181 1.1620 1.40252 1.15267 0.96 171 0.99 141 0.84 114 1.02 165 | 1.10
R2N2 0.84 199 092249 0.79104 0.8112 0.741.43 — - — 0.82
BS 1.50 5,07 0.69 1.73 0.73 105 0.77 1.13 0.86 1.76 - — - 0.91
R2N2 1.65 3838 1.06 255 0.86208 0.831.48 0.80139 0.73 1.08 — - 0.99
BS 1.15273 0.81 142 0.75164 0.79 114 0.72094 0.831.95 — — 0.84
R2N2 1.30 3.03 0.77 098 0.79 207 1.09 1.92 0.84 1.12 - — - 0.96
BS 1.09315 0.78 101 0.73173 1.0925 0.791.13 — - — 0.90

UOIJR.IYSISOY 03RW] o[qRULIOJO(T I0f ZNCY 9



6.5 Conclusion

Experiments We compare our method against a standard B-spline registration method
(BS) implemented in the AirLab framework Sandkiihler et al. (2018a). The B-spline
registration use three spatial resolutions (64, 128, 256) with a kernel size of (7, 21, 57)
pixels. As image loss the MSE and as regularizer the isotropic TV is used, with the
regularization weight Agg = 0.01. We use the Adam optimizer Kingma and Ba (2014)
with the AMSGrad option Reddi et al. (2019), a learning rate of 0.001, and we perform
250 iterations per resolution level.

From the test set we select 21 images of each slice position, which corresponds to
one breathing cycle. We then select corresponding landmarks in all 21 images in order
to compute the registration accuracy. The target registration error (TRE) of the reg-
istration is defined as the mean root square error of the landmark distance after the
registration. The results in Table 6.1 show that our presented method performed on par
with the standard B-spline registration in terms of accuracy. Since the slice positions
are manually selected for each patient, we are not able to provide the same amount of
slices for each patient. Despite that the image data is different at each slice position,
we see a good generalization ability of our network to perform an accurate registration
independently of the slice position at which the images are acquired.

Our method achieve a compact representation of the final transformation, by using
only ~7.6% of the amount of parameters than the final B-spline transformation. Here,
the number of parameters of the network are not taken into account only the number
of parameters needed to describe the final transformation. For the evaluation of the
computation time for the registration of one image pair, we run both methods on an
NVIDIA GeForce GTX 1080. The computation of the B-spline registration takes ~4.5s
compared to ~0.3s for our method.

An example registration result of our presented method is shown in Figure 6.7. It
can be seen that the first local transformations the network creates are placed below
the diaphragm (white dashed line) (Figure 6.7a), where the magnitude of the motion
between the images is maximal. Also the shape and rotation of the local transformations
are computed optimally in order to apply a transformation only at the liver and the lung
and not on the rips. During the next time steps, we can observe that the shape of the
local transformation is reduced to align finer details of the images (Figure 6.7g-h).

6.5 Conclusion

In this paper, we presented the Recurrent Registration Neural Network for the task of
deformable image registration. We define the registration process of two images as a
recursive sequence of local deformations. The sum of all local deformations yields the
final spatial alignment of both images Our designed network can be trained end-to-
end in an unsupervised fashion. The results show that our method is able to accurately
register two images with a similar accuracy compared to a standard B-spline registration
method. We achieve a speedup of ~15 for the computation time compared to the B-
spline registration. In addition, we need only ~7.6% of the amount of parameters to
describe the final transformation than the final transformation of the standard B-spline
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6 R2N2 for Deformable Image Registration

(d) Final
Displacement

(e) Displacement (f) Displacement (g) Displacement (h) Displacement
t=2 t=4 t=8 t =25

Figure 6.7: Top Row: Registration result of the proposed recurrent registration neural network for
one image pair. Bottom Row: Sequence of local transformations after different time steps.

registration. In this paper, we have shown that our method is able to register two
images in a recursive manner using a fixed number of steps. For future work we will
including uncertainty measures for the registration result as a possible stopping criteria.
This could then be used to automatically determine the number of steps needed for the
registration. Furthermore, we will extend our method for the registration of 3D volumes.
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AlRLab: Autograd Image Registration
Laboratory

In the following paper, we present the Autograd Image Registration Laboratory (AIR-
Lab). AIRLab is a registration framework based on the PyTorch! framework. It is
designed for the development of new registration methods and for the fast implemen-
tation of current methods, by using the automatic gradient calculation provided by the
PyTorch framework. In the AIRLab framework a wide variety of different tools for im-
age registration are implemented, e.g., B-spline transformations, Demons registration,
diffeomorphic transformations, and several image similarity measures. The work is a
cooperation between Christoph Jud and myself Robin Sandkiihler. The main idea of the
ATIRLab framework and the implementation of the basic framework containing, trans-
formation models, image similarity measures, and different registration types were done
by myself Robin Sandkiihler. I also wrote the part of the diffeomorphic transformation,
the similarity measures, and I performed the experiments for the evaluation part in the
following paper. The other parts of the paper were mainly written by Christoph Jud. He
implemented the functions which allow the registration of images with different domain
sizes, and the automatic evaluation part. The code for this framework is open-source?

Technical Report

This technical report has been submitted to arxiv.org® Furthermore, the AIRLab frame-
work was presented as a tutorial at the Conference for Medical Image Computing and
Computer Assisted Surgery (MICCAI), Shenzhen, China, 2019.

'PyTorch framework: https://pytorch.org
2AIRLab framework: https://github.com/airlab-unibas/airlab
Shttps://arxiv.org/abs/1806.09907
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7.1 Introduction

AIRLab: Autograd Image Registration
Laboratory

Robin Sandkiihler!, Christoph Jud!, Simon Andermatt!, Philippe C. Cattin®

Abstract

Medical image registration is an active research topic and forms a basis for many medical
image analysis tasks. Although image registration is a rather general concept specialized
methods are usually required to target a specific registration problem. The development
and implementation of such methods has been tough so far as the gradient of the ob-
jective has to be computed. Also, its evaluation has to be performed preferably on a
GPU for larger images and for more complex transformation models and regularization
terms. This hinders researchers from rapid prototyping and poses hurdles to reproduce
research results. There is a clear need for an environment which hides this complexity
to put the modeling and the experimental exploration of registration methods into the
foreground. With the “Autograd Image Registration Laboratory” (AIRLab), we intro-
duce an open laboratory for image registration tasks, where the analytic gradients of the
objective function are computed automatically and the device where the computations
are performed, on a CPU or a GPU, is transparent. It is meant as a laboratory for
researchers and developers enabling them to rapidly try out new ideas for registering
images and to reproduce registration results which have already been published. AIR-
Lab is implemented in Python using PyTorch as tensor and optimization library and
SimplelTK for basic image 10. Therefore, it profits from recent advances made by the
machine learning community concerning optimization and deep neural network models.
The presented draft of this paper outlines AIRLab with first code snippets and per-
formance analyses. A more exhaustive introduction will follow as a final version soon.

7.1 Introduction

The registration of images is a growing research topic and forms an integral part in many
medical image analysis tasks Viergever et al. (2016). It is referred to as the process of
finding corresponding structures within different images. There is a large number of
applications where image registration is inevitable such as e.g. the fusion of different
modalities, monitoring anatomical changes, population modelling or motion extraction.

Image registration is a nonlinear, ill-posed problem which is approached by optimiz-
ing a regularized objective. What is defined as quite general requires usually specialized
objective functions and implementations for applying it to specific registration tasks.
The development of such specific registration methods has been tough so far and their
implementation tedious. This is because gradients have to be computed within the

!Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
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rs

(a) Fixed (b) Moving (c) Warped

Figure 7.1: (a) Fixed AlRLab image, (b) moving AlIRLab image and (c) warped moving AlRLab
image after registration.

optimization whose implementations are error-prone, especially for 3D objectives. Fur-
thermore, for large 3D images, the computational demand is usually high and a parallel
execution on a GPU unavoidable. These are problems which hinder researchers from
playing around with different combinations of objectives and regularizers and rapidly
trying out new ideas. Similarly, the effort to reproduce registration results is often out
of proportion. There is a clear need for an environment which hides this complexity,
enables rapid prototyping and simplifies reproduction.

