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Abstract

We study level-set percolation of the Gaussian free field on the infinite d-regular
tree for fixed d > 3. Denoting by h, the critical value, we obtain the following results:
for h > h, we derive estimates on conditional exponential moments of the size of
a fixed connected component of the level set above level h; for h < h, we prove
that the number of vertices connected over distance k above level h to a fixed vertex
grows exponentially in k with positive probability. Furthermore, we show that the
percolation probability is a continuous function of the level h, at least away from the
critical value h,. Along the way we also obtain matching upper and lower bounds
on the eigenfunctions involved in the spectral characterisation of the critical value
hs and link the probability of a non-vanishing limit of the martingale used therein
to the percolation probability. A number of the results derived here are applied in
the accompanying paper [AC19].

0 Introduction

In this article we investigate the Gaussian free field on d-regular trees with d > 3. We
focus in particular on the level sets and their behaviour in connection with level-set
percolation. The goal is to obtain a good description of the nature of the level sets for
levels away from the critical value of level-set percolation.

Level-set percolation of the Gaussian free field is a significant representative of a
percolation model with long-range dependencies and it has attracted attention for a long
time, dating back to [MS83], [LS86] and [BLM8&7]. More recent developments can be
found for instance in [RS13], [PR15], [Sznl5], [DPR18b], [DPR18a], [Nit18] and [CN18].
The particular case of Gaussian free field on regular trees was studied before in [Szn16]
and [Szn19], and on general transient trees in [AS18]. Compared to the present article,
the emphasis in these three papers is put on a different aspect of the Gaussian free field,
namely its connection with the model of random interlacements.

Studying level-set percolation of the Gaussian free field on regular trees specifically is
of intrinsic interest. The case of the regular tree comes along with strong tools based on
the structure and symmetry of the graph. These allow for often very exact computations
which potentially lead to especially explicit, though not at all trivial, results. They also
make it one of the most promising setups for understanding level-set percolation of the
Gaussian free field near criticality.
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Besides the fact that the results obtained in this article are interesting in their own
right, our prime motivation comes from a concrete application: in the accompanying
paper [AC19] we prove a phase transition in the behaviour of the level sets of the zero-
average Gaussian free field on a certain class of finite d-regular graphs that are locally
(almost) tree-like. This class includes d-regular expanders of large girth and typical
realisations of random d-regular graphs. In a certain sense, the Gaussian free field on
the d-regular tree provides the local picture of the zero-average Gaussian free field on
these finite graphs, and its detailed understanding developed in the present article is a
key ingredient for [AC19).

We now describe our results more precisely. Let d > 3 and denote by T, the infinite
d-regular tree. On Ty we consider the Gaussian free field with law PT¢ on RT¢ and
canonical coordinate process (¢T,(x))zeT, SO that,

under PT¢, (o7, (2))zet, is a centred Gaussian field on Ty with covariance

E' (o1, (z)e1,(y)] = g1,(z,y) for all 7,y € T4, where gr,(-,-) is the (0.1)
Green function of simple random walk on T, (see (1.3)).

Our main interest lies in investigating properties of the level sets of ¢r,, i.e. of

E%’JIZ = {x € Tq|pr,(x) > h} for heR.

In particular, we are interested in the connected component of E%T’; containing a fixed
vertex o € T4 (called root) and denoted by

ch = {2 € Ty | is connected to o in EET}; . (0.2)

With this notation at hand we can define the critical value of level-set percolation of
the Gaussian free field via

h. == inf {h € R|PT[|C}| = oc] = 0}. (0.3)

We point out that there is no explicit formula for hy, even though we consider the Gaussian
free field on a regular tree. However, the special structure of the underlying graph allows
for a crucial spectral characterisation of the critical value, as derived in [Sznl6]. We
recall it in details in Section 1.2. Very roughly, in this spectral characterisation one
associates to any level h € R a self-adjoint, non-negative operator Lj, on L*(R, B(R),v),
where v is a certain centred Gaussian measure. The operator L is naturally linked to
the distribution of 1, at a vertex conditioned on the value of 1, at a neighbouring
vertex and truncated below level h (see (1.12) and below it). One then considers the
operator norms (Ap)ner of the operators (Lp)ner and finds that (see [Sznl6], Section 3)

the map h — Aj, is a decreasing homeomorphism from R to (0,d — 1)

and h, is the unique value in R such that Ay, = 1. (0-4)

Additionally, for h € R one has that A\ is a simple eigenvalue of L which is associated
to a unique, non-negative eigenfunction yj, with unit L2-norm, vanishing on (—oo, k) and
positive elsewhere. So far one very important aspect of the eigenfunctions (xp)ner was
unknown, namely the precise understanding of their asymptotic behaviour. Some care
is applied in [Sznl6] to circumvent this lack of control (see Remark 3.4 and Remark 4.4
therein).



As a first result in this paper, we close this gap and we obtain matching upper and
lower bounds on the eigenfunctions (xp)ner. In essence, we show in Proposition 2.1 that
for every h € R there exist ¢, ¢}, > 0 such that

0 < cpat™108-1000) < vy (a) < ¢ a' 7181 ) for all a € [h, 00) (0.5)

(see also Remark 2.2 (i)). Presumably, such exact bounds might be helpful when tackling
level-set percolation questions of ¢, near the critical value hy. In this paper we will use
the upper bound to show the exponential growth of |C”| for h < h, (see (0.10)).

We also obtain another result related to the spectral characterisation of level-set
percolation of ¢r,. It concerns the non-negative martingale (M, kzh)kzo for h € R on
which the proof of the spectral characterisation of hy in [Sznl6] heavily relies and in
which the eigenfunction y; and the associated eigenvalue A, appear (see (1.16) for the
definition). We show in the present paper that for all h € R\ {h,} the probability of
a non-vanishing martingale limit is equal to the ‘forward percolation probability’ (see
Proposition 4.2)

Praf|ch N T | = oo] = PTe[MZ" > 0], (0.6)
where T;{ C Ty is the ‘forward tree’, that is, the subtree of Ty containing the root o and

in which each vertex except for the root o has d neighbours and the root o has d — 1
neighbours (the precise definition is given below (1.1)).

We moreover investigate the continuity properties in h of percolation probabilities
like on the left hand side of (0.6) and as a third result we show in Theorem 4.1 that

the percolation probability n(h) = PT¢[|C"| = oo] for h € R and the
forward percolation probability T (h) :== PTa[|Cl N T} | = oc] for h € R (0.7)
are continuous functions on R\ {h,}.

We then turn to C" and we obtain rather precise estimates of its cardinality in both
the subcritical (h > hy) and supercritical (h < h,) phase.

We show that if A > hy, then there is some § > 0 such that for all v > 0 we can find
Chiys C, ., > 0 satisfying (see Theorem 5.1)

ET [(1 + 5)|CQdeﬂ | or,(0) = a] < Chy exp(c’fwaH'y) for all a > h. (0.8)

In particular, this will imply that |C! N TJ| has exponential moments. Incidentally, it
also implies conditional exponential-tail estimates of |C"| of the form

PTa[|Ct| > k| pr,(0) = a] < cpae™h* forall k> 1 and a > h, (0.9)

with a control of the dependence of the constant cj, > 0 on the value a = ¢r,(0) of the
field at the root (see Remark 5.2).

Finally, for h < h, we prove that the number of vertices connected over distance k
above level h to the root o € T4 grows exponentially in k£ with positive probability. This
can be shown by using our first result (0.5) in combination with (0.6). More precisely,
with St, (0, k) denoting the sphere of radius £ > 0 around o in T4, we prove that (see
Theorem 4.3)

lim P [|C" AT N Sp,(0, k)] > 24] =57 (h) > 0. (0.10)

k—o0

We remind that here A, > 1 is the eigenvalue from (0.4).



As explained earlier, we will see in the accompanying paper [AC19] that the Gaussian
free field T, on Ty in essence plays the role of the local picture of the zero-average
Gaussian free field on a specific class of finite d-regular graphs that are locally (almost)
tree-like. By exploiting this feature, we establish in [AC19] a phase transition for level-
set percolation of the zero-average Gaussian free field on the finite graphs which is
characterised by the critical value hy on the infinite tree. Roughly, the strategy of [AC19]
is to use the local picture to transfer the problem from the finite graphs to T4 and then to
use the new results developed in the present article. Specifically, we apply the estimate
(0.8) in the proof of the subcritical phase ([AC19], Theorem 3.1) and the two results (0.7)
and (0.10) in the proof of the supercritical phase ([AC19], Theorem 4.1). As an aside,
let us mention that for the application in [ACI9] it is crucial that the exponent v on the
right hand side of (0.8) can be chosen strictly smaller than 2.

