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Summary

Self-assembled semiconductor quantum dots confine single carriers on the nanometer-

scale. For the confined carriers, quantum mechanics only allows states with discrete

energies. Due to the Pauli exclusion principle, two carriers of identical spin cannot

occupy the same energy level. When the quantum dot hosts more carriers (electrons

or electron-holes), they fill the states according to Hund’s rules. The recombination of

a single exciton (a bound electron-hole pair) confined to the quantum dot gives rise to

the emission of a single photon. For these reasons, quantum dots are often regarded as

artificial atoms or even two-level systems.

However, the environment of a quantum dot has a strong effect on it. The properties

of a quantum dot can significantly deviate from that of an atom when it couples to

continuum states in the surrounding semiconductor material; charge noise can strongly

broaden the absorption of the quantum dot beyond its natural linewidth. On the other

hand, designing the environment of a quantum dot enables to control its properties.

Tunnel-coupling the quantum dot to a Fermi-reservoir or integrating it into cavities and

waveguides are important examples.

The first part of this thesis investigates a situation in which the environment of the

quantum dot is especially problematic: when the quantum dot is integrated into a nanos-

tructured device, close-by surfaces cause significant charge noise. To reduce the charge

noise, a new type of ultra-thin diode structure is developed as a host for the quantum

dots. The design of the diode is challenging as it must fulfill several requirements to

enable spin-physics and quantum optics on single quantum dots in nanostructures. For

quantum dots embedded in the final diode structure, we simultaneously achieve full elec-

trical control of their charge state, ultra-low charge noise, and excellent spin properties.

Even when the quantum dots have a large distance to surfaces, coupling to interfaces

within the semiconductor heterostructure can be a problematic source of noise and de-

coherence. For InGaAs quantum dots, the so-called wetting layer is an interface that

forms during the growth of the quantum dots and is located in their direct spatial prox-

imity. The continuum states of the two-dimensional wetting layer are energetically close

to the p- and d-shells of the quantum dots. Problematic coupling between quantum dot
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and wetting layer states takes place for charged excitons. The second part of this work

shows that a slight modification to the growth process of the quantum dots removes wet-

ting layer states for electrons. The wetting-layer free quantum dots can contain more

electrons than conventional InGaAs quantum dots and the linewidths of highly charged

excitons significantly improve. Importantly, these quantum dots retain other excellent

properties of conventional InGaAs quantum dots: control of charge and spin state, and

narrow linewidths in resonance fluorescence.

Also for different types of self-assembled semiconductor quantum dots, the growth

has a significant influence on the optical properties of confined excitons. In the third

part of this thesis, it is investigated how nucleation processes during the growth are

connected to the optical properties of GaAs quantum dots in AlGaAs. Remarkably,

this connection can be studied post-growth by spatially resolved optical spectroscopy.

The main experimental observation is the presence of strong correlations between the

optical properties of a quantum dot and its proximity to neighboring quantum dots. In

particular, the emission energy and the diamagnetic shift of the quantum dot emission are

strongly correlated with the area of the so-called Voronoi cell surrounding the quantum

dot. The observations can be explained with the capture zone model from nucleation

theory, which shows that the optical quantum dot properties reveal information about

the material diffusion during the semiconductor growth.

As explained before, the surrounding semiconductor environment can have a strong

effect on the properties of quantum dots. However, even for a well-isolated quantum dot,

there are higher shells of the quantum dot itself which can lead to effects beyond a two-

level system. In the final part of this thesis, a radiative Auger process is investigated.

The radiative Auger effect is directly connected to higher shells of the quantum dot and

appears in its emission spectrum. It arises when resonantly exciting the singly charged

exciton (trion). When one electron recombines radiatively with the hole, the other one

can be promoted into a higher shell. The radiative Auger emission is red-shifted by the

energy that is transferred to the second electron. The corresponding emission lines show

a strong magnetic field dispersion which is characteristic for higher shells. The radiative

Auger effect is observed on both types of quantum dots investigated before. Radiative

Auger offers powerful applications: the single-particle spectrum of the quantum dot can

be easily deduced from the corresponding emission energies; carrier dynamics inside the

quantum dot can be studied with a high temporal resolution by performing quantum

optics measurements on the radiative Auger photons.
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Chapter 1

Introduction

Towards the end of the 19th century, some scientists already claimed that physics is

completely understood. A few years later, quantum mechanics drastically changed our

view on nature. There are probably two reasons why it took so long to come up with

quantum mechanics. The first one is that, as its name suggests, it comes into play when

dealing with extremely small objects, such as single atoms or molecules. In the early

days of quantum mechanics, nobody had ever observed such structures as directly as it

is possible today by using scanning probe microscopy [1, 2]. The second reason might

be that some conclusions of quantum mechanics are counter-intuitive from a classical

perspective [3, 4].

Today, quantum mechanics is an accepted theory, and one has started to make use of it.

Developing devices such as lasers or miniaturized transistors requires an understanding

of quantum theory. A more recent application idea is using quantum objects as such,

as a unit of information in a quantum computer [5, 6, 7], a qubit, or for long-distance

quantum key distribution [8].

For such applications, there are many different approaches that range from single

trapped ions [5] or color centers in the solid-state [9] to much larger objects such as

superconducting circuits [7]. A semiconductor quantum dot (QD) can also be used for

some of these applications [6, 10, 11].

In this thesis, all experiments are performed with self-assembled QDs in III-V semi-

conductors [12]. These QDs are small enough to show many quantum mechanical effects.

They can confine single carriers on the nanometer-scale [12]. The strong confinement

gives rise to discrete energy levels that can be sequentially filled according to Hund’s

rules. The decay of an exciton confined to the QD leads to the emission of a single photon

– a non-classical state of light [13, 14]. The QD can also host a single spin [15, 16, 17].

For these reasons, a QD is often called an artificial atom. For applications in quantum

information, a QD has several strengths and weaknesses that are briefly discussed in the

following.
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A QD is an excellent source of single photons: the combination of high emission rate

(∼GHz), high single-photon purity, and photon indistinguishability [13, 14, 18, 19, 20,

21, 22] is shared with almost no other emitter. These properties make QDs particularly

interesting for applications in quantum communication as photons can be transmitted

over long distances via optical fibers. Furthermore, the spin of an electron or an electron-

hole confined to the QD can be used as a qubit [6]. Spin initialization by optical pumping

[15, 16, 23], ultrafast spin manipulation by picosecond-laser pulses [24, 25], and spin-

readout [26] by all-optical means have been demonstrated. Spins in different QDs can

be entangled by remotely interfering photons emitted from the two QDs [27, 28]. The

criteria for quantum information processing are, to a certain extent, fulfilled [29].

However, there are two main challenges: the first one is the noisy solid-state envi-

ronment of the QD. Noise from nearby charge traps can significantly broaden the QD

linewidth beyond the radiative lifetime limit [30]; noise from nuclear spins limits the inho-

mogeneous dephasing time (T ∗2 ) of an electron spin in the QD to a few ns [31, 32, 33, 34];

lattice vibrations (phonons) or coupling to continuum states [35, 36] can lead to rapid

dephasing and affect both the spin properties and the linewidth of the QD. The second

challenge is the self-assembled nature of the QDs. They grow at random locations on

the sample. For experiments with a few QDs, it is sufficient to determine their position

post-growth [37]. For scalable applications, this method is highly disadvantageous, and

an array of well ordered QDs with close-to identical properties would be highly desirable.

Some of the described problems have been solved within the last years: charge noise

is strongly reduced when using ultra-clean material [14, 38, 39, 40]. Active or passive

feedback on the QD-emission can further mitigate the noise [41, 42]. Phonon-related

effects can be strongly reduced by operating at low temperatures where the emission

of QDs is, in contrast to many other emitters [43], dominated by the zero-phonon line

[44]. The interaction with continuum states such as the wetting layer can be reduced by

modifications to the QD-growth [45]. Spin dephasing times are strongly enhanced for

the spin of a hole (an electron vacancy) compared to an electron spin because the hole

has a p-type atomic wavefunction. Therefore, its interaction with the nuclei is reduced

[17, 46]. Novel ideas for site-control of otherwise self-assembled QDs might mitigate the

scalability issue [47].

Two things should be said: first, solving one of these problems often comes along with

making another one worse, and there are different types of QDs with different strengths

and weaknesses. Site-control, for instance, can be easily achieved by etching an array

of nucleation sites into a substrate [48]. Such a process usually leads to defects created

during the etching step, which, in turn, can cause significant additional charge noise
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[49, 50].

Second, some issues turned out to be easier to solve or less fundamental than others.

Whereas charge noise is more a question of material quality, nuclear spins remain a

problem and are inherent to the used atomic species. Even for a hole-spin with strongly

reduced nuclear spin-interaction, dephasing times have so far been limited to T ∗2 ∼ 102 ns

in the best case [17, 46]. Sophisticated techniques such as nuclear spin narrowing [51] or

real-time Hamiltonian estimation [52] are needed to prolong the dephasing time further.

On the other hand, the spin dephasing time is relatively long in comparison to the time

needed for optical spin-manipulation [24], which enables some quantum applications [53].

Very promising applications of QDs are hybrid-systems. The QD is a bright single-

photon emitter [13, 14, 20]. It can be used as an optical interface for other systems

which itself do not couple well to light. Recent ideas involve interfacing a gate-defined

spin qubit [54, 55] or a superconducting circuit [56]. The QD is also a very sensitive

charge sensor [57], enabling an optical readout of the charge state of other qubits [58].

Furthermore, the QD can interface an ultra-cold atom memory based on rubidium or

cesium – a promising architecture for quantum repeater applications [59]. Finally, the

QD can be embedded in optical or mechanical cavities or in waveguide architectures [10]

– approaches which enable quantum optics experiments in the solid-state [60, 61].

1.1 Self-Assembled Quantum Dots

A particle confined to a finite volume can only take discrete values of energy, E. This

energy quantization is a result of quantum mechanics. The so-called eigenenergies can

be calculated by solving the time-independent Schrödinger equation(
− ~2

2m∗
∆ + V (~x)

)
|Ψ(~x)〉 = E |Ψ(~x)〉 , (1.1)

where |Ψ(~x)〉 is the wavefunction of a particle with an effective mass m∗ inside a potential

V (~x).

However, the quantization is irrelevant for many macroscopic objects because the

energy spacing between these discrete levels is so small that it easily can be bridged by

thermal excitation. The question when quantum effects become significant depends on

the temperature and the size of the object. A simple criterion is given by the thermal

wavelength

λ =
h√

2πm∗kBT
. (1.2)
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When the size of an object is smaller than this length scale, quantum effects become

observable since the thermal energy is smaller than the quantization energies – the

object can be considered as zero-dimensional. Constraints for quantum applications are

typically much stricter than this criterion, i.e. require even lower temperatures.

Semiconductor QDs are small enough such that Eq. 1.2 is fulfilled at cryogenic tem-

peratures. There are different kinds of QDs with different sizes. Some nanocrystals have

sizes down to a few nanometers [62]; gate defined QDs can have sizes up to several hun-

dred nanometers [63]. The QDs investigated in this thesis, self-assembled semiconductor

QDs, have typical lateral sizes in the range ∼ 20− 40 nm [64].

Usually, self-assembled semiconductor QDs are grown by molecular beam epitaxy.

There are several methods that lead to self-assembly of nanostructures and eventually

can be used to grow these QDs. In this work, two different types of QDs are used:

self-assembled InGaAs QDs that are grown in the so-called Stranski-Krastanov mode

[65] and GaAs QDs in AlGaAs which are grown via local droplet-etching [66]. The

growth of InGaAs QDs is based on using lattice-mismatched semiconductors. When

InAs is grown on top of GaAs, only about 1.5 monolayers of InAs adopt the lattice-

constant of the GaAs-substrate and form the so-called wetting layer. When more InAs

is deposited, the lattice-mismatch of both materials leads to the formation of InAs-islands

[67]. When these islands are covered with GaAs, they become optically active QDs. They

form a potential minimum for carriers because the semiconductor bandgap of InGaAs

is smaller than that of GaAs. Local droplet-etching is a different method that enables

the growth of self-assembled QDs without using lattice-mismatched semiconductors – in

our case, GaAs QDs embedded in AlGaAs. This method uses the fact that metals such

as aluminum or gallium nucleate in the form of small droplets when they are deposited

on AlGaAs. These metal-droplets etch into the substrate material, which leads to the

formation of nano-holes [66]. The nano-holes are filled up with GaAs, forming a QD

inside the surrounding AlGaAs. A more detailed explanation of both growth methods

can be found in Chapters 3, 4 and in Refs. [40, 66, 68].

Fig. 1.1(a) shows a scanning electron microscope image of a self-assembled InGaAs in

GaAs. The QD appears bright in this image since the contained indium has a higher

atomic number than the surrounding material. The QD has a height of ∼ 3 nm and

a lateral dimension of ∼ 30 nm. The indium-concentration is higher in the center of

the QD, and the confinement potential is deeper in this region. Therefore, the effective

lateral size of the wavefunction in a QD is typically below 10 nm [71, 72].

Since the lateral dimension of the QD is much larger than its extent in the z-direction,

the QD can often be modeled as a two-dimensional Harmonic oscillator [63, 73]. The
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Fig. 1.1: (a) Transmission electron microscopy image of a self-assembled InGaAs QD in
GaAs (taken from Ref. [45]). Above the quantum dot, alternating layers of AlAs
and GaAs are grown. (b) Energy levels (shells/orbitals) of the quantum dot
modeled by a symmetric harmonic confinement potential. With an increasing
magnetic field, the degeneracy of the shells is lifted. For the conduction band,
the effect of the magnetic field is more pronounced since the electron effective
mass is significantly smaller than the hole effective mass. The energy spectrum
of the different states forms the Fock-Darwin spectrum [69, 70]. The quantum
numbers of the corresponding shells are labeled as n (radial quantum number)
and Lz (angular momentum quantum number).

two-dimensional confinement potential has the following form: V (r) = 1
2m
∗
eω

2
0r

2, where

m∗e is the electron effective mass and ω0 specifies the strength of the confinement. This

harmonic confinement is convenient as the Schrödinger equation (Eq.1.1) can be solved

analytically. The eigenenergies are multiples of ~ω0, an analytical formula for the wave-

functions is given in Chapter 3. A schematic of the first states (shells) of a QD is shown

in Fig. 1.1(b).

The eigenenergies and wavefunctions of a QD change when an external electric or

magnetic field is applied. An external electric field adds a linear correction term to the

confinement potential, giving rise to the quantum-confined Stark effect. A magnetic field

(here in the z-direction) adds a vector potential term to the Schrödinger equation [74]:(
1

2m∗
p2 + V (~x)

)
|Ψ(~x)〉 = E |Ψ(~x)〉 , (1.3)

where p = (−i~∇− eA) is the momentum operator with A = 1
2Bzxey − 1

2Bzyex. The

corresponding eigenenergies,

En,L = (2n+ |Lz|+ 1) ~ω1 −
1

2
Lz~ωc, (1.4)
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are often referred to as the Fock-Darwin spectrum [69, 70], where n and Lz are the radial

and the angular momentum quantum numbers. In this expression, ~ωc = ~eB/m∗e is the

electron cyclotron energy and the term ω1 is given by ω1 =
√
ω2

0 +
(
ωc
2

)2
. The Fock-

Darwin spectrum for a QD with ~ω0 = 24 meV is shown in Fig. 1.1(b). The Fock-Darwin

spectrum describes the magnetic field dependence (diamagnetic shift) for many different

types of QDs [63, 73, 75]. For very strong magnetic fields, where the magnetic field term

dominates over the confinement, the Fock-Darwin spectrum forms a Landau level fan

[74]. For small magnetic fields, the diamagnetic shift is sometimes approximated by a

parabolic dependence [76, 77]. The shift is more pronounced when ~ω0 is small since the

cyclotron energy becomes comparable to V (r) when increasing the magnetic field. For

atoms, where the confinement is significantly stronger, this effect is very small.

In a semiconductor, a bound electron-hole pair (exciton) can be excited optically

[78]. An exciton in the QD can be created by exciting the surrounding semiconductor

material with a laser [79]. Following the above-band excitation, the created electrons

and holes relax to the conduction and valence band minimum by multi-phonon emission.

Further relaxation down to the ground state of the QD (s-shell) can take place by

processes involving just a few phonons [80]. Optical recombination of an electron in

the conduction band s-shell of the QD with a hole in its valence band s-shell can take

place (photoluminescence). This transition is dipole allowed due to the p-type atomic

wavefunction of the valence band hole. The hole has typically a heavy-hole character

since the light hole is at higher energy due to strain and the strong confinement potential

of the QD [12]. Photoluminescence is a convenient technique to determine the parameters

of a QD. However, the above band illumination leads to photoluminescence not only

form the QD but also from the surrounding semiconductor material. For using the

QD as an artificial atom in the solid-state, resonant excitation is necessary [81]. The

resonant excitation technique enables quantum optics experiments on semiconductor

QDs [51, 60, 82]. Experimentally, the resonance fluorescence of the QD can be separated

from the reflected laser light by using a cross-polarization technique [83].

A QD can be tunnel-coupled to other systems such as another QD or a Fermi-reservoir.

For most measurements presented in this thesis, the QDs are tunnel-coupled to a close-

by metallic electron reservoir, which acts as a back gate. The method is schematically

illustrated in Fig. 1.2(a). There is also a second gate above the QDs, a top gate. Applying

a voltage to this diode structure applies an electric field to the QDs and tunes their energy

levels with respect to the Fermi-energy of the back gate. The latter effect enables the

charge state of the QD to be set deterministically [79]. Note that the tunnel coupling to

the back gate should not be too strong but should be significantly less than the Coulomb
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Fig. 1.2: (a) A schematic of a quantum dot (QD) tunnel-coupled to a Fermi-sea with
Fermi-energy, EF. At a negative gate voltage, the QD-states are above the
Fermi-level. On increasing the voltage, the s-shell of the QD becomes lower
than the Fermi-level. As a consequence, an electron tunnels from the Fermi-
sea into the QD. The on-site Coulomb repulsion within the QD prevents a
further electron with the opposite spin from tunneling into the s-shell (Coulomb
blockade). (b) Photoluminescence of a QD as a function of the gate voltage.
With increasing voltage, the QD-levels are lowered with respect to the Fermi-
energy of the Fermi-sea and electrons sequentially fill the QD-shells. When
a new electron is added to the QD, its emission energy changes due to the
Coulomb interaction between all particles within the QD. This interaction gives
rise to a characteristic plateau structure of the emission spectrum as a function
of the gate voltage.

and confinement energies of the QD. Otherwise, the QD shells will strongly hybridize

with the continuum states of the back gate [84, 85, 86]. Good spin properties for carriers

in the QD require even larger tunnel barriers to suppress spin co-tunneling [23]. In the

case of InGaAs QDs, tunnel barriers between 20-40 nm are a reasonable choice [23, 79].

Even when the distance between the QDs and the gates is too large for tunnel coupling,

the gates can be useful. The emission energy of a QD can be tuned via the d.c. Stark

effect when a voltage is applied between the top and the back gate [87]. Besides, the

charge state of the QD usually fluctuates randomly if such a diode is not used. As a result,

the emission from the QD shows significant telegraph noise (blinking) [88]. Blinking is

highly disadvantageous for applications where the QD should provide identical single
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photons at a constant rate. To improve the optical QD-properties, the concept of gating

the surroundings has also been implemented for other emitters, such as vacancy centers

[89].

Electrons and holes confined to a QD interact via the Coulomb force. The carrier-

carrier interaction terms add to the Schrödinger equation (Eq. 1.1), and single-particle

states are no longer accurate when more carriers occupy the same QD. Multi-carrier

effects lead to characteristic emission spectra of QDs, where the emission energy abruptly

changes whenever a new electron is added to the QD. As a function of the charge of a

QD, the photoluminescence shows a series of plateaus [79] (Fig. 1.2(b)). For a low bias

voltage, the QD-levels are above the Fermi-level of the back gate, and the QD is empty.

An electron-hole pair can be excited optically, and the photoluminescence shows emission

from the neutral exciton (X0). At a gate voltage of Vg = −0.2 V, the QD is charged with

a single electron from the back gate. The emission is now dominated by the negatively

charged trion (X1−), which is red-shifted compared to the neutral exciton. The on-site

Coulomb repulsion within the QD prevents a further electron with the opposite spin from

tunneling into the QD (Coulomb blockade). At higher gate voltage, even more electrons

fill the QD, and emission from highly charged excitons (X2−−X5−) is observed. These

exciton lines are typically broader than in this measurement due to interaction with

the wetting layer [79]. Chapter 3 shows how the electron wetting layer states can be

removed. As shown in Fig. 1.2(b), the corresponding QDs have narrow emission lines

for highly charged excitons.

When the QD confines several carriers, the strong carrier-carrier interaction withing

the QD can lead to rich physics, such as Auger processes, where energy is transferred

between the different carriers [35, 90]. In many cases, the origin of an Auger-process

is the optical recombination of an electron-hole pair leaving an imbalance between the

remaining carriers in the QD. Chapter 3 investigates an Auger process following the

optical recombination of the triply charged exciton (X3−). Chapter 5 shows that even

for the limit of just three carriers, a similar Auger process can take place. This radiative

Auger process is observed on a negative trion.
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Chapter 2

Charge Tunable Quantum Dots in

Membrane Structures

This section is partly adapted from Ref. [91]: ”Narrow optical linewidths and spin pump-

ing on charge-tunable, close-to-surface self-assembled quantum dots in an ultra-thin

diode”, Matthias C. Löbl, Immo Söllner, Alisa Javadi, Tommaso Pregnolato, Rüdiger

Schott, Leonardo Midolo, Andreas V. Kuhlmann, Søren Stobbe, Andreas D. Wieck, Pe-

ter Lodahl, Arne Ludwig, Richard J. Warburton, Phys. Rev. B 96, 165440 (2017).

Deterministically controlling the charge-state of a self-assembled quantum dot by em-

bedding it into a diode has been an important breakthrough [79, 92]. Charge noise is re-

duced [38] and spin physics has been very successful in such structures [15, 16, 17, 27, 28].

A similar breakthrough has been integrating quantum dots in nanostructures such as

waveguides or cavities. In such devices, the interaction of the quantum dot with light is

enhanced, and routing of the emitted photons is possible [10, 60, 93].

An issue is that both concepts are incompatible to a certain extent. To control the

charge state of a quantum dot and electrically stabilize its environment, it is placed in

the intrinsic region of a semiconductor and surrounded by two metallic gates. One gate

forms a Fermi-reservoir in tunnel contact with the quantum dot. On the one hand, these

gates have to be conducting – the carrier concentration should not be too little. On the

other hand, too high carrier densities will affect the optical properties of a waveguide by

free carrier absorption and plasmonic effects [94]. An n-i-Schottky diode with a top gate

made out of a typical metal such as gold [38] can be ruled out since the absorption would

be too high. A good system in that respect is a p-i-n-diode with epitaxial gates, doped

with a carrier concentration of 1018 − 1019 cm−3 which provides metallic behaviour of

the gates [95] in combination with low absorption at optical frequencies [96]. However,

in the case of a nanostructure, there are two remaining issues. The first one is related

to the fabrication process that can attack the gates and laterally remove material. A
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second issue is the built-in field of the p-i-n-diode. The built-in field implies that much

forward bias is needed to tune the quantum dot in resonance with the Fermi-reservoir in

the back-gate [97]. The high forward bias comes along with high currents [97] through

the device and can affect the quantum dot performance [97].

2.1 Design and Characterization of an Ultra-Thin

p-i-n-i-n-Diode Structure Hosting Quantum Dots

Abstract: We demonstrate full charge control, narrow optical linewidths, and optical

spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5 nm

thin diode structure. The quantum dots are just 88 nm from the top GaAs surface. We

design and realize a p-i-n-i-n diode that allows single-electron charging of the quantum

dots at close-to-zero applied bias. In operation, the current flow through the device is

extremely small resulting in low noise. In resonance fluorescence, we measure optical

linewidths below 2µeV, just a factor of two above the transform limit. Clear optical

spin pumping is observed in a magnetic field of 0.5 T in the Faraday geometry. We

present this design as ideal for securing the advantages of self-assembled quantum dots

– highly coherent single photon generation, ultra-fast optical spin manipulation – in the

thin diodes required in quantum nano-photonics and nano-phononics applications.

2.1.1 Introduction

Single self-assembled quantum dots are a source of high-quality single photons; they

are also hosts for single spins [17, 24, 26, 98, 99, 100, 101]. Their large optical dipole

moment enables fast initialization, manipulation, and readout of spin states all by optical

means [12, 16, 24, 101, 102]. In the best case, transform-limited single-photon emission

from single quantum dots has been demonstrated [39]. These properties are extremely

sensitive to the quantum dot environment. The electrical environment can be controlled

by embedding the quantum dots in diode heterostructures. The diode locks the Fermi

energy and provides electrical control of the quantum dot charge state. Some of the best

performances have been achieved in heterostructures that are ∼ 500 nm thick with the

quantum dot positioned ∼ 300 nm from the GaAs-air interface [38, 39].

The solid-state character of quantum dots allows their optical [10] and mechanical

[103, 104] properties to be engineered by nano-structuring. For instance, embedding

emitters in a membrane leads to the suppression of out-of-plane radiation modes through

total internal reflection; control of the in-plane modes can be achieved via lateral pat-
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terning of the membrane. Cavities and waveguides can be engineered by creating defects

in a photonic crystal bandgap structure. Single photons can be routed on-chip, and con-

trolled by single two-level systems [105]. Likewise, engineering the mechanical properties

can create phononic structures with the aim of controlling the quantum-dot–phonon in-

teraction [103, 104]. In all these applications, the basic building block is a thin GaAs

membrane. It is crucial that the quantum dots in these thin structures exhibit the same

excellent properties of quantum dots in bulk-like structures. This has not been achieved

so far.

Typical photonic crystal membranes, in the wavelength regime relevant for InGaAs

quantum dots, range in total thickness from 120 nm to 200 nm [97, 106]. The first

demonstrations of charge control on quantum dots in photonic crystals used thin p-i-

n diode structures [97, 107]. However, the large built-in electric field in combination

with the small thickness of these devices led to a large potential at the position of the

quantum dots shifting the Coulomb plateaus to large forward bias voltages. This resulted

in high tunneling currents at the operating bias in p-i-n-membrane devices, a possible

explanation for the absence of spin pumping on embedded quantum dots [97]. Besides,

the optical linewidths of quantum dots were relatively high in these structures.

In order to avoid the problems associated with high tunneling currents, we present here

a quantum dot diode which operates close to zero bias. The main idea is to incorporate

an n-layer within a p-i-n device, resulting in a p-i-n-i-n diode. The intermediate n-

layer is fully ionized. Most of the built-in field between the outer p- and n- gates drops

between the top p-gate and the intermediate n-layer. The electric field at the location of

the quantum dots is therefore much smaller than in a p-i-n diode with equal dimensions.

This allows single-electron charging to occur close to zero bias. The p-i-n-i-n diode is

used in silicon transistor technology [108, 109], albeit with lateral rather than vertical

control of the doping. It has also been employed in self-assembled quantum dot devices

[107, 110], but in these experiments, narrow optical linewidths in combination with good

spin properties were not achieved.

