
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602
Vol 3, No 1, July 2020, pp. 40–49 eISSN 2597-4637

https://doi.org/10.17977/um018v3i12020p40-49
©2020 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id
This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Parallelization of Partitioning Around Medoids (PAM)
in K-Medoids Clustering on GPU

Adhi Prahara a, 1, *, Dewi Pramudi Ismi a, 2, Ahmad Azhari a, 3

a Informatics Department, Faculty of Industrial Technology, Universitas Ahmad Dahlan
Jalan Ring Road Selatan, Tamanan, Banguntapan, Bantul Yogyakarta 55166, Indonesia
1 adhi.prahara@tif.uad.ac.id *; 2 dewi.ismi@tif.uad.ac.id; 3 ahmad.azhari@tif.uad.ac.id

* corresponding author

I. Introduction

Clustering is the task of assigning unlabeled data points into a finite number of clusters. The
assignment is usually based on similarity or distance, so data points located in the same cluster are
similar to each other. Clustering techniques have been implemented and play important roles in a wide
range of application domains, such as image segmentation [1][2][3][4], image clustering [5],
bioinformatics [6][7] and data mining [3][8]. Through clustering, the underlying patterns of the data
can be revealed. Clustering is unsupervised learning that gives information based on the intrinsic
properties of the data when no labels are assigned to the data.

The most widely studied clustering algorithms are partitional clustering and hierarchical clustering
[9]. Partitional clustering, such as k-means and k-medoids is the most widely used in practice.
Partitional clustering divides the dataset into a number of partitions. The number of partitions must be
smaller than the number of data points in the dataset. K-means clustering is simpler than k-medoids
clustering, but its main drawback is the sensitivity to outliers. K-medoids clustering offers better result
when dealing with outliers [10] and arbitrary distance metrics also in the situation when the mean or
median does not have a clear definition. However, k-medoids clustering suffers high computational
complexity.

Due to the high computational complexity, the efficiency of k-medoids clustering becomes a major
concern in the k-medoids algorithm improvement. Researchers have been working on attempts to
improve the performance of k-medoids clustering [11][12]. In general, the efforts on improving k-
medoids clustering focus on three different approaches [13] such as 1) empowering the local search
and global search for medoids selection, 2) the number of data to be used for the medoids calculation:
use the entire data (PAM: Partitioning Around Medoids) algorithm or just a sample of the data
(CLARA: Clustering Large Application) algorithm, and 3) the computation method: serial or parallel.

ARTICLE INFO A B ST RA C T

Article history:
Received 25 June 2020
Revised 15 July 2020
Accepted 9 August 2020
Published online 17 August 2020

K-medoids clustering is categorized as partitional clustering. K-medoids
offers better result when dealing with outliers and arbitrary distance metric
also in the situation when the mean or median does not exist within data.
However, k-medoids suffers a high computational complexity. Partitioning
Around Medoids (PAM) has been developed to improve k-medoids
clustering, consists of build and swap steps and uses the entire dataset to find
the best potential medoids. Thus, PAM produces better medoids than other
algorithms. This research proposes the parallelization of PAM in k-medoids
clustering on GPU to reduce computational time at the swap step of PAM.
The parallelization scheme utilizes shared memory, reduction algorithm, and
optimization of the thread block configuration to maximize the occupancy.
Based on the experiment result, the proposed parallelized PAM k-medoids is
faster than CPU and Matlab implementation and efficient for large dataset.

This is an open access article under the CC BY-SA license
(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:
k-medoids
PAM
parallel computing
CUDA
GPU

 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 41

There have been studies conducted by researchers to implement the clustering method using
parallel computing approaches [13][14][15][16][17], especially k-medoids clustering, that will be the
focus of this research. One of the technologies that used to develop parallel k-medoids clustering is
Hadoop-MapReduce [18][19][20][21][22][23]. MapReduce consists of map function and reduces
function. Map function computes the distances between each data, and the medoids then assign the
data to their clusters. Reduce function checks the results of Map function then search for new medoids.
This function will return the results to the Map function in the next MapReduce process. In [14], the
optimal search of medoids is performed based on the basic properties of triangular geometry. The
speed of k-medoids clustering is improved when the validity of the clustering result is maintained
[18]. Parallel k-medoids clustering can also be implemented on Graphics Processing Unit (GPU).
Several GPU accelerated researchers have developed k-medoids clustering: parallel PAM
implementation using CUDA [24][25], GPU based parallel k-medoids (combined PAM-CLARA)
clustering for remote sensing data [26], and GPU accelerated parallel clustering algorithms including
k-means clustering, k-medoids clustering, and hierarchical clustering [27].