A similar approach as explained in the previous paragraph was carried out in [CTWl 1]
to describe a phase transition for the vacant set of simple random walk on the same class
of finite graphs as considered in the accompanying paper [AC19]. As shown in [CTW11],
the local picture in that case is given by the vacant set of random interlacements on
Ty4. Thanks to the detailed understanding of random interlacements in the infinite
model, the phase transition in the finite model can be established. An advantage of
random interlacements on a tree is that the connected components of its vacant set
can be described rather easily. Indeed, as observed in [Tei09], they are distributed as
Galton-Watson trees with a binomial offspring distribution. Thus, properties like (0.9)
or (0.10) are classical.

In contrast, the connected components of the level sets of ¢r,, which play the cor-
responding role in our setup, are not Galton-Watson trees. The situation is more com-
plicated and obtaining results like (0.9) and (0.10) is not straightforward. Instead, by
the domain Markov property of the Gaussian free field, one can view C(’} for h € R as
a certain multi-type branching process with an uncountable type space. Some of the
results in this paper are similar to classical results about branching processes, though to
our knowledge they are not covered by the literature. We would like to stress that our
arguments rely on the special structure of the Gaussian free field on regular trees. Let us
also mention that, despite the connection between the Gaussian free field and random
interlacements via isomorphism theorems, we are not aware of any technique allowing to
transfer the results of [Tei09] and [CTW11] directly to our context.

The structure of the article is as follows. In Section 1 we collect the main part of
the notation and some known results about the Gaussian free field on T4. In particular,
in Section 1.2 we recall the spectral description of the critical value hy obtained in
[Sznl6]. In Section 2 we derive asymptotic bounds on the eigenfunctions appearing
in the spectral description of h,. In Section 3 we give a recursive equation for the
conditional non-percolation probability. Subsequently, we analyse the behaviour of the
level sets of the Gaussian free field in the supercritical phase in Section 4. This includes
the continuity of the percolation probability (Section 4.1) and the geometrical growth
of level sets (Section 4.3). Finally, in Section 5 we investigate the subcritical phase and
show that the cardinality of the connected component of the level set containing the root
has exponential moments (and more).

Acknowledgements. The authors wish to express their gratitude to A.-S. Sznitman
for suggesting the problem and for the valuable comments made at various stages of the
project.



1 Notation and useful results

We start by introducing the notation and recalling known properties of the Green func-
tion and the Gaussian free field on Tgq. These include a recursive construction of ¢,
(Section 1.1) and the spectral characterisation of h, (Section 1.2).

As mentioned earlier, we consider for fixed d > 3 the d-regular tree Ty with root o.
We endow Ty with the usual graph distance dr,(-,-). For any R > 0 and z € Tq we let
Br,(z,R) = {y € Tq|dr,(z,y) < R} and St,(z,R) = {y € Tq|dr,(z,y) = R} denote
the ball and the sphere of radius R around x, respectively. For z,z € Ty a path from x
to z is a sequence of vertices T = yo,y1,...,Ym = 2 in Ty for some m > 0 such that y;
and y;—1 are neighbours for all i = 1,...,m (if m > 1). It is a geodesic path from z to z
if it is the path of shortest length.

For z € Ty \ {o} let T be the unique neighbour of z on the geodesic path from z to
0. Moreover, let 6 € Ty denote an arbitrary fixed neighbour of o € Ty. For x € Ty we
define

U, = {z € Ty | the geodesic path from z to x does not pass through z}. (1.1)

In particular Ty = {o} U U‘Z:l Us,,, where {x1,..., 24} denote the neighbours of 0. In the
special case of z = o we write T} := U,. We also set Bi (0,R) = {y € T} | dr,(0,y) < R}
and similarly S{fd(o, R) ={y € T} |dr,(0,y) = R} for R > 0.

We write PE 4 for the canonical law of the simple random walk (X})x>0 on Ty starting
at x as well as E;Td for the corresponding expectation. Given U C Ty we write Ty =
inf{k > 0| X} ¢ U} for the exit time from U and Hy = inf{k > 0| X} € U} for the
entrance time in U (here we set inf () := 00). In the special case of U = {z} we use H,
in place of Hyy. Recall that (see e.g. [Woe00], proof of Lemma 1.24)

1 )de (z,y)

PTa[H, < o0] = (m for z,y € Ty. (1.2)
The Green function gr, (-, -) of simple random walk on Ty is given by (see [Woe00],
Lemma 1.24, for the explicit computation)

d—1 1 )dﬂrd(x:y)

gr,(z,y) = Erd [kz_:o 1{Xk:y}} = ﬁ(ﬁ for z,y € Ty. (1.3)

For U C T4 the Green function g%d(-, -) of simple random walk on Ty killed when exiting
U is
gr]lrjd(x, y) = E;Td[ Z 1{Xk=y}} for z,y € Ty.
0<k<Ty
The functions gr,(-,-) and g%d(-, -) are symmetric and finite, and gTUd(-, -) vanishes when-
ever x ¢ U or y ¢ U. They are related by the identity

g1.(z,y) = 9%, (x, ) + B3 [g1, (X1, ¥) L1y <00y]  for 2,y € Ty, (1.4)

which is an easy consequence of the strong Markov property of simple random walk at
time Ty. In the particular case of U := U, this implies that (by using (1.2), (1.3) and
that X7, = % on {Ty < oo} under Pl4)

U, _ 1 _ . d=1 1 o d
9r, (z,2) = gr,(z,2) — djgﬁrd(ﬂfvfﬂ) = m(l - (d— 1)2) ~ 4 . (1.5)



Recall from (0.1) that (¢r,(x))zetr, is the centred Gaussian field with covariance
given by gr,(-,-). It satisfies the following domain Markov property: for U C T, define
the new field

0% () = o1, () — Ey o1, (X1, )1{Ty<00y] for z € Ty
Then,

under PTd, (@%d($))w€T , is a centred Gaussian field on Ty which is inde-
pendent from (o1, (2))zer,\ ¢ and has covariance E'4 [gp%d (a:)go%d (y)] = (1.6)
g%d(ac,y) for all z,y € Ty.

The proof of this fact follows by an easy computation of covariances and (1.4).

1.1 Recursive construction of the Gaussian free field

Property (1.6) can be applied to obtain a useful recursive representation of the Gaussian
free field on Ty that we introduce now. We point out that this description crucially relies
on the special features of the Gaussian free field when considered on a (regular) tree.

Let x € Ty and let {x1,...,27} be the neighbours of  not contained in the geodesic
path from z to o. In particular, I = d if x = o and I = d — 1 otherwise. We set
U= Ule U,,. Since Ty is a tree, it can be easily seen that

Us, ,
° g%d(-ri,xi) = gsz(xi,xi) forie{1,...,1},
o g%d(y,y/) =0fory € Uy, y € Uy, whered,j € {1,...,1} with i # j,
e for any y € U, one has X7, = z on {Ty < oo} under P;Td,

Hence (1.6) together with (1.2) and (1.5) yields that

under P4, conditionally on ¢r,(z), the random variables (¢, (2:))1<i<r
are i.i.d. Gaussians with mean ﬁgoqy ,(x) and variance d%‘ll. Furthermore, (1.7)
they are independent of (¢1,(y)) e, \v-

Let now (Y3)zet, be a collection of independent centred Gaussian variables defined
on some auxiliary probability space (2,4, P) such that Y, ~ N(0, gr,(0,0)) = N(0, 4=2)
and Yy ~ N(0, gp? (2, 7)) = N(0, —4) for  # o. Define recursively

~ - 1~
p(0) =Y, and @(x):= mcp(f) +Y, forxzeTy\{o}. (1.8)

Then, by applying (1.7) iteratively, we see that
under P, the law of (3(z))zer, is PT4, (1.9)

so that (1.8) can serve as an alternative construction of the Gaussian free field on T,.

The recursive representation (1.8) has many useful consequences and it will be used
repeatedly throughout the paper. In particular, it gives a representation of the conditional
distribution of ¢, given ¢1,(0) = a € R,

Po (o1, (1))yer, € - | =P [(¢r,(y))yer, € - | ¢1,(0) = a], (1.10)



with corresponding expectation EL¢. Moreover, if we let 21, ..., x4 denote the neighbours
of the root o € Ty, then from (1.8) and (1.9) it follows that for every a € R,

under PX4, the random fields (¢, (y))yEUxi for i =1,...,d are indepen-
dent. Furthermore, for any event A € o(p1,(2),z € Tf) andi=1,....d

T
one has P1¢[(p, (4)ev, € A] = B [PTL [(om, (1) eny € A]]
where Y ~ N (0, 5% 1) and EY is the expectation with respect to Y.

