Computation of Generalized
Solution Spaces

Inauguraldissertation
ZUur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultat
der Universitat Basel

von
Dennis Trondle
aus
Deutschland

Basel, 2020

Originaldokument gespeichert auf dem Dokumentenserver der Universitit Basel
edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultat
auf Antrag von

Prof. Dr. Helmut Harbrecht
Prof. Dr. Rolf Krause

Basel, den 18.02.2020

Prof. Dr. Martin Spiess
Dekan

Abstract

Solution spaces are applied in distributed design processes. They enable an inde-
pendent and robust development of the components of a target design. A solution
space is a region which contains only good designs and lies in a potentially high-
dimensional design space. By finding an appropriate solution space, the design pro-
cesses for individual components can be decoupled from each other. This increases
the efficiency of the overall design process and saves valuable resources.

An established method to find solution spaces is the box optimization algorithm. It
provides solution spaces which are products of intervals and take on the shape of
a high-dimensional, axis-parallel box. We review this method and give a detailed
account of how different parameter settings affect the outcome of the algorithm.

The box optimization algorithm yields sometimes intervals that are too small. To
this end, we develop the rotated box optimization algorithm. It couples specific
pairs of components and rotates the corresponding box. Thus, it is able to find
boxes with a larger volume and increases the amount of available good designs.

An algorithm which might yield even larger solution spaces is the polytope opti-
mization algorithm. Instead of trying to find boxes which are as large as possible, it
maximizes the volume of polytopes. Because polytopes have a much more flexible
shape than boxes, this gives rise to larger solution spaces compared to the previous
algorithms. However, the algorithm is more complex and requires additional steps
to handle the polytopes.

We compare these algorithms by applying them to several high-dimensional op-
timization problems. Our results show that, indeed, the polytope optimization
algorithm yields the solution spaces with the largest volume.

Acknowledgements

[want to express my deepest gratitude to my supervisor Prof. Dr. Helmut Harbrecht
for taking me on as a PhD student and for guiding me through my doctoral studies.
He has been a constant source of support and counsel, and taught me many mathe-
matical and non-mathematical skills. Our frequent travels to and from Munich have
always been unique and often turned out to be more eventful than we expected.

I would like to thank Prof. Dr. Rolf Krause for taking the time to be the co-referee
of my PhD thesis.

Many thanks go to Prof. Dr. Markus Zimmermann who pitched the initial draft
of this project when he worked fo the BMW Group. He sparked many new ideas
and discussions, and helped us understand the engineer’s point of view. The BMW
Group has my thanks for the funding I received from them and their hospitality
at the Forschungs- und Innovationszentrum (FIZ) in Munich. I would also like to
thank Stefan Erschen and Marc-Eric Vogt from the BMW Group for showing me
the FIZ and for their input to our discussions.

A lot of thanks go to the current and former members of our research group: Ra-
hel Briigger, Monica Bugeanu, Jiirgen Délz, Ilja Kalmykov, Manuela Moor, Michael
Multerer, Marc Schmidlin and Peter Zaspel. I had a wonderful time with all of them
and enjoyed all the z'vieris we had and all the activities we did together. They have
become great friends to me and I am very happy that they endured all the long
board games I persuaded them to play. Special thanks go to Rahel Briigger and
Marc Schmidlin who proofread this thesis. Additionally, I thank the people in the
administration of the department, who do a great job and keep everything running
smoothly.

Of course, a special mention goes to my friends outside of the research group. They
have always been there for me and were ready to provide distractions whenever I
needed one.

Finally, I am truly grateful to my whole family for their continuous support during
my time as a PhD student. Especially, I would like to thank my parents Beate and
Johannes for their love and for raising me to believe in myself and my capabilities.

Contents

1__Introduction|
(.1 Motivation|.
(1.2 An Hlustrative Example]
(1.3 Overview of Methodsl,
[I.4 Solution Spaces|
1. line of the Thesis|
2 Box Optimization|
2.1 Algorithm|
2.1.1 Box Initialization|
[2.1.2 Exploration Phase,
2.1. nsolidation Phasel oL
[2.2 Modifications to the Algorithm|
[2.3 Probability of Finding Good Designs|
[2.3.1 In the Growth Step|.
2.3.2 In the Consolidation Phase
[2.4 Numerical Experiments|.
[2.4.1 "Two Example Problems in 2D
[2.4.2 Growth Rate Parameter Study|
[3 Rotated Box Optimization|
[3.1 Box Rotations for 2D-Maps|
[3.2 Principal Component Analysis{.
[3.3 Rotated Box Optimization Algorithm|.
(3.3.1 Box Initialization|o 0L
[3.3.2 Exploration Phase|
L‘i,;i,;i QQI],SQlldallQIl I h,asﬁl
[3.4 Numerical Experiments|.
[3.4.1 Two Example Problems in 2D

[3.4.2 Diagonal Solution Space|

10
11

13
15
15
15
19
20
21
21
24
27
27
30

[4 Polytope Optimization| 58

4.1 Polytopes for 2D-Maps| 58
4.2 Manipulating 2D Polygons|o o000 60
[4.2.1 Sample Design Points| 60
[4.2.2 Winding Number Algorithm|. 60
[4.2.3 Irim Polygons| oo 64
[4.2.4 Evaluation of Polygons|. 68
[4.2.5 Remove Spikes| oo 71
[4.2.6 Relocate Vertices 71
[4.2.7 Grow Polygon|. oo 71
[4.2.8 Retract Polygon| 71
[4.2.9 Remove Self-Intersectionsl 72

4.3 Polytope Optimization Algorithm| 76
[4.3.1 Polytope Initialization| 7
[4.3.2 Exploration Phase|, ... 7

4.3. nsolidation Phasel 0oL 79

4.4 Numerical Experiments|., 80
[4.4.1 "Two Example Problemsin 2D 80
4.4.2 Parameter 168l . . . 82

[> Further Modifications of the Algorithms| 100
[>.1 Swapping Order of Iterations| 100
(5.2 Analysis of Covariance] 104
6 Numerical Results| 116
6.1 4D Rosenbrock Functionl L 116
6.2 8D Nonlinear Problem from Acousticsl 120
6.3 10D Problem from Optimal Controll 125
6.4 Study of Sample Sizes| L 129

[r__Conclusion 132

Chapter 1

Introduction

1.1 Motivation

In today’s world, there is a large variety of complex technical products: everyday
devices like cars, smartphones and TVs, highly specialized machines such as MRI
scanners, satellites or assembly line robots, large-scale projects, e.g. skyscrapers,
hydroelectric power plants or particle accelerators, and less tangible products as, for
example, software or computer networks. Due to their complexity, a single person
can hardly understand every detail of these products. Instead, many people work
together to design, develop and create them. Thus, an efficient and well-structured
design process is necessary to organize the work flow and to guide everyone who is
involved.

Naturally, uncertainty is present in many design processes, especially in the early
stages. One type of uncertainty is based on the lack of knowledge, the so-called
epistemic uncertainty. It governs distributed design processes, where individual
teams of engineers are responsible for different components of the final design. In
the beginning of the design process, the final characteristics of a component and how
it interacts with other components is still uncertain. Also, during the design process,
it may turn out that a design is technically impossible to realize, too expensive or in
conflict with other requirements. In this case, some components have to be updated
to make the design feasible again. Thus, the engineering teams have to iterate over
the respective designs multiple times, moving the design in different directions, until
they finally agree on a design that fulfills all requirements. At that point, the design
is not changed anymore and, in consequence, the uncertainty is removed from the
design process. This is a traditional point based design process, compare Figure|1.1
for an illustration.

If carried out in this way, the design process requires a lot of time and resources.
Thus, more advanced design philosophies are sought. In concurrent engineering, all
components of a design and processes related to it, like manufacturing, distribution
and disposal, are engineered simultaneously. However, since the final design is still
unclear in the beginning, new uncertainties arise in concurrent engineering, as its
coordination is non-trivial and people from multiple fields have to work together
(see [81], 82]). Another approach is set-based design, compare [54] [71], [72]. Before
committing to a design, the design teams identify sets of feasible designs, e.g. by

CHAPTER 1. INTRODUCTION

engine design/

chassis design

chassis design

R engine design

driving dynamics

Figure 1.1: A vehicle design being improved iteratively.

giving intervals for parameters that represent the design. Design teams restrict
themselves to work only with values derived from these sets. This enables a sus-
tainable design process, where sound decisions can be made due to a large amount
of available data. The disadvantage is that a lot of effort has to be made in the
early design phase to identify the sets of feasible designs and to keep design teams
properly up to date on these sets. A third design philosophy is set-based concurrent
engineering (see [72]), which combines set-based design and concurrent engineering
into one technique. A design process modelled after this philosophy yields good
results very quickly. However, it also inherits the disadvantages of set-based design
and concurrent engineering and requires experienced designers that are familiar with
both philosophies.

As the design methodologies mentioned above require as much information as possi-
ble, the lack of knowledge about the final design, i.e., epistemic uncertainty, reduces
their efficiency. Thus, we wish to minimize the impact of epistemic uncertainty on
the design process. In the case where there is no uncertainty, the goal of compu-
tation would be to find the optimal design with respect to an objective function f
out of a space of admissible designs (4s. This would lead to solving an optimization
problem

— mi 1.1.1
f(z) = min, (1.1.1)
where x := (x1,...,24) describes a single design. Each component of the design
x € (g5 is described by one or more of the design variables x1,...,z4. The design

space (s is in general given as a product of intervals, i.e.

d

Qgs = H v, Bi] -

i=1

We emphasize that f is typically a very involved function for which an analytic form
might not be available. For this reason, (|1.1.1]) is a so-called black-box optimization
problem.

There are many popular methods to solve this kind of problem. If the evaluation of
f is cheap, applicable techniques are

1.2. AN ILLUSTRATIVE EXAMPLE

 gradient-based techniques, e.g. gradient descent [13| [87] and quasi-Newton
methods [87] such as the DFP method [19}[30] and especially the BFGS method
[11], 29, 138, [68],

o direct search techniques, e.g. coordinate descent [83] and the Nelder-Mead
method [59],

« metaheuristic techniques, e.g. genetic algorithms [37, 46], 56], differential evo-
lution [, (73], particle swarm optimization [22, [70] and variable neighborhood
search [33], 57].

In the case that the evaluation of f is costly, one may first wish to approximate it
with a surrogate model [9, [64]. It is then possible to apply interpolation by radial-
basis functions [10], kriging, also known as Gaussian process regression [52} [55], 66],
or support vector machines [75] to find a solution for (|1.1.1)).

All of the aforementioned methods eliminate the epistemic uncertainty by delivering
an optimal solution with respect to the objective function f, which means that every
team of engineers will know exactly what the specifications of their components are.
However, this solution might not be robust. Small deviations from the optimal design
might lead to a catastrophic loss of quality. These may be caused by the variability
of certain materials used to build the design, or because the design is exposed to
certain unpredictable conditions, like extreme weather. In general, they cannot be
controlled directly and represent an uncertainty that is induced by randomness, a
so-called aleatoric uncertainty (see [20]).

1.2 An Illustrative Example

An example problem where aleatoric uncertainty affects the design process has been
given in [85]. In accordance with the guidelines of the US New Car Assessment
Program (see [79]), a car with a speed of 56 km/h is crashed against a rigid barrier.
After the crash, the deformation of the front of the car is observed. We assume that
it affects only two sections of the car, see Figure [[.2] Section 1 is the front of the
car up to the headlights, section 2 goes from the end of the headlights to the center
of the front wheels. These two sections have yet to be designed. We do not know
what the optimal design is, but we are able to deduce it in the following.

During the crash, two constant deformation forces F; and F; act on sections 1 and 2,
respectively. The total deformation of the front is given by the deformation measure
d < d., where d, is the highest possible deformation. d is given by the deformation
measures d; < di. and dy < dy. for sections 1 and 2, where d := d; + do. As the
deformation should only happen in the front structure, the rest of the car is assumed
to be rigid. The impact energy is given by E; := %mvg , where m is the total mass
of the car and vy the impact velocity. The maximum deformation energy of the first
section Fid. is assumed to be smaller than E;, which means that the first section
cannot fully absorb the impact and the second section will also be deformed.

The design goals for this problem are the following:

1. The deceleration a of the interior of the vehicle, where the passengers sit, has
to be below a critical threshold a,.

CHAPTER 1. INTRODUCTION

2. The deformation of the front should happen in an ordered fashion, meaning
that section 1, which is in the front, should be deformed before section 2.

mass m

section 1
section 2

Figure 1.2: Car crash (left and middle) and the two sections in the front of the car
(right). Image taken from [85]. Copyright ©2013 John Wiley & Sons, Ltd.

Design goal 1 is fulfilled if the impact energy is fully absorbed before d = d., i.e.,
if £ < Fidi. 4+ Fydy.. The maximum deceleration is then given by a := Fy/m.
Otherwise, it is arbitrarily large. Design goal 2 is fulfilled if F} < F,. These
requirements yield the objective function

1, if B > Fidi. + Fady,,
f(F1, F) =41, if F1 > F,

(Fy/m — a.) /a., otherwise,
which measures the quality of the design. In the notation from (1.1.1]), the design
variables are given as x1 := F} and x5 := F,. A design (F}, Fy) with

f(F1,F) <0

satisfies both design goals and is considered to be good. A visualization of f can be
found in Figure [1.3

Obviously, the minimum of f is

mu2 mu?
Fi, Fy) = 0 9.
(1,) <2dc’2dc>

However, this optimum is not robust. It lies on the corner of the region of good
designs and is close to designs that violate one or both of the design goals, as can
be seen in Figure If I} is slightly larger, then I} > F, and the deformation
no longer happens in the correct order. Vice versa, if F} is slightly smaller, then
E; > Fidi.+ Fydsy., meaning that the impact energy cannot be fully absorbed by the
two sections and the other regions of the car are deformed. These small deviations
from the optimum may be introduced when the actual components are produced. For
instance, due to technical limitations or cost restrictions, certain components might

4

1.3. OVERVIEW OF METHODS

Fy (Fy/m —a;)/a. =0

@ < good designs
) (P, Fy) < 0 453

Z N
X S

S .
% e optimum

bad designs
f(Fl, FQ) >0

A\ 4

Fy

Figure 1.3: A visualization of the objective function f. The region of good designs,
where f(Fy, F3) <0, is drawn in green.

only be fabricated with reduced accuracy. Because it is then uncertain whether a car
manufactured with these components actually fulfills all design goals, the optimum
is hardly a good choice for a robust design. This in turn makes the identification of
the optimum rather pointless.

The question that subsequently arises from this example problem is the following:
How can one eliminate epistemic uncertainty while keeping aleatoric uncertainty
under control?

Thus, we will give an overview of methods that handle epistemic and aleatoric
uncertainty in the subsequent section.

1.3 Overview of Methods

For general optimization problems, it is possible to account for aleatoric uncertainty
by increasing the robustness of the solution. This could be done by robust design
optimization, reliability-based design optimization or sensitivity analysis, see [3, B,
12), 16l [18], 78, [84] for example. These methods require certain assumptions on the
problem under consideration. For robust design optimization and reliability-based
design optimization, the variability of the design variables has to be known, which
may be expressed by probability density functions. Sensitivity analysis requires the
derivatives of certain constraints on the design variables. Unfortunately, this type
of data is typically not available for the uncertainty related to distributed design
processes.

In addition to treating uncertainty appropriately, the following challenges arise in
the context of distributed design processes:

e The design variables x1, ..., x4 are coupled with each other, i.e., they simul-
taneously affect the overall system performance.

CHAPTER 1. INTRODUCTION

o The evaluation of the objective function f is expensive. Therefore, it is manda-
tory to keep the number of function evaluations small.

e f is a black-box function. It is possibly noisy and no information about the
gradient is available. Hence, classical optimization techniques cannot be ap-
plied.

e There is a large number of design variables, so {244 is high-dimensional.

We present a few methods that are able to deal with these challenges. They all
follow the philosophy of set-based design and yield a wide range of possible designs
rather than a single optimal design. This overview is by no means complete. It is
instead intended to give the reader an impression of the variety of techniques and
combinations thereof that are applied in set-based design.

Rules Extraction

In [31], a method is described that generates rules for sets of good designs from linear
support vector machines (SVM, see also [7]). A linear SVM identifies a hyperplane
classifier w € R |, i.e., a vector w that separates all & € R into two classes A, and
A_ via the relation

—l=>xe A_,
+l=>xec Ay,

sign(w'x —) = {
for a given 7 € R. In the half-plane that contains all the good designs, multiple sets
Iy, k=1,2,... n, are sought with

]k::{mERd{wTaz<7,£k7i<xi<uk7i,i:1,...,d}.

Each set I, constitutes a rule for good designs. The advantage of these rules over the
classifier found by the SVM is that they are more intuitive and easier to understand
for humans. The authors of [31] state two criteria for the rules [that maximize
either the volume or the number of training points covered by them. By applying the
technique of Lagrange multipliers to these criteria, the authors are able to construct
an algorithm that iteratively generates a matching set

U
k=1
of n rules.

Cluster Analysis and Permissible Hypercuboids

The method proposed in [36] requires a set of designs X := {x;,...,x,} C R? and
applies cluster analysis (see [0, 48]) to them. For this method, the designs that
fulfill all given constraints are collected in a set H™. The authors call these designs
permissible. Designs which violate at least one of the given constraints are collected
in a set of non-permissible designs H~ (see Figure , top left, permissible designs

6

1.3. OVERVIEW OF METHODS

are green, non-permissible designs are red). Then, the set H* is divided into a given
number K of clusters C; such that Ht = Ufil C; with C; N C; =0 for ¢ # j and
C;#0foralli,j=1,...,K. For example, in Figure [1.4] top right, the permissible
designs are divided into K = 3 clusters, marked as squares, diamonds and triangles.
A cluster C; comprises all designs which are most similar to each other and most
different from the designs of other clusters.

The clusters are computed by the K-means clustering algorithm, see [6l, 48, [63]. It
finds a set C := {C},...,Ck} containing K clusters that partition X'. The algorithm
does so by finding a partition C where the squared distance J between the points in
a cluster C; and their mean g, is minimized, where

)=l P

xeC;

The K-means clustering algorithm then solves the optimization problem

ZJ —>m1n

c;eC

Each cluster C; € C is a collection of permissible designs and is used to identify
regions of permissible designs. The most useful type of region for a design process
is a hypercuboid. A simple hypercuboid that can be constructed for each cluster C;
is a bounding box,

mlnx]<nginaéxxj,]—1 ,d}.

xzeC;

B; = {ye]Rd

However, the union Ufil B; of hypercuboids is in general not a hypercuboid and may
contain a lot of non-permissible design space (Figure , second row, on the left).
Instead, the authors present the following interval approach to generate a suitable
hypercuboid from the union of hypercuboids. Each bounding box is a product of
intervals, B; = I, ; X ... X I; 4. Now, every interval is divided into a given number
of p subintervals, I, ; = [Z-(;) X ... X Ii(f;). Thus, each bounding box is a union of
p? subhypercuboids (Figure second row, on the right). If we apply multi-index
notation to describe this union, we get

B, = LPJ Hi;p,
k=1

where H;), = Ii(ﬁl) X .. X IZ.(Zd) and Ii(f;") = [aggj”), bgi”)]. In the next step, each

subhypercube H;, is paired with all other subhypercubes H;, and the bounding
box H; ;e of those subhypercubes is calculated,

Hijke = [min {agﬁl), agll)}, max {blkf ,bgl)}] X ...

X [min {agij‘), afj)}, max {bﬁ;‘), bg.i‘j) }})

CHAPTER 1. INTRODUCTION

S

R
0020 48 of

> O o

S

Figure 1.4: A sketch that illustrates the principles of cluster analysis and permissible
hypercuboids.

1.3. OVERVIEW OF METHODS

Figure [I.4] third row, shows two chosen subhypercuboids in blue and the bounding
box constructed around them. It is also checked whether a bounding box is permis-
sible, i.e., we require that H; jxe N H~ = (. For each cluster C;, the permissible
bounding box H; ;¢ with either the largest volume or the largest minimal interval
width is chosen as hypercuboid. This results in at most K hypercuboids which
identify regions of permissible designs that can be applied in the design process. In
Figure [I.4] bottom, the cluster of squares and triangles yield the same hypercuboid
(in light blue), while the cluster of diamonds yields a different hypercuboid.

Space-Based Design Methodology

A methodology for set-based concurrent engineering is presented in [58]. With its
help, designers can define how strongly they prefer some designs over others, and
the performance of the resulting designs can be measured.

First, for each variable z; of a design, i = 1, ..., n, a design parameter X; := [a;, b;] C
R, is identified. It represents the range of possible values that can be attained by the
variable x;. Then, each design parameter X; is associated with a preference number
X;, defined as

X; o= {(i,px, (1)) | @5 € X, p(w7) « X; — [0,1]}.

Here, py, is the preference function. It allows designers to express their opinion on
how desirable certain values x; admitted by the parameter X; are for the final design.
The preference number is similar to a probability density function from stochastics
or a membership function from fuzzy set theory. There, membership functions
determine the degree of the membership of an element in a set by mapping it to
[0, 1] (see [62]).

In a second step, each preference function py, () is divided into m + 1 preference
levels pj, 7 = 0,...,m, with py := 0, p; = pj_1 + Ap and Ap = ma%p;(i(xi)/m.
T;E€EX]

Then, the so-called interval propagation theorem (IPT, see [28]) is applied to find
the decomposed preference number X; := {X.(O), e ,X.(m)} with

(2 7

X = {u € X | pa (1) > p;).

Clearly, these sets define regions of the design space that are preferred by the design-
ers up to a certain preference level p;. Nevertheless, these regions may still contain a
lot of unfeasible designs which should be avoided in the design process. Thus, each
preference number X; is also associated with a so-called possibilistic distribution
qx,(z;) that measures its performance.

The authors then continue by presenting a variety of measures that weigh the pref-
erence and performance of the elements XZ-(J) of a decomposed preference number

X, such as the design preference index (DPI, see also [15]), defined as

DP[(Xi(j)) 3:/ P, (i) qx, (i) d;.
px; (Ti) 2D

CHAPTER 1. INTRODUCTION

Approach with Fuzzy Arithmetic and Cluster Analysis

The approach presented in [2] applies fuzzy arithmetic to quantify the uncertainty
regarding the structural robustness of a given set of designs. Then, cluster analysis
is applied to divide the designs into permissible and non-permissible designs. Inside
these clusters, hypercubes containing only permissible designs are constructed. The
authors continue by formulating three criteria for an optimal design: First, it should
fulfill traditional optimization objectives like minimum cost and maximum aesthetics
“in the mean”. Second, it should be as robust as possible. Third, it should provide
the designers with preferably large decision margins, i.e., there should be as many
nearby permissible designs as possible. Finally, a combination of the three criteria
allows the identification of an optimal design from within one of the hypercubes.

1.4 Solution Spaces

The methods described previously have certain restrictions. In order to apply the
method from [31], the data must be linearly separable. The method presented in
[36] becomes very expensive in high dimensions due to the curse of dimensionality.
Finally, the procedures described in [2] and [58] require additional information in
the form of membership functions and preference functions, respectively, which may
not be available.

In this section, we present thus an approach from set-based design that has none of
these restrictions. It is the focus of this thesis and lays the foundation for the algo-
rithms presented in the following chapters. This method optimizes high-dimensional
subsets of feasible designs, so-called solution spaces, see [85]. Synonyms for solution
spaces are permissible design spaces, feasible design areas or feasible solution sets,
cf. [21), 39, [65].

Definition 1.4.1. A set Q) C Qg is called a solution space if the objective function
f admits only subcritical output values for all designs in €2, i.e., if

fl®) <c

for all x € Q and a given value ¢ € R.

Similar to the methods in Section [I.3] solution spaces try to maximize the size of
a set containing admissible designs. Methods that apply solution spaces require no
information about the uncertainty of a problem, e.g. the knowledge of a probability
distribution function. Thus, they can be applied in the early stages of a design
process, where epistemic uncertainty is prevalent. Aleatoric uncertainty, which can
be found in later stages of a design process, can also be handled with solution spaces,
see [86].

An iterative method to find solution spaces is proposed in [85] and studied exten-
sively in [40, 42]. Another method that can calculate solution spaces directly if f
is at most a quadratic function with linear constraints is given in [26, 27]. Finally,
a method where the design space is decomposed into 2D-subpsaces is considered in
[24 25].

We now give a few basic definitions and the fundamental problem statement to work
with the method described in [85].

10

1.5. OUTLINE OF THE THESIS

Definition 1.4.2. A design « € Qg is called a good design or a good design point
if f(x) < c and a bad design or a bad design point if f(x) > ¢ for a critical value
¢ € R which is given by the problem. Additionally, the set of all good designs is
defined as the complete solution space

Q. = {zc € Qs : fx) < c}.

The key idea of [85] is to express the solution space sought by intervals for each
input design variable, thus representing a high-dimensional, axis-parallel box 2},:

d
Qpox 1= H [a;, bi] C Qgs.

i=1

Therefore, a design will always be classified to be good, as long as the values of
its design variables remain within their respective intervals. By specifying target
intervals that do not depend on the choice of interacting design variables, design
variables are said to be uncoupled, enabling the independent development of the in-
volved components. As the size of the intervals and thus the volume of the box are to
be maximized, the following semi-infinite optimization problem can be formulated:

Maximize the volume 1i(p0x)
over all axis-parallel boxes Qo C Qg (1.4.1)
subject to f(x) < ¢ for all & € Q.

Here, the measure yu is defined as

d

w(Qpox) == Hbi — a;.

i=1

The optimal solution space gained from solving the above problem is then used in
a development process to identify valid designs. Methods that help to find solution
spaces are studied in this thesis and outlined in the following.

1.5 Outline of the Thesis

In Chapter 2, we describe the underlying optimization problem and give a detailed
account of the box optimization algorithm which was developed to solve that prob-
lem. We demonstrate its functionality on two experiments and carry out a parameter
study to find a good choice for the growth rate.

