Two-hour algorithm for rapid triage of suspected acute myocardial infarction using a high-sensitivity cardiac troponin I assay

Thomas Nestelberger ${ }^{1,2^{*}}$; Jasper Boeddinghaus ${ }^{1,2,3^{*}}$; Jaimi Greenslade ${ }^{4,5,6}$; William A Parsonage ${ }^{4,5,6}$; Martin Than ${ }^{7}$; Desiree Wussler ${ }^{1,2,3,}$; Pedro Lopez-Ayala ${ }^{1,2,}$; Tobias Zimmermann ${ }^{1,2}$; Mario Meier ${ }^{1,2}$; Valentina Troester ${ }^{1,2}$; Patrick Badertscher ${ }^{1,2,8}$; Luca Koechlin ${ }^{1,2,9}$; Karin Wildi1, ${ }^{1,3,10}$; Mahnoor Anwar ${ }^{1,2}$; Michael Freese ${ }^{1,2}$; Dagmar I. Keller ${ }^{11}$; Tobias

Reichlin ${ }^{1,2,12}$; Raphael Twerenbold ${ }^{1,2}$; Louise Cullen ${ }^{2,4,5,6}$ and Christian Mueller ${ }^{1,2}$ for the APACE and ADAPT investigators
${ }^{1}$ Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Switzerland; ${ }^{2}$ GREAT network; ${ }^{3}$ Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland; ${ }^{4}$ Royal Brisbane and Women's Hospital, Brisbane, Australia; ${ }^{5}$ Queensland University of Technology, Brisbane, Australia; ${ }^{6}$ University of Queensland, Brisbane, Australia; ${ }^{7}$ The emergency department, Christchurch Hospital, Christchurch, New Zealand; ${ }^{8}$ Division of Cardiology, University of Illinois at Chicago, United States of America; ${ }^{9}$ Department of Cardiac Surgery, University Hospital Basel, University of Basel, Switzerland; ${ }^{10}$ Critical Care Research Institute, The Prince Charles Hospital, Brisbane and University of Queensland, Brisbane, Australia;
${ }^{11}$ Emergency Department, University Hospital Zurich, Zurich, Switzerland; ${ }^{12}$ Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
*Drs. Nestelberger and Boeddinghaus contributed equally to this manuscript and should be considered first author.

Short Title: A two-hour algorithm using a high-Sensitivity Cardiac Troponin I Assay
Key Words: High-sensitivity cardiac troponin I, rule-out, rule-in, 0/2h-algorithm, diagnosis of acute myocardial infarction

Word count: 3122

Address for correspondence

Professor Christian Müller, CRIB and Department of Cardiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland. Phone Number: +41 6132865 49; E-mail: christian.mueller@usb.ch

Abstract

Background: We aimed to derive and externally validate a 0/2h-algorithm using the high-sensitivity cardiac troponin I (hs-cTnl)-Access assay.

Methods: We enrolled patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI) in two prospective diagnostic studies using central adjudication. Two independent cardiologists adjudicated the final diagnosis including all available medical information including cardiac imaging. hs-cTnl-Access concentrations were measured at presentation and after 2 h in a blinded fashion.

Results: AMI was the adjudicated final diagnosis in 164/1131 (14.5\%) patients in the derivation cohort. Rule-out by the hs-cTnI-Access 0/2h-algorithm was defined as Oh-hs-cTnl-Access concentration $<4 \mathrm{ng} / \mathrm{L}$ in patients with an onset of chest pain $>3 \mathrm{~h}$ (direct rule-out), or a Oh-hs-cTnl-Access concentration <5ng/L and an absolute change within $2 \mathrm{~h}<5 \mathrm{ng} / \mathrm{L}$ in all other patients. Derived thresholds for rule-in were a Oh-hs-cTnl-Access concentration $\geq 50 \mathrm{ng} / \mathrm{L}$ (direct rule-in), or an absolute change within $2 \mathrm{~h} \geq 20 \mathrm{ng} / \mathrm{L}$. In the derivation cohort, these cut-offs ruled-out 55% of patients with a negative predictive value (NPV) of 99.8% ($95 \% \mathrm{CI}, 99.3-100$), sensitivity of 99.4% ($95 \% \mathrm{CI} 96.5-99.9$) and ruled-in 30% of patients with a positive predictive value (PPV) of $73 \%(95 \% \mathrm{CI}, 66.1-$ 79). In the validation cohort, AMI was the adjudicated final diagnosis in 88/1280 (6.9\%) patients. These cut-offs ruled-out 77.9% of patients with a NPV of $99.8 \%(95 \% \mathrm{CI}, 99.3-$ 100), sensitivity of 97.7% ($95 \% \mathrm{Cl} 92.0-99.7$) and ruled-in 5.8% of patients with a PPV of $77 \%(95 \% \mathrm{Cl}, 65.8-86)$ in the validation cohort.

Conclusions: Safety and efficacy of the I hs-cTnl-Access 0/2h-algorithm for triage towards rule-out or rule-in of AMI are very high.

Trial Registration: APACE: NCT00470587, ADAPT: ACTRN1261100106994, IMPACT: ACTRN12611000206921.

Abbreviations

ED - Emergency department
AMI - Acute myocardial infarction
ECG - Electrocardiography
cTn - Cardiac troponin
hs-cTn - High-sensitivity cardiac troponin
eGFR - Estimated glomerular filtration rate
NPV - Negative predictive value
PPV - Positive predictive value
IQR - Interquartile range

Introduction

Patients with symptoms suggestive of an acute myocardial infarction (AMI) such as chest discomfort or angina pectoris, account for approximately 10% of all emergency department (ED) consultations worldwide(1) Early diagnosis of AMI is important for immediate initiation of appropriate, evidence-based therapy. For early rule-out and rule-in of AMI, electrocardiography (ECG) and cardiac troponin (cTn) form the diagnostic cornerstones and complement clinical assessment.(2-4)

High-sensitivity cardiac troponin (hs-cTn) assays allow the precise measurement of cTn concentrations even in the normal range,(2) and have improved the diagnostic accuracy for AMI. $(3,4)$ During the last decade, two hs-cTnT/I assays have been extensively investigated in large diagnostic studies, including the derivation and validation of safe and effective $0 / 1 \mathrm{~h}$-algorithms and $0 / 2 \mathrm{~h}$-algorithms(5-14) These rapid triage algorithms are recommended by the European Society of Cardiology (ESC) for routine clinical use with a class I recommendation. $(7,15)$

Recently, the new hs-cTnl-Access assay was developed.(16-18) Here, we aimed to follow the ESC recommendations to derive and externally validate an assayspecific $0 / 2 \mathrm{~h}$-algorithm. The algorithm incorporates hs-cTnl-Access concentrations at ED presentation and absolute 2 h -changes for the very early triage of patients towards rule-out or rule-in of AMI.

