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Sommario

In questa tesi vengono innanzitutto presentati due metodi matematici per lo studio

di modelli biomedici e comportamentali. I modelli presentati sono tre: un modello per

lo studio dell’evoluzione della malattia di Alzheimer, uno per lo studio dello sviluppo dei

tumori e uno per la diffusione del Covid-19. Si riportano anche alcuni codici utilizzati

per lo studio e lo sviluppo dei modelli trattati. Le conclusioni contengono alcuni possibili

sviluppi degli argomenti trattati.

i
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Introduction

The art of applying mathematics to real problems, be they in engineering, biology,

medicine, industry or any other discipline, is one that is of enormous importance. In

particular, in recent decades, mathematics aimed at biomedicine has become a real in-

terdisciplinary science.

First of all, what is a mathematical model? A model is a representation of a process

[22]. Usually, a mathematical model takes the form of a set of equation describing a

number of variables. The purpose of the model is to formulate a description of the

considered phenomena in quantitative terms; the analysis of the resulting model leads

to results that can be tested against the observations. Ideally, the model also leads to

previsions which, if verified, support the authenticity of the model. It is important to

realize that all models are idealizations, so their applicability is restricted. In fact, one

usually aims to over-simplify; the idea is that, if the model is basically right, then it

can be made more complicate, but its analysis is simplified by having treated a simpler

version first [22].

Studying mathematical models is not so simple. Sometimes it is not possible to

have an exact solution because the process could be very complicated. In this cases

mathematical analysis provides a qualitative study of the solutions, while explicit ones

are calculated via numerical methods. We separate continuous models, in which the

variables vary continuously in space and time, and discrete models, whose variables

varies discontinuously. This thesis deals only with the first case. In practice we will

formulate models in terms of ordinary differential equations [22] and cellular automata

[25]. Using ordinary differential equations we describe phenomena only in time, while

with the cellular automata approach we can also take into account spatial features.

iii



iv Introduction

The first chapter of this thesis illustrates how to make a qualitative analysis of a

system of autonomous ODE, and in particular how to study its local stability by applying

the Routh-Hurwitz criterion [1], [3], [2].

Since, in addition to temporal evolution, we are also interested in phenomena of

spatial nature, in the second chapter the Cellular Automata method is described [25].

This approach allow us to treat in some way pathologies such as Alzheimer’s disease

and tumors. It also allows to keep track of movements of people belonging of different

categories, which will be useful to implement a new model for the study of Covid-19

epidemic described in Chapter 3.

The third chapter contains the presentation and analysis of three biomedical models,

studied with the methods previously described.

The first model concerns Alzheimer’s disease [40], [41], [14]. The system of ODE presen-

ted models the variation of Amyloidβ, a protein produced by neurons in healthy brains,

which accumulates abnormally in presence of the disease. The solutions of this system

allow to update the evolution of the illness, by a Cellular Automata approach, which is

controlled in terms of a parameter varying between 0 and 1.

The second model deals with the expansion of a tumoral mass fomed by two types of

cells: the cancer steam cells and the steams cells [13]. It takes also into account the tu-

mor growth paradox [13], [45], [46], [47] and faces this mechanism with an ODE model.

It also shows the tumor grotwth with a Cellular Automata approach.

After having studied these models, we tried to construct a new one. This new model rep-

resents the Covid-19 epidemic: it could eventually help government in taking decisions,

because the model enables to predict future scenaries. As the cases above, for model-

ling the transmission mechanism we propose two approaches: the ODE and the Cellular

Automata. Each model has its own introduction, which deeply explains the modelled

mechanisms.

The fourth chapter contains the mathematical schemes used to analyze the models

described above. In particular, these schemes are useful for the reader, because they

allow to better understand the Cellular Automata mechanism.

Obviously, other aspects of the models presented can be studied, so the fifth chapter

contains a summary and some new ideas that can be developed in future.



Chapter 1

Stability of systems of autonomous

ODE

Autonomous non-linear systems of ordinary differential equations (ODE) allow to

model and analyze natural phenomena. Often they are very difficult to solve and fre-

quently classical solutions cannot be found. In order to deal with difficulties, one possible

strategy consists in analyzing their stability.

1.1 The general case

Consider the following autonomous non-linear system:

ẋ = f(x) (1.1)

with f : Ω ⊂ Rn → Rn. Suppose f ∈ C1(Ω). Given x0 ∈ Ω, the map t → φt(x0) ∈ Ω

from I ⊂ R to Ω indicates the solution of the Cauchy’s problemẋ = f(x)

x(0) = x0

Definition 1.1. a ∈ Ω is called equilibrium point for the system ẋ = f(x) if f(a) = 0.

The set Cf = {a ∈ Ω; f(a) = 0} is the set of the equilibrium points.

1



2 Chapter 1

Definition 1.2. a is called stable in the sense of Lyapunov if ∀ ε > 0 ∃ δε > 0 such that,

if ‖x0 − a‖ < δε, results

� φt(x0) is defined ∀t ≥ 0,

� ‖φt(x0)− a‖ < ε ∀t ≥ 0.

Observation 1. This means that ∀ U neighborhood of a there exists a neighborhood

V ⊂ U such that each solution which starts from inner points of V remains in U for

t > 0.

Definition 1.3. a is called asimptotically stable if it is stable and moreover limt→+∞ φ
t(x0) =

a. a is called unstable if it is not stable.

Observation 2. ’Unstable’ means that there exist at least one solution starting nearby

a but not remaining close to a.

In order to study the stability of an equilibrium point of (1.1), one possibility is

to analyze the stability of the linearized system, obtained via Taylor’s formula. Given

a ∈ Cf and f ∈ C1, writing f(x) = f ′(a)(x−a)+o(‖x−a‖), where f ′(a) is the jacobian

matrix of f in a, we can relate the stability of a for the system ẋ = f(x) to the stability

of the linear system ẋ = f ′(a)x.

Observation 3. If a is an equilibrium point for (1.1), consider the translation z(t) =

x(t)− a. The equation (1.1) becomes

ż(t) = f(z(t) + a), (1.2)

so, the solution z(t) = 0 of (1.2) corresponds the solution x(t) = a of (1.1) and vice

versa. This means that we can always refer to the origin as the equilibrium point.

1.2 The linear case

In this section we examine the stability of the linear autonomous system

ẋ = Ax (1.3)
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where A ∈ Mn×n(R) and x ∈ Rn. For this aim, we must calculate the eigenvalues of A

by solving the characteristic equation det(A − λI) = 0 . Once eigenvalues are known,

the following theorem can be used.

Theorem 1.2.1. Let λj, j = 1, . . . , k be the eigenvalues of the matrix A. Then the

origin is

� a globally asimptotically stable equilibrium point if and only if the real part of each

eigenvalue is negative, that is Reλj < 0 for j = 1, . . . , k,

� a stable equilibrium point, but not asymptotically stable, if and only if Reλj ≤ 0

and the eigenvalues with vanishing real part verify ma(λj) = mg(λj),

� unstable otherwise.

Here ma(λj) indicates the algebraic multiplicity of λj, while mg(λj) indicates its geometric

multiplicity.

For the proof see [4]

1.3 Routh-Hurwitz criterion

Definition 1.4. A characteristic polynomial which has only roots corresponding to

asymptotically stable zeros of the system is called Hurwitz polynomial [3].

Now, we need to understand how to verify when a polynomial is a Hurwitz’s polyno-

mial. The following theorem help us.

Theorem 1.3.1 (Routh-Hurwitz Criterion). Given the polynomial

p(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an

with ai ∈ R for i = 1, ..., n, define the n Hurwitz’s matrices as

H1 = (a1), H2 =

(
a1 1

a3 a2

)
, H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ,



4 Chapter 1

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · an


,

where aj = 0 if j > n. All the roots of p(λ) are negatives or have negative real part if

and only if Hurwitz’s determinants are positive, that is

detHj > 0, j = 1, 2, ..., n.

For the proof see [3].

The following example, taken from [2], will be useful in studying one of the treated

models in this thesis.

Example 1. If n = 3, that is p(λ) = +λ3 + a1λ
2 + a2λ+ a3, the roots of p are negatives

or have negative real part if and only if

detH1 = a1 > 0, detH2 = a1a2 > 0 and detH3 = det


a1 1 0

a3 a2 a1

0 0 a3

 = a1a2a3 − a2
3 > 0,

that is a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3.

This example will be useful for our purposes in the following sections.



Chapter 2

Cellular Automata

Cellular Automata (CAs from now on) are discrete systems consisting of a big number

of simple identical components with local connectivity [25]. Such systems have the ability

to perform complex computations with a high degree of efficiency and robustness, as

well as to model the behaviour of complicated systems in nature. The potential of this

type of discrete model is to be able to describe and predict complex and macroscopic

behaviors by defining simple local and repetitive rules [26]. This idea is reflected by the

etymology of the Greek word from which the English word automaton (sing. of automata

and indicated with CA) derives, which literally means ”self-making”. For these reasons

CAs and related architectures have been studied in biology, mathematics and computer

science [27]. They have been used as models of physical and biological phenomena,

like biological models formation. CAs have been used as abstract models for studying

collective behaviour.

2.1 What is a cellular automaton?

A CA essentially consists of two components:

� the cellular space,

� the transition rule (or CA rule).

The cellular space is a lattice of N cells which can assume a finite number of states, each

5



6 Chapter 2

Figure 2.1: Illustration of one dimensional, binary-state, r = 1 CA with periodic bound-

ary condition. Image taken from [25].

cell with an identical pattern of local connections to other cells for input and output,

also with boundary conditions if the lattice is finite. Let Σ denotes the set of possible

states that can be assumed by the cell, and k = |Σ| denotes the number of states per cell.

Each cell is indicated by an index i and its state at time t is denoted as s
(t)
i . Obviously

s
(t)
i ∈ Σ. The state s

(t)
i of a certain cell i together with the states of the cells to which

the cell i is connected is called neighborhood ηti of the cell i.

The transistion rule, denoted as ψ(ηti), allow us to update the state s
(t)
i to s

(t+1)
i for each

cell i, as function of ηti .

