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Abstract  

Background: Human visceral leishmaniasis (VL) vaccines are currently under development 

and there is a need to understand their potential impact on population wide VL incidence. 

Methodology / Principal Findings: We implement four characteristics from different human 

VL vaccine candidates into two published VL transmission model variants to estimate the 

potential impact of these vaccine characteristics on population-wide anthroponotic VL 

incidence on the Indian subcontinent (ISC). The vaccines that are simulated in this study 1) 

reduce the infectiousness of infected individuals towards sand flies, 2) reduce risk of 

developing symptoms after infection, 3) reduce the risk of developing post-kala-azar dermal 

leishmaniasis (PKDL), or 4) lead to the development of transient immunity. We also compare 

and combine a vaccine strategy with current interventions to identify their potential role in 

elimination of VL as public health problem. We show that the first two simulated vaccine 

characteristics can greatly reduce VL incidence. For these vaccines, an approximate 60% 

vaccine efficacy would lead to achieving the ISC elimination target (<1 VL case per 10,000 

population per year) within 10 years’ time in a moderately endemic setting when vaccinating 

100% of the population. Vaccinating VL cases to prevent the development of PKDL is a 

promising tool to sustain the low incidence elimination target after regular interventions are 

halted. Vaccines triggering the development of transient immunity protecting against 

infection lead to the biggest reduction in VL incidence, but booster doses are required to 

achieve perduring impact. 

Conclusions / Significance: Even though vaccines are not yet available for implementation, 

their development should be pursued as their potential impact on transmission can be 

substantial, both in decreasing incidence at the population level as well as in sustaining the 

ISC elimination target when other interventions are halted.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. .https://doi.org/10.1101/2020.05.05.20090480doi: medRxiv preprint brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/335373826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1101/2020.05.05.20090480
http://creativecommons.org/licenses/by/4.0/


 
 

2 

Author summary 

Vaccines for human visceral leishmaniasis (VL) are currently under development. In this 

study, we simulate VL transmission dynamics using mathematical models to explore the 

potential impact of vaccines on population-wide incidence. We show that some vaccines have 

high potential to reduce VL incidence, namely those that reduce the infectiousness of infected 

individuals to sand flies and those that reduce the chance of developing symptoms once 

infected. The effect of vaccines that lead to protection from infection is potentially the 

greatest, but depending on the duration of immunity, individuals would require booster doses 

to guarantee lifelong impact. Vaccines that prevent the development of post-kala-azar dermal 

leishmaniasis are a promising tool to sustain low VL incidence and prevent recrudescence of 

infection when regular interventions are halted. Our results strongly support the continued 

development of VL vaccines, as their potential impact on population incidence can be 

substantial. 

 

Introduction 
Visceral leishmaniasis (VL), also known as kala-azar, is a vector-borne neglected tropical 

disease. Infection occurs after successful transmission of the Leishmania protozoa through 

the bite of an infected female sand fly [1]. Most infected humans remain asymptomatic, and 

only a small proportion of about 1—10% develop clinical symptoms, resulting in death when 

left untreated [2,3]. Between 5% and 20% of treated VL cases develop a long-lasting skin 

condition known as post-kala-azar dermal leishmaniasis (PKDL). Recent studies have 

identified that individuals with PKDL are equally infectious towards sand flies as VL cases, 

making them an important reservoir of infection [4,5]. However, the contribution of 

asymptomatic individuals to transmission has not yet been defined [4,6]. After infection, a 

period of immunity follows, of which the duration remains debated.  

Currently around 33,000—66,000 individuals develop symptomatic VL each year, mainly on 

the Indian subcontinent (ISC), Eastern Africa, the Mediterranean region, and Brazil, affecting 

the poorest of the poor [7,8] . The World Health Organization (WHO) and affected countries 

target for ‘elimination of VL as a public health problem by 2020’ on the ISC, where VL is 

considered to be solely anthroponotic. This target is defined as less than 1 VL case per 

10,000 individuals at (sub)district level per year. In the rest of the world (e.g Africa, Europe, 

Brazil), where VL can also be zoonotic with the main reservoir of infection in dogs, the target 
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is 100% detection and treatment of symptomatic cases [9]. Current strategies consist of 

diagnosis and treatment of VL cases, and vector control.  

