
SoftwareX 11 (2020) 100476

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Bembel: The fast isogeometric boundary element C++ library for
Laplace, Helmholtz, and electric wave equation
J. Dölz a, H. Harbrecht b, S. Kurz c, M. Multerer d, S. Schöps c, F. Wolf c,∗
a TU Darmstadt, Department of Mathematics, Germany
b Universität Basel, Department of Mathematics and Computer Science, Switzerland
c TU Darmstadt, Institute TEMF & Centre for Computational Engineering, Germany
d Università della Svizzera italiana, Institute of Computational Science, Switzerland

a r t i c l e i n f o

Article history:
Received 3 June 2019
Received in revised form 28 February 2020
Accepted 2 April 2020

Keywords:
BEM
IGA
Laplace
Helmholtz
Maxwell
C++
FMM
H2-matrix

a b s t r a c t

In this article, we present Bembel, the C++ library featuring higher order isogeometric Galerkin
boundary element methods for Laplace, Helmholtz, and Maxwell problems. Bembel is compatible with
geometries from the Octave NURBS package, and provides an interface to the Eigen template library for
linear algebra operations. For computational efficiency, it applies an embedded fast multipole method
tailored to the isogeometric analysis framework and a parallel matrix assembly based on OpenMP.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_176
Legal Code License GPL3
Code versioning system used Git
Software code languages, tools, and services used C++, OpenMP
Compilation requirements, operating environments & dependencies C++11, Eigen Linear Algebra Library
If available Link to developer documentation or manual http://temf.github.io/bembel/
Support email for questions info@bembel.eu

1. Introduction

The boundary element method (BEM) or method of moments
(MoM) is a widely used tool for the solution of partial differential
equations (PDEs) in engineering applications such as acoustic
and electromagnetic scattering problems in homogeneous media.
It is accepted in industry and implementations are available as
software packages. Prominent examples are BEM++ [1] which is

∗ Corresponding author.
E-mail addresses: doelz@mathematik.tu-darmstadt.de (J. Dölz),

helmut.harbrecht@unibas.ch (H. Harbrecht), kurz@gsc.tu-darmstadt.de (S. Kurz),
michael.multerer@usi.ch (M. Multerer), schoeps@temf.tu-darmstadt.de
(S. Schöps), wolf@temf.tu-darmstadt.de (F. Wolf).

open-source and BETL [2] which is freely available for academic
use. A commonality of these codes is that they are relying on
mesh generators to create triangulation-based surface meshes
consisting of flat triangles or lower order parametric elements.
Thus, the order of convergence of (higher-order) boundary el-
ement methods is limited by the approximation error of the
underlying mesh.

With the emergence of isogeometric analysis, see [3], boundary
element methods have received increased attention by the com-
munity, since computer aided design (CAD) tools directly provide
parametric representations of surfaces in terms of non-uniform
rational B-splines (NURBS). This has recently led to a flourish-
ing development of software concerning NURBS, see, e.g., [4,5].

https://doi.org/10.1016/j.softx.2020.100476
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by edoc

https://core.ac.uk/display/335373753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.softx.2020.100476
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100476&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_176
http://temf.github.io/bembel/
mailto:info@bembel.eu
mailto:doelz@mathematik.tu-darmstadt.de
mailto:helmut.harbrecht@unibas.ch
mailto:kurz@gsc.tu-darmstadt.de
mailto:michael.multerer@usi.ch
mailto:schoeps@temf.tu-darmstadt.de
mailto:wolf@temf.tu-darmstadt.de
https://doi.org/10.1016/j.softx.2020.100476
http://creativecommons.org/licenses/by/4.0/


2 J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476

Since the extraction of volume mappings from surface descrip-
tions is an active research area with open problems, the use of
isogeometric finite element methods is challenging in practice.
Boundary element methods are the methods of choice in this
setting, see also [6–12]. However, their implementation usually
requires a significant amount of expert knowledge, which can
lead non-experts to refrain from their usage.

The software library Bembel, Boundary ElementMethod Based
Engineering Library, is a header-only library written in C++ (com-
pliant to the 2011 standard) [13]. It provides a general framework
and building blocks to solve boundary value problems governed
by boundary integral operators within the isogeometric frame-
work, for example the Laplace, Helmholtz, or electric wave equa-
tion. The development of the software started in the context of
wavelet Galerkin methods on parametric surfaces, see [14], where
the quadrature routines for the Green’s function of the Laplacian
have been developed and implemented. It was then extended
to hierarchical matrices (H-matrices) in [15] and to H2-matrices
and higher-order B-splines in [16]. With support of B-splines and
NURBS for the geometry mappings, the Laplace and Helmholtz
code became isogeometric in [7]. In [17], it has been extended
to be applicable to non-scalar problems, by covering the electric
field integral equation, and was modernized to a flexible C++
header-only library in early 2020.