We present here a careful design that fulfills a list of criteria. The design rests on a

full quantitative analysis of the band bending. It is realized using state-of-the-art GaAs

heterostructures [39, 40]. We present resonant laser spectroscopy on single quantum

dots in a 162.5 nm thick p-i-n-i-n diode with a quantum dot to surface distance of just

88 nm. Deterministic charge control at low bias, narrow optical linewidths, as well as

optical spin pumping is demonstrated for these close-to-surface quantum dots. The de-

veloped heterostructure is ideal for electrical control of quantum dots in nanostructured

membranes for photonic and phononic applications.
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2.1.2 The p-i-n-i-n Quantum Dot Heterostructure

In the design of this structure, we have to fulfill a number of constraints. First, the

quantum dots should operate in the Coulomb blockade regime. This allows individual

quantum dots to be loaded deterministically with single electrons. Within a Coulomb

blockade plateau, the external bias allows some fine-tuning of the optical transition fre-

quencies via the dc Stark effect. Second, the dc current flowing through the device

should be as small as possible to avoid decoherence processes. This can be only guaran-

teed if the charging voltage is close to zero bias. Third, the optical linewidths on driving

the quantum dot resonantly should be small, close to the transform limit. This places

stringent conditions on the level of charge noise that can be tolerated. Fourth, the mem-

brane should have as little optical absorption as possible. Fifth, the membrane should

be thinner than ∼ 250 nm to ensure single-mode behavior in waveguide structures. In

fact, the fabrication of such nanostructures with a soft-mask technique sets a slightly

stronger constraint: 180 nm is the maximum membrane thickness that can be processed

with vertical sidewalls [111]. Sixth, the quantum dots must be located close to the center

of the diode structure to maximize the coupling to TE-like photonic modes [10]. The

combination of the fifth and the sixth constraint means that the distance between quan-

tum dots and the surface cannot be more than 90 nm. Seventh, the spin relaxation time

should be large so that the spin can be initialized and manipulated. In a diode device at

low temperature, this means that the co-tunneling rate between a quantum dot electron

spin and the Fermi sea should be suppressed by using a relatively large tunnel barrier

[112]. In such a situation, the spin can be initialized into one of its eigenstates by optical

pumping [15, 16, 23, 26].

Fulfilling these constraints is very challenging. It is clearly necessary to work with

epitaxial gates, n- and p-type regions in the device, as a metallic Schottky barrier is

highly absorbing. In principle, a thin p-i-n diode is a possibility. However, at zero bias,

there is a very large built-in electric field (Fig. 2.1(a)). Furthermore, the quantum dots

must be positioned at least 30 − 35 nm away from the n-type back contact to suppress

co-tunneling sufficiently. The combination of both constraints means that the quantum

dot charges with a single electron only at a large and positive bias, around ∼ 1 V. A

high current through the device is hard to avoid under these conditions [97, 113]. The

quantum dots could be located closer to the back gate while suppressing co-tunneling

by using AlGaAs tunneling barriers. Highly opaque AlGaAs tunneling barriers have

been successfully used [30, 87, 90]. More transparent AlGaAs tunneling barriers require

extremely precise control of thickness and Al-content, hard to achieve in practice.

An alternative to the p-i-n diode is a diode with an additional n-layer in the intrinsic
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Fig. 2.1: (a,b) Schematic conduction band profile of a p-i-n and p-i-n-i-n diode at zero
bias voltage. In the p-i-n-i-n structure, an intermediate, fully ionized n-type
layer causes band bending, reducing the potential difference between quantum
dots and back gate. In this way, the quantum dots can be charged at a bias
voltage close to zero. In contrast, a large positive voltage must be applied to the
p-i-n diode. (c) Heterostructure of the investigated samples. Conduction (cb)
and valence (vb) band edges are plotted in black and the density of free carriers
is plotted in green (dotted line for holes, solid line for electrons). The dashed
black line indicates the Fermi level, EF. The purple layer indicates the location
of the quantum dots at the center of the membrane. The quantum dots are
not included in the band-structure simulation. The diode structure is grown on
top of a 1371 nm thick Al0.75Ga0.25As sacrificial layer enabling selective under-
etching. The quantum dots are a distance of 35 nm away from a back gate
consisting of two n-type layers (light and dark blue). The top gate consists of
two p-type layers with different doping concentrations (indicated in red). An
additional n-type layer is located between quantum dots and top gate. The
full heterostructure is constructed as follows: 12.5 nm intrinsic GaAs (layer 9),
15 nm n-type GaAs with a doping concentration of nD+ = 8.0 ·1018 cm−3 (layer
8), 24.5 nm n-type GaAs with nD = 2.0 · 1018 cm−3 (layer 7), 35 nm intrinsic
GaAs (layer 6), a layer of InGaAs quantum dots, additional 25.5 nm intrinsic
GaAs (layer 5), 12 nm n-type GaAs with nd = 2.0 ·1018 cm−3 (layer 4), 20.5 nm
intrinsic GaAs (layer 3), 15 nm p-type GaAs with nA = 2.0 · 1018 cm−3 (layer
2), 15 nm p-type GaAs with nA+ = 1.0 · 1019 cm−3 (layer 1).
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region, a p-i-n-i-n device (Fig. 2.1(b)). The additional n-layer lies in the depletion

region of the surrounding p-i-n diode. It is fully depleted such that it becomes positively

charged. At zero bias, the total potential drop between the outer p- and n-layers is the

same as in the p-i-n diode, but now there is a large drop between the top p-contact and

the intermediate n-layer, followed by a small drop between the intermediate n-layer and

the back contact. By choosing the location and doping levels of the intermediate n-layer,

the device can be designed so that the quantum dot charging voltage lies close to zero

volts.

The p-i-n-i-n design allows in principle all seven criteria to be met. The design

is compatible with a 35 nm i-GaAs tunneling barrier that is known to result in clear

Coulomb blockade yet suppresses co-tunneling sufficiently so that spin initialization can

be carried out with high fidelity with optical pumping even in the Faraday geometry

[15, 23]. The device can be operated close to zero bias, resulting in very small currents.

Absorption is minimized by using epitaxial gates instead of metal Schottky gates. The

intermediate n-layer is fully ionized and, therefore, should not result in any additional

losses. The entire heterostructure (see Fig. 2.1(c)) can be made as thin as 176 nm with

the quantum dots located in the center.

The performance of a p-i-n-i-n device needs to be tested experimentally. A particular

challenge is to achieve narrow optical linewidths for quantum dots just 80− 90 nm away

from the free surface as it is a known source of charge noise. By using careful design

and state-of-the-art material, we report here success in this endeavor.

2.1.3 Design of the Diode Structure

A p-i-n-i-n heterostructure is designed to fulfill the seven criteria. Charge carrier densi-

ties and electric fields are calculated by solving the Poisson equation, either numerically

(nextnano) or analytically within the depletion approximation (see appendix A). In the

numerical simulation, the effect of surface depletion due to surface Fermi pinning is

taken into account by using a Schottky barrier height of 1 eV at the surface of the struc-

ture. The two approaches give results which are in good quantitative agreement. The

calculated band bending and exact layer sequence are shown in Fig. 2.1(c).

The sample is grown by molecular beam epitaxy. The diode membrane is grown on

top of a 1371 nm thick Al0.75Ga0.25As sacrificial layer which enables fabrication of free

standing membranes via selective wet etching [111]. The first part of the membrane is

a 12.5 nm thick layer of intrinsic GaAs (no. 9 in Fig. 2.1(c)), followed by a back gate

consisting of two layers of n-type (silicon-doped) GaAs. The first layer (no. 8) is 15 nm

thick and has a high doping concentration nD+; the second layer (no. 7) is 24.4 nm
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thick with a lower doping concentration nD (see Fig. 2.1(c) for precise values). A tunnel

barrier (no. 6) of 35 nm intrinsic GaAs separates the back gate from a layer of InGaAs

quantum dots. Above the quantum dot layer, a 25.5 nm thick capping layer (no. 5) of

intrinsic GaAs is grown; subsequently, the intermediate n-type layer (no. 4) with a doping

density of nd and a thickness of 12 nm is grown. Finally, there is a 20.5 nm layer (no.

3) of intrinsic GaAs and a top gate consisting of two 15 nm thick p-type (carbon-doped)

GaAs layers (no. 1, 2). The first p-type layer (no. 2) has a lower doping concentration

(nA) than the second one (nA+) (see Fig. 2.1(c) for precise values). The intention of the

very highly doped p-type layer on top of the device is to prevent surface depletion of the

top gate and to allow for fabrication of high-quality ohimc p-contacts. Details on the

fabrication of electrically gated samples are given in appendix F.

2.1.4 Photoluminescence and Resonance Fluorescence

The samples are measured in a helium bath cryostat at 4.2 K. Optical experiments are

performed with a confocal dark-field microscope with a spot size close to the diffrac-

tion limit [83]. All measurements are carried out on two samples processed from the

same wafer, denoted as samples 1 and 2 in the following. Both samples fulfill all the

requirements that we defined at the outset: a diode-like IV-characteristic with low tun-

neling currents at small bias voltages, exciton charging transitions at small bias voltages,

narrow linewidths in resonance fluorescence, and optical spin pumping.

Plotted in Fig. 2.2(a) are the IV-curves of the two samples, both showing diode-like

behavior with very low tunneling currents for a large region around 0 V. This excellent

electrical behavior is a consequence of both the high material quality of our wafers

and the careful contacting of the p-gate (see appendix F). First tests of devices with

nano-structures do not show an increased leakage current, but further investigations are

required to rule out etched sidewalls as a possible source of increased leakage currents.

We characterize the charging behavior of a single quantum dot by measuring its pho-

toluminescence (PL) as a function of an external bias voltage. Excitation is carried out

with a continuous-wave laser with a wavelength of 830 nm. The voltage applied between

top and back gates of the sample changes the energy difference between the back gate

Fermi level and the discrete energy levels of the quantum dot. The PL shows clear

Coulomb blockade with a series of plateaus, see Fig. 2.2(c). We assign these plateaus to

the neutral exciton X0 and the charged excitons X1-, X2-, and X3-. All charge plateaus

appear in reverse bias, in a range between −0.7 V and −0.4 V. At these bias voltages, the

tunneling current through the sample is limited to only a few tens of nA for a mesa size of

∼ 15 mm2 (see Fig. 2.2(b)), corresponding to a current density of less than ∼ 3 nA/mm2.

21



Fig. 2.2: (a) IV-curve of two separate samples. Both IV-curves are measured at 4.2 K
and show a typical diode behavior. (b) IV-curve in the voltage regime where
excitons of single quantum dots are measured. (c) Photoluminescence (PL) for
weak non-resonant excitation (830 nm) as a function of applied bias voltage for
a quantum dot in sample 1. The emission of neutral (X0) and the negatively
charged excitons (X1-, X2-, and X3-) is observed. All excitons appear at a low
bias voltage where the tunneling current is only several tens of nA. The dotted
blue lines indicate the regimes in which the different exciton states become
energetically favorable. The dotted red lines indicate the single-electron regime
of the quantum dot as measured by resonance fluorescence. Owing to the
weak excitation power in PL, the single-electron regime observed in resonance
fluorescence coincides with the PL measurement. For high-power non-resonant
excitation, the charging steps in the PL can be shifted by optically created
space charge.

Our PL-measurements can be interpreted in a majority-minority carrier picture: the

optical excitation creates the minority carrier, the hole; the back gate provides majority

carriers, electrons. For a 25 nm tunnel barrier (e.g. used in Ref. [38, 79, 92, 112]),

electron tunneling is typically much faster than recombination such that once a hole

is captured, fast tunneling enables the exciton with the smallest energy to be formed

before recombination occurs [12]. Abrupt changes in the PL spectrum as a function of

bias result. In this work, the tunnel barrier is larger, 35 nm, and interpretation of the
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PL spectrum is slightly more involved.

In the first region of Fig. 2.2(c), the ground state is an empty quantum dot. The lowest

energy excited state is X0. When the quantum dot captures a single hole, it becomes

energetically favorable for a single electron to tunnel into the quantum dot, forming an

exciton and via recombination a photon at the X0 wavelength.

The first dashed line between regions 1 and 2 in Fig. 2.2(c) marks the point at which

the X1- and X0 energies cross, while the empty quantum dot remains the ground state

of the system. In region 2, electrons begin to tunnel into the quantum dot once it has

captured a single hole and the X1- line appears. The fact that the X0 remains bright

at this point, although not as bright as X1-, indicates that the electron tunneling time

into the quantum dot is comparable to the X0 radiative lifetime: recombination can

occur before tunneling has created the exciton with the lowest energy. We note that the

tunneling rate is large enough that no quenching of the resonance fluorescence of X1−

due to an Auger process is expected. The ionization of the quantum dot due to an Auger

process has been observed for thicker tunnel barriers [90]. Another ionization channel

following a radiative Auger effect will be discussed in chapter 5.

It might appear surprising that the X0 brightness increases in the regime where the

quantum dot ground state is the single-electron state (region 3 of Fig. 2.2(c)). These

measurements are carried out in the weak excitation regime where hole capture is sig-

nificantly slower than exciton recombination. The single-electron ground state implies

that X0 recombination can take place as soon as a hole is captured. We speculate that

the presence of an electron in the quantum dot increases the hole capture rate.

In the fourth region, the quantum dot is charged with two electrons in its ground

state. Thus, the capture of a single hole enables the X1- recombination. In this region,

the intensity of X0 is small. X1- recombination leaves behind a single electron. If a

hole is captured before tunneling takes place, X0 emission is possible. However, this is

unlikely with weak optical excitation (the case here) as electron tunneling is faster than

hole capture.

Finally, in regions 5 and 6, the energetically favorable excitons are the X2- and X3-

states. These states contain one and two electrons in the quantum-dot p-shell, respec-

tively. The tunneling barrier is more transparent for the p-shell than for the s-shell on

account of the higher p-shell energy leading to faster tunneling times [114] and, therefore,

less overlap between the plateaus measured in PL.

The PL experiment establishes that the transition between the 0 and 1e ground states

takes place at −0.6 V, not exactly at the design value of zero. This can be explained

by a slight inaccuracy in the doping concentration of the intermediate n-type layer (see
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appendix B). However, the flat IV-characteristic in reversed bias implies that tunneling

currents are still very small at this voltage. The measured IV-characteristic is comparable

to a p-i-n diode structure of similar thickness [97], but in the latter case charging would

take place at large forward bias where tunneling currents are much bigger.

We turn now to resonant excitation of single quantum dots: this measures the exact

optical absorption linewidth. A resonance fluorescence measurement of the quantum dot

presented in Fig. 2.2(b) is shown in Fig. 2.3(a). The resonant excitation is carried out

with a narrow-bandwidth continuous-wave laser, the reflected laser light is suppressed

with a cross-polarized detection scheme [83]. We make use of the Stark shift to sweep

the quantum-dot transition through the resonance, using the applied bias voltage, while

the excitation laser is kept at a constant wavelength. The measurement presented in

Fig. 2.3(a) is carried out with a low excitation power corresponding to 22.5 % of the

saturation count rate. In the best case, linewidths below 2µeV (full width at half

maximum) are measured on second time scales. This performance is comparable to

that of quantum dots in thick diode structures located far from the GaAs-air interface

[38, 39]. Narrow linewidths are reproducibly observed for different quantum dots in both

samples (Fig. 2.3(b)). Quantum dot linewidths are highly sensitive to charge noise. This

measurement demonstrates forcibly that the level of charge noise in the close-to-surface,

p-i-n-i-n device is similar to the ultra-low charge noise in the very best far-from-surface,

p-i-n device. Important for this low charge noise is screening of surface states in a gated

structure [38] as well as very low tunneling currents at the operation point of the device.

2.1.5 Electron Spin Pumping

Next, we investigate the spin properties of a quantum dot. We perform optical spin

pumping experiments in a magnetic field in the Faraday geometry. The laser wavelength

is changed stepwise to map the full Coulomb plateau. The background suppression of the

dark-field microscope has a chromatic dependence and is therefore readjusted for each

wavelength. In practice, this is carried out by an automatic algorithm that minimizes

the intensity of the laser background by adjusting the polarization optics [83]. For a

fixed laser wavelength, the bias voltage is swept, sweeping the quantum dot transition

with respect to the laser. This gives a linewidth measurement of the X1− exciton, see

Fig. 2.4(a). This procedure is repeated for different laser wavelengths giving a full map

of the response over the single-electron Coulomb plateau. The results for zero magnetic

field and a magnetic field of 0.5 T (Faraday geometry) are shown in Fig. 2.4(a) and

Fig. 2.4(b), respectively. Both measurements are done with the same excitation power.

In Fig. 2.4(b), the X1−-plateau shows a Zeeman splitting. Furthermore, the resonance
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Fig. 2.3: (a) Resonance fluorescence of the singly charged exciton X1− measured on
the quantum dot shown in Fig. 2.2(b). The linewidth obtained by fitting a
Lorentzian profile (red line) to the data (black circles) is 1.9µeV (full width
at half maximum). The count rate is 22.5 % of the saturation count rate. (b)
Average linewidths across the singly charged exciton plateau for five quantum
dots in two separate samples. The linewidths lie reproducibly in the range
2− 3.5µeV.

fluorescence signal disappears in the middle of the plateau. This is the signature of

optical spin pumping [15, 23, 115]: the spin is initialized in one of the spin eigenstates.

Spin pumping is interpreted in terms of the level scheme shown in Fig. 2.4(d). There

are two strong transitions, the vertical transitions, and two weak transitions, the diagonal

transitions. In the Faraday geometry, spin pumping arises due to the weakly allowed

diagonal transitions in combination with a long electron spin relaxation time [98]. On

driving the |↑〉 ↔|↑↓,⇑〉 transition, the electron is pumped into the |↓〉 state via the

weak diagonal transition |↑↓,⇑〉 ↔|↓〉 (green line in Fig. 2.4(d)). The laser is no longer

scattered by the quantum dot, and the resonance fluorescence turns off. In the plateau

center, the signal is reduced by a factor of αr = 40.1 ± 1.6 for the red transition, and

by a factor of αb = 37.6 ± 1.2 for the blue transition. In both cases, we take the

resonance fluorescence intensity at zero magnetic field as a reference. To quantify the

spin initialization we estimate a spin initialization fidelity F =
√
〈↑| ρ |↑〉 for pumping

the red, and F =
√
〈↓| ρ |↓〉 for the blue transition. The initialization fidelity can be

related to the resonance fluorescence via F =
√

1− 1/αr/b (see appendix D for details).

This way, we estimate initialization fidelities of F = 98.7 % for both spins. A significant

difference is not expected at 4.2 K and small magnetic fields as the thermal energy is much

larger than the Zeeman splitting between the electron spin states. At the edges of the

single-electron Coulomb plateau, the resonance fluorescence signal does not disappear.

At the plateau edges, co-tunneling with the Fermi sea in the back gate randomizes the

25



Fig. 2.4: (a) Resonance fluorescence of the singly charged exciton as a function of bias
voltage and resonant laser wavelength. The measurement is carried out at zero
external magnetic field on a quantum dot in sample 2. (b) Resonance fluores-
cence of the same quantum dot at a magnetic field of B = 0.5 T in the Faraday
geometry. At the center of the plateau, the resonance fluorescence signal disap-
pears due to optical spin pumping. (c) Resonant excitation is carried out with
two lasers exciting the same quantum dot. The wavelength of the first laser is
changed step-wise, whereas the second laser is kept at a constant wavelength
of 945.874 nm (indicated by the blue line). The signal reappears when both
vertical exciton transitions are excited simultaneously, confirming the presence
of optical spin pumping (indicated by the red line). When the second laser is
in resonance with the diagonal transition |↓〉 ↔|↑↓,⇑〉 (indicated by the green
line), the resonance fluorescence signal is also enhanced since the second laser
pumps the quantum dot back to its bright transition |↑〉 →|↑↓ , ⇑〉. However,
this enhancement is weaker since the corresponding transition is dipole forbid-
den, i.e. only weakly allowed. The observation of the diagonal transition allows
the Zeeman splittings, ∆e, ∆h for electron and hole, respectively, to be deter-
mined. Note that in (a–c) all lasers are kept at the same power. (d) Level
scheme of the quantum dot in the Faraday geometry.

spin rapidly, and spin pumping becomes ineffective [112]. The observation of optical spin

pumping in the Faraday geometry confirms that the spin-flip processes which couple the

two electron spin states |↑〉, |↓〉 are significantly slower than the decay rate of the weakly

allowed diagonal transition [23].

To confirm that the observed disappearance of the signal arises due to optical spin

pumping, we repeat the experiment with a second laser, a re-pump laser [15]. The

second laser has a fixed wavelength of 945.87 nm, the wavelength of the vertical transition

|↑〉 ↔|↑↓,⇑〉 (blue arrow in Fig. 2.4(d)). These measurements are shown in Fig. 2.4(c).

The laser powers are kept constant throughout the entire measurement. Two re-pump

resonances are observed (marked by red and green dashed lines in Fig. 2.4(d)).
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When the first laser, the pump laser, is in resonance with the vertical transition

|↓〉 ↔|↑↓,⇓〉, the electron spin is shelved in the |↑〉 state. With this laser alone, the

resonance fluorescence disappears. However, in the presence of the re-pump laser, the

electron spin is driven back into the |↓〉 state, and the resonance fluorescence reappears:

the electron spin ends up in a statistical mixture of the two spin states. Similarly, the

system ends up in a mixture of the spin states when the pump laser is stepped into

resonance with the weakly-allowed diagonal transition |↓〉 ↔|↑↓,⇑〉. However, since the

diagonal transition is only weakly allowed, the resonance fluorescence is relatively weak

in this case. These observations explain the origin and intensity of the two re-pump

resonances.

The fact that the diagonal transition |↓〉 →|↑↓,⇑〉 is visible allows the energies of

all three optical transitions to be determined. The energies of the different exciton

transitions are denoted as E1 for the transition |↑〉 →|↑↓,⇑〉, E0 for |↓〉 →|↑↓,⇓〉, and Ed

for |↓〉 →|↑↓,⇑〉 (see Fig. 2.4(d)). The electron and hole Zemann splitting are given by

∆e = E1 − Ed and ∆h = Ed − E0. This allows the magnitude of the electron and hole

g-factors to be determined via the relations ∆e/h = ge/hµBB. Assuming that the electron

g-factor is negative, we find an electron g-factor of ge = −0.55 and a hole g-factor of

gh = 1.37, values comparable to those in the literature [15, 97, 116].

2.1.6 Conclusions

In conclusion, we have designed a p-i-n-i-n diode structure with a thickness of just

162.5 nm. The device enables single-electron charging of embedded self-assembled quan-

tum dots at low bias voltage and with small tunneling currents. The diode is fully

compatible with the fabrication of photonic and phononic nanostructures in thin mem-

branes. We demonstrate narrow optical linewidths and optical spin pumping for the

close-to-surface quantum dots in the p-i-n-i-n diode. These excellent properties will

underpin future exploitations of quantum dot spins in functionalized nanostructures.

Appendix A: Analytical Bandstructure Model

We present an analytic calculation of the band structure of the p-i-n-i-n diode [109]. To

this end, we divide the heterostructure in 5 different regions (Fig. 2.5). The first region

(A) is the depletion zone of the p-type top gate, of width wp and doping concentration

nA, part of layer number 2 in Fig. 2.1(c). The second region (B) is the intrinsic GaAs

layer between top gate and an intermediate n-layer (layer 3 in Fig. 2.1(c)). Its width is

denoted by L1. The third region (C) is the intermediate n-layer (layer 4 in Fig. 2.1(c))
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Fig. 2.5: Schematic p-i-n-i-n diode with labels used in the analytical calculation of the
band structure. The letters (A–E) in the frames correspond to the different
regions considered in the band structure calculation; the colors indicate the
corresponding layers of the diode shown in Fig. 2.1(c).

with a width denoted by w and doping concentration nd. The fourth region (D) is the

subsequent intrinsic region of width L2 which includes the quantum dot layer (layer 5, 6

in Fig. 2.1(c)). The final region (E) is the depletion zone of the back gate (part of layer

7 in Fig. 2.1(c)). It has a width of wn and a doping concentration of nD.

We apply the Poisson equation ∆Φ = − e·n
εε0

to all five regions (e electron charge, ε0

vacuum permittivity, ε relative permittivity of GaAs, and n carrier density). Note that

the potential Φ is defined for a positive probe charge and has to be reversed in sign to

describe an electron in the conduction band. Together with the constraints that the

electric displacement field −εε0 · ∂Φ
∂z must be continuous and vanishes at the outer edges

of the depletion zones, one obtains the following 5 equations for the electric field in the

different regions A–E of the structure:

A :
∂Φ

∂z
=

e

εε0
· nA · (z + wp + L1) (2.1)

B :
∂Φ

∂z
=

e

εε0
· nAwp (2.2)

C :
∂Φ

∂z
=

e

εε0
· (nAwp − ndz) (2.3)

D :
∂Φ

∂z
=

e

εε0
· (nAwp − ndw) (2.4)

E :
∂Φ

∂z
=

e

εε0
· (nD · (L2 + w − z) + nAwp − ndw) (2.5)

Integration of the electric field in all 5 regions of the diode yields the potential drop ∆V
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between top gate and back gate:

εε0
e
·∆V =

εε0
e
· (V0 − Vbias)

=
nA
2
w2
p + nAwpL1 + nAwpw −

nd
2
w2

+ L2 · (nAwp − ndw)− nD
2
w2
n

+ wn · (nAwp − ndw) (2.6)

where V0 is the built-in voltage of the diode and Vbias is the externally applied bias

voltage. For high doping concentrations when top and back gate are degenerately doped,

the built-in voltage is given by: e · V0 = Egap + Ee
F + Eh

F where Egap is the band gap

of GaAs and E
e/h
F is the Fermi level for electrons in the back gate and holes in the top

gate, respectively (E
e/h
F = ~2/2m*

e/h ·
(
3π2n

)2/3
). The condition that the entire device

is charge neutral,

−nA · wp + nd · w + nD · wn = 0, (2.7)

in combination with Eq. 2.6, determines the widths of the depletion zones wp and wn:

wp =
1

a1
·
(
a2 +

√
a2

2 + 2a1a3

)
a1 = nA +

n2
A

nD

a2 = −nAL2 − nAw − nAL1 +
nAnd
nD

w

a3 = ndL2w +
ndw

2

2
+
εε0
e

∆V −
n2
dw

2

2nD

wn =
1

nD
· (nAwp − ndw) (2.8)

Using Eq. 2.8 the potential as a function of vertical position inside the heterostructure is

obtained by integration over Eq. 2.1–2.5. In particular, the electric field at the position

of a quantum dot is given by Eq. 2.4.

