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LEVEL-SET PERCOLATION OF THE GAUSSIAN FREE FIELD

ON REGULAR GRAPHS I: REGULAR TREES

Angelo Abächerli ∗ Jǐŕı Černý †

Preliminary draft

Abstract

We study level-set percolation of the Gaussian free field on the infinite d-regular
tree for fixed d ≥ 3. Denoting by h⋆ the critical value, we obtain the following results:
for h > h⋆ we derive estimates on conditional exponential moments of the size of
a fixed connected component of the level set above level h; for h < h⋆ we prove
that the number of vertices connected over distance k above level h to a fixed vertex
grows exponentially in k with positive probability. Furthermore, we show that the
percolation probability is a continuous function of the level h, at least away from the
critical value h⋆. Along the way we also obtain matching upper and lower bounds
on the eigenfunctions involved in the spectral characterisation of the critical value
h⋆ and link the probability of a non-vanishing limit of the martingale used therein
to the percolation probability. A number of the results derived here are applied in
the accompanying paper [AČ19].

0 Introduction

In this article we investigate the Gaussian free field on d-regular trees with d ≥ 3. We
focus in particular on the level sets and their behaviour in connection with level-set
percolation. The goal is to obtain a good description of the nature of the level sets for
levels away from the critical value of level-set percolation.

Level-set percolation of the Gaussian free field is a significant representative of a
percolation model with long-range dependencies and it has attracted attention for a long
time, dating back to [MS83], [LS86] and [BLM87]. More recent developments can be
found for instance in [RS13], [PR15], [Szn15], [DPR18b], [DPR18a], [Nit18] and [CN18].
The particular case of Gaussian free field on regular trees was studied before in [Szn16]
and [Szn19], and on general transient trees in [AS18]. Compared to the present article,
the emphasis in these three papers is put on a different aspect of the Gaussian free field,
namely its connection with the model of random interlacements.

Studying level-set percolation of the Gaussian free field on regular trees specifically is
of intrinsic interest. The case of the regular tree comes along with strong tools based on
the structure and symmetry of the graph. These allow for often very exact computations
which potentially lead to especially explicit, though not at all trivial, results. They also
make it one of the most promising setups for understanding level-set percolation of the
Gaussian free field near criticality.

∗Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
†Departement Mathematik und Informatik, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland
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Besides the fact that the results obtained in this article are interesting in their own
right, our prime motivation comes from a concrete application: in the accompanying
paper [AČ19] we prove a phase transition in the behaviour of the level sets of the zero-
average Gaussian free field on a certain class of finite d-regular graphs that are locally
(almost) tree-like. This class includes d-regular expanders of large girth and typical
realisations of random d-regular graphs. In a certain sense, the Gaussian free field on
the d-regular tree provides the local picture of the zero-average Gaussian free field on
these finite graphs, and its detailed understanding developed in the present article is a
key ingredient for [AČ19].

We now describe our results more precisely. Let d ≥ 3 and denote by Td the infinite
d-regular tree. On Td we consider the Gaussian free field with law P

Td on R
Td and

canonical coordinate process (ϕTd
(x))x∈Td

so that,

under PTd , (ϕTd
(x))x∈Td

is a centred Gaussian field on Td with covariance
E
Td [ϕTd

(x)ϕTd
(y)] = gTd

(x, y) for all x, y ∈ Td, where gTd
(·, ·) is the

Green function of simple random walk on Td (see (1.3)).

(0.1)

Our main interest lies in investigating properties of the level sets of ϕTd
, i.e. of

E≥h
ϕTd

:= {x ∈ Td |ϕTd
(x) ≥ h} for h ∈ R.

In particular, we are interested in the connected component of E≥h
ϕTd

containing a fixed

vertex o ∈ Td (called root) and denoted by

Ch
o :=

{
x ∈ Td

∣∣x is connected to o in E≥h
ϕTd

}
. (0.2)

With this notation at hand we can define the critical value of level-set percolation of
the Gaussian free field via

h⋆ := inf
{
h ∈ R

∣∣PTd
[
|Ch

o | = ∞
]
= 0
}
. (0.3)

We point out that there is no explicit formula for h⋆, even though we consider the Gaussian
free field on a regular tree. However, the special structure of the underlying graph allows
for a crucial spectral characterisation of the critical value, as derived in [Szn16]. We
recall it in details in Section 1.2. Very roughly, in this spectral characterisation one
associates to any level h ∈ R a self-adjoint, non-negative operator Lh on L2(R,B(R), ν),
where ν is a certain centred Gaussian measure. The operator Lh is naturally linked to
the distribution of ϕTd

at a vertex conditioned on the value of ϕTd
at a neighbouring

vertex and truncated below level h (see (1.12) and below it). One then considers the
operator norms (λh)h∈R of the operators (Lh)h∈R and finds that (see [Szn16], Section 3)

the map h 7→ λh is a decreasing homeomorphism from R to (0, d − 1)
and h⋆ is the unique value in R such that λh⋆ = 1.

(0.4)

Additionally, for h ∈ R one has that λh is a simple eigenvalue of Lh which is associated
to a unique, non-negative eigenfunction χh with unit L2-norm, vanishing on (−∞, h) and
positive elsewhere. So far one very important aspect of the eigenfunctions (χh)h∈R was
unknown, namely the precise understanding of their asymptotic behaviour. Some care
is applied in [Szn16] to circumvent this lack of control (see Remark 3.4 and Remark 4.4
therein).
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As a first result in this paper, we close this gap and we obtain matching upper and
lower bounds on the eigenfunctions (χh)h∈R. In essence, we show in Proposition 2.1 that
for every h ∈ R there exist ch, c

′
h > 0 such that

0 < ch a
1−logd−1(λh) ≤ χh(a) ≤ c′h a

1−logd−1(λh) for all a ∈ [h,∞) (0.5)

(see also Remark 2.2 (i)). Presumably, such exact bounds might be helpful when tackling
level-set percolation questions of ϕTd

near the critical value h⋆. In this paper we will use
the upper bound to show the exponential growth of |Ch

o | for h < h⋆ (see (0.10)).

We also obtain another result related to the spectral characterisation of level-set
percolation of ϕTd

. It concerns the non-negative martingale (M≥h
k )k≥0 for h ∈ R on

which the proof of the spectral characterisation of h⋆ in [Szn16] heavily relies and in
which the eigenfunction χh and the associated eigenvalue λh appear (see (1.16) for the
definition). We show in the present paper that for all h ∈ R \ {h⋆} the probability of
a non-vanishing martingale limit is equal to the ‘forward percolation probability’ (see
Proposition 4.2)

P
Td
[
|Ch

o ∩ T
+
d | = ∞

]
= P

Td
[
M≥h

∞ > 0
]
, (0.6)

where T
+
d ⊆ Td is the ‘forward tree’, that is, the subtree of Td containing the root o and

in which each vertex except for the root o has d neighbours and the root o has d − 1
neighbours (the precise definition is given below (1.1)).

We moreover investigate the continuity properties in h of percolation probabilities
like on the left hand side of (0.6) and as a third result we show in Theorem 4.1 that

the percolation probability η(h) := P
Td [|Ch

o | = ∞] for h ∈ R and the
forward percolation probability η+(h) := P

Td
[
|Ch

o ∩ T
+
d | = ∞

]
for h ∈ R

are continuous functions on R \ {h⋆}.
(0.7)

We then turn to Ch
o and we obtain rather precise estimates of its cardinality in both

the subcritical (h > h⋆) and supercritical (h < h⋆) phase.

We show that if h > h⋆, then there is some δ > 0 such that for all γ > 0 we can find
ch,γ , c

′
h,γ > 0 satisfying (see Theorem 5.1)

E
Td

[
(1 + δ)|C

h
o∩T+

d | ∣∣ϕTd
(o) = a

]
≤ ch,γ exp(c

′
h,γa

1+γ) for all a ≥ h. (0.8)

In particular, this will imply that |Ch
o ∩ T

+
d | has exponential moments. Incidentally, it

also implies conditional exponential-tail estimates of |Ch
o | of the form

P
Td
[
|Ch

o | ≥ k
∣∣ϕTd

(o) = a
]
≤ ch,ae

−c′hk for all k ≥ 1 and a ≥ h, (0.9)

with a control of the dependence of the constant ch,a > 0 on the value a = ϕTd
(o) of the

field at the root (see Remark 5.2).

Finally, for h < h⋆ we prove that the number of vertices connected over distance k
above level h to the root o ∈ Td grows exponentially in k with positive probability. This
can be shown by using our first result (0.5) in combination with (0.6). More precisely,
with STd

(o, k) denoting the sphere of radius k ≥ 0 around o in Td, we prove that (see
Theorem 4.3)

lim
k→∞

P
Td
[
|Ch

o ∩ T
+
d ∩ STd

(o, k)| ≥ λk
h

k2

]
= η+(h) > 0. (0.10)

We remind that here λh > 1 is the eigenvalue from (0.4).
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As explained earlier, we will see in the accompanying paper [AČ19] that the Gaussian
free field ϕTd

on Td in essence plays the role of the local picture of the zero-average
Gaussian free field on a specific class of finite d-regular graphs that are locally (almost)
tree-like. By exploiting this feature, we establish in [AČ19] a phase transition for level-
set percolation of the zero-average Gaussian free field on the finite graphs which is
characterised by the critical value h⋆ on the infinite tree. Roughly, the strategy of [AČ19]
is to use the local picture to transfer the problem from the finite graphs to Td and then to
use the new results developed in the present article. Specifically, we apply the estimate
(0.8) in the proof of the subcritical phase ([AČ19], Theorem 3.1) and the two results (0.7)
and (0.10) in the proof of the supercritical phase ([AČ19], Theorem 4.1). As an aside,
let us mention that for the application in [AČ19] it is crucial that the exponent γ on the
right hand side of (0.8) can be chosen strictly smaller than 2.

A similar approach as explained in the previous paragraph was carried out in [ČTW11]
to describe a phase transition for the vacant set of simple random walk on the same class
of finite graphs as considered in the accompanying paper [AČ19]. As shown in [ČTW11],
the local picture in that case is given by the vacant set of random interlacements on
Td. Thanks to the detailed understanding of random interlacements in the infinite
model, the phase transition in the finite model can be established. An advantage of
random interlacements on a tree is that the connected components of its vacant set
can be described rather easily. Indeed, as observed in [Tei09], they are distributed as
Galton-Watson trees with a binomial offspring distribution. Thus, properties like (0.9)
or (0.10) are classical.

In contrast, the connected components of the level sets of ϕTd
, which play the cor-

responding role in our setup, are not Galton-Watson trees. The situation is more com-
plicated and obtaining results like (0.9) and (0.10) is not straightforward. Instead, by
the domain Markov property of the Gaussian free field, one can view Ch

o for h ∈ R as
a certain multi-type branching process with an uncountable type space. Some of the
results in this paper are similar to classical results about branching processes, though to
our knowledge they are not covered by the literature. We would like to stress that our
arguments rely on the special structure of the Gaussian free field on regular trees. Let us
also mention that, despite the connection between the Gaussian free field and random
interlacements via isomorphism theorems, we are not aware of any technique allowing to
transfer the results of [Tei09] and [ČTW11] directly to our context.

