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Introduction

English

The aim of this thesis is to study the theory of knotoids. In particular,

we will �nd some useful results that link it to knots and we will use these

last outcomes to develop some techniques that allow us to study proteins.

The theory of knotoids is recent: it was introduced by Vladimir Turaev

in 2012 as a rami�cation of that of knots. Intuively, knotoids can be seen

as open knot diagrams, that is open curves embedded in a surface with the

data of �nitely many crossings. In particular, they were initially thought as

knots missing a piece of their body. But there is another interesting way to

relate knots to knotoids. Indeed, it is possible to use the theory of branched

coverings to de�ne a new connection between these two objects. Another

aspect, the classi�cation of knotoids still remains an open topic in the theory,

even if some recent studies has achieved some great results in this �eld. Other

researches have focused on determining how knotoids can be transformed into

each other - due to their openness - and in studying these relations in order

to classify knotoids basing on those. One of the most promising application

of knotoids deals with proteins. Indeed, there is a tight connection between

a speci�c function of a protein and the entanglement that it assumes. In this

context, it has become more and more important to identify valid strategies

for detecting how a protein change its structure in the space, and knotoids

have been found to represent a privileged tool for doing this.

This work is divided into three chapters. The �rst one includes a recall
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on knot theory, the presentation of knotoids, the description of an invariant

of knotoids and the de�nition of θ-curves. The second chapter is dedicated to

the formulation of the main results of this thesis. We will see how is it possible

to move from knotoids to θ-curves and from θ-curves to strongly invertible

knots, and what are the correspondences between these three objects. We

will then see what are the consequences of applying a forbidden move on a

knotoid k on its associated θ-curve and strongly invertible knot and we will

show how is it possible to build a table of the f -distances between any two

knotoids with up to four crossings. In the third and last chapter we will

analyse some recent applications of the theory of knotoids to proteins. After

having explained what is the connection between proteins and knotoids we

will give an estimate of a good sample size for the number of projections

needed to obtain a realistic and computationally feasible representation of

the protein. Last, but not least, we will study the case of deeply knotted

proteins, in particular �nding a good and easy to calculate coe�cient that

encodes this useful information. At the end of this work there is an appendix

that contains a table of knotoids with up to four crossings and a table of knots

with up to eight crossings, in order to help the reader in understanding the

knotoids and knots that are used throughout this work.

Italiano

L'obiettivo di questa tesi è di studiare la teoria dei nodoidi. In particolare,

troveremo alcuni interessanti risultati che collegano questa teoria con quella

dei nodi e useremo questi risultati ottenuti per sviluppare alcune tecniche

volte allo studio delle proteine.

La teoria dei nodoidi è recente: è stata introdotta da Vladimir Turaev

nel 2012 come rami�cazione della teoria dei nodi. Intuitivamente, i nodoidi

possono essere visti come diagrammi aperti di nodi, cioè curve aperte su una

super�cie con un'informazione sugli incroci (che devono essere un numero

�nito). In particolare, i nodoidi sono stati pensati come nodi in cui una
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parte del corpo è stata rimossa. C'è però anche un altro modo interessante

per mettere in relazione nodi e nodoidi. Infatti, è possibile usare la teoria

dei rivestimenti rami�cati per ottenere un nuovo legame fra i due. Inoltre, la

classi�cazione dei nodoidi rimane tutt'ora un problema aperto della teoria,

nonostante alcuni studi recenti abbiano fatto diversi passi avanti in questo

senso. Altri ricercatori si sono invece concentrati sul modo in cui i nodoidi

possono essere trasformati l'uno nell'altro - sfruttando il fatto che siano curve

aperte - e su come classi�care i nodoidi basandosi su queste relazioni. Al-

tro aspetto interessante sono le applicazioni di questa teoria: una delle più

promettenti riguarda le proteine. C'è infatti una stretta connessione tra al-

cune funzioni speci�che delle proteine e il loro modo di annodarsi. In questo

ambito, sta assumendo sempre più rilevanza l'identi�cazione delle strategie

migliori per riconoscere come le proteine cambiano la loro struttura nello

spazio, e i nodoidi rappresentano valido strumento a riguardo.

Questo elaborato è diviso in tre capitoli. Il primo comprende un richiamo

di teoria dei nodi, la presentazione dei nodoidi, l'introduzione di un inva-

riante per nodoidi e la de�nizione delle θ-curve. Il secondo è dedicato alla

formulazioni dei risultati principali di questa tesi. Vedremo come è possi-

bile passare da nodoidi a θ-curve e da θ-curve a nodi fortemente invertibili,

e quali sono le corrispondenze tra questi oggetti. Vedremo poi quali sono

le conseguenze dell'applicazione di una mossa proibita su un nodoide sui

rispettivi θ-curva e nodo fortemente invertibile e mostreremo come sia pos-

sibile costruire una tabulazione delle f -distances per nodoidi con numero

minimo di incroci �no a quattro. Nel terzo e ultimo capitolo analizzeremo

alcune delle recenti applicazioni della teoria dei nodoidi alle proteine. Dopo

aver spiegato qual è il legame tra proteine e nodoidi daremo una stima per

scegliere in maniera e�cace la cardinalità del campione di dati esaminato,

in modo da ottenere una rappresentazione della proteina che sia allo stesso

tempo realistica e computazionalmente sostenibile. In ultimo, studieremo il

caso di proteine "profondamente annodate" e in particolare de�niremo l'area

relativa, una buona indicazione numerica che ci aiuti a distinguere le pro-
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teine profondamente annodate dalle altre. Alla �ne dell'elaborato si trova

una appendice che contiene una tabella di identi�cazione dei nodoidi �no a

quattro incroci e una dei nodi �no a otto incroci, per aiutare il lettore nel

visualizzare i nodi e nodoidi che vengono usati in questa tesi.



Chapter 1

Basic de�nitions

The theory of knotoids naturally arises as a generalisation of that of knots.

In this chapter we �rstly do a recall on the basics of this theory (following [3]),

as we will need some of its main concepts thoughout this thesis. Secondly,

we introduce knotoids in Section 1.2. In Section 1.3 we analyse an important

invariant of knotoids, the extended bracket polynomial (following [8]), that

can be used to create a table of knotoids (that can be found in Appendix A).

Section 1.4 is committed to the description of another object that will be

crucial in our study of knotoids: the θ-curves. The concepts of Section 1.2

and 1.4 are taken from [1, Sections from 1 to 3] unless it is di�erently

speci�ed.

1.1 Recall on knot theory

De�nition 1.1. A tame knot is a PL or smooth embedding of S1 in the

Euclidean space (or in the 3-sphere S3 with the Euclidean metric) considered

up to ambient isotopies

where

De�nition 1.2. Two embeddings f0, f1 : X −→ Y are ambient isotopic if

there is a level preserving PL or smooth isotopy

H : Y × I −→ Y × I, H(y, t) = (ht(y), t)

7



1.1 Recall on knot theory 1. Basic de�nitions

where h0 = idY and f1 = h1f0. The mapping H is called ambient isotopy.

We will refer to tame knots just as knots. Let us call K(S3) the set of

oriented knots in the 3-dimensional sphere: a knot is oriented if it is given

together with the data of an orientation, a chosen direction to travel around

the knot (in �gures it is represented by an arrow on the knot).

Given a knot we can project it onto a plane. We require that the pro-

jection has a �nite number of multiple points that must be at most double

points; moreover, it must not have cusps or tangent lines. If at any double

point of the projection we give the data of over/under-crossing we obtain

what we call a knot diagram. The concept of equivance of knots extends

to knot diagrams:

De�nition 1.3. Two knot diagrams are said to be equivalent if they are

connected by a �nite sequence of ambient isotopies of diagrams that preserve

the data of over/under crossings and of Reidemeister moves Ωi, i =

1, 2, 3. The moves are described in Figure 1.1.

↔

↔

↔

Ω1

Ω2

Ω3

↔

Figure 1.1: The classical Reidemeister moves Ω1, Ω2 and Ω3.