The publication of this software package aims at making iso-
geometric boundary element methods available for a broader
audience. Therefore, we aim at an easy to use C++ API, which
streamlines the access to the underlying routines, with compati-
bility to the Eigen template library for linear algebra, see [18]. This
is achieved, while still providing black-boxH2-compression of the
boundary element system matrices and OpenMP parallelization.
The H2-compression yields an almost linear computational cost
in the number of unknowns for assembly, storage requirements
and matrix–vector multiplication of the system matrix. For the
representation of geometries, Bembel features arbitrary para-
metric mappings, most prominently given as NURBS-mappings,
which can directly be imported from files generated by the Octave
NURBS package [4].

The structure of this document is as follows: Section 2 gives
a brief introduction to isogeometric boundary elements, referring
to the Appendix for details. Then, Section 3 explains our design
considerations, after which Section 4 showcases a specific code
example. With some familiarity to the important classes of our
API, Section 5 and Section 6 then give an explanation of the
structure of our library and its major building blocks. This is
followed by a showcase of some simple numerical results in
Section 7, obtained in complete analogy to the first code example.
Afterwards, some remarks regarding the impact of our imple-
mentation are given in Section 8, and, finally, we conclude in
Section 9.

2. Isogeometric boundary element methods

Bembel is able to treat general boundary value problems based
on boundary integral operators, and provides examples to solve
the well-known Laplace, Helmholtz, and electric wave equations
as stated in Appendix A out of the box. For the Helmholtz and
the electric wave equation, the provided examples assume non-
resonant wave-numbers.

The boundary value problems can be solved by single layer
potential ansatzes, see Appendix B, which require the solution of
boundary integral equations by means of a numerical discretiza-
tion. This and similar approaches are commonly known as bound-
ary element methods. Bembel implements these through the use
of a conforming Galerkin scheme.

One of the inherent advantages of boundary element methods
over classical finite element techniques in the volume is that

they can act directly on surface descriptions by NURBS from CAD
programs, see Appendix C. This, in connection with corresponding
spline spaces, leads to so-called isogeometric boundary element
methods. Bembel implements these and assumes that the sur-
face descriptions fulfil the requirements stated in Appendix D.
The spline spaces for the Galerkin method are constructed as
isogeometric multi-patch B-spline spaces, see Appendix E.

It is well known that in all provided examples solvability and
uniqueness of the solution, both of the continuous problem as
well as of its discrete counterpart, can be guaranteed by impos-
ing reasonable assumptions on the boundary values, essentially
guaranteeing ‘‘physicality’’ of the input data, see e.g. [19,20].

The computation of the system matrix requires the evaluation
of singular integrals, see [20]. For the numerical quadrature of
these integrals, we employ regularization techniques as described
in [21]. The compression of the resulting densely populated sys-
tem matrices is based on the embedded fast multipole method
(FMM), which is tailored to the framework of isogeometric anal-
ysis, see [16,17], and fits into the framework of H2-matrices.
Its particular advantage is that the matrix compression is di-
rectly applied on the reference geometry, that is, the unit square.
Hence, the employed compression scheme profits from the in-
herently two-dimensional structure of the problem. The cost
for assembly, storage requirement and matrix–vector multipli-
cation for the system matrix are almost linear in the number
of unknowns, see [16,17]. Moreover, this compression technique
provably maintains the convergence behaviour for increasingly
finer discretizations, cf. [16]. An in-depth mathematical analysis
of the implemented approach together with numerical studies
based on previous versions of Bembel is available in [7,16,17].

3. Design considerations

Most modern three-dimensional boundary element codes with
built-in matrix compression are written in C or C++, resulting in
efficient implementations. One of the central aims of Bembel is
to provide a computationally efficient isogeometric boundary el-
ement code with a plain and simple user interface mimicking the
mathematical setting. Therefore, the API of Bembel is designed
in modern, template-based C++ and provides an interface for the
Eigen template library for numerical linear algebra. This allows
the user for a programming experience similar to Matlab and
Octave and for the use of all matrix-free algorithms from the
Eigen library. Particularly, all solvers provided by Eigen can be
employed without further modifications.

4. Example program

Following the example of the Eigen library, Bembel is designed
as a header-only library, structured into different modules. Before
we discuss these modules in detail, we will present an example
program to familiarize the reader with the typical program flow.

The discussed example is a main file that solves a Laplace
problem and evaluates the potential at user defined points in
space. The code corresponds to one of the examples provided
in Bembel’s repository, shortened by omitting loops over the
polynomial degree and the refinement level, error measurements,
and console output.

