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I. Introduction 

Clustering is the task of assigning unlabeled data points into a finite number of clusters. The 
assignment is usually based on similarity or distance, so data points located in the same cluster are 
similar to each other. Clustering techniques have been implemented and play important roles in a wide 
range of application domains, such as image segmentation [1][2][3][4], image clustering [5], 
bioinformatics [6][7] and data mining [3][8]. Through clustering, the underlying patterns of the data 
can be revealed. Clustering is unsupervised learning that gives information based on the intrinsic 
properties of the data when no labels are assigned to the data. 

The most widely studied clustering algorithms are partitional clustering and hierarchical clustering 
[9]. Partitional clustering, such as k-means and k-medoids is the most widely used in practice. 
Partitional clustering divides the dataset into a number of partitions. The number of partitions must be 
smaller than the number of data points in the dataset. K-means clustering is simpler than k-medoids 
clustering, but its main drawback is the sensitivity to outliers. K-medoids clustering offers better result 
when dealing with outliers [10] and arbitrary distance metrics also in the situation when the mean or 
median does not have a clear definition. However, k-medoids clustering suffers high computational 
complexity. 

Due to the high computational complexity, the efficiency of k-medoids clustering becomes a major 
concern in the k-medoids algorithm improvement. Researchers have been working on attempts to 
improve the performance of k-medoids clustering [11][12]. In general, the efforts on improving k-
medoids clustering focus on three different approaches [13] such as 1) empowering the local search 
and global search for medoids selection, 2) the number of data to be used for the medoids calculation: 
use the entire data (PAM: Partitioning Around Medoids) algorithm or just a sample of the data 
(CLARA: Clustering Large Application) algorithm, and 3) the computation method: serial or parallel. 
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K-medoids clustering is categorized as partitional clustering. K-medoids 
offers better result when dealing with outliers and arbitrary distance metric
also in the situation when the mean or median does not exist within data. 
However, k-medoids suffers a high computational complexity. Partitioning 
Around Medoids (PAM) has been developed to improve k-medoids 
clustering, consists of build and swap steps and uses the entire dataset to find 
the best potential medoids. Thus, PAM produces better medoids than other 
algorithms. This research proposes the parallelization of PAM in k-medoids 
clustering on GPU to reduce computational time at the swap step of PAM. 
The parallelization scheme utilizes shared memory, reduction algorithm, and 
optimization of the thread block configuration to maximize the occupancy. 
Based on the experiment result, the proposed parallelized PAM k-medoids is 
faster than CPU and Matlab implementation and efficient for large dataset. 
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There have been studies conducted by researchers to implement the clustering method using 
parallel computing approaches [13][14][15][16][17], especially k-medoids clustering, that will be the 
focus of this research. One of the technologies that used to develop parallel k-medoids clustering is 
Hadoop-MapReduce [18][19][20][21][22][23]. MapReduce consists of map function and reduces 
function. Map function computes the distances between each data, and the medoids then assign the 
data to their clusters. Reduce function checks the results of Map function then search for new medoids. 
This function will return the results to the Map function in the next MapReduce process. In [14], the 
optimal search of medoids is performed based on the basic properties of triangular geometry. The 
speed of k-medoids clustering is improved when the validity of the clustering result is maintained 
[18]. Parallel k-medoids clustering can also be implemented on Graphics Processing Unit (GPU). 
Several GPU accelerated researchers have developed k-medoids clustering: parallel PAM 
implementation using CUDA [24][25], GPU based parallel k-medoids (combined PAM-CLARA) 
clustering for remote sensing data [26], and GPU accelerated parallel clustering algorithms including 
k-means clustering, k-medoids clustering, and hierarchical clustering [27]. 

This work focuses on the development of parallel k-medoids clustering to increase the efficiency 
of partitioning around medoids (PAM) in k-medoids clustering. Our main contribution is to speed up 
the computation of the PAM algorithm using a parallelization scheme on GPU. The proposed 
parallelization scheme can handle large dataset with n number of data without creating n×n table of 
distance that consume huge memory but still maintain the computation speed. This paper is organi-
zed as follows: Section 2 presents the proposed parallelized PAM in k-medoids clustering, Section 3 
presents the results and discussion, and the conclusion of this work is described in Section 4. 