Note that Reidemeister moves consist in a local change in the diagram of

a knot. Moreover

Theorem 1.1. Two knots are equivalent if and only if all their diagrams are

equivalent.
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We are not interested just in knots, but in what we call strongly invertible

knots:

De�nition 1.4. A strongly invertible knot is the pair (K, τ) where K ∈
K(S3) and τ ∈ Sym+(S3, K) is an involution of S3 called strong inversion

that reverses the orientation of K, taken up to conjugacy in Sym+(S3, K).

Thus, two strongly invertible knots (K1, τ1) and (K2, τ2) are equivalent if

there is an orientation preserving homeomorphism f : S3 −→ S3 satifying

f(K1) = K2 and fτ1f
−1 = τ2.

Let us call KSI(S3) the set of strongly invertible knots (K, τ) in S3 and

KS.I.(S3) the subset of K(S3) of knots that admit a strong inversion. The

set of �xed points of a strong inversion τ will be denoted with Fix(τ).

1.2 Knotoids

There are two possible de�nitions of knotoids: we can see them as im-

mersed arcs in R2 or in the sphere S2. In both cases knotoids have the same

properties and there is a surjective but non injective map from the knotoids

in R2 to those in S2 (see Figure 1.2). As the theory we want to develop

is exhaustive in S2 and due to the aim of this thesis we will not deal with

knotoids in R2 (for more information see [1]). As for knots, we can give the

de�nition of a knotoid diagram and of equivalence between these diagrams.

De�nition 1.5. A knotoid diagram in S2 is a generic immersion of the

interval [0, 1] in S2 with �nitely many transverse double points endowed with

over/under-crossing data. The images of the endpoints 0 and 1, called v0

the tail and v1 the head of the knotoid diagram, are distinct from any other

point and from each other. We consider knotoids as oriented from the tail to

the head (see Figure 1.2).

De�nition 1.6. A knotoid is an equivalence class of knotoid diagrams on

the sphere up to ambient isotopies of S2, respecting the under/over crossing
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v0 v1

v0 v1

Figure 1.2: The diagrams in the picture represent oriented knotoids that are dif-

ferent if seen in R2, but that are the same if considered as knotoids in S2.

data, and the three classical Reidemeister moves performed away from the

endpoints.

It is not permitted to pull the strand adjacent to an endpoint over/under

a transversal strand (as shown in Figure 1.3). Indeed, allowing these moves,

that are called forbidden moves, produces a trivial theory (for a more

precise de�nition see De�nition 2.3).

⇀↽ ⇀↽

Figure 1.3: Forbidden Moves.

Let us denote by K(S2) the set of oriented knotoids in the sphere. We

can give this set an operation of multiplication de�ned as follows. First, note

that each endpoint of a knotoid k in S2 admits a neighbourhood D such that

k intersects it in just one arc (a radius) of D. Such a neighbourhood is called

a regular neighbourhood of the endpoint. Given two diagrams in S2 rep-

resenting the knotoids k1 and k2 equipped with a regular neighbourhood D1

for the head of k1 and D2 for the tail of k2, the product knotoid k = k1 ·k2
is de�ned as the equivalence class in K(S2) of the diagram obtained by gluing

S2\Int(D1) to S
2\Int(D2) through an orientation-reversing homeomorphism
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∂D1 −→ ∂D2 mapping the only point in ∂D1∩k1 to the only point in ∂D2∩k2
(see Figure 1.4). Note that this operation is not commutative and it turns

K(S2) into a semigroup.

k1 k2

k1 · k2

v1

v0

w0

w1

Figure 1.4: On the bottom line, a diagram representing the product k1 · k2 of the

knotoids in the upper line; the circles in grey are the regular neighbourhoods of

the endpoints v1 and w0.

We can de�ne four commuting involutions on knotoids in K(S2) (see

Figure 1.5). Given a knotoid k:

� its reversion (whose result is denoted with −k) consists in changing

the orientation of the knotoid or, in other words, exchanging the labels

of the endpoints;

� its mirror re�ection tranforms k in the knotoid km with the same

diagram but with all the crossings changed;

� its symmetry produces the knotoid sym(k) derived from the extension

to S2 of the re�ection of R2 along the horizontal line passing through

the endpoints of k;

� its rotation is de�ned as krot = (sym(k))m.
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v0

v0

v0

v0

v0

v1

v1

v1

v1 v1

k −k km

sym(k) krot

Figure 1.5: A knotoid k, its reverse −k, its mirror image km, its symmetric sym(k)

and its rotation krot.

To this end we introduce two more notations: let us call K(S2)/∼ the

quotient of K(S2) up to reversion and K(S2)/≈ the quotient of K(S2) up to

reversion and rotation.

1.3 Extended bracket polynomial of knotoids

We would like to produce a table of all knotoids in the sphere, that is, a

list of all distinct knotoids in S2. This is possible by means of some knotoids

invariants, that is, some quantities that represent a necessary condition for

the knotoids to be equivalent. In other words, two knotoids k and k′ cannot

be equivalent if an invariant associated to k is di�erent to the one associated

to k′. There are several examples of invariants: they can be numbers, poly-

nomials or general characteristics of the object considered. In this section

we will describe how to de�ne a knotoid invariant called extended bracket

polynomial, which in particular is a polynomial (following [8]).



1. Basic de�nitions 13

1.3.1 Normalised bracket polynomial

De�nition 1.7. Let k ⊂ S2 be a knotoid diagram. A state on K is a

mapping from the set of crossings of k to the set {−1, 1}.

De�nition 1.8. Given a knotoid k ⊂ S2 and a state s we de�neA-smoothings

and B-smoothings as below:

A

B

Figure 1.6: A-smoothing on the top and B-smoothing on the bottom.

Given a state s on k, we apply the A-smoothings (resp. B-smoothings)

at all crossings of k with positive (resp. negative) value of s. This yelds to a

compact 1-manifold ks ⊂ S2 consisting of a single embedded segment (that

connects the endpoints) and several disjoint embedded circles. We de�ne the

Laurent polynomial

〈k〉 =
∑
s∈S(k)

Aσs(−A2 − A−2)|s|−1

where S(k) is the set of all states of k, σs ∈ Z is the sum of the values ±1 of

s ∈ S(k) over all crossings of k and |s| is the number of components of ks. It

is possible to show with standard computations that the Laurent polynomial

〈k〉 ∈ Z[A±1] is invariant under the second and third Reidemeister moves

and is multiplied by (−A3)±1 under the �rst Reidemeister moves. Hence, the

polynomial 〈k〉 considered up to multiplication by integral powers of −A3 is

an invariant of knotoids called the bracket polynomial.
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Remark 1. One useful invariant of knotoids derived from the bracket polyno-

mial is the span. Given a non-zero Laurent polynomial f =
∑

i fiA
i ∈ Z[A±1]

its span is de�ned by spn(f) = i+ − i− where i+ (resp. i−) is the maximal

(resp. minimal) integer i such that fi 6= 0. For f = 0 set spn(f) = −∞.

The span of a knotoid k is de�ned as spn(k) = spn(〈k〉). Clearly spn(k) is

invariant under all Reidemeister moves and de�nes a knotoid invariant also

denoted with spn. It is always an even, non-negative integer.

We can solve the e�ect of the �rst Reidemeister moves on the bracket

polynomial using the writhe.

De�nition 1.9. The writhe w(k) ∈ Z of a knotoid k is the sum of the signs

of all the crossings of k following the rule below (recalling that a knotoid is

oriented from the tail to the head):

+1 -1

The product 〈k〉◦ = (−A3)−w(k)〈k〉 is invariant under all three Reidemeis-

ter moves and hence its associated function, called normalised bracket

polynomial, is an invariant of knotoids.

Remark 2. � The normalised bracket polynomial is invariant under re-

version of knotoids and changes via A 7−→ A−1 under mirror re�ection;

� the normalised bracket polynomial is multiplicative: we have that 〈k1k2〉◦ =

〈k1〉◦〈k2〉◦ for any knotoids k1 and k2 in S
2.