Appendix B: Bias Voltage of Coulomb Plateaus

We present a possible explanation for the fact that the 0-1 electron transition takes place

at a bias voltage of Vbias = −0.6 V and not around zero bias as intended. Deviations

of heterostructure or quantum dot parameters can shift this transition voltage. The
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part of the heterostructure that influences the 0-1e transition voltage most strongly is

the intermediate n-type layer. A deviation in its thickness or its doping concentration

changes the potential of the quantum dot levels with respect to the Fermi-reservoir. The

layer thickness can be controlled rather precisely in MBE-growth. Therefore, we simulate

the 0-1e transition voltage as a function of the doping concentration of the intermediate

n-layer. The ratio between doping of the intermediate n-layer and doping of the back

gate is kept constant for this estimation since a systematically different n-doping would

affect both layers. We use the analytical model and also numerical band structure

simulations (nextnano). We take a single electron confinement energy of the quantum

dot of Ec = 134 meV [117] and vary the doping concentration (Fig. 2.6(a)). The 0-1

electron transition voltage obtained numerically assuming ohmic boundary conditions

agrees well with the analytical model but is systematically slightly larger. We explain

this by the fact that the numerical Poisson equation solver takes into account a charge

overspill of back gate electrons into the intrinsic region (see Fig. 2.1(c)). This effect lifts

the conduction band energy slightly at the location of the quantum dots. In contrast,

the analytical model assumes abrupt depletion regions. A numerical simulation taking

into account surface depletion via Schottky barriers of 1 V gives comparable results (see

Fig. 2.6). Surface effects are not considered in the analytical model. All this work

predicts a 0-1e transition voltage of about −0.1 V for the nominal doping concentration

nd = 2.0 · 1018 cm−3.

Fig. 2.6(b) shows the 0-1 electron transition voltage as a function of the quantum

dot single electron confinement energy Ec keeping the doping at the nominal value of

nd = 2.0 · 1018 cm−3. The dashed black line indicates a single electron confinement

energy of Ec = 134 meV that has been reported in literature [117]. One can see that the

shift of the 0-1e transition voltage to −0.6 V cannot be explained by any realistic single

electron confinement potential of the quantum dot. This suggests that the most likely

explanation for the shift of the 0-1e transition to −0.6 V is a deviation of the n-doping

from the nominal value. An increase by about 30 % reproduces the experimental result

taking Ec = 134 meV (Fig. 2.6(a)). A reduced doping of the p-type top gate would

also shift the 0-1e transition to more negative bias voltages. However, the effect of an

under-doped p-layer is smaller and cannot explain the shift to −0.6 V completely.

Appendix C: Supplementary Experimental Data

In the previous sections, we presented narrow linewidths for a quantum dot in sample

1; optical spin pumping is demonstrated for a quantum dot in sample 2. To illustrate

that the measurements are reproducible on different quantum dots, we show in Fig.
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Fig. 2.6: (a) The calculated shift of the 0-1 electron charging transition as a function of
the doping of the intermediate n-type layer nd. The back gate doping is scaled
correspondingly (nd = nD). The black curve shows the result of the analytical
calculation (see appendix A); the green points represent the results of band
structure simulations including surface depletion; the blue points represent the
results of band structure simulations assuming ohmic contacts. (b) Shift of the
0-1 electron charging transition as a function of the single electron confinement
energy Ec.

2.7 a typical linewidth for the quantum dot in sample 2, and demonstrate optical spin

pumping for the quantum dot in sample 1.

Appendix D: Analysis of Spin Pumping

Here we show how resonance fluorescence of the singly charged exciton is used to obtain

spin initialization fidelities. In section 2.1.5, the initialization fidelity was connected to

the ratio αr/b between the resonance fluorescence intensity when no spin pumping is

present (at B = 0 T) and the resonance fluorescence intensity when spin pumping is

active (at B = 0.5 T).

We give a derivation of this relation in a rate-equation picture. At zero magnetic field,

both allowed transitions |↓〉 ↔|↑↓,⇓〉 and |↑〉 ↔|↑↓,⇑〉 are degenerate (see Fig. 2.4(d)).

In the steady state, the ratio between occupation of upper and lower levels is given by:

NB=0
3

NB=0
2

=
NB=0

4

NB=0
1

=
Γ

Γ + γ + γD
≡ b (2.9)

with NB=0
3 = NB=0

4 the occupation of the excited states and NB=0
2 = NB=0

1 the oc-

cupation of the ground states (see Fig. 2.4(d) for labels). Γ denotes the stimulated

emission/excitation rate, γ the spontaneous emission rate via the dipole-allowed vertical
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Fig. 2.7: (a) Resonance fluorescence of a quantum dot in sample 2 (the one from Fig.
2.4). The linewidth obtained by a Lorentzian fit (red curve) is 2.7µeV for a
power corresponding to 27 % of the saturation count rate. (b) Optical spin
pumping on the singly charged exciton for a quantum dot in sample 1 (the one
from Fig. 2.3) at a magnetic field of 0.5 T. The different peaks correspond to
resonance fluorescence measurements for different excitation wavelengths. The
gray shaded region indicates the regime where the spin pumping dominates over
co-tunneling processes and the resonance fluorescence signal thus disappears.
At the plateau edges, the co-tunneling dominates and resonance fluorescence
reappears.

transitions, and γD the spontaneous emission rate via the diagonal transitions. The res-

onance fluorescence intensity RFB=0 is directly connected to the occupation of the upper

states: RFB=0 = c̃
(
NB=0

3 +NB=0
4

)
. The combination of Eq. 2.9 and the normalization

condition
∑4

i=1N
B=0
i = 1 yields the equation:

RFB=0 = c̃
(
NB=0

3 +NB=0
4

)
=

c̃

1 + 1/b
. (2.10)

In finite magnetic field, the transitions |↓〉 ↔|↑↓,⇓〉 and |↑〉 ↔|↑↓,⇑〉 are split in energy.

We take the case when the red-shifted transition |↓〉 ↔|↑↓,⇓〉 is driven by a laser field

whereas the other one is not addressed. This means that NB 6=0
4 = 0 and the resonance

fluorescence is connected to the occupation of just one upper level: RFB 6=0 = c̃NB 6=0
3 . In

the steady state, the ratio of NB 6=0
3 and NB 6=0

2 is also given by the relation NB 6=0
3 /NB 6=0

2 =

b, see Eq. 2.9. In combination with the normalization condition
∑3

i=1N
B 6=0
i = 1 this

leads to:

RFB 6=0 = c̃NB 6=0
3 = c̃

1−NB 6=0
1

1 + 1/b
. (2.11)

The combination of Eq. 2.10 and Eq. 2.11 directly connects the occupation NB 6=0
1 of the
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Fig. 2.8: Resonance fluorescence intensity along the single electron Coulomb plateau for
the quantum dot shown in Fig. 2.4. The black curve shows data at 0.0 T divided
by a factor of two (to give a signal per spin); the red triangles (blue circles) show
the data at 0.5 T for the lower (higher) frequency Zeeman transitions. To obtain
the ratio between the plateau intensities with and without spin pumping, the
corresponding signals are averaged in the plateau center (gray shaded region).
The orange curve is a fit of the data at B = 0.0 T to Eq. 2.13.

ground state with the resonance fluorescence intensities:

NB 6=0
1 = 1− 1

αr
, with αr =

RFB=0

RFB 6=0
. (2.12)

This equation shows how the initialization fidelity can be deduced from the resonance

fluorescence measurements.

The corresponding values of αr/b are determined in the following way. For every bias

voltage, the maximum resonance fluorescence signal (Fig. 2.4) is determined. Results

are plotted in Fig. 2.8 for the two transitions at 0.5 T (Zeeman-split) and for the single

transition at zero magnetic field. The signals are averaged over a small region in the

Coulomb plateau center to determine accurately the strength of the resonance fluores-

cence in the regime where optical spin pumping dominates over spin co-tunneling. In

this way, we determine the intensity ratio αr/b between the signal at zero magnetic field

and the signal at B = 0.5 T.

Appendix E: Lever Arm Approximation

On increasing the bias voltage from the center of the Coulomb plateau, the X1− resonance

fluorescence drops once it becomes electrically favorable for a second electron to tunnel

into the quantum dot. On the other hand, on decreasing the bias voltage from the plateau

center, the X1− resonance fluorescence drops once it becomes energetically favorable for
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the electron to tunnel out of the quantum dot. In both cases, the edges of the X1−

plateau are not abrupt since the electron occupation in the back gate is determined

by a thermally smeared Fermi distribution. At the plateau edges, the X1− resonance

fluorescence signal maps the Fermi distribution of the back gate and is well described

by a 2-sided Fermi-distribution:

IRF(V ) = I0 ·
1

1 + exp
(
e·(V−V1)
λdiffkBT

) · 1

1 + exp
(
e·(V2−V )
λdiffkBT

) (2.13)

where kBT is the thermal energy, V1 and V2 specify the bias voltage at the plateau edges,

and I0 is the intensity in the plateau center. The variable λdiff, the differential lever arm,

is defined by λdiff = e ·
(
∂ΦQD

∂Vbias

)−1
where ΦQD is the energy difference between back gate

Fermi-energy and the quantum dot single electron level. Thus, λdiff parameterizes how

the potential of the quantum dot changes with bias voltage Vbias.

We determined the differential lever arm as a function of the bias voltage by using

numerical band structure simulations. We find a value of λdiff = 4.17 at a bias voltage

of −0.6 V. A slightly increased n-doping explaining the 0-1e transition at this bias is

taken into account (see appendix B). In the simulation, the lever arm is to a good

approximation constant over the single electron Coulomb plateau. We fit the model

described by Eq. 2.13 using the position of the plateau edges V1, V2 and the plateau

intensity I0 as the only fit parameters. The temperature 4.2 K as well as the differential

lever arm are fixed parameters in the fit. The fit describes the experimental data very

well (Fig. 2.8). This is further evidence that the electrical properties of our sample are

well understood.

We note that the lever arm is often defined as λgeo = L/LQD (geometrical lever arm)

and λel = e ·
(

ΦQD

V0−Vbias

)−1
(electrical lever arm). For diode structures with little band

bending, the three parameters λdiff, λel, and λgeo are to a good approximation equivalent

[23, 112, 118]. Obviously, this is not the case for the heterostructure presented here as

a result of band bending in the p-i-n-i-n structure.

Appendix F: Sample Fabrication

A schematic of the sample is shown in Fig. 2.9. To fabricate devices from the wafer

material, a mesa structure is defined by means of optical lithography. The top gate

is etched away around this mesa so that an independent contact to the back gate can

be made. A wet chemical process with a diluted mixture of sulfuric acid and hydrogen

peroxide (1 H2SO4 : 1 H2O2 : 50 H2O) was used for the etching. Subsequently, a contact
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Fig. 2.9: Schematic of the sample. To make electrical contacts, the top gate is removed
in part of the sample by wet chemical etching. An AuGe-contact (yellow) is
annealed into the back gate. The top and the back gate are contacted with
silver paint.

pad of Au/Ge/Ni is evaporated onto the new etched surface and then annealed at 420 ◦C

resulting in an ohmic contact to the back gate [119]. In the next step, we evaporate a

pad of 3 nm titanium followed by 7 nm of gold on a small part (∼ 1 mm2) of the top

gate using a shadow mask. Making electrical contacts via standard bonding processes

requires careful adjustment of the bonding parameters to avoid any damage, especially

on very thin samples. On account of the small distance between the top- and the back

gate in this device, standard bonding processes were avoided as a precautionary measure.

Instead, the electrical contacts to the gates were made by affixing the wires to the bond

pads with silver paint, a method with which we reproducibly achieved good contacts.

2.1.7 Application of the p-i-n-i-n-Diode in Nanostructured Devices

The p-i-n-i-n-diode has been successfully used as a platform for quantum dots in nanos-

tructured devices [107, 120]. The fabrication of nanobeam-waveguides and nanomechan-

ical resonators has been done using the method described in Ref. [111]. The fabrication

involves patterning a soft-mask via e-beam lithography followed by reactive-ion etching.

The p-i-n-i-n-diode is grown on top of a ∼ 1 µm thick AlGaAs layer that can be selec-

tively etched with HF or HCl. Before the etching, electrical contacts are protected by

photoresist. Selective etching with HF is done in the absence of light to avoid photo-

induced erosion of the p-type top gate [121], etching with HCl has to be done at low
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temperatures to provide selective etching of AlGaAs [122]. In both cases, the device

performance after fabrication is very good: narrow quantum dot linewidths in combi-

nation with optical spin-pumping are routinely achieved. The p-i-n-i-n-diode structures

are fully compatible with the fabrication of nano-engineered devices.

2.2 Issues and Possible Improvements

Quantum dots in a p-i-n-i-n-diode show narrow linewidths and excellent spin properties

for the negatively charged exciton, X1−. An issue is that the linewidth of the neutral

exciton, X0, turns out to be systematically worse [121]. We suspect that this issue is

associated with the ionized intermediate n-layer that is silicon-doped. Silicon-doping of

GaAs provides free electrons as the group 4 silicon occupies mostly lattice sites of the

group 3 gallium. However, a small amount of As lattice sites are occupied by silicon as

well, which leads to free states for holes [123]. For the X1−, the hole is strongly bound

to the quantum dot due to the presence of an additional electron. For the X0, this is

not the case, and the hole might tunnel to one of the few hole states in the intermediate

n-layer. This effect would give rise to additional charge noise in case of the X0. An

attempt to solve this problem could be to place an additional AlGaAs barrier between

quantum dots and intermediate n-layer.

Simple p-i-n-diodes have performed better in this respect so far. Close to transform-

limited linewidths, high single-photon purity, and indistinguishability have been achieved

on X0, X+ for quantum dots in a nanostructured p-i-n diode [20, 124]. For deterministic

charge control of a quantum dot, the corresponding design is potentially disadvantageous.

The transition from neutral to charged exciton appears at above 1 V forward bias at a

significant current.

The p-i-n-i-n-concept works well for X1−. It has been shown that the spin dephasing

time of the positively charged exciton, X1+, is significantly better due to the p-type

Bloch-wavefunction of the hole [17]. Therefore, it would be desirable to have an alterna-

tive for the p-i-n-i-n-diode that allows locking the quantum dot charge state to a single

hole rather than a single electron. Unfortunately, a p-i-quantum-dot-i-p-i-n diode would

suffer from the problem that quantum dots are grown on top of a carbon p-doped layer.

Under these conditions, the overall material quality and the quantum dot properties

turned out to be reduced [125]. Alternative ways of reducing the built-in filed at the

quantum dot position are conceivable. When putting a material with a low dielectric

response (vacuum in the extreme case) between the top and the back gate, most of the

built-in potential drops in this layer rather than in the GaAs.
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Chapter 3

Excitons in Quantum Dots without Electron

Wetting Layer States

This section is partly adapted from Ref. [91]: ”Excitons in InGaAs Quantum Dots

without Electron Wetting Layer States”, Matthias C. Löbl, Sven Scholz, Immo Söllner,

Julian Ritzmann, Thibaud Denneulin, András Kovács, Beata E. Kardyna l, Andreas D.

Wieck, Arne Ludwig, and Richard J. Warburton, Communications Physics 2, 93 (2019).

Abstract: The Stranski-Krastanov growth-mode facilitates the self-assembly of quan-

tum dots (QDs) by using lattice-mismatched semiconductors, for instance, InAs and

GaAs. These QDs are excellent photon emitters: the optical decay of QD-excitons cre-

ates high-quality single-photons which can be used for quantum communication. One

significant drawback of the Stranski-Krastanov mode is the wetting layer. It results in

a continuum close in energy to the confined states of the QD. The wetting-layer-states

lead to scattering and dephasing of QD-excitons. Here, we report a slight modification

to the Stranski-Krastanov growth-protocol of InAs on GaAs which results in a radical

change of the QD-properties. We demonstrate that the new QDs have no wetting-layer-

continuum for electrons. They can host highly charged excitons where up to six electrons

occupy the same QD. Additionally, single QDs grown with this protocol exhibit optical

linewidths matching those of the very best QDs making them an attractive alternative

to conventional InGaAs QDs.

3.1 Introduction

InGaAs quantum dots (QDs) grown in the Stranski-Krastanov (SK) mode are excellent

photon emitters. Individual QDs provide a source of highly indistinguishable single-

photons [13, 14, 20, 21, 22, 126] and a platform for spin-photon and spin-spin entangle-

ment [27, 28, 127]. Their solid-state nature enables the integration of QDs in on-chip
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nanostructures such as photonic crystal cavities or waveguides [10, 107, 120, 128, 129,

130]. In some respects, a QD can be considered as an artificial atom. However, this

approximation is often too simplistic. Unlike a real atom in free space, an exciton

(a bound electron-hole pair) in a QD can couple to further degrees of freedom in its

solid-state environment, for instance, phonons [25, 131, 132, 133, 134] and nuclear spins

[17, 33, 46, 51, 99, 135, 136]. One problematic source of unwanted coupling is the so-

called wetting layer (WL) [35, 76, 86, 137]. The WL is a two-dimensional layer lying

between all QDs. It is an inherent feature of SK-growth.

On account of the confinement in the growth direction, there is an energy gap between

the WL-continuum and QD-electron and QD-hole states. However, this gap protects

the QD-electrons and -holes from coupling to the WL only to a certain extent. The gap

vanishes for a QD containing several electrons due to the on-site Coulomb repulsion;

the energy gap can be bridged by carrier-carrier and carrier-phonon scattering [35, 138].

Furthermore, the gap is not complete: a low energy tail of the WL-continuum can

extend to the QD-confined-states [139, 140, 141, 142]. The result is that the WL has

negative consequences for quantum applications: Multi-electron states of a QD hybridize

with extended states of the WL [35, 76, 143], severely limiting the prospects for using

multi-electron states as qubits, for instance, the four-electron qubit proposed in Ref.

[144]. A parasitic coupling between a QD and an off-resonant cavity [145, 146] can

be caused by QD–WL Auger processes [147, 148]. The low-energy tail of WL-states

[139, 140, 141, 142] leads to damping of exciton Rabi oscillations [137, 149, 150] and

enhanced exciton-phonon scattering [151]. Finally, the WL limits applications of small

QDs where the QD-WL energy gap is small [152]. Such QDs are useful for a hybrid

system of QDs and Cs-atoms [153, 154].

We show here that the QD-properties can be radically altered when WL-states are

absent. Electron WL-states are removed by a simple modification to the SK-growth:

InGaAs QDs are overgrown with a monolayer of AlAs [155, 156, 157, 158]. On the

nano-scale, we propose that the absence of electron WL-states is related to the large

bandgap of AlAs. Changes regarding the QD-properties are drastic: we observe highly

charged excitons with narrow optical emission where up to six electrons occupy the

conduction band shells of the QD – a novelty for QDs in the considered wavelength

regime. The QD-potential is deepened, and hybridization with any WL-continuum is

absent. Furthermore, the QDs have close-to transform-limited optical linewidths at low

temperature, a very sensitive probe of the material quality [38]. Whenever the WL

limits the QD-performance [137, 145, 147, 148, 149, 151], we propose that conventional

SK QDs can be profitably replaced with their no-electron WL-counterparts.
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3.2 Sample Growth and Ensemble Measurements

The QDs are grown by molecular beam epitaxy on a GaAs-substrate with (001)-orientation.

The first monolayer of InAs deposited on GaAs (at 525 ◦C) adopts the GaAs lattice con-

stant. After deposition of 1.5 monolayers, the strain mismatch between InAs and GaAs

leads to island formation [67] (Fig. 3.1(a),(b)). These islands become optically-active

QDs upon capping with GaAs. A two-dimensional InAs layer remains, the WL. This is

the widely used SK self-assembly process.

Here, the InAs islands are capped initially with a single monolayer of AlAs, which

has a higher bandgap than GaAs (Fig. 3.1(c)). Subsequently, a capping layer of 2.0 nm

GaAs is grown (at 500 ◦C) (Fig. 3.1(d)). The additional AlAs monolayer is the only

change of the standard SK protocol. For some samples, a so-called flushing step [68] is

made following the growth of the GaAs-cap (increase of temperature to 630 ◦C) (Fig.

3.1(e)). With or without flushing, the heterostructure is completed with overgrowth of

GaAs (Fig. 3.1(f)).

To determine the QD-structure post-growth, we carried out scanning transmission

electron microscopy (STEM). Fig. 3.1(g) is a high-resolution high-angle annular dark-

field (HAADF) STEM-image where the contrast is related to the atomic number. The

QD is the ∼ 3 nm high and ∼ 30 nm wide bright feature close to the center of the

image. The complete images with an atomic resolution demonstrate that the entire

structure is defect-free (see appendix A). The WL consists of InGaAs with a monolayer

of AlAs contained within it. The AlAs capping layer can be clearly made out as a darker

region surrounding the QD. Energy-dispersive X-ray spectroscopy (EDX) confirms the

WL composition: indium atoms are found over a 2−3 nm thick region, yet the aluminum

atoms are located within a 1 nm thick layer (Fig. 3.1(h)). These features point to highly

mobile In atoms yet weakly mobile Al atoms under these growth conditions [159]. The

overall thickness of the modified WL is similar to the WL of standard InGaAs QDs [160].

The presence of In-atoms above the AlAs-layer is most likely due to In-segregation. This

effect is illustrated in Fig. 3.1(c-e). Contrary to results in Ref. [156], the STEM-image

does not indicate a transition to a Volmer-Weber growth.

We probe the electronic states initially by photoluminescence (PL) experiments. Fig.

3.1(i) shows ensemble PL from QDs grown with and without the AlAs-cap, in both

cases without a flushing step. The spectra reveal the different shells (s, p, d) of the

QDs. For the standard QDs, PL from the WL can be observed at ∼ 925 nm, emission

at lower wavelength is from bulk GaAs. In contrast, for the AlAs-capped QDs, the WL

PL disappears. This is the first evidence for the absence of carrier confinement in the
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Fig. 3.1: Growth and characterization of the quantum dots. (a-f) Schematic
illustration of the quantum dot (QD) growth. (a) InAs is deposited on a GaAs-
surface. (b) After deposition of ∼ 1.5 monolayers of InAs, strain-driven QD-
formation takes place. The QDs are capped with a monolayer of AlAs (c) and
2 nm GaAs (d). During these steps, segregation of In atoms takes place (blue
arrows). The segregation leads to a wetting layer (WL) which is an alloy of
GaAs, InAs, and AlAs. (e) The top part of the capped QD evaporates at 630◦C
(flushing step). (f) The flushed QDs are overgrown with GaAs. (g) Scanning
transmission electron microscopy image of a flushed QD. InAs appears bright,
AlAs dark. (h) Chemical composition of the WL measured by spatially resolved
energy-dispersive X-ray (EDX) spectroscopy at a location without a QD (differ-
ent location to (g) but nominally the same). (i) Ensemble photoluminescence
(PL) at room temperature from a sample with unflushed, standard InGaAs
QDs (red curve) and unflushed, AlAs-capped InGaAs QDs (black curve). The
WL PL (highlighted by the red band) dominates the spectrum. The QD PL
appears in the regime 1000−1300 nm. The QD-shells are labeled. (j) Ensemble-
PL at 77 K from a sample with flushed, standard InGaAs QDs (red curve) and
flushed, AlAs-capped InGaAs QDs (black curve). The flushing blue-shifts the
QD-ensemble to ∼ 900− 980 nm.
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modified WL. We come to the same conclusion on flushed QDs for which the ensemble-

PL is blue-shifted from 1000 − 1300 nm to ∼ 900 − 980 nm (Fig. 3.1(j)). Without the

AlAs-capping, there is strong emission from the WL at ∼ 875 nm. For the AlAs-capped

QDs, WL emission is not observed.

3.3 Photoluminescence as a Function of Gate Voltage

The ensemble-PL measurements do not distinguish between electron and hole confine-

ment. We make this distinction by single-QD measurements. The particular concept is

to probe the QD- and WL-electron-states by gradually lowering the energy of the states

with respect to the Fermi energy of a tunnel-coupled [23, 112, 114, 149] Fermi sea. The

QD is small enough to exhibit pronounced Coulomb blockade: electrons from the Fermi

sea are added one-by-one and the QD-states are filled according to Hund’s rules [35, 79].

A hole in the QD is provided by optical excitation with an above band laser (750 nm).

We focus on flushed QDs, both without and with the AlAs capping layer.

For a standard InGaAs QD, PL as a function of gate voltage is shown in Fig. 3.2(a).

The plateaus correspond to different charge states of the QD-exciton (Fig. 3.2(b)): in

the presence of a hole, electrons fill the QD-shells sequentially. The standard QD shows

charging of the neutral exciton X0 to a net charge of −3e, the exciton X3− containing

a total of four electrons and one hole. At higher gate voltage, the QD PL disappears.

This is a sign that the WL becomes occupied [79, 86, 143, 161, 162].

The PL from the AlAs-capped QD is strikingly different. Charging beyond X3− to

X4− and X5− takes place (Fig. 3.2(c)). The X5− contains a total of six electrons with

fully occupied s- and p-shells. This is a novelty for QDs in this wavelength regime

(960 nm). Further, even the X4− and X5− result in sharp emission lines. There is no

rapid loss of intensity or rapid increase in linewidth at high gate voltages. This measure-

ment points to, first, a deep confinement potential, sufficiently deep to accommodate six

electrons despite the strong Coulomb repulsions, and second, the absence of WL-states

for electrons.

At high positive bias, PL also appears at ∼ 830 nm (see Fig. 3.6(b)), highly blue-

shifted with respect to the QD PL, and close to the bandgap of GaAs. This PL line

has a very strong Stark shift allowing us to identify it as a spatially indirect transition

[85, 86] from an electron in the Fermi sea with a hole in the WL. From this line, we

can, therefore, extract the properties of the WL in the valence band. We find that the

AlAs-capped QDs have a valence band WL with ionization energy 19 meV with respect

to the top of the GaAs valence band (see appendix B). This ionization energy is reduced
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Fig. 3.2: Photoluminescence (PL) as electron states are sequentially filled. (a)
PL counts versus gate voltage on a single, standard, flushed InGaAs quantum
dot (QD). The plateaus correspond to Coulomb blockade [79]. (b) QD-shells
and their occupation for the different exciton complexes. The triply charged
exciton X3− has two low-lying states: a singlet (blue: s) or a triplet (green:
t). (c) PL counts versus gate voltage on a single, AlAs-capped, flushed InGaAs
QD. In the absence of wetting layer states for electrons, the X3− singlet (s)
and triplet (t) as well as the highly charged exciton complexes X4− and X5−

appear.

with respect to the WL of standard InGaAs QDs (ionization energy ∼ 30 meV). The

AlAs-cap eliminates any bound WL-states in the conduction band and pushes the bound

WL-states in the valence band towards the GaAs valence band edge.

The full theoretical explanation for the absence of electron WL-states requires con-

sideration of strain [163] and, possibly, a treatment beyond the envelope wavefunction

approximation [164]. This is left for future investigations.