The structure of the article is as follows. In Section 1 we collect the main part of
the notation and some known results about the Gaussian free field on Td. In particular,
in Section 1.2 we recall the spectral description of the critical value h⋆ obtained in
[Szn16]. In Section 2 we derive asymptotic bounds on the eigenfunctions appearing
in the spectral description of h⋆. In Section 3 we give a recursive equation for the
conditional non-percolation probability. Subsequently, we analyse the behaviour of the
level sets of the Gaussian free field in the supercritical phase in Section 4. This includes
the continuity of the percolation probability (Section 4.1) and the geometrical growth
of level sets (Section 4.3). Finally, in Section 5 we investigate the subcritical phase and
show that the cardinality of the connected component of the level set containing the root
has exponential moments (and more).

Acknowledgements. The authors wish to express their gratitude to A.-S. Sznitman
for suggesting the problem and for the valuable comments made at various stages of the
project.
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1 Notation and useful results

We start by introducing the notation and recalling known properties of the Green func-
tion and the Gaussian free field on Td. These include a recursive construction of ϕTd

(Section 1.1) and the spectral characterisation of h⋆ (Section 1.2).

As mentioned earlier, we consider for fixed d ≥ 3 the d-regular tree Td with root o.
We endow Td with the usual graph distance dTd

(·, ·). For any R ≥ 0 and x ∈ Td we let
BTd

(x,R) := {y ∈ Td | dTd
(x, y) ≤ R} and STd

(x,R) := {y ∈ Td | dTd
(x, y) = R} denote

the ball and the sphere of radius R around x, respectively. For x, z ∈ Td a path from x
to z is a sequence of vertices x = y0, y1, . . . , ym = z in Td for some m ≥ 0 such that yi
and yi−1 are neighbours for all i = 1, . . . ,m (if m ≥ 1). It is a geodesic path from x to z
if it is the path of shortest length.

For x ∈ Td \ {o} let x be the unique neighbour of x on the geodesic path from x to
o. Moreover, let o ∈ Td denote an arbitrary fixed neighbour of o ∈ Td. For x ∈ Td we
define

Ux := {z ∈ Td | the geodesic path from z to x does not pass through x}. (1.1)

In particular Td = {o}∪⋃d
i=1 Uxi , where {x1, . . . , xd} denote the neighbours of o. In the

special case of x = o we write T+
d := Uo. We also setB+

Td
(o, R) := {y ∈ T

+
d | dTd

(o, y) ≤ R}
and similarly S+

Td
(o, R) := {y ∈ T

+
d | dTd

(o, y) = R} for R ≥ 0.

We write PTd
x for the canonical law of the simple random walk (Xk)k≥0 on Td starting

at x as well as ETd
x for the corresponding expectation. Given U ⊆ Td we write TU :=

inf{k ≥ 0 |Xk /∈ U} for the exit time from U and HU := inf{k ≥ 0 |Xk ∈ U} for the
entrance time in U (here we set inf ∅ := ∞). In the special case of U = {z} we use Hz

in place of H{z}. Recall that (see e.g. [Woe00], proof of Lemma 1.24)

PTd
x

[
Hy < ∞

]
=
( 1

d− 1

)dTd (x,y)
for x, y ∈ Td. (1.2)

The Green function gTd
(·, ·) of simple random walk on Td is given by (see [Woe00],

Lemma 1.24, for the explicit computation)

gTd
(x, y) := ETd

x

[ ∞∑

k=0

1{Xk=y}
]
=

d− 1

d− 2

( 1

d− 1

)dTd (x,y)
for x, y ∈ Td. (1.3)

For U ⊆ Td the Green function gU
Td
(·, ·) of simple random walk on Td killed when exiting

U is
gU
Td
(x, y) := ETd

x

[ ∑

0≤k<TU

1{Xk=y}
]

for x, y ∈ Td.

The functions gTd
(·, ·) and gU

Td
(·, ·) are symmetric and finite, and gU

Td
(·, ·) vanishes when-

ever x /∈ U or y /∈ U . They are related by the identity

gTd
(x, y) = gU

Td
(x, y) + ETd

x

[
gTd

(XTU
, y)1{TU<∞}

]
for x, y ∈ Td, (1.4)

which is an easy consequence of the strong Markov property of simple random walk at
time TU . In the particular case of U := Ux this implies that (by using (1.2), (1.3) and
that XTU

= x on {TU < ∞} under PTd
x )

gUx
Td

(x, x) = gTd
(x, x)− 1

d− 1
gTd

(x, x) =
d− 1

d− 2

(
1− 1

(d− 1)2

)
=

d

d− 1
. (1.5)
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Recall from (0.1) that (ϕTd
(x))x∈Td

is the centred Gaussian field with covariance
given by gTd

(·, ·). It satisfies the following domain Markov property : for U ⊆ Td define
the new field

ϕU
Td
(x) := ϕTd

(x)− ETd
x [ϕTd

(XTU
)1{TU<∞}] for x ∈ Td.

Then,

under PTd , (ϕU
Td
(x))x∈Td

is a centred Gaussian field on Td which is inde-

pendent from (ϕTd
(x))x∈Td\U and has covariance E

Td [ϕU
Td
(x)ϕU

Td
(y)] =

gU
Td
(x, y) for all x, y ∈ Td.

(1.6)

The proof of this fact follows by an easy computation of covariances and (1.4).

1.1 Recursive construction of the Gaussian free field

Property (1.6) can be applied to obtain a useful recursive representation of the Gaussian
free field on Td that we introduce now. We point out that this description crucially relies
on the special features of the Gaussian free field when considered on a (regular) tree.

Let x ∈ Td and let {x1, . . . , xI} be the neighbours of x not contained in the geodesic
path from x to o. In particular, I = d if x = o and I = d − 1 otherwise. We set
U :=

⋃I
i=1 Uxi . Since Td is a tree, it can be easily seen that

• gU
Td
(xi, xi) = g

Uxi
Td

(xi, xi) for i ∈ {1, . . . , I},

• gU
Td
(y, y′) = 0 for y ∈ Uxi , y

′ ∈ Uxj where i, j ∈ {1, . . . , I} with i 6= j,

• for any y ∈ U , one has XTU
= x on {TU < ∞} under PTd

y .

Hence (1.6) together with (1.2) and (1.5) yields that

under PTd , conditionally on ϕTd
(x), the random variables (ϕTd

(xi))1≤i≤I

are i.i.d. Gaussians with mean 1
d−1ϕTd

(x) and variance d
d−1 . Furthermore,

they are independent of (ϕTd
(y))y∈Td\U .

(1.7)

Let now (Yx)x∈Td
be a collection of independent centred Gaussian variables defined

on some auxiliary probability space (Ω,A,P) such that Yo ∼ N (0, gTd
(o, o)) = N (0, d−1

d−2)

and Yx ∼ N (0, gUx
Td

(x, x)) = N (0, d
d−1) for x 6= o. Define recursively

ϕ̃(o) := Yo and ϕ̃(x) :=
1

d− 1
ϕ̃(x) + Yx for x ∈ Td \ {o}. (1.8)

Then, by applying (1.7) iteratively, we see that

under P, the law of (ϕ̃(x))x∈Td
is PTd , (1.9)

so that (1.8) can serve as an alternative construction of the Gaussian free field on Td.

The recursive representation (1.8) has many useful consequences and it will be used
repeatedly throughout the paper. In particular, it gives a representation of the conditional
distribution of ϕTd

given ϕTd
(o) = a ∈ R,

P
Td
a

[
(ϕTd

(y))y∈Td
∈ ·
]
:= P

Td
[
(ϕTd

(y))y∈Td
∈ ·
∣∣ϕTd

(o) = a
]
, (1.10)
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with corresponding expectation E
Td
a . Moreover, if we let x1, . . . , xd denote the neighbours

of the root o ∈ Td, then from (1.8) and (1.9) it follows that for every a ∈ R,

under PTd
a , the random fields (ϕTd

(y))y∈Uxi
for i = 1, . . . , d are indepen-

dent. Furthermore, for any event A ∈ σ(ϕTd
(z), z ∈ T

+
d ) and i = 1, . . . , d

one has P
Td
a

[
(ϕTd

(y))y∈Uxi
∈ A

]
= E

Y
[
P
Td
a

d−1
+Y

[
(ϕTd

(y))y∈T+
d

∈ A
]]
,

where Y ∼ N (0, d
d−1) and E

Y is the expectation with respect to Y .

(1.11)

(In the equality in (1.11) we also use that the law of ϕTd
on Uxi equals the law of ϕTd

on T
+
d .)

Due to (1.8) and (1.9), the Gaussian free field on Td can be related to a multi-
type branching process with type space R. Indeed, we can view every x ∈ STd

(o, k)
as an individual in the k-th generation of the branching process with an attached type
ϕTd

(x) ∈ R. In this perspective (1.7) can be rephrased as: every individual x has
d − 1 children (d children if x = o) whose types, conditionally on ϕTd

(x), are chosen
independently according to the distribution N ( 1

d−1ϕTd
(x), d

d−1).

This point of view can easily be adapted to Ch
o from (0.2) as well, namely by considering

the same multi-type branching process but instantly killing all individuals whose type does
not exceed h. In other words, Ch

o can be viewed as a multi-type branching process with
a barrier and the percolation of Ch

o corresponds to the non-extinction of this branching
process. However, while some of the results in this paper are reminiscent of classical
results about branching processes, we would like to emphasise that the proofs make heavy
use of the special structure of the Gaussian free field on a regular tree. We are going to
recall one of the special features in the next section.

1.2 Spectral characterisation of the critical value

We now recall the spectral characterisation of the critical value h⋆ from [Szn16], which
is central for our paper. Note that our d-regular tree Td corresponds in the notation
of [Szn16] to the (d̃ + 1)-regular tree T with d̃ := d − 1. Moreover in [Szn16], in the
definition of the Green function gTd

(·, ·) on the tree, there is an extra normalising factor
equal to the degree of the tree (see [Szn16], (3.1)). This explains the differences between
the formulas to come and the formulas in [Szn16].

Let ν = N (0, d−1
d−2) be the centred Gaussian measure with variance d−1

d−2

(1.3)
= gTd

(o, o).
For h ∈ R define the operator

(Lhf)(a) := (d− 1)1[h,∞)(a)E
Y
[
f( a

d−1 + Y )1[h,∞)(
a

d−1 + Y )
]

for f ∈ L2(ν) := L2(R,B(R), ν) and a ∈ R,
(1.12)

where Y ∼ N (0, d
d−1) and E

Y is the expectation with respect to Y . The operator Lh is
closely linked to the Gaussian free field and its level set above level h. Indeed, one has
(Lhf)(a) = E

Td
a

[∑
x∈Ch

o∩S+
Td

(o,1) f(ϕTd
(x))

]
for a ≥ h by (1.8).