Let us consider a one-dimensional example taken from [25] and illustrated in Figure

2.1. We can observe that k = 2 and Σ = {0, 1}. Here, the neighborhood of each

cell consists of itself and its two nearest neighbors and the boundary condition are the

following: the leftmost cell is considered to be right neighbor of the rightmost cell, and

vice versa. For one dimensional CAs, the size of the neighborhood ηi, omitting t if it is
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not needed, is often written as |ηi| = 2r+1, where r is called the radius of the CA. In our

example, ψ : Σ2r+1 −→ Σ. In cases of binary-state CAs, where the number of possible

neighborhoods is not too large, the CA rule is often displayed as a rule table, which

shows each possible neighborhood together with his output bit, with the updated value

for the state of the central cell in the neighborhood. In the specific case of neighborhood

marked in Figure 2.1, the corresponding output bit of the sequence 100 is 0, as reported

in the center cell of the neighborhood at the next time step.

This kind of CA is one of the simplest form of CA architecture. This basic configur-

ation can be modified in many ways: increasing the number of dimensions, the number

of states per cell and the neighborhood size, for example. It is also possible to modify

boundary conditions, making the CA rule stochastic rather than deterministic.

Historically, although the original idea of cellular automata is linked to the mathem-

aticians Stanislaw Ulam and John von Neumann already in 1940s, it was in the 1970s

that interest in the topic expanded significantly. In particular, in 1970 a sort of milestone

in this area was represented by the presentation of a two-dimensional cellular automaton,

known as Conway’s Game of Life [25].

2.2 The Game of Life

The ”Game of Life” was started to invent by John Conway in 1960 and perfected

together with Berlekamp and Guy [25]. Game of Life is a binary state automaton, capable

of universal computation. The player interacts by setting an initial configuration and

observing how it evolves. One peculiar characteristic is that it is a very simple automaton

with simple rule which can lead to interesting patterns in the cellular space [23]. It is

possible to consider the lattice as two-dimensional and infinite where the neighborhood

of each cell is the so-called Moore’s one, i.e. composed of a central cell and the eight cells

that sourrond it. The automaton starts from a specific configuration [25]. The transition

rule, that is the updating from s
(t)
i to s

(t+1)
i = ψ(ηti), follows these rules:

� if s
(t)
i = 1 then ψ(ηti) = 1 if and only if exactly two or three other neighbors are in

the 1 state, otherwise ψ(ηti) = 0;
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Figure 2.2: Example of the pattern glider in Game of Life. The initial configuration

moves one square diagonally every four time steps. Image taken from [25].

� if s
(t)
i = 0 then ψ(ηti) = 1 if and only if exactly three other neighbors are in the

state 1, otherwise ψ(ηti) = 0.

It is amazing as many different kinds of patterns occur during the game. They can

be classified according to their behaviour. Common pattern types may include:

� still lifes, that do not change from one generation to the next;

� oscillators, which return to their initial state after a finite number of generations;

� spaceships, which translate themselves across the lattice.

Many other patterns become a combination of these three examples. In Figure 2.2 we

display a specific example of spaceship, called glider. More details can be seen in [23]

and [25].



Chapter 3

Biomedical applications

3.1 A mathematical model for Alzheimer’s disease

In order to understand the development of Alzheimer’s disease (AD from now on), a

biological description of this dementia is suitable. Alzheimer disease is a very common

neurodegenerative disease, firstly described by Alois Alzheimer in 1906 [42], [24]. It is

a very serious illness because the etiology, meaning the mechanism and the progression

of AD, is still far from understood. Moreover it has a huge social and economic impact,

because a person suffering of this pathology becomes seriously not independent.

Being affected by AD means having these manifestations:

� amnesia;

� inability of speaking and understanding verbal messages, called aphasia;

� inability of recognizing people or places , called agnosia;

� inability of completing voluntary movement, called apraxia.

The degenerative process affects cerebral cells and connections. At the beginning,

damages to memory and languages manifestations are prevalent. Then the person starts

to lost his independence. In the end, he stops to eat, speak and he is forced on the bed.

One of the hallmark of the disease is the accumulation of Amyloidβ (Aβ), a peptide

which is found the senile plaques present in diseased brains. It is normally produced

9
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during life by neurons in the central nervous system, through proteolysis of APP, a large

trans-membrane protein involved in signal transduction pathways [15]. For unknown

and sometimes genetic reasons, malfunctioning neurons present an unbalance between

produced and cleared Aβ. This leads to an high concentration of toxic Aβ oligomers.

They can form long insoluble chains, known precisely as senile plaques, and can also

diffuse through the brain tissue. Their agglomeration can be articulated in several steps:

initial seeds, soluble oligomers, protofibrils and insoluble polymers [16],[17].

The connection between Aβ and AD relies on the fact that Aβ plays an important role

in the process of celebral damage, called amyloid cascade hypothesis [18], [21]. Soluble

Aβ shows multiple neurotoxic effect: it induces a general inflammation that activates the

microglia which in turn secretes proinflamamtory cytokines [19] and, at the same time,

increases calcium levels [20], which leads to apoptiosis and neuronal death.

3.1.1 The Model

We try now to construct a mathematical model in order to transform biomedical

knowledge in some sort of mathematical formulation, which can be studied analytically

and numerically. This model is composed by an automaton, which provides to update

the state of AD in a specific REV, described below. Indeed, the cerebral region under

consideration must be divided in representative elementary volumes, called REV. In each

REV we consider a parameter, denoted by a, that takes into account the progression of

the disease. Its value is updated according to an ODE system, which models the evolution

of Aβ.

For clarity, an index i indicates a polymer length: if i ≤ n we are referring to a

soluble oligomer, if i = n to an immobile plaque. Aβ peptides merge in the following way.

Consider Pj and Pk two soluble oligomers or monomers of length j and k respectively.

They merge in a unique polymer, or oligomer, of length k + j, denoted as Pj+k.

Definition 3.1. wi(t) denotes the number of soluble amyloid polymers of length i, for

i < n contained in a given REV at time t. Wn(t) indicates the total number of immobile

particles in the REV. K is a strictly positive constant denoting that two component can

merge. If they are very close, they certainly merge very quickly. If they are far away,

there are less chances that they merge and the speed of the merging is lower than in the
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first case. K∗ has the same role of K, but this constant is used to represent the merging

between a soluble and immobile polymer.

Now, we can describe the variation of Aβ, using the quantities described above. For

simplicity, we omit the dependence on t.

The aggregation rate of two soluble oligomers of length i and j, named Ri,j, is given by

the following formula:

Ri,j =

Kwiwj if i, j < n, i 6= j

1
2
Kwi(wi − 1) if i, j < n, i = j.

(3.1)

Assuming that two motionless polymers do not merge, the aggregation rate for a soluble

and an immobile polymer is as follows:

Ri,n = K∗wiWn i 6= n. (3.2)

Observe that, for definition, Ri,n = Rn,i. Since the probability of merging is smaller if

one of the two polimers is still, we can consider K∗ < K.

The evolution of the number of monomers in a given REV is described by the following

differential equation:

dw1

dt
= −Kw1

n−1∑
j=1

wj −K∗w1Wn + Λ−M1w1 (3.3)

where Λ is the production rate of monomers and M1 > 0 is their mortality, that is the

clearance due both to the phatologic activity of the microglia and the possible reabsorp-

tion by blood vessel [5],[6]. The first, second and fourth term in (3.3) indicate a loss of

monomers due respectively to coagulation with oligomers, coagulation with plaques and

clearence, while the third term is a gain one.

The evolution of the number of oligomers ws, with 1 < s < n, is described by the

equation:

dws
dt

=
K

2

∑
i+j=s

wiwj −Kws
n−1∑
j=1

wj −K∗wsWn −Msws. (3.4)

The coefficient K
2

is needed in order to count the number of oligomers once. Ms is a

strictly positive constant representing the oligomer’s mortality. Finally, the variation of
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the number of immobile aggregates is given by:

dWn

dt
=
K

2

∑
i+j≥n;i,j<n

wiwj −MnWn, (3.5)

where Mn is a strictly positive constant representing the plaques mortality.

The next step is to model the progression of AD. For this purpose, we use a Cellular

Automata model. We will divide the brain in REVs, described in detail below, where

each REV corresponds to a cell. Then, for the CA rule we will establish two formulas:

the (3.7), a local formula, and the (3.9), a non-local one. We associate the average

degree of malfunctioning of the neurons in each REV with a parameter a ∈ [0, 1]: a = 0

means that this portion of the brain is healthy and a = 1 corresponds to the complete

degeneration. We discuss now the dimension of the REV. It should be large enough to

contain a sufficient number of neurons, so that it makes sense to define a quantity a as

the average degree of malfunctioning of the neurons contained in the REV. On the other

hand, the dimension of the REV must be taken small enough so that the variation of

a over the macroscopic scale of the cerebral region could be identifiable. For each REV

we assume that a is a non decreasing function of time and its variation is due to two

different causes:

� a local effect, caused by the level of toxicity of the Aβ in the REV itself;

� a non-local effect, introduced by degradation of the adjacents REVs.

Concerning the local effect, the current opinion is that, while monomers are innocu-

ous, the neurons’s degeneration happens if the concentration of soluble toxic oligomers

exceeds a given limit. Denoting with γi the toxicity of the oligomers wi contained in a

given REV, we can define for each REV the quantity

D =
n−1∑
i=2

γiwi, (3.6)

and the degradation occurs when D goes beyond a limit value D∗ > 0. Since the typical

timescale of degradation is much slower than the one of aggregation of Aβ peptides, it is

reasonable to consider that there exists T > 0 such that a is constant in each of the time

intervals (0, T ), (T, 2T ), . . ., and therefore update a at the times T , 2T ,etc. Typically,
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(0, T ) can be thought of as a period of 180 days. Based on this considerations we write

for the local effect the relation

a(t) = a(mT ) + θ[D(mT )−D∗]+ for mT < t ≤ (m+ 1)T, (3.7)

where [.]+ means the positive part and θ is a given positive constant.

To model the non-local effect, we assume that the REVs in which we divide the

cerebral region considered are cubes of equal size stacked in such a way that each of

them has faces in common with its neighbors. We define the neighborhood of a REV,

located in the interior of the region, as composed by 26 cubes that have at least one

vertex in common with it, as in Figure 3.1.