3.4 Triply-Charged Excitons

For standard InGaAs QDs (Fig. 3.3(a)) and AlAs-capped QDs (Fig. 3.3(b)), we measure

PL of the X3−-exciton as a function of the magnetic field parallel to the growth direction.
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Fig. 3.3: Triply-charged exciton as a probe of the quantum dot (QD) and the
wetting layer (WL) states. (a) X3− counts as a function of the magnetic
field for a standard InGaAs QD (measurement and simulation). (b) As (a) but
for an AlAs-capped QD. Note that the line appearing at ∼ 5 T and wavelength
∼ 961 nm arises from X2−, not X3−. (c) The optical decay process of the X3−

singlet. Following photon emission, the p-shell is doubly occupied yet there is
a vacancy in the s-shell. This turns on an Auger-like coupling to a state in
which a high-lying level is singly occupied (QD-shell or WL-continuum) and
the s-shell is doubly occupied. In this way, the PL-process is sensitive to the
high-lying state even though it is not occupied in the initial state [35]. (d) X3−

assuming that angular momentum is a good quantum number: the p-shell has
angular momentum Lz = +1 and −1; the d -shell +2, 0 and −2. The X3−

ground state changes from a triplet to a singlet at a finite magnetic field. (e)
The final state of the singlet X3−. State |a〉 can couple to the d -shell of the QD
via an Auger-like process (state |b〉) and to a Landau level in the WL (state
|d〉). When d− and p+ come into resonance, state |b〉 couples to state |c〉 where
one electron occupies the p+-sub-shell.

We present a method to probe the high-lying energy states, for instance, the QD-d -

shell and WL-states, without occupying them. The method relies on an imbalance with

respect to shell filling in the X3− final state. Following X3− recombination, there are

two p-shell electrons yet just one s-shell electron. (Of the two s-shell electrons in the

X3− initial state, one recombines with the hole to create a photon.) This imbalance

enables Auger-like processes: one of the p-shell electrons falls into the s-shell, thereby

losing energy; the other p-shell electron is given exactly this energy and is promoted

to a higher-lying state (Fig. 3.3(c)). This process will only occur if a high-lying state

exists close to the right energy. If the s–p separation is ~ω0, the process is, therefore,

43



a probe of the energy levels lying ~ω0 above the p-shell. Some spectroscopy is possible:

the energy levels of a QD can be tuned with a magnetic field. These processes can

result in large changes to the PL on charging from X2− to X3− [35, 76]. For instance,

in a QD without a d -shell, on applying a magnetic field, the X3− PL shows a series of

pronounced anti-crossings with Landau levels associated with the WL [35]: the WL is

thereby probed without occupying it in the initial state.

We explore initially X3− on standard InGaAs QDs. For the singly and doubly charged

excitons, X1− and X2−, the emission splits into two lines by the Zeeman effect and blue-

shifts via its diamagnetic response (see appendix E). The X3− has a much richer structure

(Fig. 3.3(a)). At zero magnetic field, the X3− has a configuration with two electrons in

the QD-s-shell and two electrons in the p-shell. According to Hund’s rules, the ground

state electrons occupy different p-sub-shells with parallel spins (a spin-triplet) and two

emission lines result, split by the large electron-electron exchange energy, denoted as t

(triplet) and ts (triplet satellite) in Fig. 3.3(a) [35]. On increasing the magnetic field, the

degeneracy (or near degeneracy) of the p-sub-shells is lifted. In the Fock-Darwin model

[35, 63, 165], the p−-sub-shell (angular momentum Lz = +1) moves down in energy by

−1
2~ωc while the p+-sub-shell (angular momentum Lz = −1) moves up in energy by

+1
2~ωc (Fig. 3.3(d)). Here, ~ωc is the electron cyclotron energy. Once this splitting

becomes large enough, the X3− ground state turns from a triplet to a singlet where two

electrons of opposite spin populate the lower p-sub-shell (Fig. 3.3(d)) [35]. The transition

from triplet to singlet ground state occurs at ∼ 1.3 T (Fig. 3.3(a)). The singlet (and not

the triplet) ground state represents the probe of the higher lying electronic states.

The magnetic field dependence of the X3− singlet-PL-spectrum on a standard InGaAs

QD shows several anti-crossings (Fig. 3.3(a)). We develop a model to describe the X3−

final state. The model includes Coulomb interactions within a harmonic confinement

and couplings to a WL-continuum (see appendix C). In addition to the energies of the

transitions, the linewidths are a powerful diagnostic. The spectrally narrow PL-lines

arise from intra-QD-processes; the spectrally broad PL-lines from QD–WL-continuum

coupling as the continuum of WL-states facilitates rapid dephasing [35, 151].

The singlet emission at ∼ 1.3 T is spectrally broad, which signifies that the final state

couples to the WL-continuum. There is an anti-crossing at ∼ 3 T with a state with a

linear magnetic field dispersion. This anti-crossing indicates a hybridization with the

0th WL-Landau-level (Fig. 3.3(e)). A second singlet emission line appears at higher

energy, and there are two further anti-crossings at a high magnetic field (A1 and A2 in

Fig. 3.3(a)). We exclude that these processes are caused by hybridization with the WL

since the optical emission stays narrow in this regime. The first part of the explanation
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is an Auger-like process within the QD itself (Fig. 3.3(e)). The optical decay of the X3−

singlet leaves behind two electrons in the lower p-sub-shell and one electron in the s-shell

(state |a〉). This final state can couple to state |b〉 via an Auger-like process where one

p-electron fills the vacancy in the s-shell and the other goes up into the d -shell. This

coherent coupling between the two basis states |a〉 and |b〉 leads to two eigenstates after

optical decay and thus explains the second emission line at higher energy. The second

part of the explanation involves the single-particle states. With increasing magnetic field,

the d−-sub-shell of the QD moves down in energy with a dispersion of −~ωc while the p+-

sub-shell moves up with 1
2~ωc. In the Fock-Darwin model, angular momentum is a good

quantum number and d− and p+ therefore cross. Experimentally, this is not the case:

there is a small anti-crossing. This is not surprising for a real QD where there is no exact

rotational symmetry. To describe this, we introduce basis state |c〉 (with an electron in

the p+- rather than the d−-shell) and a small coupling between states |b〉 and |c〉 to

describe the symmetry breaking. This leads to the two characteristic anti-crossings (A1,

A2) of the singlet emission pair with a line with a dispersion of approximately −3
2~ωc.

An analytic Hamiltonian describing all these processes is given in appendix C. Using

realistic parameters for the QD, the model (Fig. 3.3(a)) reproduces the X3− PL extremely

well. This strong agreement allows us to extract the key QD parameters from this

experiment: the electron s–p splitting (~ω0 = 24.1 meV) and the electron effective mass

(0.07mo). We are also to conclude that the potential is sub-harmonic: the p–d splitting

is smaller than the s–p splitting.

With this understanding of the X3−, we turn to the spectra from an AlAs-capped

QD (Fig. 3.3(b)). As for the standard InGaAs QD, there is a transition from triplet to

singlet X3− ground state, albeit at higher magnetic fields. In complete contrast to the

standard InGaAs QD, the hybridization with a Landau level is not observed. This is

powerful evidence that the electron WL-states no longer exist.

The X3− from the AlAs-capped QD is revealing in a number of other respects. First,

the X3− singlet state shows one Zeeman-split line, not two as for the standard InGaAs

QD. This is evidence that the |a〉− |b〉 coupling is suppressed on account of the energies:

state |b〉 lies at too high an energy to couple to state |a〉 (see appendix C). A large ratio

between |b〉 − |a〉 energy splitting and coupling strength leads to a very weak emission

from the second line, strongly red-shifted for a positive |b〉 − |a〉 energy splitting. The

absence of a second singlet emission line is evidence that the p–d splitting is larger than

the s–p splitting, a super-harmonic potential. This is consistent with the thin, AlAs-

layer in the STEM-characterization (Fig. 3.1(g)) which bolsters the lateral confinement;

and also the ensemble-PL where the AlAs-cap blue-shifts the d -shell more than the p-
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Fig. 3.4: Linewidths of excitons in an AlAs-capped quantum dot. (a)
Photoluminescence-linewidth (full width at half maximum) of the charged exci-
tons as a function of temperature. The red lines represent a fit to a model that
describes the interaction with acoustic phonons. (b) Linewidth of the singly
charged exciton X1− in resonance fluorescence as a function of temperature.
The inset shows an exemplary resonance fluorescence measurement at 4.2 K
with a linewidth of 2.3 µeV. This measurement was carried out at low exci-
tation power (coherent scattering regime). The saturation count rate obtained
under resonant excitation is 60 kcounts/s.

shell (Fig. 3.1(i)). Second, the X3− singlet and triplet PL-lines appear simultaneously at

low magnetic field (Fig. 3.3(b)) yet there is a rather abrupt transition for the standard

InGaAs QD (Fig. 3.3(a)). This is an indication that relaxation to the exciton ground

state is slower for the AlAs-capped QDs. This may also be related to the WL: electrons

in the WL can mediate spin relaxation. Without the WL, this process is turned off.

Finally, the X3− exciton in the AlAs-capped QD has a very pronounced fine structure

splitting: the splitting of the X3− triplet into three lines is a prominent feature (Fig.

3.3(b)). This particular fine structure originates from the electron-hole exchange in the

initial exciton state [161], and its increase relative to standard InGaAs QDs is indicative

of a stronger electron-hole confinement [166, 167].

We model X3− in the AlAs-capped QD with the model developed for the standard

InGaAs QD. The coupling to the Landau level is set to zero. A small perturbation

is included to account for the anharmonicity of the confinement potential. The model

describes the experimental results extremely well (Fig. 3.3(b)). The model determines

the electron s–p splitting as ~ω0 = 27.5 meV.
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3.5 Temperature Dependence

The temperature dependence of the exciton linewidths is a further probe of the cou-

pling to continuum states. Linewidths of excitons in standard InGaAs QDs strongly

increase with temperature as soon as hybridization with a WL is present [151]. Such a

temperature broadening was observed for exciton complexes even with modest charge

[151], for instance, X2−. For an AlAs-capped QD, we measure the PL-linewidth of all

charged excitons (X1− to X5−) as a function of temperature (Fig. 3.4(a)). Even for

the highly charged excitons X4− and X5−, the temperature-induced broadening is much

weaker than that for charged excitons beyond X1− in standard InGaAs QDs which show

a strong, linear temperature dependence [151]. Instead, the linewidths are described

well by a model that considers a localized exciton and dephasing via acoustic phonon

scattering [168]. This measurement is also evidence that the WL-states for electrons no

longer exist.

Finally, we measure the linewidth of the singly charged exciton (X1−) with resonant

excitation, detecting the resonance fluorescence [38] (Fig. 3.4(b)). The resonance fluores-

cence linewidth increases with temperature above ∼ 10 K, indicative of acoustic phonon

scattering (see appendix D). At 4.2 K, the linewidth (2.3 µeV) is similar to the linewidth

of the very best InGaAs QDs [38]. This shows that the AlAs-capped QDs retain the

very low charge noise achieved for standard InGaAs QDs [38, 39]. This is important:

the AlAs-capped QDs have slow exciton dephasing and weak spectral fluctuations such

that they are completely compatible with applications that place stringent requirements

on the quality of the single-photons.

Appendix A: Sample Growth, Fabrication, and

STEM-measurements

The sample heterostructure is grown by molecular beam epitaxy (MBE) on a GaAs wafer

with (001)-orientation. The overall growth conditions are similar to those described in

Ref. [40]. The heterostructure, together with growth temperatures and growth rates of

individual layers, is given in Table 3.1. To flatten the wafer surface, an AlAs/GaAs-

superlattice is grown first. A spacer of 50 nm GaAs separates the superlattice from a

silicon-doped (n-type) back-gate (300 nm). QDs are separated from the back-gate by

a tunnel barrier of 30 nm GaAs. The QDs (growth described in section 3.2) are over-

grown with additional 8 nm of GaAs. To keep the current through the diode structure

low, a tunnel barrier (another AlAs/GaAs-superlattice) is grown above the QDs. The

47



heterostructure is completed with a thin GaAs capping layer.

For electric charge control of the QDs, a semi-transparent Schottky top-gate (∼ 6 nm

Au) is deposited on part of the sample. An ohmic contact to the back-gate is fabricated

by annealing In-solder for 5 min at 370◦C in a forming gas atmosphere.

For scanning transmission electron microscopy (STEM) investigations, an electron-

transparent lamella was prepared by conventional mechanical polishing followed by argon

ion milling. The high-resolution HAADF STEM-image was acquired using a FEI Titan

G2 equipped with a Schottky field emission gun operated at 200 kV, a Cs probe corrector

(CEOS DCOR). The annular dark-field detector semi-angle used was 69.1 mrad. For

STEM, a series of 10 images were recorded with a short acquisition time, aligned and

summed using the Velox software (Thermo Scientific) to improve the quality of the image.

In the STEM image, the intensity of the atomic columns is approximately proportional

to the square of the atomic number [169]. STEM measurements are combined with

an energy-dispersive X-ray (EDX) measurement (same microscope). Fig. 3.5 shows

a STEM-image of an AlAs-capped QD. The image has an atomic resolution showing

that QD and its surroundings are defect-free. For a better visibility, we increase the

contrast of the original STEM-image by Gaussian smoothing. The result corresponds to

a STEM-image taken with lower spatial resolution and is shown in Fig. 3.5(b). In the

STEM-images, a single QD is visible as a bright (In-rich) region. Due to the lower atomic

number of aluminum, the AlAs-capping surrounding the QD appears darker. Part of

the AlAs/GaAs-superlattice grown above the QDs is visible as an alternating sequence

Material Thickness (nm) Temperature (◦C) Rate (Å/s)

GaAs 50 600 2.0
AlAs/GaAs 30×(2/2) 600 1.0/2.0

GaAs 50 600 2.0
n-GaAs 300 600 2.0
GaAs 5 575 2.0
GaAs 25 600 2.0

InAs QDs – 525 –
AlAs-capping 0.3 525 1.0
GaAs-capping 2 500 2.0
flushing step – 600 –

GaAs 8 600 2.0
AlAs/GaAs 30×(3/1) 600 1.0/2.0

GaAs 10 600 2.0

Table 3.1: Description of the sample. The different layers of the heterostructure are
listed in the order of the growth.
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Fig. 3.5: (a) Scanning transmission electron microscopy (STEM) image of an AlAs-
capped quantum dot (QD) grown with a flushing step. The STEM-image has
an atomic resolution. The QD has a high indium concentration and thus ap-
pears bright in the STEM-image. Above the QD, an AlAs/GaAs-superlattice is
visible. (b) A Gaussian smoothing of the STEM-image (6 pixel standard devi-
ation) enhances the contrast in the STEM-image. At the edges of the QD, the
AlAs capping layer appears as a darker region in the STEM-image (indicated
by the red arrow).

of bight and dark regions in the STEM-image.

Appendix B: Wetting-Layer-PL and Indirect Excitons

The nature of the WL-states can also be probed by measuring the emission not from the

QDs but from the WL itself. We glean understanding from the standard sample with

WL. We then apply this understanding to the sample with AlAs-capped QDs.

Fig. 3.6(a) shows the PL from a sample with standard InGaAs QDs in a large spectral

range. QD-emission has a wavelength of about 960 nm; emission related to the WL

appears at ∼ 875 nm. At a gate voltage above 0.45 V, the WL is charged with elec-

trons from the back-gate. Optical recombination takes place between an electron and a

hole, both in the WL. The quantum-confined Stark shift is small because of the strong

confinement in the growth direction. At lower gate voltages, the WL-emission strongly
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Fig. 3.6: (a) PL over a large bandwidth from the reference sample with standard InGaAs
QDs. QD-emission appears at a high wavelength (green frame). PL at ∼
875 nm is related to the WL (red frame). At low gate voltage, the strong
shifts with voltage demonstrate that recombination takes place between holes
in the WL and electrons in the back-gate [85]. Above 0.45 V, the strong shift
with voltage disappears. This effect demonstrates that there is a transition
to a direct emission where recombination takes place between electrons and
holes both confined to the WL. The direct recombination is possible since the
WL becomes charged with electrons from the back-gate. (b) PL over a large
bandwidth from the sample with AlAs-capped QDs. The green frame shows
the QD-emission-lines. The PL at ∼ 830 nm arises from spatially indirect
recombination between holes in the remnant WL and electrons in the back-gate
[85, 86]. (c) A simulation of the indirect emission based on a numerical band
structure calculation gives reasonable agreement with the experimental data
(dashed blue line). Also, the asymmetric lineshape of the indirect transition
(inset: black curve) is reproduced by the simulation (inset: red curve). (d)
Explanation of the indirect emission process: at low gate voltage, the built-in
electric field of the n-i-Schottky diode suppresses an overlap between back-gate
electrons and holes confined in the remnant WL. (e) At positive gate voltage,
the electric field is reduced. Consequently, the electron wave functions from
the back-gate expand further into the intrinsic region. This leads to a finite
wave function overlap between back-gate electrons and WL-holes. The result
is an indirect recombination between WL and back-gate. The corresponding
emission strongly shifts with the applied gate voltage.

blue-shifts with the electric field. This signals a change in the emission process: it can

be explained with spatially indirect recombination between an optically generated hole

in the WL and an electron from the back-gate [85, 86].

Fig. 3.6(b) shows PL from the sample with AlAs-capped QDs. The QD-emission

has a wavelength of 960 nm, as for QDs in the standard sample. At slightly lower

wavelength, emission between higher lying shells of the QD appears. In comparison to
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the standard InGaAs QDs, this emission is more pronounced for the AlAs-capped QDs.

This observation agrees well with the picture of a stronger confinement caused by the

AlAs-capping.

Significantly, the emission from a WL-continuum at ∼ 875 nm is not observed for the

AlAs-capped QDs – confirmation that the electronic WL-states no longer exist. Instead,

at high positive gate voltage, there is an emission at ∼ 830 nm (Fig. 3.6(c)). The emission

arises due to spatially indirect recombination between holes bound by a shallow valence

band confinement in the remnant WL and electrons from the back-gate. This process

is illustrated in Fig. 3.6(d, e). At small gate voltages, electron wave functions in the

back-gate have a negligible overlap with holes bound to the remnant WL. However, at

high positive gate voltages, the electric field is reduced. Consequently, there is an overlap

between electron wave functions in the back-gate and holes in the remnant WL. This

gives rise to the emission at λ ∼ 830 nm. The emission blue-shifts strongly with electric

field: this proves its spatially indirect nature.

We simulate the indirect emission line from the AlAs-capped sample in a gate voltage

range of 0.3−1.0 V. For this, we compute the band structure numerically as a function of

gate voltage. For the obtained band structure and a given electron energy in the back-

gate, we solve the Schrödinger equation numerically assuming an infinitely extended

back-gate. As a result, we obtain the wavefunction Ψk(E) of a back-gate electron with

a specific energy. The intensity of the indirect transition is then estimated as an overlap

integral between Ψk(E) and the hole wave function Ψh which is approximated as a

δ-distribution at the WL-position:

I (E, T ) ∝ |〈Ψh | Ψk(E)〉|2 ×DOS (E)× f (E, T ) . (3.1)

The intensity is weighted with a three-dimensional density of states DOS (E) ∝
√
E − Ecb,

where Ecb is the energy of the conduction band edge, and the Fermi distribution f (E, T ).

The best agreement with the data we find for a Schottky barrier of 0.8 V and a hole

ionization energy of 19 meV (T = 4.2 K). A slight reduction of the emission energy due

to an image charge effect between hole and back-gate has been taken into account. The

simulation gives a good description of the line position and the asymmetric line shape

of the indirect transition (Fig. 3.6(c)).

51



Fig. 3.7: (a) Schematic conduction levels for an AlAs-capped quantum dot (QD). The
different shells (s, p, d) are labeled with the corresponding angular momentum
quantum number Lz. (b) Schematic conduction levels for a standard QD with a
wetting layer (WL). States of the WL-continuum are indicated in red. (c) Black
curves: single-particle dispersion for a symmetric two-dimensional harmonic
oscillator (~ω0 ≈ 24 meV) as a function of the magnetic field (Fock-Darwin
spectrum). Red curves: Dispersion of the WL-Landau-levels. n = 0 denotes
the lowest Landau level. (d) The four basis states |a〉, |b〉, |c〉, and |d〉 used to
describe the possible final states after X3− recombination. The basis states are
shown at high magnetic field.

Appendix C: Modeling of the Magneto-PL-Measurements

We present the calculation which describes the magneto-PL of the X3− exciton complex.

The experimental data are shown in Fig. 3.3. The energy of the optical emission

lines is given by the energy difference between the initial exciton state before optical

recombination and the energy of the electron configuration in the final state after optical

recombination. We calculate the energies of the initial and final states separately.

The focus is the X3− singlet exciton. On recombination of an s-shell electron with an

s-shell hole, there is a vacancy in the electron s-shell; the p-shell is doubly occupied. This

special situation allows Auger-like processes to take place: one of the p-shell electrons

falls into the vacancy, the other is promoted to a higher level. These processes admix the

QD-d -shell and, should they exist, the WL-Landau-levels into the available final states.

The X3− final states have, therefore, a rich structure. As we argue in section 3.4, they

provide an ideal way of exploring the single-particle states at energies well above both

the s- and p-shells.

Our approach is to focus initially on the behavior of X3− in a QD with a WL. In this

case, there is both a confined d -shell and a WL which quantizes into Landau levels in a
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magnetic field. We develop a model to describe this situation by considering hybridiza-

tions between different final states after optical recombination. This allows us to uncover

precisely how the X3− spectrum depends on the d -shell and on the WL-Landau-levels:

we develop an understanding of our probe of the high-energy states. We then apply this

model to a QD in a sample with a modified WL. The absence of features related to the

WL enables us to demonstrate that the WL as far as electron states are concerned is no

longer present.

3.5.1 The X3− Final States

Assuming that the QD has a lateral parabolic confinement potential of the form V (r) =
1
2m
∗
eω

2
0r

2, the single-particle energies of the different QD shells follow the well known

Fock-Darwin spectrum [63, 69, 70]:

En,L = (2n+ |Lz|+ 1) ~ω1 −
1

2
Lz~ωc. (3.2)

Here, n is the radial quantum number and Lz the angular momentum quantum num-

ber, ω1 =
√
ω2

0 +
(
ωc
2

)2
, where ~ωc = ~eB/m∗e is the electron cyclotron energy, B the

magnetic field, and m∗e the electron effective mass. In Fig. 3.7(c) the magnetic field dis-

persion described by Eq. 3.2 is shown for different QD shells. The corresponding wave

functions are given by [63, 170, 171]

|Ψn,Lz (r, φ)〉 =
eiLzφ√
πLe

√
n!

(n+ |Lz|)!
e
− r2

2L2
e

(
r2

L2
e

)|Lz |/2
L|Lz |n

(
r2

L2
e

)
. (3.3)

The terms L
|Lz |
n denote generalised Laguerre polynomials. The parameter Le =

√
~/(ω1m∗e)

is the effective length of the wave function.

We consider initially three basis configurations |a〉, |b〉, and |c〉 to describe the final

state of the X3− (singlet) exciton. These states and a schematic shell structure of a QD

are illustrated in Fig. 3.7. We calculate the energies of states |a〉, |b〉, and |c〉 as the

sum of their corresponding single-particle energies and the energies caused by Coulomb

interactions between different electrons.

Basis state |a〉 has one electron in the s-shell and two electrons in the p−-shell (angular

momentum Lz = +1). According to Eq. 3.2, the sum of all single-particle energies is

given by E0
a = 5~ω1 − ~ωc. State |b〉 has two electrons in the s-shell and one electron

in the d−-shell (angular momentum Lz = +2). Its single-particle energy is the same as

that of state |a〉, i.e. E0
b = E0

a. State |c〉 has two electrons in the s-shell and one electron
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in the p+-shell (angular momentum Lz = −1). Its single-particle energy is given by

E0
c = 4~ω1 + 1

2~ωc. The single-particle energy of state |c〉 increases in a magnetic field

with +1
2~ωc whereas that of states |a〉 and |b〉 decreases with −~ωc.

The multi-particle nature of the QD-states gives rise to carrier-carrier Coulomb inter-

actions within the QD, both for the initial exciton state (four electrons and one hole in

the QD) and the final states |a〉, |b〉, and |c〉 (three electrons in the QD). We calculate

the corresponding energy corrections to the single-particle energies in first order pertur-

bation theory [71, 172]. These energies are the direct carrier-carrier Coulomb interaction

given by the relations

Edij =
e2

4πε0εr

∫ ∫ |Ψi (r1)|2 · |Ψj (r2)|2

|r1 − r2|
dr1 dr2 (3.4)

and the exchange interaction given by

Exij =
e2

4πε0εr

∫ ∫
Ψi (r1)∗Ψj (r2)∗Ψi (r2) Ψj (r1)

|r1 − r2|
dr1 dr2. (3.5)

For the calculation, we use single-particle wave functions for a symmetric parabolic

confinement potential (see Eq. 3.3) and construct fully anti-symmetrized wave functions

via Slater determinants. In the case of state |a〉, for instance, this yields:

|a〉 =
1√
6

∣∣∣∣∣∣∣
s1 ↑1 s2 ↑2 s3 ↑3
p1 ↑1 p2 ↑2 p3 ↑3
p1 ↓1 p2 ↓2 p3 ↓3

∣∣∣∣∣∣∣ =

1√
6
[ ↑1↑2↓3 (s1p2p3 − p1s2p3)

+ ↑1↓2↑3 (p1p2s3 − s1p2p3)

+ ↓1↑2↑3 (p1s2p3 − p1p2s3) ].

(3.6)

Here, the indices label the different particles, the arrows (↑, ↓) represent the electron

spin, and the orbital wave function is represented by the shell label s, p, and d (see Fig.

3.7). For the basis states |a〉, |b〉, and |c〉 the sum of all the direct and the exchange

energies is given by:

ECa =
31

16

e2

4πε0εr

1

Le

√
π

2
, (3.7)

ECb =
67

32

e2

4πε0εr

1

Le

√
π

2
, (3.8)

ECc =
9

4

e2

4πε0εr

1

Le

√
π

2
. (3.9)

In these expressions, e is the elementary charge, ε0 the permittivity of vacuum, and εr

the relative permittivity.
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We focus now on the couplings between the basis states |a〉, |b〉, and |c〉. As illustrated

in Fig. 3.3, states |a〉 and |b〉 are coupled by an Auger-like process. For state |a〉, two

electrons occupy the p−-shell (with Lz = +1). In the Auger-like process, one of these

two electrons goes down to the s-shell (with Lz = 0) while the other one goes up to

the d−-shell (with Lz = +2). This process conserves angular momentum and leads to a

coupling between |a〉 and |b〉. The corresponding matrix element is given by:

Aab = 〈pLz=+1
1 pLz=+1

2 | Ĥc | sLz=0
1 dLz=+2

2 〉 = −5
√

2

32

e2

4πε0εr

1

Le

√
π

2
, (3.10)

where s, p, and d label the single-particle shell with particle number in the subscript

and the angular momentum quantum number in the superscript. Ĥc is the two-particle

Coulomb operator given by:

Ĥc =
1

2

∑
i

∑
j 6=i

Ĥij ,with (3.11)

Ĥij =
e2

4πε0εr

1

|ri − rj |
, (3.12)

where ri are the coordinates of the interacting particles.