In this paper, we introduce “Autograd Image Registration Laboratory” (AIRLab), an
image registration environment - or a laboratory - for rapid prototyping and reproduc-
tion of image registration methods. Thus, it addresses researchers and developers and
simplifies their work in the exploration of different registration methods, in particular
also with upcoming complex deep learning approaches. It is written in Python and based
on the tensor library PyTorch Paszke et al. (2017). It heavily uses features from PyTorch
such as autograd, the rich family of optimizers and the transparent utilization of GPUs.
In addition, SimpleITK Lowekamp et al. (2013) is included for data input/output to
support all standard image file formats. AIRLab comes along with state-of-the-art reg-
istration components including various image similarity measures, regularization terms
and optimizers. Experimenting with such building blocks or trying out new ideas, for
say a regularizer, becomes almost effortless as gradients are computed automatically.
Finally, example implementations of standard image registration methods are provided
such as Optical Flow Horn and Schunck (1981), Demons Thirion (1998) and Free Form
Deformations Rueckert et al. (1999). Deep learning based models are currently not
implemented in the AIRLab framework, but we will integrate them in future releases.
AIRLab is licensed under the Apache License 2.0 and available on GitHub?.

In the following, we first provide a brief background about medical image registration
followed by the description of AIRLab, its building blocks and its features. Finally, we

“https://github.com/airlab-unibas/airlab
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7.2 Background

provide registration experiments with standard registration methods which are imple-
mented in AIRLab including performance analyses and code snippets.

The present draft of this paper roughly introduces AIRLab and is intended for the
presentation at the 8th International Workshop on Biomedical Image Registration in
Leiden. A more detailed final version will follow soon.

7.2 Background

Image Registration

Let X := {xz}fil be a set of N points arranged in a regular grid which covers the joint
image domain of a moving and fixed image Iy, Ir : X — R. The images map the d-
dimensional spatial domain X C R? to intensity values. Furthermore, let f: X — R?
spatially transform the coordinate system of the moving image. Image registration can
be formulated as a regularized minimization problem

fr :arg;ninSX(IMof,IF)+/\R(f,X), (7.1)

where Sy is a similarity measure between the transformed moving image and the fixed
image and R is a regularization term which operates on f on the domain X. The two
terms are balanced by A and o is the function composition. An example for a similarity
measure is the mean squared error measure for monomodal image registration

1 2
Swse = 37 2 (ule + f@) = In(@)) (7.2)
zeX
where | - | is the cardinality of a set. An exemplary regularization term is the diffusion

regularization which favours smooth transformations
1 d
Rair = X Z Z IV fi()]* (7.3)
zeX i=1
where 7 indexes the space dimension. In the Sections 7.3 and 7.3, the similarity measures

and regularizers which are implemented in AIRLab are described in more detail.

Transformation Transformation models f can be divided in basically four types: linear,
non-linear/dense, non-linear/interpolating and hybrid. Linear transformations, available
in AIRLab, transform each point x with a linear map A

f(z) = Az, (7.4)

where A is an rotation/translation matrix up to 3 in 2D and 6 degrees of freedom in 3D
and z stands in homogeneous coordinates Z. The class non-linear/parametric transform
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models consits mainly of two types: interpolating models and dense models. Non-
linear /interpolating transformations are defined in an interpolating basis on a coarse
grid of n < N control points

n

f(z) = Z cik(z, x), (7.5)

i=1

where ¢; € R and k: X x X — R is the basis function. Common basis functions are
the B-splineRueckert et al. (1999) or Wendland kernelJud et al. (2016b) which both
are implemented as example basis in AIRLab (see Section 7.3). The advantage of non-
linear /interpolating transformation models are, that they are computationally efficient.
Furthermore, if £ is smooth they inherently yield smooth transformations.

In non-linear dense transformation models, each point in the image can be transformed
individually in d dimensions giving a maximum flexibility. To still be able to reach
reasonable registration results the regularization term is inevitable. Hierarchical models
can be seen as hybrid interpolating and dense models. Their hierarchical structure
enables them to capture large deformations Jud et al. (2018b). Dense transformation
models are supported as well by AIRLab while hybrid are planned.

Optimization The similarity measure depends nonlinearly on the moving image Iy,
which makes an analytical solution to Equation (7.1) intractable. Because in non-linear
registration the number of parameters of f is in the millions, gradient based optimization
is usually the only choice to reach a locally optimal transformation f*. Having PyTorch
at hand, state-of-the-art optimizers are available in AIRLab such as LBFGS Byrd et al.
(1994) and Adam Kingma and Ba (2014).

Image Registration Frameworks

There are already a considerable amount of medical image registration frameworks avail-
able which are valuable enrichments to the community. Their focus and intensions are
diverse, ranging from rich frameworks to specific implementations. For an exhaustive
list and comparison of such image registration software we refer to Keszei et al. (2017).
Gradient free approaches as e.g. the MRF-based method of Glocker et al. (2008) are out
of scope of the current implementation of AIRLab.

The Insight Segmentation and Registration Toolkit (ITK) Yoo et al. (2002) is a com-
prehensive framework for diverse image processing and analysis task written in C++.
It is mainly intended for the use as a library for developers who want to implement
ready-to-use software. The registration tool Elastix Klein et al. (2010) is based on ITK
and provides a collection of algorithms commonly used in image registration. It can also
be used out-of-the-box with the possibility of a detailed configuration script. Further-
more, its plug-in architecture allows to integrate custom parts into the software. The
extension SimpleElastix Marstal et al. (2016) offers bindings to other languages such as
Python, Java, Ruby and more. Elastix and SimpleElastix are strong if one needs some
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flexibility in choosing and combining different registration components for a specific reg-
istration task. SuperElastix is a registration framework, that allows the combination
of different existing registration frameworks Berendsen et al. (2016). Scalable Image
Analysis and Shape Modelling (Scalismo) Bouabene et al. (2015); Liithi et al. (2017)
is a library mainly for statistical shape modeling written in scala. It provides also im-
age registration functionality and can be interactively executed similar to SimpleElastix.
Advanced Normalization Tools (ANTs) Avants et al. (2011) is based on ITK as well. It
provides a command line tool including large deformation registration algorithms with
standard similarity measures. The Automated Image Registration software AIR Woods
et al. (1998) is written in C and provides basic registration functionality for linear and
polynomial non-linear image alignment up to the twelfth order. The Medical Image Reg-
istration ToolKit (MIRTK) Rueckert et al. (1999); Schnabel et al. (2001) is a collection
of libraries and command-line tools for image and point-set registration. Various regis-
tration methods based on free form deformations are provided. Flexible Algorithms for
Image Registration (FAIR) Modersitzki (2009) is a software package written in MATLAB
comprising various similarity measures and regularizers.

None of the mentioned software packages are suited for rapid prototyping in the de-
velopment of image registration algorithms. This is mainly because: (I) For the opti-
mization, gradients have to be provided explicitly. For complex transformation models,
regularization terms and similarity measures, their implementation is highly error-prone.
(IT) For medical images, the computational demand is usually high and therefore the
execution has to be performed on a GPU. The development for GPUs without an ap-
propriate framework is not trivial. (III) The majority of the frameworks are written
in C++. Thus, the development within those frameworks needs good expertise in this
language. Furthermore, the number of code lines required for C++ implementations in
these frameworks do not agree with the concept of rapid prototyping.

7.3 Autograd Image Registration Laboratory

AIRLab is a rapid prototyping environment for medical image registration. Its unique
characteristics are the automatic differentiation and the transparent usage of GPUs. It
is written in the scripting language Python and heavily uses key functionality of PyTorch
Paszke et al. (2017).

The main building blocks constitute:

e Automatic differentiation
e Similarity measures
e Transformation models

e Image warping

Regularization terms

Optimizers
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Automatic Symbolic Differentiation

A key feature of AIRLab is its automatic symbolic differentiation of the objective func-
tion. This means, that only the forward function has to be provided by the developer
and the gradient which is required for the optimization is derived through automatic
differentiation (AD). AIRLab borrows the AD functionality of PyTorch. It is one of the
fastest dynamic AD frameworks currently available. Its strong points are:

o Dynamic: the function which is symbolically differentiated is defined by the com-
putations which are run on the variables. Hence, no static graph structure has to
be built which fosters rapid prototyping.

e Immediate: only tensor computations which are necessary for differentiation are
recorded

e (Core logic: a low overhead is needed as the AD logic is written in C++ and was
carefully tuned

Please cf. Paszke et al. (2017) for more details.