The next example (that concludes this section) shows how the normalised

bracket polynomial can distinguish knotoids.

Example 1.1. Let us consider the knotoids 31 and 32 of Appendix A and

let us calculate the normalised bracket polynomial for these knotoids. Fig-

ure 1.7 shows the smoothings ks performed on the two knotoids, regarding
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all their states, while Table 1.7 reports the values, for any state s, of σs and

|s| enumerated with respect to Figure 1.7 of the two knotoids. Drawings

corresponding to the same state s share the same number.

Drawing number s = (R, S, T ) σs |s| of 31 |s| of 32

1 (1, 1, 1) 3 3 2

2 (1, 1,−1) 1 2 1

3 (1,−1, 1) 1 2 1

4 (1,−1,−1) -1 1 1

5 (−1, 1, 1) 1 2 2

6 (−1, 1,−1) -1 1 1

7 (−1,−1, 1) -1 1 1

8 (−1,−1,−1) -3 2 2

We now compute the two polynomials, noting that w(31) = 3 and w(32) =

1:

〈31〉◦ = (−A3)−w(31)
∑

s∈S(31)

Aσs(−A2 − A−2)|s|−1 =

= (−A3)−3[A3(−A2 − A−2)2 + 3A1(−A2 − A−2)1 + 3A−1(−A2 − A−2)0+

+ A−3(−A2 − A−2)1] =

= −A−9[A7 − A3 − A−5] =

= −A−2 + A−6 + A−14.

〈32〉◦ = (−A3)−w(32)
∑

s∈S(32)

Aσs(−A2 − A−2)|s|−1 =

= (−A3)−1[A3(−A2 − A−2)1 + 2A1(−A2 − A−2)0 + 3A−1(−A2 − A−2)0+

+ A1(−A2 − A−2)1 + A−3(−A2 − A−2)1] =

= −A−3[−A5 − A3 + A+ A−1 − A−5] =

= A2 + 1− A−2 − A−4 + A−8.
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31

1 2 3 4

5 6 7 8

32

1 2 3 4

5 6 7 8

R

S

T

R

S

T

Figure 1.7: The two knotoids 31 and 32 and all their possible smoothings.
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As these polynomials are di�erent, the knotoids 31 and 32 are not equiv-

alent.

1.3.2 Extended bracket polynomial

Let us now show how to proceed with the construction of the extended

bracket polynomial of knotoids, which is a 2-variables extension of the nor-

malised bracket polynomial of knotoids. Let us start with a preliminary

de�nition:

De�nition 1.10. Given a knotoid k ∈ K(S2), a shortcut a ⊂ S2 for k is

an embedded arc in S2 connecting the endpoints of k and otherwise meeting

k transversally at a �nite number of points distinct from the crossings of k

such that a passes everywhere under k.

Let us consider a knotoid k ∈ K(S2), and a shortcut a for k. Then,

k ∪ a is a knot diagram. Given a state s ∈ S(k) consider the smoothed 1-

manifold ks (a is not a�ected by the smoothings as they are applied in small

neighbourhoods of the crossings of k) and its segment component js. As js

coincides with k in a small neighbourhood of the endpoints of k, and the set

∂js = ∂a consists of the endpoints of k, we can orient k, ks and js from the

tail to the head of k. Moreover, we denote with js · a the algebraic number

of intersections of js with a, that is, the number of times that js crosses a

from the right to the left minus the number of times that js crosses a from

the left to the right (the endpoints of js and a are not counted). Similarly,

we denote with k · a the algebraic number of intersections of k with a. We

de�ne a 2-variable Laurent polynomial 〈〈k〉〉◦ ∈ Z[A±1, u±1] by

〈〈k〉〉◦ = (−A3)−w(k)u−k·a
∑
s∈S(k)

Aσsujs·a(−A2 − A−2)|s|−1.

Lemma 1.2. The polynomial 〈〈k〉〉◦ does not depend on the the choice of the

shortcut a and is invariant under the Reidemeister moves on k.
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Proof. Any two shortcuts for k are isotopic in the class of embedded arcs in

S2 connecting the endpoints of k. Therefore to verify the independence of a

it is enough to analyse the following local transformations for a:

1. pulling a across a strand of k (this adds two points to a ∩ k);

2. pulling a across a double point of k;

3. adding a curl to a near an endpoint of k (this adds one point to a∩ k).

The transformations (1) and (2) preserve the numbers k · a and js · a for all

the states s of k. The transformation (3) preserves js · a − k · a for all s.

Hence 〈〈k〉〉◦ is preserved under these transformations and does not depend

on a.

Let us now verify that 〈〈〉〉◦ is invariant under Reidemeister moves. Con-

sider the unnormalised version 〈〈k, a〉〉 of 〈〈k〉〉◦ obtained by deleting the

factor (−A3)−w(k)u−k·a. The polynomial 〈〈k, a〉〉 depends on a but not on the

orientation of k (to compute js · a it is important to know just which endo-

point is the tail and which is the head of k). A standard argument on this

polynomials shows that 〈〈k, a〉〉 is invariant under the second and third Rei-

demeister moves and it is multiplied by (−A3)±1 under the �rst Reidemeister

moves (provided these moves are applied away from a). Such moves preserve

the number k · a and therefore they preserve 〈〈k〉〉◦. Since the polynomial

does not depend on a, it is invariant under all Reidemeister moves on k.

This lemma guarantees that the polynomial de�ned is actually an invari-

ant of knotoids that will be called extended bracket polynomial and that

will be denoted with 〈〈〉〉◦.
As we said at the beginning of this section, knotoids invariants can be

used to classify knotoids. In particular, in Appendix A it is possible to �nd

a table (taken from [4]) of all distinct knotoids in the sphere with up to four

crossings.
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1.4 Theta-curves

In this section we introduce (following [1]) another interesting object, the

θ-curves, that will be extremely useful in the development of this thesis.

De�nition 1.11. A labelled θ-curve is a graph embedded in S3 with two

vertices v0 and v1 (the tail and the head respectively) and three edges e+, e−

and e0 each of which joins v0 to v1. The curves e−∪e+, e+∪e0 and e0∪e− are

called constituent knots of the θ-curve. A θ-curve is called simple if its

constituent knot e−∪ e+ is the trivial knot. We will call two labelled θ-curves

isotopic if they are related by an ambient isotopy that preserves the labels of

the vertices and the edges (see Figure 1.8).

e0

e0

e+

e+

e− e−

v0 v0
v1

v1

t1 t2

D

Figure 1.8: A non-simple θ-curve t1 and a simple θ-curve t2 with spanning disk D

(the points in grey in the right part represent the intersection between the edge e0

and the spanning disk D).

Let us call Θs the set of isotopy classes of simple labelled θ-curves. This

set becomes a semigroup with an operation of vertex-multiplication de�ned

in the following way (see [8]). Given θ-curves θ and θ′, pick regular neigh-

bourhoods B and B′ of the head of θ and of the tail of θ′, respectively.

The vertex-multiplication θ · θ′ of θ and θ′ is given by the class of ambi-

ent isotopies of θ-curves of the diagram obtained by gluing the closed 3-balls

S3\Int(B) and S3\Int(B′) through an orientation reversing homeomorphism

∂B −→ ∂B′ carrying the only point of ∂B lying on the i-th edge of θ to the
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only point of ∂B′ lying on the i-th edge of θ′ for i = +, 0,−. This operation
is associative.

To conclude this section (and this chapter) let us give a further de�nition:

De�nition 1.12. For a simple θ-curve θ there is an embedded 2-disk D ⊂ S3

such that ∂D is the preferred constituent knot of the θ-curve. Deforming

slightly D in S3 keeping ∂D we may assume that Int(D) meets e0 transversely

at a �nite number of points. We call such D a spanning disk for θ (see

Figure 1.8).



Chapter 2

The theory of Knotoids

In this chapter we deal with the main theorems that concern the theory of

knotoids. In Section 2.1 we see how it is possibe to move from knotoid to θ-

curves and what is the correspondence determined in this way (following [8]).