(1.11)

(In the equality in (1.11) we also use that the law of p1, on U,, equals the law of ¢,
on T.)
d

Due to (1.8) and (1.9), the Gaussian free field on Ty can be related to a multi-
type branching process with type space R. Indeed, we can view every z € St,(o,k)
as an individual in the k-th generation of the branching process with an attached type
or,(z) € R. In this perspective (1.7) can be rephrased as: every individual = has
d — 1 children (d children if x = o) whose types conditionally on ¢r,(z), are chosen
independently according to the distribution N (51 ¢, (2), %).

This point of view can easily be adapted to C* from (0.2) as well, namely by considering
the same multi-type branching process but instantly killing all individuals whose type does
not exceed h. In other words, Cg can be viewed as a multi-type branching process with
a barrier and the percolation of Cg corresponds to the non-extinction of this branching
process. However, while some of the results in this paper are reminiscent of classical
results about branching processes, we would like to emphasise that the proofs make heavy
use of the special structure of the Gaussian free field on a regular tree. We are going to
recall one of the special features in the next section.

1.2 Spectral characterisation of the critical value

We now recall the spectral characterisation of the critical value h, from [Szn16], which
is central for our paper. Note that our d-regular tree Ty corresponds in the notation
of [Sznl6] to the (d 4 1)-regular tree T with d := d — 1. Moreover in [Sznl6], in the
definition of the Green function gr,(+,-) on the tree, there is an extra normalising factor
equal to the degree of the tree (see [Sznl6], (3.1)). This explains the differences between
the formulas to come and the formulas in [Sznl6].

1.3
Let v = N(0, Z 2) be the centred Gaussian measure with variance Z 1 (L) gr,(0,0).

For h € R define the operator

(Lnf)(a) = (d = 1)1 00 (@) B [f(g%5 +Y) ooy (g% +Y))]

(1.12)
for f € L*(v) = L*(R, B(R),v) and a € R,

where Y ~ N (0, 7% 1) and EY is the expectation with respect to Y. The operator Ly, is
closely linked to the Gaussian free field and its level set above level h. Indeed, one has

(Lnf)(a) = Eg [Zmecgﬂs$d(o,1) fler,(x))] for a > h by (1.8).
The following proposition summarises the known properties of the operators (Lp)per
and characterises the critical value h,.

Proposition 1.1 ([Sznl6], Propositions 3.1 and 3.3). For every h € R the operator Ly,
is self-adjoint, non-negative and its operator norm

An = | LnllL2y =120 (1.13)



s a simple eigenvalue of Ly. Moreover, there is a unique, non-negative eigenfunction
Xn € L?(v) of Ly, corresponding to the eigenvalue \p,, with IXnllr2) = 1. The function
Xn @s continuous and positive on [h,o0), and vanishing on (—oo,h). Additionally, the
map h +— Ay, is a decreasing homeomorphism from R to (0,d — 1) and hy is the unique
value in R such that \p,, = 1.

In Proposition 2.1 in Section 2 we will give matching upper and lower bounds on the
eigenfunctions yp,.

On the way, we recall the following hypercontractivity estimate which is a direct
consequence of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup (see
[Szn16], (3.14)): for 1 < p < oo and ¢ = (p—1)(d—1)*+ 1 one has (with Y ~ N(0, 7%4;))

|2 G+ 0], < Wl for £ & 2. (1.14)

Li(v
We will use the estimate (1.14), with its precise relation between the parameters p and ¢,
several times. Especially, it will be applied to prove Proposition 3.6 which computes the
Fréchet derivative of a certain operator. This will be a key ingredient for showing the
existence of conditional exponential moments of |C”| in the subcritical phase in Section 5.

Furthermore, for every h € R there is a martingale (M, kZh) k>0 closely related to Lj,.
Indeed, if we set

zh.=chn S{{d(o, k) for k>0, (1.15)
then (see [Sznl6], (3.31) and (3.35))
ME" =2 vnlen,(y) for k>0 (1.16)
yeZh

defines a non-negative martingale under P with respect to the filtration (Fy) k>0 given
by
Fi = o(pr,(y),y € B, (0,k)). (1.17)

In particular, Mkzh converges PTd-almost surely to some MZ" > 0 as k — oo and (see
[Szn16], proof of Proposition 3.3)

for h < h, one has PT¢[MZ" > 0] > 0. (1.18)

Note that there is a direct relation between the probability of a non-vanishing martingale
limit Mo%h and the forward percolation probability

nt(h) =Pl[|CENT}| =00] forheR (1.19)
from (0.7). We only need to observe that
{ICh NT}| < 0o} C {2} = 0 for k large enough} C {Mz" = 0}.

Therefore PT¢[MZ" > 0] < n*(h). In Section 4 we will see that this inequality is actually
an equality, at least when h # h, (Proposition 4.2). As a last observation, note that by
a union bound and the symmetry of Ty we obtain that n™(h) < n(h) < d-n*(h) for the
percolation probability n from (0.7). Hence by (0.3) one has n*(h) = 0 for h > h, and
nt(h) > 0 for h < hy.

A final word on the convention followed concerning constants: by ¢, ,... we denote
positive constants with values changing from place to place and which only depend on
the dimension d. The dependence of constants on additional parameters appears in the
notation.



2 Asymptotic behaviour of the eigenfunctions

The main result of this section are the matching bounds on the eigenfunctions (xp)rer
from Proposition 1.1 collected in Proposition 2.1 below (corresponding to (0.5)). The
upper bound will be used later to show that connected components of supercritical
level sets grow exponentially with positive probability (Theorem 4.3 in Section 4). The
corresponding lower bound is not used further but it is included for completeness.

Proposition 2.1. (i) There exists ¢ > 0 (see in (2.8) below) such that for all h € R one

has
xn(a) < cat™19%a-1 0 for gllq > d — 1. (2.1)

(ii) For every h € R there exists ¢, > 0 such that
xn(a) > cpa 1981 On)  for gil g > h. (2.2)

Remark 2.2. (i) From Proposition 1.1 recall that xy, is continuous and strictly positive
on [h,o0). Therefore, by adjusting the constant ¢, Proposition 2.1 implies (0.5).

(ii) By Proposition 1.1 one has A, € (0,d —1). Hence, the exponent kp := 1 —log;_;(An)
in (2.1) and (2.2) is positive for all h € R. Moreover, kj, € (0,1) for h < hy, kp =1 for
h = hy and kp, > 1 for h > h,. O

Proof of Proposition 2.1. (i) Let (Y;)i>1 be ii.d. random variables with distribution
N(0, ﬁ). By iteratively using (1.12) and the fact that xj, is the eigenfunction of
L, with eigenvalue A\, we obtain for every a € R and k > 1

1t < 4= 5] b s o)
< (d)\_hl)QIEYI [EYQ [Xh(ﬁ + ﬁYl —|—Y2)]] (2.3)

d—1\k .
<...< <Th> E[Xh((d—l)k + (dfll)k—lyl_f—"'—i_dfllyk—l +Yk)},

where the expectation on the right hand side of (2 3) is taken with respect to Yi,...,Y%.
Note that for any & > 1 the random variable Wyl + -+ ﬁYk_l + Y} appearing

on the right hand side of (2.3) is centred Gaussian with variance

d d—1 1 d—1
1— < = o2, 2.4
Td-14d 1 d—2( (d—1)2k>—d—2 7 (24)

k—1

Hence if we denote by f, ;2 the density of the normal distribution N (x, 72) and ay, ==

o= 1) for k > 1, then (recall from above (1.12) that v = N(0, 0?))

E{Xh((d,al)k + (dfll)k—l Yi+... + ﬁYk,1 + Yk)} = /RXh(y)fak,az (y) dy

Jaro % 2oy \: (25)
:/ W(Y) ) v(dy) < ”XhHL2(u)< "“()dy> ;

fo,02(y) — 2\ Jr foe2(y
=1

where in (%) we apply the Cauchy-Schwarz inequality. Note that for all £ > 1

fsk % ;) Vo? (y — ag)? y? o? a?
fO,aQ( ) \/ﬂaz P < - 07]% + ﬁ) S f2ak70'2(y) : 0? €xp <;§>, (2.6)



where we use 07 < 07 < o (see (2.4)). By combining (2.3) with (2.5) and (2.6) we
obtain for any ¢ € R and k > 1

d—1\k a2

o) < (=) /7 O_% exp (5 )- (2.7)

If a > d—1, we can apply (2.7) for k = k(a) = |log,_,(a)], that is, for the unique k > 1
with (d — 1)¥ < a < (d — 1)¥*1. Since d/\;hl > 1 by Proposition 1.1 and ayq) < d — 1, we
obtain from (2.7)

d—1\loga_s(a) [o2 (d—1)2 -
< ) = 0gq_1(An) ]
wlo < (57) : exp< - ) ca ey
— >0

which concludes the proof of part (i).
(ii) Let K = K}, > 0 be the smallest non-negative integer such that (d—1)% —14 > .