Materials and Methods

Study design and population

We enrolled adult patients presenting to the ED with suspected AMI in large prospective multicenter diagnostic studies carried out according to the principles of the Declaration of Helsinki and approved by the local ethics committees. Advantageous $\underline{\text { Predictors of }} \underline{\text { Acute }} \underline{\text { Coronary }}$ Syndrome Evaluation (APACE), an ongoing prospective international multicenter study with 12 centers in 5 countries aiming to advance the early diagnosis of AMI (ClinicalTrials.gov registry, number NCT00470587), was used as the derivation cohort. $(3,19,20)$ Patients from two studies using similar inclusion and exclusion criteria were used as the external validation cohort: $\underline{\text { Accelerated } \underline{\text { Diagnostic }} ; ~}$ Protocol to $\underline{A} s s e s s$ patients with chest Pain symptoms using contemporary Troponins as the only biomarker (ADAPT) and Improved Assessment of Chest Pain Trial (IMPACT). ADAPT was a multicenter, diagnostic study enrolling patients between November 2007 and February 2011 in two study centers in Australia and New Zealand $(16,21,22)$. Only the Australian data were available for this study. IMPACT was an intervention trial conducted at the same Australian site between February 2011 and March 2014.(23) Patients with ST segment elevation myocardial infarction (STEMI) have been excluded from analysis in all cohorts.

Clinical Assessment

In both the derivation and validation cohorts we included unselected patients presenting to the ED with acute chest discomfort. All patients underwent a clinical assessment that included standardized and detailed medical history incorporating assessment of chest pain characteristics, vital signs, physical examination, 12-lead electrocardiogram (ECG), continuous ECG rhythm monitoring, pulse oximetry, standard blood tests, and chest radiography and echocardiography if indicated.

Detailed methodical descriptions in both cohorts including study design, eligibility criteria and study population, adjudication of final diagnoses, follow-up and clinical endpoints are shown in the online Supplement including online Supplemental Table 1.

The authors designed the study, gathered, analyzed and reported the data according to the STARD guidelines for studies of diagnostic accuracy(24) (online Supplemental Table 2), vouched for the data and analysis, wrote the paper, and made the decision to submit it for publication. The sponsors had no role in the design of the study, the analysis of the data, the preparation of the manuscript, or the decision to submit the manuscript for publication.

Investigational hs-cTn measurements

Blood samples for determination of hs-cTnl-Access, hs-cTnl-Architect and hs-cTnTElecsys were collected into tubes containing lithium heparin plasma or serum, respectively. Additional samples were collected at 1, 2, 3, and 6 h after presentation in the derivation cohort and after 2 and/or 6 to 12 h in the validation cohort. Serial sampling was discontinued when a patient was discharged or transferred to the catheter laboratory for acute treatment. After centrifugation, samples were frozen at $-80^{\circ} \mathrm{C}$ until assayed in a blinded fashion in a dedicated core laboratory.

The hs-cTnl-Access assay (ACCESS hs-cTnI, Beckman Coulter) is a paramagnetic particle, chemiluminescent immunoassay for high sensitivity quantitative determination of cTnl concentrations in human serum and plasma using the Access Immunoassay Systems.(15-17) The hs-cTnl-Access assay has an overall $99^{\text {th }}$ percentile concentration of $18 \mathrm{ng} / \mathrm{L}$ (women: $12 \mathrm{ng} / \mathrm{L}$, men: $20 \mathrm{ng} / \mathrm{L}$) with a corresponding coefficient of variation (CV) of $<10 \%$. Limit of blank (LoB) and limit of detection (LoD) have been determined to be $1.7 \mathrm{ng} / \mathrm{L}$ and $2.3 \mathrm{ng} / \mathrm{L}$.

The hs-cTnT-Elecsys assay (Elecsys 2010 high-sensitivity troponin T, Roche Diagnostics) has a $99^{\text {th }}$ percentile concentration of $14 \mathrm{ng} / \mathrm{L}$ with a corresponding CV of 10% at $13 \mathrm{ng} / \mathrm{L}$.(2) LoB and LoD have been determined to be $3 \mathrm{ng} / \mathrm{L}$ and $5 \mathrm{ng} / \mathrm{L}$.(2) The hs-cTnl-Architect assay (ARCHITECT STAT high-sensitivity troponin I, Abbott Laboratories) has a $99^{\text {th }}$ percentile concentration of $26 \mathrm{ng} / \mathrm{L}$ with a corresponding CV of $<5 \%$ and a LoD of $1.9 \mathrm{ng} / \mathrm{L} .(25-27)$ Estimated glomerular filtration rate (eGFR) was calculated using the abbreviated Modification of Diet in Renal Disease formula.(28)

Reference Standard: Adjudicated Final Diagnosis

AMI was defined and cTn concentrations interpreted as recommended in current guidelines.(29-31) In brief, AMI was diagnosed when there was evidence of myocardial necrosis with a significant rise and/or fall in a clinical setting consistent with myocardial ischemia. Patients with AMI were further subdivided into type 1 AMI (primary coronary events) and type 2 AMI (ischemia due to increased demand or decreased supply, for example tachyarrhythmia or hypertensive crisis).(29,32) In APACE the adjudication of final diagnoses was performed centrally in the core lab (University Hospital Basel) for all patients incorporating concentrations of (hs)-cTn. More specifically, two independent cardiologists not directly involved in patient care reviewed all available medical records (including patient history, physical examination, results of laboratory testing including hs-cTnT concentrations, radiologic testing, ECG, echocardiography, cardiac exercise test, lesion severity and morphology in coronary angiography, discharge summary) pertaining to the patient from the time of ED presentation to 90-day follow-up (APACE) and to 30-day follow-up (ADAPT and Impact). Detailed information about adjudication of final diagnoses are shown in the online Supplement.