In Section 2.2 we then relate θ-curves with strongly invertible knots, and from

this we derive an important result on the correspondence between knotoids

and strongly invertible knots (following [1]). In Section 2.3 we investigate

the e�ects of a forbidden move (applied to a knotoid) on its correspondent

θ-curve and strongly invertible knot (following [2]). In Section 2.4 we make

a further step in the study of forbidden moves of knotoids; in particular, we

describe (following [2]) how it is possible to build a table of the forbidden

moves-distances between all the knotoids with up to four crossings.

2.1 Knotoids and theta-curves

Let us show how knotoids can be related with θ-curves (following [1]).

Consider a knotoid diagram k in S2. We can identify the sphere in which

the diagram is immersed with S2 × {0} ⊆ S2 × [−1, 1]. We can embed k in

S2× [−1, 1] by pushing the overpasses of the diagram into S2× [0, 1] and the

underpasses into S2 × [−1, 0] (see Figure 2.1). In particular, thw wndpoints

v0 and v1 of the knotoid can be moved, but as far as they remain on two

21
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preferred lines that are orthogonal to S2 × {0}. If we collapse S2 × ∂I to

two points, k becomes an embedded curve in S3 with endpoints lying on an

unknotted circle, as in Figure 2.2.

v0

v0

v1

v1

S2 × {0}

S2 × {−1}

S2 × {1}

Figure 2.1: The thicker curve is the image in S2× [−1, 1] of the knotoid diagram in

S2×{0} in the middle of the �gure after having pushed the overpasses/underpasses

in the upper-half/lower-half respectivley. Note that the endpoints v0 and v1 lie on

two preferred lines, black and dashed in �gure, that ensure that the knot type

remains unchanged.

Thus, we can associate a simple labelled θ-curve to a knotoid k ∈ K(S2)

with vertices the endpoints of k and edge e0 = k. We label the remaining

edges of the curve in this way: the edge containing the image of S2 × {1}
under the collapsing map is labelled e+, while the one containing the image

of S2 × {−1} is labelled e−. The unknotted circle e− ∪ e+ will be called the

preferred constituent unknot of the θ-curve; it will always be represented

as a dashed circle in �gures, see the right part of Figure 2.2 for an example.

It is shown in [8] that the construction above induces a well de�ned map

t between the semigroups K(S2) and Θs. Moreover
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v0

v0

v1

v1

e+

e−

S2 × I S3

e0−→
collapse

Figure 2.2: On the left, a knotoid seen as an embedded curve in S2 × I with

endpoints lying on the dashed lines. By collapsing S2 × ∂I (in blue) to the two

blue points on the right we obtain an embedded arc in S3, with endpoints lying on

a dashed circle (the image of the dashed lines). The dashes are just a graphic tool

to visualise the preferred constituent unknot; it will remain so for the whole thesis.

Theorem 2.1. The map t : K(S2) −→ Θs is a semigroup isomorphism.

In order to prove this theorem we need a geometric lemma that we shall

not prove:

Lemma 2.2 (Lemma 6.1 in [8]). An orientation preserving di�eomorphism

f : S3 −→ S3 �xing pointwise an unknotted circle S ⊂ S3 is isotopic to the

identity id : S3 −→ S3 in the class of di�eomorphisms S3 −→ S3 �xing S

pointwise.

Proof. (of Theorem 2.1) That t transforms multiplication of knotoids into

vertex-multiplication of θ-curves is clear from de�nitions. To prove that t is

bijective we construct the inverse map Θs −→ K(S2).

Let θ ⊂ S3 = R3 ∪ {∞} be a θ-curve with vertices v0 and v1 and edges

e−, e0, e+. We say that θ is standard if θ ⊂ R3, both vertices lie in R2 =

R2 × {0}, e+ lies in the upper half-space, e− lies in the lower half-space and

both e− and e+ projet bijectively to the same arc a ⊂ R2 connecting v0 and
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v1. A standard θ-curve has a "standard" spanning disk D bounded by e−∪e+
in a× R.

Observe that any simple θ-curve θ ⊂ S3 is ambient isotopic to a standard

θ-curve (isotoping it away from ∞ and putting it in a standard position as

above).

As we want to work with just standard θ-curves we need to show that

if two standard θ-curves θ1, θ2 ∈ R3 are isotopic, then they are isotopic in

the class of standard θ-curves. Indeed, we can easily deform θ2 in the class

of standard θ-curves so that θ1 and θ2 share the same vertices and the same

±-labelled edges. Let S be the union of these vertices and edges, which is

an unknotted circle in S3. Since θ1 is isotopic to θ2 there is an orientation-

preserving di�eomorphism f : S3 → S3 carrying θ1 to θ2 and preserving

the labels of the vertices and edges. Then f(S) = S. Deforming f we can

additionally assume that f|S = id. By Lemma 2.2, f is isotopic to the identity

id : S3 → S3 in the class of di�eomorphisms �xing S pointwise. This isotopy

induces an isotopy of θ2 to θ1 in the class of standard θ-curves.

The results above show that without loss of generality we can focus on

the class of standard θ-curves and their isotopies in this class. Consider a

standard θ-curve θ ⊂ R3. We shall apply to θ a sequence of ambient isotopies

that move the interior of e0 and keep �xed the other edges and vertices. Let

us call the standard spanning disk D ⊂ a × R of θ as above. First, we

isotope e0 such that it meets a×R transversely in a �nite number of points.

The intersections of e0 with a × R r D can be eliminated by pulling the

corresponding branches of e0 horizontally across v0 × R or v1 × R. In this

way we can isotope e0 so that all the intersections with a × R lie inside D.

Then we further isotope e0 so that its projection onto R × {0} has only

double transversal crossings. This projection is provided with the data of

over/under-crossings in the usual way and it becomes a knotoid diagram.

The knotoid u(θ) ∈ K(S2) that corresponds to this diagram depends on θ

only and it does not depend on the choices made in the construction. The

key point is that pulling a branch across v0 ×R or v1 ×R lead to equivalent
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knotoids in S2. All the other isotopies are translated to sequences of isotopies

or Reidemeister moves on the knotoid diagram away from the endpoints.

Observe �nally that the knotoid u(θ) is preserved under isotopy of θ in the

class of standard θ-curves. Therefore u is a well-de�ned map Θs → K(S2).

It is clear that the maps t and u are mutually inverse.

Let us now consider how the θ-curves vary under the involutions of Section

1.2. It should be clear that the θ-curves associated to a knotoid and its reverse

di�er by exchanging the labels of the vertices. Consider now a knotoid k and

its rotation krot. It should be easy to see that their corresponding θ-curves

di�er from each other by simply swapping the labels of the edges e+ and e−

and leaving all the other labels unchanged (see Figure 2.3). Calling Θs/∼ the

set of simple θ-curves up to relabelling the two vertices, the isomorphism t

of Theorem 2.1 gives a bijection

t∼ : K(S2)/∼ −→ Θs/∼

Furthermore, t also induces a bijection

t≈ : K(S2)/≈ −→ Θs/≈

from the set of unoriented knotoids up to rotation and the set of simple

θ-curves up to relabelling the vertices and the edges.

2.2 Knotoids and strongly invertible knots

What we want to do is to show how to de�ne a construction that allows

us to move from knotoids to knots (in particular to strongly invertible knots)

and vice-versa. This will be possible by means of a double branched covering.

2.2.1 Double branched coverings

Let us give some of the main concepts of the theory of branched coverings

before analysing how to construct it in our case (see [6, Section 22]).
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v0

v0

v0

v0

v1

v1

v1
v1

k

krot

−→

−→

t

t−1

swap labels and isotope

e−

e+

e+

e−

e0

e0

Figure 2.3: A knotoid and its rotation are associated to θ-curves di�ering from

each other by swapping the e− and e+ labels.