All of the presented functionality in the following example is
either in the Eigen or Bembel namespace, thus lines 2 and 3 are
merely for convenience. Line 4 initializes a Geometry object from
a given file. As mentioned before, we support geometry files as
exported by the NURBS package of Octave, and provide examples
in the official repository that showcase how users can generate
their own.



J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476 3

1 int main() {
2 using namespace Bembel;
3 using namespace Eigen;
4 Geometry geometry( " external_geometry_file.

dat " );
5
6 MatrixXd gridpoints = // user defined points
7
8 std::function<double(Vector3d)> fun =
9 [](Vector3d in) { // user defined right

hand side
10 };
11
12 int polynomial_degree = // runtime parameter
13 int refinement_level = // runtime parameter
14
15 AnsatzSpace <LaplaceSingleLayerOperator >
16 ansatz_space(geometry, refinement_level ,

polynomial_degree);
17
18 DiscreteLinearForm <DirichletTrace <double>,
19 LaplaceSingleLayerOperator

>
20 disc_lf(ansatz_space);
21 disc_lf.get_linear_form().set_function(fun);
22 disc_lf.compute();
23
24 DiscreteOperator <H2Matrix <double>,

LaplaceSingleLayerOperator >
25 disc_op(ansatz_space);
26 disc_op.compute();
27
28 ConjugateGradient <H2Matrix <double>, Lower |

Upper, IdentityPreconditioner > cg;
29 cg.compute(disc_op.get_discrete_operator());
30 auto rho = cg.solve(disc_lf.

get_discrete_linear_form());
31
32 DiscretePotential <

LaplaceSingleLayerPotential <
LaplaceSingleLayerOperator >,

33 LaplaceSingleLayerOperator
> disc_pot(ansatz_space);

34 disc_pot.set_cauchy_data(rho);
35 auto pot = disc_pot.evaluate(gridpoints);
36
37 return 0;
38 }

Lines 8–10 define a function in R3 that is used to generate
boundary values, in the form of a std::function for convenience.
Afterwards, in lines 12 and 13 the polynomial degree of the
basis functions and the refinement level are set. Both are runtime
parameters, thus Bembel allows for h, p and k refinement.

In line 15–16, the discrete space is initialized. The AnsatzSpace
class generates the correct ansatz space for the
LaplaceSingleLayerOperator, or possibly another linear operator
defined by the user. The constructor of the AnsatzSpace class,
offers a default parameter for knot repetition, which can be used
for the refinement as well, thus making it possible to differentiate
between p and k refinement.

Lines 18–22 assemble the right hand side of the linear sys-
tem. The LinearForm, in this case given by the DirichletTrace
implements a mapping that evaluates fun on the parametric
surfaces w.r.t. the reference domain, which has to be passed
to the LinearForm in line 21. Line 22 then calls the appropriate
quadrature routines and assembles the right hand side.

Lines 24–26 take care of the assembly of the system matrix.
In this example, we choose to assemble the system as our own
and Eigen compatible H2Matrix format, but Eigen::MatrixXd may
be used as well for a non-compressed assembly. The AnsatzSpace
object is passed to the DiscreteOperator in line 25.

Therein, the compute() method then assembles the matrix.
The specialization of the LinearOperatorBase class given via the
LaplaceSingleLayerOperator needs to provide an

evaluate_integrant_impl implementation, which is used to com-
pute the matrix entries. A possible implementation is discussed
below.

In lines 28–30, the linear system is solved by one of the
matrix-free solvers provided by the Eigen library.

Afterwards, in lines 32–35, a DiscretePotential object is cre-
ated, which evaluates the pointwise solution to the PDE from
the computed Cauchy data. Therein, all required information is
passed to the classes via the specialization
LaplaceSingleLayerPotential, which is once again user defined.

5. Modules and notes on their use

Now, that a basic familiarity with a typical program flow
has been established, we will introduce all Bembel modules in
alphabetical order and discuss their purpose.

AnsatzSpace

The AnsatzSpace module contains the routines managing the
discrete space on the surface of the geometry. Specifically, this is
realized through the four classes SuperSpace, Projector, Glue, and
AnsatzSpace. Therein, SuperSpace manages local polynomial bases
on every element. Through a transformation matrix generated by
the template class Projector which depends on the specialization
of LinearOperatorBase and its defined traits, the SuperSpace can
be related to B-Spline bases on every patch. To build conform-
ing spaces (in the case of DifferentialForm::DivergenceConforming
through continuity of the normal component across patch inter-
faces, in the case of DifferentialForm::Continuous through global
C0-continuity), the template class Glue assembles another trans-
formation matrix to identify degrees of freedom across edges.
Then, a coefficient vector in the SuperSpace can be related to one
of the smooth B-Spline bases, as explained in [9,17].