In Chapter [} we introduce 2D-maps and develop the rotated box optimization
algorithm. We show how to apply principal component analysis to rotate boxes
on 2D-maps and explain the differences to the box optimization algorithm. We
apply the rotated box optimization algorithm to the same two problems as the box
optimization algorithm. The experiment in Subsection is carried out to confirm
that, in the mean, the algorithm finds the correct angle for a rotated box inside the
good design space.

11

CHAPTER 1. INTRODUCTION

In Chapter [we present the polytope optimization algorithm. We explain in detail
several techniques to manipulate 2D polygons. These techniques are necessary to
formulate the algorithm. It is conceptually similar to the rotated box optimization
algorithm. However, it requires a large number of adjustments because the rotated
boxes are replaced by polytopes. We use the polytope optimization algorithm to
solve the same two example problems as for the box optimization algorithm and the
rotated box optimization algorithm. Because the polytope optimization algorithm
introduces many new parameters, we conduct a large parameter study that yields
good choices for those parameters.

In Chapter [5] we test two modifications that are theoretically applicable to all three
algorithms. In one modification, we swap the order of iteration in the algorithms.
For the other modification, we analyze the covariance of a few design points before
we initialize the optimization algorithm. Here, the idea is that we find a reasonable
coupling for 2D-maps. This coupling can be used in the case when none is given. It
is also possible to find one that is even better than a given coupling.

In Chapter [0 we compare the box optimization algorithm, the rotated box opti-
mization algorithm and the polytope optimization algorithm by applying them to
three high-dimensional problems. Additionally, we conduct a final parameter study.
There, we study the performance of the optimization algorithms when we change
the number of sampled designs and the number of steps in the exploration and the
consolidation phase.

We give a conclusion to the thesis and a few final remarks in Chapter[7] Additionally,
we give an outlook on possible future work.

12

Chapter 2

Box Optimization

The algorithm presented in this chapter is introduced as “A Search Algorithm for
Solution Spaces” in [85] and is the object of further study in [23, 40, 41], 42]. Since this
thesis extends the algorithm and is hence based on it, we call it the box optimization
algorithm.

The idea of the box optimization algorithm is the following: because we want to
solve problem , we initialize a hyperbox (2,,x somewhere in the design space
Qg4s- Next, we want to move this box through 24 until we have found a spot with
a large amount of good design space. In addition, we may want to adjust the size
of the box, as this good design space may be bigger or smaller than the initial box.
The process of moving the box €., through €45 and adjusting its size is done in
the exploration phase. To this end, we sample a fixed number of design points in
Qpox and then adjust its size by trimming it such that it only contains good sampled
design points. Immediately afterwards we let it grow again, thereby trying to find
new good design space. By repeating the sampling, trimming and growing steps,
the box moves through and explores the design space. We stop this repetition after
a certain number of steps which ends the exploration phase.

After the exploration phase, the box may still contain bad design space. We consol-
idate it as an acceptable solution to by repeating the sampling and trimming
steps several times. This is the consolidation phase. The box does not move in
this phase because it is not grown anymore. The design space inside the final box
obtained from the consolidation phase will be mostly good and the probability of
sampling a bad design will be very low, which we are going to show in Section [2.3]
The flowchart in Figure [2.1) summarizes the steps of the box optimization algorithm.

In the following, we explain the box optimization algorithm. Additionally, we show
a few theoretical results and present some numerical experiments.

13

CHAPTER 2. BOX OPTIMIZATION

Exploration phase Sample
design
points

Grow box Trim box

Box

trimmed
nexp

times?

Consolidation phase

Sample
design
points

Trim box

Box

trimmed
nCOIl

times?

Figure 2.1: Flowchart of the box optimization algorithm.

14

2.1. ALGORITHM

2.1 Algorithm

2.1.1 Box Initialization

In the beginning of the algorithm, an initial hyperbox is required. It is either given
by the problem or can be constructed by other means. For example, a classical opti-
mization algorithm or a genetic algorithm, such like differential evolution, compare
[42,[73], can be used to find an initial optimal design point. Then, a hyperbox can be
constructed with the optimal design point as its center. In [42], it is recommended
that the initial box is not too large, otherwise it may be possible that no good design
points are sampled inside in which case the algorithm immediately terminates. For
example, if the optimum lies in a small, isolated region of good designs, the box
should not be chosen much larger than that region. If a box is found, it is used as
the initial box for the iteration in the next phase.

2.1.2 Exploration Phase

In the exploration phase, designs & are sampled within {2, and subsequently eval-
uated by applying f. This divides them into good and bad design points according
to Definition [1.4.2] Then, Qe is trimmed such that the bad design points are re-
moved. Finally, the box is grown again. By repeating these steps n®® times, the
hyperbox moves through the design space ()45 and finds a large region of good design
space.

Figure 2.2: A few designs sampled inside a box.

Sample Design Points

Inside Qyox, N uniformly distributed random design points are sampled, compare
Figure 2.2 Afterwards, the design points are evaluated. All of the design points @
with an objective value f(x) < c are collected in the set of good designs

ood .__ ood ood
Xg - — {(1)$g PRI (ngood)mg } 5

and all of the design points @ with an objective value f(x) > ¢ are collected in the
set of bad designs
Xbad = {(1)£Bbad, cey (nbad)a’:bad} s

see Figure[2.3] The sets are sorted with respect to the objective values of the sample
design points, in descending order.

15

CHAPTER 2. BOX OPTIMIZATION

Figure 2.3: Good designs are colored in green, bad designs in red.

Trim Box

Next, ,0x is trimmed by moving its boundaries onto the bad design points until
there are only good design points left. Because there is no unique way to do this,
multiple boxes Qf _ are calculated, such that for each good design point x8°°4 €
Xeood there exists at least one trimmed box Q.. that contains it, cf. [40]. From

those boxes, the one with the largest volume is chosen as the final box 5 ..

The boz trimming algorithm (Algorithm (1)) gives a detailed account of how the box
is trimmed. Its steps are explained below.

Algorithm 1 (Box Trimming). This algorithm trims the box such that the
smallest number of good design points is removed.

1: Input: Qypgy, A800d ybad

2: Output:

box

3: for all z&°°d ¢ x&°°d do

4 Q;good — Qbox

o: H?:l [ajv b?] — Q;good

6: for all zP*d ¢ xP*d do

7 [ngoed phad] « countpoints (angOd, xzhad Y pooar X good 'y bad)
8

Too0d < {Z e{l,...,d} nfOOd = minje(1,. 4} nfOOd }
9: Thaq < {Z S Igood n?ad = MaXjel, .4 n}?ad}
10: 7" €rand Ibad
11: if 2024 < 28°° then af « 2229 else b + 222! end if
12: end for
130 A eeod T [ar, by]
14: for all af # a; do af < min . yeooa 22°% end for
15: for all b} # b; do b} 4= Max e ysoos 75 end for
16: end for
17 QF arg max /(D zo0a)

»good

The algorithm requires an axis-parallel hyperbox Qo = H?Zl [a;, b;] as well as sets
of good and bad design points X%°°d and A4 as inputs (line . The output (line

is a trimmed box Q. = [[°, [a},b]. The algorithm iterates over all good design

points x&°°? (line [3)), initializes a new box Q* ... in lines 4| and |5, and then begins to
x8

loop over the bad design points £"* in line @ For each bad design point "*! and

16

2.1. ALGORITHM

each dimension 7, it counts how many design points would get removed if the box
is trimmed to P*® in line [l Thereby, we use the procedure countpoints, which is
introduced in Algorithm [2| the count points algorithm, and described below. Then,
it finds the dimensions where the fewest good design points are removed (line ,
chooses from those the dimensions where the most bad design points are removed
(line @, and finally, if it has not found a unique dimension yet, chooses one of
those dimensions at random (line [10). In line [11] the box is trimmed in the chosen
dimension to the current bad design point such that the current good design point
does not get removed. For a visualization of this process, we refer to Figure [2.4]

trim in dimension 1 trim in dimension 2

Figure 2.4: For two chosen good and bad design points (marked by black circles),
the box is trimmed in dimensions 1 (left) and 2 (right). The right box contains more
good designs, so the algorithm proceeds to trim more bad designs from it. The final
result is the box at the bottom.

After having iterated over all bad design points, the remaining good design points
are collected (line and the boundaries are trimmed further to the nearest good
design points in dimensions where the boundaries actually had to be trimmed (lines

and [15] compare Figure [2.5)).

Finally, after iterating over all good design points, the box €% ,,.. with the largest
volume p is chosen as the output (line [17 see also Figure [2.6).

17

CHAPTER 2. BOX OPTIMIZATION

Figure 2.5: The box is trimmed in every dimension from every direction it has
previously been trimmed.

Figure 2.6: For the example from Figure [2.4] the algorithm yields the three boxes
shown above. The rightmost box has the largest volume, so it is chosen as the
output of the trimming algorithm.

The procedure countpoints, implemented by Algorithm [2] counts the removed
design points if the box is trimmed to 2P in dimension i. It takes a good design
point £8°°?, a bad design point 2", a solution space o, and two sets of good
and bad design points as inputs. The outputs are two vectors n&°°d and n"2d that
count how many good and bad design points get removed if the boundary of {2y, in
dimension 7 is moved onto x4, while the design point x8°°? is left inside Q. To
this end, the algorithm iterates over all dimensions (see line [3)), and decides whether
abad < g8ood op ghad > pE00d (ipeg il and . Then, it counts the number of design

points in dimension 7 which lie between the boundary and 2P (lines [5H9)).

Algorithm 2 (Count Points). This algorithm counts the design points which are
removed by the trimming step.

1: Input: so°d ghad) . Asood ybad

2: Output: neo°d pbad

3: fort=1,...,d do

4 if 2P < 22°° then

5: nd #{ x € A0l | q; <y < b}
6: nl?ad <—#{a:€Xbad |ai§xi§x?ad}
7 else

8: nZgOOd — #{x e yeood ‘ Pl < g < bi}
9: nPad « # g e xbad | a;‘;adga;igbi}
10: end if

11: end for

18

2.1. ALGORITHM

Grow Box
The last part of one exploration step k is growing the box. Each interval [a;, b;] is
stretched by a growth rate ¢(¥) such that

d

Qbox = H [EZ,[_)Z]

=1

with -

see also Figure [2.7]

Figure 2.7: The box chosen in Figure is grown in all directions.

The growth rate may either be a constant ¢(), set at the beginning of the algorithm
such that

g®) = gD

or, before growing the box, it may be updated according to the formula

good
k) ._ 9 (k—1)
g T qtarget ’
where afmd = niOOd /N is the fraction of good design points before trimming the

box in exploration step k and a'®* is the desired fraction of good design points.
Subsection gives more details on how the growth rate should be chosen.

Note that the box will usually not grow arbitrarily large during the exploration
phase, as it will always be trimmed before growing. This cycle of trimming and
growing essentially makes the box move through the design space €24s.

After this growth step, the algorithm returns to the step “Sample Design Points”
unless all steps have been iterated n®® times.

2.1.3 Consolidation Phase

The box is no longer grown in this phase, since it is expected to be in a position
with a large amount of good design space. However, the box might still contain
some bad design space, and the goal of this phase is to remove as much bad design
space as necessary. Thus, one step of the consolidation phase consists of sampling
design points and then trimming the box. The consolidation phase is terminated

19

CHAPTER 2. BOX OPTIMIZATION

con

after either a fixed number of n°" steps or when no bad design points have been
sampled three times in series. Terminating after three of those steps is done to save
time, the reasoning being that more consolidation steps do not change the quality
of the box by much. The final box from the consolidation phase is then the solution
space found by the box opimization algorithm.

2.2 Modifications to the Algorithm

We had to modify the algorithm described in the previous section to keep it com-
patible with the rotated box optimization algorithm and the polytope optimization
algorithm which will be presented in Chapters [3| and [4] However, these modifica-
tions do not change the functionality of the algorithm and have no immediate effect
on its results. Instead, they make the results more easily comparable to those of the
other two algorithms.

e Mapping to the Unit Cube. The first modification is done after the design
points are sampled and evaluated. The actual box {2, and the design points
are mapped from the design space Qqs = [[,[a, 8] to the unit cube [0, 1)¢
via the linear mapping

1/(51 - 041)
1/(52 - 042)

T — (x —).

1/(Ba —)

This is done to normalize all design variables. Each interval [a, ;] is thereby
transformed into an interval [&i, BZ} with Bz —a; = 1. Thus, all intervals have

the same length. After the growth step, the design points and the unit cube
[0,1]¢ are remapped to €4 via the inverse mapping

51—041

P2 —
x +—> . T+ o

Ba — o

« Sampling Inside the Design Space. The second modification handles the
case when the box grows into the exterior of ()4, including design variables
that are out of scope. In the original box optimization algorithm, this has
been solved by simply retracting the axis-parallel box onto the boundary of
Qgs- The box does not lose any good design space in the process. However, in
order to keep the box optimization algorithm compatible with the rotated box
optimization algorithm, design points are only sampled in 0 N {245 instead
of only 0 in each step of “Sample Design Points”. Consequently, we also
have to modify how we measure the volume of €2,.,. Thus, whenever we have
to calculate p(Qpox) in the algorithm, we instead calculate

1(Qpox N Qygs) = H (min{bi, B} — max{a;, ai}).

=1

20

2.3. PROBABILITY OF FINDING GOOD DESIGNS

2.3 Probability of Finding Good Designs

As the algorithm will fail if no good designs are found, we are interested in the
probability of this event. Another important quantity is the amount of good design
space that is present in the final box from the consolidation phase and how likely it
is to draw a good design from that box. This section is concerned with the analysis
of these probabilities.

Figure 2.8: Setting the growth rate too large may lead to zero good designs being
sampled in the subsequent sampling step.

Figure 2.9: When the growth rate is too small, the box moves only very slowly and
does not find the bottom of the U-shape, where the good design space is larger (the
first few boxes are gray, the later boxes become darker).

2.3.1 In the Growth Step

The growth step plays a critical role in the exploration phase. It allows the box
to move into the design space surrounding it. An important parameter here is the

21

CHAPTER 2. BOX OPTIMIZATION

growth rate. If it is chosen too large, no good design points may be found at all
(see Figure [2.8| for an illustration). If it is chosen too small, only a small part of Q4
might be surveyed (compare Figure during the whole exploration phase. Thus,
a guideline for choosing the growth rate might be of interest. In [40], the following
theorem is proven that determines an upper bound for the constant growth rate g*).
Note that we changed the notation from there to match ours.

Theorem 2.3.1. Let nglm = [1%,[az, b?] be the output box gained from the trim-
ming step in the k-th iteration of the explomtzon phase and ay be the true, usually
unknown fraction of good design space inside Qmm Additionally, let Qgﬁgw be the

result of the subsequent growth step. Define A1 as the event that the number of
good design points n%iold of N total design points sampled in Qé’i&w in the (k+1)-st
iteration of the exploration phase is greater than or equal to 1. Then, it holds for
the probability of A1 that

N
ag
P(A >1—-11- — .
(Aps1) > ((1+29(k))d>

Proof. Denote by p the (unknown) probability to sample a good design point in
Qgﬁgw. Since we draw the design points from a uniform distribution, we have

P(Ap) =1-(1-p)~

In the worst case, the set Qgrow \ o
the inequality

mm contains only bad design space, which yields

(grow

)
and hence
P(Ag1) >1—[1—ag E

Qtrlm)

grow)

(2.3.1)

Since the volume of Qmm

n(02) =

and the volume of Qgﬁgw is

::]&

d
ambf) LI —ap)

=1

p(Q0) = n (H [ap — g™ - (b7 — a}), b + g®) - (b) — a?)})

=1

d
- H(bg — a;)(1 +2g(k)>
(1 + 2%) f[by —a;

=1

22

2.3. PROBABILITY OF FINDING GOOD DESIGNS

we obtain
(k)
A B v N
- d * * o d’
p(90) (L+20) TIL (67 —ap) 1+ 29)
Inserting this into inequality (2.3.1]) yields the assertion. O

From Theorem m, [40] concludes that, if g fulfills

N
PA) 21— (1- —2) >4
(1+2g™)

the probability of finding a new sample point is at least ¢. It is also mentioned
that a; is usually unknown and has hence to be estimated by a confidence interval
[a}™, a;P] to the confidence level 7. It is concluded that, if at least one good design

point should be found with probability q/r, g/ should be chosen such that

1 alow 1/d
0<q¢® <= k —1]. 2.3.2
= —2<(1—<1—q/r>1/N 232

It turns out that applying this inequality to find a suitable growth rate is problem-
atic. The expression on the right side of tends to 0 as the dimension d grows.
This means that either ¢*) has to be chosen very small, or the number of sample
points N has to be very large. The latter option poses a huge computational cost, as
it requires more evaluations of the objective function f. The former option implies
that the box will move only slowly through the design space. It is particularly slow
in case the growth rate is constant, e.g. ¢© = ¢ = ... = g™ =: ¢, since ¢ has
to be chosen such that is valid for each exploration step k.

As an alternative, [40] and [42] recommend a dynamic choice of the growth rate:

agood
g® = Sk), (2.3.3)

atarget

It couples the growth rate in the exploration step k to the previous growth rate
and the amount of good designs found in the step k — 1. The numerator a%OOd =
n&°! /N € [0,1] is the fraction of good design points and is calculated anew after the
design points are sampled in the exploration step k. The denominator a**'¢°* € (0, 1]
is chosen at the beginning of the algorithm and does not change. It denotes the
fraction of good design points the algorithm should aim to find in each exploration

step and is responsible for the general speed with which the box moves through ;.

The following behavior can be observed for the parameter a**'#* (compare also
Subsection : If it is close to 1, the growth rate will, according to our experience,
increase only occasionally and the box will move very slowly. Thus, trying to find a
box containing only good points, i.e., setting a'®&°* = 1, is — seemingly paradoxically
— not desirable during the exploration phase. If a''8" is smaller than 1, the box
will move faster and in larger steps. Indeed, the algorithm may even break down if
the growth rate becomes too large and no good designs are found (see again Figure

23).

23

CHAPTER 2. BOX OPTIMIZATION

good target
rola

The fraction a allows us to draw conclusions about the next exploration

step. If a%‘md /a®8 > 1, much more good designs than desired were sampled, likely
because the box has found a relatively large region of good design space. Increasing
the growth rate lets the box probe the boundaries of that region faster, which in
turn means that fewer design points have to be sampled overall. On the other hand,
if a2°°! /a2t < 1, far too few good designs have been sampled, indicating that the
box has grown too much. Reducing the growth rate lets the box retract into good

design space, as it will be trimmed more than it grows.

In general, the dynamic growth rate provides a reasonable growth speed while ensur-
ing that the box stays mostly within good design space. Thus, it should be favored
over a constant growth rate.

2.3.2 In the Consolidation Phase

During the consolidation phase, the amount of good design space inside the box
is of interest, as the phase can be stopped early if only good design points have
been sampled three times in series. This termination condition is derived from the
theorem below, originally proven in [53] and formalized in [40]. The proof applies
Bayesian inference to derive a credible interval (see [4, 132]).

Definition 2.3.2. Given a random vector x from a set of possible values X, an
unknown parameter 0 with density p(0) and two functions u,v : X — R, we define
the interval C' := [u(x),v(x)] as the credible interval with credible level « if

v(x)

P(u(z) < 8 <v(x)|z) = / p(@lx)dd =1 — a.

(2)

Note that a credible interval differs slightly from a confidence interval, which is
defined as the interval D := [u(x),v(x)] such that

v(x)
Plu(e) < 0 < v(e)|6) = / p(010)d0 = 1 - a
u(z)
for all #. Thus, a credible interval C' treats the parameter 6 as a random variable
that lies within C' with probability 1 —a. In contrast, a confidence interval D treats
0 as a fixed value and D encloses 6 with probability 1 — « (one can be “reasonably
confident” that § € D). However, whether this is actually the case for a particular
6, is entirely uncertain (see again [4]).

For the following theorem, let a; denote the unknown true fraction of good design
space within the box)},,« before trimming it in the k—th step of the consolidation
phase. Before we sample any design points in)., we are unable to make any
assertions about the probability of sampling a good design point because we treat f
as a black-box function. Thus, the value of a; is entirely uncertain and we treat it as
continuous random variable that admits values between 0 and 1. Since there is no
other information available, it is reasonable to model the prior probability p(ax) to be
uniformly distributed. The only information required by the uniform distribution
is the range of its values, which in this case is [0,1]. Other bounded probability
distributions would require more knowledge about aj, e.g. the beta distribution
requires two shape parameters a and 3 (see, for example, [34]).

24

2.3. PROBABILITY OF FINDING GOOD DESIGNS

Theorem 2.3.3. Let n%OOd be the amount of good design points among N sampled
design points inside Qyox in the k—th consolidation step. Then, the probability that
ay lies within a given interval [y, Qup) 1S

au Nele} 0O
/ T — N g
good) _ Jaow

M 1 p L
goo _ 800
/ s (1—s)NV "™ ds
0

P(alow < ap < Qyp

Proof. We set ny, := n2°° to simplify the notation. The probability of sampling 7y,
designs from N total designs is modelled with the posterior distribution p(ax|ng).
With p(ng) # 0, it holds

plax A ny,)
plagng) = —————
(ak[n) ()
Applying Bayes’ theorem, we get
p(nglax)p(a

P(nk)

where p(ay) is the prior distribution. In view of

p(ns) = / p(nils)p(s) ds.

we find
p(ngax)p(ay)

[ptolsinisyas

Because we previously assumed the prior p(ax) to be distributed uniformly on [0, 1],
p(ax) = 1 holds for any a;, € [0, 1], and we obtain

plagny) =

p(nk|ax)

[pioulsyas

The conditional probability p(ax|ny) is a binomial distribution since there are either
good or bad sample points. Thus, we conclude

(N) 0™ (1 — ag) N

n ar"™ (1 —a

1 N 1 :
/ ()snk(l —)N ds / s (1 — s)N " ds
o \7% 0

The probability of the true fraction of good design space a; in the box is hence
given by the beta distribution (compare [34]). Finally, the desired probability for
a € [Alow, Qup) 18

plag|ny) =

)N—nk

Qup
Qup / tnk(]‘ - t)Nink dt
P(a'low <ag < aup|nk) = / p(t|nk) dt = L%ow

1 .
Alow / Snk<1 - S)ank ds
0

25

CHAPTER 2. BOX OPTIMIZATION

In [53], the 95% credible intervals for several ratios n2°*! /N are calculated. For N =
100 and in the worst case, i.e. when equally many good and bad design points are
sampled and thus ni‘md /N = 0.5, the credible interval is [aiow, aup] = [0.4036, 0.5964]

With aup— 1w = 0.2. The larger the ratio n%OOd/N or (N — n§00d> /N is, the smaller

the width of the credible interval becomes, up to [@iow, aup] = [0.9641,0.9997] and
Qup — Alow ~ 0.04 for ni‘md /N = 1. This means that, for a given credible level, we
can say more precisely what the true fraction of good design space ay likely is if the
ratio nf°?/N is large.

[40] is also interested in the probability of {2, containing only good design space,

that is ap = 1, if n8°°'/N = 1 and N = 100. Setting a,, = 1 and requiring

P<alow < ay S 1

n%°°d> = 0.95

yields ajow =~ 0.97. This means that the true fraction of good design space ay lies
in the interval [0.97, 1] with a probability of 95%. Note that this credible interval is
shorter than the shortest interval from above, because here

P(ak > aup‘n%“d) =0.
In contrast, the intervals above have been constructed with the general condition

P (ak >

nget) = 0.025,

From these calculations we can conclude that about N = 100 sample points are
enough to ensure a high quality of Qe (With regards to the amount of good design
space), as can be seen from Figure More sample points increase the preci-
sion of the credible intervals only very little and may not compensate the increased
complexity of the algorithm that comes with more evaluations of the objective func-
tion f. Thus, although it may improve the algorithm’s speed of convergence or the
overall volume of €),,,, increasing the number of sample points beyond N = 100
with the intention to obtain more good design space within ()., is deemed ineffi-
cient. As these calculations do not require any information about 24, except that
good and bad designs are uniformly distributed, they can be regarded as valid for
all problems where sample points that are uniformly distributed have to be divided
into two groups. Furthermore, they tell us that the quality (with respect to the
amount of good design space) of Oy« at the end of the consolidation phase must be
very high. While it may be unlikely that a; = 1 holds in the final step, a; lies in
[0.97, 1] with a probability of 95% for N = 100. Thus, the probability of sampling
bad designs should be very low. This is considered acceptable since the algorithm
provides designers with a good first impression of the design space available. As it
is usually applied in the early design process, designs will be further validated later
in the design process and possible bad designs would be detected long before they
become problematic.

Note that the sample size N may influence the number of steps during the explo-
ration phase, n®P, and the consolidation phase, n®". If there is a cost for the
evaluation of the objective function f, the total number of evaluations may perhaps
not exceed a certain budget B. Thus, the total number of steps the algorithm is al-

lowed to perform is at most B/N. In general, one can simply set n®P = n®" = %-%,

26

2.4. NUMERICAL EXPERIMENTS

i.e., the exploration and consolidation phase both are allowed to perform the same
number of steps. However, since the consolidation phase may terminate early if
only good points are sampled three times in series, allotting more steps to the ex-
ploration phase may allow the algorithm to find a larger box before it switches to
the consolidation phase which in turn may yield a larger final box. If the sample
size allows the algorithm to perform only a few steps, it may not have converged on
a satisfying box. In this case, the sample size should be decreased to increase the
number of steps the algorithm may take.

0.3/ — N = 05
—nf/N = 0.9
nE /N = 0.99
0.25¢ —nE N =1

0 50 100 150 200 250 300
N

Figure 2.10: Width of the credible interval [@iow, aup] With respect to the number of
sample points and the fraction n°*/N.