Similarity Measures

We list here the main building blocks required for medical image registration which are
provided by AIRLab.

e Mean Squared Errors (MSE): a simple and fast to compute point-wise measure
which is well suited for monomodal image registration

1 2
Swse = T ; (Bule + f@) = Ie(2)) (7.6)

Class name: MSE

e Normalized Correlation Coefficient (NCC): a point-wise measure as Sysg.
It is targeted to image registration tasks, where the intensity relation between the
moving and the fixed images is linear

Sens i 22 A7 o f) = 3 E(Ir)E(Iu © f)
Nee: X -3 Var(Ip)Var(Iy o f)
where the sums go over the image domain X, E is the expectation value (or mean)

and Var is the variance of the respective image.
Class name: NCC

(7.7)

e Local Cross Correlation (LCC): is the localized version of Sxcc where the
expectation value and the variance for a given x are computed in a local neighbor-
hood of . In AIRLab Si,cc is implemented with efficient convolution operations.
Notice that the exact gradient is computed using autograd and no gradient ap-
proximation is performed in contrast to Cachier and Pennec (2000).

Class name: LCC
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7.3 Autograd Image Registration Laboratory

e Structural Similarity Index Measure (SSIM): is a generalization of the LCC
similarity measure and was presented by Wang et al. (2004) as an image quality
criterion. The SSIM for two local image patches a € R%, b € R is defined as

SSIM(a, b) = I(a, b)*c(a, b)?s(a, b)?, (7.8)

with «, 8,7+ € [0,1]. The SSIM combines three different similarity measures: the
luminance (1)

2
I(a,b) = ;‘“chl’ (7.9)
Mg + My +c1
the contrast (c)
2
c(a,b) = ;’CLL;C?, (7.10)
04 + Ub + C2
and the and structure (s)
Oab +C3
s(a,b) = ——. 7.11
(a,b) pp—— (7.11)

Here, 1 is the mean, o the standard deviation of an image patch, o, the correlation
coefficient, and c1,c9,c3 € R are used to reduce numerical instabilities. For a
complete image the SSIM is defined as

1
Sssim(Ir, I, f) = B4 > Ay elr, y) sl ) (7.12)
x€l
yGIMEf

Class name: SSIM

e Mutual Information (MI): was presented as image similarity measure for mul-
timodal image registration by Viola and Wells (1997); Wells et al. (1996). It is
defined as

SMI(IF; I, f) = H(IF> + H(IM o f) — H(IF, Iy o f), (713)
where H(-) is the marginal entropy and H(-,-) the joint entropy. Class name: MI

e Normalized Gradient Fields (NGF): is a image similarity measure defined as

Sxcr(Ie.Tar.f) = 77 - IInIa) x ni o o)l (7.14)
rzeX
with
_ Vi)
n(l,z)s = IVI(z)|le’ (7.15)
IVI(@)lle = /VI(2)TVI(x) + €2, (7.16)

for multimodal image registration developed by Haber and Modersitzki (2006).
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For the estimation of £, Haber and Modersitzki (2006) propose
£ = % 3 Vi), (7.17)
zeX

were 7 is the estimated noise level. Class name: NGF

Transformation Models

AIRLab supports three major types of transformation models: linear/dense, non-linear/interpolating
and dense models (hybrid models are planned).

Linear/dense

Currently, AIRLab supports rigid, similarity and affine transformations for 2D and 3D
image data.

Class name: RigidTransformation,

SimilarityTransformation, AffineTransformation

Non-linear/interpolating

as mentioned with Equation (7.5), non-linear/interpolating models have fewer control
points as image points are available. The displacement f(x) for a given point x in the
image is interpolated from neighboring control points by the respective basis function.
In AIRLab, two exemplary basis functions are implemented:

e B-spline: the standard B-spline kernel, which is used in the Free Form Deformation
(FFD) algorithm of Rueckert et al. (1999)

2o+ o< <1
ki (2, y) 1= q Z2 1< |r| <2 (7.18)
0, 2 <|rl,
r=r—y. (7.19)

In addition, AIRLab supports B-spline kernels of arbitrary order (first order are
used in Vishnevskiy et al. (2016) and third order in the FFD Rueckert et al. (1999)).
An order p is derived by convolving the zeroth order B-spline p + 1 times with it
self:

1 |r]<?
Bg(r) := 2 7.20
o(r) {0 otherwise ( )

Bi Z:BO * Bi,1 (721)

where B3 corresponds to kp,, and * is the convolution. The control points have
a spacing of § which implicitly defines the extent of the kernel. With increasing
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order, the control point support of the kernel is increased by one for each additional
order.
Class name: BsplineTransformation

e Wendland: a family of compact radial basis functions, which is used for image
registration in Jud et al. (2016a,b). AIRLab supports a Wendland kernel which is
in C*:

twr(ap) =vaa (12221, (7.22)

3 4 187 + 3572
Yaa(r) =(1—1)§

(7.23)
where a4 = max(0,a) and 32 is the Wendland function of the second kind and
positive definite in d < 3 dimensions. The scaling ¢ can also be provided for each
space dimension separately to achieve an anisotropic support.

Class name: WendlandKernelTransformation

For the non-linear/interpolating transformation models, the transposed convolution
is applied (cf. Dumoulin and Visin (2016)) which is available in PyTorch. It is an up-
sampling operation where the interpolation kernel can be provided. That means in our
case, the control points are “up-sampled” and interpolated using the basis function of
choice.

Non-linear/dense

the simpler model is the dense transformation model, where each point in the image can
be independently transformed. That means, there are nd parameters (number of image
points times number of space dimensions). To achieve a meaningful transformation,
strong regularization is required.

Image Warping

To compare the transformed moving image with the fixed image within the similarity
measures the coordinate system of the moving image has to be warped. As it is mostly
done in image registration, AIRLab performs backward warping. That means, the trans-
formation is defined on the fixed image domain where the displacement vectors point
to the corresponding points in the moving image. To transform the moving image, it
is backward warped into the coordinate system of the fixed image. This prevents holes
occuring in the warped image.

The warping is performed in normalized coordinates in the interval [—1,1]d. The
points which are transformed out of the fixed image region are identified by checking
if z + f(z) falls outside the normalized interval. For illustration please see following
snippet:
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(...)

displacement = self._grid + displacement

mask = th.zeros_like(self. _fixed_image .image,
dtype=th.uint8, device=self. _device)
for dim in range(displacement.size ()[—1]):

mask += displacement [..., dim].gt(1) +
displacement [..., dim].1t(-1)
mask = mask = 0

(...)

Because displaced points not necessarily fall onto the pixel-grid, interpolation is re-
quired. Currently, AIRLab supports linear interpolation while B-spline interpolation is
planned as up-coming feature. The warping is performed by the grid sampler of PyTorch
which utilizes the GPU.

Diffeomorphic Transformation

Diffeomorphic transformations models are often used in medical image registration be-
cause of their topology preserving characteristics. These types of transformations defin-
ing a bijective transformation between the fixed image domain and the moving im-
age domain. First approaches of diffeomorphic image registration were presented in
Christensen et al. (1996); Dupuis and Grenander (1998); Trouvé (1995). With this the
large deformation diffeomorphic metric mapping (LDDMM) was presented by Beg et al.
(2005). The LDDMM method possesses a high computational complexity, due to the
time dependent velocity used for the calculation of the final transformation. In order
to reduce the computational complexity the usage of a stationary velocity field was pre-
sented by Arsigny et al. (2006); Ashburner (2007); Hernandez et al. (2007). The final
transformation is then defined as

f =-exp(v), (7.24)

where exp(-) defines the matrix exponential and v : X — R? the input vector field. In
this setting the inverse transformation f~! can be obtained by

= exp(v)_1 = exp(—v). (7.25)

In AIRLab diffeomorphic transformation are supported for all interpolating and dense
transformation models. We based our implementation in AIRLab on previous imple-
mented diffeomorphic transformations Abadi et al. (2016); Krebs et al. (2018a).

Different Image Domain Size

The registration of images with different image domains is a common problem in the field
of medical image registration. Such problems occur for example if the image modality
of both images differ. We consider two image domains as different, if the extent or the
spacing of the fixed and the moving image are different. Handling different image domain
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is challenging in a pixel-level environment due to the fact that we directly operate on the
pixel level. In order to handle images with different image domains, we resample both
image to the same pixel spacing and extend the image size if needed. The computational
complexity, which is increased by extending the image size is normally negligible due to
the highly optimized operations used on the GPU.