This work focuses on the development of parallel k-medoids clustering to increase the efficiency
of partitioning around medoids (PAM) in k-medoids clustering. Our main contribution is to speed up
the computation of the PAM algorithm using a parallelization scheme on GPU. The proposed
parallelization scheme can handle large dataset with n number of data without creating n×n table of
distance that consume huge memory but still maintain the computation speed. This paper is organi-
zed as follows: Section 2 presents the proposed parallelized PAM in k-medoids clustering, Section 3
presents the results and discussion, and the conclusion of this work is described in Section 4.

II. Method

A. K-Medoids Clustering
K-medoids clustering is a partitional clustering method and is similar to k-means clustering

because the goal of both methods is to divide a set of measurements or observations into k subsets or
clusters so that the subsets minimize the sum of distances between a measurement and a center of the
measurement’s cluster. Unlike k-means clustering, which minimizes the distance between data points
within a cluster with the mean value of those data points, which called centroid, k-medoids clustering
attempts to minimize the distance between data points within a cluster with a representative data point
in the same cluster. This representative data point has a minimum total dissimilarities/distances to the
other data points in the same cluster. This representative data point is called the medoid. Each
generated cluster in k-medoids clustering has a representative data point (medoid). Thus, k-medoids
clustering guarantees that the center of a cluster is the most centrally located data point.

Medoids are initialized by selecting k data points arbitrarily. K-medoids clustering iterates until
the objective function returns minimum value. The objective function / absolute-error criterion (AEC),
E is defined in (1).

𝐸 = ∑ ∑ ห𝑝 − 𝑜௝ห௣∈௖ೕ
௞
௝ୀଵ (1)

where 𝑝 is the data point in the cluster 𝑐௝ , 𝑜௝ is the medoid of 𝑐௝.

K-medoids function involves several iterative algorithms that minimize the sum of distances from
each object to its cluster’s medoid, over all of the clusters. A well-known implementation of k-
medoids clustering is the Partitioning Around Medoids (PAM) algorithm, which was developed by
[28]. It takes two inputs: the number of clusters to generate (known as k) and a dataset D, which
contains the data points. It generates k different clusters. The detail method of PAM is:

1) Build Step. Select k data points arbitrarily from the dataset D as the initial medoids.

2) Swap Step. Repeat
a) Assign each non-medoid data point to the cluster, which has the most similar/nearest

medoid.
b) Randomly select a non-medoid data point.
c) Compute the total cost of swapping that is the difference between the AEC calculated using

the current medoid data point and the AEC calculated using the non-medoid data point
selected in step b.

42 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49

d) If the AEC calculated using a non-medoid data point is lower than the AEC calculated using
the medoid data point, swap the medoid to that selected non-medoid data point. Then, the
non-medoid data point is set to be the new medoid of the cluster.

3) Until no more change on clusters.

K-medoids clustering is better than k-means clustering when dealing with outliers [10]. K-medoids
is the opposite of k-means clustering, that is sensitive to outliers. The presence of outliers does not
influence medoids. K-medoids also useful for categorical clustering data where the mean of the data
does not exist within the dataset. However, k-medoids is costlier than k-means clustering due to the
iteration that examines every data point.

The computational complexity of k-medoids clustering is 𝑂(𝑘(𝑛 − 𝑘)ଶ) where k is the number of
clusters, and n is the number of data [29]. For a large value of n and k, the computation is very costly.
For a large number of data, the computation time will increase quickly as the number of data grows.
Thus, k-medoids clustering is only suitable for small data and suffers inefficiency for big data.