2.4 Numerical Experiments

In this section, we study two toy problems to demonstrate the box optimization
algorithm. Additionally, we study the impact of the growth parameter on the result
of the algorithm. Further numerical results pertaining to the box optimization
algorithm are collected and later compared to its extensions in Chapters [5| and [6}

2.4.1 Two Example Problems in 2D

We present two simple problems in 2D to which we apply the box optimization algo-
rithm. These problems have been analyzed in great detail in [40]. We repeat them to
demonstrate the functionality of the algorithm and to convey a basic understanding
of how it operates. We will also apply the other algorithms presented in the later
chapters to these problems such that we can easily compare them to each other on
a basic level.

27

CHAPTER 2. BOX OPTIMIZATION

2D Polygon
For) } L
1/8 1/4 1
4/17 2/17 1
o |-1/2 1)2 1
A = “1/2 —1/3 and b:= IR
-1/3 —=2/3 -1
1 —3/2] | 1

we consider the problem of finding & € Q4 := [0,4]? such that
g(x) = Ax—b <0.

Note that “<” is meant entry by entry, i.e., x < y < x; < y; for all i. This amounts
to an objective function of the form

fla) = {0’ ifg(x) <0, (2.4.1)

1, else,

with the critical value ¢ := 0.5. The good design space is a two-dimensional six-
sided polygon (compare Figure [2.11)). In [40], the axis-parallel box with the largest
volume is calculated as

Qopt := [1.18,2.85] x [1.23,2.58).

It has a normalized volume of 0.1409. In contrast, the normalized volume of the
whole polygonal good design space is 0.2959. Here and in the following chapters,
the normalized volume is the volume of the solution space of interest divided by the
volume of the design space, i.e.

M(Qbox)

M(st) '

We use this measure for volume because it also immediately tells us what partition
of Q45 is usable design space.

We execute the box optimization algorithm 100 times for this problem. Each time,
the initial box lies in the center of the polygon,

Qpox = [1.8,1.9] x [2.0,2.1].

The exploration and consolidation phase consist of n®P = n®" = 100 steps each.
During these phases, N = 100 design points where sampled in each step. The
growth rate is dynamic with ¢©) = 0.05 and @'t = 0.6. The resulting mean of
the normalized volume of the 100 final boxes, which we subsequently simply call the
mean normalized volume, is 0.1457 with a standard deviation of 0.0077, which is
very close to the optimal value. In Table [2.1] the mean interval endpoints are given.

They are defined as
1 — 1«
RSOl
: j:l

where [a; ;, b; ;] is the interval in dimension ¢ of the j-th result calculated by the box
optimization algorithm. They admit values that are close to the interval endpoints
of the optimal box, compare Figure [2.11]

a”L? Z

28

2.4. NUMERICAL EXPERIMENTS

Figure 2.11: Left picture: good design space for the 2D polygon (in green) with
initial box (gray). Right picture: box with the mean interval endpoints (gray) and
optimal box (dashed).

ai | by | a | b
Mean 1.13 | 2.78 | 1.23 | 2.65
Standard Deviation | 0.08 | 0.14 | 0.10 | 0.08

Table 2.1: Mean and standard deviation for the interval endpoints.

2D Rosenbrock Function
As our second test problem, we consider the Rosenbrock function
flx) = (1—21)*+100 - (25 — x%)2 (2.4.2)

with Qg = [—2,2] x [-2, 3] and the critical value ¢ := 20. The good design space
admits the form of a U-shape (compare Figure [2.12)) which makes this an interesting
test problem. The optimal box is again calculated in [40],

Qopt == [—0.525,0.547] x [—0.145,0.436],

and has a normalized volume of 0.0311.

We execute the box optimization algorithm again 100 times with the same settings
as in the previous experiment, except that the initial box is now Qe 1= [0.9,1.1] X
[0.9,1.1], containing the global minimum « = (1,1) of f. The mean normalized
volume of the final 100 boxes is 0.032 with a standard deviation of 0.0016. The
mean interval endpoints are given in Table As in the experiment before, the
results are close to the optimum.

In summary, we can draw the following conclusions from these results: First, the
mean normalized volumes of the boxes found by the algorithm do not deviate from
the volumes of the optima by much. Second, as we can see from Figures [2.11| and
[2.12) as well as Tables 2.1 and the boxes move into a spot in the design space

29

CHAPTER 2. BOX OPTIMIZATION

3 3
2 2
1 1
0 0
1 1
25 1 0 1 > 25 10 1 2

Figure 2.12: Left picture: good design space for the 2D Rosenbrock function (in
green) with initial box (gray). Right picture: box with the mean interval endpoints
(gray) and optimal box (dashed).

@ | b | G | by
Mean —0.51 | 0.54 | —0.18 | 0.43
Standard Deviation | 0.064 | 0.062 | 0.063 | 0.013

Table 2.2: Mean and standard deviation for the interval endpoints.

that is close the optimum, and not somewhere else. Hence we conclude that the
results are reasonable and the algorithm works as intended.

2.4.2 Growth Rate Parameter Study

While we have clarified theoretically in the previous section how the parameters N,
n®P and n®" should be chosen, the choice of the growth rate still requires a lot of
knowledge about the problem at hand (see Subsection , which however may
not be given. Thus, this section tries to give a general estimate of a feasible growth
rate.

2D Rosenbrock Function
As our first test problem, we consider again the Rosenbrock function
f(@) = (1= a1)” +100 - (25— a7)’

with Qqs = [—2,2] x [—2, 3] and the critical value ¢ = 20. For this experiment, the
initial box is Qe 1= [1.54, 1.6] x [2.44, 2.5], i.e., it is placed in the upper right corner
of the design space (see Figure . The challenge of this experiment is that the
box should traverse the right hand side of the U-shape and find the good design space
at the bottom. As the good design space around the initial box approximates the

30

2.4. NUMERICAL EXPERIMENTS

shape of a corridor delimited by almost parallel lines, the algorithm will find almost
the same volume of good design space while moving the box short distances in either
direction of the initial part of the corridor. Thus, the success of the algorithm will
mostly depend on the growth rate.

3

=2 —1 0 1 2

Figure 2.13: Good design space for the Rosenbrock function (in green) with the
initial box in the upper right corner.

The number of steps in the exploration phase and the consolidation phase is set
t0 Nexp = Necon = 100 steps, and in each step, N = 100 design points are sampled.
The experiment is performed with constant and dynamic growth rates. For the
experiments with constant growth rates, ¢(® is set to 0.01, 0.05, 0.1, 0.2, 0.4 and
0.8. For those with dynamic growth rates, ¢©) = 0.05 and a'*#°t is set to 0.5, 0.6, 0.7,
0.8, 0.9 and 1. At '8 = (.5, we desire a balance between good and bad designs
and at a''8" > (.5, we prefer good over bad designs. For """ = 1, the algorithm
will try to keep the box in the good design space. We do not set a**'¢** < 0.5 as this
would mean that we prefer sampling more bad than good designs inside the box.

For each setting of the growth rate, the box optimization algorithm is executed 100
times. Figures and show the resulting 100 boxes of each setting.

As can be seen from Table 2.3 and Figure 2.14] if the growth rate is constant and
¢? is small, e.g. 0.01, 0.05 or 0.1, the box stays near its initial position and has thus
only a very small volume. However, if (¥ is large, e.g. 0.4 or 0.8, the algorithm finds
the bottom of the U-shape more often and the resulting box has a larger volume.
Curiously, for the largest value ¢(® = 0.8, the algorithm overshoots in the sense that
the box is sometimes moved into the left corridor of the U-shape (compare Figure
2.14). This means that the algorithm moves the box into the good design space at
the bottom of the U-shape but does not keep it there. Instead, it is moved into the
left corridor, where the size of the box is suboptimal. We will explain this effect in
the following section in more detail.

31

CHAPTER 2. BOX OPTIMIZATION

Table 2.3: Mean and standard deviation for the normalized volume of 100 boxes
calculated with constant growth rates. The best result is printed in bold.

g© | Mean | Standard Deviation
0.01 | 0.31-1072 0.02 - 1072
0.05| 0.35-1072 0.02 - 1072
0.1 | 0.37-1072 0.04-1072
0.2 0.52- 1072 0.48 - 1072
04 | 2.78-1072 0.96 - 1072
0.8 | 2.87.1072 0.70 - 102

qlareet ‘ Mean ‘ Standard Deviation
0.5 [3.18-102 0.20 - 102
0.6 | 3.03-102 0.74-1072
0.7 | 1.55-1072 1.30 - 1072
0.8 | 0.42-1072 0.08-1072
0.9 | 0.36-102 0.03-1072
1 0.35-1072 0.02-1072

Table 2.4: Mean and standard deviation for the normalized volume of 100 boxes
calculated with dynamic growth rates.

For a dynamic growth rate, a large value ' for example 0.8, 0.9 or 1, means
that the grown box should contain mostly good design space, which results in a
conservative, small growth rate. The box stays near its initial position and achieves
only a small volume (see Table and Figure 2.15). Conversely, a smaller value
a®e e.g. 0.5 or 0.6, results in a larger growth rate where the grown box may
contain more bad design space. The resulting boxes lie in the bottom of the good
design space most of the time and have thus a large volume.

In conclusion, a constant growth rate with ¢(® between 0.4 and 0.8 or a dynamic
growth rate with a*"#°* about 0.5 or 0.6 seem to be good choices for this problem and
may be appropriate for other problems where the good design space has a similar
shape. Most importantly, these experiments confirmed the intuition that a constant
growth rate with small ¢(® or a dynamic growth rate with large a'"#* will possibly
let the box explore only a small part of the design space.

32

2.4. NUMERICAL EXPERIMENTS

¢ = 0.05

-1 0 1 2

Figure 2.14: 100 boxes resulting from the box optimization algorithm with different
constant growth rates.

33

CHAPTER 2. BOX OPTIMIZATION

atareet — .5 atarget — g

7
4'II,

[
L]
| N
s E— 0 1 s E— 0 1 2
afarget — .8

=2 -1 0 1 2 =2 -1 0 1 2
atareet — 0.9 qtarget —

=2 -1 0 1 2 =2 -1 0 1 2

Figure 2.15: 100 boxes resulting from the box optimization algorithm with different
dynamic growth rates.

34

2.4. NUMERICAL EXPERIMENTS

8D Nonlinear Problem from Acoustics

Next, we shall consider an engineering problem from acoustics. Nine transfer paths
of noise have to be designed such that the total noise generated stays below a critical
value. The noise emitted by a source follows the complex-valued transfer function

Ap(w)e'® (@)

Here, w is the frequency of the source, Ay : [0,27] — R is the amplitude in the
receiving region and ¢x(w) : [0,27] — [0, 27] the frequency in the receiving region.
The total noise level is the sum of the noise generated by all emitting sources

|1 + x3e™ 4 .+ 7e™8]. (2.4.3)

For this experiment, the dependency on the frequency w has been omitted, as every
relevant frequency is analyzed. The amplitudes are set to the constant value x; =
x3 = ... = 27y = 1, and the frequency =z, is fixed at x5 = 0. Thus, the expression
from yields the objective function

8
1+ Z ot
(=1

with Qg := [0, 27]® and ¢ := 1.5. The initial box is

fl@) =

8

Qpox := H[ai7 bi]

i—1
with a; and b; given in Table 2.5} A visualization of the initial box can be found in
Figure 2.16

i1 2 3 4 5 6 7 8
a; | 47545 4.9248 18186 0.4240 3.2106 1.2389 4.6416 1.2389
b; | 5.6455 5.2958 2.4098 1.1439 3.6663 1.7502 5.0973 1.7502

Table 2.5: Intervals for the initial box of the acoustics problem.

Note that the visualization is different from before. Pairs of intervals are drawn
together in one 2D-map (see also Section [3.1)), i.e. the product [ai, bi] X [az, bo] is
plotted on the projection of 24 into the dimensions 1 and 2, which we call the
2D-map €2 9, the product [as, bs] X [a4, bs] is plotted on the projection of Qg4 into
the dimensions 3 and 4, which is the 2D-map €23 4, and so on. On each 2D-map €2, ;,
1000 design points « = (z1,...,xs) are sampled with z; € Qe for k # 4,5 and
xy € §;; for k = 4,7. This means that every design point is inside of (., except
for the coordinates x; and x;, which may be distributed anywhere on the 2D-map
€2 ;. This illustrates the region around . from the inside of Q. Clearly, the
initial box lies on the border of good and bad design space. The algorithm should
be able to move the box into the good design space nearby.

Again, the algorithm is executed 100 times, with the same settings as in Subsection

2.4.2] The results can be found in Tables and 2.7 Figures [2.17 and show

35

CHAPTER 2. BOX OPTIMIZATION

Figure 2.16: Initial box for the acoustics problem.

the final 100 boxes for each setting. The columns of these figures show the boxes
on the 2D-maps (2; ; and the rows feature the different settings of ¢(© and qtareet,
Similar to Figure [2.16, one 8D-box is represented by the product of four boxes on
the four 2D-maps.

The mean normalized volume remains basically the same for all settings in the case
of a dynamic growth rate. However, in the case of a constant growth rate, the mean
normalized volume decreases with increasing ¢(°). This clashes with our findings
from the previous section, where a larger ¢(* also means that the final box has a
larger volume. F igurereveals the issue at hand: when the value ¢ is large, the
final boxes are spread out over the whole design space and do not stay within the
same area as it is the case for the dynamic growth rate. The reason for this is that
the box from the final growth step of the exploration phase is larger than the design
space, as shown in Figure[2.19] There, 100 design points are sampled such that they
lie within the box and the design space. The good designs seem to be scattered

36

2.4. NUMERICAL EXPERIMENTS

g Mean | Standard Deviation
0.01 | 0.94-107° 0.37-107°
0.05 | 1.05-10"° 0.45-10°°
0.1 | 0.71-107° 0.39-107°
0.2 | 0.51-107° 0.39-107°
0.4 | 0.28-107° 0.35-107°
0.8 | 0.20-107° 0.25-107°

Table 2.6: Mean and standard deviation for the normalized volume of 100 boxes
calculated with constant growth rates.

qtareet ‘ Mean ‘ Standard Deviation
05 | 1.06-107° 0.47-107°
0.6 | 0.99.-107° 0.47 -107°
0.7 | 1.05-107° 0.51-10°°
0.8 |1.13-1075 0.51-107°
0.9 | 0.95-107° 0.38-107°
1 1.02-107° 0.46 - 107°

Table 2.7: Mean and standard deviation for the normalized volume of 100 boxes
calculated with dynamic growth rates.

throughout the design space with no apparent pattern. In the next trimming step,
the box will be trimmed such that at least one good design is contained within
it, but probably not all of them. This means that the box will settle in a specific
area within the design space. As this area depends heavily on the constellation of
good and bad designs sampled within the box, the position of this area and, by
extension, the position of the box, is random and different after each execution of
the algorithm, as seen in Figure This mechanism also explains the boxes found
in the left arm of the U-shape in the bottom right picture of Figure of 2.14f The
box from the final growth step of the exploration phase is very large and, by chance,
good points are also sampled in the left corridor such that the optimal box can be
found there.

In conclusion to the results of this study, a dynamic growth rate generally seems to
be superior to a constant growth rate. For a constant growth rate, a small value ¢(”
may result in too little growth. A large ¢(®© may result in too much growth, which
makes the algorithm unreliable in the sense that, with equal starting conditions,
the final boxes differ much from each other, as seen in Figure 2.14] In contrast,
a dynamic growth rate with a small value a'*®* yields boxes with a large volume
and keeps the algorithm reliable, i.e. all boxes are similar to each other and can be
found in the same area within the design space. Thus, a dynamic growth rate with
a'®& = (.5 or a''&" = (.6 is a good universal setting, as it can handle good design
spaces with a difficult geometry well. While it may not be optimal for all design
spaces, at the very least it should provide a good starting point.

37

CHAPTER 2. BOX OPTIMIZATION

M2, ¢© =0.01 Q34, 9 = 0.01 D56, 9 = 0.01 Qrs, 99 = 0.01
6 6 6F 6
4 4 4 4
2 20 21 ﬁ 21 [o

L
0 0 0 0
0 2 4 6 0 4 6 0 2 4 6 0 2 4 6
Q34, 9© = 0.05 Qs.6, 9 = 0.05 Q7g, 99 = 0.05

—_J
e
iy
0
 —

B

T
]
k \

[
0

~
- gEniia o

rED | Hle FEr, Al

27T D 2

0

[T

o
[
|
o
0
0

o
[\
IS
ol
o
[\
IS
D
o
[\
IS
(=2}
o
[\
IS
(=2}

Figure 2.17: Final boxes for the acoustics problem with constant growth.

38

2.4. NUMERICAL EXPERIMENTS

91127 atarget - 0.5 93147 atarget - 0.5 954,67 atareet — (.5 97,87 atarget — 0.5
6| 6 6
4 4 4
2 2 2
0 l l 0 0 l
0 2 6 0 0 2
Q2. a5 = 0.6 Q4. "% = 0.6 s, Qrs, et = 0.6
6 6| 6|
4 4 4
2 2 2
l l
00 2 6 O0 00 2
91727 atarget = 0.7 Q&Aa atarget = 0.7 95767 atarget = 0.7 Q7,87 atarget = 0.7

6| - 6| 6l
4+ 4+ 4+
2 2 21
| | |
OO 2 4 00 00 2
QI,Q atarset 1 Q5,6, a Q7«,87 atarget — 1
6 6 6|
4+ 4+ 4+
2+ 2+ 2+
| |
OU 2 6 00 00 2

Figure 2.18: Final boxes for the acoustics problem with dynamic growth.

39

CHAPTER 2.

BOX OPTIMIZATION

12 Q34
10/ 10/
51 5|
of | Foites o elsnl
—0F 0 5 0 25 0 5 10
56 Q78
10/ 10
51 51
of | ieddmacel of | bt
s 0 5 0 25 0 5 10

Figure 2.19: Box from the final growth step of the exploration phase for ¢(® = 0.8
with 100 designs sampled inside. The dashed line indicates 4.

40

Chapter 3

Rotated Box Optimization

This chapter presents the first extension of the box optimization algorithm, the
rotated box optimization algorithm. It has been studied in [44]. The idea of the
rotated box optimization algorithm is the following: In applications of the box
optimization algorithm, often some intervals of the result are too small for practical
use. For example, if the good design space 2. (compare Definition takes the
form of a diagonal strip in two dimensions (as illustrated in Figure [3.1)), an axis-
parallel box will be small in relation to the whole volume of €).. Therefore, we
modify the original problem statement to allow two-dimensional box rotations for
specific pairings of design variables. On the one hand, this introduces a coupling
between these pairs (however, the particular pairs remain uncoupled from the other
pairs). On the other hand, this increases the solution space considerably, especially
if strongly correlated design variables are taken as pairs.

3.1 Box Rotations for 2D-Maps

In order to allow for box rotations, the concept of 2D-maps is utilized. They have
been introduced as 2D-spaces in [25], where the coupling of pairs of design variables
has been studied in the case when f is a linear function.

Definition 3.1.1. The 2D-map €, ; is defined as
Qi = {y € R? | y=mij(x), z € st} ;

where ; ; is the projection (x1,...,x4) — (z;,2;) withi,j = 1,....d. That is, the
2D-map €); ; is the projection of {45 onto the dimensions © and j.

The rotated box optimization algorithm extends the box optimization algorithm, as
explained in the following. Two design variables z; and z; are paired and associated
with the 2D-map €; ;. The projected box 7; ;(Qpox) is rotated in €2; ; such that it
is no longer axis-parallel in these two dimensions. This means that the box can
no longer be represented by two intervals for these dimensions. Rather, it is now
given by a linear combination of two vectors that are not axis-parallel (see Section
3.3). The design variables z; and x; are thereby coupled. However, this trade-off
is acceptable since the coupling does not include the other design variables. This
means that changes can be made to the design variable x;, for example, and only z;

41

CHAPTER 3. ROTATED BOX OPTIMIZATION

Figure 3.1: An axis-parallel box (left) and a rotated box (right) as solution spaces.
Good and bad design regions are green and red, respectively.

and x; have to be checked whether they still lie within the rotated box m; ;(pox)-
The other design variables are not affected, which saves time and resources during
the design process.

A meaningful choice of design variables to be coupled in a single 2D-map may
be inferred from the design problem. It may make sense, e.g., to couple design
variables associated with one component while keeping them uncoupled from those
associated with another component. It is also reasonable to couple design variables
that one designer has full access to. Each design variable is paired with at most
one other design variable, such that each design variable is associated with at most
one 2D-map. Some design variables may not need to be paired with any other
design variables, usually because they are expected to have enough available design
space. These design variables are assigned to intervals, as in the box optimization
algorithm. Therefore, the box (2,0 is the product of one-dimensional intervals I}
and two-dimensional rotated boxes B; ;,

Oox = [[ex] Bis

keJr (i,j)EJpair
where
Jr = {z e{l,...,d} |z is an unpaired dimension},
Tpair = {(z, Jj) € Is X TIB | the dimensions ¢ and j are coupled}
and

JIg=A{1,...,d}\ Jr.

42

3.2. PRINCIPAL COMPONENT ANALYSIS

Additionally, we define the space of all admissible rotated boxes as

Srot = Qbox C st Qbox = H]k X H Bi,j
kej] (i7j)€n7pair

With this definition of rotated boxes at hand, we replace problem ((1.4.1) by the
following one:
Maximize the volume g (Qpox)

over all rotated boxes Qpox € Srot (3.1.1)
subject to f(x) < ¢ for all & € Qpey.

The goal of the rotated box algorithm is to solve this problem.

3.2 Principal Component Analysis

The most important piece of the rotated box algorithm is the principal compo-
nent analysis (PCA, [50, 80]), also known as singular value decomposition (SVD,
[67]), Karhunen-Loéve transform (KLT, [35l [76]), or proper orthogonal decomposi-
tion (POD, [14]). PCA is applied if the dimensionality of given data should be
reduced. This may be the case when one is only interested in certain characteristics
or features of the data and not the whole data set itself, as, for example, in computer
vision (see [76]). The feature provided by PCA is the data’s variance. By applying
a linear transformation to the data, it identifies directions that are orthogonal to
each other and maximize the variance of the data. These directions, which are called
principal components, form a new coordinate system where the data are spread along
the coordinate axes. If we know the principal components, we can rotate the data
such that they are spread parallelly along the axes of the new coordinate system

(see Figure [3.2).

In [50], [51] and [80], the principal components are derived as follows. Let
X = (Xy,...,X,)"

be a vector of random variables Xi,...,X,,. We seek linear combinations &;, i =
1,...,n, with
n
fi = Z ai,ij
j=1
or
E=A"X

for some matrix A of coefficients. Note that £ is also a vector of random variables.

Let us first consider]
&1 = Z al,ij
j=1

and set a; := (ar1,a12,...,a1,) . We wish to maximize the variance of & with

respect to ay,
V[&] — max . (3.2.1)

a1 cRn

43

CHAPTER 3. ROTATED BOX OPTIMIZATION

Figure 3.2: A data set with two principal components (dotted) before (left) and
after (right) rotation.

However, as this maximum cannot be attained for a vector a; with finite values, we
add the constraint that a; should be normalized, i.e.

a3 = aja; = 1. (3.2.2)
For the variance of &;, it holds
Vig] = El&]] - Bl&)?
= Ela]XX'a;| — Ela] X|E[Xa]
—a/ (B[XX"] - BEX]E[X])ay
=a, Xa,,

where ¥ is the covariance matrix of X.

Now we apply the method of Lagrange multipliers (see [49]) to maximize (3.2.1))
with respect to (3.2.2). Thus, we intend to maximize

Ly(a;) :=a, Za; — A(alTal — 1).
Differentiation with respect to a; yields
L)\ (a;) = 2Xa; — 2\a;.

This implies that
23_1 —)\a1 =0

must hold for the maximum. Because we need a; # 0, A has thus to be an eigenvalue
of ¥ and a; its associated eigenvector. Since we want to maximize the variance

V[¢&] = a) Ba; = a \a; = \aja; =),

44

3.2. PRINCIPAL COMPONENT ANALYSIS

A is chosen to be the largest eigenvalue. If we order the eigenvalues such that
AL > X > ... >\, >0, then a; is the eigenvector to the largest eigenvalue A;.

For the second principal component & = aj X, we have to find coefficients a,,
i=1,...,n, such that V[&] is maximized,

V[go] = max

under the constraints that
lag]|3 = aja; =1

and that & is uncorrelated with the already known first principal component &, i.e.

cov(&y, &) =0, (3.2.3)

for the covariance function cov(-,-). Since

cov(&1, &) = cov(a X, a; X)
= a;] cov(X, X)a,
=a Ya, = a, Xa,
= a;/\lal
= AlaQTal = AlalTaQ,

the constraint in equation (3.2.3)) can be replaced by any one of the following equa-
tions:

alTEag =0,
a;Eal =0,
alTaQ =0,
a,a; = 0.

We choose the last of the above equations such that the Lagrange function corre-
sponding to maximize V'[{] under the given constraints is

Ly s(az) = a;EaQ —)\(aQTaQ — 1) — gbaQTal
with the Lagrange multipliers A and ¢. Differentiating with respect to a, yields
L) ,(az) = 2Xa; — 2)ay — ¢a, 20
By multiplying with a/, we get
0=2a/Ya,—2\aja, —paa; = ¢.
e A

Thus, it holds
23.2 —)\a2 = 0,

which means that a; must be an eigenvector of 3 and A its associated eigenvalue,

as before. However, A may not be equal to A, because otherwise a; = a; and the

equation aja; = 0 would no longer be true. Hence, in order to maximize V[,

45

CHAPTER 3. ROTATED BOX OPTIMIZATION

we find that A\ = A, the second largest eigenvalue, and a, is the corresponding
eigenvector.

The k-th principal component is derived inductively, assuming the previous k — 1
principal components are the eigenvectors corresponding to the k — 1 largest eigen-
values. We wish to maximize V[{] = a; Xay, i.e.,

VIge] — max,

with the constraints
a3 = aja, =1

and
0 = cov(&, &) = a, TSa, = a, IYa, =)\ia;ai, i=1,...,k—1.

As before, the Lagrange function is
Lyo(ay) = a, Xa, — \(a,a, — 1) Z 0;a, a;.