 

Vaccines already play an important role in the control of canine leishmaniasis, at the 

individual level they reduce the development of symptoms, reduce the parasite load in the 

blood, and reduce the risk of death [10,11]. These vaccines have also proven to be effective at 

the population level by reducing Leishmania transmission, resulting in lower incidence in 

both dogs and humans [12,13]. The development of human VL vaccines has been on-going 

for decades and there are different vaccine candidates currently in trial, but none are yet 

available for implementation [14,15]. The promising results from experimental human VL 

vaccine trials, and by the practice of “leishmanization”, in which a healthy individual is 

artificially exposed to tissue scrapings derived from a cutaneous leishmaniasis patient, 

leading to disease prevention [6,14,16–18], provide strong evidence for the scientific 

feasibility of an effective vaccine against human VL. Would an effective vaccine become 

available, it has been estimated to be cost-effective when used at large scale and in addition 

to ongoing diagnosis and treatment, without even accounting for its impact on transmission 

[17]. 

 

Mathematical transmission models are useful tools to gain insight into the effect of current 

and future interventions on VL incidence and the underlying transmission dynamics. 

Previous modelling studies that focused on VL transmission on the ISC presented two model 

variants; one in which only VL and PKDL cases contribute to transmission, and another in 

which also asymptomatic individuals contribute to transmission (~1% relative to VL cases). 

The models estimated that in most situations on the ISC, the target is likely to be met with 

current strategies but in high endemic settings and at a lower geographical scale, additional 

efforts are required. They also highlighted the risk of recrudescence of infection after 

achieving the low incidence target, when halting interventions. This is mainly due to 

individuals with PKDL and/or asymptomatic infection. Therefore, the studies emphasized the 

need for further research on the potential impact of preventive VL and PKDL strategies as a 

tool in reaching and sustaining VL elimination on the ISC [19,20]. Other studies stressed that 

100% detection and treatment of cases in the rest of the world remains challenging and that 

prevention could be much more effective than case detection and treatment [21]. 
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In this study, we implement multiple characteristics of potential human VL vaccines using 

two variants of a deterministic VL transmission model [19] to estimate the potential impact 

of these vaccine characteristics on VL incidence and transmission dynamics during and after 

the achievement of the current elimination target. The vaccines that are simulated in this 

study 1) reduce the infectiousness of infected individuals towards the sand fly, 2) reduce the 

risk of developing symptoms after infection, 3) reduce the risk of development of PKDL, or 

4) lead to the development of transient immunity to infection [22–24]. We also compare and 

combine vaccine characteristics with current interventions to identify which vaccines could 

be most impactful in fighting this neglected tropical disease.  

 

 

Methods 
Overview of VL vaccine candidates and characteristics 

Currently there are various VL vaccine candidates under study [25]: LEISH-F3+GLA-SE 

[26,27], and ChAd63-KH (ISRCTN07766359) [28] are currently in clinical development; 

Ad5-A2/rA2 Prime / Boost [29], genetically modified live attenuated whole parasites 

[23,24,30], and a LmCen-/- vaccine [31] are being developed for the clinic [32]. 

 

These vaccines have different physical and immunological properties, and could be used in 

either prophylactic or therapeutic settings, but their impact following infected sand fly bite in 

humans has yet to be evaluated. Table 1 summarizes different potential vaccine outcome 

measures (herein called characteristics) that were selected for simulation in this study. 

Vaccine characteristic 1 is separated into 1a) asymptomatic individuals and 1b) all infected 

individuals, because it is suggested that only individuals with asymptomatic infection may be 

affected by the vaccine and that once an individual develops symptoms there are no 

differences in infectiveness (1a). However, since this is not yet well established, we also 

include the option where all infected individuals become less infective, as a result of the 

vaccine (1b).  
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Table 1. Human VL vaccine characteristics. 

Number Vaccine characteristic 

1a Reduced infectivity of asymptomatic individuals  

1b Reduced infectivity of all infected individuals 

2 Reduced risk of developing symptoms 

3 Reduced risk of developing PKDL 

4 Development of transient immunity protecting against infection 

 

 

Transmission models and simulation of existing interventions 

Fig 1 illustrates the basic structure of the VL transmission model, which is a deterministic 

age-structured model. There are two model variants, that only differ based on assumptions 

about where the main reservoir of infection lies; namely, solely in symptomatic individuals 

(VL and PKDL), or mainly in asymptomatic individuals [19,33,34]. The models were 

parameterized with age-structured data on approximately 21,000 individuals included in the 

KalaNet bednet trial in India and Nepal [35] and have undergone geographical cross-

validation against data on >5000 VL cases from 8 endemic districts in Bihar collected by 

CARE India [36] (see [34] for full model descriptions and sensitivity analyses). Recent 

outcomes from xenodiagnosis studies have been incorporated, indicating that those with 

PKDL are on average nearly as infectious as those with VL (0.9:1.0) [4,5]. 