B. CUDA Parallel Computing
GPU (Graphics Processing Unit) is a high-level parallel architecture used to do a fast operation in

computer graphics, but now it can be used to perform computation other than graphics, which known
as GP-GPU (General Purpose-Graphics Processing Unit) [30]. The well-known general-purpose
parallel computing platform and programming model is Compute Unified Device Architecture
(CUDA) from NVidia. GPU is highly parallel, multithreaded, has many-core processor and very high
memory bandwidth. The difference between how CPU and GPU process the data is shown in Fig. 1
(a) and (b). GPU devotes more transistor to data processing rather than data caching and flow control.
GPU is built on array of Streaming Multiprocessors (SM) and it is organized into grids, blocks, and
threads. Data-parallel processing maps data elements to parallel processing threads. Fig. 1 (c) shows
the parallel processing threads in GPU. A multithreaded program is partitioned into blocks of threads
that execute independently from each other.

III. Results and Discussions

The proposed parallelized k-medoids are written using CUDA based on Matlab’s PAM
implementation [31][32], and runs on Core-i7 7700K processor, 16 GB of RAM, and NVidia GTX

(a)

(c)

(b)

Fig. 1. GPU devotes more transistors to data processing; (a) CPU configuration; (b) GPU configuration; and (c) grid of
threadblocks in GPU [30]

 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 43

1070. The parallel implementation and performance evaluation is explained in the following
subsections.

A. Parallelized K-Medoids Clustering
The implementation of parallelized PAM k-medoids is shown in Algorithm 1. It consists of three

kernels that compute the gain of medoids to each data within a cluster, computes the gain of non-
medoids to each data, and computes the new medoids. In algorithm 1, the data and initial cluster
medoids that randomly picked from data are copied from host to device. The algorithm computes new
medoid per cluster and iterates until no medoid is changed. The data partition in the swap step is used
to reduce the number of data processed by thread blocks.

Algorithm 1. Proposed parallelized PAM k-medoids clustering.

READ parameters of k-medoids and GPU configuration

SET random data as initial cluster medoids
COPY data and initial medoids from host to device
WHILE cluster medoids changed DO
 FOR EACH cluster DO
 compute gain of medoid to each data within cluster
 FOR n = 0 TO number of data partition DO
 compute gain of non-medoids to each data …
 in n-th partition
 END
 compute new medoid
 END
END
COPY cluster medoids and labels from device to host

Algorithm 2. Compute the gain of medoids to each data within the cluster.

GPU CONFIGURATION
 blocks ← 256
 grids ← (number of data + blocks – 1)/ blocks

gain medoids ← 0

READ data,
 cluster medoids,
 cluster labels,
 current cluster index,
 number of data,
 number of cluster

ALLOCATE shared memory (smem) to store
 smem cluster medoids ← cluster medoids
 smem gain ← 0

i ← index of data
IF i < number of data THEN
 min distance index ← 0
 min distance ← maximum value of type data
 FOR k = 0 TO number of cluster DO
 distance ← compute distance between …
 i-th data and k-th smem cluster medoids
 IF distance < min distance THEN
 min distance index ← k
 min distance ← distance
 END
 END
 i-th cluster labels ← min distance index

 IF min distance index = current cluster index THEN
 ATOMICADD(smem gain, min distance)

44 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49

 END
END
SYNCHRONIZE the threads

IF threadIdx.x = 0 THEN
 gain medoids ← smem gain
END

Algorithm 3. Compute the gain of non-medoids to each data.

GPU CONFIGURATION
 blocks ← 256
 grids ← number of data after data partition

READ data,
 cluster medoids,
 cluster labels,
 gain of potential medoids,
 current cluster index,
 number of data,
 number of cluster