The following proposition summarises the known properties of the operators (Lh)h∈R
and characterises the critical value h⋆.

Proposition 1.1 ([Szn16], Propositions 3.1 and 3.3). For every h ∈ R the operator Lh

is self-adjoint, non-negative and its operator norm

λh := ‖Lh‖L2(ν)→L2(ν) (1.13)
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is a simple eigenvalue of Lh. Moreover, there is a unique, non-negative eigenfunction
χh ∈ L2(ν) of Lh, corresponding to the eigenvalue λh, with ‖χh‖L2(ν) = 1. The function
χh is continuous and positive on [h,∞), and vanishing on (−∞, h). Additionally, the
map h 7→ λh is a decreasing homeomorphism from R to (0, d− 1) and h⋆ is the unique
value in R such that λh⋆ = 1.

In Proposition 2.1 in Section 2 we will give matching upper and lower bounds on the
eigenfunctions χh.

On the way, we recall the following hypercontractivity estimate which is a direct
consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup (see
[Szn16], (3.14)): for 1 < p < ∞ and q = (p−1)(d−1)2+1 one has (with Y ∼ N (0, d

d−1))
∥∥∥EY

[
f( ·

d−1 + Y )
]∥∥∥

Lq(ν)
≤ ‖f‖Lp(ν) for f ∈ Lp(ν). (1.14)

We will use the estimate (1.14), with its precise relation between the parameters p and q,
several times. Especially, it will be applied to prove Proposition 3.6 which computes the
Fréchet derivative of a certain operator. This will be a key ingredient for showing the
existence of conditional exponential moments of |Ch

o | in the subcritical phase in Section 5.

Furthermore, for every h ∈ R there is a martingale (M≥h
k )k≥0 closely related to Lh.

Indeed, if we set
Zh
k := Ch

o ∩ S+
Td
(o, k) for k ≥ 0, (1.15)

then (see [Szn16], (3.31) and (3.35))

M≥h
k := λ−k

h

∑

y∈Zh
k

χh(ϕTd
(y)) for k ≥ 0 (1.16)

defines a non-negative martingale under PTd with respect to the filtration (Fk)k≥0 given
by

Fk := σ(ϕTd
(y), y ∈ B+

Td
(o, k)). (1.17)

In particular, M≥h
k converges P

Td-almost surely to some M≥h
∞ ≥ 0 as k → ∞ and (see

[Szn16], proof of Proposition 3.3)

for h < h⋆ one has PTd [M≥h
∞ > 0] > 0. (1.18)

Note that there is a direct relation between the probability of a non-vanishing martingale
limit M≥h

∞ and the forward percolation probability

η+(h) = P
Td
[
|Ch

o ∩ T
+
d | = ∞

]
for h ∈ R (1.19)

from (0.7). We only need to observe that

{|Ch
o ∩ T

+
d | < ∞} ⊆ {Zh

k = ∅ for k large enough} ⊆ {M≥h
∞ = 0}.

Therefore PTd [M≥h
∞ > 0] ≤ η+(h). In Section 4 we will see that this inequality is actually

an equality, at least when h 6= h⋆ (Proposition 4.2). As a last observation, note that by
a union bound and the symmetry of Td we obtain that η+(h) ≤ η(h) ≤ d · η+(h) for the
percolation probability η from (0.7). Hence by (0.3) one has η+(h) = 0 for h > h⋆ and
η+(h) > 0 for h < h⋆.

A final word on the convention followed concerning constants: by c, c′, . . . we denote
positive constants with values changing from place to place and which only depend on
the dimension d. The dependence of constants on additional parameters appears in the
notation.
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2 Asymptotic behaviour of the eigenfunctions

The main result of this section are the matching bounds on the eigenfunctions (χh)h∈R
from Proposition 1.1 collected in Proposition 2.1 below (corresponding to (0.5)). The
upper bound will be used later to show that connected components of supercritical
level sets grow exponentially with positive probability (Theorem 4.3 in Section 4). The
corresponding lower bound is not used further but it is included for completeness.

Proposition 2.1. (i) There exists c > 0 (see in (2.8) below) such that for all h ∈ R one
has

χh(a) ≤ c a1−logd−1(λh) for all a ≥ d− 1. (2.1)

(ii) For every h ∈ R there exists ch > 0 such that

χh(a) ≥ cha
1−logd−1(λh) for all a ≥ h. (2.2)

Remark 2.2. (i) From Proposition 1.1 recall that χh is continuous and strictly positive
on [h,∞). Therefore, by adjusting the constant c, Proposition 2.1 implies (0.5).

(ii) By Proposition 1.1 one has λh ∈ (0, d− 1). Hence, the exponent κh := 1− logd−1(λh)
in (2.1) and (2.2) is positive for all h ∈ R. Moreover, κh ∈ (0, 1) for h < h⋆, κh = 1 for
h = h⋆ and κh > 1 for h > h⋆.

Proof of Proposition 2.1. (i) Let (Yi)i≥1 be i.i.d. random variables with distribution
N (0, d

d−1). By iteratively using (1.12) and the fact that χh is the eigenfunction of
Lh with eigenvalue λh, we obtain for every a ∈ R and k ≥ 1

χh(a) =
1

λh
(Lhχh)(a) ≤

d− 1

λh
E
Y1

[
χh

(
a

d−1 + Y1
)]

=
d− 1

λh
E
Y1

[ 1

λh
(Lhχh)

(
a

d−1 + Y1
)]

≤
(d− 1

λh

)2
E
Y1

[
E
Y2
[
χh

(
a

(d−1)2
+ 1

d−1Y1 + Y2
)]]

(2.3)

≤ . . . ≤
(d− 1

λh

)k
E

[
χh

(
a

(d−1)k
+ 1

(d−1)k−1Y1 + . . .+ 1
d−1Yk−1 + Yk

)]
,

where the expectation on the right hand side of (2.3) is taken with respect to Y1, . . . , Yk.
Note that for any k ≥ 1 the random variable 1

(d−1)k−1Y1 + · · ·+ 1
d−1Yk−1 + Yk appearing

on the right hand side of (2.3) is centred Gaussian with variance

σ2
k :=

d

d− 1

k−1∑

i=0

1

(d− 1)2i
=

d− 1

d− 2

(
1− 1

(d− 1)2k

)
≤ d− 1

d− 2
=: σ2. (2.4)

Hence, if we denote by fµ,τ2 the density of the normal distribution N (µ, τ2) and ak :=
a

(d−1)k
for k ≥ 1, then (recall from above (1.12) that ν = N (0, σ2))

E

[
χh

(
a

(d−1)k
+ 1

(d−1)k−1Y1 + . . .+ 1
d−1Yk−1 + Yk

)]
=

∫

R

χh(y)fak,σ2
k
(y) dy

=

∫

R

χh(y)
fak,σ2

k
(y)

f0,σ2(y)
ν(dy)

(∗)
≤ ‖χh‖L2(ν)︸ ︷︷ ︸

=1

(∫

R

f2
ak,σ

2
k
(y)

f0,σ2(y)
dy

) 1
2

,
(2.5)

where in (∗) we apply the Cauchy-Schwarz inequality. Note that for all k ≥ 1

f2
ak,σ

2
k
(y)

f0,σ2(y)
=

√
σ2

√
2πσ2

k

exp
(
− (y − ak)

2

σ2
k

+
y2

2σ2

)
≤ f2ak,σ2(y) · σ

2

σ2
1

exp
(a2k
σ2

)
, (2.6)
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where we use σ2
1 ≤ σ2

k ≤ σ2 (see (2.4)). By combining (2.3) with (2.5) and (2.6) we
obtain for any a ∈ R and k ≥ 1

χh(a) ≤
(d− 1

λh

)k
√

σ2

σ2
1

exp
( a2k
2σ2

)
. (2.7)

If a ≥ d− 1, we can apply (2.7) for k = k(a) := ⌊logd−1(a)⌋, that is, for the unique k ≥ 1
with (d− 1)k ≤ a < (d− 1)k+1. Since d−1

λh
> 1 by Proposition 1.1 and ak(a) ≤ d− 1, we

obtain from (2.7)

χh(a) ≤
(d− 1

λh

)logd−1(a)

√
σ2

σ2
1

exp

(
(d− 1)2

2σ2

)

︸ ︷︷ ︸
=: c>0

= c a1−logd−1(λh), (2.8)

which concludes the proof of part (i).

(ii) Let K = Kh ≥ 0 be the smallest non-negative integer such that (d−1)K −14 ≥ h.
Define the intervals

I0 :=
[
h, (d− 1)K+1 + 4 · 2

]
,

Ik :=
[
(d− 1)K+k − 4(k + 2), (d− 1)K+k+1 + 4(k + 2)

]
for k ≥ 1,

(2.9)

which form a non-disjoint decomposition of [h,∞). (To see that all left boundaries of
the intervals are larger than h use the assumption on K as well as d ≥ 3.) The intervals
are such that

a

d− 1
− (k + 1) ∈ Ik−1 and

a

d− 1
+ (k + 1) ∈ Ik−1 for a ∈ Ik, k ≥ 1. (2.10)

Indeed, for k ≥ 1 and d ≥ 3 one has 4k+2
d−1 +(k+1) ≤ 4(k+1) and hence for every a ∈ Ik

a
d−1 + (k + 1) ≤ (d− 1)K+k + 4k+2

d−1 + (k + 1) ≤ (d− 1)K+k + 4(k + 1),

a
d−1 − (k + 1) ≥ (d− 1)K+k−1 − 4k+2

d−1 − (k + 1) ≥ (d− 1)K+k−1 − 4(k + 1).

By using once more that χh is the eigenfunction of Lh, we have for every a ∈ Ik with
k ≥ 1 that

χh(a) =
1

λh
(Lhχh)(a)

(1.12)

≥ d− 1

λh
1[h,∞)(a)︸ ︷︷ ︸

=1

E
Y
[
χh

(
a

d−1 + Y
)
1{|Y |≤k+1}

]
. (2.11)

From (2.10) we have that on {|Y | ≤ k + 1} it holds a
d−1 + Y ∈ Ik−1. Hence,

χh(a)
(2.11)

≥ d− 1

λh
inf

b∈Ik−1

χh(b) · P
[
|Y | ≤ k + 1

]
for a ∈ Ik, k ≥ 1. (2.12)

The repeated application of (2.12) implies that

χh(a) ≥
(d− 1

λh

)k
inf
b∈I0

χh(b)
k∏

ℓ=1

(
1− P[|Y | > ℓ+ 1]

)
for a ∈ Ik, k ≥ 1. (2.13)

By the exponential Markov inequality

k∏

ℓ=1

(
1− P[|Y | > ℓ+ 1]

)
≥

k∏

ℓ=1

(
1− 2e−

d−1
2d

(ℓ+1)2
) d≥3

≥
∞∏

ℓ=1

(
1− 2e−

1
3
(ℓ+1)2

)
≥ c (2.14)
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with c ∈ (0, 1) independent of k ≥ 1.