De�nition 2.1. A branched covering of 3-manifolds M3 and N3 is a map

p : M3 −→ N3 such that there exists one-dimensional subcomplex L1 of N3

whose inverse image p−1(L1) is a one-dimensional subcomplex such that the

restriction of p on its complement M3 r p−1(L1) is a covering. M3 is called

the covering set, N3 the base and L1 the branching set. If n ∈ N is the

cardinality of the �ber (the pre-image) of any point of N3 r L1 the covering

is said to be an n-fold covering. If n = 2 we call the branched covering a

double branched covering.

De�nition 2.2. A branched covering p : M3 −→ N3 is called cyclic if the

group of the automorphisms of the covering obtained restricting p to M3 r
p−1(L1) is cyclic.

In our case both M3 and N3 are S3. In particular, we can construct a

cyclic branched covering of S3 branching on the unknot in the following way.

Consider S3 = R3 ∪∞, choose a straight line l ⊆ R3 and, for some n ∈ N,
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consider Gn the group of the rotations by angle 2π k
n
around the line l. It is

easy to see that the action of Gn on R3 \ l is properly discontinuous, so the

natural projection p′1 : R3 \ l −→ (R3 \ l)/Gn is a regular n-fold covering of

R3 \ l. As R3/Gn
∼= R3 we can write p′1 : R3 \ l −→ R3 \ l and its extension

p1 : R3 −→ R3 to R3 is a branched covering of R3 with branching set l. The

further extension p : S3 −→ S3 of this map to S3 = R3∪∞ results in a cyclic

branched covering with branching set the circle l ∪ ∞. Moreover, l ∪ ∞ is

also the inverse image of the branching set (see Figure 2.4).

−→
p1

Figure 2.4: A planar section of a cyclic branched covering p1 : R3 −→ R3 with 5

sheets. The dot in the middle of the covering set and of the base is the section

of the line that constitues the branching set. On the right part the two half lines

marked by arrows must be identi�ed.

We want to show that, �xing the branching set as the trivial knot, choos-

ing the order n of the branching set and requiring the covering set to be

connected, the branched covering is unique and so it is as described above.

Indeed, let us consider the complement S3 \S1 of the branching set S1. From

the discussion above we can say that π1(S
3 \ S1) ∼= π1(R3 \ l) and as R3 \ l

retracts on S1 we have that π1(R3 \ l) ∼= Z. As Z is abelian and cyclic all

its subgroups are cyclic. Under this hypothesis we know that for any n ∈ N
there exists just one subgroup H ≤ Z with order n, hence the covering (which

is completely determined by H) is also unique.
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2.2.2 From knotoids to strongly invertible knots

Let us now proceed with the construction described above (following [1]).

By the previous discussion, we can de�ne the map γS : K(S2) −→ K(S3)

that associates to any knotoid k ∈ K(S2) the preimage of the edge e0 of its

associated θ-curve t(k) under the double branched covering p : S3 −→ S3 of

S3 branched along the preferred constituent unknot e−∪e+. As the branching
set is the trivial knot, by the previous remark the covering is unique and hence

the map γS is well de�ned. Under this construction, any point of the edge e0

of t(k) (except to the endpoints v0 and v1) will have two di�erent preimages,

while the two endpoints, which belong to the branching set, will have just

one preimage. Thus, we obtain an object that results to be homeomorphic

to S1, but that may be knotted in some way: in other words, a knot. An

example can be seen in Figure 2.5.

Let us focus on the image K = γS(k) of a knotoid k ∈ K(S2). By con-

struction, the group of the automorphisms of the covering p, which commutes

with the �ber maps, has order 2. Thus, calling τ the non-trivial element of

this group, it results that τ represents a non-trivial involution of the knot K.

Hence, from the discussion made in Section 1.1, (K, τ) is a strongly invert-

ible knot (for example, the Trefoil knot of Figure 2.5 is a strongly invertible

knot). Since not every knot in S3 is strongly invertible, the map γS is not

surjective.

We are now ready to state and prove the main theorem of this section:

Theorem 2.3. There is a 1-1 correspondence between unoriented knotoids,

up to rotation, and knots K with a strong inversion τ , up to conjugacy.

Proof. Recall some of the de�nitions of Chapter 1. KSI(S3) is the set of

strongly invertible knots (K, τ) in S3 up to equivalence and KS.I.(S3) is the

subset of K(S3) of knots that admit a strong inversion. There is then a

natural forgetful map KSI(S3) −→ KS.I.(S3).

Recall the map γS : K(S2) −→ K(S3) de�ned above. As we saw, the

lift of a knotoid through the double branched covering of S3 is a strongly
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v0

v1 v0

v1

e0

e−

e+

−→
t

21 t(21)

−→
p1

31 t(21)

lp−11 (l)

Figure 2.5: On the top: the knotoid 21 (see Appendix A) and its corresponding

θ-curve t(21). In the middle: the double branched cover p1 from the Trefoil knot 31

(see Appendix A) to t(21) (the preferred constituent unknot, now called l, is open as

the �gures are seen in R3). Same colours in the trefoil and in t(21) indicate the parts

that correspond to each other through the local homeomorphisms. The drawing

inside the dotted circle at the bottom end of the �gure represents a visual mid-step

of the covering, that we hope it might help the reader. Moreover, the trefoil is a

strongly invertible knot: p−11 (l) constitues Fix(τ), where τ is the involution given

by the rotation of R3 around p−11 (l) by angle π.
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invertible knot, thus γS(K(S2)) ⊂ KS.I.(S3). More precisely, the branching

set e− ∪ e+ determines an involution τ . Thus, we can promote γS to a map

γS : K(S2) −→ KSI(S3).

Furthermore, as two knotoids k and krot lift to θ-curves that di�er by swap-

ping the labels of the edges e+ and e− only, their double branched coverings

produce isotopic knots, that is their images under the map γS are the same

(recall Figure 2.3). The same is true for the knotoids k and −k. So, a knotoid
k, its reverse −k, its rotation krot and its reverse rotation −krot map to the

same element in KSI(S3). Hence, γS descends to a well de�ned map on the

quotient

γS : K(S2)/≈ −→ KSI(S3)

Let us now proceed in the opposite way. Let (K, τ) ∈ KSI(S3). Thanks

to the positive resolution of the Smith conjecture (see [9]), the �xed point

set of τ is an unknotted circle. Moreover, τ de�nes the projection

p : S3 −→ S3/τ ∼= S3

that can be interpreted as the double covering of S3 branched along Fix(τ),

in the same way of the projection seen in Figure 2.5. So, from (K, τ) we

can construct the θ-curve θ(K, τ) = p(K) ∪ p(Fix(τ)) where p(K) = e0

and p(Fix(τ)) = e− ∪ e+. Equivalent strongly invertible knots project to

equivalent θ-curves (seen as elements of Θs/≈), thus, we have a well de�ned

map

β : KSI(S3) −→ Θs/≈.

The four labelled θ-curves corresponding to the di�erent choices of labelling

the edges e−,e0 and e+ and the vertices v0 and v1 are mapped by the iso-

morphism t of Theorem 2.1 to knotoids k, −k, krot and −krot related by

reversion and rotation, as discussed above. So, given a strongly invertible

knot there are four oriented knotoids associated to it. An example can be

seen in Figure 2.6.



2. The theory of Knotoids 31

v0 v1 v0
v0 v0

v0
v0

v0 v0

v1 v1 v1

v1 v1

v1 v1

e+ e+ e+ e+

e− e− e− e−

e0
e0 e0 e0

820

−→
p

p(820)

Figure 2.6: For example, the strongly invertible knot 820 has 4 knotoids associated

to it and as they represent the same knotoid up to rotation and reversion they

belong to the same class in K(S2). On the bottom there are the four θ-curves and

the four knotoids associated to the projection of 820.
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Thus, we have a well de�ned map

Π = t−1≈ ◦ β

from the set of strongly invertible knots to the set of unoriented knotoids in S2

up to rotation. Since the preferred constituent unknot of t≈(t−1≈ (θ(K, τ)) =

θ(K, τ) is clearly p(Fix(τ)), Π is the inverse of γS. From this and the discus-

sion above we obtain that

γS : K(S2)/≈ −→ KSI(S3)

is a bijection and hence the theorem is proved.