Derivation and validation of the hs-cTnl-Access $0 / 2 \mathrm{~h}$-algorithm

We combined hs-cTnl-Access concentrations at ED presentation and absolute 2 h changes to achieve predefined performance characteristics using the same methodology as applied in the derivation of the established hs-cTnT/I 0/2h-algorithms $(14,15,32,33)$ (online Supplemental Figure 1). Derived thresholds for rule-out were selected to allow for a minimal sensitivity and negative predictive value (NPV) of 99.5\% and sensitivity of 99.0%. Derived thresholds for rule-in were obtained based on a classification and regression tree (CART) analysis targeting a minimal positive predictive value (PPV) of 70%. Nodes in the CART tree were constrained to have a minimal number of cases of 20 in parent and child nodes. If a predefined target performance was missed in the derivation sample using the CART-derived thresholds, thresholds were changed stepwise until the predefined performance was fulfilled. A more detailed explanation for derivation and validation of the algorithm is given within the online supplement.

The hs-cTnl-Access 0/2h-algorithm was developed in the derivation cohort in all patients with available hs-cTnl-Access measurements at ED presentation and after 2 h . The algorithm was then externally validated in the validation cohort, and directly compared with the established 0/2h-algorithms.

Follow-up and statistical analysis

Clinical follow-up and statistical analysis are described in detail in the Online

Supplement.

Results

Characteristics of patients and final adjudicated diagnosis

Patient flow for eligible patients for this analysis within the derivation and validation cohort is shown in online Supplemental Figure 1A and 1B. Baseline characteristics of the patients in the derivation cohort ($n=1131$) and the validation cohort ($n=1280$) are shown in Tables 1 and 2. Thirty-nine percent and 81% of patients presented to the ED within the first three hours after chest pain onset in both cohorts, respectively. The adjudicated final diagnosis in the derivation cohort was AMI in 164/1131 patients (14.5\%), and in $88 / 1280$ patients (6.9\%) in the validation cohort.

Concentrations of hs-cTnl-Access at presentation according to final diagnoses

 Concentrations of hs-cTnl at presentation and after 2 hours were significantly higher in patients with AMI compared to those with other final diagnoses (online
Supplemental Figure 3A and 3B and Supplemental Figure 4).

Derivation of the hs-cTnI-Access 0/2h-algorithm

Derived thresholds for rule-out of AMI were defined as either a hs-cTnl-Access concentration at presentation $<4 \mathrm{ng} / \mathrm{L}$ in patients with an onset of chest pain $>3 \mathrm{~h}$ (direct rule-out) or as a hs-cTnl-Access concentration at presentation $<5 \mathrm{ng} / \mathrm{L}$ and an absolute change within $2 \mathrm{~h}<5 \mathrm{ng} / \mathrm{L}$ in all other patients (online Supplemental Figure 2). Derived thresholds for rule-in of AMI were defined as either a hs-cTnI-Access concentration at presentation $\geq 50 \mathrm{ng} / \mathrm{L}$ (direct rule-in) or an absolute change within $2 \mathrm{~h} \geq 20 \mathrm{ng} / \mathrm{L}$. Patients fulfilling neither of the above criteria for rule-out or for rule-in were classified as observe. The hs-cTnl-Access 0/2h-algorithm classified 620 (55%) patients as rule-out, 333 (29\%) as rule-in and 178 (16\%) patients to observe (Figure 1A). The algorithm achieved a NPV of $99.8 \%(95 \% \mathrm{Cl}, 99.1-100)$ and a sensitivity of $99.4 \%(95 \% \mathrm{Cl}, 96.5-$ 99.9) for rule-out (Table 3). PPV and specificity for rule-in were $73 \%(95 \% \mathrm{CI}, 66.1$ 79.0) and 95% ($95 \% \mathrm{Cl}, 93.5-96.2$), respectively. Overall, the hs-cTnl-Access 0/2h-
algorithm allowed a definite triage (either rule-out or rule-in) in 798/1131 patients (71\%).

External validation of the hs-cTnI-Access $0 / 2 \mathrm{~h}$-algorithm

Applying the derived cut-off criteria to the independent validation cohort, 997/1280 patients (77.9\%) could be classified as rule-out with a corresponding NPV of 99.8\% ($95 \% \mathrm{Cl}, 99.3-100$) and sensitivity of 97.7% ($95 \% \mathrm{Cl}$, 92.0-99.7; Figure 1B, Table 3). The 0/2h-algorithm classified 74/1280 patients (5.8\%) as rule-in with a corresponding PPV of 77.0% ($95 \% \mathrm{Cl}, 65.8-86.0$) and a specificity of 98.6% (95\%CI, 97.7-99.2). Overall, the hs-cTnl-Access 0/2h-algorithm allowed to triage (either rule-out or rule-in) 1071/1280 patients (84\%).

Direct comparison with established 0/2h-algorithms

Overall, the diagnostic performance of the hs-cTnl-Access $0 / 2 \mathrm{~h}$-algorithm was similar to that of the hs-cTnT-Elecsys 0/2h-algorithm and the hs-cTnl-Architect 0/2h-algorithm within the derivation and the validation cohorts. (online Supplemental Figure 5A and 5B).

Performance of the hs-cTnl-Access $0 / 2 \mathrm{~h}$-algorithm in predefined subgroups

The performance of the hs-cTnl-Access 0/2h- algorithm in five predefined subgroups including early presenters was very good and comparable to that in the overall cohort (online Supplemental Figure 6A and 6B).

Prognostic performance of the hs-cTnl-Access $\mathbf{0 / 2 h}$-algorithm

Within the derivation cohort median follow-up time was 735 days (IQR, 410-772) with 9 deaths occurring within 30 days and 60 deaths within two years. Cumulative 30day survival rates were $99.7 \%, 98.5 \%$ and 97.1% (standard error $0.2,0.7$ and 1.2 respectively; log-rank, $P=0.001$) in the rule-out, observe and rule-in group,
respectively. At 2 years, cumulative survival rates were $98.2 \%, 91.1 \%$ and 89.6%, within the rule-out, rule-in and observe group, respectively (standard error 0.6, 1,9 and 2.3, respectively; log-rank, $P<0.001$; Figure 2A).

Within the validation cohort the median follow-up time was 365 days (IQR, 365365) with 2 deaths occurring within 30 days and 13 deaths within one year. Cumulative 30 -day survival rates were $100 \%, 99.4 \%$ and 98.2% (standard error $0,0.6$ and 0.2 , respectively log-rank, $P=0.005$) in the rule-out, observe and rule-in group, respectively. After one-year, cumulative survival rates were $99.9 \%, 95.2 \%$ and 92.9% within the rule-out, observe, and rule-in group, respectively (standard error 0.1, 1.6 and 3.4, respectively; log-rank, $P<0.001$; Figure 2B).