Figure 3.1: REV’s neighborhood

If we suppose the region embedded in a virtual frame formed by cubes where a is con-

stantly equal to zero, the definition applies to every REV considered. At this point we

update the value of a with the following formula:

a(t) = a(mT ) + σ
∑
k

[ak(mT )− a(mT )]+ for mT < t ≤ (m+ 1)T, (3.8)

where the sum ranges over the 26 cubes in the neighborhood of the considered REV and

σ > 0 is a given constant. Now it is possible to update a in our REV by increasing its

value if in another REV of the neighborhood a has a bigger value. Equation (3.8) can

be easily generalized. For example we could assume that the influence of the neighbors
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is different in different directions, i.e. substituting the sum in the RHS by∑
k

σk[ak(mT )− a(mT )]+.

Combining (3.7) and (3.8) as follow

a(t) = a(mT )+θ[D(mT )−D∗]+ +σ
∑
k

[ak(mT )−a(mT )]+ for mT < t ≤ (m+1)T,

(3.9)

we obtain the law by which we update the value of a in each REV of the region at times

T , 2T , etc.

The final step in the construction of this model consists in specifying how the level

of degeneration influences the dynamics of the amyloids. The degeneration is twofold:

� brings to the reduction of the number of active neurons,

� increases the production of monomers made by each neuron.

Combining these two effects we can assume that the monomers production rate in the

REV per unit time is given by

Λ = A(1− a)(1 + βa), (3.10)

where A is the rate of monomers produced in a healthy REV and β > 1 is a given

constant. It is known that, during the progression of AD, the maximum production of

the amyloid protein can be 4-6 times larger than in a healthy brain [7]. Then, accordingly

to [43], we will choose β = 15.

3.1.2 A specific example

To test the model, we consider the following simplified situation: the total popula-

tion of amyloids can be divided into 3 subpopulations: monomers, toxic oligomers and

immobile aggregates, called also polymers and plaques. We rescale wi for i = 1, 2, 3 by

a constant N , described in the following, in order to define:

X(t) =
w1(t)

N
, Y (t) =

w2(t)

N
, Z(t) =

w3(t)

N
.
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As [8] explains, the mass of a monomer is about 8·10−12 nanograms. We choose N = 1011,

corresponding to the order of magnitude of the number of monomers in a nanogram. SoX

represents, in order of magnitude, the mass of monomers in nanograms in the considered

REV. For the evolution of the amyloids we choose one day as unit time.

Setting k = K × N , k∗ = K∗ × N and λ = Λ
N

and omitting the dependence on t, the

differential equations (3.3), (3.4), (3.5) take the form:
X ′ = −kX2 − kXY − k∗XZ −M1X + λ (A)

Y ′ = 1
2
kX2 − kXY − kY 2 − k∗Y Z −M2Y (B)

Z ′ = 1
2
kY 2 + kXY −M3Z (C)

(3.11)

The rescaled expression for λ is, using (3.10), λ = λ0(1− a)(1 + βa) where λ0 = A
N

. The

choice λ0 = 2 corresponds to a daily monomer production of 2 nanograms in each REV

and 1000 nanograms in a healthy brain. According to the literature [14], this choice

seems reasonable. We now choose the remaining constants in (3.11). Assuming that

the daily clearance amounts to 1%, we take Mi = 10−2 for i = 1, 2, 3, [14]. Althought

in the literature there are various attempts to give explicit formulas for k and k∗ [9],

[10], [11], this last choice remains arbitrary and in all our AD simulations we consider

k = 10−4 and k∗ = 5 · 10−6, [14]. In table 3.1 we summarize all the choices made for the

parameters. These choices will never change in all our tests.

parameter value

β 15

λ0 2

M1 10−2

M2 10−2

M3 10−2

k 10−4

k∗ 5 · 10−6

Table 3.1: Summarizin of parameter’s choices.

In this context we stress that our example is rather conceptual and speculative, and

mainly aimed to illustrate the potentiality of the model.
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We are now interested in studying the system (3.11), its solutions and its equilibrium

values.

3.1.3 Global existence of solutions

We consider the system (3.11) with positive initial data X(0) := X0, Y (0) := Y0,

Z(0) := Z0 > 0. This system has a global positive solution, as shown below. The local

solutions X, Y, Z of (3.11), defined on [0, T ], exist for the Peano-Picard theorem and are

C1([0, T ]), since the first derivatives of X, Y, Z are polynomials.

We begin by showing that the local solutions corresponding to strictly positive initial

data are strictly positive.

Theorem 3.1.1. If X0, Y0, Z0 are positive, then X(t) > 0, Y (t) > 0 and Z(t) > 0 ∀t ∈
[0, T ].

Proof. Consider X(t). Suppose for the sake of argument X(t) ≤ 0, for some t ∈ R+. Let

t∗ be the first value such that X(t∗) = 0 which certainly exists for the zero’s theorem,

since X(0) = X0 > 0. Substituting X(t∗) in (A) we obtain X ′(t∗) = λ > 0, which means

X has positive tangent in t∗. This is absurd because for t < t∗ we have X(t) > 0 and for

t > t∗ we have X(t) ≤ 0.

In the same way we show the statement for Y . Consider t∗∗ be the first value such that

Y (t∗∗) = 0. Substituting in (B) we obtain Y ′ = 1
2
kX2(t∗∗) > 0, meaning that Y has a

positive tangent t∗∗. This is absurd for the reasons as above.

The proof for Z is the analogous, choosing a value t∗∗∗.

So X, Y, Z are strictly positive on [0, T ]. We prove that they are limited on [0, T ] in

two different ways. Then by applying the Theorem 3.1.4, we can extend the solutions of

our system to all t > T

Theorem 3.1.2. The solutions X, Y, Z are limited on [0, T ].

Proof. For X(t), from (A) and knowing that X, Y, Z are positive, we obtain X ′(t) < λ.

Then, by the fundamental theorem of calculus we have

X(t) = X0 +

∫ T

0

X ′(s)ds ≤ X0 + λT := X0 + c1T,
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where c1 is a constant value. Similarly for Y (t). From (B) we have Y ′(t) < 1
2
k(X0+λT )2.

Therefore

Y (t) = Y0 +

∫ T

0

Y ′(s)ds ≤ Y0 +

∫ T

0

(
1

2
kX2

0 +
1

2
kλ2T 2 + kX0λT )ds =

= Y0 + (
1

2
kX2

0 +
1

2
kλ2T 2 + kX0λT )T := Y0 + c2T,

where c2 is a constant value. Likewise for Z we can estimate this function with a constant

c3 and write

Z(t) ≤ Z0 + c3T

Another way to prove that X, Y, Z are limited is the following:

Theorem 3.1.3. The following inequalities holds:

X ′ ≤ −kX2 + λ− k∗XZ ⇒ X(t) ≤ α := max{X(0),
√

λ
k
}

Y ′ ≤ kα2 − kY 2 − k∗Y Z ⇒ Y (t) ≤ β := max{Y (0), α}
Z ′ ≤ 1

2
kβ2 + kαβ −M3 ⇒ Z(t) is also limited.

Proof. We prove the statement only for X.

Define α := max{X(0),
√

λ
k
}. We can consider two cases:

1. X0 ≥
√

λ
k
;

2. X0 <
√

λ
k
.

1. If X0 ≥
√

λ
k

then α = X(0). Using (A) and here substituting
√

λ
k

we obtain

X ′(0) ≤ −k
√

λ
k

+ λ− k∗X(0)Z(0) < 0. Then, being X ′(0) < 0, we have that in a right

neighborhood of 0 X decreases. At this point there are two possible cases:

1a. X(t) < α ∀t ∈ [0,+∞]⇒ we obtain the inequality we wanted.

1b. ∃t∗ > 0 such that X(t∗) = α(≥
√

λ
k
). But then, the inequality

X ′(t∗) ≤ −kX2(t∗) + λ− k∗X(t∗)Z(t∗) ≤ −k∗X(t∗)Z(t∗) < 0

implies that in a right neighborhood of t∗ must be X(t) > α, that is absurd.

2. X0 <
√

λ
k
. Since in this case α =

√
λ
k
, for a well known theorem, [44], X(t) takes

smaller values than α. Then there exists t̄ such that X(t) < α on [0, t̄]. Consider now
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t∗ = sup{t > 0; X(s) < α on [0, t̄]}, that is t∗ is the first t such that X(t) reaches

α. Then, for the very definition of sup, X(t∗) = α. Thinking as above

X ′(t∗) ≤ −kα2 + λ− k∗X(t∗)Z(t∗) < 0

and this implies that X decreases in t∗, that is X(t) ≥ X(t∗) = α for t ∈ [t∗− δ, t∗]. This

is absurd for the very definition of t∗. So t∗ = +∞

We now apply the Theorem below to obtain global existence of the solutions.

Theorem 3.1.4. Suppose f : I × Rn −→ Rn. If for every closed and limited interval

I ′ ⊂ I there exist constants V1, V2 such that ‖f(t, x)‖ ≤ V1 + V2‖x‖, then every maximal

solution of the system ẋ = f(x) is defined on all I.

For the proof see [1].

We have therefore that the solutions exist ∀t > T , that is their domain is R+ ∪ {0}.

3.1.4 Dependence on initial data

After having showed positivity, boundedness and extensibility of the solutions, we

analyze their dependence on initial data. First we solve this system using a = 0 and

then using a = 0.02. In each case, three possible initial configurations are considered:

� X0 = 10, Y0 = 1, Z0 = 1;

� X0 = 15, Y0 = 1, Z0 = 1;

� X0 = 20, Y0 = 1, Z0 = 1.

In Figure 3.2 we can see that in each of the two cases, starting from different con-

figurations, the same equilibrium point is reached and it does not depend on the initial

data. This results is reasonable, because if we study the equilibrium points, as we will

do in the following subsection, we will notice that for fixed parameters, including a fixed

a, there is a unique equilibrium point that does not depend on the initial data. Observe

that varying the initial mass of monomers reflects exactly what just explained for AD,

where the illness is originated by an excess of monomers of Aβ.
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Figure 3.2: Graphs with different initial data in two possible AD situations: a = 0 and

a = 0.02.
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3.1.5 Equilibrium solutions

Consider now the equilibrium solutions of the system (3.11), that is the solutions of

the algebraic system
0 = −kX2 − kXY − k∗XZ −M1X + λ (A′)

0 = 1
2
kX2 − kXY − kY 2 − k∗Y Z −M2Y (B′)

0 = 1
2
kY 2 + kXY −M3Z. (C ′)

(3.12)

We shall prove that the system (3.11) has an equilibium solution

X ≡ X0 > 0, Y ≡ Y0 > 0, Z ≡ Z0 > 0.

and that this solution is unique. First we study the existence of equilibrium solutions.