Again, differentiating with respect to ay yields

k—1
!
\olar) = 2Xa;, — 2)a; — Z p;a; = 0.
j=1
Multiplying with a; for i =1,... k — 1 gives
k—1
0=2a/Xa, —2\a/a, — Z pjal a; = ¢;.
—— —— — ~——
=0 =0 J= 251‘,]'
Therefore, it holds again
Eak —)\ak =0

and the k-th principal component is the eigenvector a; to the eigenvector A\. Because
we cannot choose one of the previous k— 1 largest eigenvalues, as otherwise a] a; = 0
would no longer hold for some ¢ with ¢ = 1,...,n, we find A = \;, the k-th largest
eigenvalue, and a;, is the corresponding eigenvector.

We have finally derived all n possible principal components for a random vector X =
(X1,...,X,)". Note that, in applications, only the first m principal components
with m < n are considered, since those are associated with the most prevalent
correlations. For the purpose of the rotated box algorithm, we replace each random
variable X; with a sampled design point and consider the design to be a realization
of that vector. Additionally, we will only consider the first two principal components
each, as we project our data to a 2D-map before applying the PCA.

46

3.2. PRINCIPAL COMPONENT ANALYSIS

Exploration phase Sample
design
points
Rotate box
Grow box

Consolidation phase

Sample
design
points

Trim box

Box

trimmed
ncon

times?

Figure 3.3: Flowchart of the rotated box optimization algorithm. It coincides with
the box optimization algorithm if the field “Rotate box”, highlighted in light red,
would be removed.

47

CHAPTER 3. ROTATED BOX OPTIMIZATION

3.3 Rotated Box Optimization Algorithm

The rotated box optimization algorithm is based on the same steps as the box
optimization algorithm and extends it by one step to rotate the candidate box.
“Rotate Box” is performed after sampling the design points and before trimming.
The flowchart in Figure gives an overview of the rotated box algorithm, where
the “Rotate Box” step is highlighted by the light red background colour. Most steps
had to be modified to account for the no longer axis-parallel boxes in the algorithm.
A detailed explanation of all the steps is provided in the following subsections.

During the execution of the algorithm, €2, is represented as a vector-matrix pair
(V,M). The vector V € R denotes an arbitrary vertex of the box and acts as
origin of the rotated coordinate system described by the edges of the box. The
matrix M := [my,...,my] € R¥? contains the basis of this rotated coordinate
system. Each column my,..., my of M is the distance vector from V to one of
its neighboring vertices. They are ordered such that the edge that is axis-parallel
in dimension i occupies the i-th column and the two edges that are associated
with a 2D-map €2, ; occupy the i-th and j-th column (see the example below). This
representation of rotated boxes turned out to be very useful for the following reasons:

o All other vertices of the box can be constructed by a linear combination of V
and the columns of M.

o Representing a d-dimensional rotated box by its vertices would require a list
with 2¢ entries. For large d, this would be infeasible. For example, for d = 100
spatial dimensions, we would need about 2!%° . 100 - 64 Bit = 10?* Gigabyte of
disk space to store the 2% vertices.

o Any affine transformation of the rotated box can be carried out by applying
that transformation to V and M. Especially, for the rotation associated with
the principal components in the dimensions ¢ and 7, defined as

Pi,j(w) = Ai,jma (331)
the rotated coordinates can be calculated easily.

o The intervals [, and two-dimensional rotated boxes B, ; can be retrieved by
setting
I, = {ZEER‘{E:Uk+t'mk7k,t€ [0,1]}

Tr = {w} + s - [m“} +t- {mj’l} , (s,t) €10,1]2 }
Uj myi,; mjj

For example, the rotated box given by the vertices (4,2,0), (4, 4,4, (4,2, 13—3),
(4,0, 3), (0,2,0), (0,4, %), (0,2, %), and (0,0,3), compare Figure , can be ex-
pressed by

and

B, ;= {:r, € R?

4 —4 0 0
V=10, M=|0 2 2
3 0 3 -3

48

3.3. ROTATED BOX OPTIMIZATION ALGORITHM

X2

xs3

Figure 3.4: A rotated box in three dimensions.

3.3.1 Box Initialization

The box initialization step is the same as in the box optimization algorithm, compare
Subsection [2.1.2, This means that either the box is given by the problem or it is
constructed around an optimal design point.

3.3.2 Exploration Phase

The exploration phase is extended by the “Rotate Box” step. Now, the box is moved
through the design space not only by being trimmed and grown but also by being
rotated.

Sample Design Points

The step “Sample Design Points” has to be adjusted such that design points can be
sampled within a rotated box (... However, this adjustment can be carried out
easily: each design & can be sampled randomly in [0, 1]¢ and is then simply mapped
into Qpox via

xz— Mx+V.

After this transformation, it has to be checked whether the design point still lies
within Q44 or not, as explained in Section

Rotate Box

The optimal rotated box is determined with the help of the PCA (see Section
applied to the good design points X'8°°4| projected onto the respective 2D-map €; ;.
Namely, the coordinate system of €; ; is rotated such that the two dominant principle
components form the coordinate axes (see Figure . Qpox and all design points
are transformed into the new coordinate systems. This is done such that the origin

of the rotated coordinate system is the center of gravity of the good design points
Xgood‘

49

CHAPTER 3. ROTATED BOX OPTIMIZATION

.
Ly
e
‘e
e
.
™
LN
L
.
e

",
L
.
L
e
.
b
v
"
LN
O

Figure 3.5: The design points and principal components (dotted) before (left) and
after (right) rotation. The blue line indicates the axis-parallel bounding box around
the rotated box.

The details of the box rotation step are shown in Algorithm [3] The first input
parameter (see line is Qpox := (V,M). The second and third inputs are two
matrices

ood . ood ood good s
X.g = [(1)93g P (ngood)mg :| E Rn ;

Xbad = [(1)mbad, ey (nbad)mbad] S RnbadXd.

These are the sets X2°°d and AP2d written as matrices, where each row contains one
design point.

The algorithm begins by iterating over the 2D-maps €2, ;, see line [3| of Algorithm
Bl On each 2D-map, we calculate the principal components of the good design
points, which are the eigenvectors of the sample covariance matrix of the good design
points on that map (line . The procedure eigenvectors calculates the normalized
eigenvectors E := [e1, e5] of this 2 x 2 covariance matrix. For the coefficients

|:Cl b:| — |:COV (Xg%d, ngood) COV(XgOOd’ X;good):|

(2 (2
d d d d
b e] T Leov (X0 XE00) oy (XE0I, XE0)

these eigenvectors are
el lle=ll]

a+ct/(a+c)?—4(a—b?)
2

where

)\172 =

N 1
and ey := {/\172_61 .
b

In line [5] of Algorithm [3| the mean j; and p; of the good design points in the
dimensions i and j are calculated. Subsequently, in lines [6|and [7], the actual rotation
of the design points happens. This means that p; and p; are subtracted from all
design points to normalize them with respect to the origin. Then, the design points

50

3.3. ROTATED BOX OPTIMIZATION ALGORITHM

are multiplied with the matrix E to rotate them such that the principal components
form the new coordinate axes. Finally, in lines[§|and [9] the same rotation is applied
to the respective values of the tuple (V,M), which determines the solution space
Qpox in the dimensions ¢ and j.

Note that we can now redefine the box rotation on the 2D-map €; ; from equation
(13.3.1) as

i':Qi-—>R2,mr—>E 1 .
Pi,j J {5102—#]‘

Algorithm 3 (Box Rotation). This algorithm rotates the box by rotating the
coordinate system.

1: Input: Qp,,, X004 Xbad

2. Output: Q,,, X804 xbad

3: for all 2D-maps €2; ; do

4 E %) t COV(X.%OOd7X§;OOd) COV(X_%OOd,X§OOd)
: 1 n r . .
e ge vectors COV(X?OOd,Xf’OOd) COV(x?OOd,x?OOd)
1 ngood
5: [Ml?/”l’]] — negood k=1 [xk7z7xkvj]
good good good good T
6: X507, X5 } — [X — iy X5 —ug} -E
bad bad bad bad T
T
8: |:Ui, Uj:| — [Ui — M, U5 — /LJ} -E
9: 2,0 1,7 — 1,0 2V :ET
My Mg Myji Mg
10: end for
Trim Box

In this part of the algorithm, the trimming from the box optimization algorithm (see
Subsection [2.1.2]) is applied to the design points in the rotated coordinate system.
However, a few adjustments have to be made before the box can actually be trimmed.

With respect to the new coordinate system determined previously, the solution space
Qpox is still a product of one-dimensional intervals I, and two-dimensional rotated
boxes B; ;. Nonetheless, the original trimming from [42] is only applicable to axis-
parallel boxes. Therefore, {2, is modified by constructing a bounding box around
each rotated box B, ;, that is

Bi,j C [51,52} X [ﬁj,gj] ,
where

Zig = min {l‘g } (xzal‘]) € BZ?]} } g -
=1,

gg = max {IZ ‘ (xz'?Ij) S Bi,j}

This yields a new box that is axis-parallel in the rotated coordinate system (compare

Figure :

d

ﬁbox = H [Ei,gi] .

=1

51

CHAPTER 3. ROTATED BOX OPTIMIZATION

Figure 3.6: Retracting a box. A candidate box outside the design space is adjusted
to lie within the design space. The lost design space is hatched.

Now, the original trimming algorithm can be applied to this box, resulting in a box
(O . that is axis-parallel in the rotated coordinate system. With respect to the
original coordinate system, the box has seemingly been rotated such that it lies in

those directions of the good design points that maximize their variance.

Grow Box

Compared to the previous steps, not much is changed in this step. However, this
step, if applied to rotated boxes, justifies the modifications from Section [2.2] Recall
that the box optimization algorithm retracted a box into €24 if it had grown outside
of Q2qs. While this is a valid practice for axis-parallel boxes, doing the same for
a rotated box could induce a potentially significant loss of good design space, as
shown in Figure [3.6 Thus, we sample design points in Qo N Qg instead of only
Qpox- Also, in each step “Trim Box”, when the volume /L(Q;good) is calculated, the
volume u(Q;good N st,mt) is calculated instead. Here, (45,0 is the transformation
of [0,1]¢ (which is the normalized design space) into the rotated coordinate system
prescribed by the 2D-maps,

st,rot = H {07 1] X H Pi.j ([07 1]2>)

keZr (i,j)ejpair

3.3.3 Consolidation Phase

The consolidation phase from the box optimization algorithm remains unchanged,
compare Subsection [2.1.3] Besides no longer being grown, the box is also not rotated
any more because its final alignment is considered to be well enough. However, it is
still trimmed n®" times or until no bad designs are sampled three times in series.

52

3.4. NUMERICAL EXPERIMENTS

3.4 Numerical Experiments

In this section, we repeat the example problems from Subsection Afterwards,
we study the alignment of the rotated box in the design space.

3.4.1 Two Example Problems in 2D

We apply the rotated box optimization algorithm to the polygon and Rosenbrock
problems to get a first impression of the algorithm. Additionally, we compare the
results to those of the box optimization algorithm.

2D Polygon

Recall the problem statement from equation (2.4.1). The initial box for the algo-
rithm is chosen as in Subsection [2.4.1

Qpox = [1.8,1.9] x [2.0,2.1].

We execute the algorithm 100 times, with the same settings as for the box op-
timization algorithm, i.e. n®P = n®" = 100 steps in the exploration and in the
consolidation phase, N = 100 design points are sampled in each step, the growth
rate is dynamic with ¢® = 0.05 and a'*&* = 0.6. The only difference is that we
now seek the optimal rotated box with respect to the 2D-map €2; » := [0,4] x [0, 4].

The resulting mean normalized volume of the 100 final rotated boxes is 0.1885 with
a standard deviation of 0.0174, which is 30% more volume than the box optimization
algorithm could find. Figure shows again the initial box and a rotated box with
normalized volume 0.1887 as well as the optimal axis-parallel box (dashed).

4 4

0

0 1 2 3 10

0 1 2 3 4

Figure 3.7: Left picture: good design space for the 2D polygon (green) with initial
box (gray). Right picture: rotated box with normalized volume 0.1887 (gray) and
optimal axis-parallel box (dashed).

53

CHAPTER 3. ROTATED BOX OPTIMIZATION

Rosenbrock Function

We apply the rotated box algorithm to the Rosenbrock function (see equation
(2.4.2))) with the same settings as above. Here, the mean normalized volume of
the 100 rotated boxes is 0.0332 with a standard deviation of 0.0015, which is close
to the mean normalized volume found by the box optimization.

A rotated box with volume 0.0332 can be seen in Figure [3.8l Note how the rotated
box fits tightly into the right part of the U-shape. The algorithm finds more good
design space in that region than in the bottom part of the U-shape.

In conclusion, these results suggest that the rotated box optimization algorithm
works reasonably well. It seems to find rotated boxes that are at least as large as
those found by the box optimization algorithm.

3 3
2 2
| 0 1
0 0
-1 —1
25 1 0] > 29 1 0 1 2

Figure 3.8: Left picture: good design space for the Rosenbrock function with initial
box. Right picture: rotated box with normalized volume 0.0332 and optimal axis-
parallel box (dashed).

3.4.2 Diagonal Solution Space

It is clear that the principle component analysis converges to the correct angle if the
sample size is increased. In order to verify the convergence of the entire rotated box
algorithm, we test whether the angles of the rotated boxes converge to the correct
angle. To this end, the design space Qg5 := [0,1]? is considered and the objective
function is defined such that the good solution space generates a diagonal corridor
of width \/Li in the design space. The angle between the corridor and the x-axis
is 45°, see Figure for an illustration. The growth of the box is dynamic, with
a'®®" = (.8 and an initial growth rate of 0.1.

We repeat the algorithm 100 times each for the sample sizes N = 50, 60, 70, . . ., 500.
For each final box, the angle between the box and the z-axis is calculated. The
mean of the angles is close to 45° for all sample sizes, and the standard deviation
of 2.5° does not change significantly for sample sizes larger than about 200. The

54

3.4. NUMERICAL EXPERIMENTS

observed results form a funnel, compare Figure [3.10] This can be interpreted as a
sign that, with growing sample sizes, the angle of the final rotated box converges to
45°.

Next, the rotated box algorithm is tested for the corridor widths 0.05,0.1,...,0.75,
with the number of design points fixed to 100. The algorithm is executed 100 times
for each width, skipping the consolidation phase in every execution.

As can be seen in Figure the angle of the box varies the more the wider
the corridors become. This is due to the fact that, for a large corridor size, the
box moves into the region outside the design space, where no design points are
sampled. Thus, the final position of the box varies a lot more. This observation is
confirmed by Figure [3.12] where the solution boxes are found for the corridor width
0.1 (left picture) and the corridor width 0.75 (right picture). The non-defined space
contained in the solution box is much larger in the right picture than in the left
picture. However, the mean stays very close to 45° throughout the whole test, and
the standard deviation is only about 5° for a corridor of width 0.75, compare Figure
[3.11] This suggests that the resulting boxes again converge to 45° and the algorithm
works as intended.

0355 0 0.5 1 L5

Figure 3.9: 100 solution spaces for the sample size N = 500 for the diagonal solution
space problem.

55

CHAPTER 3. ROTATED BOX OPTIMIZATION

Number of Sample Points vs Angles

- Angles

-+ Min/Max Angle

—Standard Deviation
- .45°

— Mean

25 - 100 150 200 250 300 350 400 450 500
Number of Sample Points

Figure 3.10: Funnel for the sample sizes from 50 to 500.

Number of Sample Points vs Angles

60
.......... ¢
55
50
° 45
Y
2 10
<t
35
< Angles .
""" Min/Max Angle -
30 —Standard Deviation| e
----- 15°
— Mean
2 01 0.2 03 1 05 0.6 0.7

(
Corridor Width

Figure 3.11: The test results for varying corridor widths.

56

3.4. NUMERICAL EXPERIMENTS

1.5 " " " 1.5

0.5¢ 0.5¢

R

0505 0 05 i 15 035 0 0.5 i L5

Figure 3.12: The final box for a corridor of width 0.1 (left) and for a corridor of
width 0.75 (right).

o7

Chapter 4
Polytope Optimization

In this chapter, we present an algorithm that extends the idea of the rotated box
algorithm from Chapter [3] Because a coupling of variables is already introduced by
considering rotated boxes, we try to take even more advantage of this. We wish to
find a type of solution space that generally has a larger volume in a given good design
space than a rotated box. A choice that quickly comes to mind is a polygon. As
illustrated in Figure for the Rosenbrock function, replacing a box with a polygon
could yield significantly more volume. Thus, we allow pairs of design variables on a
2D-map to lie within polygon-shaped solution spaces. This means that the solution
space is a product of two-dimensional polygons. Since the equivalent of polygons
in higher dimensions are called polytopes, the algorithm is referred to as polytope
optimization algorithm.

3 3
2 2
1 1
0 0
-1 0 > ~Lo 0 P

Figure 4.1: An axis-parallel solution space (left) and a polygon-shaped solution
space (right) inside the U-shaped good design space of the Rosenbrock function.

4.1 Polytopes for 2D-Maps

As mentioned above, the polytope optimization algorithm is conceptually identical
to the rotated box optimization algorithm. However, the axis-parallel hyperbox €2y,
is replaced by a solution space (2,0 which is a product of one-dimensional intervals

58

4.1. POLYTOPES FOR 2D-MAPS

I}, and two-dimensional polygons P ;,

o= [[Zx [Pu (4.1.1)

k€x7int (i,j)ejpair
where Jp :={1,...,d} \ Jns and

Tint 1= {z e{l,...,d} |z is an unpaired dimension},
Tpair 1= {(i,7) € Tp x Tp ’ the dimensions ¢ and j are coupled }.

Note that design variables that have not to be paired with another variable are as-
signed to the intervals [;. The solution space 2, is thus a specific high-dimensional
polytope. As an example, Figure depicts a solution space (2,4 in three dimen-
sions. If €, is a product of polygons only, i.e. if

onl - H Pi,jv

(27.7) EJpair

it is a product prism, which is the term for a polytope that is a product of polytopes
with two or more dimensions (see [17]). Likewise, we call a polytope that can be
written as in (4.1.1)) a product polytope. We define the space of admissible product

polytopes as
Sprod = onl C st onl = H]k X H B,j
k€Jint (,9) € Tpair
Finally, problem (|1.4.1)) can be rewritten in the following way:

Maximize the volume g (2p01)
over all product polytopes Qo1 € Sprod (4.1.2)
subject to f(x) < ¢ for all & € Q.

vy
v =

L.

I3
Figure 4.2: Visualization of a polytope €,q := I3 X P in three dimensions, where
I3 :=10,1.5] and P, ; := {(O, —1),(1.5,-0.5),(2,2),(1,2),(0.7,1), (—0.3, 0.5)}.

59

CHAPTER 4. POLYTOPE OPTIMIZATION

4.2 Manipulating 2D Polygons

This section intends to give an overview of the elementary manipulation steps of
two-dimensional polygons. They are the the basic ingredients for the polytope op-
timization algorithm presented in Section 4.3l A particular polygon P has a fixed
number M of vertices and is represented by the ordered sequence of these vertices,
that is

P = {v(l), e ,v(M)} .

4.2.1 Sample Design Points

A design point inside the polygon P is obtained by constructing a bounding box
around P and sampling uniformly distributed random points inside the bounding
box until a point £ € R? is found that also lies within P. Determining whether
a point lies within a polygon can be done via the winding number algorithm (see
[47] and Scetion [4.2.2)). After a fixed number of design points have been sampled,
all design points @ are evaluated with the objective function f and then marked as
good or bad points, see Figure

Figure 4.3: Points are sampled in the dashed bounding box (left), then design
points outside the box are removed and the remaining ones are marked as good or
bad (right).

4.2.2 Winding Number Algorithm

The winding number algorithm is the centerpiece of the sampling step. It allows us
to efficiently find points inside a polygon.

Definition 4.2.1. Let v be a closed curve in R?, that is, ~(t) := (fyl(t),fyg(t))T
for t € [a,b], where v(a) = ~(b). For # € R*\ v([a,b]), the winding number
w(x,vy) € Z is the number of counterclockwise circulations made around x while
moving along =y.

60

4.2. MANIPULATING 2D POLYGONS

A point & with w(x,y) = 0 lies outside the curve -+, while a point with w(z,vy) =1
lies inside ~. If 4 is a curve with one or more self-intersections, w(x,v) may admit
other values in Z, see Figure for a particular example. We say that all points x
with an even winding number w(x,y) lie outside of v and all points & with an odd
winding number w(x,) lie inside of ~.

Figure 4.4: Regions inside a curve < with associated winding numbers w.

The following winding number algorithm is presented in [47] and [74]:

For a given x and ¢, consider the line through @ and ~(¢) and the line through
x that is parallel to the z-axis. Define ¢(t) as the angle between those two lines
(compare the left picture of Figure . We can assume, without loss of generality,
that @ = (0,0)" is the origin. Then, ¢(t) = arctan(vi(t)/72(t)) and it follows that

1 ¢(b) 1 bd 1 b " H A\~ (1
w(zx,) ::—/ d¢=—/ 4 pyar= L g1 >%<g 2 ()ZI()dt_
27 J p(a) 2m J, dt 27 J, Y1 (£)2 4 Y2 (t)
A polygon P = {v(l),...,v(M)} can be interpreted as a piecewise linear curve

p:[1,M+1] - R? with
. T
pls) i= (w1l — 1), (s —)
forsei,i+1],i=1,...,M, and

Ao JT =0 i=1 M
(1), 3i(t)) = to® + (1 —t)yo™, =M

Y

for t € [0, 1]. The winding number for a point inside a polygon can then be calculated

61

CHAPTER 4. POLYTOPE OPTIMIZATION

by

U(z) UgiJrl)

M
1 (t
__Z/Z/z ()m()dt
2 +y()?
arccos | ———————— - 51gn i i
2m = ||v Al of) oyt
1 o) x pM) (1) (M)
+ arccos (ﬁ) - sign

O] [0 (1) e
1=
=329
=1

Uy
where ¢; is the signed angle between the line from @ to v and the line from x to
v (compare the right picture of Figure .

Qo+

O

<

Figure 4.5: Ilustration of the angles ¢(t) and ¢;.

However, calculating the winding number with this formula requires the use of the
computationally expensive arccosine function. Such computations can be avoided
with the aid of the following observation.

Define e; as the edge from v® to v*Y. If we emit a ray from x, the winding
number can be calculated by counting how many edges e; cross the ray. If e; crosses
the ray from below to above, i.e. v lies below the ray and v above, we add
1 to the winding number. On the other hand, if e; crosses the ray from above to
below, i.e. v lies above the ray and v*! below, we subtract 1 from the winding
number. We demonstrate this in Figure 4.6 where rays are emitted from multiple
points and the winding number of a point is adjusted whenever an edge crosses its
associated ray.

Note that it is not necessary to calculate intersections of the ray and the polygon’s
edges. We can tell whether the ray crosses an edge by undertaking a few geometrical
considerations.

First, for determining the winding number, it does not matter in which direction
the ray shows. Thus, we always choose the ray to be parallel to the horizontal axis.

62

4.2. MANIPULATING 2D POLYGONS

0, outside

—1, inside
1, inside
. 2, outside
) » 1, inside

Figure 4.6: Calculating the winding number for points in relation to a polygon.

Second, this horizontal ray will be crossed by an edge e; if and only if the vertical
coordinate of & lies between the vertical coordinates of v and vt i.e., if either
véi) <xy < vé”l) for an edge crossing from below to above or véiﬂ) <xy < véi) for
an edge crossing from above to below. If none of these inequalities are true, there

is no change in the winding number.

(1) o (i+1)

Figure 4.7: Orientation of the triangle A('v(i), TGN :I:)

Third, from the previous two observations it follows that we only need to determine
whether the ray is crossed by the edge e; from below to above or vice versa. To
this end, we consider the triangle A(’v(i),v(”l),w). If this triangle is orientated
counterclockwise, i.e. if its signed area

A== (v — D) x (2 — o)

1
2
fulfills A; > 0, e; crosses the ray from below to above (see the left picture of Figure

. Otherwise, if A; < 0, then it is orientated clockwise and e; crosses the ray
from above to below (see the right picture of Figure [4.7).

From these observations, we can formulate an algorithm that determines the winding
number of a point with respect to a polygon, see Algorithm It allows us to
determine the points with an odd winding number, which are per definition those
that lie within a given polygon.

63

CHAPTER 4. POLYTOPE OPTIMIZATION

Algorithm 4 (Winding Number). This algorithm calculates the winding number
of a point & with respect to a polygon P.

1: Input: x, P

2: Output: w

3 w0

4: for all edges e; do

5: if vgi) <19 < véiﬂ) and A; > 0 then

6: w—w+1

7: else if véiH) <9 < véi) and A; < 0 then
8: wé—w-—1

9: end if

10: end for

4.2.3 Trim Polygons

In order to find the good design space, a polygon needs to be trimmed such that it
contains no bad sample points. This is done by successively removing bad sample
points from the polygon. To accomplish this, a bad sample point is specified. A
good sample point is chosen (see left picture in Figure and a triangle out of
this good sample point and two neighboring vertices is formed, such that the bad
sample point is contained in this triangle (see right picture in Figure . From this
constellation, there exist multiple strategies how we can remove the bad point. We
present the three most promising procedures in the following:

« Edge Walking Strategy. With the “Edge Walking” strategy, each vertex
of the two polygon vertices “walks” along the edges of the triangle until the
boundary of the polygon lies on the bad sample point, i.e. the vertices are
moved towards the good sample point on the edges of the triangle until the
bad sample point lies on the edge of the polygon (see Figure . Thus,
the bad sample point no longer lies in the polygon. This strategy yields two
possible polygons, one for each vertex. We will decide later which of these
polygons we keep.

« Move Vertex Strategy. By applying the “Move Vertex” strategy, we simply
move each of the two vertices directly onto the bad point, removing it from
the polygon (see Figure . This strategy also yields a polygon for each
vertex that is moved, only one of which is kept.