2.3 Behaviour under forbidden moves

In this section we want to discuss, following [2], how forbidden moves

behave under the constructions made in the previous sections of this chapter.

2.3.1 Forbidden moves and more

First, let us give a precise de�nition of forbidden move:

De�nition 2.3. Given a knotoid k, a forbidden move on the knotoid con-

sists in pulling the strand adjacent to an endpoint over/under a transversal

strand (recall Figure 1.3).

Remark 3. Remember that performing a forbidden move on a knotoid di-

agram might result in changing the knotoid type. Moreover, any knotoid

diagram can be transformed into the trivial one by a �nite sequence of for-

bidden moves and vice-versa.

Given a knotoid k and its correspondent θ-curve t≈(k), we will see that

the result of a forbidden move on k is a strand passage (that is, a crossing

change) on t≈(k) between the arcs e0 and either e− or e+. On the contrary,

the consequences of the same forbidden move on the strongly invertible knot

γS(k) are a bit less straightforward:
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De�nition 2.4. Let K1 be a knot and let b : I × I −→ S3 be an embedding

such that K1∩b(I×I) = b(I×∂I). The knot K2 = (K1rb(I×∂I))∪b(∂I×I) is

said to be obtained from K1 by a band surgery along the band B = b(I×I).

If the knot is oriented, then a band surgery is called coherent if it respects

the orientation of the knot K1, otherwise it is called non-coherent (see

Figure 2.7).

Figure 2.7: Local pictures of a coherent (top) and a non-coherent (bottom) band

surgery.

A non-coherent band surgery transforms knots in knots (on the contrary,

the result of a coherent band surgery may be a two components curve) and

it is called a H2-move. In particular, we will deal with
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De�nition 2.5. Consider the strongly invertible knot (K1, τ1). We say that

the strongly invertible knot (K2, τ2) is obtained from (K1, τ1) by an equiv-

ariant band surgery if K1 and K2 are related by a H2-move such that

� Fix(τ1) intersects the band b(I × I) transversally exactly once in its

interior and the band is invariant under τ1;

� (K2, τ2) and (K ′1, τ1) are equivalent as strongly invertible knots, where

K ′1 is the knot obtained from K1 by doing the band surgery.

An example of equivariant band surgery is shown in Figure 2.8.

τ τ ′

31 01

Figure 2.8: The strongly invertible knots (31, τ) and (01, τ
′) (see Appendix A) are

related by an equivariant band surgery.

2.3.2 Equivalence under forbidden moves

We are now ready to state and prove the main result of this section.

Theorem 2.4. Consider two equivalence classes of knotoids k1 and k2 up to

reversion and rotation. Then the following are equivalent (see Figure 2.9):

1. k1 and k2 di�er by a single forbidden move;

2. their corresponding θ-curves t≈(k1) and t≈(k2) di�er by a single strand

passage between the edge e0 and either e− or e+;

3. their corresponding strongly invertible knots γS(k1) and γS(k2) di�er by

an equivariant band surgery.



2. The theory of Knotoids 35

←→ ←→

←→ ←→

t≈

t≈

γS

γS

k1

k2

t≈(k1)

t≈(k2)

γS(k1)

γS(k2)

Figure 2.9: A forbidden move between two knotoids k1 and k2 (on the left) induces

a strand passage between the arcs e0 and e± between the corresponding θ-curves

(in the middle) and an equivariant band attachment between the corresponding

strongly invertible knots (on the right).

Proof. (3 ⇒ 2) Consider an equivariant band surgery between two strongly

invertible knots (K1, τ1) and (K2, τ2). Up to ambient isotopies �xing the

circle Fix(τ) the band attachment locally looks like the one in the top part of

Figure 2.10, with possibly the opposite twists on the band. On the quotient

S3/τ1 ∼= S3 this results in a strand passage between the arcs e0 and one

between e− and e+ in the θ-curve p(Fix(τ1))∪ p(K), as shown in the bottom

of Figure 2.10.

(2 ⇒ 1) Consider then a simple θ-curve. Up to ambient isotopies �xing

the circle e− ∪ e+, any strand passage between the arc e0 and the arc e±

locally looks like the one in the top part of Figure 2.11 (up to changing the

crossing between e0 and e±). The bottom right part of Figure 2.11 shows

how this translates into a forbidden move on the corresponding knotoid. The

case where the crossing between e0 and e± is the opposite one is similar.

(1 ⇒ 3) The procedure is analogous as above. Consider two generic

knotoids that di�er by a forbidden move. Up to isotopies and Reidemeister

moves they can be depicted as in bottom part of Figure 2.12. Then, their

correponding strongly invertible knots given by the map γS and depicted on

top part of Figure 2.12 di�er by an equivariant band attachment (as you can
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−→ −→

−→ −→

K1 K2

e0

e− e0
e−

e0

e−

Attach Cut

Isotopies,

Strand passage
possibly R1s,
then R2

Fix(τ1) Fix(τ2)

Pass to
the quotient

Pass to
the quotient

Figure 2.10: On the top, two strongly invertible knots (K1, τ1) and (K2, τ2) related

by an equivariant band attachment. Up to isotopies �xing the circle Fix(τ) (and

up inverting the crossings) the band looks like the one in the middle of the top

row. By De�nition 2.5 the band has an odd number of twists. On the bottom,

the corresponding e�ect on the associated θ-curves. If the band has 2n+1 twists,

the θ-curves are related by a sequence of n Reidemeister moves Ω1 followed by one

Reidemeister move Ω2 and by a single strand passage.
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Projection ProjectionProjection

Isotopies.
Possibly R1s,
then R2s

Strand
passage

Forbidden
move

Isotopies.
Possibly R1s

Figure 2.11: On the top row, two θ-curves related by a strand passage between the

arc e0 and the arc e±. Up to ambient isotopes preserving the circle e− ∪ e+ we can

make the strand passage look like in the picture. The e�ect on the corresponding

projections giving the knotoids on the bottom row is to perform a sequence of

Reidemeister moves Ω1 followed by a single forbidden move.
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θ-curve θ-curve

Strand
passage

Forbidden
move

p−1 p−1

Equivariant
band

attachment

Figure 2.12: On the bottom row, two knotoids that di�er by a forbidden move.

The corresponding θ-curves (in the middle row) and strongly invertible knots (in

the top row) are obtained using the construction explained in Sections 2.1 and 2.2.

The strongly invertible knots di�er by an equivariant band attachment.

see from the �gure). The case of the other type of forbidden move is similar

to the one described in Figure 2.12.

2.4 f-distance and its computation

In this section we analyse the relation between any two knotoids in terms

of forbidden moves (following [2]). In particular, we explain how to de�ne

a forbidden moves-based distance and we discuss a method to numerically
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compute a table of the distances between any two knotoids with minimal

crossing number less or equal to four.

Recall De�nition 2.3 and Remark 3. Thus, we can de�ne a forbidden

move-based distance for knotoids:

De�nition 2.6. Given two knotoids k1 and k2, their forbidden move-

distance, or f-distance df (k1, k2), is the least number of forbidden moves

across all the representatives of k1 and k2 needed to transform k1 into k2.

Recall then De�nition 2.5. Even in this case we can de�ne a distance

between strongly invertible knots, that bases on the number of equivariant

band surgeries that relates the two strongly invertible knots:

De�nition 2.7. Given two knots K and K ′ their H2-Gordian distance

dH2(K,K
′) is the minimal number of equivariant band attachments connect-

ing K and K ′ (among all the elements of their equivalence classes).