ClusterTree

The ClusterTree module introduces a cluster hierarchy on
parametric surfaces. The contained ClusterTree class takes a
Geometry and introduces an element structure on it, in the form
of an ElementTree. Each ElementTreeNode of the ElementTree corre-
sponds to an entire parametric mapping (at the trees first level)
or to a sub element induced by a recursive refinement strategy.
The leaves of the tree correspond to the elements on which the
SuperSpace introduces shape functions.

DuffyTrick

The DuffyTrick module provides quadrature routines for
(nearly) singular integrals. Therein, the implementation is as de-
scribed in the appendix of [14], essentially being an adaptation of
the so-called Sauter-Schwab quadrature rules [21]. These routines,
together with the Quadrature module, can easily be used as a
standalone module on any type of quadrilateral discretization.

DummyOperator

This module provides a specialization of LinearOperatorBase
for testing.



4 J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476

Geometry

The Geometry module provides the functionality required for a
parametric geometry description in a computational framework.
The Geometry class is the interface between geometry description
and the remainder of the code. We provide an implementation
of NURBS discretized patches via the Patch class, but the code
is easily extensible to other parametric descriptions mapping
from [0, 1]2 to parts of the geometry, as long as the corre-
sponding methods for point evaluation and evaluation of the
pointwise Jacobian are implemented. The Geometry module de-
pends only on the Spline module and can be used standalone for
the implementation of custom numerical codes.

H2Matrix

The H2Matrix module provides functionality for an efficient
compression of the system matrix and reduction of the com-
putational cost of the matrix–vector multiplication. Therein, the
implemented algorithms correspond to the ones presented in [7,
16].

Helmholtz

The Helmholtz module provides specializations to solve
Helmholtz problems.

IO

The IO module provides input–output functionality, including
routines for VTK file export, timing, and writing log files.

Laplace

The Laplace module provides specializations to solve Laplace
problems.

LinearForm

The LinearForm template class must be specialized for the
assembly of the right hand side. Exemplarily, Bembel provides
an implementation of the scalar DirichletTrace and the vector-
valued RotatedTangentialTrace required to solve Laplace and
Helmholtz Dirichlet problems and the electric field integral equa-
tion. Other specializations implementing different approaches
can be easily implemented by appropriate modifications within
the corresponding header files.

LinearOperator

Specializations of the LinearOperatorBase class govern the be-
haviour of most other modules. To provide a valid specialization,
methods for evaluation of the integrand, i.e., including the test
functions, must be provided. Moreover, the corresponding spe-
cialization of LinearOperatorTraits must be provided, allowing
other classes to determine crucial properties such as the numeri-
cal type of the problem (in general double or std::complex<double
>) and the type of discretization, i.e., either DifferentialForm::
Continuous, corresponding to a discrete subspace of H1/2,
DifferentialForm::DivConforming, corresponding to a discrete sub-
space of HHH−1/2

× (divΓ , Γ ), or DifferentialForm::Discontinuous, cor-
responding to a discrete subspace of H−1/2(Γ ).

Maxwell

The Maxwell module example specializations required to solve
problems based on the electric wave equation.

Potential

The Potential module introduces means to evaluate the solu-
tion to a PDE via a suitable integral operator taking the unknown
of the linear system as input. It relies, once again, on a suitable
specialization corresponding of the LinearOperatorBase class.

Quadrature

The Quadrature module provides quadrature routines for
[0, 1]n for n = 1, 2. The implementation is for arbitrary quadra-
ture orders, where for higher-orders the required data is gener-
ated by the solution of the corresponding three term recurrence.
The Quadrature module can be used standalone.

Spline

The Spline module provides basic routines related to spline
function and local polynomials. The polynomials are implemented
through template recursion, and should be interfaced through
the SuperSpace class if used within Bembel. The Spline module
is independent of other modules and can easily be used as the
basis of other numerical codes.

6. User specific implementation

In all of the above, the user needs to provide certain im-
plementations in order to specify custom operators. These are
the routines for the evaluation of the integrand, as well as the
definition of certain traits. We will briefly discuss the implemen-
tation of the Laplace single layer case, following the previous code
example.

1 class LaplaceSingleLayerOperator;
2
3 template <>
4 struct LinearOperatorTraits <

LaplaceSingleLayerOperator > {
5 typedef Eigen::VectorXd EigenType;
6 typedef double Scalar;
7 enum {
8 OperatorOrder = -1,
9 Form = DifferentialForm::Discontinuous ,

10 // ...
11 };
12 };

This is an example of LinearOperatorTraits. They pose a way
for core algorithms to deduce types, such as complex or real
values, and matrix formats associated with the problem to be
solves. The OperatorOrder enum enables the core routines to
choose an appropriate quadrature degree, and the Form designates
that the basis is to be assembled as a discretization of H−1/2(Γ ),
i.e., discontinuous across patch boundaries. Further traits desig-
nate information for the H2Matrix compression, for a discussion
of these, we refer to the Doxygen documentation of the code.