Define the intervals
Ip = [h,(d — 1)K 4+ 4. 2],

I, = [(d— 1)K+k _ 4(]{ + 2)’ (d— 1)K+k+l +4(k + 2)] for k> 1, (29)

which form a non-disjoint decomposition of [h,00). (To see that all left boundaries of
the intervals are larger than h use the assumption on K as well as d > 3.) The intervals
are such that

dil—(kJrl)eIk_l and ﬁJr(kJrl)eIk_l forae Iy, k>1.  (2.10)

Indeed, for £ > 1 and d > 3 one has 4% +(k+1) <4(k+1) and hence for every a € I}
o4 (k+1) < (d—1)FF a2 4 (k1) < (d— DFTF 44k + 1),
= (b+1) > (d—1)FPRt gB2 (4 1) > (d— )RR 4k + 1).
By using once more that xp, is the eigenfunction of Ly, we have for every a € I} with
k > 1 that

1 (1.12) g —
Xn(a) = Th(LhXh)(a) >

1
b\ 1[hoo)( )E |:Xh( +Y)1{|Y|§k+1}] (2.11)
h a,_/

From (2.10) we have that on {|Y| < k + 1} it holds ;%5 +Y € I;_;. Hence,

(211) g — 1
xn(a) > inf xu(b)-P[|Y|<k+1] foraé€ Iy k> 1. (2.12)

)\h belk 1

The repeated application of (2.12) implies that

k
d—1\F
Xn(a) > ( " ) blglfo Xh(b)e_l_ll (1-P[Y|>¢+1]) fora€l k>1. (2.13)

By the exponential Markov inequality

B

k [e%S)
[TO-Py[>e+1) =] (1 —2¢ Sz ()’ § H (1—2e73E0%) > ¢ (2.14)
(=1 /=1 /=1
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with ¢ € (0,1) independent of k > 1.

The inequality (2.2) is now an easy consequence of (2.13) and (2.14). First note
that xpn(a) > infyer, xn(b) > 0 for a € [h,(d — 1)5*1!) since y;, is continuous and
strictly positive on [h,00) by Proposition 1.1, and Iy C [h,0) is compact. Now, for
a> (d—1)%*1let k(a) == |log, ,(a)— K| > 1 be the unique integer with (d—1)K++@) <
a < (d—1)KMOTLIn particular a € Iy, and therefore from (2.13) and (2.14) we
obtain that

xu(a) = e

d— 1>k(a)

K+1 d—1
inf xp(b) > c< Ah > inf x7(b) @805
A

bely d—1 bely

=:cp>0

This shows (2.2) and concludes the proof of Proposition 2.1. O

3 Recursive equation for the non-percolation probability

In this section we adopt the perspective of multi-type branching processes and show
that a certain function (see (3.1)) closely related to the forward percolation probability
from (1.19) is the unique solution to a recursive equation (Theorem 3.1). This fact will
be used to derive the results on the supercritical behaviour of the level sets of ¢, in
Section 4, in particular the continuity of the percolation probability and its equality with
the probability of a non-vanishing martingale limit (Theorem 4.1 and Proposition 4.2).
At the end of the section we compute the Fréchet derivative of the operator involved
in the recursive equation (Proposition 3.6). This will be an important ingredient to
estimate exponential moments of |C"| in Section 5 (Theorem 5.1). The proofs in this
section partially follow the lines from multi-type branching processes (see e.g. [Har63],
Chapter I1I). However, a lot depends on the special structure of the Gaussian free field
on regular trees.

We introduce for every h € R the conditional forward extinction probability (see
(1.10) for notation)

qn(a) =P e[|IClNT}| < o] foraeR. (3.1)

The function gy, is closely related to the value of the forward percolation probability from
(1.19) at h. Indeed, since the distribution v above (1.12) is the distribution of ¢r,(0)
under P4, one has

(1.19)

/R an(0) dv(a) = ET4[gy (g, (0))] "2 1 = n* (h). (3.2)

In particular, this shows by the comment at the end of Section 1 that ¢ is identically 1
if h > hy and is not identically 1 if h < h,.

Now, recall the space L?(v) defined in (1.12) and let us define for every h € R the
(non-linear) operator Rj, on L?(v) through:

(Rf)(@) = 1(_sopy(@) + Loy (@B [f( 5% + V)]

(3.3)
for f € L*(v) and a € R,

where Y ~ N(0, %) as in (1.12). To see that indeed Ry f € L2(v), abbreviate f(a) :=

EY[f(4% 4+ Y)] for a € R and apply the hypercontractivity estimate (1.14) with p = 2

11



and ¢ = (d — 1)? + 1 to find that ||fd_1HLq/d—1(l/) = |If| CLl;(lV) < ||fHdL§(1V) < oo and thus
ftle Lﬁ(l/). Since 7L = (d — 1) + 727 > 2, this implies that R, f € L*(v).
We are actually only interested in the operator Ry, for h € R on the subset
Spn={fecL?v)|0<f<land f=1on (—oo,h)}.
By definition we directly have Ry : S, — Sp. In Theorem 3.1 we prove that ¢ is
essentially the unique solution in Sy, to the equation Ry f = f.

From the multi-type branching process perspective, the operator Rj can be used
to write recurrence relations for generating functionals related to C”, cf. for example
[Har63], Section III.7. In particular, by using the notation from (1.10), (1.15) and by
applying (1.7), we see that

(Rpf)(a) = Egd[ H f(gon(y))} for f € Sj and a € R,
yezp

where the empty product is interpreted as being equal to 1. This identity can be extended:
define iteratively

RVf=f and RYf:=RIYRyf) for fe L*(v)andk > 1.
Then one can prove by induction on k& > 0 and using (1.7) that
(BEf)(@) B3| T] fleraw))] for fe Suk>0,aeR. (3.4)
yEZ,’;
We come to the main result of this section.

Theorem 3.1. For every h € R the function q; is the smallest solution in Sy to the
equation f = Rypf. More precisely, the only solutions in Sy, to Ry f = f are the function
qn and the constant 1 function. These two functions coincide if h > hy and are distinct
if h < hy.

The proof of the theorem is broken into several steps stated as Lemmas 3.2-3.5. The
first one is a classical observation from the theory of multi-type branching processes.
Lemma 3.2. Let h € R. The function q, satisfies q;, € Sy, and solves the equation

Rnf=f.

Proof. The fact that g, € Sy is clear. To prove the second statement, denote S{lfd(o, 1) =
{z1,...,24-1} and recall the notation from (1.1). Then, for every a € R,

qh(a) = Pgd UCZ)Z N T(—ii-‘ < OOvSOTd(()) < h] + Pgd UC(}; N T(—;‘ < OO,gOTd(O) 2 h]
= 1 _oop(a)+ 1) (a) PTa UCS‘ NUg,| <oofori=1,...,d—1]
(1.11) d—1 (3;3)

=7 1o (@) + Loy (@ BY [P (105 0T < o0 o, (Buan)(@),

completing the proof. O

Next, we give various necessary properties of solutions to Ry f = f.

12



Lemma 3.3. Let h € R. Assume that f € Sy, solves R f = f. Then f is continuous
and positive on [h,o0). If additionally f is not identically 1, then supgcp o) f(a) < 1
and limg_, o f(a) = 0.

Proof. For the continuity and positivity we note that for a > h one can write

(3.3) a Va—1 _—ld= 1)y? -1
£(a) = (Ruf)(@) (/f(d_ﬁry)me )

d—1
— —1 2d(d i) 1244,
( Noris f dz .

The right hand side is continuous in a by the dominated convergence theorem and it is
also positive since f is non-negative and equal to 1 on (—oo, h).

If f is not identically 1, then there is some b > h with f(b) < 1. Hence, by the
continuity of f on [h,00) previously shown, there is an interval of positive Lebesgue
measure in [h, 00) on which f is strictly smaller than 1. Due to f = Rpf and 0 < f <1,
this implies that f(a) < 1 for all a > h by the definition (3.3) of Rj.