II. Method 

A. K-Medoids Clustering 
K-medoids clustering is a partitional clustering method and is similar to k-means clustering 

because the goal of both methods is to divide a set of measurements or observations into k subsets or 
clusters so that the subsets minimize the sum of distances between a measurement and a center of the 
measurement’s cluster. Unlike k-means clustering, which minimizes the distance between data points 
within a cluster with the mean value of those data points, which called centroid, k-medoids clustering 
attempts to minimize the distance between data points within a cluster with a representative data point 
in the same cluster. This representative data point has a minimum total dissimilarities/distances to the 
other data points in the same cluster. This representative data point is called the medoid. Each 
generated cluster in k-medoids clustering has a representative data point (medoid). Thus, k-medoids 
clustering guarantees that the center of a cluster is the most centrally located data point.  

Medoids are initialized by selecting k data points arbitrarily. K-medoids clustering iterates until 
the objective function returns minimum value. The objective function / absolute-error criterion (AEC), 
E is defined in (1). 

𝐸 = ∑ ∑ ห𝑝 − 𝑜௝ห௣∈௖ೕ
௞
௝ୀଵ  (1) 

where 𝑝 is the data point in the cluster 𝑐௝ , 𝑜௝  is the medoid of 𝑐௝.  

K-medoids function involves several iterative algorithms that minimize the sum of distances from 
each object to its cluster’s medoid, over all of the clusters. A well-known implementation of k-
medoids clustering is the Partitioning Around Medoids (PAM) algorithm, which was developed by 
[28]. It takes two inputs: the number of clusters to generate (known as k) and a dataset D, which 
contains the data points. It generates k different clusters. The detail method of PAM is: 

1) Build Step. Select k data points arbitrarily from the dataset D as the initial medoids. 

2) Swap Step. Repeat 
a) Assign each non-medoid data point to the cluster, which has the most similar/nearest 

medoid. 
b) Randomly select a non-medoid data point. 
c) Compute the total cost of swapping that is the difference between the AEC calculated using 

the current medoid data point and the AEC calculated using the non-medoid data point 
selected in step b. 
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d) If the AEC calculated using a non-medoid data point is lower than the AEC calculated using 
the medoid data point, swap the medoid to that selected non-medoid data point. Then, the 
non-medoid data point is set to be the new medoid of the cluster. 

3) Until no more change on clusters. 

K-medoids clustering is better than k-means clustering when dealing with outliers [10]. K-medoids 
is the opposite of k-means clustering, that is sensitive to outliers. The presence of outliers does not 
influence medoids. K-medoids also useful for categorical clustering data where the mean of the data 
does not exist within the dataset. However, k-medoids is costlier than k-means clustering due to the 
iteration that examines every data point. 

The computational complexity of k-medoids clustering is 𝑂(𝑘(𝑛 − 𝑘)ଶ) where k is the number of 
clusters, and n is the number of data [29]. For a large value of n and k, the computation is very costly. 
For a large number of data, the computation time will increase quickly as the number of data grows. 
Thus, k-medoids clustering is only suitable for small data and suffers inefficiency for big data. 

B. CUDA Parallel Computing 
GPU (Graphics Processing Unit) is a high-level parallel architecture used to do a fast operation in 

computer graphics, but now it can be used to perform computation other than graphics, which known 
as GP-GPU (General Purpose-Graphics Processing Unit) [30]. The well-known general-purpose 
parallel computing platform and programming model is Compute Unified Device Architecture 
(CUDA) from NVidia. GPU is highly parallel, multithreaded, has many-core processor and very high 
memory bandwidth. The difference between how CPU and GPU process the data is shown in Fig. 1 
(a) and (b). GPU devotes more transistor to data processing rather than data caching and flow control. 
GPU is built on array of Streaming Multiprocessors (SM) and it is organized into grids, blocks, and 
threads. Data-parallel processing maps data elements to parallel processing threads. Fig. 1 (c) shows 
the parallel processing threads in GPU. A multithreaded program is partitioned into blocks of threads 
that execute independently from each other.  