Solutions of (3.12) satisfy

Z =
k

2M3

Y 2 +
k

M3

XY

and −kX2 − kXY − k∗X( k
2M3

Y 2 + k
M3
XY )−M1X + λ = 0

1
2
kX2 − kXY − kY 2 − k∗Y ( k

2M3
Y 2 + k

M3
XY )−M2Y = 0,

(3.13)

that is a system of two quadratic equations in X:(1 + k∗

M3
)X2 + (Y + k∗

2M3
Y 2 + M1

k
)X − λ

k
= 0

X2 − 2(Y + k∗

M3
Y 2)X − 2Y 2 − k∗

M3
Y 3 − 2M2

k
Y = 0.

(3.14)

The positive solutions of the second degree equations are:

X = X1(Y ) =
−(Y + k∗

2M3
Y 2 + M1

k
) +

√
(Y + k∗

2M3
Y 2 + M1

k
)2 + 4λ

k
(1 + k∗

M3
Y )

2(1 + k∗

M3
Y )

and

X = X2(Y ) = Y +
k∗

M3

Y 2 +

√
(Y +

k∗

M3

Y 2)2 + 2Y 2 +
k∗

M3

Y 3 +
2M2

k
Y .

Observe that X1 and X2 have the following properties:

� X2(Y ) is strictly decreasing,
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� X2(0) = 0

� X2(∞) =∞

� X1(0) = −M1

2k
+ 1

2

√
(M1

k
)2 + 4λ

k
> 0

� X1(Y ) =
Y+ k∗

2M3
Y 2+

M1
k

2(1+ k∗
M3

Y )
(−1+

√
1 +

4λ
k

(1+ k∗
M3

Y )

(Y+ k∗
2M3

Y 2+
M1
k

)2
) =

Y+ k∗
2M3

Y 2+
M1
k

2(1+ k∗
M3

Y )
(

4λ
k

(1+ k∗
M3

Y )

2(Y+ k∗
2M3

Y 2+
M1
k

)2
)(1+

o(1))→ 0 as Y →∞.

Therefore the curves X = X1(Y ) and X = X2(Y ) have at least one intersection point

(X0, Y0), which corresponds to an equilibrium solution (X0, Y0, Z0), where Z0 = k
2M3

Y 2
0 +

k
M3
X0Y0.

Now we show the uniqueness of the equilibrium solution.

Let us observe preliminarily that a solution (X0, Y0, Z0) of the system (3.12) satisfies

X0 > 0, Y0 > 0 and Z0 > 0 (see Theorem 3.1.1). The last equation shows that

M3Z =
1

2
kY 2 + kXY. (3.15)

Substituting in the first equation of (3.12) we have:
0 = −kX2 − kXY − k∗

M3
X(1

2
kY 2 + kXY )−M1X + λ (A′′)

0 = 1
2
kX2 − kXY − kY 2 − k∗

M3
Y (1

2
kY 2 + kXY )−M2Y (B′′)

0 = 1
2
kY 2 + kXY −M3Z. (C ′′)

(3.16)

Multiplying (A′′) by −Y and (B′′) by X we obtain:
0 = −kX2Y − kXY 2 + k∗

M3
XY (1

2
kY 2 + kXY ) +M1XY − λY (A′′)

0 = 1
2
kX3 − kX2Y − kXY 2 − k∗

M3
XY (1

2
kY 2 + kXY )−M2Y X (B′′)

0 = 1
2
kY 2 + kXY −M3Z. (C ′′)

(3.17)

Summing (A′′) with (B′′) in (3.17) we have

λY = kX2Y + kXY 2 +
kk∗

2M3

X2Y 2 +M1XY+

+
1

2
kX3 − kX2Y − kXY 2 − kk∗

2M3

XY 3 − kk∗

M3

X2Y 2 −M2Y X,
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and

Y (λ+ (M2 −M1)X) =
k

2
X3.

Since, as we just showed, X > 0, we have k
2
X3 > 0 and, by Y > 0 we obtain λ+ (M2 −

M1)X > 0. Let us consider now the function

F (X) =
k
2
X3

λ+ (M2 −M1)X

defined on the set

I = {X > 0, λ+ (M2 −M1)X > 0}.

Calculating the derivative of F , we have

F ′(X) =
3k
2
X2(λ+ (M2 −M1)X)− k

2
X3(M2 −M1)

(λ+ (M2 −M1)X)2

and if the numerator of F ′ is positive, F ′ is positive on the same set. So, we notice that

3k

2
X2(λ+ (M2 −M1)X)− k

2
X3(M2 −M1) = kX3(M2 −M1) +

3kλ

2
X2 =

= kX2(X(M2 −M1) +
3λ

2
) >

λ

2
> 0

By contradiction, if (X0, Y0, Z0) and (X1, Y1, Z1) are two different solutions of (3.12) with

0 < X0 < X1, we have 0 < Y0 < Y1. Then the first equation of (3.16) gives:

λ = kX2
0 + kX0Y0 +

k∗

M3

X0(
1

2
kY 2

0 + kX0Y0) +M1X0 <

< kX2
1 + kX1Y1 +

k∗

M3

X1(
1

2
kY 2

1 + kX1Y1) +M1X1 = λ,

bringing to a contradition. Now, in Figure 3.3,we display the equilibrium points in two

possible configurations of AD.
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Figure 3.3: Intersection of X1(Y ) and X2(Y ) in order to study equilibrium solutions for

different values of a.

3.1.6 Stability of equilibrium solutions

As we discussed in Chapter 1, equilibrium points can be asymptotically stable, stable

or unstable. Applying this theory, it is possible to study the stability of the equilibrium

solution of (3.11). For our analysis, we assume M1 = M2 = M3 = M for simplicity.

Our system is nonlinear, so we need to linearize it around the equilibrium solution by
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calculating the jacobian matrix. The matrix is the following:

J =


−2kX − kY − k∗Z −M −kX −k∗X

kX − kY −kX − 2kY − k∗Z −M −k∗Y
kY kX + kY −M

 ,

To study the stability of the linearized system x′ = Jx corresponds to study the local

stability of (3.11). In order to use what we explained in Chapter 1, it is necessary to

calculate the characteristic polynomial of J and to establish if it is a Hurwitz polynomial.

The characteristic polynomial for J is:

P (u) = −u3 − au2 − bu− c,

where

� a = −3M − 3kX − 3kY − 2k∗Z;

� b = −3M2 − 6kMX − 3k2X2 − 6kMY − 4k2XY − 2kk∗XY − 2k2Y 2 − kk∗Y 2 −
4k∗MZ − 3kk∗XZ − 3kk∗Y Z − k∗2Z2;

� c = −M3 − 3kM2X − 3k2MX2 − k2k∗X3 − 3kM2Y − 4k2MXY − 2kk∗MXY −
3k2k∗X2Y − 2k2MY 2− kk∗MY 2− 3k2k∗XY 2− k2k∗Y 3− 2k∗M2Z− 3kk∗MXZ−
3kk∗MY Z − 2kk∗2XY Z − kk∗Y 2Z − k∗MZ2.

Using the notations of Chapter 1, since a = −a1, b = −a2 and c = −a3, we have tro

prove that a ∗ b + c > 0. Using Mathematica software, we have that this condition is

verified if

k∗ > 0, k ≥ k∗

9
, M > 0, X > 0, Y > 0, Z > 0,

(see section 4.3). This requirements are verified by our proofs (positivity of solutions) and

the assumptions on the parameters. So the equilibrium point is asymptotically stable.

This result reflects the behaviour of the solution, for a fixed a, since they tend towards

a fixed value, as seen in Figure 3.2.
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3.1.7 Progression of the disease

After having deeply analyzed the system (3.11), we study the development of AD with

local and non-local influence, in the two-dimensional case. In this context we consider

each REV as two-dimensional, so it corresponds to a face of the cube in Figure 3.1. Then

we display the solution of (3.11), depending on the worsening of the disease.

Remember the system (3.11) in exam:
X ′ = −kX2 − kXY − k∗XZ −M1X + λ

Y ′ = 1
2
kX2 − kXY − kY 2 − k∗Y Z −M2Y

Z ′ = 1
2
kY 2 + kXY −M3Z

where X, Y, Z represent respectively the quantity of monomers, oligomers and plaques.

The only toxic component in our model is given by Y and for these simulations we choose

D∗ = Y ∗ = 22. The remaining parameter γ2 from (3.6), is setted equal to 1. As already

pointed out, the local progression of AD is governed by (3.7), while the non-local one is

driven by (3.9). As said in the second section of this chapter, the a parameter is updated

every 180 days. In each case we display the grids which represent a brain divided in

20× 20 cells representing the REVs.

We examine first the local case. Applying formula (3.7), it is easy to monitor the

development of AD in a specific REV, here the one of coordinates (6, 6), as in Figure

3.4. The graph represents exactly our expectation: a is non-decreasing function of time

and it tends towards 1. Then, we can see the development of AD in the 20 × 20 grids

represented in Figure 3.5. The other parameters are chosen as usual.

We study now the non-local effect on a. The grids presented in Figure 3.6 show us

how the AD expands. Starting from the (6, 6) REV, the AD progresses and enlarges

its area. That area looks like a circle because no direction is preferred for the diffusion

of the disease. The grid at t = 0 is not represented because it is the same as above,

represented in Figure 3.5.

Concerning the non-local effect, it is possible to analyze the behavior of a in different

REVs. Figure 3.7 shows the graphs of a in three REVs. The values of the curves reflect

exactly what found in the grids. The (18, 18) REV, far from the (6, 6) one, doesn’t

became ill. The (8, 6) REV, which is close to the (6, 6) one, becomes ill very quickly and
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Figure 3.4: Development of AD with a(0) = 0.02, using the local formula (3.7).
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Figure 3.5: Images representing the progression of AD with local effect on a starting

from a(0) = 0.02 in the (6, 6) REV.
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Figure 3.6: Images representing the progression of AD with non-local effect on a, starting

from a(0) = 0.02.
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Figure 3.7: Development of AD in three different REVs calculated with (3.9).
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its values became more and more close to the (6, 6) ones.