 

Interventions of which the effects have previously been modelled are vector control through 

indoor-residual spraying of insecticide (IRS) and active case detection (ACD). The 

guidelines, as developed by WHO, recommend a 5-year attack phase (intense IRS and ACD) 

followed by 5 years of consolidation phase (IRS and intense ACD). In our models, IRS leads 

to a decrease in sand fly density and ACD shortens the duration of the symptomatic untreated 

stage.  

 

Implementation and simulation of four vaccine characteristics 

Vaccine characteristic 1 is simulated by a reduction in infectiousness of infectious states 

towards the sand fly. For vaccine characteristics 2 and 3, the respective flow towards clinical 

VL and PKDL is reduced. With vaccine characteristic 4, we selected 100% development of 

transient immunity after having received the vaccine and experimented with vaccinating 

100% and 50% of the population. The duration of immunity after vaccination is assumed to 
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be to 2 years, which is similar to the assumed duration of immunity after natural infection in 

our model of which sensitivity analyses are presented in previous work [34]. 

 

For the simulations of vaccine characteristics, we assume that they apply to everyone 

involved, i.e. all ages and sexes. No specific target populations are simulated, besides for 

vaccine characteristic 3, which is only administered to those that have developed VL. For 

vaccine characteristics 1-3, we assume an arbitrary 50% reduction of the infectiousness as 

well as a 50% reduction of the proportions of individuals that develop VL and PKDL, all in 

combination with a 100% vaccination coverage. We also calculate the percentage of vaccine 

effectiveness required to achieve the VL elimination target incidence of 1/10,000/year within 

10 years of starting the intervention, which could aid in defining a vaccine target product 

profile (TPP). We assume that the vaccine characteristics are in place constantly from the 

start of the intervention, except for vaccine characteristic 4, where we experiment with 

simulating a single vaccination round and repeated yearly vaccination rounds. For all four 

vaccine characteristics, we separately simulate and compare their impact on VL incidence 

over time, even though it is likely that one vaccine will possess multiple characteristics. The 

cumulative effects of some vaccine characteristics are simulated indirectly, as reducing the 

development of VL will lead to a decrease in the overall development of PKDL. Previous 

work has shown that when current existing interventions have led to the 1/10,000/year target, 

there are many susceptible individuals and the infection pressure comes mainly from PKDL 

cases (when assuming the infection pressure originates from symptomatic individuals only) 

[19]. To address this, we also combine vaccine characteristic 3, vaccination of VL cases to 

prevent the development of PKDL, with the current interventions recommended by WHO.  
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. .https://doi.org/10.1101/2020.05.05.20090480doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20090480
http://creativecommons.org/licenses/by/4.0/


 
 

7 

 
 

Fig 1. Schematic presentation of the model variant in which asymptomatic individuals contribute to 

transmission, with numbers related to different types of vaccine characteristics that are 

implemented in the models. In the alternative model variant, asymptomatic individuals are assumed not 

to be infectious towards to sand fly, with infection pressure only coming from symptomatic individuals 

with VL (with and without treatment) and PKDL. Once a susceptible individual is infected by an 

infectious sand fly, they become early asymptomatic for an average duration of about 200 days, which is 

followed by the late asymptomatic stage (average duration of 69 days). The average infectivity of both 

asymptomatic stages together is 0 in the model in which they do not contribute and ~1.5% relative to VL 

in the model in which they contribute to transmission. 1.4% of late asymptomatic individuals develops VL, 

and without active case detection, the duration between onset of symptoms and start of treatment lasts on 

average 40 days, followed by 1-day treatment 1 and potentially 28-day treatment 2 or death if left 

untreated. The average duration of the putatively recovered stage is 21 months and 5% of these individuals 

develop PKDL which lasts 5 years on average. The infectivity of PKDL is 90%, relative to VL. The rest 

recovers to the early recovered stage (average duration of 74 days), followed by the late recovered stage 

(average duration of 2 years), which can be interpreted as the duration of immunity. The numbers in the 

red boxes relate to the numbers in the first column of Table 1 and represent the following vaccine 

characteristics; 1a) early and late asymptomatic individuals become half as infectious, 1b) all infection 

states become half as infectious, 2) vaccinated individuals are 50% less likely to develop symptoms, 3) 

vaccinated individuals are 50% less likely to develop PKDL, and 4) vaccinated individuals develop 

transient immunity against infection.  
 