The inequality (2.2) is now an easy consequence of (2.13) and (2.14). First note
that χh(a) ≥ infb∈I0 χh(b) > 0 for a ∈ [h, (d − 1)K+1) since χh is continuous and
strictly positive on [h,∞) by Proposition 1.1, and I0 ⊆ [h,∞) is compact. Now, for
a ≥ (d−1)K+1 let k(a) := ⌊logd−1(a)−K⌋ ≥ 1 be the unique integer with (d−1)K+k(a) ≤
a < (d − 1)K+k(a)+1. In particular a ∈ Ik(a) and therefore from (2.13) and (2.14) we
obtain that

χh(a) ≥ c
(d− 1

λh

)k(a)
inf
b∈I0

χh(b) ≥ c
( λh

d− 1

)K+1
inf
b∈I0

χh(b)

︸ ︷︷ ︸
=: ch>0

a
logd−1(

d−1
λh

)
.

This shows (2.2) and concludes the proof of Proposition 2.1.

3 Recursive equation for the non-percolation probability

In this section we adopt the perspective of multi-type branching processes and show
that a certain function (see (3.1)) closely related to the forward percolation probability
from (1.19) is the unique solution to a recursive equation (Theorem 3.1). This fact will
be used to derive the results on the supercritical behaviour of the level sets of ϕTd

in
Section 4, in particular the continuity of the percolation probability and its equality with
the probability of a non-vanishing martingale limit (Theorem 4.1 and Proposition 4.2).
At the end of the section we compute the Fréchet derivative of the operator involved
in the recursive equation (Proposition 3.6). This will be an important ingredient to
estimate exponential moments of |Ch

o | in Section 5 (Theorem 5.1). The proofs in this
section partially follow the lines from multi-type branching processes (see e.g. [Har63],
Chapter III). However, a lot depends on the special structure of the Gaussian free field
on regular trees.

We introduce for every h ∈ R the conditional forward extinction probability (see
(1.10) for notation)

qh(a) := P
Td
a

[
|Ch

o ∩ T
+
d | < ∞

]
for a ∈ R. (3.1)

The function qh is closely related to the value of the forward percolation probability from
(1.19) at h. Indeed, since the distribution ν above (1.12) is the distribution of ϕTd

(o)
under PTd , one has

∫

R

qh(a) dν(a) = E
Td [qh(ϕTd

(o))]
(1.19)
= 1− η+(h). (3.2)

In particular, this shows by the comment at the end of Section 1 that qh is identically 1
if h > h⋆ and is not identically 1 if h < h⋆.

Now, recall the space L2(ν) defined in (1.12) and let us define for every h ∈ R the
(non-linear) operator Rh on L2(ν) through:

(Rhf)(a) := 1(−∞,h)(a) + 1[h,∞)(a)E
Y
[
f( a

d−1 + Y )
]d−1

for f ∈ L2(ν) and a ∈ R,
(3.3)

where Y ∼ N (0, d
d−1) as in (1.12). To see that indeed Rhf ∈ L2(ν), abbreviate f̂(a) :=

E
Y [f( a

d−1 + Y )] for a ∈ R and apply the hypercontractivity estimate (1.14) with p = 2
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and q = (d − 1)2 + 1 to find that ‖f̂d−1‖Lq/d−1(ν) = ‖f̂‖d−1
Lq(ν) ≤ ‖f‖d−1

L2(ν)
< ∞ and thus

f̂d−1 ∈ L
q

d−1 (ν). Since q
d−1 = (d− 1) + 1

d−1 ≥ 2, this implies that Rhf ∈ L2(ν).

We are actually only interested in the operator Rh for h ∈ R on the subset

Sh := {f ∈ L2(ν) | 0 ≤ f ≤ 1 and f = 1 on (−∞, h)}.

By definition we directly have Rh : Sh → Sh. In Theorem 3.1 we prove that qh is
essentially the unique solution in Sh to the equation Rhf = f .

From the multi-type branching process perspective, the operator Rh can be used
to write recurrence relations for generating functionals related to Ch

o , cf. for example
[Har63], Section III.7. In particular, by using the notation from (1.10), (1.15) and by
applying (1.7), we see that

(Rhf)(a) = E
Td
a

[ ∏

y∈Zh
1

f(ϕTd
(y))

]
for f ∈ Sh and a ∈ R,

where the empty product is interpreted as being equal to 1. This identity can be extended:
define iteratively

R0
hf := f and Rk

hf := Rk−1
h (Rhf) for f ∈ L2(ν) and k ≥ 1.

Then one can prove by induction on k ≥ 0 and using (1.7) that

(Rk
hf)(a) = E

Td
a

[ ∏

y∈Zh
k

f(ϕTd
(y))

]
for f ∈ Sh, k ≥ 0, a ∈ R. (3.4)

We come to the main result of this section.

Theorem 3.1. For every h ∈ R the function qh is the smallest solution in Sh to the
equation f = Rhf . More precisely, the only solutions in Sh to Rhf = f are the function
qh and the constant 1 function. These two functions coincide if h > h⋆ and are distinct
if h < h⋆.

The proof of the theorem is broken into several steps stated as Lemmas 3.2–3.5. The
first one is a classical observation from the theory of multi-type branching processes.

Lemma 3.2. Let h ∈ R. The function qh satisfies qh ∈ Sh and solves the equation
Rhf = f .

Proof. The fact that qh ∈ Sh is clear. To prove the second statement, denote S+
Td
(o, 1) =:

{x1, . . . , xd−1} and recall the notation from (1.1). Then, for every a ∈ R,

qh(a) = P
Td
a

[
|Ch

o ∩ T
+
d | < ∞, ϕTd

(o) < h
]
+ P

Td
a

[
|Ch

o ∩ T
+
d | < ∞, ϕTd

(o) ≥ h
]

= 1(−∞,h)(a) + 1[h,∞)(a)P
Td
a

[
|Ch

o ∩ Uxi | < ∞ for i = 1, . . . , d− 1
]

(1.11)
= 1(−∞,h)(a) + 1[h,∞)(a)E

Y
[
P
Td
a

d−1
+Y

[
|Ch

o ∩ T
+
d | < ∞

]]d−1 (3.3)
=

(3.1)
(Rhqh)(a),

completing the proof.

Next, we give various necessary properties of solutions to Rhf = f .
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Lemma 3.3. Let h ∈ R. Assume that f ∈ Sh solves Rhf = f . Then f is continuous
and positive on [h,∞). If additionally f is not identically 1, then supa∈[h,∞) f(a) < 1
and lima→∞ f(a) = 0.

Proof. For the continuity and positivity we note that for a ≥ h one can write

f(a) = (Rhf)(a)
(3.3)
=

(∫

R

f
(

a
d−1 + y

)√
d−1√
2πd

e−
(d−1)y2

2d dy

)d−1

=

(√
d−1√
2πd

e
− a2

2d(d−1)

∫

R

f(z)e−
d−1
2d

z2+a
d
z dz

)d−1

.

The right hand side is continuous in a by the dominated convergence theorem and it is
also positive since f is non-negative and equal to 1 on (−∞, h).

If f is not identically 1, then there is some b ≥ h with f(b) < 1. Hence, by the
continuity of f on [h,∞) previously shown, there is an interval of positive Lebesgue
measure in [h,∞) on which f is strictly smaller than 1. Due to f = Rhf and 0 ≤ f ≤ 1,
this implies that f(a) < 1 for all a ≥ h by the definition (3.3) of Rh.

We will now show that one even has sup[h,∞) f(a) < 1. Consider the intervals
Ik ⊆ [h,∞), k ≥ 0, from (2.9). Since f < 1 and f is continuous on [h,∞) and I0 is
compact, we have ∆ := max{1

9 , supa∈I0 f(a)} < 1. If we show by induction on k ≥ 0
that supa∈I0∪...∪Ik f(a) ≤ ∆ for all k ≥ 0, then sup[h,∞) f(a) ≤ ∆ < 1 follows since⋃∞

k=0 Ik = [h,∞). Now for k = 0 the claim is true by definition of ∆. So assume it holds
for k ≥ 0. Let Y ∼ N (0, d

d−1) and define ε := P
Y [|Y | ≥ 2]. Observe that ε < 1

4 because
d ≥ 3. For a ∈ Ik+1 we can estimate

f(a) = (Rhf)(a)
(3.3)
= E

Y
[
f( a

d−1 + Y )
]d−1 ≤ E

Y
[
f( a

d−1 + Y )
]2

≤
(
E
Y
[
f( a

d−1 + Y
︸ ︷︷ ︸

∈Ik by (2.10)

)1{|Y |≤2}
]
+ E

Y
[
1{|Y |>2}

])2
≤
(
∆ · (1− ε) + ε

)2

by induction hypothesis. Therefore,

sup
a∈Ik+1

f(a)−∆ ≤
(
∆ · (1− ε) + ε

)2 −∆ = (∆− 1)︸ ︷︷ ︸
< 0

(∆ · (1− ε)2 − ε2)︸ ︷︷ ︸
≥ 1

9
·( 3

4
)2−( 1

4
)2 ≥ 0

≤ 0.

This shows that supa∈Ik+1
f(a) ≤ ∆, which together with the induction hypothesis implies

supa∈I0∪...∪Ik+1
f(a) ≤ ∆ and completes the proof of supa∈[h,∞) f(a) < 1.

It remains to show lima→∞ f(a) = 0. The assumption Rhf = f implies that

lim sup
a→∞

f(a) = lim sup
a→∞

(Rhf)(a)
(3.3)
=
(
lim sup
a→∞

E
Y
[
f( a

d−1 + Y )
])d−1

. (3.5)

Since by Fatou’s lemma (using 0 ≤ f ≤ 1)

lim sup
a→∞

E
Y
[
f( a

d−1 + Y )
]
≤ E

Y
[
lim sup
a→∞

f( a
d−1 + Y )

]
,

we have found

ℓ := lim sup
a→∞

f(a)
(3.5)

≤ E
Y
[
lim sup
a→∞

f( a
d−1 + Y )

]d−1
= E

Y [ℓ]d−1 = ℓd−1.

However, ℓ ∈ [0, 1) since supa∈[h,∞) f(a) < 1. Therefore, the only possibility is ℓ = 0.
Hence lima→∞ f(a) = 0 because f is non-negative.
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The third step of the proof of Theorem 4.1 is the following statement of ‘transience’.

Lemma 3.4. For K ≥ 1 and Λ ≥ h let (see (1.15) for the notation)

AK,Λ
k :=

{
1 ≤ |Zh

k | ≤ K,ϕTd
(y) ≤ Λ for all y ∈ Zh

k

}
for k ≥ 0. (3.6)

Then for every a ∈ R, K ≥ 1 and Λ ≥ h one has

P
Td
a [lim sup

k→∞
AK,Λ

k ] = 0.