Discussion

We derived and validated a 2 h -algorithm for the hs-cTnl-Access assay in three large, well-characterized prospective diagnostic cohorts using central adjudication of AMI. Institutions using this assay will be able to apply this attractive rapid protocol to triage a high volume of patients presenting to ED's with symptoms suggestive of AMI. $(13,14)$ We report six major findings:

First, the derived hs-cTnI-Access 0/2h-algorithm provided a very high (>99.5\%) NPV in both the derivation and validation cohorts, while sensitivity was slightly lower in the validation cohort (97.7\%) as compared to the derivation cohort (99.4\%). The high safety of this approach is further highlighted by the fact that both type 1 and type 2 AMI were included in this analysis and that among more than 2400 patients enrolled, the hs-cTnl-Access 0/2h-algorithm incorrectly triaged only one patient with type 1 AMI. Still, as the point estimate for sensitivity in patients triaged towards rule-out was lower than aimed for, further studies with an even higher number of patients with AMI are
required. Second, the PPV and specificity for AMI of patients triaged towards rule-in was high enough (>70\% and >95\%, respectively) to justify early coronary angiography and admission to a monitored unit, particularly as most non-AMI patients in the rule-in group still have conditions that require coronary angiography for diagnostic purposes including myocarditis and takotsubo syndrome. Third, the overall efficacy of the hs-cTnl-Access 0/2h-algorithm was very high by assigning more than 70% of patients to either rule-out or rule-in, with less than 30% of patients remaining in the observe zone. Fourth, overall, the performance of the $0 / 2 \mathrm{~h}$-algorithm for hs-cTnl-Access was comparable to that of the established 0/2h-algorithms for hs-cTnT-Elecsys and hs-cTnl-Architect, and also similar to their performance in previous studies.(33)(14)(16) Fifth, the performance of the hs-cTnl-Access $0 / 2 \mathrm{~h}$-algorithm was also very good in five predefined subgroups including early presenters. Sixth, survival in patients triaged towards rule-out by the 0/2h-algorithm was very high in both cohorts, further underscoring the convenient and safety of early discharge from the ED for most patients classified as rule-out, with further outpatient management as clinically appropriate.

These findings corroborate and extend previous pilot studies with hs-cTnl-Access,(15-17) and may have important clinical implications, as they will allow institutions utilizing the Beckman Coulter platform, to introduce the hs-cTnl-Access $0 / 2 \mathrm{~h}$-algorithm for management of patients with suspected AMI. For some sites, adoption of clinical practice guidelines without the logistic challenges and costs of introducing additional analyzers will be a major benefit. $(29,30,32)$

Local institution and physician preferences, as well as patient flow characteristics, will determine whether performing the second hs-cTn measurement at 1 h (for the $0 / 1 \mathrm{~h}$ algorithm) or at 2 h (for the $0 / 2 \mathrm{~h}$-algorithm) is preferable. Overall, the performance characteristics of the new hs-cTnl-Access 0/2h-algorithm were comparable to that of
the recently developed hs-cTnl-Access 0/1h-algorithm, which allowed triage of 60% of patients towards rule-out with a sensitivity of 98.9% and 15% of patients towards ruled in with a specificity of 95.9% in the respective validation cohort.(18) Greenslade and colleagues reported a high sensitivity of 99% and NPV of 99.8% with 34% ruled-out using a single cut-off strategy with $<2 \mathrm{ng} / \mathrm{L}$ (LOD strategy) for the hs-cTnl Access Assay. A cutoff of $<6 \mathrm{ng} / \mathrm{L}$ enabled 78.8% of patients to be ruled out on presentation, with a sensitivity of 93.9% and a NPV of $99.5 \%(16)$ The present study used a combination of 0 h and $2 \mathrm{~h} \mathrm{hs}-\mathrm{c} T \mathrm{nl}$ concentrations. A cut-off of $4 \mathrm{ng} / \mathrm{L}$ at presentation together with a chest pain onset of $>3 \mathrm{~h}$ revealed the best performance for direct ruleout. Simplicity and higher efficacy may favor these hs-cTn-only algorithms versus other well-validated algorithms also including formal risk scores. $(18,21,34-37)$ The present findings extend and corroborate previous work with other hs-cTnT/l assays. $(7,11,38,39)$ Accordingly, the same concepts and caveats apply to the most appropriate clinical use of any of the hs-cTnT/I assays and their respective $0 / 1 \mathrm{~h}$ or $0 / 2 \mathrm{~h}$-algorithms in the early diagnosis of AMI. $(7,13,14,35)$ First, these algorithms should only be applied after ST elevation MI has been ruled-out by the ECG performed at presentation. Second, although the hs-cTnl-Access 0/2h-algorithm had a very high NPV for AMI, the algorithm should always be used in conjunction with all other clinical information, including a detailed assessment of chest pain characteristics, physical examination, and the ECG. Additional measurements of hs-cTnl (for example at 3h) are advised whenever the patient is in the observe group, remains symptomatic, or where clinical judgment still argues in favor of AMI. These will help to detect the rare but existing phenomenon of delayed release of hs-cTn into the circulation, particularly in early presenters.(32) It will also help to detect uncommon but possible errors in the handling of the clinical blood samples. Third, not all patients triaged towards rule-out of AMI are appropriate candidates for early discharge from the ED. Fourth, patients
triaged towards rule-in AMI in general are candidates for consideration of early coronary angiography. About 75% of patients triaged towards rule-in will be found to have AMI. Most of the remaining patients in the rule-in zone may still benefit from coronary angiography for diagnostic and possible therapeutic purposes as common differential diagnoses including takotsubo syndrome, myocarditis, and unstable angina.(32)