From now on we will use the word "knotoids" to indicate any equivalence

class of elements of K(S2) up to the four involutions of Figure 1.5. As a

direct consequence of this new de�nition and of Theorem 2.4 we have that

given two knotoids k1 and k2 and their associated strongly invertible knots

γS(k1) = (K1, τ1) and γS(k2) = (K2, τ2) it holds that

df (k1, k2) ≥ dH2(K1, K2). (2.1)

Analogously, for any knotoid k let us call K±k the constituent knots of t≈(k)

given by e0 ∪ e± respectively. We can de�ne

De�nition 2.8. Given two knotoids k1 and k2, consider the pairs (K+
k1
, K−k1)

and (K+
k2
, K−k2). Their Gordian distance dpair is de�ned as

dpair((K
+
k1
, K−k1), (K

+
k2
, K−k2)) = min{dH2(K

+
k1
, K+

k2
) + dH2(K

−
k1
, K−k2),

dH2(K
+
k1
, K−k2) + dH2(K

−
k1
, K+

k2
)}.

Consider the equivalent facts (1) and (2) of Theorem 2.4. It is clear that

any strand passage that relates two θ-curves must a�ect either K+
k1

or K−k1
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and it cannot change both these constituent knots simultaneously. From this

and from the new de�nition of knotoids it follows that

df (k1, k2) ≥ dpair((K
+
k1
, K−k1), (K

+
k2
, K−k2)) (2.2)

In [2] the authors compute a table of the f -distances of knotoids with up

to four crossings, proceeding in the following way. Consider all the knotoid

diagrams with up to 4 crossings (counting both those of minimal and non-

minimal crossing number representation). Identify the knotoids using some

knotoid invariants. The lower bounds for the f-distances for any pair of

knotoids are found with the help of equations 2.1 and 2.2 and using results

of knot theory. We then have to produce the upper bounds. Call K the set

of all knotoid diagrams with up to four crossings, we can build an undirected

graph G(V,E) with set of vertices V and set of edges E such that

V (G) = K

E(G) = {(v, u) | (v, u) ∈ K2, v 6= u, v ∼f u}

where v ∼f u denotes a pair of knotoid diagrams (v, u) that are related by

a single forbidden move. Thus, G is the undirected graph where the vertices

are all the knotoids with up to four crossings and the edges connect knotoids

that are related by a single forbidden move. G was numerically computed

by the authors, and with it the path that minimises the number of forbidden

moves between any pair of vertices. Once the set of diagrams is partitioned

into isotopy classes, the path of minimal distance between any two isotopy

classes determines their numerical f -distance dnumf . Thus, it was possible

to obtain an upper bound between isotopy classes of knotoids by computing

their experimental f-distances de�ned as

dexpf (v, u) = min{dnumf (v, x) | x ∈ (u, um, sym(u), urot)}.

The comparison of the lower bounds with the upper bounds leads to the table

of Figure 2.13.
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Figure 2.13: The f -distance table for equivalence classes of knotoids with minimal

crossing number ≤ 4, taken from [2]. In a few cases (e.g. for the pair (41, 46))) lower

and upper bounds do not coincide. In these cases the table shows the extremes

of the range of the possible values, separated by a dash. The colour blue marks

the cases in which the lower bounds were found using inequality 2.2, while the red

colour marks the cases in which inequality 2.1 was used. The authors were not

able to produce lower bounds for the entries in orange.
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Chapter 3

Applications

In this chapter we see some of the applications that the theory developed

so far can have. In particular we deal with the modellisation of proteins,

application that has recently become of great interest. In Section 3.1 we

analyse how a protein can be studied, using the diagram of the projections

of its associated knotoids. In Section 3.2 we �nd a numerical measure for

recognising deeply knotted proteins, which is fairly useful in detecting the

enzymatic state of the protein. We will follow [2].

3.1 Knotoids as protein projections

Proteins are long linear biomolecules that often fold into conformations

with non-trivial topology. By tracing the coordinates of their essential con-

tituents, that is the carbon atoms that are contained in the amino acids

that form the protein (also called Cα atoms), one can model them as open

polygonal curves in the 3-space. Analysing the knottedness of a proten can

be extremely useful in determining some of its main features (we see it in

Section 3.2) and knotoids are a good tool for doing this.

The general idea behind the use of knotoids is to characterise the global

topology of each protein chain (that is, the topology of the whole chain) by

assigning a knotoid type to it. The authors of [2] considered the modelled

43
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protein as inside a large enough sphere centered at the center of mass of the

chain. In this way, choosing a point on the surrounding sphere determines

a planar projection of the protein: they considered the plane tangent to the

sphere orthogonal to the direction highlighted by the center of the sphere and

the chosen point. The result is a knotoid diagram. Note that di�erent planes

of projection may yield di�erent knotoid diagrams, hence determining the

knotoid type of a protein using a single projection is far from being accurate

(see Figure 3.1).

Figure 3.1: An example of how di�erent planes of projection for the same protein

may lead to di�erent knotoids.

In principle, it is possible to consider the knottedness of any open ended-

curve in the 3-space as a distribution (also called spectrum) of knotoid types

corresponding to the knotoid diagrams resulting from the projections de-

scribed above. The knotoid with the highest probability in the distribution

of knotoid types over all projections characterises the protein and it is called

the predominate knotoid. In order to obtain an unbiased overview of

a protein topology the authors would have to consider all possible projec-

tions. However, since this is not computationally feasible, the distribution
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was approximated by sampling from the space of all possible projections.

To this end, they wanted to determine the knotoid types of all the projec-

tions considered. To simplify this process, for any projection the knotoid type

was maintained under ambient isotopies by the introduction of two lines or-

thogonal to the projection plane and that passes through the endpoints of the

diagram (they are similar to the lines introduced in Figure 2.1). Moreover,

an algorithm to simplify, but at the same time to preserve the underlying

topology of the protein, was applied. Eventually, the knotoid types were

determined using knotoid invariants.

The above data was summarised in a plot called the projection map of

the protein. This diagram can be computed using the following concepts (see

[5]). Given a �nite set of points S in the euclidean space Rn the Voronoi

cell of a point s ∈ S is de�ned as Vs = {x ∈ Rn |‖ x− s ‖≤‖ x− v ‖, v ∈ S},
that is, the set of points for which s is the closest among the points of

S. Note that Vs is a convex polyhedron in Rn, that any two Voronoi cells

meet at most in a common piece of their boundary and together the Voronoi

cells cover the entire space. The Voronoi diagram VD of the set S is

the collection of Voronoi cells of its points (see Figure 3.2). In the authors'

case the plot consists in the Voronoi diagram of S2 with respect to the set

of points sampled from S2. Furthermore, they coloured each cell of the

projection map according to the knotoid type it produces. By construction,

there is a bijection between the number of di�erent colours in the projection

map and the number of di�erent knotoids in the spectrum of the analysed

curve. An example can be seen in Figure 3.3.

Both the spectrum and the projection map depend heavily on the sample

size of projections; if too few points are sampled, then the overall topology of

the analysed curve will not be well approximated. The authors studied this

aspect in depth, in order to numerically approximate the optimal size of the

sample set of projections. The procedure worked as follows. They considered

a generic projection of a protein chain on some plane and called k the cor-

responding knotoid. If they continuously perturbed the projection direction
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Figure 3.2: A Voronoi diagram of R2 given by the minimisation of the dis-

tances from a �nite set of points S ⊂ R2 (in black). Points associated to

the same s ∈ S are coloured in the same way. This �gure is taken from

https://it.wikipedia.org/wiki/Diagramma_di_ Voronoi.

until the knotoid type changed to k′, they obtained a pair of knotoids with

df (k, k
′) > 0. Using a smaller sample set led to a triangulation of S2 that

produced a Voronoi diagram with wider cells. Therefore, there was a higher

chance for cells corresponding to knotoids with df > 1 to be adjacent. Since

the predominate knotoid corresponds to the largest region of the projection

map, they argued that it was su�cient to focus on the the discrepancies be-

tween the region of the predominate and its immediate neighbours. For this,

they de�ned the following concepts:

De�nition 3.1. The interface error er(s) associated to a sample set of size

s of a projection map de�ned as above is the ratio of the number of regions

- adjacent to the region of the predominate knotoid k0 - that correspond to

knotoids ki for which df (k0, ki) > 1 over the number of all adjacent regions

to k0.