« Move Edge Strategy. The “Move Edge” strategy takes the edge of the
triangle that lies on the polygon’s boundary and moves that edge until it lies
on the bad point. The edge is thereby kept parallel to its former position (see
Figure [4.11). Only one polygon results from this strategy.

One of these strategies is chosen and then repeated for each good sample point,
yielding multiple polygons that are differently trimmed. From those, the best poly-
gon (according to the quality measures which we introduce in Subsection is
chosen as the new, trimmed polygon. Then, this procedure is repeated again for all
bad sample points remaining in the trimmed polygon.

64

4.2. MANIPULATING 2D POLYGONS

Figure 4.8: From a good and a bad point (left) a triangle is constructed (right).

Figure 4.9: Edge Walking: The two vertices are moved toward the good point for
two possible polygons (left and right).

65

CHAPTER 4. POLYTOPE OPTIMIZATION

Figure 4.10: Move Vertex: Each vertex is move onto the bad point for two possible
polygons (left and right).

Figure 4.11: Move Edge: The edge of the triangle is moved until it lies on the bad
point, staying parallel to its former position.

66

4.2. MANIPULATING 2D POLYGONS

Algorithms

The details of the polygon trimming can be found in Algorithm It requires a
polygon P with vertices vV, ..., v a good point x2°°d and a bad point x4
as inputs (line . For each vertex v®)| it is checked whether the bad point lies
within the convex hull of 28°°¢, v®) and v*+1) which is exactly the triangle formed
by those points (lines [3] and [4). If x> does lie within the triangle, the polygon
is trimmed as explained above by Algorithm @ (lines 5| and @ The two possible
outcomes are evaluated with the quality measures from Subsection and the
better one is kept (line[7]). Note that we skip lines @ and [7| if we pursue the strategy
“Move Edge”, as this strategy only yields one possible outcome. Finally, the best
polygon P®) is chosen as output in line[10]

Algorithm 5 (Trim Polygon). Trim a polygon, keeping as many good sample
points as possible.

1: Input: P, 2804, gbad

2: Output: P

3: for all v®¥ € P do

4: if xPad ¢ Conv({acg""d, v(k),v(“l)}) then

5: P| + trim_triangle (P, a800d gbad 4)(k) v(“l))
6 P + trim_triangle (P, a800d ghad 4)(k+1) 'v(k)>
7: P®) < evaluate(P;, P)

8 end if

9: end for

10: P« evaluate({P(k)}]kV:1>

The procedure trim_triangle is defined in Algorithm [6] It takes a polygon P,
a good point x8°°%, a bad point !, two neighboring vertices v; and v, and a
trimming strategy as input arguments (line .

If we follow the strategy “Edge Walking”, the triangle formed by x8°°¢, v; and v, is
trimmed by moving the edge between v, and v, such that it lies on 2”1, The edges
of the triangle are initialized in lines [d] and [5] Then, in line [6] the linear system of
equations

[el, —62] -t = Vo — UV

is solved and the value t; is used to determine how far the vertex v; has to be moved
(line[7). Finally, the corresponding vertex in the polygon is updated (line [g)).
If the strategy is “Move Vertex”, v; is simply replaced with " (lines [10| and .

Finally, for the strategy “Move Edge”, we initialize all three edges of the triangle in
lines [13] to [I5] Then, we solve the linear system of equations

[d, _el] .a= wgood - wbad

and
[d, _e2] b= mgood o mba‘d

67

CHAPTER 4. POLYTOPE OPTIMIZATION

in lines 16| and The values a; and b, tell us how far the vertices v; and v, have
to be moved along the edges of the triangle such that the edge of the polygon stays
parallel to its former position and lies on " (lines (18| and . Finally, we update

the polygon in lines 20] and [21]

Algorithm 6 (Trim Triangle). Trim a triangle inside a polygon.

1: Input: P, x&°°d, P v, v,, strategy
2: Output: P

3: if strategy = “Edge Walking” then

4 e + a8l — p,

5 ey — xPd — y,

6 Solve [e1, —€y] - t = v — v

7: V1 v1+1te

8 P < update(P, vy)

9: else if strategy = “Move Vertex” then
10: vy P

11: P < update(P, vq)
12: else if strategy = “Move Edge” then

13: e, «— v, — asood

14: ey — vy — 80

15: d<+ vy — vy

16: Solve [d, —e;] - a = x8°°d — gbad
17: Solve [d, —ey] - b = x8°°d — gPad
18: vy — 28 4y e

19: Vo < aeocd + bl © €9

20: P < update(P, vq)

21: P < update(P, vs)

22: end if

4.2.4 Evaluation of Polygons

As multiple trimmed polygons are obtained at several steps of the optimization
algorithm, the best polygon has to be chosen from among those polygons. For this
purpose, quality measures for the polygons need to be introduced. A polygon not
fulfilling one of these measures is immediately rejected and not used further in the
algorithm. The polygons are rated as follows:

e Minimum Number of Self-Intersections. Each polygon should be free
of self-intersections. Self-intersections lead to unwanted behaviour of the al-
gorithms. It is not clear how to trim a polygon with self-intersections, and
multiple self-intersections overlaying each other obscure what the interior of
the polygon is. Thus, polygons having no self-intersections are preferred over
polygons with self-intersections (see Figure .

e Minimum/Maximum Size of Angles. Polygons with very small angles or
very large angles form spikes, see Figure [4.13] When a spike is trimmed, it

68

4.2. MANIPULATING 2D POLYGONS

is very likely that a self-intersection is induced. Additionally, there is only a
small chance for a point to be sampled within a spike, which in turn means
that the spike will not be removed in a trimming step, making the vertex in
the corner of the spike redundant. For these reasons, polytopes with no or
only a few spikes are preferred. For a fixed threshold angle «, polygons which
satisfy a < ¢ < 27 — « for as many vertex angles ¢ as possible (see Figure
are favored over others.

e Maximum Number of Good Points. Finally, after rejecting all polygons
with a bad shape, the size of the good design space is considered. Therefore,
the numbers of good points within the polygons are compared and the polygon
containing the most is chosen. If that polygon is not unique, i.e. because
multiple polygons contain the same highest number of points, one among
them is chosen at random (see Figure [4.14)).

Figure 4.12: The black polygon is preferred over the red polygon because it has no
self-intersections.

69

CHAPTER 4. POLYTOPE OPTIMIZATION

—

Figure 4.13: The black polygon is preferred over the red polygon because it contains
fewer spikes.

Figure 4.14: The black polygon is preferred over the red polygon because it has
more good points.

70

4.2. MANIPULATING 2D POLYGONS

4.2.5 Remove Spikes

After trimming and evaluating the polygon, it might still contain spikes. If this is the
case, i.e. if there are vertices whose angles ¢ violate the condition a < ¢ < 27 — a,
then these vertices are relocated (compare Figure . After this step, all spikes of
the polygon are removed. The polygon does not lose much volume by this operation,
as the spikes only have a very small volume.

Figure 4.15: Relocating vertices in order to remove spikes (red) from a polygon.

4.2.6 Relocate Vertices

A further manipulation step consists of relocating vertices. The idea behind this is to
avoid a degeneration of the polygon, and especially prevent vertices from clustering
in one part of the polygon. This reduces the risk of a polygon developing new spikes.

The strategy of the relocation is as follows: The shortest edge of the polygon is
removed by replacing its endpoints by the midpoint of the edge. Hence, one vertex
is removed from the polygon. To keep the number of vertices constant, a new vertex
is placed at the midpoint of the longest edge of the polygon (see Figure .

4.2.7 Grow Polygon

In this step, the polygon is grown in all directions. This allows the polygon to extend
into regions of good design space. Every vertex of the polygon is moved by the same
factor g along its outward pointing angle bisector (see Figure . The vector of
the angle bisector is normalized to 1.

4.2.8 Retract Polygon

After a polygon has grown out of the design space ()4s in the growth step, we retract
it into (2qs. Because we only sample designs within €24, vertices that are outside of
it might never be trimmed such that they return into €45. Instead, they are moved

71

CHAPTER 4. POLYTOPE OPTIMIZATION

Figure 4.16: Two short edges (red) are removed from a polygon, then two vertices
are added on the longest edges.

Figure 4.17: Growing a polygon.

further away from (24 with each growth step. This leads to a polygon that becomes
arbitrarily large and mostly lies outside of €245. Because it is very unlikely that good
designs are sampled in such a polygon, we have to perform a retraction step after
each growth step.

In the retraction step, we move each vertex outside of €245 along the inward pointing
angle bisectors of the previously grown polygon until it lies on the boundary of Q.
An example of this procedure can be seen in Figure . After the polygon (red) is
grown (dotted), two of its vertices lie outside of Q4 (dashed). They are moved along
their angle bisectors until they lie on the boundary of €45, forming the retracted
polygon (black).

4.2.9 Remove Self-Intersections

Sometimes, self-intersections get introduced to the polygon through the trimming,
growing, and relocating steps, despite the quality measures trying to prevent this.

72

4.2. MANIPULATING 2D POLYGONS

AN

Figure 4.18: Retracting a polygon along the inward pointing angle bisectors of the
previously grown polygon (dotted).

Therefore, an algorithm is presented that removes those self-intersections.

The self-intersections inside the polygon are removed by finding the hull of the
polygon. The hull is itself a polygon that wraps tightly around the other one,
compare Figure for an illustration. Computing the hull of a polygon is based
on the Graham scan method, which finds the convex hull of a finite set of points,
see [43]. Then, if the hull consists of multiple connected components, the largest
of these connected components is chosen as the new polygon and all the smaller
components are removed. Afterwards, vertices are added or removed to maintain
the total number of vertices.

Figure 4.19: A polygon with self-intersections (left), the polygon with the intersec-
tions added to its list of vertices (mid) and the polygon hull (right).

In detail, the algorithm consists of the following steps:

First, we need to find all points where edges of the polygon intersect. We can do
this by iterating over all edges and looking for intersections with other edges (see
Figure mid). The intersections are then added to the list of polygon vertices.

Then, by starting with the vertex that has the smallest y-coordinate (it is for sure
a vertex of the hull), those line segments are considered that directly connect the

73

CHAPTER 4. POLYTOPE OPTIMIZATION

vertex to other vertices or intersections. From these line segments, the one that
encloses the smallest angle with the z-axis and its endpoint is chosen as an edge of
the hull. This procedure is repeated from the endpoint of that edge, compare Figure
4.20}

N T

S

Figure 4.20: Finding the polygon hull. The possible line segments to choose from
in each step are blue, the discarded line segments are red, and the chosen segment
is green.

When the algorithm arrives at the starting vertex again, it has found the hull of the
polygon and terminates, see Figure [4.19, on the right.

Nonetheless, the hull might consist of multiple different connected components.
Thus, the polygon hull algorithm is implemented such that the list of vertices of
the hull is given as an output. All vertices that appear more than once in the list
are points where at least two different connected components are touching. If the
polygon consists of more than two connected components, this information can be
used to recursively find all connected components of the polygon hull. Then, the
largest of the connected components is chosen as the new polygon. Finally, vertices
are added as in the relocate vertices step (compare Subsection to regain the
prescribed amount of vertices. We refer to Figure for an illustration.

74

4.2. MANIPULATING 2D POLYGONS

Bl
g

Figure 4.21: Finding and choosing the largest connected component of the polygon’s
hull.

75

CHAPTER 4. POLYTOPE OPTIMIZATION

4.3 Polytope Optimization Algorithm

The steps in the polytope optimization algorithm are very similar to those of the box
optimization algorithm and the rotated box optimization algorithm. A flowchart for
the most important steps of the polytope optimization algorithm can be found in

Figure [£.22

Exploration phase Sample
design
points
Grow Trim
polytope polytope

Polytope
trimmed
nexp

times?

Consolidation phase

Sample
design
points
Trim
polytope

Polytope

trimmed
nCOIl

times?

Figure 4.22: A flowchart for the polytope optimization algorithm.

76

4.3. POLYTOPE OPTIMIZATION ALGORITHM

4.3.1 Polytope Initialization

As in the box optimization algorithm and the rotated box optimization algorithm,
the initial polytope is usually given or can be constructed around a point found by
another algorithm. During the execution of the polytope optimization algorithm,
each polygon P, ; of a polytope retains a fixed number M of vertices. Recall from
Section that a particular polygon P, ; is represented by the ordered sequence of

its vertices,
 J ., (M)
Piji= {”z‘,jw“v”i,j }

4.3.2 Exploration Phase

In the exploration phase, similar to the box optimization algorithm and the ro-
tated box optimization algorithm, parts of the initial polytope containing bad design
points are trimmed. Then, the polytope is grown again. These steps are repeated
n®P times. This allows the polytope to move through the design space €245 in order
to find a spot with a large volume of good design space. After going through all n®*®
steps of the exploration phase, the algorithm switches to the consolidation phase.

Sample Design Points

For each design point , all entries zy, k € Jint, and x;, x;, (1, 7) € Tpair, are sampled
separately. The entries x; can easily be drawn from the interval I;. The entries
(x;,x;) are obtained by sampling a point inside the polygon P, ; as described in
Subsection [4.2.1] After the design points are found, they are evaluated and collected
in the sets of good design points

xeeod . — {(1)wg°°d, ey (ngood)ngOd},
and bad design points
bad . {(l)mbad’ L (nbad)mbad}’
compare Figure [4.23

——

——

Figure 4.23: A polytope consisting of two polygons and an interval with good and
bad design points.

7

CHAPTER 4. POLYTOPE OPTIMIZATION

Trim Polytope

After the sampling step, the bad points are removed by trimming the polytope.
The framework of this step is outlined in Algorithm [7] It is similar to the trimming
algorithm in Subsection 2.1.2] However, due to the complexity added by considering
polytopes, it is more involved. As input, a polytope 1,5 and ordered sets of good
design points A%°°d and bad design points X2 (line [1)) are required. The output
(line [2)) is a polytope £, that contains no bad design points.

Algorithm 7 (Trim Polytope). Trim the polytope, keeping as many good design
points as possible.

1: Input: Q,, X804 ybad

2: Output: Q,q

3: for (=1,...,n" do

4: for m=1,...,n%° do

5: for all k € Jix do

6: Q) « trim_interval (onh k, (m)a:gOOd, (E)wbad>
7 end for

8 fOI' all (27]) € jpair dO

9) j < trim_polygon (onl, (i, 5), (my@e®, (Z)wbad>
10: end for

11: Q® « evaluate <{Q(’€) }keJint’ {0, }(i,j)ejpair)

12: end for o

13: Qpol evaluate({Q(f) — >

14: end for

15: Qo < reshape (o)

Because the bad design points have to be removed successively, a loop over the bad
design points is initialized in line [3] Since as many good design points as possible
should be kept, the good design points are iterated and for each iterated good design
point (m)mgOOd, the polytope is trimmed such that at least (m)mg‘md is kept inside it
(line . Note that this order of iterations is different from the trimming algorithm
in Subsection where we iterated over the good designs first. We changed the
order to increase the stability of the algorithm, as shown in Section [5.1}

For each iterated good design point (m)wg‘md, the current bad design point (@).’Bbad is
removed from the polytope such that at least (m)ngOd remains within the polytope.
The bad design point (g)wbad is removed by moving the boundary of an interval I,
or a polygon P;; onto (&, thereby trimming the polytope. Thus, all intervals
I}, and polygons P, ; are iterated (see lines . For each interval I, and polygon
P, ;, the boundary is moved onto (5&"*¢ via the trim_interval and trim_polygon
algorithms and the resulting polytope is stored in a new variable Q®*) or €2, j, respec-
tively, leaving all other intervals and polygons untouched. Note that the algorithm
trim_polygon coincides with Algorithm |5 except for needing the coordinates (i, j)
of the respective polygon F; ; as input arguments. The algorithm trim_interval is
the same as lines from Algorithm [I} It operates on the interval I and simply

78

4.3. POLYTOPE OPTIMIZATION ALGORITHM

relocates one of the end points onto the bad design point such that the good design
point remains in the output interval.

Then, in line , the function evaluate is applied to all polytopes Q*) and Q.
It returns the result Q) that maximizes the quality measures, applied in the same
order as listed in Subsection [£.2.4, The quality measures are modified for polytopes
such that the polytope with the most polygons that fulfill the self-intersection and
angle-size measures that also contains as many good design points as possible is
chosen as the optimum.

After every good point has been iterated once, the polytopes Q¥ (line are
evaluated and the best of them is used to replace €2,,. Following this, the next
iteration of the loop starts, where the next bad design point is removed. The polygon
trimming is completed when all of the bad points are removed.

In order to avoid degenerate polytopes, spikes are finally removed and vertices are
relocated by the function reshape in line This function consists of the operations
“Remove Spikes” (see Subsection and “Relocate Vertices” (see Subsection
4.2.6)), which are applied to each polygon F; ; individually as explained in Subsections

4.2.5] and [4.2.6], respectively.

Grow Polytope

The polytope is grown as the final operation of a single step of the exploration phase.
Therefore, the end points a, and b, of each interval I, are moved by a factor g(f)
in order to grow the polytope in each dimension k. Each polygon P, ; is grown by
the factor ¢¥ as explained in Subsection m Here, the factor ¢! is the growth
rate and can be calculated as described in Subsection 2.1.2] If necessary, a polygon
P, ; that lies partially outside of the design space {4 is retracted as described in

Subsection [4.2.8

4.3.3 Consolidation Phase

Having completed the exploration phase, the candidate polytope is handed over to
the consolidation phase. Similar to the box optimization algorithm and the rotated
box optimization algorithm, one step of the consolidation phase consists of the
steps “Sample Design Points” and “Trim Polytope” (see Subsection but the
polytope is no longer grown. We still remove spikes that might be introduced by
the trimming. However, we no longer relocate vertices because we cannot control
whether we relocate vertices that lie in good design space. This would mean that
we could unnecessarily remove good design space that we cannot regain because the
polytope is no longer grown. The consolidation phase is terminated after a fixed
number of n®" steps. It is terminated earlier when no bad design points have been
sampled three times in series. The resulting polytope is returned as the final output
of the polytope algorithm.

79

CHAPTER 4. POLYTOPE OPTIMIZATION

4.4 Numerical Experiments

In this section, we apply the polytope optimization algorithm to the same toy prob-
lems that we used for the box optimization algorithm and the rotated box optimiza-
tion algorithm. Afterwards, we conduct a parameter study that explores various
settings for the polytope optimization algorithm.

4.4.1 Two Example Problems in 2D

We consider the polygon and Rosenbrock problems (see Subsection again, now
for the polytope optimization algorithm. The settings are similar to those applied
for the box optimization algorithm and the rotated box optimization algorithm.
The polytope optimization algorithm is carried out 100 times for each problem.
Every time, the number of steps in the exploration and the consolidation phase
is set to n®P = n®°" = 100. The trimming strategy in the exploration phase is
“Edge Walking”. Additionally, in every step, 100 design points are sampled. The
growth rate is dynamic with ¢(*) = 0.05 and @&t = 0.6. The polytope optimization
algorithm is performed with polygons that have M = 10 vertices, where the required
minimum size of the angles is a = 20° and the vertex relocation takes place in every
tenth step of the exploration phase.

2D Polygon

As for the rotated box optimization algorithm, the 2D-map is 2 o := [0, 4] x [0, 4].
The vertices of the initial polytope are given by

G . (1.340.2-cos(i-2m/10 + m/4)
v =
1.840.2 - sin(i - 2 /10 + 7/4)

withi =1,..., M, i.e., they lie on a circle with center (1.3,1.8)" and radius 0.2 (see
also Figure |4.24)).

The mean normalized volume of the 100 polytopes is 0.256 with a standard deviation
of 0.019. This amounts to 76% more volume than found by the box optimization
algorithm and 36% more volume than found by the rotated box optimization al-
gorithm. Thus, the mean normalized volume of the polytopes comes close to the
volume of the polygonal good design space, which is 0.2959. Additionally, the poly-
topes can take on the shape of the good design space, as can be seen in Figure 4.24]

Rosenbrock Function

For the Rosenbrock function, the 2D-map is again €9 := [—2,2] x [-2,3]. The
initial polytope is given by

() 1.34 0.2 cos(i - 2 /10 + 7 /4)
v\ =)
1.840.2-sin(i - 270/10 + 7/4)

80

4.4. NUMERICAL EXPERIMENTS

. A

1 N
U 1 2 3 19 1 2 3 A

Figure 4.24: The initial polytope (left) and a polytope with normalized volume
0.2567 (right) for the 2D polygon problem.

with i = 1,..., M, see Figure The mean normalized volume after 100 execu-
tions is 0.0828 with a standard deviation of 0.0178. This amounts to 259% more
volume than found by the box optimization algorithm and 249% more volume than
found by the rotated box optimization algorithm. As can be see in Figure the
polytope finds the lower half of the U-shaped good design space. Notably, it settles
on both sides of the U-shape which means that the algorithm is able to move around
corners while keeping a non-convex shape.

In conclusion, the results suggest that polytope optimization algorithm works well.
It is also able to adapt to the good design space better than the box optimization
algorithm and the rotated box optimization algorithm, as the shape of a polytope
is rather flexible.

—1

-2

=2 -1 0 1 2 =2 —1 0 1 2

Figure 4.25: The initial polytope (left) and a polytope with normalized volume
0.0837 (right) for the Rosenbrock problem.

81

CHAPTER 4. POLYTOPE OPTIMIZATION

4.4.2 Parameter Studies

The polytope optimization algorithm involves new parameters that affect it in dif-
ferent ways: the number of vertices for the initial polytope, the minimum /maximum
angle inside the polytope, the trimming strategy and the number of times one or
more vertices should be relocated. As it is unclear what the impact of the param-
eters on the algorithm is, we conduct a parameter study that analyzes all of them.
For each study, we use the same parameter settings as in the previous subsection:

o We consider the Rosenbrock function for the whole parameter study.
e There are 100 executions of the algorithm.
o The initial polytope is given by

@) 1.34 0.2 cos(i - 27 /10 + 7/4)
v\ =)
1.840.2-sin(i- 2m/10 +7/4))’

fore=1,..., M.
e The exploration and consolidation phases consist of n®*P = n®" = 100 steps.
o In every step, N = 100 design points are sampled.
« The growth rate is dynamic with a'*# = 0.6 and ¢(®© = 0.05.
» Each polygon on a 2D-map has M = 10 vertices.
e The trimming strategy is “Edge Walking”.
o The required minimum size of angles is o = 20°.

o The vertex relocation takes place in every tenth step of the exploration phase,
relocating the shortest edge.

However, for each study, we vary one of the four new parameters and observe the
outcome.

Number of Vertices

In a first study, we vary the number of vertices. We start at M = 4 vertices, as
the results should then be similar to the rotated box optimization algorithm, and
go through M = 10, 15, 25 and 40. The results can be found in Table [4.1]

Clearly, the mean normalized volume for polytopes with 4 vertices is similar to that
of the box optimization algorithm, see Subsection [3.4.1} Also, for more than 15
vertices, the volume does not increase. Thus, more vertices do not lead to a larger
volume.

We have created heat maps to analyze how well the U-shaped good design space
is approximated by all polytopes in Figure [£.26l In a heat map, a region that is
covered by almost every polytope is displayed in white-yellow, while a region that is
covered by very few polytopes is displayed in dark red. A region that is black is not

82

4.4. NUMERICAL EXPERIMENTS

M ‘ Mean ‘ Standard Deviation

4 10.0361 0.0069
10 | 0.0828 0.0178
15 | 0.096 0.0125
25 | 0.0914 0.0142
40 | 0.0925 0.0114

Table 4.1: Mean and standard deviation for the normalized volume of 100 polytopes
calculated with varying numbers of vertices. The best result is printed in bold.

covered by any polytope. For polytopes with 4 vertices, the polytope optimization
algorithm behaves similar to the box optimization algorithm and settles somewhere
at the bottom of the U-shape. For 10 vertices, the algorithm struggles to find the
left region of the U-shape, probably because the initial polytope is in the right-hand
region. For a higher number of vertices, the polytope optimization algorithm is able
to cover most of the U-shape, although it is still biased slightly towards the right
region. A number of 15 vertices seems to be enough to gain good results from the
polytope optimization algorithm.

M =10) M=15) M =25) M =40

Figure 4.26: From left to right: Heat maps for M = 4, 10, 15, 25 and 40 vertices.

In Figure [4.27] for each number of vertices, we have given a polytope with a volume
near the mean normalized volume of polytopes with that number of vertices. Note
that the polytope for M = 4 has indeed four vertices, one of its angles is simply
close to 180°. For M = 10 and M = 15, the polytopes approximate the U-shape
reasonably well. For M = 25 and M = 40, one can see sharp spikes jutting from
the polytopes. This is an effect that occurs when there are many vertices. However,
upon closer inspection (see Figure , these spikes turn out not to be spikes
in the sense of the “Minimum/Maximum Size of Angles” criterion because all the
angles have a valid size. Rather, they are very thin branches. These appear in the
exploration phase when very short edges are trimmed unfavorably and then pushed
further outside in a growth step. If we allow vertex relocations in the consolidation
phase, the branches might disappear: at least one of the edges of a branch should
be very short and if that edge is relocated, it is transformed to a vertex. That
vertex would then have a very small angle and thus it might be seen as a spike
which consequently would be removed. We investigate this hypothesis later in this
subsection.

83

CHAPTER 4. POLYTOPE OPTIMIZATION

Figure 4.27: From left to right and top to bottom: Polytopes close to the mean for
M =4, 10, 15, 25 and 40 vertices.

Figure 4.28: A branch formed by a polytope with 40 vertices.

84

4.4. NUMERICAL EXPERIMENTS

Minimum Angle

We study the size of the minimum/maximum angle, letting o = 1°, 5°, 10°, 20°, 30°,
40°, 50° and 60°. The resulting mean normalized volumes can be found in Table
4.2

o ‘ Mean ‘Standard Deviation

1° | 0.0949 0.0080
5° | 0.0944 0.0147
10° | 0.0918 0.0157
20° | 0.0828 0.0178
30° | 0.0822 0.0115
40° | 0.0757 0.0129
50° | 0.0726 0.0161
60° | 0.0696 0.0141

Table 4.2: Mean and standard deviation for the normalized volume of 100 polytopes
calculated with varying minimum angles.