We will now show that one even has supy, f(a) < 1. Consider the intervals
I, C [h,0), k > 0, from (2.9). Since f < 1 and f is continuous on [h,00) and Iy is
compact, we have A := max{3,sup,c;, f(a)} < 1. If we show by induction on k > 0
that sup,crou..uz, f(a) < A for all k > 0, then supp, oy f(a) < A < 1 follows since
Ureo Ix = [h, 00). Now for k = 0 the claim is true by definition of A. So assume it holds
for k > 0. Let Y ~ N(0, %) and define £ := PY[|Y| > 2]. Observe that ¢ < 1 because
d > 3. For a € Iy, we can estimate

fa) = Raf)a) Z BY [f(3% + V)] EY[f(dfwﬂ?
< (B[ g5 + Y Mgyvicny] + BV [Lyyisa) ) <A (1-e+e)
~——

eI}, by (2.10)

by induction hypothesis. Therefore,

sup fla)—A< (A (I—e)+e)’—A=(A-1)(A-(1-e)?—-e?) <0
a€lpyq N——

This shows that sup,, ¢ jA f(a) < A, which together with the induction hypothesis implies
SUPgefou.. Uy, (@) < A and completes the proof of sup,epp o0y f(a) < 1.

It remains to show lim, o f(a) = 0. The assumption Ry, f = f implies that

limsup f(a) = limsup(Ry f)(a) = (lim sup EY [f(5% + Y)])d_l. (3.5)

a—r0o0 a—r0o0 a—r0o0

Since by Fatou’s lemma (using 0 < f <1)
limsup EY [f(3%5 +Y)] < Ey[limsupf(ﬁ +Y)],
a— o0

a— 00

we have found
(3.5)
¢ :=limsup f(a) < EY[limsup f(;% + Y)] =EY |74t = 41,

a—o0 a— 00

However, £ € [0,1) since sup,ep o0y f(a) < 1. Therefore, the only possibility is £ = 0.
Hence lim,—0 f(a) = 0 because f is non-negative. O
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The third step of the proof of Theorem 4.1 is the following statement of ‘transience’.

Lemma 3.4. For K > 1 and A > h let (see (1.15) for the notation)
A?’A ={1< |2} < K, o1,(y) <A forally € Z,?} for k> 0. (3.6)
Then for every a € R, K > 1 and A > h one has

P4 [lim sup AS’A] = 0.

k—00

Proof. Observe that the events By := A,If’A N ﬂn>k+1(AnK’A)° for £ > 0 are disjoint.

Furthermore, denoting S{{d (0,k+1)NUy = {y1,...,ya—1} for y € Z}' and recalling the
definition of Fj from (1.17), it holds that for « € R and k£ > 0

PLB] > PI[AfY, 2l = 0] =Bl (1, PR (2], = 0| 7]

) d—1
= Egd _]_AkK,A Pgd[ ﬂ ﬂ{SDTd(yi) < h} ‘ }—kﬂ

yezp i=1
(L7) Eqrd e H ]P;Y <mrd y) +Y<h] ]
yEZh
> Bl [Lyen P [ +Y <h]" ] = o a B4R

=ICK A

Thus for a € R we have

ZPTd [AEA < ZPTd By = LPM [ U Bk} < 0.

C
KA k>0

The claim then follows by the Borel-Cantelli lemma. O

The next lemma proves Theorem 3.1. Before that, we introduce for every h € R the
functions

¢ (a) =Pz = 0] = PLa||Cch N S{lfd (0,k)| = ()] fora € R, k > 0. (3.7)

It can be easily seen that ¢f € S, for k > 0 and 1_on)(a) = g9 (a) < q}(a) < gi(a) <
for a € R. In particular, limy o ¢¥(a) = gn(a) for all a € R by (3.1). In addl‘mon7
applying (3.4) to the function f = 1(_ 5y implies that

ar = Ry1(_oopy fork>0. (3.8)

Lemma 3.5. Let h € R. The only solutions in S, to Ryf = f are the function qp
and the constant 1 function. These two functions coincide if h > hy and are distinct if
h < hy.

Proof. From Lemma 3.2 we know that ¢, € S, and Rpqr = qn. The same is of course
true for the constant 1 function. We first claim that every solution in Sy, to Rpf = f
satisfies f > ¢p. Indeed, if f € S), is such a solution, then RF i f = fforall k > 0. Also,
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the fact that f € Sp, implies f > 1(_, ). Hence f = R’,?Lf > Rzl(—oo,h) = q,’i for all
k >0 by (3.3) and (3.8). By letting k tend to infinity we find f > g, proving the claim.
In particular, if ¢, = 1 (e.g. when h > h,, see below (3.2)), then we have f =1 and thus
Ry f = f has a unique solution.

Now assume that g, # 1 (e.g. when h < h,, see below (3.2)) and that f # 1 is
a solution to Rnf = f. We claim that f = ¢q,. As we have already shown f > gy,
it remains to prove f < gp. To see this, observe that by Lemma 3.3 we know that
0 = SUP,elh,00) f(@) € (0,1). Let m > 0 be such that § :== sup,ep ) f(@) € [ 5T 397 ) -
Then for a € R and £ > 0 one has

f@) = (REN@ S EF Lz TT Sen)] +ER [Lizpuy TT Fleraw)

yeZh yeZH
g+ Y P2 £ 0, [T fenw) € [ ). (39
= 2n a 9 d on+1s 9n
n>m ZIGZ}J

Note that for the events appearing on the right hand side of (3.9) one has

{2} #0, Tz For () € [y, 22)}

C {1201 > 1,05 > Shr | flen,(y) > g for all y € 2}

(3.10)
c{|zpl>1, 2" > (1/8)15, f(pr,(y) > 5 for all y € Z}'}

C{1<|2]] < K, om,(y) < A, for all y € 2f} =) 40t

it holds K, > 1 since then 1/§ < 2™+ < 27+1 Moreover, h < A,, < oo since f € Sy, (so
f=1on (—oo,h)) and lim,_,~ f(a) = 0 by Lemma 3.3. As a consequence, Lemma 3.4
and Fatou’s lemma imply limy,_, ., P14 [AkK"’A"] = (0. Therefore, by using the dominated
convergence theorem, for a € R one has

with K, == log; /5(2"™") and A, := sup{a € R| f(a) > 5 }. We observe that for n > m

(3.9) 1
< lim (gf —Pla[AM] ) = gy (a).
fy < i (dhlo)+ 3 g = o
This implies that f = g, completing the proof. O

As last result of Section 3 we compute the Fréchet derivative of the operators (Rp,)ner
defined in (3.3). This technical result is one of the main ingredients for proving the
existence of exponential moments of |C”| in the subcritical phase (Section 5). Incidentally,
let us mention that its proof is based on the hypercontractivity estimate (1.14) and that
the precise relation between p and ¢ in the estimate is vital (for p = 2).

Proposition 3.6. Let h € R and consider the operator Ry, : L*>(v) — L?(v) from (3.3).
Then the Fréchet derivative of Ry, at f € L?(v) is given by Aifl : L2(v) — L*(v) with
AL = Lo (d = DEV [ (7 + V)P EY [o(57 + V). (3.11)

In particular, if g € L*(v) vanishes on (—oo, h), then A}g = Lpg, where A} is the Fréchet
derivative of Ry, at the constant function 1 and Ly, is given in (1.12). Furthermore, for
all e > 0 there exists r > 0 such that ||A£gHL2(,,) < (An+e)llgllrze) ifg € L?(v) vanishes
on (=00, h) and ||f — 1|2y <7
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Proof. We start with some observations. For u € L?(v) let us abbreviate @(a) =
2

EY [u(7%; +Y)], a € R. We further set p; := =0 > 2 for j = 1,...,d — 1. Then for

u € L*(v) one has

. ) .14) .
1201y = Nl ar2ingy < Nllieg) < o0 (3.12)

Now if u,v,w € L?(v) and 4,5,k € {0,...,d — 1} with i + j +k < d — 1, then one has
4’ € LPi(v), o) € LPi(v) and W € LP*(v) by (3.12), where we put pg := 0o, and therefore

NPy PSP )i N ke
[a* 07 0% |2y < 1" D7 privsen gy < NG | Lpi ) 107 22 (o) 107 | 2ok ) (3.13)

3.12 .
i k
< ullagy 0l lolag, < oo,

where in (%) we use the generalised Holder inequality.

To compute the Fréchet derivative of Rj, note that for f,g € L?(v) one has

Ry(f +g) — Rhf = l[hoo) (f+ gt = f7h)
d-2 (3.14)

where Aig = 1jpo0) - (d = 1)fd—2g is the function defined in (3.11) and the operator
E,’: : L*(v) — L%*(v) is given by

IS

-3
Blg=1p00 Y (17 figi (3.15)

7

Il
o

<1 HAthL2 <

(d — l)sup||gHL2( <1 | f= 24|l r2() < oo by (3.13). To conclude that Ai is the Fréchet
derivative of Ry at f it remains to show that

|Bi(f +9) = Buf — Aglliz) a0 [1Epgllize
gl 22y 9l 220y

Note that the map Af is linear and also bounded since SUP)|g||,

=0 iflgll2e) — 0. (3.16)

This is the case because

C»O

d—
‘31
d—
1ELgll 20y < SN2 9112y
(3.13) z:O

implying (3.16). Thus A£ is the Fréchet derivative of Ry, at f.