Using the non-local approach, it is possible to calculate the solution X, Y, Z influenced

by the progression of the disease. This means to calculate the solution in a range of 180

days, update a with the (3.9) formula and to insert this value for the calculus in the

following 180 days, and so on. This type of solution is showed in Figure 3.8. We see here

that the solutions do not approach an equilibrium value. This is an interesting effect

which should be possibily studied also analitically. The choice of using (3.9) for studying
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Figure 3.8: Solution X, Y, Z for the REV (6, 6) calculated with non-local effect formula

(3.9) for updating a.

the development of AD with an evolving value for a can be replaced with a different

updating scheme for a, divided in two steps: first a local updating with (3.7) and then

a global updating using (3.8). We will investigate this possibility in the future.
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3.2 Mathematical models for tumours with cancer

stem cells

In the last few years several articles has been devoted to the construction, discussion

and analysis of mathematical models describing the growth of tumors in presence of

cancer stem cells (CSC from now on) [45], [46], [47]. CSC has been founded in many

cancers, as well as in sarcomas and leukemia. One of the characteristics of tumors with

CSC is the so-called tumor-growth paradox, that consist in the fact that tumors with

a larger death rate for ordinary (non-stem) cancer cells (CC from now on) might grow

bigger than tumors with a lower death rate for the same class of cells. Of course, since

the death rate is influenced by medical treatment, understanding the reasons behind

this paradox can be relevant in the control and therapy of the tumors. Concerning

what we will explain in this section, we have to underline that it is not intended to give

quantitative prevision of the progression of cancers, nor to include all possible factors

and aspects that influence their growth. It is rather oriented to offer an idea of the

phenomenon and to isolate the mechanisms that seem to be crucial for the essential

properties of the evolution of tumors in presence of CSC. In the following models, one

based on ODE and the other on Cellular Automata, some drastic simplifications are

introduced in order to provide mathematical schemes showing solutions that can be

investigated and simulated [28].

3.2.1 Hypothesis

The models we will illustrate contain two basic simplifications. The first simplific-

ation consists in supposing that the population of tumor’s cells is made of two sub-

populations: cancer stem cells (CSC) and ordinary non-stem cells (CC). All the cells in

each subpopulation have the same properties. The second approximation is that cells

have age-independent replicative potential and mortality. In order to be more specific,

for CC there is a fixed probability of generating new CC or of undergoing apoptosis,

while CSC are considered immortal and capable of generating new CSC or CC, with

a fixed proportion between the two probabilities. Even with these simplifications, our

models are appropriate to describe the tumor paradox adequately. An important effect
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that is considered is the ’crowding effect’. This means that mitosis is supposed to be

inhibited when the density of cells in a neighborhood of the would-be mother cell exceeds

a limit value. If the model would not include the crowding effect, it would not be able to

reproduce the tumor growth paradox [13]. In what follows we do not take into account

explicitly the movement of cells provoked by the mutual pushing effect of mitosis.

3.2.2 The ODE model

Let us define u(tk) the number of the lattice sites occupied by CSC at time tk divided

by the total number of sites. Similarly, v(tk) represents the fraction of CC at time tk. In

this context we formally consider that the neighborhood of each cell is the entire grid,

so the fraction of the vacant sites where a new cell can appear is 1 − u(tk) − v(tk) at

time tk. Moreover, our discussion considers tumors with cancer stem cells and thus we

assume that u(0) > 0.

Then, if we look for a continuous evolution system reflecting our hypothesis, we can

consider to the following pair of ordinary differential equations:du
dt

= ρuδu(1− u− v)

dv
dt

= ρu(1− δ)u(1− u− v) + ρvv(1− u− v)− µv
(3.18)

where:

� ρu is the replication rate for CSC;

� ρv is the replication rate for CC;

� δ is the rate for which a CSC generates a CSC;

� 1− δ is the rate for which a CSC generates a CC ;

� µ is the rate of undergoing apoptosis of a CC;

(see [28]). The first term in both equations (3.18) represents the gain in new CSC and

CC from CSC, the second term in the second equation of (3.18) represents the gain in

new CC from CC and finally the third term in dv
dt

is the loss in CC due to CC apoptosis.
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The system (3.18) has a unique steady state u = 1 and v = 0 which is the only global

attractor in the invariant set

Σ = {(u, v) : u > 0, v ≥ 0, u+ v ≤ 1},

(see [13]). This corresponds to a situation in which, independently of the proliferation

and death rate of the two sub-populations, the tumor occupies the whole available space

and consists of stem cells only.

Normalizing respect to time, we have a system with three parameters:

� δ,

� ρ = ρu
ρv

,

� µ∗ = µ
ρu

.

To simplify the notation we will write µ instead of µ∗. The system (3.18) becames:u̇ = δu(1− u− v)

v̇ = (1− δ)u(1− u− v) + ρv(1− u− v)− µv.
(3.19)

The solution of the system (3.19) is reported in Figure 3.9 under the following setup of

parameters: ρ = 0.5, δ = 0.2 and µ = 1.5.

As we see in the following simulation, this model is able to reproduce the tumor

growth paradox. We fix the parameters setup, as can be seen in the caption of Figure 3.10,

but we vary the mortality µ. Figure 3.10 shows the expected paradoxical phenomenon:

cells with bigger mortality (green, µ = 1.5) expand faster than ones with lower mortality

(yellow, µ = 0.5). This provokes, after a certain time, a bigger tumor for µ = 1.5 than

for µ = 0.5.
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Figure 3.9: Solution of (3.19) with ρ = 0.5, δ = 0.2, µ = 1.5.
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Figure 3.10: Sum of u and v of (3.19) with ρ = 0.5, δ = 0.2, µ = 1.5 (green) and

ρ = 0.5, δ = 0.2, µ = 0.5 (yellow).

3.2.3 The Cellular Automata model

It is possible to simulate tumor growth using Cellular Automata. This is a very

interesting approach because we can see the tumor growth and evolution at different

times. In this section we provide 2-dimensional [28] and 3-dimensional simulations [29].

First, let us consider the 2d case. Imagine cells as living in a square lattice. It is

possible to establish probabilistic rules for their motion, replication or death. When
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we run a simulation, the individual behavior of each cell contributes to the evolution

of the collective behaviour. According to the observation on the crowding effect, we

assume that cells can proliferate only if in their neighborhood some cells are vacant. It is

also assumed that dead cells leave immediately empty the site they occupied. Different

definitions of neighborhood are possible: for the 2-D lattice Von Neumann’s or Moore’s

neighborhood can be used [25]; while in the 3d simulation the neighborhood of each cell

corresponds to a face of the cube represented in Figure 3.1. Moreover, each site in the

lattice grid can be in one of three different states:

� empty sites (white),

� CSC occupied sites (black),

� CC occupied sites (red).

Starting from a given situation at time tk each CC (red) has a probability µ of becoming

white. Then, the surviving cells have a probability ρ to be replicant. But, in this case,

mitosis is only possible if there are white sites in the chosen neighbourhood; if this

situation occurs a daughter CC appears and one of these white sites becomes red. The

situation with CSC has two differences:

� µ = 0 (CSC are immortal),

� if mitosis occurs a daughter CSC appears with probability δ, a CC appears with

probability 1− δ.

The replication probability ρ can be different for the two types of cells: we denote ρu for

CSC and ρv for CC. We also assume that the replication potential does not depend on

the age. In our case the simulation stops before the growing tumor reaches the boundary

of the grid, so it is not necessary to specify boundary conditions. In Figure 3.11 we can

see the tumor growth in different time steps, for the 2d case.

Let us examine now the three-dimensional case. In this case, our neighborhood is a

3 × 3 cube within 26 little cubes, as the one in Figure 3.1. So, each cell can interact

with another cell which has in common a side or an edge. For CSC, we assume that the
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Figure 3.11: Tumor configuration at t = 0, t = 1000, t = 3000, and t = 5000. The cells

colored in white are empty, while the black and red cells are occupied by CSCs and CCs

respectively. u+ v denotes the fraction of tissue occupied by the tumour.

replication probability depends on blank spaces relatives to all the 26 cubes, that is:

Pr(CSC) =
ni,j,kCS ρu

26
, (3.20)

where ni,j,kCS is the number of safe cells and i, j, k represent the coordinates in the R3 space.

The δ and µ parameters remain the same with the same meaning. Also ρv changes is

role. The CC replication probability is:

Pr(CC) =
ni,j,kCS ρv

26
. (3.21)

In Figure 3.12 we display the three-dimensional space with two distinct masses of tumors,
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one made of CSC type cells and the other one composed by CC type cells. As we can

observe the CCs tend to surround the CSCs. This 3d figure is very interesting, because

it allow us to have a realistic idea of a tumor development and expansion.

Figure 3.12: Tumor evolution in a 3d tissue of a particular initial (t = 0) configuration

of tumour at t = 200, t = 750, t = 1200. The CCs (in red) tend to surround CSCs (in

black).
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3.3 A new mathematical model for Covid-19

At the end of 2019, a new coronavirus has been identified. It causes viral pneumonia

[30] and, in very serious cases, it can bring humans to death [39]. Being a new illness, no

sanitary system was really ready to counter such a disease and no state has yet vaccines.

For contrasting the Covid-19 spreading, some measures has proven to be efficient. Gov-

ernments, following sometimes suggestions by World Health Organization and scientific

teams, closed borders, imposed the use of face masks and disinfectant, limited people

social contacts closing public places like schools and cinemas, for example. Nowadays,

limiting social contacts is very difficult. We have to change our lifestyles. We must be

able to do smart working, for example. In all public places not too much people can be

present, we must pay attention also when we take the bus or the train and so on. No

public event can be organized. This means that such illness has a very deep sanitary

and economic impact on our lives. For these motivations, to study the development in

space and time of this new coronavirus is very important: it could be very useful to help

governments in taking decisions. We just explained how unexpected was this illness in

our society, so referring to previous works is not so simple. Scientific and temporal dis-

coveries, like therapies and human first cases, are increasing everyday. Many researcher

are trying to develop models in order to analyse the present situation and to predict

future development of Covid-19.