Proof. Observe that the events Bk := AK,Λ
k ∩ ⋂n≥k+1(A

K,Λ
n )c for k ≥ 0 are disjoint.

Furthermore, denoting S+
Td
(o, k + 1) ∩ Uy =: {y1, . . . , yd−1} for y ∈ Zh

k and recalling the
definition of Fk from (1.17), it holds that for a ∈ R and k ≥ 0

P
Td
a [Bk] ≥ P

Td
a

[
AK,Λ

k , Zh
k+1 = ∅

]
= E

Td
a

[
1
AK,Λ

k
P
Td
a

[
Zh
k+1 = ∅

∣∣Fk

]]

= E
Td
a

[
1
AK,Λ

k
P
Td
a

[ ⋂

y∈Zh
k

d−1⋂

i=1

{ϕTd
(yi) < h}

∣∣Fk

]]

(1.7)
= E

Td
a

[
1
AK,Λ

k

∏

y∈Zh
k

P
Y
[ϕTd

(y)

d−1 + Y < h
]d−1

]

≥ E
Td
a

[
1
AK,Λ

k
P
Y
[

Λ
d−1 + Y < h

]K(d−1)

︸ ︷︷ ︸
=:cK,Λ

]
= cK,Λ P

Td
a [AK,Λ

k ].

Thus for a ∈ R we have

∞∑

k=0

P
Td
a [AK,Λ

k ] ≤ 1

cK,Λ

∞∑

k=0

P
Td
a [Bk] =

1

cK,Λ
P
Td
a

[ ⋃

k≥0

Bk

]
< ∞.

The claim then follows by the Borel-Cantelli lemma.

The next lemma proves Theorem 3.1. Before that, we introduce for every h ∈ R the
functions

qkh(a) := P
Td
a [Zh

k = ∅] = P
Td
a

[
|Ch

o ∩ S+
Td
(o, k)| = 0

]
for a ∈ R, k ≥ 0. (3.7)

It can be easily seen that qkh ∈ Sh for k ≥ 0 and 1(−∞,h)(a) = q0h(a) ≤ q1h(a) ≤ q2h(a) ≤ . . .

for a ∈ R. In particular, limk→∞ qkh(a) = qh(a) for all a ∈ R by (3.1). In addition,
applying (3.4) to the function f = 1(−∞,h) implies that

qkh = Rk
h1(−∞,h) for k ≥ 0. (3.8)

Lemma 3.5. Let h ∈ R. The only solutions in Sh to Rhf = f are the function qh
and the constant 1 function. These two functions coincide if h > h⋆ and are distinct if
h < h⋆.

Proof. From Lemma 3.2 we know that qh ∈ Sh and Rhqh = qh. The same is of course
true for the constant 1 function. We first claim that every solution in Sh to Rhf = f
satisfies f ≥ qh. Indeed, if f ∈ Sh is such a solution, then Rk

hf = f for all k ≥ 0. Also,
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the fact that f ∈ Sh implies f ≥ 1(−∞,h). Hence f = Rk
hf ≥ Rk

h1(−∞,h) = qkh for all
k ≥ 0 by (3.3) and (3.8). By letting k tend to infinity we find f ≥ qh, proving the claim.
In particular, if qh ≡ 1 (e.g. when h > h⋆, see below (3.2)), then we have f ≡ 1 and thus
Rhf = f has a unique solution.

Now assume that qh 6≡ 1 (e.g. when h < h⋆, see below (3.2)) and that f 6≡ 1 is
a solution to Rhf = f . We claim that f = qh. As we have already shown f ≥ qh,
it remains to prove f ≤ qh. To see this, observe that by Lemma 3.3 we know that
δ := supa∈[h,∞) f(a) ∈ (0, 1). Let m ≥ 0 be such that δ := supa∈[h,∞) f(a) ∈

[
1

2m+1 ,
1
2m

)
.

Then for a ∈ R and k ≥ 0 one has

f(a) = (Rk
hf)(a)

(3.4)
= E

Td
a

[
1{Zh

k=∅}
∏

y∈Zh
k

f(ϕTd
(y))

]
+ E

Td
a

[
1{Zh

k 6=∅}
∏

y∈Zh
k

f(ϕTd
(y))

]

(3.7)

≤ qkh(a) +
∑

n≥m

1

2n
P
Td
a

[
Zh
k 6= ∅ ,

∏

y∈Zh
k

f(ϕTd
(y)) ∈

[
1

2n+1 ,
1
2n

)]
. (3.9)

Note that for the events appearing on the right hand side of (3.9) one has

{
Zh
k 6= ∅ , ∏y∈Zh

k
f(ϕTd

(y)) ∈
[

1
2n+1 ,

1
2n

)}

⊆
{
|Zh

k | ≥ 1 , δ|Z
h
k | ≥ 1

2n+1 , f(ϕTd
(y)) ≥ 1

2n+1 for all y ∈ Zh
k

}

⊆
{
|Zh

k | ≥ 1 , 2n+1 ≥ (1/δ)|Z
h
k | , f(ϕTd

(y)) ≥ 1
2n+1 for all y ∈ Zh

k

}

⊆
{
1 ≤ |Zh

k | ≤ Kn , ϕTd
(y) ≤ Λn for all y ∈ Zh

k

} (3.6)
= AKn,Λn

k

(3.10)

with Kn := log1/δ(2
n+1) and Λn := sup{a ∈ R | f(a) ≥ 1

2n+1 }. We observe that for n ≥ m

it holds Kn ≥ 1 since then 1/δ ≤ 2m+1 ≤ 2n+1. Moreover, h ≤ Λn < ∞ since f ∈ Sh (so
f = 1 on (−∞, h)) and lima→∞ f(a) = 0 by Lemma 3.3. As a consequence, Lemma 3.4
and Fatou’s lemma imply limk→∞ P

Td
a [AKn,Λn

k ] = 0. Therefore, by using the dominated
convergence theorem, for a ∈ R one has

f(a)
(3.9)

≤
(3.10)

lim
k→∞

(
qkh(a) +

∑

n≥m

1

2n
P
Td
a

[
AKn,Λn

k

])
= qh(a).

This implies that f = qh, completing the proof.

As last result of Section 3 we compute the Fréchet derivative of the operators (Rh)h∈R
defined in (3.3). This technical result is one of the main ingredients for proving the
existence of exponential moments of |Ch

o | in the subcritical phase (Section 5). Incidentally,
let us mention that its proof is based on the hypercontractivity estimate (1.14) and that
the precise relation between p and q in the estimate is vital (for p = 2).

Proposition 3.6. Let h ∈ R and consider the operator Rh : L2(ν) → L2(ν) from (3.3).

Then the Fréchet derivative of Rh at f ∈ L2(ν) is given by Af
h : L2(ν) → L2(ν) with

Af
hg := 1[h,∞) · (d− 1)EY [f( ·

d−1 + Y )]d−2
E
Y [g( ·

d−1 + Y )]. (3.11)

In particular, if g ∈ L2(ν) vanishes on (−∞, h), then A1
hg = Lhg, where A

1
h is the Fréchet

derivative of Rh at the constant function 1 and Lh is given in (1.12). Furthermore, for

all ε > 0 there exists r > 0 such that ‖Af
hg‖L2(ν) ≤ (λh+ε) ‖g‖L2(ν) if g ∈ L2(ν) vanishes

on (−∞, h) and ‖f − 1‖L2(ν) ≤ r.
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Proof. We start with some observations. For u ∈ L2(ν) let us abbreviate û(a) :=

E
Y
[
u( a

d−1 + Y )
]
, a ∈ R. We further set pi :=

(d−1)2+1
i ≥ 2 for i = 1, . . . , d− 1. Then for

u ∈ L2(ν) one has

‖ûi‖Lpi (ν) = ‖û‖i
L(d−1)2+1(ν)

(1.14)

≤ ‖u‖iL2(ν) < ∞. (3.12)

Now if u, v, w ∈ L2(ν) and i, j, k ∈ {0, . . . , d − 1} with i + j + k ≤ d − 1, then one has
ûi ∈ Lpi(ν), v̂j ∈ Lpj (ν) and ŵk ∈ Lpk(ν) by (3.12), where we put p0 := ∞, and therefore

‖ûi v̂j ŵk‖L2(ν)

2≤pi+j+k

≤ ‖ûi v̂j ŵk‖Lpi+j+k (ν)

(∗)
≤ ‖ûi‖Lpi (ν)‖v̂j‖Lpj (ν)‖ŵk‖Lpk (ν)

(3.12)

≤ ‖u‖iL2(ν)‖v‖
j
L2(ν)

‖w‖kL2(ν) < ∞,

(3.13)

where in (∗) we use the generalised Hölder inequality.

To compute the Fréchet derivative of Rh note that for f, g ∈ L2(ν) one has

Rh(f + g)−Rhf
(3.3)
= 1[h,∞) ·

(
(f̂ + ĝ)d−1 − f̂d−1

)

= 1[h,∞) ·
d−2∑

i=0

(
d−1
i

)
f̂ iĝd−1−i = Af

hg + Ef
hg,

(3.14)

where Af
hg = 1[h,∞) · (d − 1)f̂d−2ĝ is the function defined in (3.11) and the operator

Ef
h : L2(ν) → L2(ν) is given by

Ef
hg := 1[h,∞) ·

d−3∑

i=0

(
d−1
i

)
f̂ iĝd−1−i. (3.15)

Note that the map Af
h is linear and also bounded since sup‖g‖L2(ν)≤1 ‖Af

hg‖L2(ν) ≤
(d− 1) sup‖g‖L2(ν)≤1 ‖f̂d−2ĝ‖L2(ν) < ∞ by (3.13). To conclude that Af

h is the Fréchet

derivative of Rh at f it remains to show that

‖Rh(f + g)−Rhf −Af
hg‖L2(ν)

‖g‖L2(ν)

(3.14)
=

‖Ef
hg‖L2(ν)

‖g‖L2(ν)
→ 0 if ‖g‖L2(ν) → 0. (3.16)

This is the case because

‖Ef
hg‖L2(ν)

(3.15)

≤
(3.13)

d−3∑

i=0

(
d−1
i

)
‖f‖iL2(ν)‖g‖d−1−i

L2(ν)
,

implying (3.16). Thus Af
h is the Fréchet derivative of Rh at f .

From (3.11) and (1.12) we directly see that A1
hg = Lhg if g ∈ L2(ν) vanishes on

(−∞, h). It remains to show the second part of the statement. We have ‖Af
hg‖L2(ν) ≤

‖Af
hg − A1

hg‖L2(ν) + ‖A1
hg‖L2(ν). For g ∈ L2(ν) with g = 0 on (−∞, h) one obtains

‖A1
hg‖L2(ν) = ‖Lhg‖L2(ν) ≤ λh‖g‖L2(ν) by (1.13). Moreover, the formula bd−2 − 1 =

(b− 1)(1 + b+ . . .+ bd−3) and the triangle inequality imply

‖Af
hg −A1

fg‖L2(ν)

(3.11)

≤ (d− 1) ‖ĝ (f̂d−2 − 1)‖L2(ν) ≤ (d− 1)
d−3∑

i=0

‖ĝ (f̂ − 1)f̂ i‖L2(ν)
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and therefore ‖Af
hg − A1

fg‖L2(ν) ≤ (d − 1)‖g‖L2(ν)‖f − 1‖L2(ν)

∑d−3
i=0 ‖f‖iL2(ν) by (3.13).