4

2

3

1a

1b
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Results 

The impact of each of the four vaccine characteristics on VL incidence is illustrated in Fig 2. 

A vaccine that reduces infectivity of asymptomatic individuals by 50% (1a) leads to the 

elimination target being achieved in about 11 years. When all infected individuals have a 

reduced infectiousness of 50% (1b), the decline is steeper, achieving elimination in around 4 

years if asymptomatics are the main reservoir of infection and 11 years when infection is only 

coming from those with VL and PKDL. Halving the chance of developing symptoms (2) also 

has a considerable impact on transmission, especially if only symptomatic individuals are 

infective after which elimination takes about 10 years. However, if most infection pressure 

arises from asymptomatic individuals, the impact of halving the development of symptoms 

will lead to achieving the elimination target only after about 19 years, when used as a stand-

alone tool. A 50% reduction in the development of PKDL (3), after which not 5% (default) 

but only 2.5% of past VL cases develop PKDL, has the smallest impact on transmission. As 

expected with this characteristic, the relatively larger impact is seen when only those with VL 

and PKDL contribute to transmission, and thus when PKDL plays a more prominent role in 

the transmission dynamics. Of all vaccine characteristics, the development of immunity that 

protects against infection (as seen in late recovered cases) of the population causes the most 

rapid decrease in incidence (4), since the pool of susceptible individuals is completely 

removed at once (with the assumption of 100% coverage as used in the model). We 

additionally explored the effect of vaccinating half the population and repeating this yearly 

for 5 years in a row (5 x 50%), showing that regular vaccinations are required to sustain the 

impact and move towards the elimination target. 
 

The minimum vaccine effect required for each vaccine characteristic to achieve the VL 

elimination target incidence of 1/10,000/year within 10 years of starting the intervention is 

presented in Table 2. The vaccine characteristics that impact the development of VL and 

PKDL (2 and 3) obviously have a bigger impact in the model in which only VL and PKDL 

contribute to transmission.  
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Fig 2. The impact of different vaccine characteristics on VL incidence using model variants with and 

without asymptomatics contributing to transmission in a setting with a pre-control endemicity of 

5/10,000/year. Vaccine characteristics are in place continuously from year 0 onwards, unless for vaccine 

characteristic 4, which is administered once (1 x 100%), or yearly for five years in a row (5 x 50%). The 

different vaccine characteristics that are also explained in Table 1 and illustrated in Fig 1, are; 1a) early 

and late asymptomatic individuals become half as infectious, 1b) all infection states become half as 

infectious, 2) vaccinated individuals are 50% less likely to develop symptoms, 3) vaccinated individuals 

are 50% less likely to develop PKDL, and 4) vaccinated individuals become immediately immune. The 

black dashed line represents the WHO elimination target of 1/10,000/year. The oscillations in VL 

incidence are a result of seasonality in the sand fly density. 
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Table 2. Minimum required effect of the vaccine characteristics to reach a VL elimination target 

incidence of 1/10,000/year within 10 years’ time after starting the intervention, when vaccinating 

100% of the population in a setting with a 5/10,000/year pre-control incidence. 
 Model variant 

Vaccine characteristic 

Only VL and PKDL 

contribute to 

transmission 

Asymptomatics are 

main contributors 

to transmission 

1a) required reduction in infectivity of asymptomatic 

individuals 

N/A 35% 

1b) required reduction in infectivity of all infected 

individuals 

60% 37% 

2) required reduction in the development of symptoms 56% 68%  

3) required amount of time to reach the elimination target 

when preventing the development of PKDL completely 

11 years >20 years 

4) required minimum number of rounds when vaccinating 

50% of the susceptible individuals yearly with 100% 

vaccine efficacy 

14 rounds 5 rounds 

 