Regularization

There are three different types of regularization terms in AIRLab. (I) Regularizers
on the displacement field f commonly used in FFD registration, (II) regularizers on
the parameters of f elaborated in Jud et al. (2016a,b); Vishnevskiy et al. (2016) and
(III) the Demons regularizers which regularize the displacement field f by filtering it
in each iteration. Note that Demons regularizers are not differentiated, because in
Demons approaches the optimization is an iteration scheme where the image forces
(gradient of similarity measure) are evaluated to update the current displacement field
and alternatingly the displacement field is regularized using filtering. We first list the
regularization terms which operate on the displacement field f.

e Diffusion: a regularizer which penalizes changes in the transformation f

Raift := ’X‘ZZHV]‘} )H; (7.26)

zeX i=1
Class name: DiffusionRegulariser

e Anisotropic Total Variation: a regularizer which favours piece-wise smooth trans-
formations f

RamsoTV |X‘ Z Z ivfl (727)

zeX i=1

It is anisotropic which means its influence is aligned to the coordinate axes.
Class name: TVRegulariser

e Isotropic Total Variation: the isotropic version of the anisotropic regularizer
Risotv : \X\ > IV @)l (7.28)
reX

Both TV regularizers are not differentiable, therefore, the subgradient of zero is
taken at zero.
Class name: IsotropicTVRegulariser

e Sparsity: a regularizer which penalizes non-zero parameters

Sparse = |X| Z Hf Hl (729)

reX

Class name: SparsityRegulariser
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Regularizers on Parameters

The listed regularization terms are also available for regularizing the parameters of f.
The parameters which should be regularized are passed to the regularizer as an array, a
name and a weighting. In this way, one can individually weight subsets of parameters,
belonging for example to different hierarchical levels, cf. the following example:

(...)

reg_param = paramRegulariser.L1Regulariser (
?trans_parameter” ,
weight=weight_parameter [level])

registration.set_regulariser_parameter ([reg_param])

(...)

Demons Regularizers

Currently, there are two Demons regularizers available in AIRLab:

e Kernel: an arbitrary convolution kernel for filtering the displacement field. An
example is the Gaussian kernel which is used originally in the Demons algorithm
Thirion (1998).

Class name: GaussianRegulariser

e Graph Diffusion: the diffusion is performed by spectral graph diffusion. The graph
can be utilized in order to handle the sliding organ problem. In this case, the graph
is built during the optimization as proposed by Sandkiihler et al. (2018b).

Class name: GraphDiffusionRegulariser

Optimizers

ATRLab includes a rich family of optimizers which are available in PyTorch including
LBFGS, ASGD and Adam. They are tailored to optimize functions with a high number
of parameters and thus are well suited for non-linear image registration objectives. We
refer to Ruder (2016) for a detailed overview of first order gradient based optimizers. As
PyTorch also supports no-grad computations, iteration schemes as used in the Demons
algorithm are also supported. The following snippet is an example usage of no-grad
taken from the Demons regularizer.

def regularise(self , data):
for parameter in data:
# no gradient calculation for the
# demons regularisation
with th.no_grad():
self. _regulariser (parameter)
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Table 7.1: Execution statistics of 2D images with different sizes (pixels) in seconds.

Experiment Hardware 64 128 256 512 1024 2048 4096

Dense + Rai + SmsE CPU 2.29 3.29 557 14.11 46.44 187.68  832.77

Dense & Diffeomorph + Raig + SMmsE CPU 452 9.75 25.81 81.55 309.06 1367.49 5834.58
Dense + Raif + SmsE GPU GTX 1080 | 4.41 4.39 439 4.29 4.63 9.21 30.91

Dense & Diffeomorph + Raig + Smsg  GPU GTX 1080 | 7.36 7.32 6.59  6.61 9.14 24.34 89.85
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Registration Evaluation

Performance evaluation of the developed registration method is essential. Due to the
fact that ground truth transformations are highly difficult to obtain especially for med-
ical images other performance measures are used. Over the last years the evaluation
of the registration is performed on a selected set of corresponding landmarks. Several
datasets have been provided to evaluate registration algorithm. Here, the POPI Vande-
meulebroucke et al. (2007) or the DirLab Castillo et al. (2009) dataset are mostly used in
the past. These datasets contain 3D CT images of the upper thorax and corresponding
landmarks. However, normally the developer is responsibly to implement the necessary
functions for the pre-processing of the image data or the evaluation of the landmarks. In
ATRLab, we provide an evaluation pipeline for download, pre-processing, and evaluation.
This means in detail, that the developer can plug in the new registration algorithm and
AIRLab take care of the complete evaluation process. For the comparison of correspond-
ing landmarks, we use the mean square distance of the landmark positions. The included
automatic evaluation pipeline makes it very simple to compare various versions of the
registration algorithm during the development. To the best of our knowledge, AIRLab is
the first registration framework that provide such an automatic evaluation pipline. The
automatic evaluation is done for the POPI dataset Vandemeulebroucke et al. (2007).

Upcoming Features

In this section, we list the features which did not make it into the present version, which
however are planned for integration into AIRLab soon.

e Interpolation: B-spline interpolation for the image warping.

e Registration: Registration of images with more than one color channel, e.g., RGB
images.

e Registration: Extending AIRLab for learning-based registration.

Experiments

In this section, we provide image registration examples. We have implemented two
classic registration algorithms within AIRLab and show their qualitative performance
on synthetic examples and on a DirLab dataset Castillo et al. (2009). Quantitative
analyses will follow in the final version of this paper.
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Image Registration Algorithms

}‘ ‘l‘ .m

a) Fixed/Moving b) Fixed/Warped ) Transformation

Figure 7.2: FFD registration result. (a) Fixed image and moving image as checkerboard, (b) fixed
image and warped moving image as checkerboard and (c) final transformation visualized as the
magnitudes of the displacements.

The following algorithms have been implemented:

e Rigid: a simple objective with a similarity transformation has been set up, where
the Symse similarity metric has been optimized with Adam. Two AIRLab images
have been registered, where the moving image has been rotated, translated, and
scaled. In Figure 7.1, the registration result is depicted.

e FFD: the Free Form Deformations algorithm Rueckert et al. (1999) was imple-
mented. As in the original paper, a third order B-spline kernel has been used for
the parametric transformation model. Furthermore, the Sxcc similarity measure
with the RanisoTv regularizer on the displacement field have been applied. The
overall objective has been optimized with Adam. For the experiment, an image
pair of the DirLab Castillo et al. (2009) has been registered. To illustrate the
result, in Figure 7.2, a slice through the volume is visualized. A multi-resolution
strategy has been implemented performing {300,200, 50} iterations for the FFD
algorithm. The detailed parameter configuration can be found in the source-code.

e Diffeomorphic: the Demons algorithm Thirion (1998) was implemented using the
Susk similarity measure with the Gaussian Demons regularizer. Furthermore, we
used the diffeomorphic option of the transformation. The Diffeomorphic Demons
algorithm has been applied to the circle and C example. For better illustration, see
Figure 7.3 (d)-(g), a shaded circle has been warped with the final transformation.
In addition, we applied a diffeomorphic B-spline registration to the circle and C
example. As similarity measure also the Syisg was used. The results are shown in
Figure 7.3 (h)-(k), a shaded circle has been warped with the final transformation.

The following snippet illustrates how to setup a registration algorithm in AIRLab with
the Rigid registration example:
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# all imports
registration = PairwiseRegistration (dtype=dtype,
device=device)

# choose the rigid transformation model
transformation = SimilarityTransformation (moving_image,
opt_.cm=False)

# initialize the translation with the center of mass
of the fixed image
transformation.init_translation (fixed_-image)

registration.set_transformation (transformation)

# choose the Mean Squared Error as image loss
image_loss = MSELoss(fixed_image , moving_image)
registration.set_image_loss ([image_loss])

# choose the Adam optimizer to minimize the objective
optimizer = th.optim .Adam(
transformation.parameters (), lr=0.01)
registration.set_optimizer (optimizer)
registration.set_number_of_iterations (1000)

# start the registration
registration.start ()

# warp the moving image with the final transformation result
displacement = transformation.get_displacement ()
warped_image warp_image (moving_image , displacement)

(...)

Performance Analysis

All experiments have been conducted using an NVIDIA GeForce GTX 1080 GPU. We
evaluate the performance of AIRLab for different image sizes and different computa-
tion hardware. Furthermore, we evaluated the computaional effort for the diffeomorphic
transformation compared to the non-diffeomorphic transformation models. The perfor-
mance comparism of CPU and GPU is listed in Table 7.1.

Because the GaussianRegulariser is not differentiated, there is less computational
time spent by autograd for the Demons example.

7.4 Conclusion

We have introduced ATRLab, an environment for rapid prototyping and reproduction of
medical image registration algorithms. It is written in the scripting language Python and
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C e O

) Fixed Image b) Moving Image ¢) Moving for warping
C n H
(d) Warped ) Transformation ) Inverse ) Reconstration Of
Transformatlon (c) from (d) with (
. n n @
(h) Warped ) Transformation ) Inverse (k) Reconstration of
Transformatlon (C) from (h) with (j)

Figure 7.3: (a) Fixed C image, (b) moving circle image and (c) shaded circle image. Results
for the diffeomorphic demons((d)-(g)): (d) warped shaded circle, (e) final transformation and (f)
inverse transformation visualized as the magnitudes of the displacements and (g) reconstruction of
the moving image with the inverse transformation. ((h)-(k)) shows the result for the diffeomorphic
B-spline registration method.
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heavily uses functionality of PyTorch. The unique feature compared to existing image
registration software is the automatic differentiation which fosters rapid prototyping.
AIRLab is freely available under the Apache License 2.0 and accessible on GitHub:
https://github.com/airlab-unibas/airlab.