ALLOCATE shared memory (smem) to store
 smem cluster medoids ← cluster medoids
 smem gain int ← 0
 smem gain ext ← 0

i ← index of data after data partition
i-th gain of non medoids ← 0
IF i is not medoid THEN
 gain int ← 0
 gain ext ← 0
 j ← index of data
 IF j < number of data THEN
 distance ← compute distance between …
 i-th data and j-th data
 p ← j-th cluster labels
 IF p = current cluster index THEN
 min distance ext ← maximum value of type data
 FOR k = 0 TO number of cluster DO
 IF k ≠ current cluster index THEN
 distance ext ← compute distance between …
 j-th data and k-th smem cluster medoids
 IF distance ext < min distance ext THEN
 min distance ext ← distance ext
 END
 END
 END
 IF min distance ext < maximum value of type …
 data THEN
 min value ← minimum value of …
 min distance ext and distance
 gain int ← gain int + min value
 END
 ELSE
 distance int ← compute distance between …
 i-th data and p-th smem cluster medoids
 max value ← maximum value of …
 (distance int – distance) and 0
 gain ext ← gain ext + max value
 END
 END

 q ← threadIdx.x
 q-th smem gain int ← gain int
 q-th smem gain ext ← gain ext
 SYNCHRONIZE the threads

 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 45

 gain int ← sum reduction of smem gain int
 gain ext ← sum reduction of smem gain ext
 SYNCHRONIZE the threads

 IF threadIdx.x = 0 THEN
 i-th gain of potential medoids ← gain ext + …
 gain medoids – gain int
 END
END

Algorithm 4. Compute the new medoids.

GPU CONFIGURATION
 blocks ← 256
 grids ← 1

stop iteration ← true

READ data,
 cluster medoids,
 cluster labels,
 medoid labels,
 gain of non medoids,
 current cluster index,
 number of data,
 number of cluster

ALLOCATE shared memory (smem) to store
 smem max gain ← 0
 smem max gain index ← 0

i ← index of data
j ← current cluster index
max gain ← 0
max gain index ← j-th cluster labels
IF i < number of data THEN
 IF i-th gain of potential medoids > max gain THEN
 max gain index ← i
 max gain ← i-th gain of potential medoids
 END
END

k ← threadIdx.x
k-th smem max gain ← max gain
k-th smem max gain index ← max gain index
SYNCHRONIZE the threads

max gain ← max reduction of smem max gain
max gain index ← index of max reduction value …
 of smem max gain
SYNCHRONIZE the threads

p ← max gain index
IF max gain > 0 THEN
 IF threadIdx.x = 0 THEN
 j-th medoid labels ← p
 stop iteration ← false
 END
 j-th cluster medoids ← p-th data
END

Based on the complexity of k-medoids, the most complex computation is in the process of finding
new medoids thus, it will be parallelized. If 𝑛 is the number of data, the PAM algorithm can be
optimized using 𝑛 × 𝑛 table of distance that pre-calculated before k-medoids computation executed.
However, creating 𝑛 × 𝑛 table of distance requires a large amount of memory. The goal is to optimize

46 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49

the 𝑂(𝑛 − 𝑘)ଶ using parallelization scheme without creating a table of distance to avoid large memory
consumption on GPU.

Algorithm 2 shows the computation of the gain of medoids to each data within the cluster. Gain is
the sum of the distance between the medoids and each data in the same cluster. Shared memory is
utilized to store the cluster medoids that repeatedly used in the calculation of distance. This will reduce
the latency of global memory access to faster-shared memory access. Data are partitioned and
processed by the thread blocks. Each thread computes the nearest medoid to each data, assigns the
nearest medoids index to cluster label, and sum up the gain using atomic addition from CUDA in
shared memory. The total gain that summed from each data then copied to the device memory.

Algorithm 3 shows the computation of the gain of non-medoids to each data. The configuration of
blocks and grids is different from Algorithm 2. While 𝑛 is the number of data and 𝑘 is the number of
clusters, then Algorithm 3 requires (𝑛 − 𝑘) data compared to 𝑛 data. Here, Algorithm 2 only requires
𝑛 data compare to 𝑘 data, where 𝑘 is usually a small number. Therefore in Algorithm 2, the thread
blocks assigned to handle the outer (𝑛) loop and serialize the inner (𝑘) loop while in Algorithm 3, the
threads assigned to handle the inner (𝑛) loop and the blocks assigned to handle the outer (𝑛 − 𝑘)
loop. With this configuration, maximum occupancy can be achieved.