Fig. 3.8(a) shows a numerical simulation based on the model developed so far: a

coupling between |a〉 and |b〉; no coupling of states |a〉 and |b〉 to state |c〉. (State |c〉 is,

therefore, irrelevant at this point in the calculation.) Without the |a〉 ↔ |b〉 coupling,

there is just a single pair of emission lines. (The splitting within the pair into two lines

arises from the spin Zeeman effect.) With the |a〉 ↔ |b〉 coupling, there is no longer

just one pair of emission lines but two, Fig. 3.8(a). This feature describes part of the

experimental data, Fig. 3.8(d). This demonstrates both that the d -shell exists and that

the Auger-like process admixes the d -shell into the X3− final states.

The experimental X3− emission from a standard QD with WL (Fig. 3.8(d)) shows a

richer structure than that described with just |a〉 ↔ |b〉 coupling (Fig. 3.8(a)). In the

experiment, there are several anti-crossings at high magnetic field along with a complex

structure at low magnetic field. This leads us to the conclusion that additional couplings

must be introduced to describe the experimental results.

First, we consider the coupling between states |b〉 and |c〉. For a perfectly symmetric

harmonic confinement potential, this coupling is zero since states |b〉 and |c〉 have different

angular momenta. Nevertheless, the experiment points to a coupling in the present case.

This coupling represents a slight asymmetry in the confinement potential of the QD

since, in this case, angular momentum is not a good quantum number [171]. In our
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Fig. 3.8: Description of X3− in a quantum dot (QD) with wetting layer (WL). (a) Sim-
ulation of the X3− emission spectrum without the coupling term ∆bc between
states |b〉 and |c〉 and without couplings between QD- and WL-states (AL, td).
(b) Simulation including the coupling term ∆bc, yet without the couplings be-
tween QD- and WL-states. (c) Final simulation of the X3− emission spectrum
including all coupling terms. (d) Measured X3− emission spectrum as a func-
tion of the magnetic field. The simulation shown in (a-c) focuses on the X3−

singlet, emission of the X3− triplet at low magnetic field (t, ts) is not included.

simulations we assume a constant coupling term ∆bc between the states |b〉 and |c〉. A

numerical simulation taking the coupling ∆bc into account is shown in Fig. 3.8(b). The

coupling accounts for the pronounced anti-crossings (A1, A2 in Fig. 3.3) in the X3−

emission lines at high magnetic field.

We note that we neglect any direct coupling between states |a〉 and |c〉. At low

magnetic field, |c〉 is energetically far away from |a〉. At high magnetic field, when |c〉
comes energetically close to the states |a〉 and |b〉, a coupling between |a〉 and |c〉 would

be both a two particle and angular momentum non-conserving process. On this basis,

we assume that a |a〉 ↔ |c〉 coupling is much weaker than the |b〉 ↔ |c〉 coupling. (The

|b〉 ↔ |c〉 coupling is a single-particle process and is important when the energies of the

d−-shell and the p+-shell come into resonance, Fig. 3.3(e) and Fig. 3.7(c).) Of course,

via the |a〉 ↔ |b〉 and |b〉 ↔ |c〉 couplings, states |a〉 and |c〉 will anti-cross.

The |b〉 ↔ |c〉 coupling does not account for the behavior at magnetic fields of 1− 4 T

as revealed by a comparison of the calculation (Fig. 3.8(b)) with the experiment (Fig.

3.8(d)). We cannot account for this behavior within the |a〉, |b〉, |c〉 basis. The experiment

shows features with a strong negative energy dispersion with increasing magnetic field.

These are suggestive of Landau levels in the final state [35]. Landau levels are features

of a quantized two-dimensional continuum: they are associated with the WL.
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Next, we consider the coupling between WL-Landau-levels and the QD. An Auger-like

coupling between state |a〉 and WL-Landau-level [35] is illustrated in Fig. 3.3(e). The

Landau levels of the two-dimensional WL have a dispersion given by ~ωc(n + 1
2) [173],

with n ∈ N0 the Landau level number and ~ωc the electron cyclotron energy as before.

Thus, state |d〉, the three electron state with two electrons in the s-shell and one electron

in a Landau level (see Fig. 3.3(e)), has a magnetic field dispersion given by:

Ed = E0
d + ~ωc

(
n+

1

2

)
. (3.13)

The term E0
d includes both single-particle energies and Coulomb interaction energies in

state |d〉. The dispersion of Ed is dominated by the Landau level dispersion and E0
d is

assumed to be constant. Basis states |a〉, |d〉 are coupled by an Auger-like process: an

anti-crossing with a particular Landau level appears at the magnetic field at which the

energy difference between Landau level and QD-p−-shell equals that between p−- and

s-shell of the QD. (For a harmonic confinement potential in a single-particle description,

this corresponds to the crossing point of the Landau level and the d−-shell of the QD.)

At this point, the corresponding Auger-like process is energy conserving and state |a〉
couples to the corresponding Landau level. The matrix element for the coupling to the

0th Landau level has been calculated in Ref. [35]. Higher Landau levels also have a d-like

component and thus couple to state |a〉 as well [35]. This gives rise to a series of anti-

crossings in the emission spectrum of the X3− singlet state [35, 76]. Since the magnetic

field regime in which state |a〉 couples to Landau levels is relatively narrow, we take here

just the coupling to the n = 0 Landau level, and we assume that the |a〉 ↔ |d〉 coupling,

parameter AL, to be constant with magnetic field [35]. Finally, we introduce a tunnel

coupling tL between the d−-shell and the 0th Landau level of the WL [84]. This couples

basis states |b〉 and |d〉 with a matrix element td (see Fig. 3.7(b)). Including td turned

out to be necessary to obtain a good description of the measurement, in particular, the

X3− singlet emission at ∼ 4 T.

In this model, the Auger-like coupling between |a〉 and |b〉 is calculated based on the

assumption of a perfect harmonic confinement potential. However, for carriers in higher

shells of the QD this assumption is not necessarily a good one. Especially in the case of a

standard InGaAs QD with WL-states, the potential “softens” (becomes sub-harmonic)

such that the energies of the higher shells are reduced with respect to the harmonic

oscillator (see Fig. 3.7(b) for an illustration). To compensate for such an effect, we

correct both energy and Auger-like coupling of state |b〉, the only basis state with a

QD-d -shell component. In particular, we add a constant energy term to the energy of
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state |b〉 (E0
b +ECb → E0

b +ECb + δEb) and scale the coupling between states |a〉 and |b〉
with a constant pre-factor (Aab → sab ·Aab).

The full Hamiltonian describing the final states in the |a〉, |b〉, |c〉, |d〉 basis becomes:

Ĥf =


E0
a + ECa sab ·Aab 0 −AL
sab ·Aab E0

b + ECb + δEb ∆bc td

0 ∆bc E0
c + ECc 0

−AL td 0 Ed

 (3.14)

To obtain the energies of all final states after optical emission we diagonalize this Hamil-

tonian numerically for all different magnetic fields. To calculate the actual energies of

the optical emission, the eigenenergies are subtracted from the energy of the initial exci-

ton state, i.e. the energy of the X3− before radiative recombination. The initial exciton

state is depicted in Fig. 3.3(c). It couples optically only to the final state |a〉. The

relative brightness of one particular optical emission line is given by the fraction of state

|a〉 in the particular eigenstate of Ĥf .

A numerical simulation taking also the couplings AL and tL to the 0th WL-Landau-

level into account is shown in Fig. 3.8(c). We achieve an excellent agreement with the

experiment, Fig. 3.8(d). The model accounts for all the main features in the experiment,

both the energies of the multiple emission lines and their relative intensities. This gives

us confidence that the model accounts for all the significant interactions in the X3− final

state in the most complicated case, an InGaAs QD with associated WL.

3.5.2 The X3− Initial States

After X3− recombination, there is a vacancy in the s-shell, allowing Auger-like processes

to take place. These processes admix the QD-d -shell and the WL-Landau-levels into

the final states. The X3− final states have a rich structure. In contrast, the X3− initial

states have a much simpler structure.

At high magnetic field, the X3− initial state has two electrons in the conduction band

s-shell and two electrons in the p−-shell of the QD along with a hole in the valence

band s-shell. For the electrons, this represents a spin singlet. Other configurations have

considerably larger single-particle energies and are, therefore, ignored. The energy of

this exciton is given by an effective band gap of the QD E∗g plus the sum of electron and

hole single-particle energies and Coulomb interaction terms:

Ei = E∗g + E0
i + Eeei + Eehi . (3.15)
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Here the term E0
i denotes the single-particle energy of electrons and hole, Eeei is the sum

of the Coulomb interactions between the electrons, and Eehi is the Coulomb interaction

between electrons and hole. The hole wave function and its single-particle energy can be

obtained by using Eqs. 3.2 and 3.3, replacing the electron effective mass with the hole

effective mass m∗h. For the single-particle energy of electrons and hole in the X3− singlet

state we obtain:

E0
i = 6~ω1 − ~ωc + ~ωh1 , with (3.16)

ωh1 =

√(
ωh0
)2

+

(
ωhc
2

)2

, (3.17)

where ~ωhc = ~eB/m∗h is the cyclotron energy of the hole. We make here the assumption

that the QD-confinement-potential experienced by the hole equals that experienced by

the electrons. This leads to the relation m∗h
(
ωh0
)2

= m∗e (ω0)2 and determines implicitly

the parameter ωh0 . For the electron-electron and electron-hole Coulomb energies we

obtain [71]:

Eeei =
67

16

e2

4πε0εr

1

Le

√
π

2
, (3.18)

Eehi = −2
e2√π
4πε0εr

 1√
L2
e + L2

h

+
2L2

e + L2
h

2
(
L2
e + L2

h

)3/2
 . (3.19)

Note that the magnetic field dependence of the electron and hole effective lengths, Le =√
~/(ω1m∗e) and Lh =

√
~/(ωh1m∗h), causes a magnetic field dependence of the electron-

electron and electron-hole Coulomb matrix elements, leading in turn to a magnetic field

dependence of the emission energies beyond the diamagnetic shift in a single-particle

picture. In our simulations, this effect is taken into account.

There are two final points. First, there is a clear Zeeman effect in the experimental

data (Fig. 3.8(d)). The Zeeman energy EZ = gXµBB, where gX = ge + gh is the

exciton g-factor, is included after computing the eigenstates of Eq. 3.14. The Zeeman

effect splits every emission line into two; the energy separation of the lines is the Zeeman

energy. This holds for negligible spin-orbit interaction such that spin and orbital degrees

of freedom can be considered separately. Secondly, at low magnetic fields, the X3− initial

state is an electronic triplet state: the s-shell is doubly occupied, the p+-shell is singly

occupied, and the p−-shell is singly occupied. This triplet initial state results in two

PL-lines [35, 79]. The triplet state is a less sensitive probe to higher lying single-particle
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parameter standard InGaAs QD AlAs-capped QD

~ω0 (meV) 24.163 27.524
~ωh0 (meV) 9.125 10.653
m∗e/mo 0.0727 0.0750
m∗h/mo 1.0 0.501
sab 0.443 0.921

sab ·Aab (meV) -2.038 -4.677
E∗g (eV) 1.3102 1.2993

∆bc (meV) 0.774 1.033
td (meV) 1.549 –
AL (meV) 0.383 –
E0
d (meV) 154.2 –

δEb (meV) -4.639 10.372
εr 13.16 12.93
gX 1.52 1.60

Table 3.2: Parameters for the simulation of the X3− singlet emission lines. Simulation
and data for a standard InGaAs and an AlAs-capped QD are shown in Fig.
3.8 and Fig. 3.3(a),(b). Parameter values are stated with high precision to
facilitate reproducing the simulations.

states: it does not show a hybridization with the d -shell or with WL-Landau-levels [35].

However, at small magnetic fields, around ∼ 1.3 T, the singlet initial state becomes the

ground state, not the triplet state. As such, we have focussed the entire calculation on

the X3− singlet initial state. The X3− triplet initial state is included in the simulations

phenomenologically with a parabolic dispersion.

3.5.3 Parameters

The parameters for the simulations shown in Fig. 3.8 and Fig. 3.3(a),(b) are given in

Table 3.2. For both the standard InGaAs QD and the AlAs-capped QD, the model

parameters were tuned to give a quantitative description of the experimental results.

For the AlAs-capped QDs, there is no evidence whatsoever in the PL-spectra for

the process related to the hybridization with the WL. This is evidence that the WL

for electrons no longer exists. Therefore, the terms AL and td are set to zero in the

simulation.

For the standard InGaAs QD, the intra-dot Auger-like process (i.e. the |a〉 ↔ |b〉
coupling) results in two pairs of emission lines. For the AlAs-capped QD, only a single

emission pair is observed. This is evidence that the d -shell of the QD is increased

in energy with respect to harmonic confinement. For the simulation, we add a positive
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correction to the d -shell energy: δEb ∼ +10 meV. Neglecting Coulomb interactions, this

leads to a splitting of δEb between states |a〉 and |b〉. In the X3− final states, the second

pair of emission lines is red-shifted by ∼ δEb + 2 · sab · |Aab| ∼ 20 meV. Furthermore,

since δEb > sab · |Aab|, the admixture of basis state |a〉 in the final state corresponding

to the “second” emission pair is strongly reduced: the intensity of the second emission

lines becomes very weak.

Additional evidence that the QD-potential “hardens” (becomes super-harmonic) on

capping with AlAs comes from ensemble PL-measurements which show a larger p–d

splitting compared to the standard InGaAs QDs (Fig. 3.1(i)). Microscopically, this

behavior must result from the AlAs which surrounds the QD laterally.

For InGaAs QDs with a WL, δEb is negative. This is consistent with the concept that

the presence of a WL “softens” the confinement potential at higher energies. However,

in comparison to the confinement energy ~ω0, the term δEb is small. In other words,

for these standard QDs, the approximation of harmonic confinement is still a reasonable

one.

The parameters for the electron and hole confinement energies (~ω0 and ~ωh0 ) are

comparable to literature values [174, 175]. The term ~ω0 is larger for the AlAs-capped

QD. This is consistent with the understanding that the AlAs-capping increases the lateral

carrier-confinement of the QD.

The values for the electron effective mass are similar to the bulk effective mass of

GaAs [176] in both cases. In contrast, the hole effective masses are larger than the bulk

value. For the calculation shown here, the in-plane effective mass has to be considered.

Besides, the effective mass is influenced by the strong confinement of the QD [177].

Nevertheless, the hole mass is rather large. This may reflect the fact that the relation

m∗h
(
ωh0
)2

= m∗e (ω0)2 is inaccurate. There is insufficient information in the spectra to

determine m∗h and ωh0 independently.

Values obtained for the dielectric constant εr are in both cases between the bulk value

of GaAs and InAs (εGaAs = 12.5 [178, 179], εInAs = 15.2 [179]).

3.5.4 Coulomb Matrix Elements for Two-Dimensional Harmonic Oscillator

Wavefunctions

In the previous sections, the direct Coulomb interaction and the exchange interaction

between particles are calculated. In this section, we give a brief description of how these

energies can be calculated analytically.

Matrix elements are calculated by inserting the single-particle wave functions (see Eq.
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3.3) into Eqs. 3.4 and 3.5. One obtains a sum of integrals which have the form:

∫∫∫∫ ∞
−∞

e−
α
2 (x2

1+y2
1+x2

2+y2
2)√

(x1 − x2)2 + (y1 − y2)2
xn1

1 yn2
1 xn3

2 yn4
2 dx1 dy1 dx1 dy2 (3.20)

After a coordinate transformation into center of mass coordinates,

X =
1

2
(x1 + x2) , Y =

1

2
(y1 + y2) , x =

1

2
(x1 − x2) , y =

1

2
(y1 − y2) , (3.21)

an analytical solution for the matrix elements can be obtained by using the integral

relation (for even n,m,N,M):

∫∫∫∫ ∞
−∞

e−α(x2+X2+y2+Y 2)√
x2 + y2

xnymXNYM dx dy dX dY

=

(
1√
α

)N+M+2

Γ

(
N + 1

2

)
Γ

(
M + 1

2

)∫ 2π

0

∫ ∞
0

e−αr
2
rn+m sinn (φ) cosm (φ) dr dφ

=
1

2

(
1√
α

)N+M+n+m+3

Γ

(
N + 1

2

)
Γ

(
M + 1

2

)
Γ

(
n+m+ 1

2

)∫ 2π

0
sinn (φ) cosm (φ) dφ.

(3.22)

Here, we used a transformation into polar coordinates and the following relation:∫ ∞
0

e−αx
2
xndx =

1

2

(
1√
α

)n+1

· Γ
(
n+ 1

2

)
. (3.23)

For arbitrary wave functions of a two-dimensional harmonic oscillator, a completely

general analytical solution for the Coulomb matrix elements is given in Refs. [180, 181], in

agreement with values for specific matrix elements obtained by calculating the integrals

one-by-one [71].

Appendix D: Temperature Dependent Measurements

Temperature dependent linewidth measurements in photoluminescence (PL) and res-

onance fluorescence are shown in Fig. 3.4(a),(b). The linewidths (full width at half

maximum, FWHM) as a function of temperature are fitted to the model:

FWHM(T ) = FWHM(T = 0) + a ·
[
coth

(
~ωq
kBT

)
− 1

]
. (3.24)
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X1− X1− (RF) X2− X3− X4− X5−

FWHM(T = 0) (µeV) <10 2.46 11.7 35.1 39.3 169
a (µeV) 268 29.6 182 60.1 52.3 226

~ωq (meV) 5.94 3.14 3.78 2.10 1.55 3.01

Table 3.3: Parameters obtained by fitting Eq. 3.24 to the temperature dependent photo-
luminescence/resonance fluorescence. Data and fits are shown in Fig. 3.4(a).

Fig. 3.9: (a) Photoluminescence as a function of gate voltage for an AlAs-capped QD
without WL-states for electrons. Exciton complexes ranging from X+ to X5−

are observed. (b) Emission of an AlAs-capped QD as a function of the magnetic
field (X1− and X2−). (c) As for (b) but from a standard InGaAs QD.

This is the model from Ref. [168] plus a constant. This temperature dependence describes

the linewidth broadening of the zero-phonon-line by the interaction with a single acoustic

phonon mode. The fit parameters for the PL-measurements are shown in Table 3.3.

Appendix E: All Charge States of a Single Quantum Dot

In Fig. 3.2, emission of a QD without WL-states for electrons is compared to a standard

InGaAs QD with a focus on charged excitons. In Fig. 3.9(a) we show photoluminescence

over a larger gate voltage range (same QD as shown in Fig. 3.2(c)). The measurement

shows exciton complexes ranging from a positively charged exciton (X+) to a five-fold

negatively charged exciton (X5−). As pointed out in section 3.3, we find optically narrow

emission for the excitons X3−, X4−, and X5− which is in strong contrast to standard

InGaAs QDs with WL-states for electrons [79, 151].
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Shown in Fig. 3.9(b) is the photoluminescence of the X1− and the X2− excitons as

a function of the magnetic field on the same AlAs-capped QD. Both emission lines

show a Zeeman splitting and a diamagnetic shift. An equivalent measurement on a

standard InGaAs QD is shown in Fig. 3.9(c) for comparison. The diamagnetic shift and

Zeeman splitting are similar for both types of QDs. The X2− emission shows a larger

fine structure in the case of the AlAs-capped QD (similar to the X3− triplet emission

shown in Fig. 3.2(c)) implying that the electron-hole exchange in the initial exciton

state is larger for the AlAs-capped QDs [161].
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Chapter 4

Correlations between Optical Properties

and Voronoi-Cell Area

This section is partly adapted from Ref. [77]: ”Correlations between Optical Properties

and Voronoi-Cell Area of Quantum Dots”, Matthias C. Löbl, Liang Zhai, Jan-Philipp

Jahn, Julian Ritzmann, Yongheng Huo, Andreas D. Wieck, Oliver G. Schmidt, Arne

Ludwig, Armando Rastelli, and Richard J. Warburton, Phys. Rev. B 100, 155402

(2019).

Abstract: A semiconductor quantum dot (QD) can generate highly indistinguishable

single-photons at a high rate. For application in quantum communication and integra-

tion in hybrid systems, control of the QD optical properties is essential. Therefore,

understanding the connection between the optical properties of a QD and the growth

process is important. Here, we show for GaAs QDs, grown by infilling droplet-etched

nano-holes, that the emission wavelength, the neutral-to-charged exciton splitting, and

the diamagnetic shift are strongly correlated with the capture zone-area, an important

concept from nucleation theory. We show that the capture-zone model applies to the

growth of this system even in the limit of a low QD-density in which atoms diffuse over

µm-distances. The strong correlations between the various QD parameters facilitate a

preselection of QDs for applications with specific requirements on the QD properties;

they also suggest that a spectrally narrowed QD distribution will result if QD growth

on a regular lattice can be achieved.

4.1 Introduction

Semiconductor quantum dots (QDs) are excellent as a bright source of highly indistin-

guishable single photons [13, 14, 19, 20, 21, 22, 182, 183] and entangled photon pairs

[184, 185, 186, 187, 188, 189, 190, 191]. A QD can host a single spin [15, 31, 91, 120]
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which, however, has a too short coherence time for applications in quantum communica-

tion [17, 27, 33, 34]. A hybrid-system of a QD and an atomic quantum memory is more

promising in that respect [192, 193]. To connect a QD to an atomic memory based on

rubidium, the QD should emit photons matched both in emission energy and bandwidth

to the memory [59]. The emission energy can be matched by using GaAs QDs embedded

in AlGaAs [88, 194]; bandwidth matching can be achieved by using a Raman-scheme

[195, 196, 197, 198].

The growth of QDs has been intensively studied employing scanning probe microscopy

[199, 200, 201, 202, 203, 204, 205, 206, 207]. Aiming at entangled photon-pair generation,

a connection between such an analysis and the optical properties [208, 209, 210] has

focused mostly on the fine-structure splitting of the QD-emission [211, 212, 213, 214,

215, 216, 217, 218]. To tailor all the optical QD-properties, it is important to understand

how they are connected to the QD-growth [201].

Here, we establish a strong correlation between the optical properties of GaAs QDs,

such as emission energy and diamagnetic shift, and a basic concept from nucleation

theory, the capture-zone [206, 219, 220]. This correlation is not obvious since the ap-

plicability of the capture zone model depends on conditions such as sudden nucleation

[221] and spatially uniform diffusion [222]. Both are not necessarily fulfilled. The cor-

relations that we find here are absent for InGaAs QDs [223] and locally very weak for

SiGe QDs [206, 222]. The system we investigate consists of GaAs QDs grown by infilling

of Al-droplet-etched nano-holes in an AlGaAs surface [66, 211].

We apply the capture-zone model to the first phase of this process, the formation

and growth of Al-droplets. The capture-zone model implies a correlation between Al-

droplet volume (island size [206, 224]) and capture-zone area. We show experimentally

that this results in a strong correlation between the capture zone area and the optical

QD-properties.

We use spatially-resolved photoluminescence imaging to determine the position and

the optical properties of individual QDs simultaneously. We investigate samples of low

QD-density where a QD is small relative to the distances between QDs (point-island

model [220]). The capture zone of each QD is determined as its Voronoi-cell (VC)

[206, 219, 221, 222]. From the distribution of the VC-areas, we estimate a critical nucleus

size of the Al-droplets (see section 4.5). We find a strong negative correlation between the

VC-area, AVC, of a QD and its emission energy, in turn, a strong positive correlation

between AVC and the diamagnetic shift of the emission. These results can be well

explained with the capture-zone model describing the aggregation dynamics of the Al-

droplets. Correlations are measured for QDs of particularly low density, nQD < 1 µm−2,
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implying a diffusion length on the µm-scale during the growth phase of Al-droplets [207].

This is a striking result: The optical properties of a QD, which are directly related to its

structure on an nm-scale, are strongly correlated with its surroundings on a µm-scale.

4.2 Sample Growth

The samples are grown by molecular-beam epitaxy (MBE) on a (001)-substrate. We

investigate two different samples (denoted here as A and B) that are grown in two

different MBE-chambers. QDs are grown by GaAs-infilling of Al-droplet-etched nano-

holes. A schematic depiction of the growth is shown in Fig. 4.1. First, aluminum is

deposited on an AlGaAs-surface in the absence of an As-flux. The growth parameters

are: 0.5 ML on Al0.4Ga0.6As, T = 600◦C, flux F = 0.5 ML/s for sample A; and 0.16 ML

on Al0.33Ga0.67As, T = 630◦C, flux F = 0.18 ML/s for sample B. For both samples, the

layer thicknesses correspond to an equivalent amount of AlAs. The Al-atoms nucleate

(Volmer-Weber mode [225]) in the form of liquid nano-droplets on the sample surface

(see Fig. 4.1(a)).

Underneath an Al-droplet the substrate material is unstable leading to a nano-etching

process (Fig. 4.1(b)) [66]. Under a low As-flux, the etching proceeds until the whole

Al-droplet is consumed and the material is recrystallized in the surrounding region.

Another 2 nm of GaAs is grown on top, filling up the nano-holes via diffusion during

a 2-minute annealing step (Fig. 4.1(c)). Overgrown with AlGaAs, the filled nano-holes

become optically active QDs (Fig. 4.1(d)).

4.3 Optical Measurements

Optical measurements are performed in a helium bath-cryostat. Photoluminescence

(PL) is measured under above-band excitation (λ = 633 nm). An aspheric objective

lens (NA = 0.68) collects the PL. The PL of the QD-ensemble is centered at wavelength

787.4 nm for sample A, 798.0 nm for sample B (values referring to the neutral exciton,

X0), with ensemble standard-deviations 3.4 nm and 1.4 nm, respectively. A typical

spectrum of a single QD is shown in Fig. 4.2(a). The neutral exciton has the highest

emission energy [88]; the positively charged exciton is redshifted by on average 2.7 meV

(sample B: 2.1 meV). Additional exciton complexes appear at even lower energy [226]

but are not the focus of our analysis.

Spatially resolved micro-PL is performed by scanning the sample with a low-temperature

piezoelectric xy-scanner (attocube ANSxy100/lr). A spatially resolved PL-measurement
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Fig. 4.1: (a) Schematic of the growth process of the quantum dots (QDs). In a first
step, aluminum is deposited on an epitaxially grown AlGaAs surface. The
aluminum atoms nucleate in the form of liquid nano-droplets. An atom is most
likely to attach to the closest Al-droplet. This is the Al-droplet into whose
capture zone (red area) the atom falls. (b) Underneath the Al-droplet, the
substrate material is unstable. Nano-hole etching takes place upon exposure
to an arsenic flux. (c) After the formation of nano-holes, GaAs is deposited.
Diffusion leads to an infilling of the droplet-etched nano-holes with GaAs. (d)
Finally, the sample is capped with AlGaAs. The GaAs within the nano-hole
is now embedded in higher bandgap AlGaAs and forms a QD. (e) Spatially
resolved photoluminescence (PL) on a 24 × 24 µm2-large region of sample A.
Positions of individual QDs are obtained by Gaussian fitting (black dots). The
red lines are the Voronoi-cells (VCs) corresponding to the QD-positions. (f)
Relation between the VC-area (AVC) and the emission energy of the neutral
exciton, X0. The light-blue ellipse is a guide to the eye indicating the correlation
in a linear approximation (correlation coefficient ρ = −0.812). The red line is
a fit of Eq. 4.1.
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is shown in Fig. 4.1(e). QDs can be identified as bright regions on this PL-map. The

lateral positions of the QDs are obtained by fitting two-dimensional Gaussians. A slight

non-linearity of the piezo-scanner is corrected by using the widths of the fitted Gaus-

sians as a reference (see section 4.6). We determine the capture zone around a QD

by its Voronoi-cell (VC) – the area that is closer to this particular QD than to any

other one. A Voronoi-diagram is shown in Fig. 4.1(e) together with the corresponding

QD-positions. We find an average VC-area of 〈AVC〉 = 3.04 ± 0.08 µm2 (sample A)

and 〈AVC〉 = 6.87 ± 0.44 µm2 (sample B), corresponding to a quantum dot density of

nQD = 0.329± 0.009 µm−2 and nQD = 0.146± 0.009 µm−2, respectively.