With AIRLab, we hope that we can make a valuable contribution to the medical image
registration community, and we are looking forward to see researchers and developers
which activly use AIRLab in their work. Finally, we encourage them also to contribute
to future developments of ATRLab.
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Gated Recurrent Neural Networks for
Accelerated Ventilation MRI

MRI ventilation and perfusion maps have shown great success in the past. In the
following paper, we present a method that is able to reduce the number of images
needed to calculate ventilation maps by maintaining the quality of the maps at the same
time. Since the images that are acquired to calculate the ventilation maps are acquired
as a continuous sequence, we based our model on a stacked bidirectional gated recurrent
neural network. The results show that our method is able to calculate ventilation maps
by using only 40 images as compared to the current state-of-the-art method with 140
images.
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8.1 Introduction

Gated Recurrent Neural Networks for
Accelerated Ventilation MRI

Robin Sandkiihler!, Grzegorz Bauman?, Sylvia Nyilas®, Orso Pusterla?, Corin Willers?
Oliver Bieri!'2, Philipp Latzin®, Christoph Jud!, Philippe C. Cattin®

Abstract

Thanks to recent advancements of specific acquisition methods and post-processing, pro-
ton Magnetic Resonance Imaging became an alternative imaging modality for detecting
and monitoring chronic pulmonary disorders. Currently, ventilation maps of the lung
are calculated from time-resolved image series which are acquired under free breathing.
Each series consists of 140 coronal 2D images containing several breathing cycles. To
cover the majority of the lung, such a series is acquired at several coronal slice-positions.
A reduction of the number of images per slice enable an increase in the number of slice-
positions per patient and therefore a more detailed analysis of the lung function without
adding more stress to the patient. In this paper, we present a new method in order to
reduce the number of images for one coronal slice while preserving the quality of the
ventilation maps. As the input is a time-dependent signal, we designed our model based
on Gated Recurrent Units. The results show that our method is able to compute venti-
lation maps with a high quality using only 40 images. Furthermore, our method shows
strong robustness regarding changes in the breathing cycles during the acquisition.

8.1 Introduction

Physiological lung imaging is a vital examination technique for the early detection and
monitoring of chronic pulmonary disorders like cystic fibrosis. Due to the very low proton
density of the lung parenchyma, the application of proton Magnetic Resonance Imaging
(MRI) for functional pulmonary assessment is challenging. Different methods based on
the inhalation of hyperpolarized gases during the MRI acquisition were presented in the
past van Beek et al. (2004). However, broad clinical application of hyperpolarized gas
MRI is not feasible as it necessitates specialized equipment and personal. Furthermore,
it requires specific breathing manouvers and the cooperation of the patients, which can
not always be granted especially in pediatric subjects.

Recently, rapid acquisition pulse sequences such as ultra-fast balanced steady-state
free precession (uf-bSSFP) Bauman et al. (2016) have shown promise for proton MRI
of pulmonary structures and functions. Standard and widely available proton MRI has

!Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland

2Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel,
Switzerland

3Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, Uni-
versity of Bern, Bern, Switzerland
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(a) Morphologic Image

Figure 8.1: (a) Sample coronal image from an MR acquisition with the uf-bSSFP sequence of a
patient with cystic fibrosis, and (b) a corresponding ventilation map . The circles mark areas with
potential ventilation defects.

the potential to become a viable radiation-free alternative imaging modality compared
to CT or SPECT to visualize physiological properties of the lung. MR ventilation maps
of the lung can be calculated from a coronal time-resolved 2D image series acquired
during free breathing. At every breath, the lung expands and contracts creating signal
modulations associated with pulmonary ventilation that are detectable by MRI. After
nonrigid image registration Sandkiihler et al. (2018b) to align the pulmonary structures
in the image series, the corresponding frequency for the ventilation can be detected.
Figure 8.1 shows a representative MR image acquired with the uf-bSSFP sequence and
the corresponding ventilation map. The in Bauman and Bieri (2017) presented state-
of-the-art method for the calculation of ventilation maps (Figure 1) requires 140 images
per coronal slice-position in order to compute the ventilation map. The acquisition time
per image series is about one minute. A reduction of the number of images per slice
enable an increase in the number of slices per patient within the same examination time.
This is important, as an increase of the overall scan time could increase the stress for
the patient inside the MR, especially for pediatric patients.

In this paper, we present a novel method for the estimation of ventilation maps using
an image series composed of only 40 images. We trained a stacked bidirectional Gated
Recurrent Units (SB-GRU) to estimate the ventilation maps based on the time-varying
intensity signal of the image series. The results show that the presented method can
compute accurate ventilation maps using less than a third of the images.

8.2 Background

MRI image acquisition is performed with a time-resolved 2D uf-bSSFP sequence Bauman
et al. (2016). This pulse sequence is accelerated thanks to optimized excitation pulses
and Cartesian gradient switching patterns, accompanied by partial echo readouts and
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ramp sampling techniques. As a result echo time (TE) and repetition time (TR) are
shortened which improves signal in the lung parenchyma and reduces motion as well as
off-resonance artifacts known as banding artifacts. The chest volume was covered using
8 to 12 coronal slices with 140 images per slice position resulting in a total acquisition
time of about 10 minutes per examination.

|

Map-
Calculation

ji;' | By
Ventilation Map

%

Spatially aligned
Image Series Intensity Time Signal
I(z,y)

Figure 8.2: Computation process of MRI ventilation maps.

Ventilation MRI

The ventilation maps are computed according to Bauman and Bieri (2017). In the
first step, the respiratory motion in the time-resolved uf-bSSFP data was compensated
with a two-dimensional nonrigid image registration algorithm Sandkiihler et al. (2018Db).
Subsequently, an automated lung segmentation was performed Andermatt et al. (2016).
After image registration and segmentation, the matrix pencil analysis of the time course
was performed voxel-wise to estimate the amplitudes A, of the respiratory frequencies
of the signal modulations in the lung parenchyma. The estimated amplitudes were used
to calculate fractional ventilation maps

Ay
Um = Abe + 0.54, — BG

100[%), (8.1)

where Apc is the amplitude of the baseline signal and BG the background noise. An
overview of the calculation process is shown in Figure 8.2. For further details, the reader
is referred to Bauman and Bieri (2017).
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Figure 8.3: Unrolled gated recurrent unit cell.

8.3 Method

The image series that is acquired for the ventilation maps contains time related informa-
tion, i.e., the signal intensity changes over time. In order to take this time information
into account, we use a Recurrent Neural Network (RNN) for the computation of venti-
lation maps with only 40 images in a series. We choose 40 images to ensure that the
input signal contains at least 2-3 respiratory cycles. Compared to feedforward networks,
RNNs contain an internal state and the output of an RNN depends on the current input
and the internal state. A simple RNN has the form

ht = qﬁ(Wa:t + Uht_l), (82)

where x; is the input, h; the output of the RNN at time ¢, and ¢ is an activation
function. Here, the internal state is the last output h;—q1 of the RNN. The matrices
W and U are the learnable weights. Based on the basic RNN (8.2), several extensions
were developed to overcome characteristic issues, e.g., the vanishing gradient problem.
A popular RNN extension is the Long Short-Term Memory (LSTM) network Hochreiter
and Schmidhuber (1997).

Gated Recurrent Units

A simplified version of the LSTM are GRUs Cho et al. (2014). GRUs show a good
performance compared to the LSTM but with fewer parameters. According to Cho
et al. (2014), a vanilla GRU cell is described by:

re = (Wexy + Uphy 1), (8.3)
2zt = (Woxy + Ushy—q) (8.4)
hi=¢(Way+Ulry © hy_1), (8.5)
he=(1—2)Oh_1+ 20 h. (8.6)

Here, r represents the reset gate, z the update gate, h the proposal state, h; the output
at time ¢, ¢(-) is the hyperbolic tangent, v (-) represents the logistic function, and ® is
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1D Intensity signal

Stacked Bidirectional Gated Recurrent Network
I(z,y)
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Figure 8.4: Stacked Bidirectional Recurrent Neural Network architecture for the computation of
ventilation maps.

the Hadamard product. Each gate contains its own learnable weights W for the input x;
and U for the hidden state h;—1. A graphical representation of the Equations (8.3)-(8.6)
is shown in Figure 8.3, where the circles describe element wise operations.