Some limitations merit consideration when interpreting these findings. First, this study was conducted in ED patients with symptoms suggestive of AMI. Further studies are required to quantify the utility of this $0 / 2 \mathrm{~h}$-algorithm in patients with either a higher pre-test probability (e.g., in a coronary care unit setting) or in patients with a lower pretest probability (e.g., in a general practice setting) for AMI, as well as in the inherently challenging group of critically ill patients. Second, the data presented were obtained from prospective observational diagnostic studies. Prospective studies applying the diagnostic algorithm in clinical decision-making are warranted. Third, not all patients with acute chest pain had a second set of laboratory measurements at 2 h and later. The most common reasons for missing blood samples were logistics issues in the ED that precluded blood draw around the 2 h -window. This limitation is inherent to studies enrolling consecutive patients and is very unlikely to have affected the main findings of the present study. Additionally, for the reference standard, not all patients had measurements of $\mathrm{hs}-\mathrm{cTn}$ at $3-6 \mathrm{~h}$ after presentation. In all remaining patients for adjudication of final diagnoses the ESC hs-cTnT 0/1h algorithm has been used. Fourth, although we used the most stringent methodology to adjudicate the presence or absence of AMI including central adjudication by experienced cardiologists, we still may have misclassified a small number of patients.(30) This invariably would have led to an underestimation of the true diagnostic accuracy of the $0 / 2 \mathrm{~h}$-algorithm. Fifth, although all laboratory procedures were performed according to stringent standardized
operating procedures, human error in the handling of the study specific blood samples may have occurred in a small number of samples leading incorrect to results pertaining to the individual patient. This again would have led to an underestimation of the true diagnostic accuracy of the $0 / 2 \mathrm{~h}$-algorithm. In fact, this error might well have occurred in all three AMI patients presumably missed by the $0 / 2 \mathrm{~h}$-algorithm as not only hs-cTnlAccess, but all hs-cTnT/l concentrations measured from the study specific blood samples were in the low normal range. Sixth, our findings are specific to the hs-cTnlAccess assay. The derived 0/2h-algorithm cannot be generalized to other hs-cTnl assays. Seventh, we cannot generalize our findings to patients with terminal kidney failure requiring dialysis, since they were excluded in the derivation cohort.

In conclusion, using a simple algorithm incorporating hs-cTnl values at presentation and absolute changes within the first 2 hours, a safe rule-out or accurate rule-in of AMI could be performed in the vast majority of patients presenting with chest pain. The use of this algorithm seems to be safe and highly efficacious. It may substantially shorten the time needed for rule-out and rule-in of AMI. About one quarter of chest pain patients will remain in the observe zone and continue to require more prolonged monitoring and serial hs-cTnl testing at 3-6h. Further prospective studies are inevitable to validate these findings

Acknowledgements

We are indebted to the patients who participated in the study and to the emergency department staff as well as the laboratory technicians of all participating sites for their most valuable efforts. In addition, we wish to thank Irina Klimmeck, RN, Fausta Chiaverio, RN (all University Hospital Basel, Switzerland), Esther Garrido, MD, Isabel Campodarve, MD, Joachim Gea, MD (Hospital del Mar, IMIM, Barcelona, Spain),

Helena Mañé Cruz, Carolina Isabel Fuenzalida Inostroza (Hospital Clinic, Barcelona, Spain), and Miguel Angel García Briñón (Hospital Clínico San Carlos, Madrid, Spain), Tracey Hawkins, RN, Shanen O’Kane, RN, Kimberley Ryan, RN and Jennifer Bilesky, BSc, for help with data acquisition (all Royal Brisbane and Women's hospital).

Funding

APACE was supported by research grants from the Swiss National Science Foundation, the Swiss Heart Foundation, the KTI, the European Union, the Stiftung für kardiovaskuläre Forschung Basel; Abbott, Beckman Coulter, Biomerieux, Brahms, Roche, Siemens, and Singulex. ADAPT was supported by research grants from the Emergency Medicine Foundation, the Royal Brisbane and Women's Hospital Foundation and Beckman Coulter.

Disclosures

The authors designed the study, gathered and analyzed the data, vouched for the data and analysis, wrote the paper, and decided to publish. Drs. Nestelberger, Boeddinghaus, Greenslade, Cullen, and Mueller had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors have read and approved the manuscript. The sponsors had no role in designing or conducting the study and no role in gathering or analyzing the data or writing the manuscript. The manuscript and its contents have not been published previously and are not being considered for publications elsewhere in whole or in part in any language, including publicly accessible web sites or e-print servers.

We disclose that Dr. Nestelberger received speaker honoraria/consulting honoraria from Beckman-Coulter and Ortho Clinical Diagnostics. Dr. Boeddinghaus
received research grants from the University of Basel and the Division of Internal Medicine, the Swiss Academy of Medical Sciences, the Gottfried and Julia Bangerter-Rhyner-Foundation, and speaker honoraria/consulting honoraria from Siemens and Roche Diagnostics. Prof. Cullen reports grants from Beckman-Coulter during the conduct of the study and grants from Roche and from Abbott, during the conduct of the study. Grants from Roche, grants and personal fees from Abbott Diagnostics, grants from Siemens, grants from Radiometer, personal fees from AstraZeneca, grants from Alere, outside the submitted work. Dr. Twerenbold reports research support from the Swiss National Science Foundation (Grant No P300PB_167803), the Swiss Heart Foundation, the Swiss Society of Cardiology, the Cardiovascular Research Foundation Basel, the University of Basel and the University Hospital Basel and speaker honoraria/consulting honoraria from Abbott, Amgen, Roche, Siemens, Singulex and Thermo Scientific and BRAHMS. Dr. Badertscher has received research funding from the University of Basel, the "Stiftung für Herzschrittmacher und Elektrophysiologie" and the „Freiwillige Akademische Gesellschaft Basel" outside the submitted work. Dr. Koechlin received a research grant from the University of Basel, the Swiss Academy of Medical Sciences and the Gottfried and Julia Bangerter-Rhyner Foundation, as well as the "Freiwillige Akademische Gesellschaft Basel". Prof. Mueller has received research support from the Swiss National Science Foundation, the Swiss Heart Foundation, the KTI, the Stiftung für kardiovaskuläre Forschung Basel; Abbott, Alere, Astra Zeneca, Beckman Coulter, Biomerieux, Brahms, Roche, Siemens, Singulex, Sphingotec, and the Department of Internal Medicine, University Hospital Basel, as well as speaker honoraria/consulting honoraria from Abbott, Alere, Astra Zeneca, Biomerieux, Boehringer Ingelheim, BMS, Brahms, Cardiorentis, Novartis, Roche, Siemens, and Singulex.

All other authors declare that they have no conflict of interest with this study. The investigated hs-cTn assay reagents were donated by the manufacturers, who had no role in the design of the study, the analysis of the data, the preparation of the manuscript, or the decision to submit the manuscript for publication.