To model this type of phenomena, many approaches have been proposed. The models

can be deterministic or stochastic. A kind of widely adopted models are the Epidemi-

ological ones, as the one studied by Kermack and MacKendrick [32], who proposed the

Susceptible-Infected-Removed model, called the SIR model. This model has been gen-

eralized and Exposed population has been added, leading to the Susceptible-Exposed-

Infected-Removed model [48]. In our opinion, the first kind of mathematical models

based on dynamical equations (see [33], [34]) are extremely simplified for describing and

epidemiological dynamics as in the case of the Covid-19 [31]. We consider that the SEIR

model is more appropriate. It has been adopted to assess the effectiveness of measures

adopted to contrast the spreading of Covid-19 and for characterizing that illness in dif-

ferent countries [35], [36], [37], [38]. There are also others generalization of the SEIR

model, obtained by adding Quarantined and Un-quarantined populations, [35], [36]. This
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extended models allow to take into account the incubation period and the period before

recovery.

In this thesis, we aim to present an original model describing the evolution of the

Covid-19 diffusion in a certain population, focusing particularly in the spreading of the

disease in Italy in 2020. We opt to consider, in addition to Susceptible, Infected and

Recovered people, Quarantined and Dead ones. Population is divided in 5 categories.

As said, this coronavirus is still showing its characteristics and there are many aspect

that are still unknown. However, we consider that there are different assumption which

reflect the dynamic showed by this illness. Government’s strategy is to discover and

isolate cases, also if they are asymptomatic, by contact-tracing. Different parameters

are assumed to reflect strategies and development of Covid-19, depending on time. In

general we decide to use 4 parameters. The r parameter indicates the contagion index and

reflects the influence of lock-down: if the whole population is isolated, it becomes close to

zero. The γ constant represents the incubation period of the virus, so this value is given.

We suppose that after this period an infected asymptomatic person (which corresponds

to our I category) necessarily develops symptoms and therefore is quarantined (this

corresponds to our Q category). No therapies are available at the moment, so someone

can recover, but someone can die. The a and d parameters reflect respectively this two

possibilities. By defining the parameters in an appropriate way, it is possible to see the

development of Covid-19 during time from the actual state. Knowing what will happen

makes possible for governments to take better decisions in time and makes also possible

to prepare sanitary system for outbreaks.

3.3.1 The ODE approach

In this section we present an implementation of an ODE approach to model the

covid-19 diffusion in a population. According to the assumptions described before, we
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can obtain the following equations:

S ′(t) = −r I(t)S(t)

I ′(t) = r I(t)S(t)− γ I(t)

Q′(t) = γ I(t)− (a+ d)Q(t)

R′(t) = aQ(t)

D′(t) = dQ(t)

(3.22)

where S(t)+I(t)+R(t)+Q(t)+D(t) = N , being N the total population. This value can

be assumed constant. Calculating the derivative of the sum S(t)+I(t)+R(t)+Q(t)+D(t),

which is the sum of the derivatives, and substituting their expression in (3.22), this

becomes zero. So N ′(t) = 0 and N is constant.

The meaning of the variables is the following:

� S(t) represents the number of susceptible individuals at time t;

� I(t) is the number of infected asymptomatic individuals at time t;

� Q(t) are the quarantined individuals because they are symptomatic, at time t;

� R(t) is the number of recovered individuals at time t;

� D(t) represents the number of death individuals at time t;

The mechanism is represented in Figure 3.13, where we detail the classes of people and

the fluxes between them.

Indeed, the parameters means:

� r is the basic reproduction number;

� γ represents how many infected asymptomatic became quarantined;

� a is the saved rate;

� d is the death rate;
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Figure 3.13: Illustration of the ODE model for Covid-19 diffusion of system (3.22).

After this description, it is possible to compare the model with the effective data, in

order to show his robustness. We considered the Italian data. Choosing t0=24/02/2020

as the beginning date of epidemic, we can set initial data as follows:

S(t0) = S0 > 0, I(t0) = I0 > 0, Q(t0) = Q0 ≥ 0, R(t0) = R0 > 0, D(t0) = D0 > 0.

We can take the following values for defining initial data: S0 = 60 × 106, I0 = 1000,

Q0 = 221, R0 = 30, D0 = 7. The r parameter can be chosen reflecting Italian govern-

ment measures. Starting from 24/02/2020 we can take r = 4.80 × 10−9. Then, after

having applied the first measure, r can be assumed as 2.90× 10−9. With the total lock-

down, the r-value becomes 0.60 × 10−9. The dates for updating r are 10/03/2020 and

23/03/03, which represent the become law of the two measures, respectively the decree

#Iorestoacasa and the decree of 22/03/2020. The a, d and γ parameters are taken

constant, respectively as 34.5 × 10−3, 4.8 × 10−3 and 0.07. Under this parameters con-

figuration, we can see in Figure 3.14 how the solutions of our ODE model satisfactorily
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fit the effective datas provided by the authorities.
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Figure 3.14: Comparision between model results and scientific data [49].

Now we aim to play with the model, also in order to make previsions. It it possible

to answer the following question: what would have happened if italian government had

taken social measures on different days? In Table 3.2 we report some results. We can

see how many people would have died and how many would have been saved in different

cases.

cases #Iorestoacasa decree 22/03/2020 dead population

1 10/03/2020 23/03/2020 3.7588× 104

2 9/03/2020 22/03/2020 3.0301× 104

3 3/03/2020 16/03/2020 8.2696× 103

4 11/03/2020 24/03/2020 4.6610× 104

5 16/03/2020 30/03/2020 1.6710× 105

Table 3.2: Previsions of dead people with different time application of measures to

contain the virus spread.

With this results, we can evaluate how different it can be to make a decision at

different times. The first case is the real case. In second and third cases we anticipate
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the measures of one day and one week respectively. From the table we can see that only

one day can influence the number of dead people, with 7.287 × 104 saved people. To

anticipate the measure of one week could have saved 29.3184 × 103 people. The fourth

and fifth cases examine the hypothesis of a delay of one day and one week respectively.

A delay of one day could be very dangerous, but a one-week delay could be a disaster.

All these examples shows us how the development of an epidemic is breakable. When

the situation improves since the start of spreading epidemic, government starts to open

again activities and people can move. From June 3rd 2020, the population could move

from one Italian region to another. Updating r to 3.5 × 10−9, which is bigger than the

value taken for the first measure, we obtain that the number of dead people will be, from

the beginnig of the epidemic to one year, 6.8775× 106. So we have to respect the rules

very accurately, because it is very easy to have a big number of dead people.

3.3.2 The CA approach

As extensively discussed in this thesis, the implementation of a CA model can allow us

to introduce and study the spatial effects on collective behavior. Phenomena such as the

reduction of population movement or different strategies of social isolation are factors

that depend on space. Clearly these characteristics cannot be described by a ODE

model that shows average (over the space) values for a certain field. In this subsection

we propose a model of population’s behavior using a Cellular Automata approach.

To apply this method, we need a grid and a transition rule. Our grid is composed by

100 × 100 square cells. We can suppose that each cell represents an area of 5m × 5m.

Therefore the total area of the whole grid can be considered as a quarter of a city. In

this space there are three types of population: Susceptible, Infected (asymptomatic)

and Quarantined (symptomatic) people. Susceptible and Infected can move around the

surface and meet them. If an infected person meets a susceptible one, he can infect him

with a certain rate. Unlike the ODE case, which is completely deterministic, we now

introduce a random process for encounters as a consequence of the movement of people.

Concerning the time unit we consider 1hour.

A schematic representation of the CA algorithm is illustrated in Figure 3.15. The

procedure involves (for each time step) going through the entire grid, for each cell:
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Figure 3.15: Schematic description of the algorithm for the CA approach.

� check if there are any susceptible or infected people;

� randomly decide whether to keep the person immobile or move the person in the

3× 3 neighborhood;

� randomly decide, on the basis of the probability d, whether a quarantined person

dies or is recovers respectively;

� randomly decide, based on the γ probability, if an infected person shows symptoms

and therefore is quarantined;

� randomly decide whether a susceptible person, who is in contact (in the same cell)

with an infected person, contracts the virus based on the probability r1.

We intend to proceed with the implementation of this method and to reproduce

a similar dynamic to that tested in the ODE case. For this aim, we proceeded to
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redefine the parameters taking into account the different approach and the time scale.

In particular, we can approximately rescale r, defining r1 = r × N
24

, where N is the

whole population and the division by 24 is due to 24h = 1day. For the same motivation,

Infected persons become Quarantined with a rate γ = γ/24, and Quarantined people die

or recover with d = d/24 and a = a/24 rates, respectively.

In order to check the consistency of the CA model with the ODE results, we pro-

ceeded with some simulations by varying the β density of the population. We present

the simulations in Figure 3.16. Each pair of figures represents a CA solution and the

corresponding ODE solution. In all panels the r = 5× 10−3, but we consider for the CA

simulations a grid of dimensions 75× 75, 100× 100, and 150× 150. We adopt an initial

configuration of the populations as follows:

� N = 1000;

� S0 = 950;

� I0 = 50.

Having fixed the total number of people, we are facing different population densities,

where the population density is given by β = N
# cells

. We get around this by multiplying

the r parameter on the ODE model by the β population density. This corresponds to

considering a value r2 = r × β.

Although the CA model is a probabilistic model, not a deterministic one like the

ODE model, we obtain similar behaviors for the populations classes. We recall that in

the CA scheme the rates are considered as probability to change population class. We

remark finally that the simulations are consistent with respect to different population

densities. Each graph of the CA model in Figure 3.16 shows the average curves of 2

tests. We conclude that, under these assumptions, the CA model is sufficiently reliable

and consequently could be used to study the evolution of a population subjected to the

possible infection by the virus.
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Figure 3.16: Comparison between CA solutions (on the left column) and ODE solutions

(on the right column) with different grids for the CA scheme: the grid for the first CA

simulation is 75× 75, for the second is 100× 100, and for the third is 150× 150.
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3.3.3 An example: four city districts

After having shown the consistency of the CA model by comparing its solutions with

the ODE model, we can introduce a test where the spatial dependence is relevant.