Stacked Bidirectional Gated Recurrent Units

Bidirectional GRUs consists of two separate GRU networks, with a forward and backward
direction respectively. In the backward direction, the input sequence is processed in
reverse order. This allows an analysis of the time signal independent of the direction
of the signal. Furthermore, we use a stacked bidirectional GRU (SB-GRU), in order to
model more complex signals. A stacked GRU is defined as a concatenation of a number
of single GRU cells, where the input of the current GRU cell is the output of the previous
one. In this paper, we used a GRU cell given by

rj = (Wiay+ b, + Uiy + 8, (8.7
5 =0 Wiz + b, + UINL, +1].), (8.5)
W= (ijt +0 410 <Ujh{_1 + bjh)) : (8.9)
W =(1—2)@hl_ +2z Oh, (8.10)

where j is the index of a GRU cell and b the corresponding bias. The input of our network
is a 1D intensity time signal I(x,y) from the spatially aligned image series as shown in
Figure 8.2. After the input is processed by the SB-GRU, the output of the forward and
the backward GRU are concatenated and applied to a fully connected network with one
hidden layer in order to reduce the output to the scalar ventilation map value vy, (z,y).
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Figure 8.5: MSE values for the ventilation map calculated with the presented method GRUV,y and
the state of the art method MP4y using a 2D time series with 40 images. Both methods were
compared against the ventilation maps of the gold standard matrix pencil method MP14¢ using 140
images.

Here z and y are the spatial locations of the image series. A complete 2D ventilation
map is created by evaluating the network at each spatial location. The final network is
shown in Figure 8.4.

8.4 Experiments and Results

For our experiments, we used a data set of 84 subjects with an average of two examina-
tions per subject. In each examination, 8-10 dynamic 2D image series at different coronal
positions were acquired. We divided our data set into a training set with 70 subjects,
an evaluation set with 7 subjects, and a test set with 7 subjects. All examinations were
performed on a 1.5 Tesla whole-body MR-scanner (MAGNETOM Aera, Siemens Health-
ineers, Erlangen, Germany) using a 12-channel thorax and a 24-channel spine receiver
coil array. Each subject was scanned during free breathing with the uf-bSSFP sequence
Bauman et al. (2016). The main pulse sequence parameters were as follows: field-of-view
375%375 - 425x425 mm?, slice thickness 12mm, TE/TR/TA = 0.67 ms/1.46 ms/119 ms,
flip angle 60°, bandwidth 2056 Hz/pixel, matrix 128x128 (interpolated to 256x256),
3.33 images/s, parallel imaging GRAPPA factor 2.

We used 10 stacked GRU cells with a hidden state size of 300 for the forward and the
backward GRU. The hidden layer of the fully connected network was set to 1024 with
the RELU activation function and the logistic function m as activation function
for the last layer. For the optimization of the network parameters, we used the Adam
optimizer Kingma and Ba (2014) with a learning rate of 0.0001.

For the training of the network, we used spatially aligned image series with 140 images.
The ventilation maps used as gold standard for the training and the lung segmentation
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(a) Baseline MP14 (b) GRUV4g

Figure 8.6: (a) Example MRI ventilation maps of a single slice of the gold standard (140 images),
and (b) the presented method GRUV (40 images).

were obtained as described in Section 8.2. In each training iteration, a continuous image
sequence of 40 images was randomly selected from one slice of the training set. The 1D
intensity signals I(x,y) of this sequence were applied to the network. During training,
we restrict  and y only to locations inside the lung mask. We use the mean squared
error (MSE) loss function to compare the network output with the ground truth during
training.

For the evaluation of our method, we used a window of the first 40 images of the
complete image series from one coronal slice and computed the ventilation maps using
the presented method (GRUVy) and the matrix pencil method (MP4g). Both methods
were compared to the gold standard matrix pencil method (MP149) Bauman and Bieri
(2017) which uses 140 images of the series for the computation of the ventilation maps.
For the error calculation of the MP4g and the GRUVyy when compared to the MP14g
we used MSE metric. To show that our method is robust against breathing variability
within the 40 images, the window was shifted for one image and the ventilation maps were
computed. This process was repeated until the end of the image series was reached and
was done for all coronal slices of each examination. The results for the 7 test subjects are
shown in Figure 8.5. Each subject contains either one or three examinations. The results
show that the MP4y and the GRUV,y method are able to calculate correct ventilation
maps. However, the error variance of our method is much smaller compared to the MPy4g
method. This indicates that our method is robust against breathing variability within
the 40 image window. Qualitative results GRUVyg are shown in Figure 8.6. Here, we
can observe a lower amplitude for the map intensities for the GRUV 49 when compared to
the MP149 result. The reason for this effect could be the fact that only 1D time signals
are used to compute the corresponding ventilation value.

97



8 GRU for Accelerated Ventilation MRI

8.5 Conclusion

In this paper, we presented a novel method for the calculation of ventilation maps based
on a 2D time-resolved dynamic MRI image series acquired with the uf-bSSFP sequence.
Our aim was to calculate ventilation maps which are equivalent to the one calculated
with the state of the art method, but with fewer images. In order to encounter the time
dependencies in the image series, we designed a network based on SB-GRUs. We show
that our method is able to estimate correct ventilation maps for a given image series
with only 40 when compared to the current state-of-the-art method. Furthermore, we
observe that our method is robust against breathing variabilities inside the 40 images.
But, we also discover for some ventilation maps generated with our method a drop of
the global intensity amplitude compared to the state-of-the-art method. We believe, we
could overcome this issue by taking spatial information into account but we leave this
for future work.
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Weakly Supervised Learning Strategy for Lung
Defect Segmentation

In the following paper, we address the problem of weakly supervised semantic segmen-
tation. Monitoring the disease progression and the effect of the medication is essential for
the treatment of CF patients. The possibility to observe physiological induced changes
of the lung was realized with the new MR sequence called ufSSFP. It is now possible
to obtain MR ventilation maps based on a dynamic 2D MR image time series. For the
clinical routine, the automatic segmentation of impaired areas within these ventilation
maps is essential. We developed a weakly supervised segmentation method to segment
those impaired areas using only a weak label during training. As a weak label, we use
the lung clearance index (LCI). The LCI is a continuous global measure for ventilation
inhomogeneities of the lungs. Our method is able to infer a pixel-wise segmentation from

the global LCI value. In detail this means that our method does not need any manual
labeled data.

Publication

This paper was presented at the 10th International Workshop on Machine Learning in
Medical Imaging (MLMI) at the International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), Shenzhen, China, 2019
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9.1 Introduction

Weakly Supervised Learning Strategy for Lung
Defect Segmentation
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Philipp Latzin®, Philippe C. Cattin'

Abstract

Through the development of specific magnetic resonance sequences, it is possible to
measure the physiological properties of the lung parenchyma, e.g., ventilation. Auto-
matic segmentation of pathologies in such ventilation maps is essential for the clinical
application. The generation of labeled ground truth data is costly, time-consuming and
requires much experience in the field of lung anatomy and physiology. In this paper,
we present a weakly supervised learning strategy for the segmentation of defected lung
areas in those ventilation maps. As a weak label, we use the Lung Clearance Index
(LCI) which is measured by a Multiple Breath Washout test. The LCI is a single global
measure for the ventilation inhomogeneities of the whole lung. We designed a network
and a training procedure in order to infer a pixel-wise segmentation from the global LCI
value. Our network is composed of two autoencoder sub-networks for the extraction of
global and local features respectively. Furthermore, we use self-supervised regularization
to prevent the network from learning non-meaningful segmentations. The performance
of our method is evaluated by a rating of the created defect segmentations by 5 human
experts, where over 60% of the segmentation results are rated with very good or perfect.

9.1 Introduction

Thanks to the development of of dedicated image acquisition methods, MRI has become
a new modality allowing for spatial analysis of time-dependent physiological changes of
the lung, e.g., ventilation Bauman et al. (2016). The ventilation maps are computed
from a time-resolved image series and the detection of the corresponding ventilation
frequencies in the image data , after the images are spatially aligned Bauman and Bieri
(2017). An example is shown in Figure 9.1. The automatic labeling of defected areas in
these maps is a complex task for naive methods such as thresholding because the value
range depends on the relative signal intensity of the MR images. More sophisticated
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9 Weakly Supervised Lung Defect Segmentation

(a) Morphologic Image (b) Ventilation Map (c) Defected Areas

Figure 9.1: (a) MRI acquisition of a patient with cystic fibrosis, (b) corresponding ventilation maps,
and (c) assumed impaired areas.

methods, e.g., supervised segmentation methods require accurate labeled ground truth
data, which is difficult to obtain, even for clinical experts.