All in all we showed

‖Af
hg‖L2(ν) ≤

(
λh + (d− 1)‖f − 1‖L2(ν)

d−3∑

i=0

‖f‖iL2(ν)

)
‖g‖L2(ν). (3.17)

Now let ε > 0 and take r > 0 such that (d−1)((1+r)d−2−1) ≤ ε. Then if ‖f−1‖L2(ν) ≤ r,

and hence also ‖f‖L2(ν) ≤ 1 + r, we have ‖Af
hg‖L2(ν) ≤ (λh + ε) ‖g‖L2(ν) by (3.17). This

concludes the proof.

4 Behaviour of the level sets in the supercritical phase

In this section we study the behaviour of the level sets of the Gaussian free field on Td

for h < h⋆. The main goal is to show that the percolation probabilities η and η+ are
continuous functions of the level h on the interval (−∞, h⋆) (Theorem 4.1, corresponding
to (0.7)) and to prove that |Ch

o | grows exponentially in the radius with probability
bounded away from zero when h < h⋆ (Theorem 4.3, corresponding to (0.10)). Along
the way we also show the equivalence of the probabilities of forward percolation and of a
non-vanishing martingale limit (Proposition 4.2, corresponding to (0.6)). These results
essentially come as an application of Theorem 3.1 from Section 3. For this section recall
the measure ν defined above (1.12).

4.1 Continuity of the percolation probability

In this section we analyse the continuity properties of the percolation probabilities η and
η+, and show (0.7) in Theorem 4.1. Recall the functions qh, h ∈ R, introduced in (3.1)
and their relation with η+ reported in (3.2).

Theorem 4.1. The functions η and η+ are left-continuous on R and continuous on
R \ {h⋆}.

Proof. Note that

η+(h) = P
Td

[ ⋂

k≥1

{
Ch
o ∩ S+

Td
(o, k) 6= ∅

}]
= lim

k→∞
P
Td
[
Ch
o ∩ S+

Td
(o, k) 6= ∅

]
. (4.1)

Under PTd the vector (ϕTd
(y))y∈B+

Td
(o,k) has a density and thus h 7→ P

Td [Ch
o∩S+

Td
(o, k) 6= ∅]

is a continuous function. Therefore by (4.1), η+ is a decreasing limit of continuous
functions and hence upper semicontinuous. As η+ is a non-increasing function, it is thus
left-continuous. With the obvious changes in (4.1) one can also show the left-continuity
of η.

To show the right-continuity on R \ {h⋆} observe first that if h > h⋆, then η(h) =
η+(h) = 0 by definition and the comment at the end of Section 1. So it remains to
prove the right-continuity on (−∞, h⋆). Fix h < h⋆ and assume (hℓ)ℓ≥0 is a sequence
satisfying hℓ ↓ h and hℓ < h⋆ for all ℓ ≥ 0. We will show that limℓ→∞ η+(hℓ) = η+(h)
and limℓ→∞ η(hℓ) = η(h). Observe that by (3.2) and the dominated convergence theorem
the former follows from the claim

lim
ℓ→∞

qhℓ
(a) = qh(a) for a ∈ R \ {h}. (4.2)
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Actually, also limℓ→∞ η(hℓ) = η(h) follows from (4.2) by a double application of the
dominated convergence theorem since

η(hℓ)
(1.10)
=

∫

R

P
Td
a [|Chℓ

o | = ∞] dν(a) =

∫

R

(
1− P

Td
a [|Chℓ

o | < ∞]
)
1[hℓ,∞)(a) dν(a)

=

∫

R

(
1− P

Td
a [|Chℓ

o ∩ Uxi | < ∞ for all i = 1, . . . , d]
)
1[hℓ,∞)(a) dν(a)

(1.11)
=

(3.1)

∫

R

(
1− E

Y [qhℓ
( a
d−1 + Y )]d

)
1[hℓ,∞)(a) dν(a).

Hence it remains to show (4.2).

Define the two auxiliary functions q̃h and q′h on R by

q̃h(a) := lim
ℓ→∞

qhℓ
(a) = inf

ℓ≥0
qhℓ

(a) for a ∈ R (4.3)

and

q′h(a) :=

{
q̃h(a), if a ∈ R \ {h}
(Rhq̃h)(h), if a = h.

(4.4)

We will now apply Theorem 3.1 to show q′h = qh. From this the claim (4.2) follows by
(4.4) and (4.3).

Since hℓ < h⋆, one has qhℓ
6≡ 1 for all ℓ ≥ 0 (see below (3.2)). This implies q̃h 6≡ 1

by (4.3) (being a decreasing limit) and hence also q′h 6≡ 1 by (4.4). Moreover if a < h,
then a < hℓ for all ℓ ≥ 0, which yields qhℓ

(a) = 1 for all ℓ ≥ 0. This implies q′h(a) = 1
for a < h by (4.3) and (4.4). Thus q′h ∈ Sh. Finally, for a > h and ℓ ≥ 0 such that

hℓ ≤ a, one finds by Lemma 3.2 and (3.3) that qhℓ
(a) = E

Y
[
qhℓ

( a
d−1 + Y )

]d−1
. If we let

ℓ tend to infinity on both sides, then (4.3) and the dominated convergence theorem give

q̃h(a) = E
Y
[
q̃h(

a
d−1 + Y )

]d−1
for all a > h. This together with (4.4) shows q′h = Rhq

′
h.

By Theorem 3.1 we conclude that q′h = qh. The proof is complete.

4.2 Percolation probability and non-triviality of the martingale limit

Recall the martingale (M≥h
k )k≥0 from (1.16). We now apply Theorem 3.1 from Section 3

to show in Proposition 4.2 the equivalence (0.6) between the probability of non-vanishing
of the martingale limit and η+(h). From the discussion at the end of Section 1.2 we
already know that PTd

[
M≥h

∞ > 0
]
= η+(h) = 0 for h > h⋆. We now prove that the first

equality remains true also if h < h⋆.

Proposition 4.2. One has

η+(h) = P
Td
[
M≥h

∞ > 0
]

for all h ∈ R \ {h⋆}. (4.5)

Proof. For every h ∈ R we introduce the function mh(a) := P
Td
a

[
M≥h

∞ = 0
]
for a ∈ R,

where P
Td
a is the conditional probability defined in (1.10). We note that

∫

R

mh(a) dν(a) = E
Td [mh(ϕTd

(o))]
(1.10)
= P

Td
[
M≥h

∞ = 0
]
. (4.6)

By (3.2) and (4.6) it is enough to show that for h 6= h⋆ one has qh = mh. This will
follow from Theorem 3.1. Note that mh ∈ Sh since mh(a) ≥ P

Td
a [Zh

0 = ∅] = 1(−∞,h)(a)

18



by (1.16) and (1.10). We also have that Rhmh = mh. Indeed, recall (1.1) and denote
S+
Td
(o, 1) =: {x1, . . . , xd−1}. Let us write M≥h

k,i := λ−k
h

∑
y∈Zh

k∩Uxi
χh(ϕTd

(y)) for k ≥ 1

and i = 1, . . . , d− 1, so that M≥h
k =

∑d−1
i=1 M≥h

k,i for k ≥ 1. Then for a ∈ R

mh(a) = P
Td
a

[
ϕTd

(o) < h , M≥h
∞ = 0

]
+ P

Td
a

[
ϕTd

(o) ≥ h , M≥h
∞ = 0

]

(1.10)
= 1(−∞,h)(a) + 1[h,∞)(a)P

Td
a

[
lim
k→∞

M≥h
k,i = 0 for i = 1, . . . , d− 1

]

(1.11)
= 1(−∞,h)(a) + 1[h,∞)(a)E

Y
[
P
Td
a

d−1
+Y

[
M≥h

∞ = 0
]]d−1 (3.3)

= (Rhmh)(a).

Now if h > h⋆, then by Theorem 3.1 we find mh = qh ≡ 1. On the other hand, if h < h⋆,
then (4.6) and (1.18) imply that mh is not the constant 1 function and so mh = qh by
Theorem 3.1 again. The proof is complete.

4.3 Geometrical growth of |Ch
o | in the supercritical phase

We come to the proof of (0.10), essentially that for h < h⋆ the number of vertices in T
+
d

connected over distance k above level h to the root o ∈ Td grows exponentially in k with
positive probability. Recall the notation from (1.15).

Theorem 4.3. Let h < h⋆ (so that λh > 1, see Proposition 1.1). Then

lim
k→∞

P
Td

[∣∣Zh
k

∣∣ ≥ λk
h

k2

]
= η+(h) > 0.

Proof. Note that one directly has

lim sup
k→∞

P
Td

[∣∣Zh
k

∣∣ ≥ λk
h

k2

]
≤ lim sup

k→∞
P
Td
[
Ch
o ∩ S+

Td
(o, k) 6= ∅

] (1.19)
= η+(h).

Thus we only have to find a corresponding lower bound. By Fatou’s lemma

η+(h)
(4.5)
= P

Td
[
M≥h

∞ > 0
]
≤ P

Td
[
M≥h

k ≥ 1
k for all k large enough

]

≤ lim inf
k→∞

P
Td
[
M≥h

k ≥ 1
k

]

≤ lim inf
k→∞

(
P
Td
[
M≥h

k ≥ 1
k , A

h
k

]
+ P

Td
[
(Ah

k)
c
])

,

(4.7)

where we introduced the event

Ah
k :=

{
sup

y∈S+
Td

(o,k)

χh(ϕTd
(y)) ≤ k

}
for k ≥ 0.

On the event Ah
k the inequality M≥h

k ≥ 1
k implies |Zh

k | ≥
λk
h

k2
by (1.16). Hence

P
Td
[
M≥h

k ≥ 1
k , A

h
k

]
≤ P

Td

[∣∣Zh
k

∣∣ ≥ λk
h

k2

]
. (4.8)

To deal with the event (Ah
k)

c note that by Proposition 2.1 and Remark 2.2 (here h < h⋆)
one has χh(a) ≤ cha for a ≥ h and χh(a) = 0 for a < h. Thus, for y ∈ Td and for k ≥ 0

P
Td
[
χh(ϕTd

(y)) > k
]
= P

Td
[
χh(ϕTd

(y)) > k , ϕTd
(y) ≥ h

]

≤ P
Td
[
chϕTd

(y) > k , ϕTd
(y) ≥ h

] (0.1)

≤ exp
(
− k2

2c2hgTd
(o, o)

)
,
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where in the last step we use the exponential Markov inequality. Hence, by a union
bound, for k ≥ 0

P
Td
[
(Ah

k)
c
]
≤
∣∣S+

Td
(o, k)

∣∣
︸ ︷︷ ︸

=(d−1)k

exp
(
− k2

2c2hgTd
(o, o)

)
k→∞−−−→ 0. (4.9)

From (4.7), (4.8) and (4.9) we have that lim infk→∞ P
Td
[
|Zh

k | ≥
λk
h

k2

]
≥ η+(h) and the

proof of Theorem 4.3 follows.