We assume to consider 4 city districts. We suppose that our space is composed of four

quarters in which susceptible and infected people can move. In each quarter we set a fixed

value for r1. In the first district we consider r1 = 1000∗3∗10−3

h0
, in second and third quarters,

which have an edge in common with the first one, r1 = 1000∗1.5∗10−3

h0
and in the fourth

district, which has only an angle in common with the first quarter, r1 = 1000∗0.75∗10−3

h0
,

where h0 = 24hours. In the first quarter we impose an initial concentration of infected

I0 = 50. In the other districts we assume I0 = 0, which means that they are completely

safe. A sketch of this test is represented in Figure 3.17.

1° quarter
r1=1000*3*10-3/h0

I0=50

3° quarter
r1=1000*1.5*10-3/h0

2° quarter
r1=1000*1.5*10-3/h0

4° quarter
r1=1000*0,75*10-3/h0

Figure 3.17: The four city districts considered in our test.

Susceptible and infected people can move from one quarter to another one. What

we expect is the following situation: infected people which are in the first quarter infect

much more people with respect to people in other districts, so new infected move and

propagate the Covid-19 around a more safe quarter, where there are not so many infected

people. This phenomena is reflected in the different amounts of quarantined and dead

people in the four districts and in the delay of the infection wave in the last district, as

we can see in the results of Figure 3.18.
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Figure 3.18: Development of Covid-19 spreading in the populations of the 4 districts

(notice the different vertical scales).
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Numerical schemes

In this chapter we show some of the schemes written for studying our models. We

used Matlab and Mathematica softwares.

4.1 Matlab schemes for the development of AD

k1 = 10^(-4);

k2 = 5*10^(-6);

M1 = 10^(-2);

M2 = 10^(-2);

M3 = 10^(-2);

beta=15;

dim=20;

a=zeros(dim,dim);

m=6;

a(m,m)=0.02;

x0=10*ones(dim,dim);

y0=ones(dim,dim);

z0=ones(dim,dim);

tspan=[0,180];

locale=zeros(dim,dim);
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lambda0=2;

lambda=lambda0*ones(dim,dim);

lambda(6,6)=lambda0*(1-a(m,m))*(1+beta*a(m,m));

ystar=22;

theta=10^(-3);

sigma=0.05;

k=1;

a66(k)=a(m,m);

tempi(k)=0;

f1=figure;

pcolor(a)

colormap(flipud(jet))

title([’a at year ’ num2str(0) ’ ’ ])

colorbar;

caxis([0 1]);

saveas(gcf, [’SRS_time’ ,num2str(i), ’.pdf’]);

for T=180:180:7560

for i=1:dim

for j=1:dim

inizio=[x0(i,j),y0(i,j),z0(i,j)];

[t,y]=ode45(@(t,y)AD(k1,k2,M1,M2,M3,lambda(i,j),t,y),tspan,inizio);

r=length(y(:,2));

x0(i,j)=y(r,1);

y0(i,j)=y(r,2);

z0(i,j)=y(r,3);

locale(i,j)=theta*subplus(y(r,2)-ystar);

a(i,j)=a(i,j)+locale(i,j);

lambda(i,j)=lambda0*(1-a(i,j))*(1+beta*a(i,j));

end

end

if mod(T,1440)==0
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f2=figure;

pcolor(a)

colormap(flipud(jet))

title([’a at year ’ num2str(T/360) ’ ’ ])

colorbar;

caxis([0 1]);

saveas(gcf, [’SRS_time’ ,num2str(i), ’.pdf’]);

end

a66(k+1)=a(6,6);

tempi(k+1)=T;

k=k+1;

tspan=[T,T+180];

end

figure(2)

plot(tempi,a66,’g’);

xlabel(’time’)

ylabel(’a(6,6)’);

axis tight

The scheme displayed above shows how to keep track of the local development of AD,

by using (3.7). First of all we define all the needed parameters and then we set initial

configuration. Twice a year, so every 180 days, we cover the entire matrix representing

the brain and in each REV we calculate the solution of (3.11), using the subroutine

ode45. Then we update the value of a. We also keep track of all the a values of the cell

with coordinates (6, 6), in order to provide Figure 3.4. This scheme also provides Figure

3.5. Since the brain is represented as a matrix and each REV is a matrix’s cell with his

initial conditions, also λ, a and the inital conditions are taken as matrices.

\\same values for k1,k2,M1,M2,M3,beta;

dim=20;

a=zeros(dim,dim);

m=6;
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a(m,m)=0.02;

x0=ones(dim,dim);

y0=20*ones(dim,dim);

z0=ones(dim,dim);

tspan=[0,180];

locale=zeros(dim,dim);

globale=zeros(dim,dim);

lambda0=2;

lambda=lambda0*ones(dim,dim);

lambda(6,6)=lambda0*(1-a(m,m))*(1+beta*a(m,m));

ystar=22;

theta=10^(-3);

sigma=0.05;

k=1;

a66(k)=a(m,m);

a86(k)=a(8,6);

a1818(k)=a(18,18);

tempi(k)=0;

sol=[x0(6,6),y0(6,6),z0(6,6)]’;

f1=figure;

pcolor(a)

colormap(flipud(jet))

title([’a at year ’ num2str(0) ’ ’ ])

colorbar;

caxis([0 1]);

saveas(gcf, [’SRS_time’ ,num2str(i), ’.pdf’]);

for T=180:180:7560

for i=1:dim

for j=1:dim

inizio=[x0(i,j),y0(i,j),z0(i,j)];

[t,y]=ode45(@(t,y)AD(k1,k2,M1,M2,M3,lambda(i,j),t,y),tspan,inizio);
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r=length(y(:,2));

x0(i,j)=y(r,1);

y0(i,j)=y(r,2);

z0(i,j)=y(r,3);

locale(i,j)=theta*subplus(y(r,2)-ystar);

if i==6 && j==6

sol=[sol [x0(6,6) y0(6,6) z0(6,6)]’];

end

end

end

ag=[zeros(1,dim);a;zeros(1,dim)];

ag=[zeros(dim+2,1) ag zeros(dim+2,1)];

for i=1:dim

for j=1:dim

globale(i,j)=sigma*(subplus(ag(i,j+1)-ag(i+1,j+1))+

subplus(ag(i+2,j+1)-ag(i+1,j+1))+subplus(ag(i+1,j+2)-ag(i+1,j+1))+

subplus(ag(i+1,j)-ag(i+1,j+1))+subplus(ag(i,j)-ag(i+1,j+1))+

subplus(ag(i,j+2)-ag(i+1,j+1))+subplus(ag(i+2,j)-ag(i+1,j+1))+

subplus(ag(i+2,j+2)-ag(i+1,j+1)));

a(i,j)=ag(i+1,j+1)+locale(i,j)+globale(i,j);

lambda(i,j)=lambda0*(1-a(i,j))*(1+beta*a(i,j));

end

end

tspan=[T,T+180];

if mod(T,1440)==0

f2=figure;

pcolor(a)

colormap(flipud(jet))

title([’a at year ’ num2str(T/360) ’ ’ ])

colorbar;

caxis([0 1]);
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saveas(gcf, [’SRS_time’ ,num2str(i), ’.pdf’]);

end

a66(k+1)=a(6,6);

a86(k+1)=a(8,6);

a1818(k+1)=a(18,18);

tempi(k+1)=T;

k=k+1;

tspan=[T,T+180];

end

figure(2)

plot(tempi,a66,’g’);

hold on

plot(tempi,a86,’b’);

plot(tempi,a1818,’r’);

hold off

xlabel(’time’);

legend(’a(6,6)’,’a(8,6)’,’a(18,18)’);

axis tight

figure(3)

plot(tempi,sol(1,:),tempi,sol(2,:),tempi,sol(3,:));

xlabel(’time’);

axis tight

legend(’X(t)’,’Y(t)’,’Z(t)’);

This scheme allow to calculate the non-local influence of a, by using (3.9). First of

all, we fix the parameters as in the case above. Then we fix the initial conditions. Also

in this case some parameters are taken as constants and others as a matrices, for the

same motivations above. Every 180 days, the entire matrix is covered. For each cell, the

local update for a is calculated. Then our matrix is covered once again. Here, the non-

local influence of each REV is calulated with (3.9) formula, using the local part already

calculated. So the a-value for each REV can be updated. The solution calculated in

(6, 6) is saved in the vector called ’sol’, in order to obtain Figure 3.8. This scheme gives
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Figures 3.7 and Figure 3.6.

4.2 Matlab schemes for CSC and CC

mu_1=1.5;

%mu_2=0.5;

delta=0.2;

rho=0.5;

tspan = [0 50];

y0=[0.0036 0.016];

[t,y] = ode45(@(t,y)CSCCC(delta,rho,mu_1,t,y),tspan,y0);

figure(1);

plot(t,y(:,1),’r’,t,y(:,2),’b’);

xlabel(’time’)

legend(’u(t)’,’v(t)’);

sum1=y(:,1)+y(:,2);

figure(2)

plot(t,sum1,’g’);

hold on

mu_2=0.5;

[t,k] = ode45(@(t,k)CSCCC(delta,rho,mu_2,t,k),tspan,y0);

sum2=k(:,1)+k(:,2);

plot(t,sum2,’y’);

xlabel(’time’);

ylabel(’u+v’);

legend(’mu_1’,’mu_2’);

hold off

function dydt=CSCCC(delta,rho,mu,t,y)

dydt = [delta*y(1)*(1-y(1)-y(2));

(1-delta)*y(1)*(1-y(1)-y(2))+rho*y(2)*(1-y(1)-y(2))-mu*y(2)];

end
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This scheme allow to see the solution of the tumor model (3.19) and the tumor-growth

paradox. As usual, first of all we set the parameters. By using the ode45 subroutine,

this scheme plots the solution (u(t), v(t)) of our model, as in Figure 3.9, with different

mortalities µ. Then it is possible to calculate the sum u + v, Figure 3.10, for verifying

the tumor-growth paradox.