III. Results and Discussions 

The proposed parallelized k-medoids are written using CUDA based on Matlab’s PAM 
implementation [31][32], and runs on Core-i7 7700K processor, 16 GB of RAM, and NVidia GTX 

 

(a) 

 

(c) 

 

(b) 

Fig. 1. GPU devotes more transistors to data processing; (a) CPU configuration; (b) GPU configuration; and (c) grid of 
threadblocks in GPU [30] 
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1070. The parallel implementation and performance evaluation is explained in the following 
subsections. 

A. Parallelized K-Medoids Clustering 
The implementation of parallelized PAM k-medoids is shown in Algorithm 1. It consists of three 

kernels that compute the gain of medoids to each data within a cluster, computes the gain of non-
medoids to each data, and computes the new medoids. In algorithm 1, the data and initial cluster 
medoids that randomly picked from data are copied from host to device. The algorithm computes new 
medoid per cluster and iterates until no medoid is changed. The data partition in the swap step is used 
to reduce the number of data processed by thread blocks. 

Algorithm 1. Proposed parallelized PAM k-medoids clustering. 

READ parameters of k-medoids and GPU configuration  
 
SET random data as initial cluster medoids 
COPY data and initial medoids from host to device 
WHILE cluster medoids changed DO 
 FOR EACH cluster DO 
  compute gain of medoid to each data within cluster 
 FOR n = 0 TO number of data partition DO 
   compute gain of non-medoids to each data … 
    in n-th partition 
  END 
  compute new medoid  
 END 
END  
COPY cluster medoids and labels from device to host 

Algorithm 2. Compute the gain of medoids to each data within the cluster. 

GPU CONFIGURATION 
 blocks ← 256 
 grids ← (number of data + blocks – 1)/ blocks  
 
gain medoids ← 0 
 
READ  data, 
  cluster medoids, 
  cluster labels, 
  current cluster index, 
  number of data, 
  number of cluster 
 
ALLOCATE shared memory (smem) to store 
 smem cluster medoids ← cluster medoids 
 smem gain ← 0 
 
i ← index of data 
IF i < number of data THEN 
 min distance index ← 0 
 min distance ← maximum value of type data 
 FOR k = 0 TO number of cluster DO  
  distance ← compute distance between … 
   i-th data and k-th smem cluster medoids  
  IF distance < min distance THEN 
   min distance index ← k 
   min distance ← distance 
  END 
 END 
 i-th cluster labels ← min distance index  
 
 IF min distance index = current cluster index THEN  
  ATOMICADD(smem gain, min distance) 



44 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 

 END 
END 
SYNCHRONIZE the threads 
 
IF threadIdx.x = 0 THEN 
 gain medoids ← smem gain  
END 
 

Algorithm 3. Compute the gain of non-medoids to each data.  

GPU CONFIGURATION 
 blocks ← 256 
 grids ← number of data after data partition 
 
READ data, 
  cluster medoids, 
  cluster labels, 
  gain of potential medoids, 
  current cluster index, 
  number of data, 
  number of cluster 
 
ALLOCATE shared memory (smem) to store 
 smem cluster medoids ← cluster medoids 
 smem gain int ← 0 
 smem gain ext ← 0 
 
i ← index of data after data partition 
i-th gain of non medoids ← 0 
IF i is not medoid THEN 
 gain int ← 0 
 gain ext ← 0 
 j ← index of data 
 IF j < number of data THEN 
  distance ← compute distance between … 
   i-th data and j-th data 
  p ← j-th cluster labels 
  IF p = current cluster index THEN 
   min distance ext ← maximum value of type data 
   FOR k = 0 TO number of cluster DO  
    IF k ≠ current cluster index THEN 
     distance ext ← compute distance between … 
      j-th data and k-th smem cluster medoids 
     IF distance ext < min distance ext THEN 
      min distance ext ← distance ext 
     END 
    END  
   END 
   IF min distance ext < maximum value of type … 
    data THEN 
    min value ← minimum value of … 
     min distance ext and distance 
    gain int ← gain int + min value  
   END 
  ELSE     
   distance int ← compute distance between …  
    i-th data and p-th smem cluster medoids  
   max value ← maximum value of … 
    (distance int – distance) and 0 
   gain ext ← gain ext + max value 
  END  
 END  
  