For an increasing angle o, the mean normalized volume decreases and the polytopes
get stuck in the bottom of the U-shape (see Figure [4.29). A look at Figure [4.30]
explains why: polytopes with small angles are able to stretch far into the left and
right regions of the U-shape. Only two or three vertices with sharp angles are
necessary to move into the good design space on the left and on the right, the
remaining vertices are used to fill out the curve at the bottom. Polytopes with
larger angles cannot form the same spikes and thus cannot move into the sides as
easily.

2 a1 0 1 2 2 a1 0 1 2 2 a1 0 1 2 2 a1 0 1 2

Figure 4.29: From left to right and top to bottom: Heat maps for a = 1°, 5°, 10°,
20°, 30°, 40°, 50° and 60°.

CHAPTER 4. POLYTOPE OPTIMIZATION

a=1° a=5 . a=10° . a=20°

0 0 0 0
1 1 -1 1
25 0 I PRI — 0 I 2 25 -1 0 I I — 0 I 2

a=30° o = 40° a = 50° o = 60°

3 3 3 3

2 2 2 2

1 1 1 1

0 0 0 0

-1 -1 -1 -1

25 0 I IS — 0 I 2 25 -1 0 5 2

o
N
|

0 1 2

Figure 4.30: From left to right and top to bottom: Polytopes close to the mean for
a = 1°,5° 10°, 20°, 30°, 40°, 50° and 60°.

Trimming Strategies

Next, we examine the three trimming strategies “Edge Walking”, “Move Edge” and
“Move Vertex”. The mean normalized volumes can be found in Table 4.3l These
values and the heat maps in Figure show that the “Edge Walking” strategy is
superior to the other two strategies. Notably, the algorithm failed six times during
the execution of the “Move Vertex” strategy, meaning that at one point the polytope
was trimmed such that it contained only bad designs after the next sampling step.

The success of “Edge Walking” over the other two strategies might be explained as
follows: The “Move Vertex” strategy moves vertices directly onto bad points, thus
the polytope will, to some extent, try to approximate the border of the bad design
space. This effect can be seen in Figure [4.32] where all vertices lie close to the
bad design space and the polytope especially clings to the upper border of the bad
design space. This effect is visible for the “Move Edge” strategy, too, although not
as pronounced. In contrast, for the “Edge Walking” strategy, none of the vertices
touch the upper boundary of the bad design space. Rather, only the edges of the
polytope touch it, staying tangent to the upper half. This means that the bad
design space is not approximated as exactly as for the other two strategies, and the
algorithm applies less vertices to this task. In return, the algorithm can use these
free vertices to explore a larger part of the good design space than with the other
strategies, which results in a larger polytope.

Now, why is the “Edge Walking” strategy able to do this while the “Move Edge”
strategy is not? After all, both strategies operate similarly. To answer this question,
we refer back to Figures and On these pictures, we can see that the
vertices get pushed further into potential good design space with the “Edge Walking”
strategy than with the “Move Edge” strategy, where the vertices stay closer to the
border of the potential bad design space. Figure [.33] clarifies this effect.

Through repeated trimming, all vertices are pushed into the good design space such

86

4.4. NUMERICAL EXPERIMENTS

that their associated edges only form tangents or secants with the border of the bad
design space. By trimming repeatedly with the “Move Edge” strategy, the vertices,
and thus the edges, will stay close to the border, thereby trying to approximate it
and losing a lot of flexibility.

Strategy ‘ Mean ‘ Standard Deviation
Edge Walking | 0.0828 0.0178
Move Edge 0.0601 0.0080
Move Vertex | 0.0412 0.0113

Table 4.3: Mean and standard deviation for the normalized volume of 100 polytopes
calculated with the three different trimming strategies.

5 Edge Walking Strategy 5 Move Edge Strategy 5 Move Vertex Strategy

Figure 4.31: From left to right: Heat maps for the “Edge Walking”, “Move Edge”
and “Move Vertex” strategies.

87

CHAPTER 4. POLYTOPE OPTIMIZATION

Edge Walking Strategy s Move Edge Strategy

Move Vertex Strategy

0

h

-1

B R a— 1 2 25

B 1 DI — 1 2

Figure 4.32: From left to right: Polytopes close to mean for the “Edge Walking”
“Move Edge” and “Move Vertex” strategies.

Figure 4.33: Vertices get pushed further into potential good design space with the

“Edge Walking” strategy (left and middle) than with the “Move Edge” strategy
(right).

88

4.4. NUMERICAL EXPERIMENTS

Another question arises: How can the algorithm fail when we apply the “Move
Vertex” strategy?” The algorithm can only fail if at some point only bad design
points are sampled. Then, the algorithm can no longer trim the polyotpe in a
meaningful way and quits. A polytope for which this happens is shown in Figure
[4.34] top left. The polytope is already in the consolidation phase, i.e., it gets only
trimmed further and does no longer grow. It is trimmed such that it forms a thin
branch (Figure[4.34] top right). While the trimming may seem counterintuitive, this
is the only valid outcome for this polytope. For all other trimming possibilities, the
angle criterion would have failed. The branch does not get removed in subsequent
steps of the exploration phase (Figure , bottom) and, after a few trimming steps,
reaches the state shown in the left picture of Figure 4.35

Note that multiple vertices are scattered on the thin branch to the left. After the
last trimming step, spikes are removed from the polytope. With this action, the
spike to the left is shortened, but not removed, as the spike consists of multiple
vertices. However, the large spike on the bottom has an angle just small enough
that it gets removed by the algorithm. The resulting polytope lies completely in
the bad design space and, in the next sampling step, only bad design points will be
sampled, causing the algorithm to fail.

We might be able to produce better results if we somehow were able to remove
branches from a polytope. One possible way to do this is by allowing vertex relo-
cation in the consolidation phase. Because the end of a branch consists of a very
small edge, vertex relocation might replace that edge with a single vertex. Thus,
the end of the branch would be turned into a spike, which would get removed auto-
matically by a “Remove Spikes” step. We investigate this procedure in the following
parameter studies.

In conclusion, the “Edge Walking” strategy seems to be the most flexible strategy.
It yields the polytopes with the largest volume and discovers more good design
space than the other two strategies. While they might be viable when vertices are
relocated (see the following parameter studies), the “Edge Walking” strategy yields
good results without having to modify it and is thus recommended as the standard
trimming strategy for the polytope optimization algorithm.

89

CHAPTER 4. POLYTOPE OPTIMIZATION

w
o

— [\
— [\

o
)

B S B 1 > 22 -1 0 1 2
3 3 3 3

1 1 1 1

0 \ 0 \ 0 \ 0 \

. 4 4 -1

2= 90 1 2% T 9 1 2% T 0 1 2% T 0 1 2

Figure 4.34: A branch being introduced to a polytope with the “Move Vertex” strat-
egy (top pictures). It does not get removed in subsequent steps (bottom pictures).

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

030701 02 03 04 05 06 %% 01 02 03 04 05 0.6

Figure 4.35: Spikes are removed from a polytope and the result lies completely in
the bad design space. The result is split into two connected components.

90

4.4. NUMERICAL EXPERIMENTS

Vertex Relocation

We consider multiple configurations for the “Relocate Vertices” step. Every first,
third, fifth and tenth step of the exploration phase, we relocate 0, 1, 2 or 4 vertices.
The results for each of these combinations can be found in Table f.4. Apparently,
relocating only one or two vertices does not make much of a difference in the volume.
However, relocating four vertices is detrimental to the volume.

Additionally, we have plotted 100 polytopes for each of the configurations of the
“Relocate Vertices” step in Figures and [4.37 We prefer this visualization over
the visualization with heat maps because it is easier to see how many degenerate
spikes or branches outside of the good design space are formed by the polytopes.
There are almost no spikes or branches present in these pictures, although there are
already a few spikes and branches when we do not relocate vertices. In conclusion,
the “Relocate Vertex” step seems to have only a minor impact on the shape of
the polytopes. The only exception is when we relocate four vertices in every step
(see bottom left of Figure . As the polytope has only ten vertices, relocating
almost half of them changes the shape of the polytope too much, reducing its size
significantly.

Relocate Relocate Every Mean Standard
k Vertices (-th Step Deviation
k=0 | - | 0.0859 [0.0130

L=1 0.0886 0.0113
b1 (=3 0.0884 0.0105
(=5 0.0865 0.0137
(=10 0.0874 0.0144
(=1 0.0857 0.0090
E_ 9 L=3 0.0889 0.0099
(=5 0.0852 0.0132
(=10 0.0847 0.0131
(=1 0.0648 0.0099
b4 L =3 0.0829 0.0133
(=5 0.0766 0.0116
(=10 0.0752 0.0154

Table 4.4: Mean and standard deviation of the normalized volume for 100 polytopes
calculated with multiple settings for “Relocate Vertices”.

91

CHAPTER 4. POLYTOPE OPTIMIZATION

No Relocation

Figure 4.36: 100 polytopes without a “Relocate Vertices” step.

Relocate 1 every 1 step Relocate 1 every 3 steps Relocate 1 every 5 steps Relocate 1 every 10 steps
y 3 3 y 3

Figure 4.37: 100 polytopes for different configurations of the “Relocate Vertices”
step.

92

4.4. NUMERICAL EXPERIMENTS

Vertex Relocation for “Move Edge” and “Move Vertex”

Previously, we have observed that a stronger vertex relocation might help improve
the “Move Edge” and “Move Vertex” strategies if the relocation is also applied in
the consolidation phase. Thus, we apply these strategies to the polytope optimiza-
tion algorithm with the configurations for the “Relocate Vertices” step from before,
except that we relocate vertices in the consolidation phase, too.

The results for “Move Vertex” and “Move Edge” can be found in Tables [4.5]and [4.6]
We can gather from there that the volume does not increase compared to Table [4.3|
Also, when we do not relocate vertices, we gain a higher volume than when we do.
We plotted the 100 polytopes calculated by each configuration in Figures and
[4.39)for the “Move Vertex” strategy and in Figures[4.40/and [4.41]for the “Move Edge”
strategy. Again, very few branches and spikes are visible when we do not relocate
vertices, and even fewer are visible when we do so. We thus conclude that the vertex
relocation has only little impact on the shape of the polytopes. Additionally, when
we apply the “Move Vertex” strategy, the algorithm still sometimes fails during
its execution. Hence, a stronger vertex relocation does not help to improve the
shortcomings of the “Move Vertex” and “Move Edge” strategies.

Relocate Relocate Every Mean Standard Fails
k Vertices {-th Step Deviation

k=0 - | 0.0405 | 0.0151 1
(=1 0.0328 0.0092 2
R (=3 0.0330 0.0134 0
L=25 0.0355 0.0142 0
(=10 0.0351 0.0152 3
(=1 0.0235 0.0078 0
9 (=3 0.0313 0.0102 0
(=5 0.0348 0.0120 1
£ =10 0.0379 0.0116 3
(=1 0.0141 0.0059 0
- 4 (=3 0.0213 0.0090 2
(=5 0.0238 0.0098 4
=10 0.0315 0.0112 2

Table 4.5: Mean and standard deviation of the normalized volume for 100 polytopes
and number of failures of the polytope optimization algorithm for the strategy “Move
Vertex” and multiple settings of “Relocate Vertices”.

93

CHAPTER 4. POLYTOPE OPTIMIZATION

Relocate Relocate Every Mean Standard
k Vertices {-th Step Deviation
k=0 | - | 0.0605 | 0.0086

(=1 0.0435 0.0081

— (=3 0.0547 0.0072
=5 0.0558 0.0073

£ =10 0.0579 0.0092

(=1 0.0265 0.0092

b9 (=3 0.0431 0.0096
(=5 0.0488 0.0082

£ =10 0.0537 0.0100

(=1 0.0178 0.0056

- 4 (=3 0.0308 0.0095
(=5 0.0391 0.0095

£ =10 0.0482 0.0102

Table 4.6: Mean and standard deviation of the normalized volume for 100 poly-
topes calculated with the “Move Edge” strategy and multiple settings for “Relocate
Vertices”.

No Relocation

=2 -1 0 1 2

Figure 4.38: 100 polytopes calculated with the “Move Vertex” strategy and no vertex
relocation.

94

4.4. NUMERICAL EXPERIMENTS

Relocate 1 every 1 step Relocate 1 every 3 steps Relocate 1 every 5 steps 3 Relocate 1 every 10 steps

=2 -1 0 1 2 =2 —1 0 1 2 =2 -1 0 1 =2 -1 0 1
Relocate 2 every 1 step Relocate 2 every 3 steps Relocate 2 every 5 steps 5 Relocate 2 every 10 steps

=2 -1 0 1 2 =2 -1 0 1 2 =2 -1 0 1 2 0 1
Relocate 4 every 1 step Relocate 4 every 3 steps Relocate 4 every 5 steps 5 Relocate 4 every 10 steps
3 3

=2 -1 0 1 2

Figure 4.39: 100 polytopes calculated with the “Move Vertex” strategy and different
configurations of the “Relocate Vertices” step.

No Relocation

S22 -1 0 1 2

Figure 4.40: 100 polytopes calculated with the “Move Edge” strategy and no vertex
relocation.

95

CHAPTER 4. POLYTOPE OPTIMIZATION

Relocate 1 every 1 step Relocate 1 every 3 steps Relocate 1 every 5 steps Relocate 1 every 10 steps
3

-1

Figure 4.41: 100 polytopes calculated with the “Move Edge” strategy and different
configurations of the “Relocate Vertices” step.

96

4.4. NUMERICAL EXPERIMENTS

Vertex Relocation for 40 Vertices

Finally, we test the vertex relocation on polytopes with 40 vertices. Because we
increase the number of vertices, we can also increase the number of vertices which
are relocated in each step. Therefore, every 1, 3, 5 or 10 steps, 0, 1, 3, 5 or 10 vertices
are relocated. Additionally, vertices are also relocated in the consolidation phase.
The results are listed in Table 4.7, As before, the relocation has little influence
on the volume of the polytope. The only exception is again when we relocate 10
vertices in every step, where the volume is significantly smaller. This indicates that
too many vertices were relocated too often.

When we previously have analyzed the impact of the number of vertices on the per-
formance of the algorithm, we have hypothesized that a more aggressive relocation
of vertices could remove branches that develop in the polytope (see Figure . In
Figure [4.42] we plotted 100 polytopes obtained without any vertex relocation and
observe that the polytopes develop spikes and branches. Then, in Figure .43 we
plotted the different configurations of the vertex relocation for 100 polytopes. We
can observe that, when we relocate vertices more often, the polytopes develop much
less spikes and branches that stretch into the bad design space than without vertex
relocation. Also, when we relocate only one vertex every ten steps, this already has
a visually significant impact on the number of branches and spikes in a polytope.
Thus, for a high number of vertices, we can confirm our hypothesis from before.

From the first row of Figure [4.43] we can conclude that relocating in every step
significantly reduces the number of branches a polytope develops, while small spikes
can still develop. Conversely, from the last column, we can conclude that increasing
the number of vertices that have to be relocated seems to reduce the number of
spikes but small branches can still develop. From the picture at the bottom left, we
can deduce why the polytopes lost a significant amount of volume when 10 vertices
are relocated in every step. The vertex relocation is so strong that polytopes cannot
form vertices that would allow them to reach into the uppermost part of the U-shape.

No Relocation

-2 -1 0 1 2

Figure 4.42: The polytope optimization algorithm without vertex relocation for
polytopes with 40 vertices.

97

CHAPTER 4. POLYTOPE OPTIMIZATION

Relocate Relocate Every Moan Standard
k Vertices (-th Step Deviation
k=0 - [0.0919 | 0.0119

(=1 0.0936 0.0155

R (=3 0.0920 0.0127
(=5 0.0927 0.0124
£ =10 0.0945 0.0097
L=1 0.0954 0.0137

E—3 (=3 0.0924 0.0139
=5 0.0920 0.0158

¢ =10 0.0936 0.0146

(=1 0.0917 0.0126

b5 L =3 0.0966 0.0115
(=5 0.0940 0.0131

=10 0.0963 0.0113

(=1 0.0665 0.0168

b — 10 (=3 0.0928 0.0130
L=5 0.0948 0.0127

(=10 0.0942 0.0138

Table 4.7: Mean and standard deviation of the normalized volume for 100 polytopes

with 40 vertices and multiple settings for “Relocate Vertices”.

98

4.4. NUMERICAL EXPERIMENTS

Relocate 1 every 1 step Relocate 1 every 3 steps Relocate 1 every 5 steps Relocate 1 every 10 steps
y 3 3 y 3

1

—1 0 1 =2 —1 0 1 2 = 0 1 = 0 1
Relocate 10 every 1 step Relocate 10 every 3 steps 5 Relocate 10 every 5 steps 5 Relocate 10 every 10 steps

Figure 4.43: Relocating vertices for polytopes with 40 vertices.

99

Chapter 5

Further Modifications of the
Algorithms

This chapter reviews two modifications for all three algorithms that have the po-
tential to increase the volume of the output solution spaces. The first modification
swaps the order in which the good and the bad designs are trimmed from a solution
space. The second modification analyzes the covariance of an initial set of design
points and derives from that a set of 2D-maps €2; ;. It holds for this set that the pairs
of design variables which are coupled most strongly with each other are also part of
the same 2D-map. The advantage of these methods is that they are inexpensive to
implement and execute. Especially, they can be implemented such that they do not
require additional evaluations of the objective function f.

In the following, we will give an account of both modifications, apply them to the box
optimization algorithm, the rotated box optimization algorithm and the polytope
optimization algorithm and compare the results.

5.1 Swapping Order of Iterations

With the present modification, we change how solution spaces are trimmed. As
explained in Subsection [2.1.2] the box optimization algorithm and the rotated box
optimization algorithm trim a box by choosing a good design that should remain
within the box, and then remove all bad designs. Thus, the algorithms generate
one box for each good point and choose from among those the best one as the final
trimmed box. We can reverse this order of iterations in the following way: Fix a
bad point that should get removed. Then, as above, for each good point, generate a
box that removes the bad point but keeps the good point inside. From these, choose
the best box. However, this box likely still contains bad designs that have not been
removed. Thus, we repeat this procedure for a bad point inside the new box and
keep repeating it until no more bad points are inside the box. The pseudo-code of
the trimming algorithm with the order of iterations reversed is given in Algorithm
8l

The idea of this modification is that it trims solution spaces more carefully than the
original algorithm. By iterating over the bad designs first, much more attention is
paid to how a single bad design should be removed. Thus, the algorithm becomes

100

5.1. SWAPPING ORDER OF ITERATIONS

more conservative. In contrast, the original trimming algorithm simply yields a large
variety of possible trimmed solution spaces, from which the best is chosen.

Note that the polytope optimization algorithm has this reversed order of iterations
already built in, see Subsection [4.3.2] The modification vastly improved the perfor-
mance of the polytope optimization algorithm, which is why we decided to use it as
the basic setting for the algorithm.

Algorithm 8 (Reversed Order of Iterations). The trimming algorithm from
Subsection with a reversed order of iterations.

1: Input: Qpey, A8od, xbad

2: Output:

box

3: Qpbad — Qpox

4: for all "4 ¢ xPad do
5 if P! € O baa then

6: for all 28°°d ¢ x&°°d do

7 if £5°°d €) 1.0 then

8: Q;good < Qbad

9 [T, [af, 5] 4 oo

17 71

10: [ngood nbad] « countpoints (:I:gOOd, xPad, O oods eood Xbad)
. d . d

11: Too0d {z € {1,...,d} | nf* = minjeq,. ay n5>° }

12: Thaq — {z € Lgo0d n?ad = MaXjel,,0q n?ad}

13: i Crand [bad 4

14: if 2224 < 287° then a} + 2P else bf «+ 224 end if
good d d

15: X500 — et N[[ar, b7])

16: for all aj # a; do af < min .., psood 27" end for

17: for all b # b; o b} « max .z 25°° end for

18: end if

19: end for

20: Qpad — arg maxo« M(Q;good)

21: end if

22: end for

Numerical Experiments

We apply each algorithm 100 times to the Rosenbrock function with the settings from
Subsections and [£.4.1], except that the order of iterations is swapped.
The results are listed in Table [5.1] and compared to the results with the standard
order of iterations from the corresponding sections. Additionally, we have plotted
heat maps for all results in Figure [5.1]

In Figure [5.1], middle row, we can see that the rotated box optimization algorithm
seems to move towards the bottom of the U-shape more often if the order of iter-
ations is reversed. However, the impact of the order of iterations on the volume
of the box optimization algorithm and the rotated box optimization algorithm is
not significant, as the mean normalized volumes and standard deviations for both

101

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

algorithms stay about equal. However, the difference is significant for the polytope
optimization algorithm. When the bad designs are iterated first, the mean nor-
malized volume is 56% larger than when the good designs are iterated first. Thus,
we can justify iterating over the bad designs first as the standard setting for the
polytope optimization algorithm.

Good First Bad First
. Standard Standard
Algorithm Mean Deviation Mean Deviation
Box Optimization 0.0320 0.0016 0.0317 0.0018
Rotated Box Optimization | 0.0332 0.0015 0.0324 0.0029
Polytope Optimization 0.0529 0.0128 0.0828 0.0178

Table 5.1: Mean and standard deviation for the normalized volume of 100 polytopes
calculated with the two different trimming strategies.The best results are printed in
bold

102

5.1. SWAPPING ORDER OF ITERATIONS

Good First

-2 -1 0 1
Good First

o

-2 -1 0 1
Good First

b

Bad First

-2 -1 0 1
Bad First

(3%

,
b

-1 0 1
Bad First

3]

-2 -1 0 1

[Sv]

Figure 5.1: Heat maps for the box optimization algorithm (top), the rotated box
optimization algorithm (center) and the polytope optimization algorithm (bottom)

with different orders of iteration.

103

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

5.2 Analysis of Covariance

Sometimes it might not be obvious which pairs of design variables should be chosen
for technical reasons. Thus, a way to automatically determine which design variables
should be coupled via a 2D-map may be desired.

The idea of this approach is to analyze the covariance matrix of good design points
before beginning with the optimization procedure. To this end, design points are
randomly sampled from the whole design space {245 and all the good design points
are put into the matrix

ood .__ ood ood good s
X.g — [(1)33g g ey (ngood)mg j| E RTL .

Then, the corresponding normalized covariance matrix ¥ € R4 is calculated, with

COV <Xlgood7 X?OOd)
%, = L di=1,....d

1,5
J 0;0;

Here, X2°°! and X?‘)Od denote the i-th and j-th column of the matrix X&°°4. Their

. . d a\ .
respective sample covariance cov (X;goo , X5 > is defined by

ngood

1
good good | ., good good
cov (X,. , X > T good _ Z (sz - “i> (Xj,k - “J‘))

where
nSOOd ngood

1 1
o good L good
Hi = ngood Z Xi,k o M= ngood Z XjJC
k=1 k=1

is their mean and

ngood ngood
- ; (XgOOd ')2 e ; (Xgood ')2
Ti = ngood _ 1 ik T)T 05 = ngood _ 1 gk T Hi
k=1 k=1

is their sample standard deviation. Each entry ¥, ; € [—1,1] is a so-called Pearson
correlation coefficient (see [69]) and measures how strongly X&°! and Xf‘md are
linearly dependent on each other. For example, if 3;; = £1, there exist a,b € R
with @ > 0, such that X¥°¢ = £aX¥** +b. On the other hand, if X;; ~ 0, no

linear dependence can be inferred, however, X8°¢ and X?OOd may still be nonlinearly
dependent on each other.

Since the covariance matrix ¥ indicates the dimensions that admit a strong linear
coupling, it should be useful for determining the choice of design variables for a 2D-
map. The 2D-maps €2; ; with the strongest linear coupling of the dimensions ¢ and
j can be found iteratively by choosing those pairs (4, j) with 3; ; = max ¢ez | X
and

Z:={(k,0)e{1,... ,d}? | k < £ and k, £ not part of another 2D-map} .

It should be noted that this way of determining the coupled pairs of design variables
is purely mathematical and does not take aspects of design into account. Further-
more, this method requires additional evaluations of the objective function f. We

104

5.2. ANALYSIS OF COVARIANCE

need to find at least two good design points within 24,. Otherwise, we cannot cal-
culate the covariance matrix. In a high-dimensional design space with a small good
design space, we may need a lot of function evaluations to find good design points.
If f is costly to evaluate, one may wish to reduce the number of function evaluations
done during the optimization algorithms, e.g. by reducing the number of steps in the
exploration and the consolidation phase. The function evaluations that are thereby
saved could then be used to apply the analysis of covariance.

Application to a 6D Problem from Vehicle Dynamics

Because the analysis of covariance is only useful in a high-dimensional context, we
need an appropriate problem to test it. Therefore, we introduce the following 6D
problem from vehicle dynamics. It stems from a practical application and is a chassis
design problem where some components interact strongly with each other. These
interactions give a good natural indication for the choice of 2D-maps. The problem
is given by a linear objective function. Thus, the good design space has a polygonal
shape, similar to the 2D polygon problem presented in Subsection [2.4.1]

The design space for this problem is Qg5 := [0,3.5]? x [0.4,1.6]* x [0.2,2.3]*>. Each
design variable is a scaling factor of a vehicle characteristic. We refer to Table
for a short description and the intervals associated with the design variables. It is
assumed that the design variables for other vehicle components have already been
determined earlier in the design process. The choice of x1,...,xs has no influence
on those design variables.

\2 if;irlle Interval Scaling Factor
T [0,3.5] force-velocity characteristics of
’ the dampers of the front axle
To [0,3.5] force-velocity characteristics of
’ the dampers of the rear axle
T3 [0.4,1.6] force-displacement of the
’ bearing spring of the front axle
T4 [0.4,1.6] force-displacement of the
’ bearing spring of the rear axle
stiffness of the anti-roll bar
x5 [0.2,2.3] RO
T 0.2,2.3] stiffness of the anti-roll bar
’ of the rear axle

Table 5.2: Design variables for the 6D problem from vehicle dynamics.