In the inner loop computation, each non-medoids is compared to the entire dataset. Total gain of
each non-medoids is computed by adding the gain of medoid to each data within a cluster (from
Algorithm 2) with the gain of non-medoids to each data from outer cluster then subtracted by the gain
of non-medoids to each data within a cluster. Because the threads handle the inner loop, sum reduction
can be used in shared memory to sum up the gain of non-medoids to each data from the outer cluster
with the gain of non-medoids to each data within the cluster. Shared memory also utilized to store the
cluster medoids to provide faster access in the distance calculation that similar in Algorithm 2. The
total gain of each non-medoids then copied to device memory to be used in the computation of new
medoids.

Algorithm 4 shows the computation of new medoids. New medoid is computed by finding the
maximum gain that greater than zero from the gain of non-medoids in Algorithm 3. One block is used
for the kernel to perform max reduction on 𝑛 data. The index of maximum gain indicates that the data
which corresponds to that index has the highest potential as the new cluster medoid. The index and
the new cluster medoid then copied to the device memory. If the maximum gain of non-medoids is
less than zero for all cluster, then k-medoids iteration will stop otherwise the iteration continues.

B. Performance Comparison
The proposed parallelized PAM in k-medoids is tested using KDDCup dataset. The dataset is

modified into a smaller set with a various number of data. We use 𝑘 = 5 to cluster 1,000, 2,000, 3,000,
4,000, 5,000, 10,000, and 20,000 data with 41 attributes. The same initial cluster medoids are used,
and the algorithms are computed 10 times to get the average computational time. The experiment
compares computational time between CPU implementation of PAM k-medoids with the proposed
GPU implementation of PAM k-medoids without creating a pre-calculated table of distance. Fig. 2
shows the performance, is measured based on the computational time in milliseconds against the
number of data. The red, orange, and green lines present the CPU, Matlab, and the proposed GPU
implementation, respectively.

Based on Fig. 2, the proposed parallelized PAM k-medoids achieves more than 11 times speed up
from the CPU implementation. For the larger dataset, the computational time of CPU implementation
rises significantly, which indicates the proposed GPU implementation is efficient in dealing with this
problem. Fig. 2 also shows the performance evaluation of the proposed GPU and Matlab
implementation. Matlab uses a table of distance in its PAM k-medoids computation. Matlab
recommends the implementation of PAM to be used in a small dataset, which less than 3000 data. The
speedup gain using this method compared to the CPU implementation is approximately 3 times and
more for more massive datasets. By accessing the lookup table, distance computation on each iteration
can be simplified to only reading the data, thus reduce the computational time. However, by using a
pre-calculated table of distance, space complexity increases significantly for large datasets. The
proposed GPU implementation achieves approximately 2~3 times speedup compared to the Matlab
implementation. The result is acceptable because the proposed parallelized PAM does not use a pre-
calculated table of distance; thus, the potential implementation for a larger dataset is possible.

 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 47

IV. Conclusion

In this research, parallelized PAM k-medoids on GPU is proposed. PAM algorithm for k-medoids
returns the best medoids compared to the other algorithms because it uses the entire dataset to find the
best potential medoids. However, it has a high computational complexity. PAM algorithm usually
implemented using a pre-calculated table of distance to avoid repeated distance calculation, which
leads to massive memory consumption. The proposed implementation optimizes the distance
computation of the PAM algorithm using a parallel scheme without the pre-calculated table of
distance. From the experiment, the proposed parallelized PAM k-medoids is faster 2~3 times from
Matlab and 11~15 times from CPU implementation. The proposed method can handle large datasets
by performing data partition and process the data in parallel. For future work, the proposed method
will be improved to handle categorical dataset, increase the performance using multi GPUs, and
compared to the other parallel k-medoids clustering libraries.

Acknowledgment

This research is supported by The Indonesian Ministry of Research, Technology and Higher
Education (RISTEK-DIKTI) research grant no. PEKERTI-056/SP3/LPP-UAD/IV/2017.

Declarations

Author contribution
All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement
This research receives funding from The Indonesian Ministry of Research, Technology and Higher Education (RISTEK-

DIKTI) research grant no. PEKERTI-056/SP3/LPP-UAD/IV/2017.

Conflict of interest
The authors declare no conflict of interest.

Fig. 2. PAM K-medoids performance evaluation

48 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49

Additional information
No additional information is available for this paper.