De�nition 3.2. The spectrum Spec(s) of a projection map de�ned as above

is the number of distinct knotoids in the approximated knotoid distribution
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Figure 3.3: The projection map for the protein N-acetyl-Lornithine transcarbamy-

lase complexed with N-acetyl-Lornirthine. This map (that is taken from [2]) is

made using 10,000 projections. The predominate knotoid is 3m1 as it corresponds

to the region with the biggest area. In the legend, the symbol "|" stay for "or"

while the label "UNKNOWN" corresponds to knotoids with minimal crossing num-

ber greater than six.

obtained considering s randomic projections.

The authors wanted to see how these two coe�cients were related to each

other. In particular, they analised all the proteins with predominate kno-

toid type 31 (see Appendix A) multiple times, using an increasing number

of random projections: 50, 100, 500, 1,000, 5,000 and 10,000 projections.

Each time er(s) and Spec(s) for the respective Voronoi diagram were calcu-

lated. Computing the Spearman correlation coe�cient1 r between er(s) and

Spec(s), they noticed that increasing the number of projections the corre-

lation between the two coe�cient became lower. In other words, at 10,000

projections they had the most accurate overview of the topology of the pro-

tein. It is interesting to see that this fact agrees with the idea that increasing

the number of projections the Voronoi cells become smaller, and so the pos-

sibility of having pairs of adjacent cells with df > 1 becomes weaker.

We conclude this section reporting another aspect found out by the au-

thors: the di�erences between the results obtained using 5,000 and 10,000

1See https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coe�cient
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projections respectively were not signi�cant, so analysing a protein with 5,000

projections may provide the best compromise between computational speed

and accuracy.

3.2 Deeply knotted proteins

In this section we analyse the concept of "knottedness" associated to a

protein and we give a numerical estimate for determining whether a protein

is deeply knotted or not (following [2]).

Knotted proteins are proteins whose backbones entangle themselves in

a knot (pulling from both termini). Let us give a more precise de�nition.

As in Section 3.1, for a given protein consider the associated polygonal curve

determined by its Cα atoms and a large enough sphere centered at the center

of mass of the chain. Choose then some randomic points on the sphere. For

any point p chosen in this way, connect it to the termini of the protein

with two segments that do not meet with the polygonal curve, exept for the

endpoints: we hence obtain a knot. Identifying the knot and repeating this

procedure for any chosen p we obtain a distribution of knots associated to

the protein. If the knot-type that characterises the protein (the one that has

the highest probability in the distribution of the associated knots) is not the

trivial knot 01 (see Appendix A) we say that the protein is knotted. In a

knotted protein we call knotted core its shortest subchain that closed **as

above** forms a knot; the subchains located before and after the knotted core

are called the N-tail and the C-tail, where N and C are the two termini of

the protein, as in Figure 3.4. A knotted protein, that can be seen as an open

polygonal knot in the 3-space, is considered deep if several vertices from

either side of the knotted core have to be removed before making the knot

trivial. Thus, the depth of a protein relates to the ability of the protein to

resist unknotting (removing residues from both sides).

Determining whether a protein is deeply knotted or not can be extremely

useful. Indeed, the vast majority of proteins are enzymes where there is an
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knot core

N C

knot tailknot tail

Figure 3.4: The core (in red) and the tails (in black) of an open knot representing a

protein with a trefoil knot. The two beads on either side represent the two termini,

N and C respectively, of the protein chain.

overlap between knotted cores and the respective enzymatic sites. Further-

more, these sites are either located inside or close to the knotted core of

the chain. In this context, it was shown that knotted cores play a vital role

in some aspects of a protein structure and function. Moreover, it was ob-

served that the formation of deep knots with characteristic structural motifs

provides a favourable environment for active sites in enzymes.

One strategy that can be used to detect these local knots is the subchain

analysis. With this method all possible subchains of the protein are analysed

and this is computationally achieved by progressively trimming the chain

from each side and evaluating its knotoid type until the knotted core is

obtained. Basing on this technique, we can de�ne an abstract measure of

depth, denoted by D(k), as follows:

D(k) =
lN(k)lC(k)

l2T (k)

where k is a knotoid, lT (k) is the total lenght of the chain of k, lN(k) is the

lenght of the N-tail of k and lC(k) is the lenght of the C-tail of k.

As the subchain analysis depends on the total lenght of the protein, it can

be computationally heavy. Thus, the authors of [2] thought that it would

be useful if the tightness of a knot could be numerically determined from



3.2 Deeply knotted proteins 3. Applications

the global topology analysis. For this purpose they introduced a numerical

measure, the relative area, de�ned in the following way. First, let us give two

preliminary de�nitions:

De�nition 3.3. Let k be a knotoid in S2. An interface knotoid, denoted

by kint, is a knotoid such that:

df (k, kint) = 1 and df (kint, 01) ≤ 1

where 01 is the trivial knotoid (see Appendix A).

De�nition 3.4. The relative area Arel is the ratio of the sum of the areas

of interface knotoids in the VD over the area of the predominate, namely:

Arel =
1

Ap

∑
k∈Kint

Ak (3.1)

where Kint is the set of all interface knotoids of the predominate knotoid, Ap
is the area in the VD of the predominate knotoid and Ak is the area in the

VD of the knotoid k.

Usually, a deep protein is also tightly knotted as the length of its knotted

core is relatively small, compared to the knot overall length. The idea behind

the strategy proposed in [2] is assuming that the deeper a knot is, the smaller

the total area of the interface knotoids will be in the VD. This is because the
two tails of the knot are less probable to interact with the rest of the chain in

a way that will produce a forbidden move. Since the knot is deep, it will also

be relatively tight, hence the regions of the corresponding diagram will be

smaller. Thus, the probability of having large areas in the VD corresponding

to interface knotoids will be smaller. The authors made some experiments

to evaluate the relation between Arel and D(k). They analysed all proteins

that form a 31 knot (see Appendix A). From Theorem 2.4 the knotoid 21 (see

Appendix A) is the only knotoid with f -distance 1 from both 01 and 31 (it

can be seen checking that any other knotoid with f -distance 1 from 31 has

distance >1 from 01 using inequality 2.2). In this case equation 3.1 became:

Arel =
A21

A31
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They then computed Arel and D(k) for all the 457 studied proteins, com-

puting the VD using the optimal value of 5,000 projections found in Sec-

tion 3.1. The strong decreasing monotonous relation between the two coef-

�cients given by their Spearman coe�cient allowed them to conclude that

the value Arel = 0.2 represents the boundary for detecting deeply knotted

proteins from shallow ones: values Arel ≤ 0.2 are likely to correspond to a

protein having a deeply knotted trefoil, while values Arel > 0.2 usually refer

to shallow proteins. There are some outliers of this two clusters, but it does

not seem that there is any relevant correlation between them.

To conclude, this new quantity Arel seems to be a good coe�cient to

determine whether a protein is deeply knotted or not.
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Appendix A

This appendix includes two tables.

The �rst one is the table of all distinct knotoids in the sphere S2 with

minimal number of crossings of a knotoid diagram up to four crossings . These

knotoids have been distinguished by the use of some knotoids invariants. The

notation follows the one in [4], that uses the scheme XY , where X is the

minimal number of crossings of the knotoid and Y is the relative position

among all knotoids with the same number of crossings.

The second one is the table of all distinct prime knots with minimal

number of crossings up to eight crossings taken from [7]. These knots have

been distinguished by the use of a well known knots invariant called the

Alexander polynomial. In particular, the notation is similar to the one used

for knotoids and it takes the name of Alexander-Briggs notation (see [7]).
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(a) 01 (b) 21 (c) 31 (d) 32

(e) 41 (f) 42 (g) 43 (h) 44

(i) 45 (j) 46 (k) 47 (l) 48

Figure A.1: Table of knotoids with up to four crossings. The pictures (exept for

the trivial knotoid 01) are taken from [4].
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Figure A.2: Table of knots with minimal number of

crossings up to 8 crossings. This �gure is taken from

https://www.semanticscholar.org/paper/New-biologically-motivated-knot-table.-

Brasher-Scharein/aac22f9e6d967d83991c5797f90fae26525ccd53.
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