The objective function is derived as follows:

Let
g.: = [0.421, —0.054,0.414,0.724,0.243,0.027,0.371}T

105

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

and 3)
0 0 0.036 —0.203 0.258 —0.102

0 0 0.111 -0.313 0.540 —0.165

0 0 —-0.115 0.273 —-0.495 0.143

G:= [-0.152 —-0.025 —-0.078 0.121 —0.329 0.057

—0.020 0.216 —0.148 0.339 —0.586 0.155

0 0 0.088 0.144 0.391 0.072

0 0 —0.088 —0.144 —0.391 —0.072]

For a design point @ € 45, normalize it with respect to the cube [—1,1]® by

o alow
norm .__ 2 L Z;
7 T up
T, —

——1, i=1,...,6,
7 xi
where 2V := [0.5,0.5,0.6,0.6,0.5,0.5] " and 2" := [3,3,1.4,1.4,2,2]". Then, apply
G such that

y = Gz, (5.2.1)

A design is considered to be bad if y; < géi) for all ¢ = 1,...,6. The 2D-maps
that are usually coupled for this problem are C := 5 x Q34 X 56, compare [25].
Finally, this yields the objective function

(5.2.2)

0, ifeec Qg andy < gt foralli=1,...,6,
flz) = .
1, otherwise,

where the critical value is ¢ := 0.5.

In a first experiment, we test the variability of the analysis of covariance when
applied to this problem. The number of sample points used for the analysis strongly
influences the kind of 2D-maps that are found. Thus, we apply the analysis of
covariance 100 times each for N = 100, 200, 300, 500, 1000 and 1500 sample points.
As we can see in Figure for N = 100 sampled design points, the couplings (7,
Oy = Qo X Q35 X Qug, C5 := Qi3 X oy X 56, Cp 1= Q13 X Qa5 X Qe and
Cs = Q14 X Qg5 X Q36 are found. Oy, Cy and C5 have an approximately equal
chance to be selected. The analysis rarely finds the couplings C; and C'3. The more
the number of sampled designs is increased, the more often the coupling C5 is found,
indicating that for these 2D-maps, the designs display the strongest linear coupling.

Thus, the analysis of covariance may be rather unreliable for a low number of sam-
pled designs. However, we would need only 500 design points (this are only 5% of
all designs sampled during the exploration phase in our previous experiments) to
produce a more reliable prediction for the strongest coupling. Note that we might
require more design points when we apply the analysis of covariance to higher-
dimensional problems or problems with a very small good design space.

In a second experiment, we are interested in the quality of all couplings found
previously. For N = 100, the standard coupling that is applied in [25] (namely
C1 = Qy2 X Q34 x 56) is almost never found. Thus, the question arises if all other
couplings found for N = 100 are better than C.

We compare the volume of the solution spaces found by the box optimization algo-
rithm, the rotated box optimization algorithm and the polytope optimization algo-
rithm when applied to the couplings found by the analysis of covariance for N = 100

106

5.2. ANALYSIS OF COVARIANCE

N =100 N = 200
L, 100 : ,, 100 :
i z
= =
g 80 E 80
3 3
£ 60 £ 60}
2 g
2 =]
2 aof 2 a0}
£ 2 ’—‘ £ 20f ’—‘ i
:»: O — L L :“: 0 L L L
N o e N PR L . a#© N PR . y o N Py o . o
>t ot Q! 4 2 R ot Q" Qg+ D
9" P . n,.{L &"7, Qe Qo LN %, [¥
AF Y A e > s s A A A
Couplings Couplings
N = 300 N = 500
» 100 T » 100 T
s z
= Y
S 80 s 80r
3 3
B 60} E 60t
2 =
N g
2 a0} 2 a0}
2 20f 2)
* ‘ —l*
5 O < s° 5. 5+ < S %5 C N o) S N 5+) S % A
ot Ea Q> T 2 ot ot D > Q>
9. 9. 2.7 5> 5> 2 2 2" > W
AF N A e > e s A A A
Couplings Couplings
N = 1000 N = 1500
,, 100 ‘ ., 100 ;
= =
S 80 s 80r
< 5}
B 60} E 6of
2 =
s 3
2 aof 2 a0}
HE EE
* o — * ol . ‘ ‘ ‘
5 46 s 46 L5 46 . s . oo . 5O . o N Py . o . PO
ot ot ot Q> Q> ot ot s Q> Q>
Y A A A > g g A A NS
Couplings Couplings

Figure 5.2: The bar plots show how many times the 2D-maps with dimensions
coupled as indicated are found by the analysis of covariance.

design points, i.e., the couplings C; = Q19 X Q34 X Q56, Co = Q19 X Q35 X Qyg,
C3 =013 X Qo X g, Cp =814 X Qo5 x Q36 and Cs = Q5 X Qg X Qs6. Addi-
tionally, for the purpose of comparing the polytope optimization algorithm with the
box optimization algorithm and the rotated box optimization algorithm, any design
that lies outside the box Qg := [0.5,3]* x [0.6,1.4]* x [0.5,2]* is classified as bad.
We do so because the rotated box optimization algorithm treats the boundary of
a design space different from the polytope optimization algorithm (see Section
and Subsection . The artificial boundary of bad points ensures that the results
of both algorithms stay comparable. This results in the new objective function

0, ifeec Qg andy < gt foralli=1,...,6,
f(zx) = .
1, otherwise,

where the critical value is again ¢ := 0.5.

For the box optimization algorithm and the rotated box optimization algorithm, we
use the same parameter settings as in Subsection [2.4.1) and [3.4.1] except that the
initial box is

Qpox := [1.4,1.6] x [0.9,1.1] x [0.9,1.1] x [0.8,1] x [0.8,1] x [1.1,1.3].

For the polytope optimization algorithm, we use parameter settings found by our
results from Subsection [£.4.2] i.e., n®™P = np®* = 100, N = 100 design points,

107

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

dynamic growth rate with o' = 0.6 and ¢(® = 0.05, M = 10 vertices, required
minimum size of angles @ = 5°, vertex relocation takes place in every step of the
exploration phase, relocating the shortest edge, and the trimming strategy is “Edge
Walking”. The initial polytope is dependent on the chosen combination of 2D-maps.
For a vector of polygon centers z := (1.5,1,1,0.9,0.9,1.2)" and the 2D-maps €, ;,
the polygon P, ; is given by the vertices

&) . [z +0.1-cos(k-2m/M +m/4)
w7 \z;+ 0.1 -sin(k - 2m/M + 7/4)

for k =1,..., M. The resulting polytope €2,,, which is the product of all polygons
P; j, is comparable in size and position to the initial box (2,4 for the box optimization
algorithm and the rotated box optimization algorithm. Finally, in [25], a fourth
algorithm, called linear solution space algorithm, has been applied to this problem
for the coupling C. It uses an interior-point method (compare [61]) to calculate the
largest possible solution space when the objective function is linear, which has been
used as a reference solution. Note that [61] considers the objective function in the

form of equation (5.2.1)), as the function in (5.2.2)) is not linear.

The results of the experiment are listed in Table and heat maps for the corre-
sponding results are displayed in Figures[5.3 and .5 Figures and
show solution spaces and their surroundings for each optimization algorithm and
coupling that have a volume close to the mean. According to these Figures, the
solution spaces from the rotated box optimization algorithm and the polytope op-
timization algorithm fill out most of the good design space and cannot gain much
more, which suggests that the results are optimal.

For the standard coupling C, the rotated box optimization algorithm finds solution
spaces that have 459% of the volume of those calculated by the box optimization
algorithm and 50% of the volume of those calculated by the linear solution space
algorithm. The polytope optimization algorithm yields solution spaces with 574%
of the volume of those calculated by the box optimization algorithm, 125% of the
volume of those calculated by the rotated box optimization algorithm and 63% of
the volume of those calculated by the linear solution space algorithm. Additionally,
in Figure 5.9, we plotted the solution spaces that are close to the mean such that
they cover the solution space found by the linear solution space algorithm.

Apparently, the coupling Cy yields the solution spaces with the largest volume for
both, the rotated box optimization algorithm and the polytope optimization algo-
rithm. With this coupling, the volume is more than two times larger than with
C,. However, all other couplings are worse than . They yield solutions spaces
with smaller volume, sometimes only half as much as for C';. The reason for this
becomes apparent in Figures and . For the 2D-maps €25 4 and 3 5, the algo-
rithms are only able to find a small amount of good design space. Hence, a strong
linear coupling of two dimensions does not mean that the resulting solution spaces
have a large volume. On the other hand, all solution spaces found by the rotated
box optimization algorithm and the polytope optimization algorithm have a larger
volume than the solution space found by the box optimization. We conclude that
any coupling found by the analysis of covariance is better than no coupling, sug-
gesting that it is reasonable to apply the analysis when no prior information about
good couplings is available. Finally, it may be worth to apply the analysis even if a
coupling is already given, as it might yield an even better coupling.

108

5.2. ANALYSIS OF COVARIANCE

) . Standard
Algorithm Coupling Mean Deviation
Linear Solution Space | C; | 321-107" | -
Box Optimization | - [0.3522-10~* [0.0987-10"*
C, 1.6167-10~* | 0.5410-10~*
C 3.5760 - 10~ | 1.1942 - 104
é{gziﬁj&iﬁ s 0.8663 - 10 | 0.3018- 10~
Ca 0.6774-10 % | 0.3008-10 7
Cs 0.7066 - 10 * | 0.2855-10 *
c, 2.0232-10°% [0.4402-10°*
Polytope C 4.0857-10~ %] 0.7613 - 10 %
Optimization Cs 1.8035- 10 % | 0.4186-10 *
Ca 1.0744-10°% | 0.2624-10 *
Cs 1.4094-10 % | 0.3304-10 *

Table 5.3: Mean and standard deviation of the normalized volume for 100 solution
spaces calculated with different couplings for the box optimization algorithm, the
rotated box optimization algorithm and the polytope optimization algorithm. The
result of the linear solution space algorithm is tabulated for the sake of completeness.
The best couplings are printed in bold.

Figure 5.3: Heat maps for the box optimization algorithm, plotted in the 2D-maps
for C].

109

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

jem)
Ju—
[\
w
o
=
Do
w
o
ot
=
—
ot

Figure 5.4: From top to bottom: heat maps for the couplings C to C5, computed
by the rotated box optimization algorithm.

110

5.2. ANALYSIS OF COVARIANCE

Figure 5.5: From top to bottom: heat maps for the couplings C; to C5, computed
by the polytope optimization algorithm.

111

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

Figure 5.6: A solution space close to the mean normalized volume of all solution
spaces found by the box optimization algorithm, plotted in the 2D-maps for C}.

112

5.2. ANALYSIS OF COVARIANCE

Figure 5.7: From top to bottom: rotated boxes close to the mean normalized volume
for the couplings C to Cs.

113

CHAPTER 5. FURTHER MODIFICATIONS OF THE ALGORITHMS

Figure 5.8: From top to bottom: polytopes close to the mean normalized volume
for the couplings C to C5, computed by the polytope optimization algorithm.

114

5.2. ANALYSIS OF COVARIANCE

9

M9

&) 1 2 3 0.5 1 15 05 1 15 2

Figure 5.9: From top to bottom: solution spaces close to the mean from each
optimization algorithm, laid over over the solution space (in green) found by the
linear solution space algorithm.

115

Chapter 6

Numerical Results

In this chapter, we apply the box optimization algorithm, the rotated box optimiza-
tion algorithm and the polytope optimization algorithm to three different problems.
The problems are a 4D variant of the Rosenbrock function, the 8D nonlinear acous-
tical engineering problem we already considered in Subsection and a 10D
optimal control problem. The goal of this chapter is to monitor the performance
of each optimization algorithm in a higher-dimensional context and compare their
results.

The settings for all parameters and optimization algorithms do not change through-
out this chapter unless mentioned explicitly. They are similar to settings from
previous chapters, i.e., each algorithm is applied 100 times to each optimization
problem, n®P = n®°" = 100, N = 100 design points and the growth rate is dynamic
with a8 = 0.6 and ¢(® = 0.05. For the polytope optimization algorithm, each
2D-polygon has M = 10 vertices, the required minimum size of angles is a = 5°,
vertex relocation takes place in every step of the exploration phase, relocating one
edge, and the trimming strategy is “Edge Walking”.

6.1 4D Rosenbrock Function

It is possible to define the Rosenbrock function in more than two dimensions. For
x € Qg = ([-2,2] x [-2, 3])d/2, where d is even, it is given by the formula

d/2

f(w) = Z(l - 1321'—1)2 + 100(%’21 — I%iil)g.

i=1

We apply the box optimization algorithm, rotated box optimization algorithm and
the polytope optimization algorithm 100 times to this problem with d := 4 and
¢ = 120. The 2D-maps for the rotated box optimization algorithm and the polytope
optimization algorithm are set to Qo 1= Q34 == [-2,2] x [-2, 3].

For the polytope optimization algorithm, the initial polytope is given by (), :=
Py 9 X P34, where P, ; is the initial polygon on the 2D-map €; ; given by the vertices

&) . (13402 cos(k-2n/M +7/4)
3\ 1.8+ 0.2 -sin(k - 27 /M + 7 /4)

116

6.1. 4D ROSENBROCK FUNCTION

fork=1,..., M.

The mean normalized volume of all solution spaces found by the three algorithms
is given in Table [6.1] In Figure[6.1], we plotted solution spaces that are close to the
mean attained by each algorithm. There, the good design space around each solution
space on a 2D-map is U-shaped, similar to the 2D Rosenbrock function. From the
heat maps in Figure 6.2, we can gather that the polytope optimization algorithm
is able to fill out most of the U-shape, whereas the box optimization algorithm and
the rotated box optimization algorithm only find hyperboxes in the bottom or on
one side of the U-shape. Subsequently, the solution spaces found by the polytope
optimization algorithm have approximately 500% of the volume of those found by

the other two algorithms.

Algorithm Mean Normalized Standard
Volume Deviation
Box Optimization 0.0077 0.0019
Rotated Box Optimization 0.0078 0.0009
Polytope Optimization 0.0399 0.0061

Table 6.1: Results of the different optimization techniques for the 6D problem. The

best result is printed in bold.

117

CHAPTER 6. NUMERICAL RESULTS

Figure 6.1: Solution spaces with volume close to the mean for the 4D Rosenbrock

function.

118

6.1. 4D ROSENBROCK FUNCTION

|
b
1
—
o
—
b
[
(8]
1
—
=
—
b

Figure 6.2: Heat maps for the 4D Rosenbrock function.

119

CHAPTER 6. NUMERICAL RESULTS

6.2 8D Nonlinear Problem from Acoustics

Next, we consider the 8D nonlinear engineering problem from acoustics, described
previously in Subsection [2.4.2, Recall that the objective function is given by

8
1+ Z ei®e
=1

while Q45 = [0,27]® and ¢ = 1.5. The rotated box optimization algorithm and the
polytope optimization algorithm are coupled on the 2D-maps €21 9 1= (234 1= (256 :=
Q778 = [O, 27'(]2.

For the box optimization algorithm and the rotated box optimization algorithm, the
initial box is given by

flx) =

8

Qbox = H[aia bl]

i=1

with a; and b; as in Table [6.2]

i1 2 3 4 5 6 7 8
a; | 4.7545 4.9248 1.8186 0.4240 3.2106 1.2389 4.6416 1.2389
b; | 5.6455 5.2958 2.4098 1.1439 3.6663 1.7502 5.0973 1.7502

Table 6.2: Intervals for the initial box of the acoustics problem.

For the polytope optimization algorithm, the initial polytope is 2,01 := P2 X P54 X
Ps x Prg. It is the product of the 2D polygons F;; on each 2D-map €; j, where
their vertices are given by

& . (z+04-cos(k-2n/M +7/4)
w7 \zj+ 0.4 -sin(k - 2m /M + 7 /4)

for k=1,..., M and by the vector of polygon centers

z:=(5.2,5.1,2.1,0.8,3.45,1.5,4.9,1.5) .

Algorithm Mean Normalized Standard
Volume Deviation
Box Optimization 0.0595 - 107° 0.0307 - 107°
Rotated Box Optimization 1.9659 - 10~° 1.9719-10°°
Polytope Optimization 5.5753 - 10—° 2.2412 - 1076

Table 6.3: Results of the different optimization techniques for the 8D acoustics
problem.

The mean normalized volumes of the solution spaces found by the box optimization
algorithm, the rotated box optimization algorithm and the polytope optimization
algorithm are listed in Table[6.3] Solution spaces from each optimization algorithm

120

6.2. 8D NONLINEAR PROBLEM FROM ACOUSTICS

that are close to the mean are plotted in Figure [6.3| and heat maps for each al-
gorithm are shown in Figure [6.4] The rotated box optimization algorithm finds
solution spaces with approximately 3300% of the volume of those found by the box
optimization algorithm. The polytope optimization algorithm finds solution spaces
with approximately 9400% of the volume of those found by the box optimization
algorithm and approximately 280% of the volume of those found by the rotated
box optimization algorithm. While we find solution spaces with significantly more
volume than the box optimization algorithm when we apply either of the rotated
box optimization algorithm or the polytope optimization algorithm, the amount of
volume we gain by applying the polytope optimization algorithm over the rotated
box optimization algorithm is not equally significant. For example, in Figure [6.3],
we can see that the rotated box (second row) is similar in size to the polytope (third
row) on each 2D-map. Additionally, the heat maps for the rotated box optimiza-
tion algorithm and the polytope optimization algorithm in Figure show that the
solution spaces for both algorithms lie in similar regions, although their positions
vary more in case of the rotated box optimization algorithm.

However, if we plot the volumes of the solution spaces from the rotated box op-
timization algorithm and the polytope optimization algorithm, we notice that the
volumes from the rotated box optimization algorithm are heavily skewed towards
the left-hand side, see Figure |6.5| Recall that the skewness of a random variable X
with mean g and variance o is its third standardized moment (see []) and defined

as
X —pu 3
())
For a random variable with a distribution that is symmetric about its mean, i.e., if
X — pand g — X have the same distribution, it holds S[X] = 0. If S[X] > 0, this
indicates that the right tail of the distribution is relatively longer or heavier than

the left tail, and vice versa if S[X] < 0. Likewise, the sample skewness for a set of
scalar data z1,...,x, € R with mean 7 is defined as

% Z?:l@i - j)3

(\/% > i (i — 93)2>3'

If s > 0, the data right of the mean are more spread out than those left of the
mean (as seen in Figure and vice versa for s < 0. The skewness for the volumes
found by the rotated box optimization algorithm is 1.6825 and the skewness for
those found by the polytope optimization algorithm is 0.4810. Thus, the volumes
from the rotated box optimization algorithm are much more skewed and have more
outliers than those from the polytope optimization algorithm. This leads to the
following question: How are these outliers generated?

S[X]:=FE

To answer this question, we fix the values in five dimensions of the objective function
and consider the now three-dimensional objective function

3
f(x) == |1+ 2 + % + 2™ + Z el
=1

For this function, we are able to visualize the good and the bad design space, see
Figure [6.6l Apparently, the two spaces are heavily intertwined, such that, when

121

CHAPTER 6. NUMERICAL RESULTS

we sample a few design points and project them onto the 2D-map ;5 (see Figure
, there is no region with only bad design space. Instead, the bad design points
are scattered among the good design points. This overlapping of the design spaces
implies that, whenever we would sample in a region of good designs, it is likely that
a few bad design points are sampled, too.

This effect is also visible on the 2D-maps in Figure . On the 2D-map € 5, the
box optimization algorithm and the rotated box optimization algorithm form small
boxes inside a region where they could spread out more, thereby losing good design
space. However, the polytope optimization algorithm seems to be able to adapt
to the effect. When a single bad design point gets sampled in the region of good
designs, the algorithm can simply move one edge such that the bad design point
gets removed. It is likely to form a spike by doing so (as seen on all the 2D-maps for
the polytope optimization algorithm in Figure , however, most other edges of
the polytope stay where they are, such that the polytope keeps most of its volume.
Thus, in the case of overlapping good and bad design space, spikes seem to be
beneficial for the polytope optimization algorithm, as they allow the algorithm to
dodge outliers. This in turn reduces the amount of solution spaces with an outlying
volume, which increases the consistency of the algorithm when compared to the
rotated box optimization algorithm.

Figure 6.3: Solution spaces with volume close to the mean for the 8D acoustics
problem.

122

6.2. 8D NONLINEAR PROBLEM FROM ACOUSTICS

QSG

%) Q34 Q56 Qg

Qli.l Q').(i

/s

0 2 1 6

Figure 6.4: Heat maps for the 8D acoustics problem.

Rotated Boxes Polytopes

45 T T T 45 T T T

40 40

35 35
8 30+ g 30+
S 3
" 8,
0 25 w25+
g S
E 201 s 20
3 8
3k 15 :‘:t 15}

10+ 10}

0 0

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Volume x107° Volume x107°

Figure 6.5: Histograms for the rotated box optimization algorithm and the polytope
optimization algorithm.

123

CHAPTER 6. NUMERICAL RESULTS

Good Design Space Bad Design Space

/o
!
.
2
3
u / 4
A T / 5

Figure 6.6: Voxel plot of the good (left) and the bad (right) design space for the
acoustics problem in 3D.

Projection onto 21 9

T e T e T s

®oo [° ¥
 EL g Sad
& ‘:: :. '?o'..‘o.dt‘.‘ X

‘,.'..o: ~ o': Q..o%'. * f"’ r .“g."

Figure 6.7: Projection of samples points from the 3D acoustics problem onto €2 5.

124

6.3. 10D PROBLEM FROM OPTIMAL CONTROL

6.3 10D Problem from Optimal Control

We consider the following problem: Five heat sources have to be designed such that
they keep the temperature in a control volume on a given constant level. Each heat
source has a fixed position x; := (xm,xi,g)T in the control volume and a circular
shape with radius ;. The temperature at the i-th heat source is given by the constant
factor t;. The distribution of the heat u(x) emitted by the heat sources throughout
the control volume is modelled by the steady-state heat equation (compare [77])

—Au(z) = gra(z), x€D:=(0,1)

3.1
u(x) =0, xel :=0D, (6.3.1)

where
5
gr,t(w) = Z ti - XBri(mi)(w)'
i=1

Here, X'z is the characteristic function

1, =xe€ B,
XB<33) I:{

0, else,

and B, (x;) denotes the ball with radius r; around the center @;. The positions of
the centers x; are given by

x, = (0.15,04)", x5 :=(0.45,0.9)", x3:=(0.87,0.7)",
x, = (0.88,0.25)", x5:=(0.5,0.3)".

We intend to determine the variables r and ¢t such that the maximum deviation
from the desired temperature, i.e.

fr,t) == |luy ;s — uall Lo (x),

is minimized. Here, uy; := 0.5 is the desired constant temperature and K :=
[0.3,0.7]> C D is the region inside the control volume where that temperature should
be close to ug. The problem under consideration is an optimal control problem,
where r and t are the control variables to be determined such that they minimize
the cost function f, see [T7] for example.

In the context of solution spaces, f is the objective function and r and ¢ are the
design variables, where we choose 245 := €2, x (), as design space with

Q, := [0.01,0.17] x [0.01,0.2] x [0.01,0.2] x [0.01,0.18] x [0.01,0.15],
Q, := [0,100] x [0,80] x [0, 150] x [0, 180] x [0, 100)].

The radius and temperature of each heat source are coupled by a 2D-map such that
Q2 :=10.01,0.17] x [0,100], 234 := [0.01,0.2] x [0, 80], Q256 := [0.01,0.2] x [0, 150],
Q75 :=10.01,0.18] x [0, 180], and g 10 := [0.01,0.15] x [0, 100]. As critical value we
choose ¢ := (.15, which means that the temperature generated by the heat sources
is allowed to deviate up to 30% from the desired temperature.

125

CHAPTER 6. NUMERICAL RESULTS

The results of the algorithms are listed in Table Solution spaces close to the
mean normalized volume of each algorithm are plotted in Figure [6.8] Similar to
the previous problem, the rotated box optimization algorithm and the polytope
optimization algorithm yield solution spaces with significantly more volume than
those found by the box optimization algorithm. And again, the volume of the
solution spaces found by the polytope optimization algorithm is only 279% of the
volume of those found by the rotated box optimization algorithm. Additionally,
for the rotated box optimization algorithm, the standard deviation is not as large
in relation to the mean (only 53%) as in the previous problem. Thus, the rotated
box optimization algorithm and the polytope optimization algorithm both yield
reasonable results for this problem. However, as can be seen on the heat maps in
Figure for the 2D-map €910, the rotated box optimization algorithm struggles
to consistently find a suitable region of good design space. In contrast, the polytope
optimization algorithm reliably moves into the same region of good design space for
every execution of the algorithm.

A solution of (6.3.1) with a design taken from a solution space computed by the
polytope optimization algorithm is visualized in Figure [6.10]

Algorithm Mean Normalized Standard
Volume Deviation
Box Optimization 0.0045 - 107° 0.0018 - 107°
Rotated Box Optimization 1.1636 - 10~° 0.6135-107°
Polytope Optimization 3.2493 - 106 1.2846 - 106

Table 6.4: Results of the different optimization techniques for the 10D optimal
control problem.