References
[1] Y. Zou and B. Liu, “Survey on clustering-based image segmentation techniques,” in Proceedings of the 2016 IEEE 20th

International Conference on Computer Supported Cooperative Work in Design, CSCWD 2016, Sep. 2016, pp. 106–
110, doi: 10.1109/CSCWD.2016.7565972.

[2] N. Dhanachandra and Y. J. Chanu, “A Survey on Image Segmentation Methods using Clustering Techniques,” Eur. J.
Eng. Res. Sci., vol. 2, no. 1, p. 15, Jan. 2017, doi: 10.24018/ejers.2017.2.1.237.

[3] A. Saxena et al., “A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681, Dec.
2017, doi: 10.1016/j.neucom.2017.06.053.

[4] A. Prahara, I. T. R. Yanto, and T. Herawan, “Histogram thresholding for automatic color segmentation based on k-
means clustering,” in Advances in Intelligent Systems and Computing, 2017, vol. 549 AISC, pp. 344–354, doi:
10.1007/978-3-319-51281-5_35.

[5] S. Wazarkar and B. N. Keshavamurthy, “A survey on image data analysis through clustering techniques for real world
applications,” J. Vis. Commun. Image Represent., vol. 55, pp. 596–626, Aug. 2018, doi: 10.1016/j.jvcir.2018.07.009.

[6] D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Unsupervised clustering of bioinformatics data,” in European
Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, Eunite,
2004, pp. 47–53.

[7] J. D. MacCuish and N. E. MacCuish, Clustering in bioinformatics and drug discovery. CRC Press, 2010.

[8] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping Multidimensional Data: Recent Advances in
Clustering, Springer Berlin Heidelberg, 2006, pp. 25–71.

[9] C. K. Reddy and B. Vinzamuri, “A Survey of Partitional and Hierarchical Clustering Algorithms.,” Data Clust.
Algorithms Appl., vol. 87, 2013.

[10] P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm for Big Data,” in Physics
Procedia, Jan. 2016, vol. 78, pp. 507–512, doi: 10.1016/j.procs.2016.02.095.

[11] E. Schubert and P. J. Rousseeuw, “Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS
Algorithms,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Oct. 2019, vol. 11807 LNCS, pp. 171–187, doi: 10.1007/978-3-030-32047-8_16.

[12] P. O. Olukanmi, F. Nelwamondo, and T. Marwala, “PAM-lite: Fast and accurate k-medoids clustering for massive
datasets,” in Proceedings - 2019 Southern African Universities Power Engineering Conference/Robotics and
Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA 2019, May 2019, pp. 200–
204, doi: 10.1109/RoboMech.2019.8704767.

[13] H. Song, J.-G. Lee, and W.-S. Han, “PAMAE: Parallel k-Medoids Clustering with High Accuracy and Efficiency,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017,
pp. 1087–1096, doi: 10.1145/3097983.3098098.

[14] Ying-ting Zhu, Fu-zhang Wang, Xing-hua Shan, and Xiao-yan Lv, “K-medoids clustering based on MapReduce and
optimal search of medoids,” in 2014 9th International Conference on Computer Science & Education, Aug. 2014, pp.
573–577, doi: 10.1109/ICCSE.2014.6926527.

[15] A. Martino, A. Rizzi, and F. M. Frattale Mascioli, “Efficient approaches for solving the large-scale k-medoids problem:
Towards structured data,” in Studies in Computational Intelligence, Nov. 2019, vol. 829, pp. 199–219, doi:
10.1007/978-3-030-16469-0_11.

[16] A. Prahara, D. P. Ismi, A. I. Kistijantoro, and M. L. Khodra, “Parallelized k-means clustering by exploiting instruction
level parallelism at low occupancy,” in Proceedings - 2017 2nd International Conferences on Information Technology,
Information Systems and Electrical Engineering, ICITISEE 2017, Feb. 2018, vol. 2018-January, pp. 30–34, doi:
10.1109/ICITISEE.2017.8285516.

[17] X. Wang, “A Survey of Clustering Algorithms Based on Parallel Mechanism,” Apr. 2018, pp. 119–122,
doi:10.2991/cmsa-18.2018.28.