Shown in Fig. 4.1(f) is the emission energy of the neutral exciton, EX0 , for many QDs

as a function of the VC-area, AVC. The plot is obtained by combining three independent

PL-maps from sample A. We find a strong negative (Pearson) correlation coefficient

of ρ = −0.812 (sample B: ρ = −0.809) between emission energy and AVC (ρ = ±1

maximum correlation; ρ = 0 no correlation). We explain this correlation by applying

the capture-zone model to the growth phase of the Al-droplets (Fig. 4.1(a)). An Al-

atom, impinging at a random position on the sample, moves on the surface via diffusion

and is most likely to attach to the closest Al-droplet. In the capture-zone model, the

growth rate of an Al-droplet is thus assumed to be proportional to the VC-area. If all Al-

droplets form at about the same time (sudden nucleation [221]), it leads to a correlation

between Al-droplet volume and VC-area. For an Al-droplet with a small VC-area, much

material nucleates at its nearest neighbors reducing its own accumulation rate. In turn,

an Al-droplet with a larger VC-area accumulates more atoms. Thus, the droplet-volume

Vd becomes larger. For a larger Al-droplet, the nano-hole etched underneath it becomes

deeper [201]. The QD subsequently formed from this nano-hole has a weaker confinement

in the growth direction lowering its emission energy.

We obtain a quantitative relation between AVC and the emission energy by the fol-

lowing considerations. In the capture-zone model, the volume of each Al-droplet is pro-

portional to AVC. We assume that all Al-droplets have a similar aspect ratio [215, 227].

Then the droplet-height Hd is connected to the droplet-volume Vd and to the VC-area

by Hd ∝ V
1/3
d ∝ A1/3

VC . For the relation between QD-height H (nano-hole depth, respec-

tively) and the droplet-height Hd [201], we assume a phenomenological relation H ∝ Hβ
d .

Since H is much smaller than the lateral extent of a QD [201], it is this parameter which

mainly determines the emission energy of the QD. In the case of a hard-wall confine-

ment and without considering Coulomb interaction terms, the emission energy of a QD

is given by the bandgap plus electron and hole confinement energy: E = E0 + h2

8µH2 ,

where E0 = 1.519 eV is the bandgap of the QD-material (GaAs) and µ =
(

1
m∗
e

+ 1
m∗
h

)−1
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Fig. 4.2: (a) An exemplary PL-spectrum of a QD. The emission line at the highest energy
is the neutral exciton (X0). At lower energy, emission of a singly-charged
exciton (X+) and a broad emission from further excitons appear. The inset
shows theX0 emission energy as a function of the magnetic field. A diamagnetic
shift and a Zeeman splitting are observed. The following sub-figures refer to
emission from X0 on sample A. (b) Diamagnetic shift as a function of AVC

(ρ = 0.805). The light blue ellipse has the same slope as a linear fit to the data
points; its widths indicate a 1.5σ-interval parallel and perpendicular to the
slope. (c) Diamagnetic shift as a function of the emission energy of the neutral
exciton. These parameters are negatively correlated (correlation coefficient ρ =
−0.922 ). (d) A weak correlation between the exciton g-factor and the Voronoi-
cell area, AVC. (e) Splitting between neutral and positively-charged excitons
(EX0−EX+) as a function of AVC (ρ = −0.819). (f) EX0−EX+ as a function
of X0 emission energy (ρ = 0.942).

the reduced electron-hole effective mass (m∗e = 0.067me, m
∗
h = 0.51me). Including the

d = 2 nm thick quantum well above the QDs leads to E = E0 + h2

8µ(H+d)2 . Using the

above relations one obtains an equation connecting AVC and the emission energy E of

the QD:

E = E0 +
h2

8µ
·
(

(α ·AVC)β/3 + d
)−2

(4.1)

A fit of Eq. 4.1 to the data is shown in Fig. 4.1(f). With the fit parameters α =

1.268 · 10−32 m3/β−2 and β = 0.556, we find a very good agreement with the data.
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The average height of a QD resulting from this fit is H = 8.7 nm which agrees well

with AFM-measurements (see section 4.7). A direct correlation between the measured

emission energy EX0 and the term on the right-hand side of Eq. 4.1 shows an even higher

correlation of ρ = 0.879 (see section 4.8) than that between emission energy and AVC.

This strong correlation supports our model for the connection between QD-properties

and capture zone.

We consider further QD-properties and their connection to the VC-area, AVC: the

diamagnetic shift of the QD-emission, and the splitting between neutral and positively-

charged exciton, EX0 −EX+ . Both of these QD-properties are connected mainly to the

lateral rather than the vertical confinement of the QD.

We measure the energy of the PL-emission (X0) as a function of a magnetic field

applied in the growth direction (inset to Fig. 4.2(a)). The magnetic field splits the

emission lines by the Zeeman energy and leads to a diamagnetic shift. For every QD we

fit the relation [76, 228]

E (B) = E(B = 0) + γB2 ± 1

2
gµBB, (4.2)

where g is the exciton g-factor and µB the Bohr magneton. We approximate the dia-

magnetic shift with a parabola with prefactor γ [76, 228]. The fine structure splitting

of the studied QDs [215] is negligibly small in this context. For the diamagnetic shift, a

probe of the lateral area of the exciton, we find values in the range γ = 15− 20 µeV/T2,

in good agreement with Ref. [229]. The dependence of γ on the VC-area (AVC) is shown

in Fig. 4.2(b). We find a correlation of ρ = 0.805 between AVC and γ, which reveals a

connection between the capture-zone area and the lateral size of a QD. An Al-droplet

with a larger VC-area has a larger lateral extent leading to a QD with a weaker lateral

confinement potential. This finding is also fully compatible with the capture-zone model.

For the direct dependence between the emission energy, EX0 , and the diamagnetic shift,

γ, we find an approximately linear relation (Fig. 4.2(c)) associated with a correlation of

ρ = −0.922. This connection between vertical and lateral confinement is consistent with

a reported correlation between emission energy and s-to-p-shell–splitting [226].

A plot of the exciton g-factor versus AVC is shown in Fig. 4.2(d). The g-factor shows

a slight dependence on AVC with ρ = −0.562. For these QDs, the electron g-factor

is very small such that the exciton g-factor is determined largely by the hole g-factor

[195, 229]. The hole states are predominantly heavy hole in character. However, even a

small admixture of light-hole states reduces the g-factor from the heavy hole limit by a

large amount [230, 231]. This light-hole admixture is size-dependent, which can explain
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the dependence of the g-factor on AVC. However, the g-factor is more weakly correlated

with AVC than the emission energy. We speculate that the hole g-factor is sensitive to

the shape and not just the volume of the QD leading to a weaker correlation with AVC.

Shown in Fig. 4.2(e) is the splitting between neutral and positively-charged exciton

(EX0 − EX+) as a function of AVC. Using single-particle wavefunctions, EX0 − EX+

can be associated with the term Eeh − Ehh, where Ehh, Eeh are the direct Coulomb

integrals between two holes, and an electron and a hole, respectively [71, 172]. Both

terms decrease with increasing lateral size of the QD and hence with increasing size of

the VC-area, AVC. Experimentally, we observe a monotonic relation between AVC and

EX0 − EX+ with a negative correlation (ρ = −0.819). For the direct relation between

EX0 − EX+ and the emission energy EX0 , we find a linear dependence corresponding

to a pronounced correlation of ρ = 0.942 [232] (see Fig. 4.2(f)). This dependence also

indicates a connection between the lateral and vertical confinements.

4.4 Conclusions

We show how the optical properties of QDs grown by GaAs-infilling of Al-droplet-etched

nano-holes are connected to the capture-zone model, a concept from nucleation the-

ory. The QD-positions and the optical QD-properties are obtained simultaneously by

spatially resolved photoluminescence. The capture zone of QDs is determined by the

Voronoi-diagram of the QD-positions. We find a strong negative correlation between

the VC-area and the emission energy of QDs. This result can be explained with the

capture-zone model applied to the growth-phase of the Al-droplets. A relation between

VC-area and further optical properties (diamagnetic shift and neutral-to-charged exciton

splitting) shows that not only the vertical but also the lateral QD-size is correlated with

the area of the capture zone. We measure these correlations on samples with low QD-

densities (nQD < 1 µm−2). Properties of a QD on a nm-scale, which determine its optical

emission, are therefore connected to its surroundings on a µm-scale. This result might

be transferable to other nanostructures when strong material diffusion is present during

the growth. The correlations between different QD-parameters facilitate the preselection

of QDs for applications that place stringent requirements on the QD-properties. The

correlation between emission energy and capture-zone area has a powerful implication:

If all capture-zone areas are identical – e.g. by forcing the nucleation of the Al-droplets

on a lattice – then a spectrally narrow wavelength distribution of the QD-ensemble can

potentially be engineered. This idea has been successfully applied to stacked QD-layers,

and QDs in pyramidal nanostructures [233, 234, 235, 236, 237, 238, 239]. For the system
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Fig. 4.3: Frequency distribution, fVC, of the normalized Voronoi-cell area, AVC/〈AVC〉 ≡
x. For better visibility, the normalized Voronoi-cell areas are divided in finite
intervals. The red line is a fit of Eq. 4.3 obtained by likelihood optimization.

investigated here, Fig. 4.1(f) indicates that the QD-ensemble would narrow by a factor

of two if all Voronoi-cell areas were in a range of 3− 4 µm2.

4.5 Frequency Distribution of the Voronoi-Cell Areas

The frequency distribution of the VC-areas gives further information about the Al-

droplet formation. The probability density distribution, fVC, of the normalized Voronoi-

cell areas, AVC/〈AVC〉 ≡ x, is often modeled by a generalized Wigner distribution [240,

241]:

fVC(x | η) = aη · xη · exp
(
−bηx2

)
. (4.3)

In our notation, f(x | η) corresponds to a probability density distribution for x under

the condition η. The parameters bη and aη are defined by the constraint that fVC is a

normalized probability density distribution with a mean of 1. Explicit expressions for

bη, aη are given in Refs. [242, 243]. The parameter η can be connected to the critical

nucleus size, i, via η ≈ i+ 2 [241, 243, 244].

We fit Eq. 4.3 to the distribution of normalized VC-areas via likelihood optimization,

without making approximations such as Poissonian or Gaussian error estimation [245].

Let {A(i)
VC}i∈{1..N} be the set of the areas corresponding to the N different Voronoi cells.

We define {x(i)}i∈{1..N} as the set of all normalized Voronoi-cell areas, x(i) = A
(i)
VC/〈AVC〉.

Eq. 4.3 assigns a probability density to each value x(i). We assume that every value x(i)

corresponds to an independent random variable, X(i). Then, under the condition of a

fixed value for η, the probability density of measuring a set of normalized Voronoi cells,

73



{x(i)}i∈{1..N}, is given by:

P
(
{x(i)}i∈{1..N} | η

)
=

N∏
i=1

fVC(x(i) | η). (4.4)

This likelihood distribution is maximum for η = ηopt = 3.66. The mean of the likelihood

distribution is ηm = 3.68. The difference between mean and maximum of the likelihood

distribution is small because the distribution is close-to symmetric and only slightly

biased. The found value of the parameter η corresponds to a critical nucleus size of

i ≈ 2.

The likelihood distribution, P
(
{x(i)}i∈{1..N} | η

)
, has a standard deviation of ση =

0.33 when varying η for a fixed measurement, {x(i)}i∈{1..N}. Bayes’ theorem connects the

probability density for measuring {x(i)}i∈{1..N} under the condition of a fixed parameter

η to the probability density for η under the condition of a measurement, {x(i)}i∈{1..N}:

P
(
η | {x(i)}i∈{1..N}

)
=
P
(
{x(i)}i∈{1..N} | η

)
· P (η)

P
(
{x(i)}i∈{1..N}

) . (4.5)

The distribution P
(
{x(i)}i∈{1..N}

)
does not depend on η. Furthermore, we assume a

uniform prior distribution, P (η). In this case, both probability density distributions

P
(
η | {x(i)}i∈{1..N}

)
and P

(
{x(i)}i∈{1..N} | η

)
are equal up to a prefactor which does

not depend on η. Therefore, the width of both distributions is identical. The error

on the parameter η is given by ση = 0.33, the standard deviation calculated for the

likelihood distribution, P
(
{x(i)}i∈{1..N} | η

)
.

Shown in Fig. 4.3 is the distribution of the relative frequency, fVC, of the normal-

ized VC-area, AVC/〈AVC〉 ≡ x. In this figure, the normalized Voronoi-cell areas,

{x(i)}i∈{1..N}, are divided in finite intervals. The solid red line is the fit (η = ηopt = 3.66)

of Eq. 4.3 to the data, {x(i)}i∈{1..N}.

4.6 Correction of the Non-Linearity of the Piezo-Scanners

The determination of Voronoi-cell sizes is based on measuring the PL as a function of

the position. Such a PL-map is carried out by scanning the sample position with piezo-

electric xy-scanners. The scanners have a hysteresis which, however, does not affect

our measurements as we perform all measurements while scanning in the forward direc-

tion. Besides, the piezo-scanner position depends non-linearly on the applied voltage.

This non-linearity could potentially be corrected by calibrating the piezo-scanners with
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a well-defined reference-structure. Here, we use a different approach: The emission spot

of a QD appears differently in size depending on the absolute position of the scanner.

The QD spot size is a direct measure of the non-linear dependence between the applied

piezo-voltage and the position. The lateral size of a QD itself (< 40 nm) is negligible

in comparison to the spot size. We can, therefore, use the widths of the QD spots as a

reference to compensate for the distortion of the PL-map. The corresponding procedure

is explained in the caption of Fig. 4.4. The distortion correction works well due to the

large number of QDs on each PL-map. A comparison of a PL-map with and without

distortion correction is shown in Fig. 4.4(c, d).

4.7 AFM-Measurement

We perform an AFM-measurement on a reference sample for which the growth is stopped

after the etching of the nano-holes. An AFM-image of a 5 × 5 µm2 large region is

shown in Fig. 4.5. The measurement suggests that nano-holes with other nano-holes

in their proximity are shallower in comparison to more separated ones. This finding is

consistent with the capture zone model and the results obtained by spatially resolved

photoluminescence. The size of the AFM-image does not allow for a quantitative analysis

comparable to which is done based on the spatially resolved PL-measurements.

4.8 Emission Energy and Voronoi-Cell Area

Shown in Fig. 4.6 is the dependence between the emission energy and the Voronoi cell

(VC) area, AVC, for the two different samples (A, B). For both samples, we observe that

the emission energy decreases with increasing Voronoi-cell area, AVC.

Eq. 4.1 suggests that the relation between AVC and emission energy is non-linear. In

Fig. 4.6 we plot the emission energy as a function of the expression on the right-hand

side of Eq. 4.1. The correlation of this dependence is higher (|ρ| = 0.879) than the

correlation between emission energy and AVC (|ρ| = 0.812). This result suggests that

Eq. 4.1 is a better description of the data than a linear approximation.
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Fig. 4.4: Correction of the distortion due to the non-linearity of the piezo-scanners. The
QD-position is set by the voltages Vx/y applied to the piezo-scanners. The
distortion correction is carried out independently for the (a) x- and (b) y-
directions (x-direction in the following explanation). Initially, the spot size σx
is measured for every QD in units of the voltage applied to the piezo-scanner. It
is obtained by fitting a 2D Gaussian to the PL-intensity. The PL is spectrally
filtered to select individual QDs. For a larger derivative dx

dVx
, the spot size

appears smaller than for a smaller value of dx
dVx

. The spot size σx is therefore

inversely proportional to the derivative dx
dVx

. The red curves in (a), (b) are fits
to a phenomenological parabolic dependence between applied piezo-voltage Vx
and 1/σx: dx

dVx
= c̃/σx = c̃(a0 + a1Vx + a2V

2
x ). We use the fit results to map Vx

to the position x(Vx) = c̃
∫ Vx

0 (a0 +a1V +a2V
2) dV. The prefactor c̃ is obtained

by the constraint that the highest voltage corresponds to the full scan range.
(c) PL-intensity as a function of the xy-position. The PL is integrated over
the full QD-ensemble. The PL-map is shown without the distortion correction,
assuming that position and applied piezo-voltage are related linearly. Due to
the described non-linearity of the piezo-scanners, the QD-spots at low voltages
appear slightly larger in comparison to the QD-spots at high voltages – the
PL-map is distorted. (d) The same PL-map with a distortion correction using
the above method. The QD-spot sizes are homogeneous indicating a successful
correction of the distortion.
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Fig. 4.5: (a) An atomic force microscopy (AFM) image on a sample similar to sample A.
The growth is stopped after etching the nano-holes. The size of the AFM-scan
is 5 × 5 µm2 with 512 × 512 pixels. The AFM-image indicates that the more
separated nano-holes (with a larger VC-area) are deeper than those with a close-
by neighbor. This finding is in good agreement with the results shown in section
4.3. A zoom-in of two nano-holes is shown in (b, c) to illustrate this observation.
The first nano-hole has several close-by neighbors and is shallow. In contrast,
the second nano-hole is more isolated and is particularly deep. The image
size and resolution are too low to allow for a quantitative statistical analysis
comparable to section 4.3. Note that an AFM-image comparable in size to
the presented PL-measurements, simultaneously imaging individual nano-holes
with ∼ 2 nm resolution, would have to be ∼ 104 × 104 pixels large – a very
time-consuming measurement.
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Fig. 4.6: Emission energy (X0) as a function of Voronoi-cell area (AVC). The red line is
a fit to Eq. 4.1 for QDs on sample A (blue points). Inset: emission energy of
QDs on sample A as a function of the expression on the right-hand side of Eq.
4.1. The relation between both quantities is more linear (correlation coefficient
|ρ| = 0.879) than the direct relation of emission energy and AVC (|ρ| = 0.812)
which supports Eq. 4.1. QDs on sample B (black data points) are red-shifted
compared to QDs on sample A.
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Chapter 5

Radiative Auger Process in the

Single-Photon Limit

This section is partly adapted from Ref. [246]: ”Radiative Auger Process in the Single

Photon Limit on a Quantum Dot”, Matthias C. Löbl, Clemens Spinnler, Alisa Javadi,

Liang Zhai, Giang N. Nguyen, Julian Ritzmann, Leonardo Midolo, Peter Lodahl, An-

dreas D. Wieck, Arne Ludwig, and Richard J. Warburton, arXiv:1911.11784 (2019).

Abstract: In a multi-electron atom, an excited electron can decay by emitting a

photon. Typically, the leftover electrons are in their ground state. In a radiative Auger

process, the leftover electrons are in an excited state and a red-shifted photon is created

[247, 248, 249, 250]. In a quantum dot, radiative Auger is predicted for charged exci-

tons [251]. However, this process has not been observed on any single-photon emitter.

Here, we report the observation of radiative Auger on trions in single quantum dots.

For a trion, a photon is created on electron-hole recombination, leaving behind a single

electron. We show that the red-shifted radiative Auger lines determine the quantiza-

tion energies of this single electron precisely, information which is otherwise difficult to

acquire. For this reason, radiative Auger is a powerful tool. Going beyond the origi-

nal theoretical proposals, we show experimentally how quantum optics – an analysis of

the photon correlations – gives access to the single-electron dynamics, notably relax-

ation and tunneling. All these properties of radiative Auger can be exploited on other

semiconductor nanostructures and quantum emitters in the solid-state.

5.1 Introduction

In an atom or a semiconductor, an excited electron can relax by the emission of a photon.

The excited electron can also relax nonradiatively by the excitation of another electron

– an Auger process [252, 253]. Nonradiative Auger processes involving continuum states
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Fig. 5.1: Observation of a radiative Auger process on a single quantum dot. (a)
Schematic setup: the quantum dot (QD) is resonantly excited with a narrow-
bandwidth laser, and its emission is spectrally resolved. (b) Emission spec-
trum of the negative trion (X1−) in an InGaAs QD under resonant excitation
(T = 4.2 K). The strong peak at E ' 1.321 eV is the resonance fluorescence.
Red-shifted by ~ω0 ∼ 18 meV there are two additional emission lines, stem-
ming from the radiative Auger process. The QD can be tuned in and out of
the resonance with the laser via a gate voltage, Vg. The shown spectrum is
measured at zero detuning, ∆, between QD and laser (dashed line). Resonance
fluorescence and radiative Auger are maximum when QD and laser are in res-
onance (∆ = 0). (c) The radiative Auger process: with a probability close
to one, the trion recombination results in an emission of a resonant photon
and leaves the remaining electron in the s-shell. With small probabilities |ε1|2
and |ε2|2, the remaining electron is promoted into one of the p-shells, and the
photon is consequently red-shifted. (d) Setup for the cross-correlation between
the radiative Auger emission and the resonance fluorescence. The delay τ cor-
responds to the duration between the arrival of a resonant photon on detector
2 after the detection of an Auger photon on detector 1. (e) Cross-correlation
measurement between radiative Auger and resonance fluorescence.

have been observed in quantum dots [90], two-dimensional materials [254], color centers

[255], and are a major factor in determining the efficiency of semiconductor lasers [256].

As originally predicted for atoms, an Auger process can also take place together with

a radiative transition [249, 250]. In such a radiative Auger process, part of the available

80



energy is transferred to another electron and the emitted photon is correspondingly red-

shifted. The radiative Auger process has been observed in X-ray spectra [247, 248].

The so-called electron shake-off, which follows the beta-decay of a radioactive atom,

has a similar physical origin [257]. At optical frequencies, the radiative Auger process

has been described in ensembles of donors [258] and as a so-called shake-up process in

the Fermi-sea [85, 259, 260], a many-particle effect. On a single-photon emitter or in

a few-electron configuration, the radiative Auger process has not been observed. The

prospect of applying quantum optics techniques to the radiative Auger photons has not

been considered so far.

We measure the radiative Auger process at optical frequencies for the minimum num-

ber of two excited electrons. Radiative Auger is observed for a negative trion (an exciton

consisting of two electrons and one hole), which is confined to a zero-dimensional quan-

tum dot (QD) [251]. The radiative Auger process promotes the additional (Auger)

electron to a higher shell of the QD. No continuum states are involved. The emitted

photon is red-shifted by the energy which is transferred to the Auger electron. We show

that the radiative Auger effect is a powerful probe for single electrons: the energy sep-

arations between the resonance fluorescence and the radiative Auger emission directly

measure the single-particle splittings of the QD with very high precision. In semiconduc-

tors, these single-particle splittings are otherwise hard to access by optical means since

particles are generally excited in pairs, as excitons. After the radiative Auger excitation,

the Auger carrier relaxes back to the lowest shell of the confinement potential. With

a quantum optics-based correlation measurement, we determine the rate correspond-

ing to this single-particle relaxation in the absence of any other particles. Also this is

typically hard to achieve by optical means: even for quasi-resonant p-shell excitation,

electron relaxation takes place in the presence of a hole, which complicates the relaxation

dynamics.

5.2 Experimental Results

We observe the radiative Auger process on two different systems: first, a self-assembled

InGaAs QD in GaAs grown in the Stranski-Krastanov mode [251] and second, a GaAs

QD in AlGaAs grown by infilling of droplet-etched nano-holes [211]. We resonantly

excite the negative trion (X1−) of a QD with a narrow-bandwidth laser. In both QD

systems, the charge state of the QD is precisely controlled via Coulomb blockade [79].

We collect the emission of the QD and resolve it spectrally, as schematically shown in

Fig. 5.1(a). Shown in Fig. 5.1(b) is the result of such a measurement for an InGaAs
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Fig. 5.2: Magnetic field dispersion of the radiative Auger emission. (a) Emis-
sion spectrum under resonant excitation as a function of the magnetic field
measured on an InGaAs quantum dot (QD). The two green lines indicate the
radiative Auger emission where one electron is promoted into the p-shells. This
emission follows a dispersion of ∼ ±1

2~ωc, with m∗ ' 0.071 me, s-to-p-splitting
~ω0 ' 17.7 meV. (b) Magnetic field dispersion of the radiative Auger emission.
The emission lines above the s-shell can be well described by the Fock-Darwin
spectrum. The red lines represent a fit of our analytical model of the radiative
Auger emission (see Supplement section 5.4). (c) Radiative Auger emission
as a function of the magnetic field measured on a GaAs QD (m∗ ' 0.076 me,
~ω0 ' 13.8 meV). (d) Magnetic field dispersion of the radiative Auger emission
for the GaAs QD. (e) Schematics of the radiative Auger process involving both
p- and d-shells. (f) Optical recombination involving the creation of an LO- or
a TO-phonon. This process is observed for the trion and the neutral exciton
(see Supplement Fig. 5.4(a)). (g) Schematics of the radiative Auger process
involving both carrier excitation to the p-shell and the creation of a phonon.

QD. The main peak at photon energy ∼ 1.321 eV is the resonance fluorescence of the

trion. This spectrally narrow emission is accompanied by an LA-phonon sideband on

the red side [133, 134, 261]. Additionally, we observe two weak emission lines, red-

shifted by ∼ 18 meV from the main fluorescence peak. In the following, we show that

these emission lines originate from a radiative Auger process as illustrated in Fig. 5.1(c):
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an electron and a hole recombine optically and with a small probability, the second

electron is promoted to an excited state, the p-shell of the QD. In the case of resonance

fluorescence, in contrast, the optical recombination of the trion leaves behind a single

electron in the ground state (s-shell of the QD).

Several observations substantiate the interpretation that the two red-shifted lines orig-

inate from a radiative Auger process. First, the Auger lines disappear on removing the

additional electron – they are absent in the emission spectrum of the neutral exciton,

X0 (see Supplement Fig. 5.4). Secondly, the red-shifted emission lines only appear

when the laser is in resonance with the QD (Fig. 5.1(b)). Thirdly, the time-resolved

cross-correlation between the radiative Auger emission and the resonance fluorescence

(Fig. 5.1(d,e)) shows a pronounced anti-bunching at zero time-delay. This measurement

demonstrates that the different emission lines originate from the same QD. The emit-

ter produces either a resonance-fluorescence photon or a radiative-Auger photon, but

never two photons at the same time. Finally, to prove that the radiative Auger process

leaves an electron in a higher shell, we measure the optical emission as a function of the

magnetic field (Faraday geometry). The magnetic field dispersion of the radiative Auger

emission is shown in Fig. 5.2(a,b) for an InGaAs QD and in Fig. 5.2(c,d) for a GaAs

QD. At high magnetic fields, the two red-shifted emission lines, which are the closest in

energy to the resonance-fluorescence, have a dispersion of ±1
2~ωc (cyclotron frequency:

ωc = eB
m∗ , electron effective mass m∗). This magnetic field dispersion shows that the

emission is connected to an energy transfer to the p-shells. More generally, the strong

magnetic field dispersion of the radiative Auger emission arises because the magnetic

field creates an additional orbital confinement, which leads to a strong magnetic field

dependence of higher QD-shells [63, 69, 70]. The magnetic field dependence is important

to distinguish radiative Auger emission from phonon-related features.