126

6.3. 10D PROBLEM FROM OPTIMAL CONTROL

Q12 Q34 Q56 Q78 Q910
100 pprases —- —v g Spsenss-TTyurst 1lmp o evemmagy 150 ety 00 e anp s
\ 1 | : ! ‘ j [;
| L 6ol ‘ \ | ‘ D \ ‘
‘ il \ ‘ L100, ‘ 120‘+ ‘ :
50 ‘ 10, D . | D 1 ‘ 50} |
} sl (50‘ | |
20, | \ ‘ i \
‘ | | I L |
%ot 3y Cloat & < _ " e A7y Lo LR W) i T aenlé 3 o9 *e 0 JPOPVEN
07505 01 015 U005 01 015 U005 01 0.5 079005 01 05 07005 01 0.15
Q12 Q34 Q56 Q78 Q910
1000—amPo8e—-5 el SO ——— 150 et w2 A Sse 15000 v ——mrampes w1005 areh ——
| | | 1
60 | \ ‘ :
i 1 ‘[{00} | 1200 ; i ;
[
|
50 L a0f 1 \ ‘ a0
| ‘ | L0 I 6 | |
20| ‘ | | ‘ | Q |
| % |] [h | »
; [i i | | ;

P LYN. V5V Yo & re il #y &% 1 ; , 0gdl M| , SAD QUi PV, : et ¢ 0
057005 U1 05 U005 01 005 0005 01 015 07005 o1 “0is U005~ 01 015
Q12 Q34 Q5.6 Q78 Q9,10

100 puestts—ab v Opsmeorvi—ptyy lS0gaewpgo v g 150eyge— — e W —— - — ——
| [| ‘ } : | |
' [
‘ 60| | j | ‘
L 100 120, | \ |
: S | I ‘ |
504 o { ; ‘ ‘) |
f] ‘ .50l T | ‘
‘ | Z(JT | ‘ ‘ ‘ ‘ ‘
| | I ; | J
0= T cu (Ul o S e 0Tt e £ Aa % o o RSP & mERaE Bl [S R SRR AT
005 01 0I5 005 01 015 005 01 015 00> 01 015 005~ 01 015

Figure 6.8: Solution spaces with volume close to the mean for the 10D optimal
control problem.

2 Q34 Qg Q910

100 80 150 180
60

100 120
50 40

50 60
20

0 0 0 0 0
0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.1

91.2 QS.li Q!).l(l
100 80 180
60
120
50 10
60
20
0 0 0
0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.1
Qﬁ.li Q.‘).lﬂ
100 80 150 180 100
60
100 120
50 40 50
50 60
20
0 0 0
0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.1

Figure 6.9: Heat maps for the 10D optimal control problem.

127

CHAPTER 6. NUMERICAL RESULTS

Figure 6.10: A solution of the heat equation represented by a design point taken
from within a polytope. The region K is marked with a black square and the radii
of the heat sources are marked with black circles.

128

6.4. STUDY OF SAMPLE SIZES

6.4 Study of Sample Sizes

Finally, we are interested in the impact of the number of sample points on the
results of the box optimization algorithm, the rotated box optimization algorithm
and the polytope optimization algorithm. We have briefly mentioned this topic in
Subsection [2.3.2, where we found the estimate N = 100 for the number of sam-
ple points such that the box optimization algorithm yields solution spaces with a
high enough quality. However, so far we have not yet verified this number through
numerical experiments. Additionally, we have tacitly assumed that this number is
applicable to the rotated box optimization algorithm and the polytope optimiza-
tion algorithm. Thus, in this section we apply multiple sample sizes to the box
optimization algorithm, the rotated box optimization algorithm and the polytope
optimization algorithm.

In practice, we are generally not able to sample an arbitrary number of design points,
as an evaluation of the objective function f can be very expensive. Thus, we limit
the total amount of designs that can be sampled by one instance of each optimization
algorithm to a budget of B := 20000. We distribute this budget evenly between the
exploration and the consolidation phase, such that we sample at most 10000 designs
in each phase. If we increase the number of designs that are sampled in each step
of a phase, we have to decrease the total number of steps done in that phase. Thus,
we test the optimization algorithms with the following four configurations:

1) N = 100, nexp = Neon = 100, which is the standard configuration from the
previous experiments,

2) N = 200, flexp = Meon = 50,
3) N =500, Nexp = Ncon = 20, and

4) N = 1000, Nexp = Neon = 10.

We apply these configurations to the box optimization algorithm, the rotated box
optimization algorithm and the polytope optimization algorithm, which we then test
for the 4D Rosenbrock function, the 6D linear problem from vehicle dynamics (see
Section [5.2)), the 8D acoustics problem and the 10D problem from optimal control.

The results can be found in Tables [6.5] and [6.8] The best result from each
algorithm is printed in bold.

Apparently, the box optimization algorithm does not profit at all from fewer steps
in the exploration and consolidation phases, despite an increased number of sample
points. For example, the mean normalized volume found with the fourth configu-
ration applied to the 4D Rosenbrock function is only 4% of the volume found with
the first configuration. In all other cases, the non-standard configurations also find
less volume than the standard configuration.

The rotated box optimization algorithm leads to mixed results. The configurations
result in more or less the same volume for the 4D Rosenbrock function, more volume
for the 6D vehicle dynamics problem and less volume for the 10D optimal control
problem. For the 8D acoustics problem, the second and third configuration are
better than the standard configuration, however, the fourth configuration is worse.

129

CHAPTER 6. NUMERICAL RESULTS

Finally, for the polytope optimization algorithm, the second and third configuration
are always better than the first. The third configuration even yields double and
triple the volume for the 8D acoustics problem and the 10D optimal control prob-
lem. The fourth configuration has a mixed performance, being much worse than the
standard configuration for the 4D Rosenbrock function, better than the standard
configuration, but worse than the second or third configuration for the 8D acous-
tics problem, and better than all other configurations for the 6D vehicle dynamics
problem.

In conclusion, increasing the number of sampled designs and decreasing the number
of steps seems to be unfavorable for the box optimization algorithm. This is, to some
extent, in line with the results from Subsection [2.3.2] where it has been stated that
100 sampled designs are enough to ensure a high quality of the solution space. The
consequences are unclear for the rotated box optimization algorithm, as adjusting
the number of sampled designs and steps may or may not help to increase the volume
of the solution spaces. For the polytope optimization algorithm, configurations 2
and 3 seem to be better overall than the standard configuration. Consequently, one
of these configurations should be used when the polytope optimization algorithm
is applied to a problem. Configuration 4 is mostly worse than the others, likely
because only 10 steps are not enough to find a large amount of good design space
in the exploration phase. Hence, it should not be used.

4D Rosenbrock

Aleorithm N =100 N =200 N =500 N = 1000
& 100 steps 50 steps 20 steps 10 steps
.B?X . 0.0077 0.0059 0.0012 0.0003

Optimization
Rotated Box 1 78 0.0078 0.0072 0.0072
Optimization

Polytope 0.0399 0.0437 0.0434 0.0155
Optimization

Table 6.5: Mean normalized volumes of the algorithms for the 4D Rosenbrock prob-
lem and multiple sample sizes.

6D Vehicle Dynamics

Alsorithm N = 100 N = 200 N =500 N = 1000
& 100 steps 50 steps 20 steps 10 steps
Box 0.3522-10~* | 0.3211-10~* | 0.3103 - 10* | 0.2996 - 10~4
Optimization
Rotated Box |) ¢160 10-4 | 170081074 | 1.8258 - 10~ | 1.9415 - 10~4
Optimization
Polytope 2.0232-10~* | 2.5875-10~* | 3.3436 - 10~* | 3.4950 - 104
Optimization

Table 6.6: Mean normalized volumes of the algorithms for the 6D problem from
vehicle dynamics and multiple sample sizes.

130

6.4. STUDY OF SAMPLE SIZES

8D Acoustics

Alvorithm N =100 N = 200 N =500 N = 1000
& 100 steps 50 steps 20 steps 10 steps
Box 0.0060 - 10~5 | 0.0036-10~° | 0.0039-10~5 | 0.0041 - 10~°

Optimization

Rotated Box | 1056 105 | 09885105 | 0.3432 - 105 | 0.1353 - 107

Optimization

Polytope 0.5575-10~° | 0.8372-1075 | 1.1673 - 10~5 | 0.6690 - 10~°

Optimization

Table 6.7: Mean normalized volumes of the algorithms for the 8D problem from
acoustics and multiple sample sizes.

10D Optimal Control

Aorith N =100 N = 200 N =500 N = 1000
& 100 steps 50 steps 20 steps 10 steps
Box 0.0045 - 10~6 | 0.0030- 105 | 0.0029-10~¢ | 0.0029 - 10~

Optimization

Rotated Box | Jeae 106 | 10849106 | 1.0888-10-° | 0.2773- 10~

Optimization

Polytope 3.2493.107% | 7.5522- 1076 | 9.6046 - 10~ | 5.3048 - 106

Optimization

Table 6.8: Mean normalized volumes of the algorithms for the 10D optimal control

problem and multiple sample sizes.

131

Chapter 7

Conclusion

In this thesis, we developed the rotated box optimization algorithm and the polytope
optimization algorithm, which are variations of the box optimization algorithm. All
three algorithms can be employed in a set-based design process.

The conclusions from this thesis can be summarized as follows:

The coupling of parameters on 2D-maps, which is the underlying principle of
the rotated box optimization algorithm and the polytope optimization, proved
to be a helpful tool for handling problems from set-based design. Hence,
techniques that are enhanced with 2D-maps may yield good results in any
context where the coupling of a few parameters is tolerable.

With the help of 2D-maps, we were able to generalize the box optimization al-
gorithm. We replaced axis-parallel boxes on 2D-maps by rotated boxes, which
led to the rotated box optimization algorithm. Then, we entirely abandoned
the premise of box-shaped solution spaces and introduced polygon-shaped so-
lution spaces. With these, we were able to construct the polytope optimization
algorithm.

All three algorithms work in high dimensions despite the curse of dimension-
ality, as demonstrated in Chapters [5] and [This makes them applicable to a
wide range of problems.

There are many parameters that determine the outcome of the algorithms.
We were able to identify a few parameter settings that seem to be universal.

Additionally, with the given parameter settings, the algorithms are robust.
They will not quit unexpectedly and will always give a solution space as out-
put.

We observed in Chapters [5] and [0] that the rotated box optimization algorithm
and the polytope optimization algorithm generally yield better results than
the box optimization algorithm. This means that, if possible, one of those two
algorithms should be applied instead of the box optimization algorithm.

Most importantly, the rotated box optimization algorithm and the polytope
optimization algorithm do not require more design samples to achieve better

132

results. They are much more cost-efficient than the box optimization algorithm
in the sense that their ratio of the number of design samples to the volume of
the final box is larger.

o Finally, as shown in Section adjusting the number of design samples per
step may further improve the results of the rotated box optimization algorithm
and the polytope optimization, whereas the box optimization algorithm does
not profit at all from such an adjustment.

As a consequence, if one wishes to apply solution spaces for a robust design process
and a coupling of design parameters is feasible, one should at least use the rotated
box optimization algorithm because it is not much more difficult to implement than
the box optimization algorithm. However, the polytope optimization algorithm
yields better results and is more consistent. It should hence be preferred over the
other two algorithms.

Possible future work might involve the coupling of three design variables instead of
two. The design space could then be expressed as a product of 3D-maps. Conse-
quently, we would need to find a solution space that is represented by a product of
3D rotated boxes or 3D polytopes. Of course, this idea could be extended to cou-
ple an arbitrary number of n design variables. A solution space would then be the
product of n-dimensional rotated boxes or n-dimensional polytopes. For some ap-
plications, it might even be desirable to couple different numbers of design variables,
i.e., two parameters have to be coupled on a 2D-map, while five other parameters
have to be coupled on a 5D-map.

Finally, it might prove useful to investigate differently shaped solution spaces. They
could, for example, be represented by a closed curve or by a classifier obtained
from a support vector machine. Their shape might be more flexible than that of a
polygon, which could allow them to find more good design space. Solution spaces
that consist of multiple connected components might also find much more good
design space, simply because they could, theoretically, split up and explore different
regions of the design space. These new types of solution spaces will require new
ideas for trimming, growing and evaluation.

133

Bibliography

[1]

C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer
International Publishing AG, Cham, 2017.

M. Beer and M. Liebscher. Designing robust structures — A nonlinear simula-
tion based approach. Computers € Structures, 86(10):1102-1122, 2008.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convexr Optimization:
Analysis, Algorithms, and Engineering Applications. MOS-SIAM Series on Op-
timization, Society for Industrial and Applied Mathematics and Mathematical
Programming Society, Philadelphia, 2001.

J.M. Bernardo and A.F.M. Smith. Bayesian Theory. John Wiley & Sons,
Chichester, 2000.

H.-G. Beyer and B. Sendhoff. = Robust optimization — A comprehen-
sive survey. Computer Methods in Applied Mechanics and Engineering,
196(33-34):3190-3218, 2007.

J.C. Bezdek, R. Ehrlich and W. Full. FCM: The fuzzy c-means clustering
algorithm. Computers & Geosciences, 10(2-3):191-203, 1984.

C.M. Bishop. Pattern Recognition And Machine Learning. Springer, New York,
2009.

J.K. Blitzstein and J. Hwang. Introduction to Probability. CRC Press, Taylor
& Francis Group, Abingdon, 2014.

A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon and M.W. Tros-
set. A rigorous framework for optimization of expensive functions by surrogates.
Structural Optimization, 17(1):1-13, 1999.

D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and
Adaptive Networks. Complex Systems, 2(3):321-355, 1988.

C.G. Broyden. The Convergence of a Class of Double-Rank Minimization Al-
gorithms. IMA Journal of Applied Mathematics, 6(1):76-90, London, 1970.

F. Campolongo, M. Ratto, A. Saltelli and S. Tarantola. Sensitivity Analysis
in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons,
Chichester, 2004.

134

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A.L. Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. (Fuvres complétes, série 1, tome 10, 399-402. Comptes rendus de
I’Académie des sciences, 25:536-538. Paris, 1847.

A. Chatterjee. An introduction to the proper orthogonal decomposition. Cur-
rent Science, 78(8):808-817, 2000.

W. Chen and C. Yuan. A probabilistic-based design model for achieving flexi-
bility in design. Journal of Mechanical Design, 121(1):77-83, 1999.

K.K. Choi, B.D. Youn and R.-J. Yang. Moving least square method for
reliability-based design optimization. Fourth World Congress of Structural and
Multidisciplinary Optimization, Dalian, China, 2001.

J.H. Conway, H. Burgiel and C. Goodman-Strauss. The Symmetries of Things.
A. K. Peters, Wellesley, 2008.

P.K. Das, D. Faulkner and Y. Pu. A strategy for reliability-based optimization.
Engineering Structures, 19(3):276-282, 1997.

W.C. Davidon. Variable metric method for minimization. SIAM Journal on
Optimization, 1(1):1-17, 1991.

A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? Does it matter?
Structural Safety, 31(2):105-112, 2009.

F. Duddeck and E. Wehrle. Recent advances on surrogate modeling for robust-
ness assessment of structures with respect to crashworthiness requirement. 10th
Furopean LS-DYNA Conference, Wiirzburg, Germany, 2015.

R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. Pro-
ceedings of the Sizth International Symposium on Micro Machine and Human
Science, 1942-1948, TEEE, 1995.

M. Eichstetter, S. Miiller and M. Zimmermann. Product family design with
solution spaces. Journal of Mechanical Design, 137(12):121401, 2015.

S. Erschen. Optimal Decomposition of High-Dimensional Solution Spaces for
Chassis Design. PhD Thesis, Department of Civil, Geo and Environmental
Engineering, Technical University of Munich, Germany, 2017.

S. Erschen, F. Duddeck, M. Gerdts and M. Zimmermann. On the optimal
decomposition of high-dimensional solution spaces of complex systems. ASME
Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical
Engineering, 4(2):021008, 2017.

J. Fender. Solution Spaces for Vehicle Crash Design. PhD Thesis, Department
of Civil, Geo and Environmental Engineering, Technical University of Munich,
Germany, 2013.

J. Fender, F. Duddeck and M. Zimmermann. Direct computation of solution
spaces. Structural and Multidisciplinary Optimization, 55(5):1787-1796, 2017.

135

BIBLIOGRAPHY

[28]

[40]

[41]

[42]

[43]

W.W. Finch and A.C. Ward. Quantified Relations: A class of predicate logic de-
sign constraints among sets of manufacturing, operating, and other variations.
Proceedings of The 1996 ASME Design Engineering Technical Conferences and
Computers in Engineering Conference, Irvine, 1996.

R. Fletcher. A new approach to variable metric algorithms. The Computer
Journal, 13(3):317-322, 1970.

R. Fletcher and M.J.D. Powell. A rapidly convergent descent method for min-
imization. The Computer Journal, 6(2):163-168, 1963.

G. Fung, S. Sandilya and R.B. Rhao. Rule extraction from linear support
vector machines. Rule Eztraction from Support Vector Machines. Studies in
Computational Intelligence, 80:83-107. Springer, Berlin—Heidelberg, 2008.

A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC, Boca Raton, 2004.

M. Gendreau and J.-Y. Potvin. Handbook of Metaheuristics. Springer, New
York, 2010.

H.-O. Georgii. Stochastics. Introduction to Probability and Statistics. De
Gruyter, Berlin—Boston, 2012.

R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements. A Spectral Ap-
proach. Dover Publications, New York, 2003.

M. Gotz, M. Liebscher and W. Graf. Efficient detection of permissible design
spaces in an early design stage. 11. LS-DYNA Forum, 184-185, 2012.

D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading—Massachusetts—Boston, 1989.

D. Goldfarb. A family of variable-metric methods derived by variational means.
Mathematics of Computation, 24(109):23-26, 1970.

W. Graf, M. Gotz and M. Kaliske. Computing permissible design spaces un-
der consideration of functional responses. Advances in Engineering Software,
117:95-106, 2018.

L. Graff. A Stochastic Algorithm for the Identification of Solution Spaces in
High-Dimensional Design Spaces. PhD thesis, Faculty of Science, University of
Basel, Switzerland, 2013.

L. Graff, J. Fender, H. Harbrecht and M. Zimmermann. Identifying key pa-
rameters for design improvement in high-dimensional systems with uncertainty.
Journal of Mechanical Design, 136(4):041007, 2014.

L. Graff, H. Harbrecht and M. Zimmermann. On the computation of solu-

tion spaces in high dimensions. Structural and Multidisciplinary Optimization,
54(4):811-829, 2016.

R.L. Graham. An efficient algorith for determining the convex hull of a finite
planar set. Information Processing Letters, 1(4):132-133, 1972.

136

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[54]

[55]

[56]

[57]

[58]

[59]

H. Harbrecht, D. Trondle and M. Zimmermann. A sampling-based optimization
algorithm for solution spaces with pair-wise coupled design variables. Structural
and Multidisciplinary Optimization, 60:501-512, 2019.

H. Harbrecht, D. Trondle and M. Zimmermann. Approximating solution spaces
as a product of polygons. Preprint 2019-13, Fachbereich Mathematik, Univer-
sitat Basel, 2019.

J.H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press,
Cambridge, 1993.

K. Hormann and A. Agathos. The point in polygon problem for arbitrary
polygons. Computational Geometry, 20:131-144, 2001.

A K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, 31(8):651-666, 2010.

F. Jarre and J. Stoer. Optimierung. Springer, Berlin—Heidelberg, 2019.
I.T. Jolliffe. Principal Component Analysis. Springer, New York, 1986.

V. Kitov. Dimensionality reduction. Summer School on Machine Learning
in High Energy Physics, Deutsches Elektronen-Synchrotron DESY, Hamburg,
2015.

D.G. Krige. A statistical approach to some mine valuation and allied prob-
lems on the Witwatersrand. Master’s Thesis, University of the Witwaterstrand,
South Africa, 1951.

M. Lehar and M. Zimmermann. An inexpensive estimate of failure probability
for high-dimensional systems with uncertainty. Structural Safety, 36-37:32-38,
2012.

R.J. Malak Jr., J.M. Aughenbaugh and C.J.J. Paredis. Multi-attribute utility
analysis in set-based conceptual design. Computer-Aided Design, 41:214-227,
2009.

G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246-1266,
1963.

M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cam-
bridge, 1996.

N. Mladenovi¢ and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097-1000, 1997.

Y .-E. Nahm and H. Ishikawa. Novel space-based design methodology for prelim-
inary engineering design. The International Journal of Advanced Manufacturing
Technology, 28(11-12):1056-1070, 2006.

J.A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308-313, 1965.

137

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

M.S. Nixon and A.S. Aguado. Feature FExtraction and Image Processing. Else-
vier/Academic Press, Amsterdam—Boston, 2008.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York,
2006.

W. Pedrycz and F. Gomide. An Introduction to Fuzzy Sets. The MIT Press,
Cambridge, 1998.

A. Piotrow, M. Liebscher, S. Pannier and W. Graf. Grouping detection of
uncertain structural process by means of cluster analysis. 7th Furopean LS-
DYNA Conference, 2014.

N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan and P.K.
Tucker. Surrogate-based analysis and optimization. Progress in Aerospace
Sciences, 41(1):1-28, 2005.

C.M. Rocco, J.M. Moreno and N. Carrasquero. Robust design using a hybrid-
cellular-evolutionary and interval-arithmetic approach: a reliability application.
Reliability Engineering and System Safety, 79:149-159, 2003.

J. Sacks, S.B. Schiller and W.J. Welch. Designs for computer experiments.
Technometrics, 31(1):41-47, 1989.

R. Schaback and H. Wendland. Numerische Mathematik. Springer, Berlin—
Heidelberg, 2005.

D.F. Shanno. Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computation, 24(111):647-656, 1970.

J.K. Sharma. Business Statistics. Pearson India, New Delhi, 2006.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. 1998 IEEE In-
ternational Conference on Evolutionary Computation Proceedings, 69-73, 1998.

D.J. Singer, N. Doerry and M.E. Buckley. What is set-based design? Nawval
Engineers Journal, 121(4):31-43, 2009.

D. Sobek, A.C. Ward and J. Liker. Toyota’s principles of set-based concurrent
engineering. Sloan Management Review, 40(2):67-83, 1999.

R. Storn and K. Price. Differential evolution — a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11:341-359, 1997.

D. Sunday. Inclusion of a Point in a Polygon. http://geomalgorithms.com /a03-
_inclusion.html. December 16, 2019.

J.A.K. Suykens. Nonlinear modelling and support vector machines. Conference
Record — IEEE Instrumentation and Measurement Technology Conference,
1(1):287-294, 2001.

R. Szeliski. Computer Vision. Algorithms And Applications. Springer, London—
New York, 2011.

138

BIBLIOGRAPHY

[77]

78]

[79]

[30]

[81]

[82]

[87]

F. Troltzsch. Optimale Steuerung Partieller Differentialgleichungen. Vieweg +
Teubner, Wiesbaden, 2009.

J. Tu, K.K. Choi and Y.H. Park. A new study on reliability-based design
optimization. Journal of Mechanical Design, 121(4):557-564, 1999.

Laboratory Test Procedure for New Car Assessment Program Frontal Impact
Testing. U.S. Department of Transportation, National Highway Traffic Safety
Administration, Office of Vehicle Safety, Office of Crashworthiness Standards,
2012.

A.R. Webb and K.D. Copsey. Statistical Pattern Recognition. Wiley, Hoboken,
2011.

S.S.A. Willaert, R. de Graaf and S. Minderhoud. Collaborative engineering: a
case study of concurrent engineering in a wider context. Journal of Engineering
and Technology Management, 15:87-109, 1998.

R.I. Winner, J.P. Pennell, H.E. Bertrand and M.M.G. Slusarczuk. The role
of concurrent engineering in weapons system acquisition. Institute for Defense
Analyses, Report R-338, 1988.

S.J. Wright. Coordinate descent algorithms. Mathematical Programming,
151(1):3-34, 2015.

B.D. Youn, K.K. Choi, R.-J. Yang and L. Gu. Reliability-based design optimiza-
tion for crashworthiness of vehicle side impact. Structural and Multidisciplinary
Optimization, 26:272—283, 2004.

M. Zimmermann and J.E. von Hoessle. Computing solution spaces for ro-
bust design. International Journal for Numerical Methods in Engineering,
94(3):290-307, 2013.

M. Zimmermann, S. Konigs, C. Niemeyer, J. Fender, C. Zeherbauer, R. Vitale
and M. Wahle. On the design of large systems subject to uncertainty. Journal
of Engineering Design, 28(4):233-254, 2017.

P. Zornig. Nonlinear Programming. De Gruyter, Berlin-Boston, 2014.

139

Curriculum Vitae

Personal Data

Name

Date of Birth
Place of Birth
Nationality

Education

1996 — 2000

2000 — 2009

2009 — 2013

2013 - 2015

2015 — 2020

Dennis Thassilo Trondle
23rd of June 1990
Bad Sackingen, Germany

German

Primary School

Grundschule Noggenschwiel
High School
Klettgau-Gymnasium Tiengen
BSc Student in Mathematics
University of Basel

MSc Student in Mathematics
University of Basel

PhD Student in Mathematics
University of Basel

	Introduction
	Motivation
	An Illustrative Example
	Overview of Methods
	Solution Spaces
	Outline of the Thesis

	Box Optimization
	Algorithm
	Box Initialization
	Exploration Phase
	Consolidation Phase

	Modifications to the Algorithm
	Probability of Finding Good Designs
	In the Growth Step
	In the Consolidation Phase

	Numerical Experiments
	Two Example Problems in 2D
	Growth Rate Parameter Study

	Rotated Box Optimization
	Box Rotations for 2D-Maps
	Principal Component Analysis
	Rotated Box Optimization Algorithm
	Box Initialization
	Exploration Phase
	Consolidation Phase

	Numerical Experiments
	Two Example Problems in 2D
	Diagonal Solution Space

	Polytope Optimization
	Polytopes for 2D-Maps
	Manipulating 2D Polygons
	Sample Design Points
	Winding Number Algorithm
	Trim Polygons
	Evaluation of Polygons
	Remove Spikes
	Relocate Vertices
	Grow Polygon
	Retract Polygon
	Remove Self-Intersections

	Polytope Optimization Algorithm
	Polytope Initialization
	Exploration Phase
	Consolidation Phase

	Numerical Experiments
	Two Example Problems in 2D
	Parameter Studies

	Further Modifications of the Algorithms
	Swapping Order of Iterations
	Analysis of Covariance

	Numerical Results
	4D Rosenbrock Function
	8D Nonlinear Problem from Acoustics
	10D Problem from Optimal Control
	Study of Sample Sizes

	Conclusion