[18] Y. Jiang and J. Zhang, “Parallel K-Medoids clustering algorithm based on Hadoop,” in 2014 IEEE 5th International
Conference on Software Engineering and Service Science, Jun. 2014, pp. 649–652, doi:
10.1109/ICSESS.2014.6933652.

[19] M. O. Shafiq and E. Torunski, “A Parallel K-Medoids Algorithm for Clustering based on MapReduce,” in 2016 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), Dec. 2016, pp. 502–507, doi:
10.1109/ICMLA.2016.0089.

[20] X. Yue, W. Man, J. Yue, and G. Liu, “Parallel K-Medoids++ Spatial Clustering Algorithm Based on MapReduce,” pp.
1–8, Aug. 2016, Accessed: Jun. 21, 2020. [Online]. Available: http://arxiv.org/abs/1608.06861.

[21] D. Rajendran, S. Jangiti, S. Muralidharan, and M. Thendral, “Incremental MapReduce for K-Medoids Clustering of Big
Time-Series Data,” in Proceedings of the 2nd International Conference on Trends in Electronics and Informatics,
ICOEI 2018, Nov. 2018, pp. 1143–1146, doi: 10.1109/ICOEI.2018.8553756.

[22] Y. Zhao, B. Chen, and M. Li, “Parallel K-Medoids Improved Algorithm Based on MapReduce,” in Proceedings - 2018
6th International Conference on Advanced Cloud and Big Data, CBD 2018, Nov. 2018, pp. 18–23, doi:
10.1109/CBD.2018.00013.

 A. Prahara et al. / Knowledge Engineering and Data Science 2020, 3 (1): 40–49 49

[23] R. Wu, B. Zhang, and M. Hsu, “Clustering billions of data points using GPUs,” in Proc. Combined Workshops on
UnConventional High Performance Computing Workshop Plus Memory Access Workshop, UCHPC-MAW ’09, Co-
located with the 2009 ACM Int. Conf. on Computing Frontiers, CF’09, 2009, pp. 1–5, doi: 10.1145/1531666.1531668.

[24] E. Zhou, S. Mao, M. Li, and Z. Sun, “PAM spatial clustering algorithm research based on CUDA,” in International
Conference on Geoinformatics, Sep. 2016, vol. 2016-September, doi: 10.1109/GEOINFORMATICS.2016.7578971.

[25] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-Means algorithm by GPUs,” J. Comput. Syst. Sci., vol. 79, no. 2,
pp. 216–229, Mar. 2013, doi: 10.1016/j.jcss.2012.05.004.

[26] K. R. Kurte and S. S. Durbha, “High resolution disaster data clustering using Graphics Processing Units,” in 2013 IEEE
International Geoscience and Remote Sensing Symposium - IGARSS, Jul. 2013, pp. 1696–1699, doi:
10.1109/IGARSS.2013.6723121.

[27] K. J. Kohlhoff, M. H. Sosnick, W. T. Hsu, V. S. Pande, and R. B. Altman, “CAMPAIGN: an open-source library of
GPU-accelerated data clustering algorithms,” Bioinformatics, vol. 27, no. 16, pp. 2321–2322, Aug. 2011, doi:
10.1093/bioinformatics/btr386.

[28] L. Kaufman and P. J. Rousseeuw, Clustering by Means of Medoids. Faculty of Mathematics and Informatics, 1987.

[29] R. T. Ng and Jiawei Han, “CLARANS: a method for clustering objects for spatial data mining,” IEEE Trans. Knowl.
Data Eng., vol. 14, no. 5, pp. 1003–1016, Sep. 2002, doi: 10.1109/TKDE.2002.1033770.

[30] J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based Image Processing and Computer Vision,” in 2008
IEEE International Conference on Multimedia and Expo, Jun. 2008, pp. 9–12, doi: 10.1109/ICME.2008.4607358.

[31] L. Kaufman, P. J. R. Leonard Kaufman, and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, 1990.

[32] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for K-medoids clustering,” Expert Syst. Appl., vol. 36, no. 2,
pp. 3336–3341, Mar. 2009, doi: 10.1016/j.eswa.2008.01.039.