For an implementation of the matrix assembly, so-called
SurfacePoints are passed as an input. A SurfacePoint p can be
handled as follows.

1 auto s = p.segment <2>(0);
2 auto w = p(2);
3 auto f = p.segment <3>(3);
4 auto f_dx = p.segment <3>(6);
5 auto f_dy = p.segment <3>(9);

The SurfacePoint is a typedef for an Eigen::Matrix<double,Eigen::
Dynamic,12>, where the first two components s hold the coordi-
nate in the reference element, the third component w an optional
(quadrature) weight, the fourth to sixth entry f the corresponding
point on the geometry in R3, and the remaining components f_dx



J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476 5

and f_dy the tangential vectors corresponding to differentiation in
x and y direction. A surface point can be ‘‘unwrapped’’ via a code
snipped as above, generating references to the segments of the
vector.

Now, an implementation of evaluateIntegrand_impl could look
as follows.

1
2 class LaplaceSingleLayerOperator
3 : public LinearOperatorBase <

LaplaceSingleLayerOperator > {
4 public:
5 LaplaceSingleLayerOperator() {}
6 template <class T>
7 void evaluateIntegrand_impl(
8 const T &super_space , const SurfacePoint

&p1, const SurfacePoint &p2,
9 Eigen::Matrix<

10 typename LinearOperatorTraits <
LaplaceSingleLayerOperator >::Scalar,

11 Eigen::Dynamic, Eigen::Dynamic> *
intval) const {

12 auto polynomial_degree = super_space.
get_polynomial_degree();

13 auto polynomial_degree_plus_one_squared =
14 (polynomial_degree + 1) * (

polynomial_degree + 1);
15 // Surface points p1 and p2 are unwrapped
16 // by assigning references as showcased

above
17 auto x_kappa = x_f_dx.cross(x_f_dy).norm()

;
18 auto y_kappa = y_f_dx.cross(y_f_dy).norm()

;
19
20 (*intval) += super_space.basisInteraction(

s, t) * evaluateKernel(x_f, y_f)* x_kappa
* y_kappa * ws * wt;

21
22 return;
23 }

Lines 1–11 show that this is a specialization of the
LinearOperatorBase class. In the implementation of the evaluation
of the integrand, lines 13–19 merely extract information from the
given input, the SurfacePoints and the SuperSpace. The SuperSpace
is aware of the refinement structure and yields methods for

basis function evaluation. The actual implementation relevant
for matrix assembly is in line 20, which directly corresponds to
an evaluation of the matrix local element matrix for quadrature
points and weights encoded in the SurfacePoints.

Note that the implementation of a corresponding
LaplaceSingleLayerPotential is completely analogous, and a spe-
cialization for the FMM is provided as an example in the reposi-
tory as well, within the Laplace module.

7. Numerical results

Running a more elaborate version of the example code dis-
cussed above, including for loops of the polynomial order and
the refinement level, as well as an error measurement via manu-
factured solution, yields the numerical results illustrated in Fig. 1,
which behave as predicted by theory, cf. [7]. We remark that the
visualization of the density in Fig. 1 was generated by the routines
provided in the IO module. More involved numerical examples
computed with previous versions of Bembel, including Helmholtz
and Maxwell problems, are discussed in [7,17].

8. Impact

The implementation of boundary element methods in three
spatial dimensions is a non-trivial task due to the necessary
numerical evaluation of singular integrals and the required matrix

Fig. 1. Illustrations obtained from the solution of a Laplace problem.
The problem specification and the code to reproduce it are in the
example example_FullLaplaceWorkflow.cpp provided in the Bembel
repository, where p corresponds to the polynomial_degree, and h to
(1/2)refinement_level . The density is a visualization of the coefficient vector
rho.

compression to achieve computational efficiency. While this is
already true for lowest-order implementations for the Laplace
equation on boundary triangulations with flat elements, difficul-
ties increase on isogeometric (or parametric) surfaces, isogeo-
metric B-spline (or higher-order) boundary element spaces, and
more involved electromagnetic problems. These implementation-
related issues lead many people to refrain from the use of bound-
ary element methods, even when a specific engineering problem
is known to be solved best therewith. Our software package aims
to provide a state-of-the-art boundary element toolbox for engi-
neers who would like to apply competitive isogeometric bound-
ary element methods in a black-box fashion. This allows users to
freely employ boundary element methods as a tool in involved
engineering applications. To the best of our knowledge, the func-
tionality of higher-order B-spline boundary element spaces is the
first open source implementation available for three dimensions.