 q ← threadIdx.x 
 q-th smem gain int ← gain int 
 q-th smem gain ext ← gain ext 
 SYNCHRONIZE the threads   
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 gain int ← sum reduction of smem gain int  
 gain ext ← sum reduction of smem gain ext  
 SYNCHRONIZE the threads 
 
 IF threadIdx.x = 0 THEN 
  i-th gain of potential medoids ← gain ext + … 
   gain medoids – gain int 
 END 
END 
 

Algorithm 4. Compute the new medoids. 

GPU CONFIGURATION 
 blocks ← 256 
 grids ← 1 
 
stop iteration ← true 
 
READ data, 
  cluster medoids, 
  cluster labels, 
  medoid labels, 
  gain of non medoids, 
  current cluster index, 
  number of data, 
  number of cluster 
 
ALLOCATE shared memory (smem) to store 
 smem max gain ← 0 
 smem max gain index ← 0 
 
i ← index of data  
j ← current cluster index 
max gain ← 0 
max gain index ← j-th cluster labels  
IF i < number of data THEN 
 IF i-th gain of potential medoids > max gain THEN 
 max gain index ← i 
 max gain ← i-th gain of potential medoids 
 END 
END 
 
k ← threadIdx.x 
k-th smem max gain ← max gain 
k-th smem max gain index ← max gain index 
SYNCHRONIZE the threads 
 
max gain ← max reduction of smem max gain 
max gain index ← index of max reduction value … 
 of smem max gain 
SYNCHRONIZE the threads 
 
p ← max gain index  
IF max gain > 0 THEN 
 IF threadIdx.x = 0 THEN 
  j-th medoid labels ← p 
  stop iteration ← false 
 END 
 j-th cluster medoids ← p-th data 
END 
 

Based on the complexity of k-medoids, the most complex computation is in the process of finding 
new medoids thus, it will be parallelized. If 𝑛 is the number of data, the PAM algorithm can be 
optimized using 𝑛 × 𝑛 table of distance that pre-calculated before k-medoids computation executed. 
However, creating 𝑛 × 𝑛 table of distance requires a large amount of memory. The goal is to optimize 
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the 𝑂(𝑛 − 𝑘)ଶ using parallelization scheme without creating a table of distance to avoid large memory 
consumption on GPU. 

Algorithm 2 shows the computation of the gain of medoids to each data within the cluster. Gain is 
the sum of the distance between the medoids and each data in the same cluster. Shared memory is 
utilized to store the cluster medoids that repeatedly used in the calculation of distance. This will reduce 
the latency of global memory access to faster-shared memory access. Data are partitioned and 
processed by the thread blocks. Each thread computes the nearest medoid to each data, assigns the 
nearest medoids index to cluster label, and sum up the gain using atomic addition from CUDA in 
shared memory. The total gain that summed from each data then copied to the device memory. 

Algorithm 3 shows the computation of the gain of non-medoids to each data. The configuration of 
blocks and grids is different from Algorithm 2. While 𝑛 is the number of data and 𝑘 is the number of 
clusters, then Algorithm 3 requires (𝑛 − 𝑘) data compared to 𝑛 data. Here, Algorithm 2 only requires 
𝑛 data compare to 𝑘 data, where 𝑘 is usually a small number. Therefore in Algorithm 2, the thread 
blocks assigned to handle the outer (𝑛) loop and serialize the inner (𝑘) loop while in Algorithm 3, the 
threads assigned to handle the inner (𝑛) loop and the blocks assigned to handle the outer (𝑛 − 𝑘) 
loop. With this configuration, maximum occupancy can be achieved.  