From (3.11) and (1.12) we directly see that Alg = Lyg if g € L?*(v) vanishes on
(—o0, h). It remains to show the second part of the statement. We have HA}ngHLQ(V) <
||Ahg — Abgllrze) + 1ALgll L2y, For g € L?(v) with ¢ = 0 on (—oo, h) one obtains
||AthL2 ) = ILagll2wy < Anllgllzzy by (1.13). Moreover, the formula b2 -1 =
(b—1)(14b+...+b%3) and the triangle inequality imply

IS

(3.11) o -3 N
IALg — Abgllzzey < (A=D1 (f*% = D2y < @ =1 19 (f = 1) 2w

7

I
o
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and therefore |47g — Abglz2) < (@~ Dlgllz20) 17— Ulz2) S £z, by (3.13)
All in all we showed

i3
14} gl 12y < (>\h +(d=DIf = lr2e) Y ||f”le(V)> 19/l z2()- (3.17)
i=0

Now let ¢ > 0 and take r > 0 such that (d—1)((1+7)972—1) < e. Then if 1f =2y <,

and hence also || f| z2,) < 1+ 7, we have \|A£g||L2(l,) < (An+€) llgllz2wy by (3.17). This
concludes the proof. O

4 Behaviour of the level sets in the supercritical phase

In this section we study the behaviour of the level sets of the Gaussian free field on Ty
for h < h,. The main goal is to show that the percolation probabilities n and ™ are
continuous functions of the level h on the interval (—oo, h,) (Theorem 4.1, corresponding
to (0.7)) and to prove that |C"| grows exponentially in the radius with probability
bounded away from zero when h < hy (Theorem 4.3, corresponding to (0.10)). Along
the way we also show the equivalence of the probabilities of forward percolation and of a
non-vanishing martingale limit (Proposition 4.2, corresponding to (0.6)). These results
essentially come as an application of Theorem 3.1 from Section 3. For this section recall
the measure v defined above (1.12).

4.1 Continuity of the percolation probability

In this section we analyse the continuity properties of the percolation probabilities  and
n™, and show (0.7) in Theorem 4.1. Recall the functions gp,, h € R, introduced in (3.1)
and their relation with ™ reported in (3.2).

Theorem 4.1. The functions n and n* are left-continuous on R and continuous on

RN\ {h}.
Proof. Note that

nt(h) = Pl [ () {chn st (oK) # (2)}] = lim PTe[Cl N SE (0, k) # 0] (4.1)
E>1

Under P4 the vector (o7, (y))yeB% (o.k) has a density and thus h — PTa [C(’}ﬂS{fd (0,k) # 0]
d ?

is a continuous function. Therefore by (4.1), n* is a decreasing limit of continuous
functions and hence upper semicontinuous. As 1™ is a non-increasing function, it is thus
left-continuous. With the obvious changes in (4.1) one can also show the left-continuity
of n.

To show the right-continuity on R\ {h.} observe first that if A > hy, then n(h) =
nT(h) = 0 by definition and the comment at the end of Section 1. So it remains to
prove the right-continuity on (—oo, h,). Fix h < h, and assume (h¢)g>o is a sequence
satisfying hy | h and hy < h, for all £ > 0. We will show that limy_, 0" (he) = 57 (h)
and limy_, 7(h¢) = n(h). Observe that by (3.2) and the dominated convergence theorem
the former follows from the claim

Zlirgo qn,(a) = qn(a) for a € R\ {h}. (4.2)
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Actually, also limy_,, n(h¢) = n(h) follows from (4.2) by a double application of the
dominated convergence theorem since

n(he) ‘2" /R PLa[Cl| = oc] du(a) = /R (1 — PLa[Icl| < 00])Lih, o0)(a) du(a)

= / (1- PLafjcte N U,,| < oo foralli=1,... ,d]) 11, 00)(a) dv(a)
R

(1.11

(;)) /R (1 —EY[gn, (7% + Y)]?) 1, 00 (@) dv(a).

Hence it remains to show (4.2).

Define the two auxiliary functions g, and ¢), on R by

gn(a) = )H& qn,(a) = }12118 qn,(a) foraeR (4.3)
and
vy ) an(a), if a € R\ {h}
qp(a) = {(Rhah)(h), a b (4.4)

We will now apply Theorem 3.1 to show ¢j = g,. From this the claim (4.2) follows by
(4.4) and (4.3).

Since hy < hy, one has gy, #Z 1 for all £ > 0 (see below (3.2)). This implies g # 1
by (4.3) (being a decreasing limit) and hence also ¢, # 1 by (4.4). Moreover if a < h,
then a < hy for all ¢ > 0, which yields g,(a) = 1 for all £ > 0. This implies ¢} (a) = 1
for a < h by (4.3) and (4.4). Thus ¢; € Sj. Finally, for a > h and ¢ > 0 such that
h¢ < a, one finds by Lemma 3.2 and (3.3) that g, (a) = EY [qn, (3% + Y)]d_l. If we let
¢ tend to infinity on both sides, then (4.3) and the dominated convergence theorem give
an(a) = EY [gh(3% + Y)]d_1 for all @ > h. This together with (4.4) shows ¢, = Rpqj,.
By Theorem 3.1 we conclude that ¢ = g5. The proof is complete. ]

4.2 Percolation probability and non-triviality of the martingale limit

Recall the martingale (M. kzh) k>0 from (1.16). We now apply Theorem 3.1 from Section 3
to show in Proposition 4.2 the equivalence (0.6) between the probability of non-vanishing
of the martingale limit and " (h). From the discussion at the end of Section 1.2 we
already know that PT¢[MZ" > 0] = 5+ (k) =0 for h > h.. We now prove that the first
equality remains true also if h < h,.

Proposition 4.2. One has
nt(h) =P [MZ" > 0] for allh € R\ {h,}. (4.5)

Proof. For every h € R we introduce the function my,(a) = Pid[MZ" = 0] for a € R,
where PI¢ is the conditional probability defined in (1.10). We note that

/Rmhm) dv(a) = B [my (¢, (0))]) "2 P [MZ" = 0]. (4.6)

By (3.2) and (4.6) it is enough to show that for h # h, one has ¢, = my. This will
follow from Theorem 3.1. Note that my € Sy since mp(a) > PRe[Z] = 0] = 1_oo py(a)
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by (1.16) and (1.10). We also have that Rpm; = my. Indeed, recall (1.1) and denote
51—1‘:(07 1) = {z1,...,24-1}. Let us write Mkzzh = A" ZyeZQﬂUzi Xn(er,(y)) for k > 1

and i =1,...,d — 1, so that M" = S%= MZ!' for k > 1. Then for a € R

) = B0 < b, M2 0] B o f0) >, M2 =0
(1.10) 1(—oo,n)(@) + 1 00y (a) ]P)Ed[ lim M,ih —0fori=1,...,d—1]

(1.11) -1 (3.3

10 ) (@) + Lps o0) (@) EY [Pd Mz = 0] (Rum(a).

Now if A > hy, then by Theorem 3.1 we find mj = g5, = 1. On the other hand, if h < h,,
then (4.6) and (1.18) imply that my, is not the constant 1 function and so my, = ¢, by
Theorem 3.1 again. The proof is complete. O

4.3 Geometrical growth of |C"| in the supercritical phase

We come to the proof of (0.10), essentially that for i < h, the number of vertices in T
connected over distance k above level h to the root o € Ty grows exponentially in k with
positive probability. Recall the notation from (1.15).

Theorem 4.3. Let h < hy (so that A\, > 1, see Proposition 1.1). Then

)\k
lim PT[|2}] > 75] = 0" () > 0.
k—o0
Proof. Note that one directly has
)\k .
lim sup P [‘Zh} > ] < hm 7 SUp PTa[chn St (0, k) # 0] = nt(h).

k—o00
Thus we only have to find a correspondmg lower bound. By Fatou’s lemma

(4.5)
n"(h)

PTa [M Zh > 0] < Pl [M kZh > % for all k large enough]

IN

lim inf PTe [M7" > 1] (4.7)

k—o0
< timinf (B7[Mg" > £, Af] + P [(A)°]),
where we introduced the event

A { sup  xu(m, (1)) < k} for k > 0.
esj;d(o,k)

On the event A? the inequality Mkzh > & implies |Z}]!| > by (1.16). Hence

k
PRt > 4, Af] < PR |2 > 2] (1.9

To deal with the event (A) note that by Proposition 2.1 and Remark 2.2 (here h < hy)
one has xp(a) < cpa for a > h and x,(a) = 0 for a < h. Thus, for y € T4 and for & > 0

P [xn(or, (y) > k] =P [xn(em,(y) >k, or,(y) > h]

Chp y P = S X ’
— h Td y Td y p 26}21 d( , )
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where in the last step we use the exponential Markov inequality. Hence, by a union
bound, for k£ > 0

k’2
ZC%gTd (o, 0))

]P’Td[(AZ)C] < ‘S%d(o, k)| exp ( — oo, (4.9)
—_————’

—(d—1)¥

k
From (4.7), (4.8) and (4.9) we have that lim infj_,. PT¢[|Z]| > 2—3] > 1T (h) and the
proof of Theorem 4.3 follows. 0

5 Exponential moments of |C"| in the subcritical phase

This section proves that for every h > h, the cardinality of the connected component
of the level set of o1, above level h in ']I'zlr containing the root o € T, has exponential
moments and actually, as a function of the value of ¢,(0), these exponential moments
do not grow too fast. This is the content of Theorem 5.1 below (corresponding to (0.8)).
In its proof we will use Proposition 3.6 from Section 3.