Additional APACE Investigators and contributors to this manuscript were:

Christian Puelacher, MD ${ }^{1,2,3}$; Jeanne du Fay de Lavallaz, MD ${ }^{1,3}$; Maria Rubini Giménez, MD ${ }^{1,3,4}$; Ivo Strebel, MSc ${ }^{1,3}$; Joan Walter, MD ${ }^{1,2,3}$; Jeffrey Huber, MD ${ }^{1,3}$; Michael Christ, MD ${ }^{5}$; Nikola Kozhuharov, MD ${ }^{1,3}$; Danielle M. Gualandro, MD ${ }^{1,3}$; Eliska Potlukova, MD ${ }^{1,2,3}$; Benjamin Baumgartner, MD ${ }^{1,3}$; Benjamin Hafner, MD ${ }^{1,3}$; Katharina Rentsch, PhD^{6}; Òscar Miró, $\mathrm{MD}^{3,7}$; Carolina Fuenzalida, $\mathrm{MD}^{3,7}$; Beatriz Gil, RN7; F. Javier Martin-Sanchez, MD ${ }^{3,8}$; Damian Kawecki, MD ${ }^{3,9}$; Nicolas Geigy, MD ${ }^{10}$; Kathrin Meissner, $\mathrm{RN}^{1,3}$; Caroline Kulangara, $\mathrm{PhD}^{1,3}$; Beatriz López, MD ${ }^{3,7}$; Esther Rodriguez Adrada, MD ${ }^{3,7}$; Eva Ganovská, MD ${ }^{3,7}$; Jens Lohrmann, MD ${ }^{1}$; Wanda Kloos, MD ${ }^{1}$; Jana Steude, MD ${ }^{1}$; Andreas Buser, MD ${ }^{11}$; Arnold von Eckardstein, MD ${ }^{12}$, Ewa Nowalany-Kozielska, MD, PhD ${ }^{13}$; Piotr Muzyk, MD ${ }^{3,13}$.

${ }^{1}$ Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel; ${ }^{2}$ Department of Internal Medicine, University Hospital Basel, University of Basel, both Switzerland; ${ }^{3}$ GREAT network; ${ }^{4}$ Heart Centre Leipzig, University Hospital of Cardiology, Leipzig, Germany; ${ }^{5}$ Department of Emergency Medicine Lucerne Hospital, Lucerne, Switzerland; ${ }^{6}$ Department of Laboratory Medicine, University Hospital Basel, University of Basel, Switzerland; ${ }^{7}$ Emergency Department, Hospital Clinic, Barcelona, Catalonia, Spain; ${ }^{8}$ Servicio de Urgencias, Hospital Clínico San Carlos, Madrid, Spain; ${ }^{9}$ Department of Cardiology, University Hospital Brno, Brno, Czech Republic and Medical Faculty, Masaryk University, Brno, Czech Republic; ${ }^{10}$ Department of Emergency Medicine, Hospital Baselland, Liestal, Switzerland; ${ }^{11}$ Blood Transfusion Centre, Swiss Red Cross, Basel, Switzerland and Department of Hematology, University Hospital Basel, University of Basel, Switzerland; ${ }^{12}$ Emergency Department of Laboratory Medicine, University Hospital Zurich, Switzerland; ${ }^{13} 2$ nd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Katowice, Poland.

References

1. Twerenbold R, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, Badertscher P, et al. Clinical Use of High-Sensitivity Cardiac Troponin in Patients With Suspected Myocardial Infarction. J Am Coll Cardiol 2017;70:9961012.
2. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus H a. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 2010;56:254-61.
3. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early Diagnosis of Myocardial Infarction with Sensitive Cardiac Troponin Assays. N EngI J Med 2009;361:858-67.
4. Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 2009;361:868-77.
5. Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, Shah AS V, et al. Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. N Engl J Med 2019;380:2529-40.
6. Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care 2018;7:553-60.
7. Reichlin T, Schindler C, Drexler B, Twerenbold R, Reiter M, Zellweger C, et al. One-hour rule-out and rule-in of acute myocardial infarction using highsensitivity cardiac troponin T. Arch Intern Med 2012;172:1211-8.
8. Neumann JT, Sörensen NA, Schwemer T, Ojeda F, Bourry R, Sciacca V, et al. Diagnosis of Myocardial Infarction Using a High-Sensitivity Troponin I 1-Hour

Algorithm. JAMA Cardiol 2016;1:397-404.
9. Shah AS V, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet 2015;386:2481-8.
10. Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, et al. Effect of the FDA Regulatory Approach on the 0/1-h Algorithm for Rapid Diagnosis of MI. J Am Coll Cardiol 2017;70:1532-4.
11. Boeddinghaus J, Twerenbold R, Nestelberger T, Badertscher P, Wildi K, Puelacher C, et al. Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clin Chem 2018;64:1347-60.
12. Mueller C, Giannitsis E, Christ M, Ordóñez-Llanos J, DeFilippi C, McCord J, et al. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T. Ann Emerg Med 2016;68:76-87.e4.
13. Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, et al. Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clin Chem 2016;62:494-504.
14. Reichlin T, Cullen L, Parsonage W a., Greenslade J, Twerenbold R, Moehring B, et al. Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Am J Med 2015;128:369-79.e4.
15. Pretorius CJ, Tate JR, Wilgen U, Cullen L, Ungerer JPJ. A critical evaluation of the Beckman Coulter Access hsTnl : Analytical performance, reference interval and concordance. Clin Biochem 2018;55:49-55.
16. Greenslade J, Cho E, Van Hise C, Hawkins T, Parsonage W, Ungerer J, et al. Evaluating Rapid Rule-out of Acute Myocardial Infarction Using a HighSensitivity Cardiac Troponin I Assay at Presentation. Clin Chem 2018;64:8209.
17. Kavsak PA, Malinowski P, Roy C, Clark L, Lamers S. Assessing matrix, interferences and comparability between the Abbott Diagnostics and the Beckman Coulter high-sensitivity cardiac troponin I assays. Clin Chem Lab Med 2018;56:1176-81.
18. Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier M, Troester V, et al. High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clin Chem 2019;65:893-904.
19. Nestelberger T, Boeddinghaus J, Badertscher P, Twerenbold R, Wildi K, Breitenbücher D, et al. Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. J Am Coll Cardiol 2017;70.
20. Badertscher P, Boeddinghaus J, Twerenbold R, Nestelberger T, Wildi K, Wussler D, et al. Direct Comparison of the 0/1h and 0/3h Algorithms for Early Rule-Out of Acute Myocardial Infarction. Circulation 2018;137:2536-8.
21. Than M, Cullen L, Aldous S, Parsonage W a., Reid CM, Greenslade J, et al 2Hour accelerated diagnostic protocol to assess patients with chest pain symptoms using contemporary troponins as the only biomarker: The ADAPT trial. J Am Coll Cardiol; 2012;59:2091-8.
22. Greenslade JH, Carlton EW, Van Hise C, Cho E, Hawkins T, Parsonage WA, et al. Diagnostic Accuracy of a New High-Sensitivity Troponin I Assay and Five Accelerated Diagnostic Pathways for Ruling Out Acute Myocardial Infarction and Acute Coronary Syndrome. Ann Emerg Med 2018;71:439-451.e3.
23. Cullen L, Greenslade JH, Hawkins T, Hammett C, O'Kane S, Ryan K, et al.