Vaccine characteristic 3, after which vaccinated individuals are less likely to develop PKDL, 

displayed the least impact when used as a stand-alone tool. Fig 3 shows the impact on VL 

incidence of a decrease in the development of PKDL of 50% and 100%, combined with the 

current interventions for a setting with a pre-control endemicity level of 5/10,000/year. The 

red line represents the default scenario in which the current interventions (active case 

detection and vector control) are in place during the WHO attack phase (year 0—5) and the 

WHO consolidation phase (year 5—10), without the presence of a vaccine. After halting all 

interventions at year 10, the situation will slowly return to the pre-control equilibrium of 

5/10,000/year. In the two scenarios with the PKDL vaccine (green and blue lines) a new, 

much lower, equilibrium will be reached after regular interventions are halted. For the 

vaccine with a 50% efficacy (50% decrease in PKDL development of vaccinated VL cases) 

the target of 1/10,000/year will be reached as simulated by the model in which only VL and 

PKDL contribute to transmission. When assuming an effect of 100% protection from 

developing PKDL, this model suggests that using only vaccine 3 could keep the incidence 

below 1/10,000/year, after all regular interventions have brought incidence down and are 

halted. However, in settings with a higher pre-control endemicity of 10/10,000/year, only the 
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vaccine with 100% protection against development of PKDL will lead to the elimination 

target of VL after 15-20 years depending on the start year of the PKDL vaccine.  
 

 

 
 

Fig 3. Strategies of combining vaccine effect 3 with the WHO attack and consolidation phase for a 

setting with a pre-control endemicity level of 5/10,000/year. Top panels: vaccine effect with 100% 

protection against the development of PKDL, bottom panels: vaccine effect with 50% protection 

against the development of PKDL. The default strategy is visualized with the red line (top and bottom 

row identical), in which 5 years of attack phase are followed by 5 years of consolidation phase, after which 

interventions are halted in year 10. For the green line, the PKDL vaccine is introduced during the 

consolidation phase (year 5), which continues after the consolidation phase has ended at year 10. For the 

blue line, the PKDL vaccine is already introduced at the start of the attack phase (year 0), continues during 

the consolidation phase and is continued when regular interventions are halted in year 10. Left figures 

show the simulations for the model variant where solely symptomatic individuals contribute to 

transmission, whereas for the right figures asymptomatic individuals constitute the main reservoir of 

infection. The black dashed line represents the WHO VL incidence target of 1/10,000/year. The 

oscillations in VL incidence are a result of seasonality in the sand fly density. 
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Discussion 

In this study, we present for the first time the potential impact of VL vaccines on 

transmission dynamics and population incidence on the Indian subcontinent (ISC). This 

impact looks very promising. We found that all simulated vaccine characteristics show 

potential in reducing population VL incidence, particularly those that reduce the infected 

individual’s infectiousness or reduce the chance of developing symptoms once infected. For 

these vaccines, an approximate 60% vaccine efficacy would lead to achieving the ISC 

elimination target (<1 VL case per 10,000 population per year) within 10 years’ time in a 

moderately endemic setting, assuming that the entire population is vaccinated and only VL 

and PKDL cases contribute to transmission. For the model variant in which asymptomatics 

are the main contributors to transmission, much lower vaccine efficacies of around 37% 

would be required when reducing the infectiousness; however, for the required reduction in 

the development of symptoms, a vaccine efficacy of nearly 70% was estimated. The vaccine 

that leads to immunity akin to that of late recovered cases shows the highest impact, but 

individuals would require regular booster vaccines to achieve and sustain the elimination 

target. Vaccinating VL cases to prevent the development of PKDL shows to be a promising 

tool to sustain the elimination target once reached, and prevent recrudescence of infection 

when regular interventions are halted. Those findings are of great importance in providing a 

factual base to the ongoing effort aimed at establishing a TPP for a VL vaccine.  

 

A limitation to our study is the fact that we simulated vaccine characteristics rather 

simplistically by instantaneously altering the transition rates and applying this simultaneously 

to all individuals in the population. Ideally, vaccinated individuals should move to different, 

additional, compartments in the model, where they experience a different history of infection. 