The major strengths of Bembel are the capability of imple-
menting general boundary integral operators, and the direct in-
tegration into the Eigen Linear Algebra Library. This allows the
user for a straightforward pre or post processing of data with
a clean user interface. The dense and matrix-free algorithms of
Eigen provide different kinds of solvers for the Galerkin systems
or eigenvalue problems.

9. Conclusion

Bembel is an open-source library enabling users to apply
isogeometric boundary element methods for potential, acoustic,
electromagnetic, and many other problems in a black-box fashion.
This is achieved through an easy-to-use API both for black-box
use, as well as implementation of custom operators, and compati-
bility with the Eigen template library for linear algebra. Moreover,
it incorporates state-of-the-art compression techniques for large
problems, as well as OpenMP parallelization.



6 J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by DFG Grants SCHO1562/3-1 and
KU1553/4-1 within the project Simulation of superconducting cav-
ities with isogeometric boundary elements (IGA-BEM). The work of
Jürgen Dölz was partially supported by SNSF Grants 156101 and
174987, as well as the Excellence Initiative of the German Federal
and State Governments and the Graduate School of Computa-
tional Engineering at TU Darmstadt. Michael Multerer was sup-
ported by SNSF Grant 137669 until 2014. The work of Felix Wolf is
supported by the Excellence Initiative of the German Federal and
State Governments and the Graduate School of Computational
Engineering at TU Darmstadt.

Appendix A. Partial differential equations

In the following, let Ω ⊂ R3 be a bounded domain with
Lipschitz boundary Γ := ∂Ω . Moreover, we define the exterior
domain Ωc

:= R3
\ Ω . Bembel provides examples to the Laplace

equation

−∆uL = 0 in Ω,

uL = gL on Γ ,
(LP)

and the Helmholtz equation

−∆uH − κ2
HuH = 0 in Ωc,

uH = gH on Γ ,
(HP)

with Sommerfeld radiation conditions towards infinity. In both
cases, the boundary values have to be understood in the usual
sense of traces, see, e.g. [20]. In addition, Bembel can treat the
electric wave equation

curl curl EM − κ2
MEM = 0 in Ωc,

n × EM = gM on Γ ,
(MP)

with Silver-Müller radiation conditions towards infinity, which
can be derived from Maxwell’s equations. Again, the boundary
values have to be understood in the sense of traces, see [19].

Appendix B. Boundary integral equations

The three boundary value problems (LP), (HP), and (MP) can
each be solved by means of a single layer potential ansatz, i.e., set-
ting

uL(x) = (S̃LρL)(x) :=

∫
Γ

1
4π∥x − y∥2

ρL(y) dσy, x ∈ Ω, (LS)

uH(x) = (S̃HρH)(x) :=

∫
Γ

e−iκH∥x−y∥2

4π∥x − y∥2
ρH(y) dσy, x ∈ Ωc,

(HS)

EM(x) = (S̃MjM)(x) :=

∫
Γ

e−iκM∥x−y∥2

4π∥x − y∥2
jM(y) dσy

+
1
κ2
M

∇x

∫
Γ

e−iκM∥x−y∥2

4π∥x − y∥2
divΓ jM(y) dσy,

x ∈ Ωc . (MS)

It can be shown that (LS), (HS), and (MS) solve the boundary value
problems (LP), (HP), and (MP) for appropriate density functions
ρL, ρH, and jM, see [19,20]. Taking the proper trace operators, for

simplicity denoted by omiting the tilde, one arrives at the three
boundary integral equations

SLρL = gL, SHρH = gH, SMρM = gM (BIE)

on Γ to determine the unknown density functions in (LS), (HS),
and (MS). We note that SL and SH are isomorphisms from H−1/2

(Γ ) to H1/2(Γ ), whereas SM is an isomorphism on H−1/2
× (divΓ , Γ ),

see [19,20] for details. Thus, in view of a conforming Galerkin
method, piecewise polynomial boundary element spaces are suf-
ficient for the boundary element based solution of (LP) and (HP),
whereas (MP) requires divergence conforming boundary element
spaces. Unique solvability of the corresponding linear systems can
be proven, see [19,20].

Remark B.1. In fact, the described single layer potential ap-
proaches solve the interior and the exterior problems of (LP),
(HP), and (MP) simultaneously. Thus, S̃HρH and S̃MjM satisfy
(HP) and (MP) also in Ω , whereas S̃LρL satisfies (LP) also in Ωc ,
with additional radiation conditions |uL(x)| = O

(
∥x∥−1

2

)
and

∥∇uL(x)∥2 = O
(
∥x∥−2

2

)
towards infinity, see [19,20].