Improved Assessment of Chest pain Trial (IMPACT): assessing patients with possible acute coronary syndromes. Med J Aust 2017;207:195-200.
24. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Clin Chem 2015;61:1446-52.
25. Koerbin G, Tate J, Potter JM, Cavanaugh J, Glasgow N, Hickman PE. Characterisation of a highly sensitive troponin I assay and its application to a cardio-healthy population. Clin Chem Lab Med 2012;50:871-8.
26. Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem 2012;58:1574-81.
27. Krintus M, Kozinski M, Boudry P, Capell NE, Köller U, Lackner K, et al. European multicenter analytical evaluation of the Abbott ARCHITECT STAT high sensitive troponin I immunoassay. Clin Chem Lab Med 2014;52:1657-65.
28. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann Intern Med 2006;145:247.
29. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019;40:237-69
30. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012;33:2252-7.
31. Thygesen K, Mair J, Katus H, Plebani M, Venge P, Collinson P, et al. Recommendations for the use of cardiac troponin measurement in acute
cardiac care. Eur Heart J 2010;31:2197-204.
32. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, et al 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016;37:267315.
33. Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, et al. Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clin Chem 2016;62:494-504.
34. Cullen L, Mueller C, Parsonage W a., Wildi K, Greenslade JH, Twerenbold R, et al. Validation of high-sensitivity troponin I in a 2-hour diagnostic strategy to assess 30-day outcomes in emergency department patients with possible acute coronary syndrome. J Am Coll Cardiol 2013;62:1242-9.
35. Wildi K, Cullen L, Twerenbold R, Greenslade JH, Parsonage W, Boeddinghaus

J , et al. Direct comparison of 2 rule-out strategies for acute myocardial infarction: 2-h accelerated diagnostic protocol vs 2-h algorithm. Clin Chem 2017;63:1227-36.
36. Chapman AR, Anand A, Boeddinghaus J, Ferry A V., Sandeman D, Adamson PD, et al. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation 2017;135:1586-96.
37. Morawiec B, Boeddinghaus J, Wussler D, Badertscher P, Koechlin L, Metry F, et al. Modified HEART Score and High-Sensitivity Cardiac Troponin in Patients With Suspected Acute Myocardial Infarction. J Am Coll Cardiol 2019;73:873-5.
38. Twerenbold R, Neumann JT, Sörensen NA, Ojeda F, Karakas M, Boeddinghaus J, et al. Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. J Am Coll Cardiol 2018;72:620-32.
39. Reichlin T, Twerenbold R, Wildi K, Rubini Gimenez M, Bergsma N, Haaf P, et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. CMAJ 2015;187:E243-52.

Table 1 Baseline characteristics derivation cohort			
	All patients ($\mathrm{n}=1131$)	$\begin{gathered} \text { AMI } \\ (\mathrm{n}=164) \end{gathered}$	$\begin{aligned} & \text { No AMI } \\ & (\mathrm{n}=967) \end{aligned}$
Age - y Female gender Time since cpo - hours Early presenters (within 3h after CPO) Risk factors Hypertension Hypercholesterolemia Diabetes Current smoking History of smoking History Coronary artery disease Previous MI Previous revascularization Peripheral artery disease Previous stroke ECG findings Left bundle branch block ST-segment depression T-wave inversion No significant ECG abnormalities Body mass index $-\mathrm{kg} / \mathrm{m}^{2}$ Laboratory findings Creatinine clearance, $\mathrm{mL} / \mathrm{min} / \mathrm{m}^{2}$ Chronic medication Aspirin Vitamin K antagonists B-blockers Statins ACEIs/ARBs Calcium antagonists Nitrates	$61(49-74)$ $359(32)$ $5(2-12)$ $439(39 \%)$ $689(61)$ $580(51)$ $199(18)$ $279(25)$ $432(38)$ $386(34)$ $281(25)$ $329(29)$ $62(5.5)$ $78(6.9)$ $35(3.1)$ $78(6.9)$ $86(7.6)$ $912(81)$ $27(24-30)$ $84(70-100)$ $400(35)$ $135(12)$ $388(34)$ $431(38)$ $450(40)$ $185(16)$ $132(12)$	$\begin{gathered} \hline 71(60-81) \\ 43(26) \\ 4(2-12) \\ 72(44 \%) \\ \\ 117(71) \\ 116(71) \\ 45(28) \\ 39(24) \\ 76(46) \\ 73(45) \\ 59(36) \\ 63(38) \\ 24(15) \\ 13(7.9) \\ \\ 4(2.4) \\ 33(20) \\ 23(14) \\ 100(61) \\ 26(24-29) \\ \\ 76(60-94) \\ 79(48) \\ 25(15) \\ 64(39) \\ 76(46) \\ 84(51) \\ 40(24) \\ 34(21) \end{gathered}$	$\begin{gathered} \hline 59(47-72) \\ 316(33) \\ 5(2-12) \\ 367(38 \%) \\ \\ 572(59) \\ 464(48) \\ 154(16) \\ 240(25) \\ 356(37) \\ 313(32) \\ 222(23) \\ 266(28) \\ 38(3.9) \\ 65(6.7) \\ \\ 31(3.3) \\ 45(4.7) \\ 63(6.5) \\ 812(84) \\ 27(24-30) \\ \\ 85(71-101) \\ \\ 321(33) \\ 110(11) \\ 324(34) \\ 355(37) \\ 366(38) \\ 145(15) \\ 98(10) \end{gathered}$

Numbers are presented as numbers (\%) or medians (IQR). CPO denotes chest pain onset; AMI denotes acute myocardial infarction; ECG denotes electrocardiogram;

ACEIs denotes angiotensin-converting-enzyme inhibitors. ARBs denotes angiotensin receptor blockers.