To state the result, we define for every h € R and § > 0 the (potentially infinite)
function

gns(a) =El¢|(1+ 5)‘%”@'} for a € R, (5.1)

where we use the notation for the conditional distribution of ¢, given ¢r,(0) = a defined
in (1.10). Observe that (recall v from above (1.12))

[ ey avta) = B lanslor, o)) VB [0 45 ] (5

Note that if ¢, (a) < 1 for gj, from (3.1) (in particular this is the case in the supercritical
phase h < h, for a > h), then gy, s(a) is infinite. The main goal of this section is to show
that in the subcritical phase h > h, there exists d > 0 such that the right hand side of
(5.2) is finite and such that gj, s(a) does not grow too fast as a tends to infinity. Recall
the space L?(v) defined in (1.12).

Theorem 5.1. Let h > hy. Then there exists 6, > 0 such that
9h,s, € LQ(V). (5.3)

Moreover, gp s, equals 1 on (—oo,h) and gy, (a) is finite for all a € R. Finally, gps, is
continuous on [h,o0) and for all v > 0 there exist ¢, > 0 and c;w > 0 such that

Gh,s, (@) < Chy exp(c’hﬁaH”) for all a > h. (5.4)

In particular, (5.2) and (5.3) imply ET¢[(1+ 5h)|C<§L“T$\] < 0.

Remark 5.2. Note that (0.9) follows from Theorem 5.1 by the exponential Markov
inequality. More precisely, for h < h, and a € R take say v = 1 in (5.4). Then
PYe[ICh| > k| o1 (0) = a] < PL[|CENT]| > k] < (1+04) ey exp(ca?), thus (0.9). O

The proof of Theorem 5.1 is split into various lemmas. The first one characterises gj, s
as a monotone limit of functions in L2(v) which are obtained via iterated applications
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of a certain operator Ry s (see (5.5)) to the constant 1 function (Lemma 5.3). The
second lemma shows that for h > h, we can choose § > 0 such that the operator Ry s
is a strict contraction on a closed subset of L?(v) including the constant 1 function
(Lemma 5.4). This is an application of the technical Proposition 3.6 from Section 3. The
combination of these two results will quickly lead to (5.3) via the Banach-Caccioppoli
fixed-point theorem and to the other properties of g, s stated in Theorem 5.1 except
for (5.4). This is the content of Corollary 5.5. It then remains to prove (5.4). We first
show a weaker statement in which 4 = 1 on the right hand side (Lemma 5.6). It implies
a recursive bound on g s (Lemma 5.7) which subsequently can be used to show the
stronger statement (Lemma 5.8).

Let us introduce for every h € R and § > 0 the operator Ry on L?(v) through:

(Rsf)(a) = 1(_oom (@) + Lppooy(@) - (1 + OEY [f(54 + V)]

(5.5)
for f € L?(v) and a € R,

where, as usual, Y ~ N (0, d%‘ll). By the same observations as below (3.3) one can check
that indeed Ry, 5f € L*(v) for f € L?(v). Note also that Ry, s for § > 0 can be expressed
in terms of the operator Ry, from (3.3) via Ry s = (1(—oo,n) + Ljn,0) - (1 +6))Rp. The

role of Ry 5 can be seen from the following lemma.

Lemma 5.3. Let h € R, § > 0 and define the (bounded) functions

hABt
gk 5(a) == EX¢[(1 4 ) “BMO”“)'} fora €R, k> 0. (5.6)
Then one has
1<ghs<ohs<ghs< .- < gns and Hm gy 5 = gns- (5.7)
k—o0
Moreover, for every k > 0 one has
ghs=Ris' and g%t = Rysgp s (5.8)

Proof. The first part of (5.7) is clear by definition and the second part follows by the
monotone convergence theorem. Claim (5.8) can be seen via induction on k£ > 0. Indeed,
for k = 0 it holds Ry 51 = 1(_oo p) +1jp,00) (146) = 9276 by (5.5) and (1.10). Furthermore,
for K > 0 and a € R one has (recall (1.1) and denote Sﬂfd(o, 1) =Az1,...,2q-1})

ChnBT (0,k+1
glké’—gl(a) - Egd [(1{@Td(°)<h} + 1{<P'J1‘d(o)2h}) (1+ 5)' By, (0.k+ )‘]

1.10 5
"1 (@) + Lo (@) - (L OED [ [T+
i=1

) |cgm3;d (0,k+1)NUs; \]

(1.11) Clrd’h B (ok d—1
=7 Lo (@) + 1jpoo)(@) - (14 6)EY [Eg‘élw {(1+5)| NBY ( )IH

(5.6) (*)
D (Rus o)) 2 (REFV@),

where in (%) we use the induction hypothesis. This shows the first half of (5.8), which
implies the second half. O
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For the next lemma we define for h € R and r > 0
By, ={f€L*v)|f>1, fequals 1 on (—oo,h) and | f — U2y <1}
Since By, , is a closed subset of L?(v), it is a complete metric space.

Lemma 5.4. Let h > hy. Then there exists 6, > 0 and r, > 0 such that Ry s, is a
(strict) contraction on the complete metric space By, . In particular, by the Banach-
Caccioppoli fized-point theorem there exists a unique f* € By, with Ry, f* = f* and
for all f € By, one has ]\Rﬁéhf = 2@y = 0 as k — oo.

Proof. Let § > 0 and consider f,g € L?(v). By the relationship between Ry s and R,
explained below (5.5) one has

[Rhs9 — Busfllrzew) = 1(X(—oon) + Ljnoo) - (L +6))(Rrg — Buf)llr2q)

< (1+406)-||Rhg — Rufllr2e) = (L+6) - |Ra(f +9— f) — Rufllr2w)  (5.9)
(3.14) ¥ f
< W+ (14— Nl + 1B (9= Pl )-

Since h > h, (and thus A\, < 1 by Proposition 1.1), we can choose g, > 0 such that
Ap + 26, < 1. Now on the one hand, by Proposition 3.6 there exists s; > 0 such that
1AL(g — Hllzz) < o+ 1) 9~ Fllzz) for f.g € Bys,. because then f — g vanishes
on (—o0,h) and ||f =1 z2¢,) < sp. On the other hand, by (3.16) there exists s}, > 0 such

that [ B{(g — Dll2w) < enllg — Fll2) i g~ Fllzo) < sh. Hence if £,g € By, with
7, = & min{sp, s, }, then both conditions are simultaneously satisfied and one has

(5.9)
IRnsg — Brofllize) < (L+8) (M +2e) g — fllzew). (5.10)

Moreover, since Rj 51 =1+ 1y, )d by (5.5), one also has for f € By, that

[ Bhsf — U2y |Bhsf — Rusllzew) + [[Rnel — 1| L2

<
1) (5.11)
<

(L +0)(Ap + 2ep)rn + 0.

Due to A, + 2, < 1, we can choose 0 = dp, > 0 such that (14 0p,)(Ap + 2ep)ry + 0 < 3.
This also implies (1 + 0p)(Ap + 2ep) = Ap < 1. Then Rj s, maps the space By,
to itself. Indeed, for f € By, one has Ry, f > 1 and Ry, f = 1 on (—oo,h) by
definition of Ry g,, and furthermore ||Rps, f — 1|72y < r by (5.11). Finally, (5.10)
shows || Ry 5,9 — Rns, fllr2w) < Arllg — fllz2e) for f,9 € Bhy,, i-e. that Ry, is a strict
contraction. ]

With Lemma 5.3 and Lemma 5.4 at hand, we can readily show the first half of
Theorem 5.1.