4.3 Mathematica scheme for stability criterion

In this section we illustrate the Mathematica scheme adopted for studying the sta-

bility of the equilibrium solution of (3.11). First, we write the system, then the jacobian

matrix and the characteristic polynomial are calculated. Now, we need to isolate the

a, b and c terms, in order to verify asimptotic stability using Routh-Hurwitz criterion.

Finally, the Reduce command allow us to find the condition on X, Y , Z under which

the inequality is verified, that is every X > 0, Y > 0, Z > 0. The result displayed is

bigger than the one we needed. We only pay attention to the conditions described in

3.1.6. The complete scheme can be seen in the following two pages.



In[64]:= X1 = -k X^2 - k X Y - ks X Z - M X + lambda

Y1 = k X^2 / 2 - k X Y - k Y^2 - ks Y Z - M * Y

Z1 = k Y^2 / 2 + k X Y - M Z

Out[64]= lambda - M X - k X
2 - k X Y - ks X Z

Out[65]=

k X2

2
- M Y - k X Y - k Y

2 - ks Y Z

Out[66]= k X Y +
k Y2

2
- M Z

In[67]:= Jac = {{D[X1, X], D[X1, Y], D[X1, Z]}, {D[Y1, X], D[Y1, Y], D[Y1, Z]}, {D[Z1, X], D[Z1, Y], D[Z1, Z]}}

Out[67]= {{-M - 2 k X - k Y - ks Z, -k X, -ks X}, {k X - k Y, -M - k X - 2 k Y - ks Z, -ks Y}, {k Y, k X + k Y, -M}}

In[68]:= JacM = MatrixForm[Jac]

Out[68]//MatrixForm=

-M - 2 k X - k Y - ks Z -k X -ks X

k X - k Y -M - k X - 2 k Y - ks Z -ks Y

k Y k X + k Y -M

In[71]:= pol = Simplify[Det[Jac - u * IdentityMatrix[3]]]

Out[71]= -k ks X Y (M + u + k X + k Y + ks Z) - k ks (X + Y) k X2 + X Y + Y2 + Y (M + u + ks Z) +

(-M - u) k2 X (X - Y) + (M + u + 2 k X + k Y + ks Z) (M + u + k X + 2 k Y + ks Z)

In[72]:= lista = Simplify[CoefficientList[pol, u]]

In[73]:= -M3 - M2 (3 k (X + Y) + 2 ks Z) - k ks k (X + Y)3 + ks Y (2 X + Y) Z -

M k2 3 X2 + 4 X Y + 2 Y2 + ks2 Z2 + k ks 2 X Y + Y2 + 3 X Z + 3 Y Z,

-3 M2 - 6 k M (X + Y) - k2 3 X2 + 4 X Y + 2 Y2 - 4 ks M Z - ks2 Z2 - k ks 2 X Y + Y2 + 3 X Z + 3 Y Z,

-3 M - 3 k (X + Y) - 2 ks Z, -1

Out[73]= -M3 - M2 (3 k (X + Y) + 2 ks Z) - k ks k (X + Y)3 + ks Y (2 X + Y) Z -

M k2 3 X2 + 4 X Y + 2 Y2 + ks2 Z2 + k ks 2 X Y + Y2 + 3 X Z + 3 Y Z,

-3 M2 - 6 k M (X + Y) - k2 3 X2 + 4 X Y + 2 Y2 - 4 ks M Z - ks2 Z2 - k ks 2 X Y + Y2 + 3 X Z + 3 Y Z,

-3 M - 3 k (X + Y) - 2 ks Z, -1

In[74]:= c = Expand[lista[[1]]];

b = Expand[lista[[2]]];

a = Expand[lista[[3]]];

Printed by Wolfram Mathematica Student Edition



In[77]:= Reduce[{a * b + c > 0, X > 0, Y > 0, Z > 0, M > 0, ks > 0, k > 0}, {X, Y, Z}]

Out[77]= ks > 0 &&

0 < k <
ks

9
&& M > 0 && 0 < X ≤ Root8 M3 + 24 k M

2 #1 + 24 k2 M #12 + 9 k3 - k2 ks #13 &, 1 &&

Y > 0 && Z > 0 || X > Root8 M3 + 24 k M
2 #1 + 24 k2 M #12 + 9 k3 - k2 ks #13 &, 1 &&

0 < Y < Root8 M3 + 24 k M
2
X + 24 k2 M X2 + 9 k3 X3 - k2 ks X3 +

24 k M
2 + 44 k2 M X + 4 k ks M X + 21 k3 X2 + 3 k2 ks X2 #1 +

22 k2 M + 2 k ks M + 18 k3 X + 6 k2 ks X #12 + 6 k3 + 2 k2 ks #13 &, 3 &&

Z > Root8 M3 + 24 k M
2
X + 24 k2 M X2 + 9 k3 X3 - k2 ks X3 + 24 k M

2
Y + 44 k2 M X Y +

4 k ks M X Y + 21 k3 X2 Y + 3 k2 ks X2 Y + 22 k2 M Y2 + 2 k ks M Y
2 + 18 k3 X Y2 +

6 k
2
ks X Y

2 + 6 k3 Y3 + 2 k2 ks Y3 + 16 ks M2 + 30 k ks M X + 15 k2 ks X2 +

30 k ks M Y + 26 k2 ks X Y + 2 k ks
2
X Y + 13 k2 ks Y2 + k ks

2
Y
2 #1 +

10 ks2 M + 9 k ks
2
X + 9 k ks

2
Y #12 + 2 ks3 #13 &, 1 ||

Y ≥ Root8 M3 + 24 k M
2
X + 24 k2 M X2 + 9 k3 X3 - k2 ks X3 +

24 k M
2 + 44 k2 M X + 4 k ks M X + 21 k3 X2 + 3 k2 ks X2 #1 +

22 k2 M + 2 k ks M + 18 k3 X + 6 k2 ks X #12 + 6 k3 + 2 k2 ks #13 &, 3 &&

Z > 0 || k ≥
ks

9
&& M > 0 && X > 0 && Y > 0 && Z > 0

2 claudia_stabilita.nb

Printed by Wolfram Mathematica Student Edition
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Conclusions

In this thesis we introduced and analyzed some mathematical model conceived to

study three different pathologies: Alzheimer’s disease, tumor growth with stem cells and

Covid-19. We described the Routh-Hurwitz criterion to study the stability of systems of

autonomous ODE and several Cellular Automata schemes. With these tools we deeply

analyzed the models presented, obtaining results concerning existence, uniqueness and

stability of solutions. Moreover, for every model several numerical simulations were

performed, also using the softwares Matlab and Mathematica, and the results reported

in the thesis.

Concerning the model for Covid-19, which is a new one, given its consistency we think

we are able to make some sort of forecast on the progress of the epidemic. This could be

useful in choosing some strategies to be followed in the future, based on different possible

scenarios.

Obviously, these models can be further developed. Some possible ideas are the fol-

lowing:

� check the stability of the equilibrium solution of the AD model with three different

values of M ;

� check what happens if, also with social distance, much people go to the same place

such as school, markets and so on;

� recognize and isolate infected people as much as possible;
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� examine the effect of peoplevgetting tired to be isolated and starting to go around

a surface without rules;

� increase and decrease social contact for each person.
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[34] S. H. White, A. M. Del Rey, G. R. Sànchez, Modelling epidemics using cellular

automata Applied mathematics and computation, 186 (1), pp. 193-202, 2007.

[35] S. Wolfram, A new kind of science, Vol. 5, Wolfram media Champaign, IL, 2002.

[36] G. E. Box, Science and statistics, Journal of the American Statistical Association

71 (356), pp. 791-799, 1976.

[37] T. Colbourn, Covid-19: extending or relaxing distancing control measures, The Lan-

cet Public Healt 5 (5), pp. e236-e237, 2020.

[38] L. Lopez, X. Rodó, A Modified SEIR mode to Predic the COVID-19 Outbreak in

Spain and Italy: Simulating Control Scenarios and Multi-Scale Epidemics, SSRN,

29 April 2020.

[39] Li, Geng, et al., Coronavirus infections and immune responses, Journal of medical

virology 92.4, pp. 424-432, 2020.

[40] Y. Achdou, B. Franchi, N. Marcello, M.C. Tesi, A qualitative model for aggregation

and diffusion of β-amyloid in Alzheimer’s disease, Journal of Mathematical Biology,

Vol.67, pp 1369-1392, 2013.

[41] M. Bertsch, B. Franchi, M.C. Tesi, A. Tosin, Well-Posedness of a mathematical

model for Alzheimer’s disease, SIAM Journal on Applied Mathematics, Vol 50, No.

3, pp. 2362-2388, 2018.

[42] A. Alzheimer, Ueber den Abbau des Nerwengewebes, Allg. Ztsxhr. f. Psychiat, 1906.



Bibliography 63

[43] L. Edelnstein-Keshet and A. Spiross, Exploring the formation of Alzheimer’s disease

senile plaques in silico, J. Theor. Biol. 216, no.3, pp. 301-326, 2002.

[44] C. D. Pagani, S. Salsa, Analisi Matematica, Vol. 1, Masson, pag 229, 1995.

[45] R. Betteridge, M.R. Owen, H.M. Byrne, T.Alarcón, P. K. Maini, The impact of cell

crowding and active cells movement on vascular tumor growth, Netw Heterog Media

1(4), pp 515-535, 2006.

[46] I. Borsi, A. Fasano, M. Primicerio, T. Hillen, A non-local model for cancer steam

cells and the tumor growth paradox, Math Med Biol 34(1), pp. 59-75, 2015.

[47] H. Enderling, A. R. Anderson, M. A. Chaplain, A. Beheshti, L. Hlatky, P. Hahnfeldt,

Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics,

Cancer Res 69(22), pp. 8814-8821, 2009.

[48] F. Brauer, P. van den Driessche, J. Wu, Mathematical Epidemiology, Springer, 2008.

[49] Data coming from Italian Protezione Civile.





Acknowledgemets

Desidero ringraziare in primo luogo la professoressa Maria Carla Tesi. La ringrazio

per avermi fatto tanto appassionare a questi argomenti, per avermi sempre ascoltato, per

avermi detto dei semplici si o dei semplici no quando avevo delle buone o cattive idee.

La ringrazio anche, e soprattutto, per avermi fatto tanto divertire durante l’elaborazione

di questa tesi. La ringrazio un po’ per la persona che è.
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