Table 2 Baseline characteristics validation cohort

	All patients $(\mathrm{n}=1280)$	AMI $(\mathrm{n}=88)$	No AMI $(\mathrm{n}=1192)$
Age - y	$51(43-62)$	$62(53-75)$	$51(43-61)$
Male sex	$769(60.1 \%)$	$59(67.0 \%)$	$710(59.6 \%)$
Median Time since cpo - hours	$2.1(1.2-4.2)$	$2.1(1.1-4.2)$	$2.1(1.2-4.2)$
Early presenters (within 3h after CPO)	$1035(80.9 \%)$	$72(81.8 \%)$	$963(80.8 \%)$
Risk factors			
\quad Hypertension	$558(43.6 \%)$	$49(55.7 \%)$	$509(42.7 \%)$
\quad Hypercholesterolemia	$542(42.3 \%)$	$49(55.7 \%)$	$493(41.4 \%)$
\quad Diabetes	$164(12.8 \%)$	$18(20.5 \%)$	$146(12.3 \%)$
\quad Current smoking	$354(27.7 \%)$	$22(25.0 \%)$	$332(27.9 \%)$
History of smoking	$434(33.9 \%)$	$38(43.2 \%)$	$396(33.2 \%)$
History	$221(17.3 \%)$	$36(40.9 \%)$	$185(15.5 \%)$
\quad Coronary artery disease	$183(14.3 \%)$	$30(34.1 \%)$	$153(12.8 \%)$
Previous MI	$159(12.4 \%)$	$24(27.3 \%)$	$135(11.3 \%)$
Previous revascularization	$18(1.4 \%)$	$7(8.0 \%)$	$11(0.9 \%)$
Peripheral artery disease	$78(6.1 \%)$	$9(10.2 \%)$	$69(5.8 \%)$
Previous stroke			
ECG findings	$20(1.6 \%)$	$4(4.6 \%)$	$16(1.3 \%)$
Left bundle branch block	$37(2.9 \%)$	$17(19.5 \%)$	$20(1.7 \%)$
New Ischaemia on ECG	$1059(82.9 \%)$	$50(57.5 \%)$	$1009(84.7 \%)$
ECG normal or not diagnostic of			
ischaemia	$28.3(25.0-32.8)$	$28.0(23.5-31.9)$	$28.3(25.0-32.9)$
Body mass index - kg $/ \mathrm{m}^{2}$			
Laboratory findings	$92(78-106)$	$79(56-98)$	$93(79-107)$
eGFR			
Chronic medication	$264(20.6 \%)$	$30(34.1 \%)$	$234(19.6 \%)$
Aspirin	$51(4.0 \%)$	$6(6.8 \%)$	$45(3.8 \%)$
Warfarin	$210(16.4 \%)$	$29(33.0 \%)$	$181(15.2 \%)$
B-blockers	$322(25.2 \%)$	$34(38.6 \%)$	$288(24.2 \%)$
Statins	$191(14.9 \%)$	$16(18.2 \%)$	$175(14.7 \%)$
ACE Inhibitors	$101(7.9 \%)$	$11(12.5 \%)$	$90(7.6 \%)$
Calcium antagonists	$89(7.0 \%)$	$15(17.1 \%)$	$74(6.2 \%)$
Nitrates			

Numbers are presented as numbers (\%) or medians (IQR). CPO denotes chest pain onset; AMI denotes acute myocardial infarction; ECG denotes electrocardiogram; ACEIs denotes angiotensin-converting-enzyme inhibitors. ARBs denotes angiotensin receptor blockers.

Table 3 - Patients with an Adjudicated Diagnosis of AMI missed by the hs-cTnI-Access $0 / 2 h$-algorithm in both cohorts

Age	Sex	Time from CPO to first study blood draw, h	Time from CPO/Peak to presentation, h	History of CAD	hs-cTnT Elecsys" (ng/L; peak value underlined) 99 ${ }^{\text {th }}$ percentile $14 \mathrm{ng} / \mathrm{L}$ hs-cTnT Architect (ng/L; peak value underlined) 99 ${ }^{\text {th }}$ percentile $26.2 \mathrm{ng} / \mathrm{L}$				hs-cTnI Access (ng/L; peak value underlined) Accu cTnl" (ng/L; peak value underlined) 99th percentile 40ng/L				STdepression	Tinversion	Clinical discharge diagnosis	PCl performed	CABG performed
79*	female	1	1	Yes	18 3.9	19 5.8	22 7	$\underline{24}$		3.3 -	$\underline{4.2}$		Yes	No	Arrhythmia	No	No
64^{+}	Male	9	9	Yes	$\begin{aligned} & 4.7 \\ & 1.3 \end{aligned}$		$\frac{4.9}{1.9}$		$\begin{aligned} & 2.1 \\ & 110 \end{aligned}$		$\frac{2.5}{130}$	130	No	No	Arrhythmia	No	No
63^{+}	Male	2	2	No	2.3		$\begin{aligned} & - \\ & \underline{5} \end{aligned}$		$\begin{aligned} & 3.2 \\ & 90 \end{aligned}$		$\begin{aligned} & 5.4 \\ & 92 \end{aligned}$	100	No	No	T1 NSTEMI	Yes	No

633 *missed in hs-cTnl 0/1h-algorithm derivation cohort; ${ }^{\text { }}$ missed in hs-cTnl 0/1h-algorithm validation cohort
634 CPO denotes chest pain onset; CAD denotes coronary artery disease; CABG denotes coronary artery bypass grafting; PCI denotes
635 percutaneous coronary intervention

636 \#hs-cTnT in the derivation cohort and Accu Tnl in the validation cohort were measured as part of routine clinical practice onsite at the 637 time of patient presentation. All other hs-cTnT/l measurements were performed from study specific samples at a later time point after a freeze/thaw cycle.

Figure Legends

Figure 1
 Performance of the high-sensitivity cardiac troponin I Access 0/2halgorithm in the A) derivation and B) validation cohorts

Delta $2 \mathrm{~h} \mid$ denotes absolute (unsigned) change of high-sensitivity cardiac troponin I within 2 hours; NSTEMI denotes non-ST-elevation myocardial infarction; NPV denotes negative predictive value; Sens. denotes sensitivity; PPV denotes positive predictive value; Spec. denotes specificity

Short-term and long-term Kaplan-Meier survival curves of patients classified according to the high-sensitivity cardiac troponin I Access $\mathbf{0 / 2 h}$-algorithm for A) derivation and B) validation cohorts