Corollary 5.5. Let h > h,. Then there exists 6p, > 0 such that gy, 5, € L?(v). Moreover,
Gn.s, equals 1 on (—oo, h), satisfies Ry s, 9h.5, = 9h,5, and is continuous. Finally, gy s, (a)
is finite for all a € R.
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Proof. Consider 8, > 0, r, > 0 and f* € L?(v) from Lemma 5.4. We start by showing
that v-almost everywhere f* = g5, s, and hence gy 5, € L?(v). Note that by Lemma 5.4
one has 1 < f* and thus by (5.8) also g,’j’éh = Rﬁsil < lebjsif* = f* for all £ > 0. By
(5.7) and the monotone convergence theorem this shows

ok _ k G8) o k
I i gy 5, = fllze) = Wm llgns, = lr2e) =" Im [Bis 1= e (5.12)

Now since 1 € By, we know from Lemma 5.4 that limy_, HRQ(SH = 2@y = 0.
Hence || limg 00 g,’iéh — f* 22y = 0 by (5.12) and so v-almost everywhere f* = g 5, by
(5.7). By (5.1) and (1.10) it is obvious that g5, equals 1 on (—oo, h). Now if we take k
to infinity on both sides of the equation g,’j:gi = R5h7hg,’§7 5, from (5.8), we obtain

9h.s, = Bh.s,9n.6), (5.13)

by (5.7) and the monotone convergence theorem. The right hand side of (5.13) satisfies
(Rh.5,9n.s,)(a) < oo for all a € R by (5.5) and (5.3). Hence gy, (a) < oo for all a € R.
With (5.13) established, we can show the continuity of gp, 5, on [h,00) in the same way
as the continuity of f in Lemma 3.3. Hence the proof of Corollary 5.5 is complete. [

It remains to prove (5.4). In the next lemma we show a weaker statement by applying
results from Corollary 5.5.

Lemma 5.6. Let h > h, and consider the function g5, € L?(v) from Corollary 5.5.
For all ¢ > 0 there exists cp ¢ > 0 such that

9ns, (@) < encexp(¢a®)  fora > h. (5.14)

Proof. We will first show that g5 5, € LI(v) for all ¢ > 1, which will then imply (5.14).
Let us define

po=2 and piy1=(pi—1)(d—1)+ 445 fori>0,

) ‘ (5.15)

g ={pi—1)(d—-1)"+1 fori>0.
We prove by induction that g5, € LPi(v) for all i > 0 by using the hypercontractivity
estimate (1.14). Fori = 0 we have pg = 2 and hence gj 5, € L°(v) as seen in Corollary 5.5.
Now assume g5, € LPi(v) for i > 0. Since gns, = Rpgs, gns, by Corollary 5.5, it
follows that to prove g5, € LPi+!(v) it is enough to show g;‘fgi € LPi+1(v), where we
abbreviated gy s, (a) == EY [ghs, (3% +Y)]. And indeed we have, using (5.15), (1.14)
and the induction hypothesis, that HQZEHLMH(V) = th,athL;l(V) < th,th%;il(V) < 0.
Next we show that the sequence (p;)i>o diverges to infinity as ¢ tends to infinity. To see

this, note that r; == %(d -1+ dil +1, i > 0, solves the recursion for (p;)i>o given

in (5.15) and clearly r; 2% 6. This implies that gp s, € L?(v) for all ¢ > 1 since we
can take i > 0 such that ¢ < p;. Then g4, € LPi(v) C L4(v).

We turn to show (5.14). Let ¢ > 0 and take ¢ > 1 large enough such that 2¢ >
1. Since gns, € L9(v) as just shown and v = N/(0, %) from above (1.12), one has

¢
_9)a? R T,
limg 00 gn.s, (@)? exp(—((dd_zl))a2 ) = 0, which implies lim,_o0 gn.5, (@) exp(—%) = 0. But

this shows the statement of the lemma by the choice of ¢ (use that g 5, is continuous
on [h,00) by Corollary 5.5). O
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The estimate obtained in the previous lemma can be used to derive the following
recursive bound on gy, 5, which is the final ingredient for the proof of (5.4)

Lemma 5.7. Let h > h, and consider the function gpngs, € L*(v) from Corollary 5.5.
For all n > 0 there exists ¢, > 0 such that

gn,s,(a) < (1 + 204)gn 6h( (14 17)) -1 for all a > cpy. (5.16)

Proof. Let n > 0. Because 9ns, = Rhs, 9gns, as obtained in (5.13), one has for a > h
and with Y ~ N(0, 7%;) that

gh,ah(a)=(1+5h)( [ghah( 5 Y {y<%}} +E |:gh5h( a1 tY) . nl}Ddl

d—1
< (10 (gnan (a1 (1) B [gna (a5 + V)L )
(5.17)

where in the last step we use that gj s, is a non-decreasing function (see (5.1) and (1.10)).
Because gp, 5, > 1, we further obtain from (5.17) that for a > h

gns,(a) < (14 5h)<1 +EY [gh,(sh(ﬁ + Y)l{ymd%l}})d 1gh o (7255 (1+n)) 1 (5.18)

To bound the expectation on the right hand side of (5.18) we will apply (5.14) for some
¢ > 0 depending on 7. Choose 0 < ( < %ﬁ, so that in particular ¢ < dQ;Cll and
C(1+n)2—%tn? <0. Then z > ((1+2)2 — 222 = ((— $2)22 +2(2 +( is a parabola
with negative leading coefficient and two zeros of opposite sign. As the parabola is

negative at z = 1 > 0, this shows that ¢(1 + 2)? — %22 < 0 for all z > 7. Hence there
exists c¢, = ¢, > 0 such that

C1+2)? -t < —cpz forall z> 1. (5.19)

Since Z == 9= 1Y satisfies Z ~ N (0, 02) for o2 (d;;)Q d%'ll, we get the following bound
for a > (d — 1)h

1 oo
EY [gh,éh(ﬁ + Y)l{anﬁ}} = \/7(1 /77 gh,5h (r(l + Z)) €xXp ( - %) dZ

G0 ey = a \2 2 _d-1.2
< Jano? ), exp <(ﬂ) (C(1+2)* - %tz )) dz
(5.19) 00 (d—1)2

[\

Ch, Ch,
< \/ﬁ/n exp ( — (ﬁ)%gz) dz = L = —— exp ( — (%1)20277]),

which tends to zero as a tends to infinity. Hence there is ¢, > 0 such that (1+ 5h)( +
d—1 .
EY [gh,éh(ﬁ+y)1{Y2nd%1}D < (1426y) for all @ > ¢y, 5. This, together with (5.18),

concludes the proof of Lemma 5.7. O

The next and final lemma shows (5.4) and hence concludes the proof of Theorem 5.1.

Lemma 5.8. Let h > h, and consider the function gns, € L*(v) from Corollary 5.5.
For all -y > 0 there exist ¢, > 0 and c’hﬁ > 0 such that gp s, (a) < cpy exp(c’}waHV) for
alla > h.



Proof. Let v > 0 and take > 0 such that 1 +v = logd 1 (d — 1), in particular ¢ m > 1.

We abbreviate K := ¢, for the constant from (5.16). Smce gh.s, is continuous on [h, c0)
by Corollary 5.5, it is enough to find the requested bound on gy, 5, for all a > K. Define

the intervals i .
— d—1 d—1\k+
= |K(ED) K (5™ foran k>0,

which form a disjoint decomposition of [K,c0). For a > K let k(a) > 0 be the unique
k > 0 with a € J, that is, k(a) = [loga-1(f)]. For such a one can apply (5.16)
15

iteratively k(a) times to obtain

n.s, (@) < (1+264)gns, (7% (1L +m) "

) . (d-1)
(1+ 25h)1+(d l)gh,éh (W(l + 77)2>

IN

k-1 (d—1)k(@)
< S H2) D @V gy (e (1)) (5.20)
cJo
(d—1)k(@)
< ((1 + 20p,) sup gn.s, (b))
beJo
i lo; gi (%) logu(d 1) 14~y

Note that (d — 1)k < (d —1) " = (§) = (£) and therefore

(5.20) implies that

9h,,(a) < exp ((%)lﬂ In ((1 + 26p,) SUD h.s, (b))) < cpyexp(c), ,a' ) fora > K.
0

As explained above, this proves the lemma. ]

We end with some concluding remarks. One might naturally wonder what can be
said about level-set percolation of the Gaussian free field on T, near criticality. For
example: can the result from Theorem 4.1 be extended to hy, i.e. are the functions 7
and n* continuous or not at h.? Or also: does the equality (4.5) hold for h = h,, too?

Independently from that, and as remarked in the introduction, we apply a number
of the results obtained here in the accompanying paper [ACI9] to establish a phase
transition for level-set percolation of the zero-average Gaussian free field on a class of
finite regular expanders.
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