In the inner loop computation, each non-medoids is compared to the entire dataset. Total gain of 
each non-medoids is computed by adding the gain of medoid to each data within a cluster (from 
Algorithm 2) with the gain of non-medoids to each data from outer cluster then subtracted by the gain 
of non-medoids to each data within a cluster. Because the threads handle the inner loop, sum reduction 
can be used in shared memory to sum up the gain of non-medoids to each data from the outer cluster 
with the gain of non-medoids to each data within the cluster. Shared memory also utilized to store the 
cluster medoids to provide faster access in the distance calculation that similar in Algorithm 2. The 
total gain of each non-medoids then copied to device memory to be used in the computation of new 
medoids. 

Algorithm 4 shows the computation of new medoids. New medoid is computed by finding the 
maximum gain that greater than zero from the gain of non-medoids in Algorithm 3. One block is used 
for the kernel to perform max reduction on 𝑛 data. The index of maximum gain indicates that the data 
which corresponds to that index has the highest potential as the new cluster medoid. The index and 
the new cluster medoid then copied to the device memory. If the maximum gain of non-medoids is 
less than zero for all cluster, then k-medoids iteration will stop otherwise the iteration continues. 

B. Performance Comparison 
The proposed parallelized PAM in k-medoids is tested using KDDCup dataset. The dataset is 

modified into a smaller set with a various number of data. We use 𝑘 = 5 to cluster 1,000, 2,000, 3,000, 
4,000, 5,000, 10,000, and 20,000 data with 41 attributes. The same initial cluster medoids are used, 
and the algorithms are computed 10 times to get the average computational time. The experiment 
compares computational time between CPU implementation of PAM k-medoids with the proposed 
GPU implementation of PAM k-medoids without creating a pre-calculated table of distance. Fig. 2 
shows the performance, is measured based on the computational time in milliseconds against the 
number of data. The red, orange, and green lines present the CPU, Matlab, and the proposed GPU 
implementation, respectively. 

Based on Fig. 2, the proposed parallelized PAM k-medoids achieves more than 11 times speed up 
from the CPU implementation. For the larger dataset, the computational time of CPU implementation 
rises significantly, which indicates the proposed GPU implementation is efficient in dealing with this 
problem. Fig. 2 also shows the performance evaluation of the proposed GPU and Matlab 
implementation. Matlab uses a table of distance in its PAM k-medoids computation. Matlab 
recommends the implementation of PAM to be used in a small dataset, which less than 3000 data. The 
speedup gain using this method compared to the CPU implementation is approximately 3 times and 
more for more massive datasets. By accessing the lookup table, distance computation on each iteration 
can be simplified to only reading the data, thus reduce the computational time. However, by using a 
pre-calculated table of distance, space complexity increases significantly for large datasets. The 
proposed GPU implementation achieves approximately 2~3 times speedup compared to the Matlab 
implementation. The result is acceptable because the proposed parallelized PAM does not use a pre-
calculated table of distance; thus, the potential implementation for a larger dataset is possible.  
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IV. Conclusion 

In this research, parallelized PAM k-medoids on GPU is proposed. PAM algorithm for k-medoids 
returns the best medoids compared to the other algorithms because it uses the entire dataset to find the 
best potential medoids. However, it has a high computational complexity. PAM algorithm usually 
implemented using a pre-calculated table of distance to avoid repeated distance calculation, which 
leads to massive memory consumption. The proposed implementation optimizes the distance 
computation of the PAM algorithm using a parallel scheme without the pre-calculated table of 
distance. From the experiment, the proposed parallelized PAM k-medoids is faster 2~3 times from 
Matlab and 11~15 times from CPU implementation. The proposed method can handle large datasets 
by performing data partition and process the data in parallel. For future work, the proposed method 
will be improved to handle categorical dataset, increase the performance using multi GPUs, and 
compared to the other parallel k-medoids clustering libraries.  
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