Compared to supervised methods, unsupervised methods do not require labeled train-
ing data. There are several unsupervised learning methods for medical image segmen-
tation. An unsupervised lesion detection using an adversarial auto-encoderder was pre-
sented in Chen and Konukoglu (2018). The method do not use any labels during training
but require a training set of image data with only healthy subjects. A weakly supervised
method for the segmentation of brain tumors was shown in Andermatt et al. (2019) by
using only one binary label for each image (healthy, non-healthy). The methods pre-
sented in Papandreou et al. (2015b); Pathak et al. (2015) use class level labels of the
image contend as a weak label in order to create a semantic object segmentation.

In this paper, we present a first proof-of-concept for the segmentation of the defected
areas in the ventilation maps using a weakly supervised learning strategy based on the
Lung Clearance Index (LCI). The LCI is a single value which expresses the healthiness of
the whole lung and corresponds to the global ventilation inhomogeneities Robinson et al.
(2009). Unlike binary or class labels, the LCI is an unbounded value where a value of 6-7
indicates a healthy lung. A higher LCI is correlated to more ventilation inhomogeneities.
We designed a network that is able to perform a pixel-wise segmentation using only
the LCI value as a weak label during training. Furthermore, we use self-supervised
reqularization to prevent the network from learning a non-meaningful segmentation.
The performance of our method is evaluated by a rating of the segmentation results by 5
human experts. Initial results show that over 60% of the segmentation results are scored
with very good or perfect.

9.2 Method

In this section, we describe our network design and training procedure in order to segment
the defected areas in the lung using only the LCI value as a continuous label. For this,
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9.2 Method

we use the relation

defected lung volume x LCT,

total lung volume

which has been proven to be valid Nyilas et al. (2017).

Lung Clearance Index

The Lung Clearance Index (LCI) is a global measure for the ventilation inhomogeneities
of the lung, as a result of respiratory diseases like cystic fibrosis or chronic obstructive
pulmonary disease Robinson et al. (2009). It is defined in lung volume turnovers (TO),
i.e., the number of breathing cycles that are necessary in order to clear the lung from a
previews inhaled tracer gas. A common method for the determination of the LCI is the
Nitrogen Multiple Breath Washout (No-MBW). Here the patient starts breathing 100 %
oxygen, and the remaining nitrogen concentration of the previously breathed ambient air
is measured. If the concentration of the Ny is below 2.5 % of the starting concentration
the test stops. The LCI is then defined by

Veg expired volume N,

start — “end

LCT

(9.1)

where Vg is the expired volume during the complete measurement. The LCI for a
healthy lung is 6-7 TO. For a more detailed description of the LCI, we refer the reader
to Robinson et al. (2009). Here, we normalize the LCI between 0 and 1 by assuming a
minimum LCI value of 5 and a maximum LCI value of 20.

Ventilation Maps

For the calculation of the ventilation maps a 2D dynamic time series with the ultra-fast
steady-state free precession pulse sequence (uf-bSSFP) Bauman et al. (2016) is acquired
during free breathing. The respiratory motion is compensated with a pairwise non-
rigid image registration Sandkiihler et al. (2018b) and automated lung segmentation is
performed Andermatt et al. (2016). In the final step, the ventilation maps are calculated
using a matrix pencil decomposition as described in Bauman and Bieri (2017). To cover
the full chest volume, 8-12 ventilation maps with a thickness of 12 mm at different coronal
positions are computed. All maps are stacked together to obtain the final image volume
with N x 256 x 256, where N is the number of acquired slices. This image volume is
used as input for the network. We need to process all slices at ones, because the LCI
value is related to the complete lung and not to a single slice.

Network Model

An overview of the complete network structure is shown in Figure 9.2. Our network
model consists of two major parts. The first part is the global autoencoder (GAE)
where the input is the above-described image volume. As the ventilation maps have a
slice thickness of 12 mm, neighboring slices can show substantially different content. To
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Figure 9.2: Model for the weakly supervised segmentation of defected lung areas.

overcome this issue, all operations are performed on a single slice only and not across
slices. All convolutional layers use a kernel size of 1 x 3 x 3. The conv-down block reduces
the spatial dimension by using a strided convolution with a stride of 1 x2x2. The conv-up
block increases the spatial resolution by a factor of 2 using bilinear upsampling followed
by a convolutional layer. Compared to the classical autoencoder approach the number
of feature channels is not reduced in the decoder of the GAE. The input of the second
part of the network the local autoencoder (LAE), are overlapping patches of the input
volume. For each coronal slice M 2D patches of the input volume with a size of 16 x 16
and a stride of 1 are generated. We consider only patches were the region of the patches
overlaps with the lung mask. The size of the latent variable of the LAE is set to 64.
In contrast to the GAE, the number of feature channels is reduced in the decoder part
of the LAE. For the final pixel-wise defect map, all patches of the input volume are
encoded using the encoder of the LAE, reshaped and concatenated with the output of
GAE. The embeddings of the patches are placed at the center position of the patch in
the image volume. In this way, we get a feature map with the spatial dimensions of
the input volume and 128 feature channels. The final network output, the pixel-wise
defect segmentation sq is obtained after two convolutional layer and has the final size of
1 x N x 256 x 256.
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9.3 Experiments and Results

Network Training

In order to train the parameter of our network with the LCI as weak label, we define
the LCI loss as

2
ELCI(Sd,Sl,LCI) = <erX Sd( ) —LCI) N (9.2)
Yo (@)

where X C R? is the domain of the lung mask s, with sj(z) = 1. The the output of
our network, i.e. the segmentation of the defect areas of the input ventilation map is
defined as sq : X — [0,1]. However, the LCI loss is based on the ratio of the defected
lung volume to the whole lung volume and thus not a pixel-wise loss. This can lead to
a segmentation result that minimize the LCI loss but do not correspond to the defected
areas. We use self-supervised reqularization during training of our network to prevent the
network from overfitting on the LCI loss and learning a non-meaningful segmentation.
As shown in Figure 9.2, our network contains different paths, some of which are only
used for the self-supervised regularization during training (dotted) and some are used
during training and inference (dense). We use the decoder part of the LAE only during
training for the reconstruction of the image patches. With this, we enforce the network
to learn an embedding for the classification of the image patch which is strongly related
to the image content. The image reconstruction loss for the LAE is defined as

| X| [Py
»CLAE( patch) patch |X‘ Z ’P | Z patch x p Ipatch(xup))Qa (93)

where P, C R? is the image patch domain at location z of the input image. For the
feature regularization of the GAE the same approach is used, but here the output of the
GAE is concatenated with the embedding of the LAE before the image is reconstructed.
The global reconstruction loss is defined as

Laan(l 1) = Eq > U(x) - I(x)). (9.4)

The final loss for the training of the network is then given as

L= Lic1+ Liag + LGAE- (9.5)

9.3 Experiments and Results

For our experiments, we use a data set of 35 subjects with 2 examinations per subject
on average. We divided our data set in a training set with 28 subjects and in a test set
with 7 subjects. In each examination 8-12 dynamic 2D image series were acquired. All
examinations were performed on a 1.5 Tesla whole-body MR-scanner (MAGNETOM
Aera, Siemens Healthineers, Erlangen, Germany) using a 12-channel thorax and a 24-
channel spine receiver coil array. Each subject was scanned during free breathing with
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Figure 9.3: Result of the human expert rating of the presented defect segmentation.

the uf-bSSFP sequence Bauman et al. (2016). The main pulse sequence parameters were
as follows: field-of-view 375x375 - 425x425 mm?, slice thickness 12mm, TE/TR/TA
= 0.67ms/1.46 ms/119ms, flip angle 60°, bandwidth 2056 Hz/pixel, matrix 128x128
(interpolated to 256 x256), 160 coronal images, 3.33 images/s, parallel imaging GRAPPA
factor of 2. Ventilation maps and the lung segmentation were then computed as described
in Section 9.2.

Due to the problem of relative values of the ventilation maps caused by the relative
values generated by the MR, we normalized each slice independently. We performed a z-
normalization followed by clipping of the values at [—4, 4] and a transformation to [0, 1].
In the final step, a histogram stretching was performed using the 2 and 98 percentile
of the intensities. The normalization was only performed on intensity values inside the
lung.