5 Exponential moments of |Ch
o | in the subcritical phase

This section proves that for every h > h⋆ the cardinality of the connected component
of the level set of ϕTd

above level h in T
+
d containing the root o ∈ Td has exponential

moments and actually, as a function of the value of ϕTd
(o), these exponential moments

do not grow too fast. This is the content of Theorem 5.1 below (corresponding to (0.8)).
In its proof we will use Proposition 3.6 from Section 3.

To state the result, we define for every h ∈ R and δ > 0 the (potentially infinite)
function

gh,δ(a) := E
Td
a

[
(1 + δ)|C

h
o∩T+

d |
]

for a ∈ R, (5.1)

where we use the notation for the conditional distribution of ϕTd
given ϕTd

(o) = a defined
in (1.10). Observe that (recall ν from above (1.12))

∫

R

gh,δ(a) dν(a) = E
Td [gh,δ(ϕTd

(o))]
(1.10)
= E

Td

[
(1 + δ)|C

Td,h
o ∩T+

d |
]
. (5.2)

Note that if qh(a) < 1 for qh from (3.1) (in particular this is the case in the supercritical
phase h < h⋆ for a ≥ h), then gh,δ(a) is infinite. The main goal of this section is to show
that in the subcritical phase h > h⋆ there exists δ > 0 such that the right hand side of
(5.2) is finite and such that gh,δ(a) does not grow too fast as a tends to infinity. Recall
the space L2(ν) defined in (1.12).

Theorem 5.1. Let h > h⋆. Then there exists δh > 0 such that

gh,δh ∈ L2(ν). (5.3)

Moreover, gh,δh equals 1 on (−∞, h) and gh,δh(a) is finite for all a ∈ R. Finally, gh,δh is
continuous on [h,∞) and for all γ > 0 there exist ch,γ > 0 and c′h,γ > 0 such that

gh,δh(a) ≤ ch,γ exp(c
′
h,γa

1+γ) for all a ≥ h. (5.4)

In particular, (5.2) and (5.3) imply E
Td
[
(1 + δh)

|Ch
o∩T+

d |] < ∞.

Remark 5.2. Note that (0.9) follows from Theorem 5.1 by the exponential Markov
inequality. More precisely, for h < h⋆ and a ∈ R take say γ = 1 in (5.4). Then
P
Td
[
|Ch

o | ≥ k
∣∣ϕTd

(o) = a
]
≤ P

Td
a

[
|Ch

o ∩T+
d | ≥ k

]
≤ (1+δh)

−kch exp(c
′
ha

2), thus (0.9).

The proof of Theorem 5.1 is split into various lemmas. The first one characterises gh,δ
as a monotone limit of functions in L2(ν) which are obtained via iterated applications
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of a certain operator Rh,δ (see (5.5)) to the constant 1 function (Lemma 5.3). The
second lemma shows that for h > h⋆ we can choose δ > 0 such that the operator Rh,δ

is a strict contraction on a closed subset of L2(ν) including the constant 1 function
(Lemma 5.4). This is an application of the technical Proposition 3.6 from Section 3. The
combination of these two results will quickly lead to (5.3) via the Banach-Caccioppoli
fixed-point theorem and to the other properties of gh,δ stated in Theorem 5.1 except
for (5.4). This is the content of Corollary 5.5. It then remains to prove (5.4). We first
show a weaker statement in which γ = 1 on the right hand side (Lemma 5.6). It implies
a recursive bound on gh,δ (Lemma 5.7) which subsequently can be used to show the
stronger statement (Lemma 5.8).

Let us introduce for every h ∈ R and δ > 0 the operator Rh,δ on L2(ν) through:

(Rh,δf)(a) := 1(−∞,h)(a) + 1[h,∞)(a) · (1 + δ)EY
[
f( a

d−1 + Y )
]d−1

for f ∈ L2(ν) and a ∈ R,
(5.5)

where, as usual, Y ∼ N (0, d
d−1). By the same observations as below (3.3) one can check

that indeed Rh,δf ∈ L2(ν) for f ∈ L2(ν). Note also that Rh,δ for δ > 0 can be expressed
in terms of the operator Rh from (3.3) via Rh,δ = (1(−∞,h) + 1[h,∞) · (1 + δ))Rh. The
role of Rh,δ can be seen from the following lemma.

Lemma 5.3. Let h ∈ R, δ > 0 and define the (bounded) functions

gkh,δ(a) := E
Td
a

[
(1 + δ)

|Ch
o∩B+

Td
(o,k)|]

for a ∈ R, k ≥ 0. (5.6)

Then one has

1 ≤ g0h,δ ≤ g1h,δ ≤ g2h,δ ≤ . . . ≤ gh,δ and lim
k→∞

gkh,δ = gh,δ. (5.7)

Moreover, for every k ≥ 0 one has

gkh,δ = Rk+1
h,δ 1 and gk+1

h,δ = Rh,δg
k
h,δ. (5.8)

Proof. The first part of (5.7) is clear by definition and the second part follows by the
monotone convergence theorem. Claim (5.8) can be seen via induction on k ≥ 0. Indeed,
for k = 0 it holds Rh,δ1 = 1(−∞,h)+1[h,∞) ·(1+δ) = g0h,δ by (5.5) and (1.10). Furthermore,

for k ≥ 0 and a ∈ R one has (recall (1.1) and denote S+
Td
(o, 1) =: {x1, . . . , xd−1})

gk+1
h,δ (a) = E

Td
a

[(
1{ϕTd

(o)<h} + 1{ϕTd
(o)≥h}

)
(1 + δ)

|Ch
o∩B+

Td
(o,k+1)|]

(1.10)
= 1(−∞,h)(a) + 1[h,∞)(a) · (1 + δ)ETd

a

[ d−1∏

i=1

(1 + δ)
|Ch

o∩B+
Td

(o,k+1)∩Uxi |
]

(1.11)
= 1(−∞,h)(a) + 1[h,∞)(a) · (1 + δ)EY

[
E
Td
a

d−1
+Y

[
(1 + δ)

|CTd,h
o ∩B+

Td
(o,k)|]

]d−1

(5.6)
=

(5.5)
(Rh,δ g

k
h,δ)(a)

(∗)
= (Rk+2

h,δ 1)(a),

where in (∗) we use the induction hypothesis. This shows the first half of (5.8), which
implies the second half.
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For the next lemma we define for h ∈ R and r > 0

Bh,r := {f ∈ L2(ν) | f ≥ 1, f equals 1 on (−∞, h) and ‖f − 1‖L2(ν) ≤ r}.

Since Bh,r is a closed subset of L2(ν), it is a complete metric space.

Lemma 5.4. Let h > h⋆. Then there exists δh > 0 and rh > 0 such that Rh,δh is a
(strict) contraction on the complete metric space Bh,rh. In particular, by the Banach-
Caccioppoli fixed-point theorem there exists a unique f⋆ ∈ Bh,rh with Rh,δhf

⋆ = f⋆ and
for all f ∈ Bh,rh one has ‖Rk

h,δh
f − f⋆‖L2(ν) → 0 as k → ∞.

Proof. Let δ > 0 and consider f, g ∈ L2(ν). By the relationship between Rh,δ and Rh

explained below (5.5) one has

‖Rh,δg −Rh,δf‖L2(ν) = ‖(1(−∞,h) + 1[h,∞) · (1 + δ))(Rhg −Rhf)‖L2(ν)

≤ (1 + δ) · ‖Rhg −Rhf‖L2(ν) = (1 + δ) · ‖Rh(f + g − f)−Rhf‖L2(ν)

(3.14)

≤ (1 + δ)
(
‖Af

h(g − f)‖L2(ν) + ‖Ef
h(g − f)‖L2(ν)

)
.

(5.9)

Since h > h⋆ (and thus λh < 1 by Proposition 1.1), we can choose εh > 0 such that
λh + 2εh < 1. Now on the one hand, by Proposition 3.6 there exists sh > 0 such that
‖Af

h(g − f)‖L2(ν) ≤ (λh + εh) ‖g − f‖L2(ν) for f, g ∈ Bh,sh , because then f − g vanishes
on (−∞, h) and ‖f − 1‖L2(ν) ≤ sh. On the other hand, by (3.16) there exists s′h > 0 such

that ‖Ef
h(g − f)‖L2(ν) ≤ εh‖g − f‖L2(ν) if ‖g − f‖L2(ν) ≤ s′h. Hence if f, g ∈ Bh,rh with

rh := 1
2 min{sh, s′h}, then both conditions are simultaneously satisfied and one has

‖Rh,δg −Rh,δf‖L2(ν)

(5.9)

≤ (1 + δ)(λh + 2εh) ‖g − f‖L2(ν).
(5.10)

Moreover, since Rh,δ1 = 1 + 1[h,∞)δ by (5.5), one also has for f ∈ Bh,rh that

‖Rh,δf − 1‖L2(ν) ≤ ‖Rh,δf −Rh,δ1‖L2(ν) + ‖Rh,δ1− 1‖L2(ν)

(5.10)

≤ (1 + δ)(λh + 2εh)rh + δ.

(5.11)

Due to λh + 2εh < 1, we can choose δ = δh > 0 such that (1 + δh)(λh + 2εh)rh + δh ≤ rh.
This also implies (1 + δh)(λh + 2εh) =: ∆h < 1. Then Rh,δh maps the space Bh,rh

to itself. Indeed, for f ∈ Bh,rh one has Rh,δhf ≥ 1 and Rh,δhf = 1 on (−∞, h) by
definition of Rh,δh , and furthermore ‖Rh,δhf − 1‖L2(ν) ≤ rh by (5.11). Finally, (5.10)
shows ‖Rh,δhg−Rh,δhf‖L2(ν) ≤ ∆h‖g− f‖L2(ν) for f, g ∈ Bh,rh , i.e. that Rh,δh is a strict
contraction.

With Lemma 5.3 and Lemma 5.4 at hand, we can readily show the first half of
Theorem 5.1.