In such a model, vaccinated and unvaccinated individuals would be living beside each other, 

both influencing the transmission dynamics differently, although the outcomes would likely 

only differ quantitatively with ours. Another limitation of our study is that we only present 

the results for a setting with a pre-control endemicity of 5 VL cases per 10,000 population per 

year, which we considered representative for endemic situations where vaccines would be 

most useful. In settings with a lower pre-control endemicity the elimination target would be 

achieved earlier; in settings with a higher pre-control endemicity, the vaccine characteristics 

would require a higher efficacy to achieve the same effect on VL incidence in the same 

amount of time.  
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We further decided to simulated the vaccine characteristics separately, while in reality most 

vaccines are expected to possess multiple characteristics. For example lowering the parasite 

load will likely lead to both decreased infectiousness as well as reduced development of 

symptoms, as is also seen in canine VL vaccines [11]. However, by combining them it would 

be less clear to what extent different characteristics would drive the total impact of a vaccine. 

For the vaccine that causes vaccinated individuals to develop transient immunity against 

infection, it is important to note that the impact on VL incidence, as well as the required 

number of booster vaccines, highly depends on the duration of acquired immunity, which was 

assumed to be two years on average in our models similar that what we used in previous 

work [34]. The longer the duration of acquired immunity, the bigger the impact on VL 

incidence and the lower the frequency of required booster vaccines. We also assume that for 

all vaccine characteristics the efficacy is 50%. Even though this is a generalization and in 

reality it is likely different for each characteristic, this approach allows us to compare the 

impact of the different vaccine characteristics.  

A typical aspect of the deterministic model that we use is that all durations of states are 

exponentially distributed, which often does not reflect the actual distributions of durations as 

found in nature. The slow recrudescence of infection between year 10 and 20 is another 

phenomenon of the deterministic model, where prevalences can never become completely 

zero, but in reality the disease will either die out or come back, and if it comes back, most 

likely it will progress somewhat faster. Around the elimination target when numbers of 

infected cases become very low, the role of chance increases and a stochastic individual-

based transmission model (IBM) would be required to analyse the risks of recrudescence or 

the chance of achieving (local) elimination of transmission. 

 

We acknowledge that some of the assumptions chosen for the simulation are not fully 

reflective of the reality of implemented immunization programs. Firstly, our choice of 100% 

coverage certainly is an overestimation of what can be realistically achieved. For example, 

coverage for the 1st dose of measles-containing vaccines was on average 73% in the AFRO 

region, and the human papilloma virus vaccination had an average coverage of 88% when 

pooling regions and income levels [37,38]. However, this assumption allowed us to evaluate 

the maximum impact and to do such an evaluation independently from the constraints of 

delivery strategy. Also, having chosen another coverage level would not alter our outcomes 
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when comparing the impact of the different characteristics. With a lower coverage, the 

durations until elimination would be longer and the minimum required efficacies would be 

higher. Secondly, and in particular at the start of vaccination programs, a catch up campaign 

is usually implemented to quickly reduce the susceptible population, focusing on the 

population that is at highest risk (i.e. for leishmaniasis, children and young adults or migrant 

workers [39]). Such programmatic design considerations are not considered in the current 

model and will need to be investigated with more complex IBMs. Lastly, 5-year protection is 

most likely going to be the minimum requirement to allow for a widespread roll-out in 

routine immunization. Shorter durations requiring a very frequent administration of booster 

doses might prove programmatically and financially unsustainable. Nevertheless, from an 

impact assessment standpoint the results generated with the more conservative assumptions 

of the current model have clear significance for understanding the relative importance of 

different vaccine characteristics. 

 

Vaccines have proven to be vital tools in the control and prevention of diseases [40,41]. This 

study reveals that a VL vaccine strategy could also prove an important tool in the fight 

against this neglected tropical disease. We focussed on the anthroponotic transmission 

dynamics of VL on the Indian subcontinent, but also in the rest of the world VL vaccines are 

likely to surpass their impact at the patient level by reducing the infection pressure, positively 

impacting the estimated 6 million people at risk of VL globally [42].  

 

In conclusion, even though VL vaccines are not yet available for implementation, our results 

strongly support their continued development, given the potentially substantive impact on 

transmission, decreasing incidence at the population level, and sustaining the low incidence 

elimination target on the ISC when other interventions are relaxed.  More details of the 

impact of different vaccines characteristics on the history of infection are awaited to further 

our understanding and modelling of the impact of VL vaccines on VL transmission dynamics 

and disease incidence. 
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