The separation between resonance fluorescence and radiative Auger emission corre-

sponds to the single-particle splittings. The radiative Auger lines, therefore, allow the

single-particle spectrum of a quantum dot to be determined with high precision. At

zero magnetic field (B = 0 T), there is a splitting between the two p-shell-related Auger

lines, revealing an asymmetry of the QD. This asymmetry lifts the four-fold degeneracy

of the p-shells into two doublets at zero magnetic field. For both types of QDs, we

also observe radiative Auger emission at even lower energies (see Fig. 5.2(a,c)). These

emission lines correspond to a radiative Auger process involving d-shells (Fig. 5.2(e)).

At high magnetic fields, the upper p-shell (p−) shows an anti-crossing with the lowest

d-shell (d+). For the GaAs QD, we even observe radiative Auger emission lines involving

all three d-shells. For the InGaAs QD, the d+-shell is only visible in the radiative Auger
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Fig. 5.3: Time-resolved correlation measurements. (a) Schematic of the measure-
ment to determine the auto-correlation of the resonance fluorescence from a
quantum dot (QD). The signal is split by a 50:50 beamsplitter; photon ar-
rival times are recorded on two single-photon detectors (g(2)-measurement).
(b) Schematic of the cross-correlation measurement between resonance fluores-
cence and radiative Auger emission. The Auger emission is spectrally filtered to
remove all resonant photons. (c) Cross-correlation between the resonance fluo-
rescence and the radiative Auger emission (green), measured on the InGaAs QD
shown in Fig. 5.1. An auto-correlation of the resonance fluorescence (blue) is
shown for comparison. A time offset of τp ∼ 85 ps between the auto-correlation
and the cross-correlation is a measure of the relaxation time of a single electron
from the p- to the s-shell. (d) Fits to the auto- and cross-correlation measure-
ments. (Parameters listed in Tab. 5.3) (e) Model for the dynamics connected
to the radiative Auger process. After the radiative Auger excitation, the sec-
ond electron occupies the p-shell of the QD. When the electron occupies the
p- rather than the s-shell, the Coulomb interactions are different, tuning the
s-to-s transition out of resonance with the laser. The QD cannot be re-excited
until the electron has relaxed to the s-shell. There are two relaxation channels:
a direct relaxation to the s-shell on a time scale τp; and ionization of the QD
by tunneling from the p-shell to the Fermi-reservoir of the back gate (τout) fol-
lowed by slower tunneling from the Fermi reservoir to the s-shell (τin). After
relaxation, the QD is re-excited by the laser. (f) Schematic setup for the auto-
correlation measurement of the radiative Auger emission. The radiative Auger
signal is split and sent to two single-photon detectors. (g) Auto-correlation
of the radiative Auger process involving the lower energy p-shell (green). The
solid black line is a model where all parameters are identical to the simulation
of the cross-correlation. Only the Rabi-frequency is higher compared to the
cross-correlation measurement.

84



emission when it is coupled to the p−-shell. For both types of QDs, we model the disper-

sion of the emission lines by the Fock-Darwin spectrum [69, 70] (details in Supplement

section 5.4). The model assumes a harmonic confinement potential and matches well

for the lower QD-shells (see Fig. 5.2(a,c)). Differences between model and data (e.g. for

the d-shells) reveal the deviation from a harmonic confinement potential towards higher

single-particle energy.

For a rotationally symmetric confinement potential, angular momentum is a good

quantum number such that promotion of the Auger electron to the d0-shell is possible,

but promotion to the other p- and d-shells is forbidden. In practice, we find that the

radiative Auger involving the p-shells is relatively strong and that the intensity of these

processes is not strongly dependent on the magnetic field. Besides, the p-shells are not

degenerate at zero magnetic field. These observations show that angular momentum

is not a good quantum number. However, we do not observe Zeeman splittings in the

radiative Auger lines, which shows that the processes are spin-conserving. Spin is a good

quantum number; equivalently, spin-orbit interactions of the electron states are weak.

There are several additional red-shifted emission lines that are not related to electron

shells or continuum states (see Fig. 5.2(a,b)): An emission red-shifted by ∼ 36 meV

(labeled LO in Fig. 5.2(b,d)) corresponds to an optical recombination along with the

creation of an LO-phonon (Fig. 5.2(f)). The magnetic field dispersion is weak and follows

the QD s-shell – no higher QD-shells are involved. At lower photon energies, even the

LO-phonon replica of the radiative Auger emission is visible (labeled LO + p± in Fig.

5.2(b), schematic illustration in Fig. 5.2(g)). In this case, Auger carrier excitation into

p-shells and LO-phonon creation occur simultaneously with the optical recombination.

The identification of these lines is confirmed by the magnetic field dispersion which

equals the dispersion of the radiative Auger emission (see Fig. 5.2(b)).

We turn to the dynamics of the radiative Auger process, i.e. the dynamics of the

electron left in an excited state after a radiative Auger process. Detecting a photon from

a radiative Auger process projects the Auger electron into one of the excited electron

states. The dynamics of this single electron can be investigated by determining the

time of subsequent emission events. The experiment involves measuring the g(2)(τ)

correlation function with high precision in the delay τ . We compare the auto-correlation

of the resonance fluorescence (Fig. 5.3(a)) to the cross-correlation between the radiative

Auger emission and the resonance fluorescence (Fig. 5.3(b)). This comparison provides

immediate insight into the carrier relaxation mechanism following the radiative Auger

process. The corresponding g(2)-measurements are shown in Fig. 5.3(c).

The auto-correlation (blue curve) shows an anti-bunching (g(2) < 1) at zero time delay,
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proving the single-photon nature of the resonance fluorescence. The anti-bunching is

surrounded by a bunching (g(2) > 1) at a non-zero time delay. This effect is caused

by the onset of Rabi-oscillations under strong resonant driving. The cross-correlation

(green curve) differs from the auto-correlation in two aspects: The g(2)(τ) is a slightly

asymmetric function of τ and has a time-offset towards positive τ . We can explain

these features (see fit in Fig. 5.3(d)) with the mechanism shown in Fig. 5.3(e): After the

emission of a radiative Auger photon, the second electron is located in a higher shell.

Before re-excitation of the trion can take place, this electron has to relax down to the

s-shell – in contrast to the resonance fluorescence where re-excitation is immediately

possible. By comparing auto- and cross-correlation, we determine the relaxation time

for an isolated electron to be τp ' 85 ps. The time-scale of the electron relaxation

is comparable to numbers reported for weak nonresonant excitation [262, 263]. The

relaxation is probably caused by a multi-phonon emission process [80, 264]. We stress

the advantage of the present method: the radiative Auger process leaves only a single

electron in a higher shell. In contrast to nonresonant excitation, all other carriers have

disappeared and the relaxation of the electron can be investigated independently of other

relaxation mechanisms.

The asymmetry of the cross-correlation measurement can be explained by ionization

of the QD following the radiative Auger emission. In a higher shell, the electron has an

enhanced tunneling rate out of the QD [114]. Following very fast relaxation down to the

Fermi-energy, tunneling back into the s-shell of the QD takes about ten times longer,

and the QD is ionized for a finite time. We estimate the corresponding tunneling times

by modeling the auto- and cross-correlation measurements. The full model and the fit

results are given in the Supplement (section 5.6); the fits describe the experimental data

well (see Fig. 5.3(d)).

Finally, we perform the first auto-correlation measurement of the radiative Auger

emission. For this measurement, all the resonance fluorescence is filtered out (Fig. 5.3(f)).

To maximize the count rate of the weak radiative Auger emission, we use a higher

Rabi-frequency compared to the cross-correlation measurement. The auto-correlation

measurement is shown in Fig. 5.3(g). At zero time delay, there is a clear anti-bunching

in the g(2)-measurement, which proves the single-photon nature of the emission connected

to the radiative Auger process. At non-zero time-delay, the onset of Rabi-oscillations

in the s-to-s transition is visible as a photon bunching of the radiative Auger emission.

Both features are well described by our model (see Supplement section 5.6).

The radiative Auger process takes place because the interactions between the carriers

forming the trion change the eigenfunctions of the system (see Supplement section 5.5).
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In a single-particle basis, the initial state contains admixtures of Slater determinants

[265, 266] of higher single-particle shells. The optical recombination removes an electron-

hole pair from the initial trion state, leading to a final state which is a superposition

of single-electron single-particle states. Every state in that superposition consists of an

electron in a particular shell along with a photon of a certain energy. Since the initial

state is always the same, the energy separations between the different emission lines

correspond to precise single-particle splittings. The ratio of radiative Auger emission

and resonance fluorescence reflects the expansion of the trion state in single-particle

states. Compared to the resonance fluorescence, the radiative Auger emission is weaker

by about 2–3 orders of magnitude for both types of QDs. It is slightly stronger for the

larger GaAs QDs. The trion wavefunctions are close, yet not equal to, single-particle

states.

In conclusion, we experimentally demonstrate that there is a radiative Auger process

connected to the optical recombination of a trion in a single QD. The measurements

are performed on negatively-charged trions in two different types of semiconductor QDs.

We show how the radiative Auger process enables the behavior of a single electron to be

determined in the QD (energy quantization, relaxation and tunneling dynamics) using

the precise, sensitive and fast tools of quantum optics. The radiative Auger process

only requires significant Coulomb interactions within the trion, a very general feature.

Therefore, this process should also be observable for the positively-charged trion and

other quantum emitters in the solid-state.

5.3 Experimental Methods

The samples are grown by molecular beam epitaxy. Sample A contains InGaAs QDs

embedded in a p-i-n-i-n-diode structure [91, 107, 120, 267]. Sample B contains GaAs QDs

in AlGaAs, which are grown by GaAs-infilling of Al-droplet etched nano-holes [66, 211].

The photon out-coupling is enhanced by a distributed Bragg mirror below the QDs. For

both samples, the QDs are placed between a p-doped top gate and an n-type doped back

gate. The QDs are tunnel-coupled to the back gate. This configuration stabilizes the

charge environment of the QDs and enables tuning the QD charge state by applying a

voltage between top and back gate [20, 87]. For the InGaAs QDs, the back gate has

a distance of 40 nm to the QDs, 30 nm for the GaAs QDs. In a magnetic field, there

is optical spin-pumping in the center of the trion charge plateau [23, 98]. Therefore,

we perform all experiments at the plateau edges, where co-tunneling randomizes the

electron spin [112].
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All time-resolved measurements are performed by using superconducting single-photon

detectors. The overall timing resolution for the g(2)-measurements is IRF ' 35 ps (full

width at half maximum). Optical measurements are carried out at 4.2 K in a helium

bath cryostat. Resonant excitation of the QDs is performed with a narrow-bandwidth

(∼ 1 MHz) tunable diode laser (Toptica DLpro), which is additionally filtered with a

home-built grating setup in order to remove any background from the gain medium of

the laser. Resonance fluorescence of individual QDs is measured by suppressing the

reflected laser light with a cross-polarization technique.

5.4 Modeling the Magnetic Field Dispersion

The radiative Auger emission appears on resonantly exciting the trion. Fig. 5.4(a) shows

a comparison of the emission spectrum from a neutral exciton and a trion. The emission

spectrum of the neutral exciton (X0) only shows phonon-related features. A radiative

Auger emission is impossible for the X0 due to the absence of an Auger electron.

The final states after the optical recombination of the trion are single-particle states.

Therefore, the separations between the different emission lines are precise single-particle

splittings. Shown in Fig. 5.4(b,c) is the magnetic field dispersion of the extracted single-

particle splittings for two different QDs. Fig. 5.4(d,e) shows the single-particle dispersion

for the two QDs shown in Fig. 5.2. At zero magnetic field, we measure an s-to-p-splitting

of 17.7 meV respectively 21.0 meV on the InGaAs QDs; and 13.8 meV respectively

17.6 meV on the GaAs QDs. We can determine many further parameters of the single-

particle spectrum by fitting the data to a model which assumes states of an asymmetric

harmonic confinement potential. The red lines in Fig. 5.4(b-e) represent the model that

is developed in this section. It reproduces the data very well.

For a symmetric, two-dimensional, and harmonic confinement potential, the magnetic

field dependence of the single-particle states forms the Fock-Darwin spectrum [69, 70].

The eigenergies En,L depend on two quantum numbers, the radial quantum number, n,

and the angular momentum quantum number, L [63]. In this model, the two p-shells

are degenerate at zero magnetic field. This is clearly not the case in our experiments.

To describe the single-particle dispersions, we therefore assume an asymmetric harmonic

confinement potential of the form V (x, y) = 1
2m
∗
e

(
ω2
xx

2 + ω2
yy

2
)
. When the radial sym-

metry is broken, angular momentum is no longer a good quantum number, and the

eigenenergies are Enx,ny = ~ωx
(
nx + 1

2

)
+~ωy

(
ny + 1

2

)
, with the two quantum numbers

nx and ny. The eigenenergies of such an asymmetric harmonic confinement as a function

of the magnetic field are given in Ref. [74].
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Fig. 5.4: (a) Emission spectrum for resonant s-to-s excitation of the InGaAs quantum
dot (QD) in Fig. 5.2(a). For better comparability, X0 (blue) is shifted in
energy such that the resonance fluorescence peak overlaps with X1− (red). The
resonance fluorescence (E ' 1.321 eV) dominates, emission at lower energies is
caused by an energy transfer to either phonons or an additional carrier via the
radiative Auger process. The radiative Auger process is only possible for X1−,
not for X0. (b) Magnetic field dispersion of the single-particle splittings for
another InGaAs QD. To obtain the single-particle splittings, the s-shell energy
is subtracted. (c) Single-particle splittings for another GaAs QD embedded in
AlGaAs. (d) Single-particle splittings for the QD shown in Fig. 5.2(a). (e)
Single-particle splittings for the QD shown in Fig. 5.2(c).

The absolute energies of the emission lines correspond to the energy differences be-

tween the initial state (Etrion) and the final states (Ef). To fit the dispersions of these

emission lines, we compute the energy of the initial trion state as the sum of its single-

particle energies plus the corresponding Coulomb and exchange terms. For the Coulomb
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label description
~ reduced Planck constant
µB Bohr magneton
ε0, εr permittivity of vacuum, relative permittivity
ge, gh electron and hole g-factor
E0 bandgap of the QD-material
m∗e, m

∗
h electron, hole effective mass

~ωc = ~eB
m∗
e

electron cyclotron energy

~ωx, ~ωy confinement energies of the asymmetric harmonic oscillator
~ω0 ≡ ~ωx + ∆p ≡ ~ωy −∆p confinement energy of the symmetric harmonic oscillator
n,L quantum numbers for the symmetric harmonic oscillator
nx, ny quantum numbers for the asymmetric harmonic oscillator
En,L eigenenergies of the symmetric harmonic oscillator
∆pd coupling between p−- and the d+-shell
ΩR Rabi frequency
Γr = τ−1

r radiative decay rate

ΓA = τ−1
A radiative Auger decay rate

Γp = τ−1
p relaxation rate from p- to s-shell

Γout = τ−1
out tunnel rate out of the QD after a radiative Auger decay

Γin = τ−1
in tunnel rate into the ionized QD

E
p±
f , E

d±
f , and Ed0

f final state energies after Auger excitation into p- and d-shells
∆LO,∆TO energies of longitudinal and transverse optical phonon

Table 5.1: List of definitions.

energy terms, we assume a symmetric confinement as the corresponding energy terms

can be easily computed analytically [45, 71, 172]. Coupling terms admixing higher shells

are not considered in this estimation [71, 172].

At a magnetic field of B ' 8 T, the p−- and the d+-shells anticross. This is not a

feature of the energy spectrum of an asymmetric harmonic oscillator. The anti-crossing

is included by a phenomenological coupling ∆pd between p−- and d+-shell. We specu-

late that the coupling between both shells arises due to the deviation from a harmonic

confinement.

When part of the energy is transferred to an LO-phonon, the corresponding photon

energy is given by, Etrion − Esf −∆LO. This emission has the same weak magnetic field

dependence as the resonance fluorescence (s-shell emission).

The results of fitting our model are shown in Fig. 5.4 and Fig. 5.2. A list of definitions

is given in Tab. 5.1, and the fit parameters are given in Tab. 5.2. For all measured

QDs, the strong magnetic field dispersion of the radiative Auger emission lines is well

reproduced.
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E0 (eV) m∗e (m0) gh − ge (a. u.) ~ω0 ∆p ∆pd ∆LO ∆TO

1) 1.3214 0.0712 1.505 17.67 1.26 1.12 36.1 –
2) 1.5925 0.0757 1.135 13.84 1.90 0.25 36.3 33.5
3) 1.3152 0.0762 1.968 20.98 1.08 – – –
4) 1.5757 0.0737 1.1 17.59 2.61 1.37 36.5 –

Table 5.2: Fit results for the magnetic field dispersion. Unless otherwise stated, all
parameters are given in meV. (1) InGaAs, Fig. 5.2(b) (2) GaAs, Fig. 5.2(d)
(3) InGaAs, Fig. 5.4(b) (4) GaAs, Fig. 5.4(c).

In the case of the InGaAs QD shown in Fig. 5.2(a,b), we fit the energies of the s-

shell emission and the radiative Auger emission into both p-shells simultaneously. The

coupling term ∆pd is included as a fit parameter. The exciton g-factor is measured

independently by mapping out the charge plateau of the trion in a magnetic field. The

fit reproduces the data very well and gives a good description of the radiative Auger

excitation into some of the d-shells. The LO-phonon replica of the radiative Auger

excitation into the p-shells is also excellently reproduced by the fit.

To fit the magnetic field dispersion of the InGaAs QD shown in Fig. 5.4(b), we also

make a simultaneous fit to the energies of the s-shell emission and the radiative Auger

emission into both p-shells. The coupling term ∆pd is not included as there is no hint of

an anticrossing with the d+-shell.

For the GaAs QD shown in Fig. 5.2(c,d), we again fit the energies of the s-shell emission

and the radiative Auger emission into both p-shells simultaneously. The coupling term

∆pd is included as a fit parameter. The exciton g-factor is measured independently and

not fitted.

For the GaAs QD shown in Fig. 5.4(c), we also fit the energies of the s-shell emission

and the radiative Auger emission into both p-shells simultaneously. The exciton g-factor

is fixed to a value typical for GaAs QDs.

When observable, all phonon-related features are described using the fit results de-

scribed above. A constant phonon energy is used as a single fit parameter.

5.5 Radiative Auger Process: Theory

To explain the radiative Auger process, we consider the interactions between the three

particles forming the trion. We determine the multi-particle eigenstates, Ψ, for several

carriers in the same QD by numerically solving the time-independent Schrödinger equa-

tion, ĤΨ = E · Ψ, via exact diagonalization. The Hamiltonian, Ĥ, of the system is:
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Ĥ =

N∑
i=1

[
−~2

2m∗i
∆i + V (~x)

]
+ Ĉ. (5.1)

Ĉ is the Coulomb operator, which is given by:

Ĉ =
1

4πε0εr

N∑
i, j, i<j

ci · cj
|ri − rj |

. (5.2)

The term ci = ±e is the charge of a particle (electron or hole). As we are considering

fermionic particles, the overall wavefunction is antisymmetric under particle exchange.

Therefore, we consider Ĥ in a basis, {Ψn}, of antisymmetrized Slater determinants:

Ψn = Â
N∏
i=1

φni (xi, σi) . (5.3)

The Slater determinants are constructed from the single-particle solutions, φni (xi, σi),

of Eq. 5.1. The index n represents the quantum numbers required to describe all parti-

cles. The asymmetrization operator, Â, constructs a Slater determinant, which is asym-

metric under the exchange of identical particles. To express Ĥ in the basis {Ψn}, the

matrix elements 〈Ψn| Ĥ |Ψm〉 are computed. The Slater-Condon rules [265, 268] trans-

form these multi-particle matrix elements into two-particle Coulomb matrix elements.

The Slater-Condon rules for the two-particle Coulomb operator, Ĉ, are:

〈Ψn| Ĉ |Ψn〉 =
1

2

N∑
i, j, i 6=j

[Vijij − Vijji] (5.4)

〈Ψn| Ĉ |Ψn(h,k)〉 =

N∑
i=1

[Vhiki − Vhiik] (5.5)

〈Ψn| Ĉ |Ψn(h,k,l,m)〉 = Vhlkm − Vhlmk. (5.6)

The index n (h, k) indicates that this wavefunction is obtained from Ψn by replacing

the single-particle wavefunction φh of particle number h by φk. The index n (h, k, l,m)

means that two wavefunctions are changed correspondingly. The two-particle Coulomb
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matrix elements, Vhklm, are given by the following integral:

Vhklm = 〈φhφk| Ĉ |φlφm〉

≡ e2

4πε0εr

∫ ∫
φh (r1)∗ φk (r2)∗ φl (r2)φm (r1)

|r1 − r2|
dr1 dr2. (5.7)

Depending on the order of the indices, these integrals include the direct Coulomb and

the Coulomb exchange terms. For a symmetric harmonic confinement potential, analytic

solutions for the Coulomb integrals can be found e.g. in Refs. [71, 172].

The eigenfunctions of Eq. 5.1 are obtained by diagonalizing Ĥ in the basis {Ψn}.
The trion ground state has a small admixture of higher single-particle shells, which is

the origin of the radiative Auger process. Upon optical recombination of one electron

and a hole, the remaining electron of the trion is in a superposition including these

higher shells. Detection of the frequency of the emitted photon projects the state of the

remaining electron to the corresponding shell. For the trion, it is sufficient to carry out

exact diagonalization for the initial state only since the final states are single-particle

states.

In the dipole approximation, the emission spectrum can be computed with Fermi’s

golden rule [251, 269]:

I(ω) ∝
∑
f

|〈Ψ(f)| P̂ |Ψ(i)〉|2 · δ(Ei − Ef − ~ω) ·D(ω), (5.8)

where Ψ(i) is the initial state, Ψ(f) are the possible final states, and D(ω) is the density of

states for an emitted photon. P̂ =
∑
dij ĥi,σ êj,−σ adds up all dipole-matrix (dij) allowed

electron-hole recombinations, where i, j sum over orbital and σ over spin degrees of

freedom [251, 269].

With the presented formalism, we estimate that the intensity of the radiative Auger

transition from s- to the d0-shell is about a hundred times weaker than the resonance

fluorescence. However, this intensity is tendentially overestimated compared to the ex-

perimentally obtained values. The issue could be that the exact diagonalization only

converges when taking into account very high single-particle shells. In reality, not all

of these states exist due to close-by continuum states. Furthermore, the envelope wave

approximation is a simplification compared to a fully atomistic treatment [270]. Finally,

this approach assumes that angular momentum is a good quantum number, allowing ra-

diative Auger with the d0-shell but not with p-shells. In the experiment, radiative Auger

with the p-shells is clearly observed, also in the limit of high magnetic field, suggesting
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Fig. 5.5: Fits to the g(2)-measurements shown in Fig. 5.3(c). Simultaneous fitting of
Eqs. 5.12 and 5.13 to the corresponding auto- and cross-correlation data is
performed. In the following sub-figures, the black lines correspond to the fit
result. (a) Red line: cross-correlation measurement between resonance fluores-
cence and the radiative Auger emission where the second electron is transferred
into the p+-shell of the quantum dot. (b) Cross-correlation measurement from
(a) on a shorter time-scale. (c) Blue line: auto-correlation measurement of
the resonance fluorescence. (d) Auto-correlation measurement from (c) on a
shorter time-scale. (e) Comparison of the auto- and the cross-correlation mea-
surement together with the corresponding fits. (f) Comparison of the auto-
and the cross-correlation measurement, plotted on a short time-scale.

that angular momentum is not a good quantum number.

5.6 Cross-Correlation: Theory

The g(2)-measurements are modeled with the level scheme shown in Fig. 5.6. There are

4 different states which are taken into account for our simulation: the ground state, |g〉,
with a single electron in the QD; the excited state, |e〉, a trion with two s-shell electrons;
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Fig. 5.6: Model used for the simulation of the auto-correlation measurement of the res-
onance fluorescence together with the cross-correlation between the resonance
fluorescence and the radiative Auger emission.

the state after a radiative Auger emission, |p〉, where a single electron occupies the p-

shell of the QD; and the ionized QD-state, |b〉, where the electron has tunneled out of

the QD. We simulate the system by assuming the Hamiltonian (~ = 1):

Ĥ =
Ω

2
(|g〉 〈e|+ |e〉 〈g|) . (5.9)

All decay channels are modeled following the scheme shown in Fig. 5.6. The Lindblad

operator is:

L̂ =
√

Γr |g〉 〈e|+
√

ΓA |p〉 〈e|+
√

Γp |g〉 〈p| (5.10)

+
√

Γout |b〉 〈p|+
√

Γin |g〉 〈b| . (5.11)

We compute the steady-state density matrix, ρs, and obtain the auto- and cross-correlation

by using the Quantum Toolbox in Python (QuTiP [271]). The operator for the res-

onant decay is â =
√

Γr |g〉 〈e|, and the operator for the radiative Auger decay is

âA =
√

ΓA |p〉 〈e|. Auto- and cross-correlations are computed numerically by apply-

ing the quantum regression theorem. The auto-correlation of the resonance fluorescence

is given by:

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2
. (5.12)
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Ω Γr ΓA Γp Γout Γin tbl (ns)
1.85 1.22 0.001 11.7 0.82 0.07 7.2

Table 5.3: Parameters obtained from simultaneously fitting the auto- and cross-
correlation measurements shown in Fig. 5.5. The radiative decay rate, Γr,
is obtained from a different measurement and is not included in the fit. The
parameters associated to blinking and laser background are: c0 = 1.143,
c1 = 0.153, cl = 0.126. ΓA is estimated from the intensity ratio between
radiative Auger emission and resonance fluorescence and is also not included
in the fit. Unless otherwise stated, all parameters are given in GHz.

The cross-correlation is given by:

g(2)(τ) =
〈â†A(t)â†(t+ τ)â(t+ τ)âA(t)〉
〈â†(t)â(t)〉〈â†A(t)âA(t)〉

. (5.13)

The auto-correlation of the radiative Auger emission is:

g(2)(τ) =
〈â†A(t)â†A(t+ τ)âA(t+ τ)âA(t)〉

〈â†A(t)âA(t)〉2
. (5.14)

We multiply the result of this simulation by 1 + c1 · exp (−|τ |/tbl) to take into account a

weak blinking on short time-scales [88], which might be caused by electron spin pumping

enabled by a weak nuclear magnetic field [272]. Additionally, the model function is

multiplied with a global prefactor c0, which takes into account a weak blinking on a

time-scale of ∼ 0.1 ms, probably caused by charge noise. For the resonance fluorescence,

a small fraction cl of reflected laser in the resonant emission is taken into account via

g(2) → g(2) · (1 − cl) + cl. We perform a simultaneous fit of this model to the auto-

correlation of the resonance fluorescence and the cross-correlation between the resonance

fluorescence and the radiative Auger emission. The result of this fit is shown in Fig.