Corollary 5.5. Let h > h⋆. Then there exists δh > 0 such that gh,δh ∈ L2(ν). Moreover,
gh,δh equals 1 on (−∞, h), satisfies Rh,δhgh,δh = gh,δh and is continuous. Finally, gh,δh(a)
is finite for all a ∈ R.
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Proof. Consider δh > 0, rh > 0 and f⋆ ∈ L2(ν) from Lemma 5.4. We start by showing
that ν-almost everywhere f⋆ = gh,δh and hence gh,δh ∈ L2(ν). Note that by Lemma 5.4
one has 1 ≤ f⋆ and thus by (5.8) also gkh,δh = Rk+1

h,δh
1 ≤ Rk+1

h,δh
f⋆ = f⋆ for all k ≥ 0. By

(5.7) and the monotone convergence theorem this shows

‖ lim
k→∞

gkh,δh − f⋆‖L2(ν) = lim
k→∞

‖gkh,δh − f⋆‖L2(ν)
(5.8)
= lim

k→∞
‖Rk

h,δh
1− f⋆‖L2(ν). (5.12)

Now since 1 ∈ Bh,rh , we know from Lemma 5.4 that limk→∞ ‖Rk
h,δh

1 − f⋆‖L2(ν) = 0.

Hence ‖ limk→∞ gkh,δh − f⋆‖L2(ν) = 0 by (5.12) and so ν-almost everywhere f⋆ = gh,δh by
(5.7). By (5.1) and (1.10) it is obvious that gh,δh equals 1 on (−∞, h). Now if we take k
to infinity on both sides of the equation gk+1

h,δh
= Rδh,hg

k
h,δh

from (5.8), we obtain

gh,δh = Rh,δhgh,δh (5.13)

by (5.7) and the monotone convergence theorem. The right hand side of (5.13) satisfies
(Rh,δhgh,δh)(a) < ∞ for all a ∈ R by (5.5) and (5.3). Hence gh,δh(a) < ∞ for all a ∈ R.
With (5.13) established, we can show the continuity of gh,δh on [h,∞) in the same way
as the continuity of f in Lemma 3.3. Hence the proof of Corollary 5.5 is complete.

It remains to prove (5.4). In the next lemma we show a weaker statement by applying
results from Corollary 5.5.

Lemma 5.6. Let h > h⋆ and consider the function gh,δh ∈ L2(ν) from Corollary 5.5.
For all ζ > 0 there exists ch,ζ > 0 such that

gh,δh(a) ≤ ch,ζ exp(ζa
2) for a ≥ h. (5.14)

Proof. We will first show that gh,δh ∈ Lq(ν) for all q ≥ 1, which will then imply (5.14).
Let us define

p0 := 2 and pi+1 := (pi − 1)(d− 1) + 1
d−1 for i ≥ 0,

qi := (pi − 1)(d− 1)2 + 1 for i ≥ 0.
(5.15)

We prove by induction that gh,δh ∈ Lpi(ν) for all i ≥ 0 by using the hypercontractivity
estimate (1.14). For i = 0 we have p0 = 2 and hence gh,δh ∈ Lp0(ν) as seen in Corollary 5.5.
Now assume gh,δh ∈ Lpi(ν) for i ≥ 0. Since gh,δh = Rh,δh gh,δh by Corollary 5.5, it
follows that to prove gh,δh ∈ Lpi+1(ν) it is enough to show ĝd−1

h,δh
∈ Lpi+1(ν), where we

abbreviated ĝh,δh(a) := E
Y
[
gh,δh(

a
d−1 + Y )

]
. And indeed we have, using (5.15), (1.14)

and the induction hypothesis, that ‖ĝd−1
h,δh

‖Lpi+1 (ν) = ‖ĝh,δh‖d−1
Lqi (ν) ≤ ‖gh,δh‖d−1

Lpi (ν) < ∞.

Next we show that the sequence (pi)i≥0 diverges to infinity as i tends to infinity. To see
this, note that ri :=

d−2
d−1(d− 1)i + 1

d−1 + 1, i ≥ 0, solves the recursion for (pi)i≥0 given

in (5.15) and clearly ri
i→∞−−−→ ∞. This implies that gh,δh ∈ Lq(ν) for all q ≥ 1 since we

can take i ≥ 0 such that q < pi. Then gh,δh ∈ Lpi(ν) ⊆ Lq(ν).

We turn to show (5.14). Let ζ > 0 and take q ≥ 1 large enough such that 2q ≥
1
ζ . Since gh,δh ∈ Lq(ν) as just shown and ν = N (0, d−1

d−2) from above (1.12), one has

lima→∞ gh,δh(a)
q exp(− (d−2)a2

(d−1)2 ) = 0, which implies lima→∞ gh,δh(a) exp(−a2

2q ) = 0. But

this shows the statement of the lemma by the choice of q (use that gh,δh is continuous
on [h,∞) by Corollary 5.5).
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The estimate obtained in the previous lemma can be used to derive the following
recursive bound on gh,δh which is the final ingredient for the proof of (5.4)

Lemma 5.7. Let h > h⋆ and consider the function gh,δh ∈ L2(ν) from Corollary 5.5.
For all η > 0 there exists ch,η > 0 such that

gh,δh(a) ≤ (1 + 2δh)gh,δh
(

a
d−1(1 + η)

)d−1
for all a ≥ ch,η. (5.16)

Proof. Let η > 0. Because gh,δh = Rh,δh gh,δh as obtained in (5.13), one has for a ≥ h
and with Y ∼ N (0, d

d−1) that

gh,δh(a) = (1 + δh)
(
E
Y
[
gh,δh(

a
d−1 + Y )1{Y <

ηa
d−1}

]
+ E

Y
[
gh,δh(

a
d−1 + Y )1{Y≥ ηa

d−1}

])d−1

≤ (1 + δh)
(
gh,δh

(
a

d−1(1 + η)
)
+ E

Y
[
gh,δh(

a
d−1 + Y )1{Y≥ ηa

d−1}

])d−1
,

(5.17)

where in the last step we use that gh,δh is a non-decreasing function (see (5.1) and (1.10)).
Because gh,δh ≥ 1, we further obtain from (5.17) that for a ≥ h

gh,δh(a) ≤ (1+ δh)
(
1+E

Y
[
gh,δh(

a
d−1 + Y )1{Y≥η

a
d−1}

])d−1
gh,δh

(
a

d−1(1+ η)
)d−1

. (5.18)

To bound the expectation on the right hand side of (5.18) we will apply (5.14) for some

ζ > 0 depending on η. Choose 0 < ζ < d−1
2d

η2

(1+η)2
, so that in particular ζ < d−1

2d and

ζ(1+η)2− d−1
2d η2 < 0. Then z 7→ ζ(1+ z)2− d−1

2d z2 = (ζ− d−1
2d )z2+2ζz+ ζ is a parabola

with negative leading coefficient and two zeros of opposite sign. As the parabola is
negative at z = η > 0, this shows that ζ(1 + z)2 − d−1

2d z2 < 0 for all z ≥ η. Hence there
exists cζ,η = c′η > 0 such that

ζ(1 + z)2 − d−1
2d z2 < −c′ηz for all z ≥ η. (5.19)

Since Z := d−1
a Y satisfies Z ∼ N (0, σ2

a) for σ
2
a := (d−1)2

a2
d

d−1 , we get the following bound
for a ≥ (d− 1)h

E
Y
[
gh,δh(

a
d−1 + Y )1{Y≥η

a
d−1}

]
=

1√
2πσ2

a

∫ ∞

η
gh,δh

(
a

d−1(1 + z)
)
exp

(
− z2

2σ2
a

)
dz

(5.14)

≤ ch,η√
2πσ2

a

∫ ∞

η
exp

(
( a
d−1)

2
(
ζ(1 + z)2 − d−1

2d z2
))

dz

(5.19)

≤ ch,η√
2πσ2

a

∫ ∞

η
exp

(
− ( a

d−1)
2c′ηz

)
dz =

ch,η√
2πσ2

a

(d− 1)2

a2c′η
exp

(
− ( a

d−1)
2c′ηη

)
,

which tends to zero as a tends to infinity. Hence there is ch,η > 0 such that (1 + δh)
(
1 +

E
Y
[
gh,δh(

a
d−1+Y )1{Y≥η

a
d−1}

])d−1 ≤ (1+2δh) for all a ≥ ch,η. This, together with (5.18),

concludes the proof of Lemma 5.7.

The next and final lemma shows (5.4) and hence concludes the proof of Theorem 5.1.

Lemma 5.8. Let h > h⋆ and consider the function gh,δh ∈ L2(ν) from Corollary 5.5.
For all γ > 0 there exist ch,γ > 0 and c′h,γ > 0 such that gh,δh(a) ≤ ch,γ exp(c

′
h,γa

1+γ) for
all a ≥ h.
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Proof. Let γ > 0 and take η > 0 such that 1 + γ = log d−1
1+η

(d− 1), in particular d−1
1+η > 1.

We abbreviate K := ch,η for the constant from (5.16). Since gh,δh is continuous on [h,∞)
by Corollary 5.5, it is enough to find the requested bound on gh,δh for all a ≥ K. Define
the intervals

Jk :=
[
K
(
d−1
1+η

)k
,K
(
d−1
1+η

)k+1
)

for all k ≥ 0,

which form a disjoint decomposition of [K,∞). For a ≥ K let k(a) ≥ 0 be the unique
k ≥ 0 with a ∈ Jk, that is, k(a) := ⌊log d−1

1+η
( a
K )⌋. For such a one can apply (5.16)

iteratively k(a) times to obtain

gh,δh(a) ≤ (1 + 2δh)gh,δh
(

a
d−1(1 + η)

)d−1

≤ (1 + 2δh)
1+(d−1)gh,δh

(
a

(d−1)2
(1 + η)2

)(d−1)2

≤ . . . ≤ (1 + 2δh)
∑k(a)−1

i=0 (d−1)igh,δh

(
a

(d−1)k(a)
(1 + η)k(a)

︸ ︷︷ ︸
∈J0

)(d−1)k(a)

≤
(
(1 + 2δh) sup

b∈J0
gh,δh(b)

)(d−1)k(a)

.

(5.20)

Note that (d − 1)k(a) ≤ (d − 1)
log d−1

1+η

(
a
K

)
=
(
a
K

)log d−1
1+η

(d−1)
=
(
a
K

)1+γ
and therefore

(5.20) implies that

gh,δh(a) ≤ exp
((

a
K

)1+γ
ln
(
(1 + 2δh) sup

b∈J0
gh,δh(b)

))
≤ ch,γ exp(c

′
h,γa

1+γ) for a ≥ K.

As explained above, this proves the lemma.

We end with some concluding remarks. One might naturally wonder what can be
said about level-set percolation of the Gaussian free field on Td near criticality. For
example: can the result from Theorem 4.1 be extended to h⋆, i.e. are the functions η
and η+ continuous or not at h⋆? Or also: does the equality (4.5) hold for h = h⋆, too?

Independently from that, and as remarked in the introduction, we apply a number
of the results obtained here in the accompanying paper [AČ19] to establish a phase
transition for level-set percolation of the zero-average Gaussian free field on a class of
finite regular expanders.
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[AČ19] Angelo Abächerli and Jǐŕı Černý. Level-set percolation of the Gaussian
free field on regular graphs II: finite expanders. Preprint, available at
arXiv:1909.01972, 2019.
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