Appendix C. B-splines and NURBS

Let p and k be two fixed integers such that 0 ≤ p < k and
let Ξ be a locally quasi uniform knot vector with knots in [0, 1],
see [22]. The B-spline basis {bpj }0≤j<k is then defined by recursion
as

bpj (x) =

{
χ[ξj,ξj+1), if p = 0,
x−ξj

ξj+p−ξj
bp−1
j (x) +

ξj+p+1−x
ξj+p+1−ξj+1

bp−1
j+1 (x), else,

where χM denotes the indicator function for the set M . Having
the B-spline basis at our disposal, we define the spline space
Sp(Ξ ) := span({bpj }0≤j<k).

A NURBS mapping γ i:□ → R3 on the unit square □ = [0, 1]2
is given by

γ j(x, y) :=

∑
0≤j1<k1

∑
0≤j2<k2

cj1,j2b
p1
j1
(x)bp2j2 (y)wj1,j2∑k1−1

i1=0
∑k2−1

i2=0 bp1i1 (x)b
p2
i2
(y)wi1,i2

,

and described by its control points cj1,j2 ∈ R3 and weights wi1,i2 >

0. For further concepts and algorithmic realization of the NURBS,
we refer to [22].

Appendix D. Boundary representation

Bembel assumes that the boundary representations are the
union of several patches Γi, i.e.,

γ i : □ → Γi with Γi = γ i(□) for i = 1, 2, . . . ,M,

where γ i is given by a NURBS mapping with outward pointing
normal. The boundary itself is then the collection of all patches

Γ =

M⋃
i=1

Γi,

where the intersection Γi ∩ Γi′ consists at most of a common
vertex or a common edge for i ̸= i′.

In order to ensure conforming meshes, Bembel also imposes
the following matching condition on the parametrizations: For
each x = γ i(s) on a common edge of Γi and Γi′ , there has to exist
a bijective and affine mapping Ξ:□ → □ such that there holds
γ i(s) = (γ i′ ◦Ξ)(s). This means that the parameterizations γ i and
γ i′ coincide on the common edge except for orientation.



J. Dölz, H. Harbrecht, S. Kurz et al. / SoftwareX 11 (2020) 100476 7

Appendix E. B-spline boundary element spaces

The boundary element spaces for the Galerkin method are
constructed as isogeometric multi-patch B-spline spaces, see [23].
Bembel uses equidistant knot vectors Ξ1 = Ξ2 with 2L elements
and the same polynomial degrees in each direction, i.e., p1 = p2,
on the unit square. The corresponding spline spaces are thus
given by

S0
p,Ξ(□) = Sp1,Ξ1 ([0, 1]) ⊗ Sp2,Ξ2 ([0, 1]),

S1
p,Ξ(□) = Sp1,Ξ1 ([0, 1]) ⊗ Sp2−1,Ξ ′

2
([0, 1])×

Sp1−1,Ξ ′
1
([0, 1]) ⊗ Sp2,Ξ2 ([0, 1]),

S2
p,Ξ(□) = Sp1−1,Ξ ′

1
([0, 1]) ⊗ Sp2−1,Ξ ′

2
([0, 1]),

for p = (p1, p2) and Ξ = (Ξ1, Ξ2). Herein, Ξ ′

i , for i = 1, 2,
denotes the truncated knot vector, i.e., the knot vector without
its first and last element.

Due to the representation of the computational geometry by
patches, the spaces constructed on the unit square can easily
be lifted to the patches on the boundary by the Piola transform.
Enforcing continuity conditions across patch boundaries yields
conforming discretizations

S0
p,Ξ(Γ ) ⊂ H1/2(Γ ),

S1
p,Ξ(Γ ) ⊂ H−1/2

× (divΓ , Γ ),

S2
p,Ξ(Γ ) ⊂ H−1/2(Γ ).

References

[1] Śmigaj W, Betcke T, Arridge S, Phillips J, Schweiger M. Solving
boundary integral problems with BEM++. ACM Trans. Math. Software
2015;41(2):6:1–40.

[2] Hiptmair H, Kielhorn L. BETL — A generic boundary element template
library. Tech. rep., ETH Zurich; 2012.

[3] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods
Appl. Mech. Engrg. 2005;194(39):4135–95.

[4] Spink M, Claxton D, de Falco C, Vázquez R. The NURBS toolbox, http:
//octave.sourceforge.net/nurbs/index.html.

[5] Bingol OR, Krishnamurthy A. NURBS-python: An open-source object-
oriented NURBS modeling framework in python. SoftwareX 2019;9:85–94.