5.5. The obtained fit parameters are stated in Tab. 5.3. These parameters also give a

good fit to the auto-correlation of the radiative Auger emission, which is shown in Fig.

5.3(g). All fit parameters are kept the same, and only the Rabi-frequency is increased

(ΩR = 5.4 GHz), taking into account that the auto-correlation of the radiative Auger

emission has been measured at higher power.
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5.7 Evaluation of Correlation Measurements

All g(2)-measurements are performed in a time-tagged, time-resolved mode. The ar-

rival times of all photons are recorded over the full integration time, T , on two single-

photon detectors. Any analysis is carried out post-measurement. We compute the

cross-correlation (g(2)) between both signals by counting the coincidence events between

the two detectors as a function of a time delay, τ , between the signals.

Let x1, x2 be the count rates on detectors 1 and 2, respectively. We divide the full

integration time into time-intervals of length, tbin. The value for tbin is chosen to be

small enough such that the probability of a photon in the corresponding time-interval

is very small: tbin · x1/2 � 1. For each detector, we determine the number of detection

events in every small time interval. This number is either 0 for no photon or 1 for one

photon since the probability of having more than one photon in an interval is negligibly

small (for tbin ·x1/2 � 1). When there is one detection event on detector 1 in an interval

at time t and another detection event on detector 2 in an interval at time t+ τ , we call

it a coincidence event for time delay τ . For different time delays, we count the number

of coincidence events, #c, over the full integration time. The cross-correlation between

both detectors is obtained by dividing #c(τ) by its expectation value for the case of two

uncorrelated detection channels: 〈#c〉 = T · tbin · x1 · x2. This expression for 〈#c〉 is

obtained by the following consideration: the probability of finding a detection event in a

certain time interval is tbin ·x1 and tbin ·x2. If both detection channels are uncorrelated,

the probability of finding a detection event for the first detector at time t and a detection

event for the second detector in the time-interval at t+ τ is pc = t2bin ·x1 ·x2. For T � τ ,

the probability density distribution of #c is thus a binomial distribution:

P (#c) =

(
T/tbin

#c

)
· (1− pc)T/tbin−#c · p#c

c (5.15)

The expectation value of this distribution is the corresponding normalization factor:

〈#c〉 = T · tbin · x1 · x2.

5.8 Power Dependent Excitation

We measure the intensity of the radiative Auger emission as a function of resonant

excitation power and laser detuning. This measurement is shown in Fig. 5.7. In a first

measurement, we keep the narrow-band laser at a fixed frequency and sweep the detuning

between trion transition and laser by applying a gate voltage, Vg. The gate voltage shifts
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Fig. 5.7: (a) Resonance fluorescence and radiative Auger emission. The excitation laser
is fixed (E ' 1.321 meV), and the QD is swept through the resonance by tuning
the gate voltage, Vg. (b) Dependence of resonance fluorescence and radiative
Auger emission on the power of the resonant laser. For the power dependence,
the laser is kept on resonance with the trion (X1−). When normalized, the res-
onance fluorescence and the radiative Auger emission intensity depend equally
on the excitation power. Both are proportional to the upper state occupation
of a resonantly driven two-level system (Eq. 5.16).

the trion energy via the quantum-confined Stark effect. The intensity and the energy of

the emission are recorded on a spectrometer. This measurement is shown in Fig. 5.7(a).

When laser and trion energy are on resonance, there is a bright emission at ∼ 1.321 eV,

the resonance fluorescence. This emission is spectrally asymmetric due to the LA-phonon

sideband around the resonant peak. At lower energy, ∼ 18 meV below the resonance

fluorescence, there is the emission corresponding to the radiative Auger excitation into

the p-shells. This emission is strongest when also the resonance fluorescence is at its

maximum, indicating that the intensity of the radiative Auger emission is proportional

to the excited state population of the QD. Our model of the radiative Auger process

implies this proportionality since the process only takes place in the excited state (trion)

of the QD.

To investigate this dependence further, we keep the laser on resonance with the trion

and measure the emission intensities as a function of power. This measurement is shown

in Fig. 5.7(b). The power dependence of the resonance fluorescence and the radiative

Auger emission follows the power saturation curve of a two-level system very well. This

result also confirms that the radiative Auger process is entirely related to the trion. Its
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Fig. 5.8: (a) Radiative Auger emission at ΩR = 0.73 GHz transmitted trough a 0.41 GHz
Fabry-Perot cavity. (b) Linewidth of the radiative Auger emission as a function
of the resonant Rabi frequency.

rate is proportional to the trion occupation, ρ22, under resonant excitation [273]:

ρ22 =
1

2

Ω2
R

2Γ2
r + Ω2

R

. (5.16)

We expect that the ratio of the radiative Auger and the resonance fluorescence inten-

sities roughly reflects the ratio ΓA/Γr. This way, we estimate the value for ΓA to be on

the order of ∼ 1 MHz.

Finally, we measure the linewidth of the radiative Auger emission. We pass the emis-

sion through a Fabry-Perot cavity (15.2 GHz free spectral range, 0.41 GHz linewidth)

and sweep the cavity length. The result of this measurement on the p+-emission is

shown in Fig. 5.8(a). We determine the linewidth of the radiative Auger emission by

fitting a multi-Lorentzian which is convoluted with the cavity linewidth. At low power,

we measure a minimum linewidth of 4.19 GHz. For comparison, the lifetime limited

linewidth is estimated by the decay rate of the p+-state after the radiative Auger pro-

cess: Γr
2π = 1.99 GHz. We repeat the linewidth measurement for different excitation Rabi

frequencies. This measurement is shown in Fig. 5.8(b) and shows a linear increase of

the linewidth as a function of the excitation power. The reason for the additional con-

tribution to the linewidth and its linear broadening with the excitation power requires

further investigations.

5.9 Spin Pumping and Rabi Oscillations

Fig. 5.9(a) shows a measurement of the resonance fluorescence of the negative trion as a

function of the gate voltage and the laser wavelength. This measurement is performed

on the quantum dot which is presented in Fig. 5.1(b). The trion is stable in the gate

voltage range between Vg = −0.52 V and Vg = −0.48 V. This charge plateau splits
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Fig. 5.9: (a) The charge plateau of the resonantly excited trion at a magnetic field of
0.6 T. This measurement is carried out on the InGaAs quantum dot (QD)
shown in Fig. 5.1(b). At the edges of the charge plateau, a strong resonance
fluorescence is detected. In the plateau center, the resonance fluorescence in-
tensity is strongly reduced due to electron spin pumping. All radiative Auger
measurements are performed at the plateau edges. (b) Power dependent g(2)-
measurement on the negative trion of the same QD.

into two due to the electron spin Zeeman energy. We perform the measurements of the

radiative Auger emission on one Zeeman branch. No Zeeman splitting is observed in the

emission spectrum, which shows that the radiative Auger process is spin-conserving. In

the center of the charge plateau, the resonance fluorescence disappears due to optical

spin pumping. At the edges of the charge plateau, the resonance fluorescence is strong

due to spin co-tunneling with the back gate [23, 112]. For this reason, we perform all

measurements in the co-tunneling regime.

Fig. 5.9(b) shows resonantly driven Rabi-oscillations as a function of the excitation

power. The measurement is performed on the trion state of the same QD. These co-

herent oscillations in the auto-correlation (g(2)) measurement show that the QD can

be approximately described by a two-level system [82]. However, radiative Auger is a

fundamental process that limits this two-level approximation in the case of a trion.
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Chapter 6

Conclusions and Outlook

Self-assembled quantum dots (QDs) are useful as single-photon sources [13, 20] and

for quantum optics experiments in the solid-state [60]. They are also promising for

interfacing other quantum systems which only weakly couple to light – e.g., mechanical

resonators [274, 275] or gate-defined quantum dots [54, 55, 58]. For such applications,

the rate of the photon stream emitted by the quantum dot is an important figure of

merit. To boost this rate, cavities and nanobeam waveguides can be used [10]. However,

especially nanostructuring can be problematic since interfaces close to the QD cause

charge noise, and charge-control of the QD is difficult to implement.

The issue of charge noise in nanostructures motivated the development of a new p-i-n-

i-n-diode structure for hosting the QDs (Chapter 2). The developed diode-structure has

been successfully used for electron-spin experiments in nanostructured devices [34, 107,

120]. In these nanostructures, QDs can be operated at close-to-zero bias voltage and

low tunneling current, which has been an issue before [97]. For future experiments, hole-

spins might have advantages due to their reduced interaction with nuclear spins [17, 46].

However, the deterministic charging of QDs with holes requires a tunnel coupling to a

p-doped layer. A problem is that growing QDs above layers with carbon p-doping tends

to degrade their optical properties [125]. Therefore, the p-i-n-i-QD-i-n concept cannot

be directly transferred to a p-i-QD-i-p-i-n diode where the QDs are tunnel-coupled to a

Fermi-sea of holes. Alternatives might be using meta-stable hole states [276] where there

is an extra AlGaAs-barrier above the QDs or a p-i-n diode where the QDs are grown

close to a p-doped top gate.

InGaAs QDs are surrounded by a two-dimensional wetting layer which strongly hy-

bridizes with highly charged excitons in the QD. Chapter 3 shows that the wetting layer

states in the conduction band can be removed by a slight modification to the QD-growth.

As a result, highly charged excitons have much better spectral properties in comparison

to conventional InGaAs QDs [79, 151]. This improvement is useful for implementing

multi-carrier qubits in QD-molecules [144]. Theoretical results indicate that for the new
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QDs, non-resonant absorption [140] and cavity feeding [147] could be reduced. An ex-

perimental investigation is missing so far. A simple experiment would be measuring

the QD-luminescence as a function of the energy of a blue-detuned excitation laser.

For conventional QDs, such photoluminescence excitation (PLE) experiments show a

clear absorption background that increases towards the wetting layer energy [139]. The

wetting-layer free QDs could also be interesting for studying multi-carrier effects in the

solid-state. In this work, evidence for an intra-QD Auger process has been found for the

triply charged exciton.

For a different type of QDs, consisting of GaAs in AlGaAs, a correlation between

their optical properties and their Voronoi-cell areas is presented in Chapter 4. This

result shows that the capture zone model applies very well to the growth of these QDs.

It also shows that there is a strong material diffusion in the initial part of the QD-

growth. The found correlations imply that site-control would narrow the QD-ensemble

spectrally. A GaAs QD in AlGaAs is a promising system for application as a single-

photon source which is frequency-matched to an atomic rubidium memory [88, 194].

Compared to InGaAs QDs, the GaAs QDs might have prolonged spin dephasing times

due to their larger size and the reduced nuclear spin number. However, charge control

of such QDs has been barely implemented so far, and narrow linewidths under resonant

excitation have not been demonstrated in previous work [277, 278]. The main difficulty

is that the doping of AlGaAs is not easy to realize due to the formation of DX-centers

[279, 280]. In very recent work, we have demonstrated ultra-low noise and charge-control

for GaAs QDs in a novel diode structure [281]. This achievement was crucial for the

results presented in Chapter 5 and significantly improves the prospects for quantum

optics [60, 282] and spin-experiments [51] with GaAs QDs.

Finally, it is shown that radiative Auger-processes within a QD can take place even for

just three confined carriers (a trion) and under resonant excitation (Chapter 5). Upon

optical recombination, the second electron of the trion is promoted to a higher shell. The

emitted photon is correspondingly red-shifted. Especially interesting about the radiative

Auger-process is that it is not limited to a single type of emitter. It is demonstrated

here that this process takes place for both types of QDs presented before. The process

arises due to the Coulomb interaction between charge carriers and the fact that optical

recombination abruptly changes the eigenstates for the remaining carriers. In this work,

the radiative Auger-process has been studied for the conduction band. It would also be

interesting to investigate this process in the valence band of a QD. Similar to other weak

processes [283, 284], the radiative Auger-process can potentially be enhanced with an

optical microcavity [60, 282]. Radiative Auger has two powerful applications: it can be
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used to directly probe the single-particle spectrum of a QD, which is difficult to achieve

by other optical techniques. Furthermore, the photon statistics of the radiative Auger

emission reveals information about the relaxation of a single confined carrier.
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Chapter 8

Appendix

8.1 Solving the Schrödinger Equation Numerically

Numerical solutions of the Schrödinger equation have been used in this work, in par-

ticular in section 3. In this section, two numerical methods to solve the Schrödinger

equation are explained. Both methods translate the Schrödinger equation (a differential

equation) into a system of linear equations. This set of equations is obtained by sam-

pling the searched wavefunction at discrete points and approximating its derivatives by

finite differences. Both methods are not restricted to the Schrödinger equation but can

be applied to other differential equations. It depends on the particular context which of

the two methods is more convenient to use.

The time-independent Schrödinger equation is:(
− ~2

2m∗
∆ + V (~x)

)
|Ψ(~x)〉 = E |Ψ(~x)〉 , (8.1)

where |Ψ(~x)〉 is the wavefunction of a particle with effective mass m∗ and energy E in a

potential V (~x).

We sample |Ψ(~x)〉 at discrete points separated by a sufficiently small distance d. The

second derivative ∂Ψ
∂x2 can be approximated by:

Ψi+1 − 2Ψi + Ψi−1

d2
, (8.2)

where the sampling points Ψi = Ψ(xi) and Ψi±1 = Ψ(xi ± d) have the distance d.

Applying this relation for the derivatives along all three dimensions yields:

− ~2

2m∗
1

d2

(
−6Ψix,iy ,iz + Ψix+1,iy ,iz + Ψix−1,iy ,iz + Ψix,iy+1,iz + Ψix,iy−1,iz + Ψix,iy ,iz+1 + Ψix,iy ,iz−1

)
+Vix,iy ,izΨix,iy ,iz = E ·Ψix,iy ,iz , with ix, iy, iz ∈ N. (8.3)
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Ψix,iy ,iz and Vix,iy ,iz are discrete sampling points of the wavefunction Ψ(~x) and the

potential V (~x) at the positions ~xix,iy ,iz = d · (ix, iy, iz)T . Eq. 8.3 defines a set of linear

equations. For simplicity, the one-dimensional version of Eq. 8.3 is considered in the

following:

− ~2

2m∗
1

d2
(Ψi+1 − 2Ψi + Ψi−1) + ViΨi = E ·Ψi, i ∈ N. (8.4)

8.1.1 Method 1: Transferring the Differential Equation into an Eigenvector

Problem

Eq. 8.4 is an eigenvector problem for the vector (Ψ1,Ψ2, ...,ΨN )T composed of the wave-

function values Ψi at discrete sampling points. This becomes clear when putting Eq. 8.4

in a matrix form: ~2

2m∗
1

d2


2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

+


V1

V2

. . .

VN


 ·


Ψ1

Ψ2

...

ΨN

 = E ·


Ψ1

Ψ2

...

ΨN


(8.5)

The corresponding eigenfunctions are obtained as an eigenvector sampling the actual

wavefunction at discrete points (Ψ1,Ψ2, ...,ΨN )Tn ; the eigenenergies are E = En. A

similar expression compared to Eq. 8.5 can be found for the two- or three-dimensional

case and requires a practical definition for ordering all sampling points.

To check the numerical implementation, results are compared to analytical solutions of

the Schrödinger equation. In Fig. 8.1 this is carried out for a two-dimensional harmonic

oscillator with confining potential V (r) = 1
2m
∗
eω

2
0r

2 (see Ref. [45]). An analytical expres-

sion of the wavefunctions is given by Eq. 3.3, with En,L = (2n+ |Lz|+ 1) ~ω1 − 1
2Lz~ωc

being the corresponding eigenenergies.

The normalized numerically and analytically obtained wavefunctions coincide, as shown

in Fig. 8.1(c). The eigenenergies coincide as well. For the chosen mesh (distance

d = 1 nm between the sampling points), the eigenenergies of the first 30 states (lowest

energy) agree with the analytic solution within 1%.

8.1.2 Method 2: Step from (Ψi, Ψi+1) to Ψi+2

One way of numerically solving Eq. 8.1 has been presented in the previous section.

There are cases where the equation has to be solved differently: when computing the

wavefunction overlap between a continuum state and a discrete state, for instance (Ref.
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Fig. 8.1: (a) Probability density of the first excited state of a symmetric harmonic os-
cillator obtained by numerically solving the Schrödinger equation. The used
parameters are: ~ω0 = 25 meV, m∗ = 0.067m0, B = 0 T. For the numerical
computation, a mesh with d = 1 nm resolution is used. (b) Analytical solution
of the probability density of the first excited state for a symmetric harmonic
oscillator. (c) The absolute value of the difference between the numerical and
the analytical solutions multiplied by a factor of 10. The numerical result has
a maximum deviation from the exact solution by less than 1%.

[45]). For unbound particles, there is a solution to the Schrödinger equation for an

arbitrary energy E of the particle. A set of discrete energy values En, as it results when

solving Eq. 8.4, does not make sense. Instead, one would like to obtain a solution of the

Schrödinger equation for an arbitrary (given) energy E. This can be done as follows:

First, start with the two first points Ψ1, Ψ2 of the wavefunction, and set them to two

values. In case Ψ1, Ψ2 are located in a potential-barrier where the wavefunction decays

to zero, a good choice for the starting points is Ψ1 = 0, Ψ2 = 1. Eq. 8.4 can now be

used to find iteratively the following sampling points of the wavefunction because based

on the values Ψi, Ψi+1 it uniquely determines the value of Ψi+2.

Again, the method is tested by comparing it to an analytical solution of the wave-

function. The analytical wavefunction of the Schrödinger equation for a given energy E

in case of a potential V (x) = α · x is given by the following expression [285]:

Ai

((
2m∗e

~2e2F 2

)1/3

· (eFx− E)

)
, (8.6)

where Ai(x) is an Airy function and F the electric field. Shown in Fig. 8.2 is a comparison

between this analytical and a numerical solution. For the electron effective mass, m∗ =

0.067me is assumed; the electric field is chosen to be 40 kV/cm. For a mesh resolution

of d = 0.1 nm, the numerical solution deviates from the analytical one by less than 1%

over the depicted range.
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Fig. 8.2: (a) Analytical and numerical solutions of the Schrödinger equation in an electric
field. The electron effective mass is assumed to be m∗e = 0.067m0. For the
numerical solution a mesh resolution of d = 0.1 nm is assumed. (b) Solid black
line: potential corresponding to a static electric field of 40 kV/cm. Dashed red
line: energy of the wavefunction shown in (a).

Note that a modification of the described method can also be used to compute eigenen-

ergies En in a case where the particle is fully confined [286].

How accurate a numerical solution is in comparison to the precise (analytical) solution

is discussed in Ref. [286]. Generally, one must distinguish between accuracy in determin-

ing the eigenenergies En and the wavefunctions. According to Ref. [286], method 1 is

better suited to determine wavefunctions, and a modification of method 2 is more accu-

rate regarding the eigenenergies. There are two methods to make sure that numerically

obtained eigenfunctions and eigenenergies are accurate: first, making a convergence test

by decreasing the distance d between two sampling points (mesh size). With decreasing

d the numerically obtained derivatives are more accurate. And second, checking the

numerical routine by comparing its results to analytical solutions of specific problems.

8.2 Time-Resolved Measurements

8.2.1 Superconducting Single-Photon Detectors

Superconducting single-photon detectors (SSPDs) [288, 289] combine close-to unity de-

tection efficiency with ultra-fast timing resolution. The SSPDs used in this work are

based on superconducting Nb(Ti)N-nanowires with a meander geometry [289, 290, 291,

292]. The timing resolution of a single detector is < 20 ps (full width at half maximum).
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Fig. 8.3: (a) Cooldown: Temperature of the SSPD-cryostat as a function of time. The
compressor is started at time t = 0. The SSPDs reach a base temperature of
2.4 K after the compressor system is running for ∼ 250 minutes. (b) Warm-up
of the SSPD-cryostat. After stopping the compressor system, the SSPDs reach
room temperature after ∼ 500 minutes.

The detection efficiency is optimized for λ = 950 nm reaching ∼ 80% at this wavelength.

The dark-count rate of the detector can be kept close-to-zero without reducing the de-

tection efficiency. A brief description of the working principle of an SSPD is given in the

following.

The Nb(Ti)N-meander-nanowire is kept below its critical temperature Tc so that it

is superconducting. It is biased with a current below, but close to its critical current.

A single photon impinging on the meander-nanowire provides the energy to break its

superconductivity locally. Consequently, a finite voltage drop over the meander-nanowire

is detected [287]. The corresponding voltage signal is pre-amplified spatially close to the

meander-nanowire (in-cryo amplifier). The in-cryo amplification is important to reduce

the contribution of electrical noise to the inaccuracy of measuring the arrival time of

the photon (timing jitter). The signal is additionally amplified outside of the cryostat

and is forwarded to a time tagger (PicoHarp 300), which measures the arrival time of

the signal and records it on a hard-drive of a connected computer. The arrival time

of the electrical signal corresponds to the arrival time of the initial photon plus an

ideally constant delay. This setup allows for photon correlation measurements (e.g. the

second-order auto-correlation function, g(2)).

Daily operation of the SSPD-system: in a first step, the SSPD-system has to be cooled

down below Tc. Therefore, the SSPD-chamber has to be evacuated (< 5×10−5 mbar) at

room temperature. Afterwards, the cooldown is started by turning on a compressor-cycle

connected to the cryostat. The cooldown can be monitored with software provided by
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Fig. 8.4: Setup for time-resolved measurements using the superconducting single-photon
detectors (SSPDs). The optical emission from a QD is split by a fiber beam-
splitter and sent to two SSPDs. The SSPDs are operated at T = 2.4 K and
biased close to the critical currents. Since the detectors are operated close to
the critical current, a single photon impinging on the meander-nanowire breaks
its superconductivity. When this happens, there is a finite voltage drop over
a resistor, R2, which is in parallel with the meander-nanowire. To reduce the
electronic noise, the voltage is pre-amplified inside of the cryostat hosting the
SSPDs. It is amplified another time outside of the cryostat. All signal arrival
times are recorded (PicoHarp 300), and a time-dependent correlation of the
signals can be computed. Figure partly taken from Refs. [12, 287]

the manufacturer (Single Quantum). A typical dependence of temperature as a function

of time is shown in Fig 8.3. After the compressor system is running for ∼ 3 h the SSPD-

chamber reaches its base temperature of ∼ 2.4 K. The detector can be used once this

temperature is reached.

The detector performance depends on its bias current. A corresponding measurement

is shown in Fig. 8.5 with and without a photon flux on the detectors. The first detector

has a critical current of Ic ' 15 µA the second one has a larger critical current Ic ' 50 µA.

For single-photon detection, each detector should be operated below, but close to its

critical current. Too far below the critical current, the detection efficiency is low because

a single photon provides barely enough energy to break the superconductivity of the

nanowire. Operated too close to its critical current, the dark count rate increases, and

the superconductivity sometimes breaks spontaneously for even longer times (latching

[290]). Between these two regimes, the detection efficiency has a plateau where the
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Fig. 8.5: The detector countrate as a function of the applied bias current. The first detec-
tor measures the incoming photons with an approximately constant efficiency
for a bias current of 8 − 14 µA (solid red curve). Above 10 µA, the detector
starts showing dark counts. Above its critical current of Ic ' 15 µA, the super-
conductivity is, independent of the light exposure, permanently broken – the
detector switches off. A good choice for the bias current of the first detector is
∼ 10 µA. Here, the dark counts are minimized without significantly reducing
the detection efficiency. The second detector (blue curves) has a significantly
higher critical current of Ic ' 49 µA. A good operating bias is ∼ 40 µA.

system can be operated for single-photon detection. The bias current of the detector

also has a small influence on the timing jitter: for a higher bias current, the voltage when

the superconductivity breaks is higher, which reduces the contribution of electrical noise

on the timing jitter. These properties of the detector should be taken into account before

measurement and can be slightly adjusted by changing the bias current of the detector.

Calibration of the detection efficiency requires measuring powers very accurately. Such

a measurement has not been done here. Instead, Fig. 8.6(a) shows a comparison of the

countrate of a fiber-coupled APD (SPCM-NIR, excellitas) with the SSPDs. In both cases,

the same photon source has been used. The APD has a specified detection efficiency of

28.7% at λ = 950 nm which implies a detection efficiency of η > 60% for the SSPDs. Note

that the used APD has a detection efficiency that varies with time when a non-angled

(PC) fiber is coupled to it. The reason is possibly an interference effect in combination

with heating of the APD-device. This issue disappears when a fiber with angled physical

contact is coupled to the APD, yet the overall detection efficiency is lower in this case.

For these reasons, the comparison between APD and SSPD is only a rough estimation

of the SSPD detection efficiency.

Shown in Fig. 8.6(b) is an instrument response function which is used for an estimation

of the timing jitter of an SSPD. For this measurement, a pulsed laser is attenuated and
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Fig. 8.6: (a) Comparison between the detection efficiency of an APD (SPCM-NIR), red
curve, and an SSPD, black curve. After the APD is turned on, its detection
efficiency fluctuates over time, probably related to heating of the APD-device.
The detection efficiency of the SSPD is significantly higher. Between t = 1000 s
and t = 1500 s, there is an event where the SSPD shuts off for about a second.
It is probably caused by electrical noise when the air conditioning switches on.
(b) The instrument response function measured for detector 1 has a full width
at half maximum of 39.4 ps. The measurement includes the timing jitter of the
used time tagger, ∼ 28 ps, and the pulse width of the used laser.

sent to an SSPD. The trigger signal of the laser is sent to the first channel of a time

tagger (PicoHarp 300), the signal from the SSPD to its second channel. The measured

full width at half maximum is 39.4 ps for detector 1 and 35.6 ps for detector 2. Both

values are obtained by Gaussian fitting. Note that these numbers include the timing

jitter of the used time tagger (PicoHarp 300, ∼ 28 ps) and a finite width of the used

laser pulse ∼ 20 ps. If a Gaussian distribution is assumed for the jitter of the detectors,

the time tagger, and the laser pulse, one obtains a timing jitter of < 20 ps for both

detectors as specified by the manufacturer.
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[51] D. Gangloff, G. Éthier-Majcher, C. Lang, E. Denning, J. Bodey, D. Jackson,

E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, Science 364, 62 (2019).
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S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, and R. J.

Warburton, Nature 575, 622 (2019).

[61] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, Nat.
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[151] B. Urbaszek, E. J. McGhee, M. Krüger, R. J. Warburton, K. Karrai, T. Amand,

B. D. Gerardot, P. M. Petroff, and J. M. Garcia, Phys. Rev. B 69, 035304 (2004).

[152] C. Nicoll, C. Salter, R. Stevenson, A. Hudson, P. Atkinson, K. Cooper, A. Shields,

and D. Ritchie, J. Cryst. Growth 311, 1811 (2009).

[153] S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler,
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Peter Lodahl, Indistinguishable and efficient single photons from a quantum dot in

a planar nanobeam waveguide, Physical Review B 96, 165306 (2017).

135



Curriculum Vitae: Matthias C. Löbl
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