For the evaluation, we applied our method to the 7 subjects of the test set. Because the
derivation of pixel-wise manually labeled ground truth remains difficult, we evaluated our
method by using a rating of the final defect segmentation by 5 human experts. The rating
scheme is defined as the percentage of correct defect segmentation for a given ventilation
map: bad : 0%-20%, partially OK : 21%-40%, good : 41%-60%, very good : 61%-80%,
perfect : 81%-100%. For the evaluation the lung ventilation map and the morphological
image are available. Each rater scores all 2D segmentation results of the test set, which
contains 132 images in total. Rater 1 and 2 are a senior resident radiologist with 20
respectively 10 years of experience. Rater 3 has over 5 years of research experience in
the field of MRI lung imaging. Rater 4 is a chest fellow (radiologist) with 4 years of
experience in chest imaging. Rater 5 is a physician with 2 years of experience of thorax
imaging. The results of the human expert evaluation presented in Figure 9.3, show
that over 60% of the segmentation results are rated with very good or perfect. Selected
segmentation results of different subjects with different LCIs are shown in Figure 9.4.
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9.4 Conclusion

The results of our method demonstrate, that we are able to segment most of the impaired
areas with ventilation defects by using only the LCI for training. However, in some areas
an incorrect segmentation is observed in close approximation to blood vessels as shown
in Figure 9.4. This might be reasoned by the evidence that the non-ventilated blood
vessels are showing the similar characteristics as impaired areas in the ventilation maps.

(a) LCI: 6.76 (b) LCI: 10.31 (c) LCI: 15.05

Figure 9.4: Selected defect segmentation results (red) for different subjects with different LCI values.
Top row: morphological image with defect segmentation outline. Middle row: ventilation maps
with defect segmentation outline. Bottom row: ventilation maps with defect segmentation overlay.
Green shows the outline of the given lung segmentation Andermatt et al. (2016). Incorrect defect
segementations are highlighted with white circles.

9.4 Conclusion

We presented a first proof-of-concept of our weakly supervised learning strategy for the
segmentation of defected areas in MRI ventilation maps. We designed a network that
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is able to generate a pixel-wise segmentation of lung defects in MRI ventilation maps
using the LCI value as a weak label. Our network model consists of two major parts
for the global and local feature extraction. Both features are then combined to estimate
the final segmentation. Furthermore, we use self-supervised reqularization to prevent the
network from learning a non-meaningful segmentation. We evaluated the performance
of our method with a rating of the segmentation result by 5 human experts. The results
show that over 60% of all segmentations are scored with very good or perfect. However,
we observed that our method has a tendency for over-segmentation especially in regions
were vessels are located. This over-segmentation could be removed by providing a vessel
segmentation as a post-processing step or by adding this to the training procedure, but
we will leave this for future work.
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Discussion and Conclusion

In this work, we presented different methods to improve the calculation and evalua-
tion of MR ventilation and perfusion maps. With the development of the ufSSFP MR
sequence, it is now possible to observe physiological changes based on ventilation and
perfusion inside the lungs. Compared to other imaging modalities that are applicable
for lung imaging, e.g., X-ray or CT, MRI does not use ionizing radiation. Based on
this, MRI is an alternative imaging modality for the detection and long-term monitoring
of pulmonary diseases. The process to create ventilation and perfusion maps from a
dynamic 2D + ¢ ufSSFP MR sequence consists of three major parts: MR-acquisition,
image registration, and image analysis.

This work focuses on the image registration and the image analysis parts. Image
registration of the thorax is a challenging task due to sliding-organ motion at the lung
cavity and intensity changes. The intensity changes are due to physiological changes
inside the tissue caused by ventilation and perfusion. We developed a computational
efficient registration method based on graph diffusion (GDR) for the registration of
the dynamic 2D images series which is able to handle sliding-organ motion. For the
registration of a 2D time series containing 140 images and a resolution of 256 x 256
pixels our method needs 2min to perform the registration. This registration method
is now implemented in the current pipeline for the calculation of the ventilation and
perfusion maps.

The second registration method, we developed is inspired by how a human would reg-
ister an image using only local transformations and thus belongs to the class of learning-
based registration methods. Here, the process of registration is separated in a learning
phase and a training phase. We developed a method that models the registration as a se-
quence of local transformations. As we have a sequence of transformations, we based our
method on gated recurrent units (GRU) called Recurrent Registration Neural Networks
(R2N2). With this method, we are able to speed-up the registration process compared
to the classical B-spline registration method. Rewriting the registration problem as se-
quence allows the model to apply local transformations until both images are properly
aligned. This is difficult to obtain with current feed forward learning-based registration
methods. Furthermore, the sequence-based approach allows an additional dimension for
the regularization, i.e.,the number of local transformation used to spatially align both
images. The code for the R2N2 is publicly available!.

With the experience we gained through the development of new registration methods,
we developed a registration framework called ATRLab. AIRLab stands for Autograd
Image Registration Laboratory and is based on the PyTorch? framework. With AIRLab,
we presented a framework that allows rapid-prototyping of new registration methods
and offers an elegant way to implement existing registration methods. The key feature
of the AIRLab framework is the automatic gradient calculation offered by the PyTorch
framework. Furthermore, AIRLab benefits from current developments from the machine
learning community and the efficient GPU support, which allows a fast development of
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new image registration methods. We implemented the current state-of-the-art registra-
tion methods, e.g., B-spline , Demons, diffeomorphic transformations, in the AIRLab
framework. AIRLab is an open-source project?.

Besides the registration, we also worked on the image analysis part. Here, we devel-
oped a deep neural network model that reduces the number of images needed to calculate
ventilation maps. We were able to reduce the number of images from 140 to 40 by keep-
ing the quality of the maps. Since the image series is acquired as a continuous sequence,
we use a stacked bidirectional gated recurrent neural network model.

For the clinical routine, the automatic analysis of the ventilation and perfusion map
is essential. In detail this means an automatic detection of impaired regions in the
ventilation and perfusion maps. Deep neural networks have shown great performance
for fully supervised segmentation tasks. However, generating training data with a pixel-
wise label (segmentation) is very time-consuming. Furthermore, using a pixel-wise label
limits the network performance to human performance. In order to generate a pixel-wise
segmentation, we developed a weakly supervised method that is able to infer a pixel-wise
segmentation from a continuous global label. As global label, we use the lung clearance
index (LCI). The LCI is a global measure for ventilation inhomogeneities of the lungs
and is measured by a multiple breath washout test. Compared to other methods, we
do not need any manually labeled data. The results show that, we are able to robustly
detect defects in the ventilation maps.

Future work

Our learning-based registration method R2N2 currently uses a fixed sequence length to
perform the registration. This is a limitation to the system since the registration is
ideally performed with a minimal number of steps. For future work, we will extend the
method to automatically determine the minimal number of steps. Examples for this can
also be found in the field of reinforcement learning.

In the AIRLab framework, several state-of-the-art tools for image registration are
implemented. We will continue with the implementation of new tools as for example for
group-wise or multi-channel image registration.

The current ventilation map generation method computes the ventilation map using
only the 1D time signal of one pixel without using further spatial information of the
neighboring pixels. We will extend this method by using the whole image as input at
each time point for the GRU. This can be achieved by replacing the fully connected
layers of the GRU with convolutions. Furthermore, we can also think of using new
neural network architectures for sequential data, e.g., Transformers.

Our weakly supervised segmentation method showed very good results for the defect
detection in MRI ventilation maps. However, we observed some misclassifications in
areas close to blood vessels. This is caused by the fact that vessels are not ventilated

'R2N2 framework: https://github.com/RobinSandkuehler/r2n2
2PyTorch framework: https://pytorch.org
3 ATRLab framework: https://github.com/airlab-unibas/airlab
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and therefore they share similar characteristics as lung defects. For future work, we will
investigate how these misclassifications can be removed. The first approach may be a
preprocessing step using a simple vessel segmentation or adding the vessel segmentation
to the learning process of the network. We will extend and evaluate our method for
defect detection in MRI perfusion maps. Furthermore, we will investigate if we can
include the idea of anomaly detection in our framework.

Conclusion

In this work, we have presented methods to improve the process of calculation and anal-
ysis of MRI ventilation and perfusion maps. Our registration method is currently used in
the MRI ventilation and perfusion computation pipeline. We developed a new sequence-
based registration method using gated recurrent neural networks. For the ventilation
map generation, we presented a method which is able to calculate ventilation maps
with only a third of the original method by maintaining the quality of the ventilation
maps. Since automatic map analysis is important in the clinical routine, we developed a
weakly supervised defect segmentation method where no manual labeled training data
is needed. The weak label we use is the lung clearance index obtained from a multiple
breath washout test. With this method, we were able to detect most of the impaired
regions in the ventilation maps.
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