[6] Aimi A, Calabrò F, Diligenti M, Sampoli M, Sangalli G, Sestini A. Efficient
assembly based on B-spline tailored quadrature rules for the IgA-SGBEM.
Comput. Methods Appl. Mech. Engrg. 2018;331(Supplement C):327–42.

[7] Dölz J, Harbrecht H, Kurz S, Schöps S, Wolf F. A fast isogeometric BEM for
the three dimensional Laplace- and Helmholtz problems. Comput. Methods
Appl. Mech. Engrg. 2018;330(Supplement C):83–101.

[8] Feischl M, Gantner G, Haberl A, Praetorius D. Optimal convergence for
adaptive IGA boundary element methods for weakly-singular integral
equations. Numer. Math. 2017;136:147–82.

[9] Marussig B, Zechner J, Beer G, Fries T. Fast isogeometric boundary element
method based on independent field approximation. Comput. Methods Appl.
Mech. Engrg. 2015;284(0):458–88.

[10] Simpson RN, Bordas S, Trevelyan J, Rabczuk T. A two-dimensional isoge-
ometric boundary element method for elastostatic analysis, Vol. 209–212.
2012, p. 87–100.

[11] Taus M. Isogeometric analysis for boundary integral equations (Ph.D.
thesis), University of Texas at Austin; 2015.

[12] Takahashi T, Matsumoto T. An application of fast multipole method
to isogeometric boundary element method for Laplace equation in two
dimensions. Eng. Anal. Bound. Elem. 2012;36(12):1766–75.

[13] Dölz J, Harbrecht H, Kurz S, Multerer M, Schöps S, Wolf F. Bembel. 2019,
http://dx.doi.org/10.5281/zenodo.2671596, http://www.bembel.eu.

[14] Harbrecht H. Wavelet Galerkin schemes for the boundary element method
in three dimensions (Ph.D. thesis), Technische Universität Chemnitz; 2001.

[15] Harbrecht H, Peters M. Comparison of fast boundary element meth-
ods on parametric surfaces. Comput. Methods Appl. Mech. Engrg.
2013;261–262:39–55.

[16] Dölz J, Harbrecht H, Peters M. An interpolation-based fast multipole
method for higher-order boundary elements on parametric surfaces.
Internat. J. Numer. Methods Engrg. 2016;108(13):1705–28.

[17] Dölz J, Kurz S, Schöps S, Wolf F. Isogeometric boundary elements in
electromagnetism: rigorous analysis, fast methods, and examples. SIAM
J. Sci. Comput 2019;41(5):B983–1010.

[18] Guennebaud G, Jacob B, et al. Eigen v3. 2010, http://eigen.tuxfamily.org.
[19] Buffa A, Hiptmair R. Galerkin boundary element methods for electromag-

netic scattering. In: Ainsworth M, Davies P, Duncan D, Rynne B, Martin P,
editors. Topics in computational wave propagation. Springer; 2003, p.
83–124.

[20] Steinbach O. Numerical approximation methods for elliptic boundary value
problems. New York: Springer Science & Business; 2008.

[21] Sauter SA, Schwab C. Quadrature for hp-Galerkin BEM in R3 . Numer. Math.
1997;78(2):211–58.

[22] Piegl L, Tiller W. The NURBS book. second ed.. Springer; 1997.
[23] Buffa A, Dölz J, Kurz S, Schöps S, Vázquez R, Wolf F. Multipatch approxi-

mation of the de Rham sequence and its traces in isogeometric analysis.
Numer. Math. 2020;144:201–36.

http://refhub.elsevier.com/S2352-7110(19)30179-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb2
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb2
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb2
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb3
http://octave.sourceforge.net/nurbs/index.html
http://octave.sourceforge.net/nurbs/index.html
http://octave.sourceforge.net/nurbs/index.html
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb7
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb7
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb7
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb7
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb7
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb9
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb9
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb9
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb9
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb9
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb12
http://dx.doi.org/10.5281/zenodo.2671596
http://www.bembel.eu
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb17
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb17
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb17
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb17
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb17
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb19
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb22
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb23
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb23
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb23
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb23
http://refhub.elsevier.com/S2352-7110(19)30179-7/sb23

	Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation
	Introduction
	Isogeometric boundary element methods
	Design considerations
	Example program
	Modules and notes on their use
	AnsatzSpace
	ClusterTree
	DuffyTrick
	DummyOperator
	Geometry
	H2Matrix
	Helmholtz
	IO
	Laplace
	LinearForm
	LinearOperator
	Maxwell
	Potential
	Quadrature
	Spline

	User specific implementation
	Numerical results
	Impact
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Partial Differential Equations
	Appendix B. Boundary Integral Equations
	Appendix C. B-Splines and NURBS
	Appendix D. Boundary Representation
	Appendix E. B-Spline Boundary Element Spaces
	References


